WO2018137411A1 - 神经网络信息转换方法、系统及计算机设备 - Google Patents

神经网络信息转换方法、系统及计算机设备 Download PDF

Info

Publication number
WO2018137411A1
WO2018137411A1 PCT/CN2017/114660 CN2017114660W WO2018137411A1 WO 2018137411 A1 WO2018137411 A1 WO 2018137411A1 CN 2017114660 W CN2017114660 W CN 2017114660W WO 2018137411 A1 WO2018137411 A1 WO 2018137411A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
neuron
pulse
input
conversion
Prior art date
Application number
PCT/CN2017/114660
Other languages
English (en)
French (fr)
Inventor
裴京
施路平
吴臻志
李国齐
邓磊
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710056200.2A external-priority patent/CN106845632B/zh
Priority claimed from CN201710056211.0A external-priority patent/CN106845633B/zh
Priority claimed from CN201710056188.5A external-priority patent/CN106875006B/zh
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2018137411A1 publication Critical patent/WO2018137411A1/zh
Priority to US16/520,792 priority Critical patent/US20190347546A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/049Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/10Interfaces, programming languages or software development kits, e.g. for simulating neural networks
    • G06N3/105Shells for specifying net layout
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means

Definitions

  • the present invention relates to the field of neural network technologies, and in particular, to a neural network information conversion method, system, and computer device.
  • neural networks there are two main forms of neural networks, one is pulsed neural network, an artificial neural network, and the two have different expressions for the same input information, resulting in artificial neural networks and pulses. Neural networks are not compatible due to the different information being processed.
  • a neural network information conversion method comprising:
  • Receiving neuron input information of the input of the preceding neuron including inputting artificial neuron input information of the received artificial neuron input, or receiving pulse neuron input information input by the preceding pulsed neuron;
  • the artificial neuron conversion information is output.
  • the artificial neuron input information is converted into pulse neuron conversion according to the artificial neuron input information input by the preceding artificial neuron by a preset artificial information conversion algorithm.
  • Information including:
  • the pulse neuron conversion information includes: outputting the first pulse neuron conversion information
  • the input mode is a single input
  • converting the artificial neuron input information into the second pulse neuron conversion information by using the second conversion mode the outputting the pulse neuron conversion information, including: an output
  • the second pulse neuron conversion information is described.
  • the converting the artificial neuron input information into the first pulse neuron conversion information by using the first conversion mode when the input mode is a continuous input comprises:
  • the first time window is equally divided into a plurality of time steps
  • the pulse spike information is transmitted, and is obtained according to the artificial neuron input information and the transmit decrement value. a post-emission information of the neuron; when the artificial neuron input information is less than the pulse emission threshold, no pulse spike information is transmitted, and the artificial neuron input information is determined as a non-emission information of the neuron;
  • Subsequent time steps in the first time window are respectively determined according to the artificial neuron input information, the neuron intermediate information of the previous time step, the pulse emission threshold, and the emission decrement value, respectively. Transmitting pulse spike information;
  • All pulse spike information transmitted within the first time window is determined as first pulse neuron conversion information.
  • the determining, according to the artificial neuron input information, the neuron intermediate information of the previous time step, the pulse emission threshold, and the transmit decrement value, whether to transmit pulse spike information including :
  • the pulse spike information is not transmitted, and the neuron accumulation information of the current time step is determined as the current time step of the neuron not transmitted. information.
  • the converting the artificial neuron input information into the second pulse neuron conversion information by using the second conversion mode when the input mode is a single input comprises:
  • Pulse spike information is transmitted during the fourth time period, and all of the pulse spike information in the second time window is confirmed as second pulse neuron conversion information.
  • the transmitting pulse spike information within the fourth duration includes:
  • Pulse spike information is continuously transmitted during the fourth duration.
  • the converting the pulse neuron input information into the artificial neuron conversion information by using a preset pulse information conversion algorithm according to the pulse neuron input information includes:
  • pulse neuron input information input by the pre-pulse neuron, the pulse neuron input information including pulse spike information;
  • the artificial neuron conversion information is output.
  • the acquiring the artificial neuron conversion information by using the preset pulse conversion algorithm according to the pulse spike information input by the preceding pulse neuron includes:
  • the receiving pulse neuron input information input by the pre-pulse neuron further includes:
  • a second total number of pulse spike information input by all of the preceding pulse neurons is determined as second artificial neuron conversion information input by all of the preceding pulse neurons.
  • the pulse neuron input information further includes:
  • the weighting index of the connection between the precursor pulse neuron and the current neuron is the weighting index of the connection between the precursor pulse neuron and the current neuron
  • the pulse spike information input according to the preceding pulse neuron is obtained by a preset pulse conversion algorithm Taking artificial neuron conversion information, also includes:
  • the third artificial neuron conversion information is acquired by a preset pulse conversion algorithm.
  • the time window is equally divided into time steps, and in the first time step, the information is input according to the artificial neurons.
  • the pulse emission threshold is compared to determine whether to transmit pulse spike information, and to obtain the intermediate information of the first time step, and at subsequent time steps, according to the artificial neuron input information, the pulse emission threshold, and the emission decrement value. Determine whether to transmit the pulse spike information, and finally confirm all the pulse spike information transmitted in the time window as the converted pulse neuron information.
  • the artificial neuron may be input with information, and the pulse may be adjusted according to different requirements.
  • the method of transmitting the threshold and transmitting the decrement value gives different pulse neuron information conversion results, and the implementation is simple.
  • determining, according to the artificial neuron input information, a duration of the transmit pulse spike information in a time window, and determining the converted front pulse neuron information according to the transmitted pulse spike information In an embodiment, the converted pulse neuron information is determined by using the number of pulse spike information within a certain time window or the ratio of the duration of the transmitted pulse spike information to the duration of the non-transmitted pulse spike information in the time window. simple.
  • the pulse spike information input by the preceding pulse neuron is received according to the pulse spike information received within the duration of the different time steps, and the preset pulse conversion algorithm,
  • the input information of the pulsed neurons is converted into the expression of the artificial neuron information.
  • the method for transforming pulse neuron information into artificial neuron information provided in this embodiment converts pulse neuron information into artificial neuron information according to a time-step manner, thereby improving neural network information for pulsed neurons and The compatibility of artificial neuron information.
  • the pre-pulse neuron information is converted into artificial neuron conversion information by accumulating the number of pulse spike information in the conversion time step, and the implementation is simple and reliable, and the conversion efficiency is high.
  • the pulse neuron input information for a plurality of pre-pulse neuron inputs will be a single pre-
  • the pulse information input by the pulsed neuron is converted into artificial neuron information, and the artificial neuron conversion information input by the plurality of preceding pulse neurons is obtained, so that the current neuron is further subjected to subsequent calculation, and the manner of the respective conversion is suitable.
  • the artificial neuron conversion information of the transformed single pre-pulse neurons does not have any influence on the calculation and use of the current neurons.
  • the pulse information input by all the preceding pulse neurons is accumulated, and the accumulated sum is converted into artificial neuron information to obtain
  • An artificial neuron conversion information input to all preceding pulsed neurons the manner of unified conversion after accumulation, suitable for the case of a large number of pre-existing pulsed neurons, can improve the conversion of pulsed neuron information into artificial neuron information effectiveness.
  • the received pre-pulse neuron information respectively carries a connection weight index
  • a single pre-pulse is input to the pulse neuron input information carrying the connection weight index input by the plurality of preceding pulse neurons.
  • the pulse spike information input by the neuron is calculated by the connection weight information, and then the artificial neuron of the single pre-pulse neuron converts the information to ensure that the information conversion process does not affect the final calculation.
  • a method for converting pulsed neural network information into artificial neural network information comprising:
  • pulse neuron input information input by a pre-pulse neuron, the pulse neuron input information including pulse spike information;
  • the artificial neuron conversion information is output.
  • a method of converting artificial neuron information into pulsed neuron information comprising:
  • Determining an input mode of the artificial neuron input information when the input mode is continuous input, converting the artificial neuron input information into first pulse neuron information by using a first conversion mode, and outputting the first Pulsed neuron information;
  • the artificial neuron input information is converted into second pulse neuron information by using a second conversion mode, and the second pulsed neuron information is output.
  • a manual rotation pulse module configured to convert the artificial neuron input information into pulse neuron conversion information according to the artificial neuron input information input by the preceding artificial neuron by a preset artificial information conversion algorithm
  • a neuron conversion information output module configured to output the pulse neuron conversion information
  • a pulse-to-manual module configured to convert the pulse neuron input information into artificial neuron conversion information by using a preset pulse information conversion algorithm according to the pulse neuron input information
  • the neuron conversion information output module is configured to output the artificial neuron conversion information.
  • a system for converting pulse neural network information into artificial neural network information comprising:
  • a conversion time step acquisition module for obtaining a conversion time step
  • the artificial neuron conversion information acquiring module is configured to obtain artificial neuron conversion information according to the pulse spike information input by the preceding pulse neuron through a preset pulse conversion algorithm;
  • the artificial neuron conversion information output module is configured to output the artificial neuron conversion information.
  • a system for converting artificial neuron information into pulsed neuron information comprising:
  • An artificial neuron input information receiving module configured to receive artificial neuron input information input by a prior artificial artificial neuron
  • An input mode determining module configured to determine an input mode of the artificial neuron input information
  • a first conversion module configured to convert the artificial neuron input information into first pulse neuron information by using a first conversion mode when the input mode is continuous input;
  • a pulse neuron information output module configured to output the first pulse neuron information
  • a second conversion module configured to convert the artificial neuron input information into second pulse neuron information by using a second conversion mode when the input mode is a single input
  • the pulse neuron information output module is configured to output second pulse neuron information.
  • the above neural network information conversion method, system and computer device convert the artificial neuron information into pulsed neuron information or convert the pulsed neuron information according to the demand, according to the demand, through a preset conversion algorithm
  • the way of competing with two different neuron information in one neural network is realized, which improves the information processing capability of the neural network.
  • FIG. 1 is a schematic flow chart of a neural network information conversion method according to an embodiment
  • FIG. 2 is a schematic flow chart of a neural network information conversion method according to an embodiment
  • FIG. 3 is a schematic flow chart of a neural network information conversion method according to another embodiment
  • FIG. 4 is a schematic flow chart of a neural network information conversion method according to an embodiment
  • FIG. 5 is a schematic flowchart diagram of a neural network information conversion method according to another embodiment
  • FIG. 6 is a schematic structural diagram of a computing core implementing a neural network information conversion method according to an embodiment
  • FIG. 7 is a schematic diagram of first pulse neuron conversion information in a neural network information conversion method according to another embodiment
  • FIG. 8 is a schematic diagram of first pulse neuron conversion information in a neural network information conversion method according to another embodiment
  • FIG. 9 is a schematic flow chart of a neural network information conversion method according to an embodiment
  • FIG. 10 is a schematic flow chart of a neural network information conversion method according to another embodiment
  • FIG. 11 is a schematic flow chart of a neural network information conversion method according to an embodiment
  • FIG. 12 is a schematic flow chart of a neural network information conversion method according to another embodiment
  • FIG. 13 is a schematic structural diagram of a computing core in a neural network information conversion method according to another embodiment
  • FIG. 14 is a schematic structural diagram of a neural network information conversion system according to an embodiment
  • 15 is a schematic structural diagram of a neural network information conversion system according to another embodiment.
  • 16 is a schematic structural diagram of a neural network information conversion system of another embodiment.
  • Step S1 Receive neuron input information input by the pre-neuron, including inputting artificial neuron input information of the input artificial neuron, or receiving pulse neuron input information input by the pre-pulse neuron.
  • the input artificial neuron information can be converted into pulse neuron information, and the input pulse neuron information can also be input. Convert to artificial neuron information.
  • Step S2 Convert the artificial neuron input information into pulse neuron conversion information by using a preset artificial information conversion algorithm according to the artificial neuron input information input by the preceding artificial neuron.
  • Step S3 according to the pulse neuron input information, the pulse god is determined by a preset pulse information conversion algorithm The meta-input information is converted into artificial neuron conversion information.
  • Step S4 outputting the pulse neuron conversion information or the artificial neuron conversion information.
  • FIG. 2 is a schematic flowchart of a neural network information conversion method according to an embodiment, and the neural network information conversion method shown in FIG. 2 includes:
  • Step S100 Receive artificial neuron input information input by a prior artificial neuron.
  • the connections between the pulsed neural network neurons are implemented using Spike (1 bit) with a certain depth of time.
  • the frequency and pattern of pulse delivery represent different information over a certain time frame.
  • the connections between neurons of an artificial neural network are implemented in multiple bits (eg, 8 bits) without time depth.
  • the artificial neuron input information received by the input artificial neuron input includes a neuron input signal that is implemented by using a multi-bit quantity (for example, an 8-bit quantity) without a time depth, and is input by the pre-existing artificial neuron Membrane potential.
  • a neuron input signal that is implemented by using a multi-bit quantity (for example, an 8-bit quantity) without a time depth, and is input by the pre-existing artificial neuron Membrane potential.
  • step S200 the input mode of the artificial neuron input information is determined.
  • step S300a is followed, and when the input mode is single input, the process proceeds to step S300b.
  • the membrane potential input by the preceding artificial neuron has two input modes, and is always in a continuous input mode, that is, the input of the membrane potential is kept unchanged during a preset input period, and the other is
  • a single input ie the input of the membrane potential, is not a continuous input for a period of time, but a single input at a set output time.
  • Step S300a converting the artificial neuron input information into first pulse neuron conversion information by using a first conversion mode.
  • the first conversion mode is configured to convert the input artificial neuron input information into a first pulse neuron conversion information according to a feature of continuous input of the membrane potential, such as using a membrane higher than a preset emission threshold.
  • the potential release action sends a pulse signal and accumulates the released membrane potential to determine whether to continue to release the pulse signal.
  • Step S300b converting the artificial neuron input information into a second pulse neuron conversion by using a second conversion mode information.
  • the second conversion mode is configured to convert the input information of the single neuron input into a second pulse neuron conversion information by using a single input feature, such as sending by using a set pulse signal.
  • a single input feature such as sending by using a set pulse signal.
  • the correspondence between the frequency and the membrane potential of the artificial neuron, determining the transmission frequency of different pulse signals to express different artificial membrane potential information, or using the transmission duration and preset of the pulse signal of the fixed transmission frequency within a preset period of time The ratio of the duration of the time period indicates the artificial membrane potential information.
  • Step S400 outputting the first pulse neuron conversion information or the second pulse neuron conversion information.
  • the method of the present invention is implemented by a computational core, wherein the computational core receives artificial neuron input information input by a prior ANN (artificial neural network), and converts it into The SNN (Pulse Neural Network) information is sent to the subsequent SNN network for use.
  • the axon module input is used to receive artificial neuron input information
  • the dendrite module is used to specifically calculate the cumulative signal, including integral calculation, etc., and the cell module is issued for issuing the converted pulse neuron information.
  • the previous ANN network and the subsequent SNN network are seamlessly connected.
  • the input mode is input information of the artificial input of the continuous input or the single input, and different conversions are adopted. Pattern, converted to pulsed neuron information.
  • the artificial neuron input information can be converted into pulse neuron information, but also the input mode of different artificial neuron input information can be compatible, and the neural network is improved in compatibility with the input information of the artificial neuron and the input information of the pulsed neuron. Sex.
  • FIG. 3 is a schematic flowchart of a method in a first conversion mode in a neural network information conversion method according to another embodiment, where the neural network information conversion method shown in FIG. 3 includes:
  • step S310a the first time window is equally divided into a plurality of time steps.
  • the first conversion mode is to convert pulse neuron information according to the continuously input artificial neuron input information, and according to the continuous input feature, divide the first time window of the first duration into equal intervals into The time step is the time step of the second time length, and it is determined whether to send the pulse spike signal at each time step, and then the pulse spike signal transmitted all the time is determined as the converted pulse neuron information.
  • the converted pulse spike information is also equally spaced.
  • Step S320a in the first time step in the first time window, when the artificial neuron input information is greater than or equal to the pulse emission threshold, transmitting pulse spike information, and according to the artificial neuron input information and the transmission decrement a value, obtaining post-emission information of the neuron; when the artificial neuron input information is less than the pulse emission threshold, the pulse tip is not transmitted Peak information, and the artificial neuron input information is determined as a neuron untransmitted information.
  • the artificial neuron input information is subtracted from the transmit decrement value, and information about the post-emission information of the neuron is acquired, and the membrane potential value of the information after the post-emission of the neuron is less than the artificial neuron input.
  • the membrane potential value of the information is the membrane potential value of the information.
  • the artificial neuron input information is not calculated with the transmitted decrement value.
  • V j is the membrane potential information of the current time step j
  • V th is the pulse emission threshold.
  • V x V j - ⁇ V, where V x is the post-emission post-information information of the current time step;
  • V y V j , where V y is the current time step of the neuron not transmitting information.
  • Step S330a the information after the neuron is transmitted or the non-transmitted information of the neuron is confirmed as the intermediate information of the neuron in the first time step.
  • the neuron untransmitted information acquired by the first time step and the untransmitted information of the neuron are used as the intermediate information of the first time step, and participate in the subsequent time.
  • the calculation of the step is based on the following time step.
  • Step S340a in the subsequent time steps in the first time window, respectively, according to the artificial neuron input information, the neuron intermediate information of the previous time step, the pulse emission threshold, and the emission decrement value , to determine whether to transmit pulse spike information.
  • whether to transmit the pulse spike information is determined according to the artificial neuron input information and the neuron intermediate information of the first time step.
  • Step S350a determining all the pulse spike information transmitted in the first time window as the first pulse neuron conversion information.
  • all the pulse spike information transmitted in the time window is determined as the first pulse of the first time window. Neuron conversion information.
  • the time window is equally divided into time steps, and in the first time step, information and pulses are input according to the artificial neurons.
  • the emission threshold is compared to determine whether to transmit pulse spike information, and to obtain the intermediate information of the first time step, and at subsequent time steps, according to the artificial neuron input information, the pulse emission threshold, and the emission decrement value, It is determined whether to transmit the pulse spike information, and finally all the pulse spike information transmitted in the time window is confirmed as the converted pulse neuron information.
  • the artificial neuron may be input with information, and the pulse may be adjusted according to different requirements.
  • the method of transmitting the threshold and transmitting the decrement value gives different pulse neuron information conversion results, and the implementation is simple.
  • FIG. 4 is a schematic flow chart of a pulse conversion method of a subsequent time step of a first time step in a first time window in a neural network information conversion method according to an embodiment, and the neural network information conversion shown in FIG. Methods include:
  • Step S341a accumulating the artificial neuron input information and the neuron intermediate information of the previous time step to obtain the neuron accumulation information of the current time step.
  • the artificial neuron input information of the received pre-existing artificial neurons is accumulated, and the intermediate information acquired by the previous time step is accumulated, and then the current time is acquired.
  • the neuron of the step accumulates information. Since the input mode of the artificial neuron input information is continuously input, the membrane potential information acquired at each time step is continuous and equal.
  • Step S342a when the neuron accumulation information of the current time step is greater than or equal to the preset pulse emission threshold, transmitting pulse spike information, and subtracting the preset time from the neuron accumulation information of the current time step The decrement value is transmitted, and the post-emission information of the current time step is obtained.
  • Step S343a when the neuron accumulation information of the current time step is less than the preset pulse emission threshold, the pulse spike information is not transmitted, and the neuron accumulation information of the current time step is determined as the nerve of the current time step. Yuan did not transmit information.
  • the neuron accumulation information of the current time step is determined as the current time.
  • the neurons of the step do not emit information and participate in the subsequent calculation of the time step.
  • a pulse signal composed of a plurality of pulse spike information is acquired by transmitting pulse peak information.
  • the interval of the transmitted pulse spike information is different, and the converted pulse neuron information is also different.
  • the subsequent time steps except the first time step are based on the artificial neuron input information and the pulse emission threshold. And transmitting a decrement value, determining whether to transmit the pulse spike information, and finally confirming all the pulse spike information transmitted in the time window as the converted pulse neuron information.
  • the artificial neuron may be input with information, and the pulse may be adjusted according to different requirements.
  • the method of transmitting the threshold and transmitting the decrement value gives different pulse neuron information conversion results, and the implementation is simple.
  • the input membrane potential is not a continuous input, and the single-input non-sustained membrane potential information needs to be converted into pulsed neuron information.
  • Step S320b transmitting pulse spike information in the fourth duration, and confirming all the pulse spike information in the second time window as second pulse neuron conversion information.
  • a ratio of the duration of the emitted and non-transmitted pulse spike information is determined based on the membrane potential value of the artificial neuron input information.
  • the transmitting the pulse spike information in the fourth duration includes continuously transmitting, or sending a pulse spike information at each of the start and end timings of the fourth duration.
  • the continuous transmission mode includes: continuously transmitting pulse spike information within the fourth duration.
  • the continuous transmit pulse spike information includes continuous equal interval transmission, and continuous unequal interval transmission.
  • the second pulse neuron conversion information is determined by continuously transmitting pulse spike information for a fourth duration and based on a ratio of a relationship between the fourth duration and the duration of the second time window.
  • FIG. 9 is a schematic flowchart of a neural network information conversion method according to an embodiment, and the neural network information conversion method shown in FIG. 9 includes:
  • the conversion time step is a preset time period
  • the received pulse neuron input information is information composed of a pulse spike signal having a time depth, and the different transmission numbers in different time periods have the same transmission interval.
  • the spike information, or the pulse spike information of the same emission number with different emission intervals, also represents different meanings. Therefore, it is necessary to set a preset time period for analyzing the pulse spike information in the preset time period and converting it into artificial neuron conversion information.
  • Step S20 receiving pulse neuron input information input by the pre-pulse neuron, wherein the pulse neuron input information includes pulse spike information, within the duration of the transition time step.
  • the pulse neuron input information input by the pre-pulse neuron includes, in an actual neural network, a plurality of pulse neuron input information input by the plurality of the preceding pulse neurons.
  • the converting the pulse spike information into the duration of a time step including accumulating the number of pulse spike signals, or accumulating the membrane potential of the pulse spike signal, and accumulating the pulse spikes
  • the total number of signals, or the total membrane potential of the accumulated pulse spike signal is converted according to a preset pulse conversion algorithm to obtain artificial neuron conversion information.
  • Step S40 outputting the artificial neuron conversion information.
  • the method of the present invention is implemented by a computational core, wherein the computational core receives artificial neuron input information input by a pre-SNN (pulse neural network), and converts it into The ANN (Artificial Neural Network) information is sent to the subsequent ANN network for use.
  • the axon input is used to receive artificial neuron input information, and the dendrites are used for the cumulative calculation of specific signals, including integral calculations, etc.
  • the changed pulse neuron information Through the calculation and processing of the nucleus, the previous SNN network and the subsequent ANN network are seamlessly connected.
  • the pulse spike information input by the preceding pulse neuron is received according to the pulse spike information received within the duration of the different time steps, and the preset pulse conversion algorithm will Pulsed neuron input information is converted into the expression of artificial neuron information.
  • the method for transforming pulse neuron information into artificial neuron information provided in this embodiment converts pulse neuron information into artificial neuron information according to a time-step manner, thereby improving neural network information for pulsed neurons and The compatibility of artificial neuron information.
  • FIG. 10 is a schematic flowchart diagram of a neural network information conversion method according to another embodiment, and the neural network information conversion method shown in FIG. 10 includes:
  • Step S31a accumulating the number of pulse spike information input by the preceding pulse neuron, and acquiring a first total number of pulse spike information input by the preceding pulse neuron.
  • the number of received pulse spike signals is accumulated to obtain the total number of pulse spike signals received within the duration of the time step.
  • Step S32a determining a first total number of pulse spike information input by the preceding pulse neuron as the first artificial neuron conversion information input by the preceding pulse neuron.
  • the total quantity can be expressed directly in the form of a number, and according to actual needs, it can also be converted into a certain value range by a certain mathematical algorithm, or take different precisions.
  • the numbers can be.
  • the pre-pulse neuron information is converted into artificial neuron conversion information by accumulating the number of pulse spike information in the conversion time step, and the implementation manner is simple and reliable, and the conversion efficiency is high.
  • FIG. 11 is a schematic flowchart of a neural network information conversion method according to an embodiment, and the neural network information conversion method shown in FIG. 11 includes:
  • step S10b a conversion time step is obtained.
  • step S100 the same as step S100.
  • Step S20b Receive pulse neuron input information input by at least two of the preceding pulse neurons.
  • Step S30b accumulating the number of pulse spike information input by all the preceding pulse neurons to obtain a second total number of pulse spike information input by all the preceding pulse neurons; and all the preceding pulse nerves
  • the second total number of pulse spike information input by the element is determined as the second artificial neuron conversion information input by all of the preceding pulse neurons for the time step.
  • the pre-pulse neuron information includes at least two
  • the at least two pre-transformed neurons are input After the number of pulse spike signals is accumulated, the total number of received pulse spike signals is obtained, and the total number is converted.
  • Step S40b outputting the second artificial neuron conversion information.
  • the pulse information input by all the preceding pulse neurons is accumulated, and the accumulated sum is converted into the artificial neuron information, and acquired.
  • An artificial neuron conversion information input by all preceding pulse neurons which is a unified transformation method after accumulation, is suitable for the case of a large number of pre-existing pulse neurons, and can improve the conversion efficiency of pulse neuron information into artificial neuron information. .
  • step S10c a conversion time step is obtained.
  • step S100 the same as step S100.
  • Step S20c Receive pulse neuron input information respectively input by at least two of the preceding pulse neurons, and the pulse neuron input information further includes a connection weight index of the pre-pulse neuron and the current neuron.
  • connection weight index of the preceding pulse neuron and the current neuron is an index value of the weight information occupied by the pre-pulse neuron information in the calculation of the current neuron.
  • the weight indexing method can occupy a smaller information transmission space in the process of information transmission, which not only reduces the processing requirements of the hardware, but also needs to change the index information, so that the change of the weight information can be more flexibly and conveniently performed.
  • the update makes it easier to update the weight information in the neural network.
  • Step S30c reading connection weight information of the pre-pulse neuron and the current neuron according to the connection weight index of the pre-pulse neuron and the current neuron; and connecting the pre-pulse neuron to the current neuron according to the connection
  • the weight information, and the pulse spike information input by the preceding pulse neuron acquires weighted pulse spike information of the preceding pulse neuron; and according to the weighted pulse spike information of the preceding pulse neuron,
  • a preset pulse conversion algorithm acquires third artificial neuron conversion information.
  • connection weight index information may be stored locally in the current neuron or may be stored in other locations in the neural network as long as the current neuron can be read.
  • the connection weight information After receiving the input information of the pulse neuron carrying the connection weight index input by the plurality of preceding pulse neurons, it is necessary to read the connection weight information of the single preceding pulse neuron and perform operations on the received pulse spike information.
  • After acquiring a pulsed neuron input from a single pre-pulse neuron input Information can be. That is, the connection weight information requires a single pre-pulse neuron to calculate the pulse neuron information and the pulse spike information before converting the pulse neuron information and the artificial neuron information.
  • Step S40c outputting the third artificial neuron conversion information.
  • the neural network information conversion system shown in FIG. 14 includes:
  • the neuron input information acquiring module 1 is configured to receive the neuron input information of the input of the preceding neuron, including the input information of the artificial neuron input by the input artificial neuron, or the input of the pulse neuron input by the input of the preceding pulse neuron information;
  • the artificial rotation pulse module 2 is configured to convert the artificial neuron input information into pulse neuron conversion information by using a preset artificial information conversion algorithm according to the artificial neuron input information input by the preceding artificial neuron ;
  • a pulse-to-manual module 3 configured to convert the pulse neuron input information into artificial neuron conversion information by using a preset pulse information conversion algorithm according to the pulse neuron input information;
  • the neuron conversion information output module 4 is configured to output the artificial neuron conversion information.
  • the artificial neuron information is converted into the pulsed neuron information by using a preset conversion algorithm, or the pulsed neuron information is converted into the artificial neuron information, thereby realizing In a neural network, the way of compatating two different neuron information at the same time improves the information processing capability of the neural network.
  • the neural network information conversion system shown in FIG. 15 includes:
  • the artificial neuron input information receiving module 100 is configured to receive artificial neuron input information input by a prior artificial artificial neuron;
  • the input mode determining module 200 is configured to determine an input mode of the artificial neuron input information
  • the first conversion module 300 is configured to convert the artificial neuron input information into first pulse neuron conversion information by using a first conversion mode when the input mode is continuous input;
  • a second conversion module 400 configured to: when the input mode is a single input, use the second conversion mode to use the manual Converting the neuron input information to the second pulse neuron conversion information; the second conversion module, configured to determine a fourth duration in the second time window according to the artificial neuron input information and the second time window; Pulse spike information is transmitted during the fourth time period, and all of the pulse spike information in the second time window is confirmed as second pulse neuron conversion information.
  • the transmitting pulse spike information in the fourth duration includes continuously transmitting pulse spike information within the fourth duration.
  • the pulse neuron information output module 500 is configured to output the first pulse neuron conversion information or the second pulse neuron conversion information.
  • the input mode is input information of the artificial input of the continuous input or the single input, and different conversions are adopted. Pattern, converted to pulsed neuron information.
  • the artificial neuron input information can be converted into pulse neuron information, but also the input mode of different artificial neuron input information can be compatible, and the neural network is improved in compatibility with the input information of the artificial neuron and the input information of the pulsed neuron.
  • Sex Determining, according to the artificial neuron input information, a duration of the transmit pulse spike information in a time window, and determining the converted front pulse neuron information according to the transmitted pulse spike information.
  • the number of pulse spike information within the period, or the ratio of the duration of the transmitted pulse spike information to the duration of the non-transmitted pulse spike information in the time window determines the converted pulse neuron information, and the implementation is simple.
  • the first conversion module includes:
  • the time step dividing unit is configured to divide the first time window into equal intervals into a plurality of time steps.
  • the first pulse neuron conversion information determining unit is configured to determine all the pulse spike information transmitted in the first time window as the first pulse neuron conversion information.
  • the time window is equally divided into time steps, and in the first time step, information and pulses are input according to the artificial neurons.
  • the emission threshold is compared to determine whether to transmit pulse spike information, and to obtain the intermediate information of the first time step, and at subsequent time steps, according to the artificial neuron input information, the pulse emission threshold, and the emission decrement value, It is determined whether to transmit the pulse spike information, and finally all the pulse spike information transmitted in the time window is confirmed as the converted pulse neuron information.
  • the artificial neuron may be input with information, and the pulse may be adjusted according to different requirements.
  • the method of transmitting the threshold and transmitting the decrement value gives different pulse neuron information conversion results, and the implementation is simple.
  • FIG. 16 is a schematic structural diagram of a neural network information conversion system according to another embodiment.
  • the neural network information conversion system shown in FIG. 16 includes:
  • the conversion time step acquisition module 10 is configured to acquire a conversion time step, and is further configured to receive pulse neuron input information input by at least two of the preceding pulse neurons.
  • the artificial neuron conversion information acquiring module 30 is configured to acquire artificial neuron conversion information according to the pulse spike information input by the preceding pulse neuron, and include a pulse peak of a pre-pulse neuron An information acquiring unit, configured to accumulate the number of pulse spike information input by the preceding pulse neuron, and obtain a first total number of pulse spike information input by the preceding pulse neuron; the pulse neuron input information It also includes the connection weight index of the pre-pulse neuron and the current neuron. a first artificial neuron conversion information acquiring unit, configured to determine a first total number of pulse spike information input by the preceding pulse neuron as the time step, the first input of the preceding pulse neuron Artificial neuron conversion information.
  • the method further includes: a plurality of pre-pulse neuron pulse spike information acquiring units, configured to accumulate the number of pulse spike information input by all the preceding pulse neurons, and obtain pulse spike information input by all the preceding pulse neurons The second total number.
  • a second artificial neuron conversion information acquiring unit configured to determine a second total number of pulse spike information input by all of the preceding pulse neurons as the time step, all of the preceding pulse neuron inputs The second artificial neuron converts information.
  • the weighted pre-pulse neuron acquisition unit is configured to read the connection between the pre-existing pulse neuron and the current neuron according to the connection weight index of the pre-transitional neuron and the current neuron Receiving weight information; acquiring weighted pulse spikes of the preceding pulse neurons according to connection weight information of the preceding pulse neurons and the current neurons, and the pulse spike information input by the preceding pulse neurons information.
  • the third artificial neuron conversion information acquiring unit is configured to acquire the third artificial neuron conversion information by using a preset pulse conversion algorithm according to the weighted pulse spike information of the preceding pulse neuron.
  • the artificial neuron conversion information output module 40 is configured to output the artificial neuron conversion information.
  • the pulse spike information input by the preceding pulse neuron is received according to the pulse spike information received within the duration of the different time steps, and the preset pulse conversion algorithm will Pulsed neuron input information is converted into the expression of artificial neuron information.
  • the method for transforming pulse neuron information into artificial neuron information provided in this embodiment converts pulse neuron information into artificial neuron information according to a time-step manner, thereby improving neural network information for pulsed neurons and The compatibility of artificial neuron information.
  • the pre-pulse neuron information is converted into artificial neuron conversion information by accumulating the number of pulse spike information in the conversion time step, and the implementation manner is simple and reliable, and the conversion efficiency is high.
  • the pulse neuron input information input by a plurality of preceding pulse neurons the pulse information input by the single previous pulse neuron is converted into artificial neuron information, and the artificial neuron conversion information input by the plurality of preceding pulse neurons is obtained.
  • the manner of conversion is suitable for the case of a small number of pre-pulse neurons, and the artificial neuron conversion information of the transformed single pre-pulse neurons is in the current neuron. The calculation will not have any effect on its use.
  • the pulse neuron input information input by the plurality of preceding pulse neurons the pulse information input by all the preceding pulse neurons is accumulated, and the accumulated sum is converted into the artificial neuron information to obtain all the pre-pulses.
  • An artificial neuron conversion information input by a neuron which is integrated and converted after being accumulated, is suitable for a case where the number of pre-existing pulse neurons is large, and can improve the conversion efficiency of the information of the pulsed neuron converted into artificial neuron information.
  • the received pre-pulse neuron information respectively carries a connection weight index
  • the pulse spike information input by a single pre-transitional neuron is input to the pulse neuron input information carrying the connection weight index input by the plurality of preceding pulse neurons.
  • the artificial neuron conversion information of a single pre-pulse neuron is performed to ensure that the information conversion process does not affect the final calculation.
  • an embodiment of the present invention further provides a computer device including a memory, a processor, and a computer program stored on the memory and executable on the processor, wherein the processor executes the computer
  • a computer device including a memory, a processor, and a computer program stored on the memory and executable on the processor, wherein the processor executes the computer
  • Non-volatile memory can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory can include random access memory (RAM) or external cache memory.
  • RAM is available in a variety of formats, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronization chain.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • Synchlink DRAM SLDRAM
  • Memory Bus Radbus
  • RDRAM Direct RAM
  • DRAM Direct Memory Bus Dynamic RAM
  • RDRAM Memory Bus Dynamic RAM

Abstract

一种神经网络信息转换方法、系统及计算机设备,所述方法包括:接收前继神经元输入的神经元输入信息,包括接收前继人工神经元输入的人工神经元输入信息,或接收前继脉冲神经元输入的脉冲神经元输入信息(S1);根据所述前继人工神经元输入的所述人工神经元输入信息,通过预设的人工信息转换算法,将所述人工神经元输入信息转换为脉冲神经元转换信息(S2);或根据所述脉冲神经元输入信息,通过预设的脉冲信息转换算法,将所述脉冲神经元输入信息转换为人工神经元转换信息(S3);输出所述脉冲神经元转换信息或所述人工神经元转换信息(S4)。本方法实现了在一个神经网络中,同时兼容两种不同的神经元信息的方式,提高了神经网络的信息处理能力。

Description

神经网络信息转换方法、系统及计算机设备
相关申请
本申请要求2017年01月25日申请的,申请号为201710056211.0,名称为“神经网络信息转换方法和系统”,申请号为201710056188.5,名称为“人工神经元信息转换为脉冲神经元信息的方法和系统”,以及申请号为201710056200.2,名称为“脉冲神经网络信息转换为人工神经网络信息的方法和系统”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本发明涉及神经网络技术领域,特别是涉及神经网络信息转换方法、系统及计算机设备。
背景技术
如今的人工神经网络研究绝大多数仍是在冯·诺依曼计算机软件并搭配高性能GPGPU(General Purpose Graphic Processing Units通用图形处理单元)平台中实现的,整个过程的硬件开销、能耗和信息处理速度都不容乐观。为此,近几年神经形态计算领域迅猛发展,即采用硬件电路直接构建神经网络从而模拟大脑的功能,试图实现大规模并行、低能耗、可支撑复杂模式学习的计算平台。
然而,传统的神经形态系统中,神经网络的主要有两种形态,一种为脉冲神经网络,一种人工神经网络,两者对同样的输入信息有着不同的表达方式,导致人工神经网络和脉冲神经网络因处理的信息不同而不能兼容。
发明内容
基于此,有必要针对两种不同的神经网络输入的信息不兼容的问题,提供一种神经网络信息转换方法、系统及计算机设备。
一种神经网络信息转换方法,其中,所述方法包括:
接收前继神经元输入的神经元输入信息,包括接收前继人工神经元输入的人工神经元输入信息,或接收前继脉冲神经元输入的脉冲神经元输入信息;
根据所述前继人工神经元输入的所述人工神经元输入信息,通过预设的人工信息转换算法,将所述人工神经元输入信息转换为脉冲神经元转换信息;
输出所述脉冲神经元转换信息;
或根据所述脉冲神经元输入信息,通过预设的脉冲信息转换算法,将所述脉冲神经元输入信息转换为人工神经元转换信息;
输出所述人工神经元转换信息。
在其中一个实施例中,所述根据所述前继人工神经元输入的所述人工神经元输入信息,通过预设的人工信息转换算法,将所述人工神经元输入信息转换为脉冲神经元转换信息,包括:
判断所述人工神经元输入信息的输入模式,当所述输入模式为持续输入时,利用第一转换模式将所述人工神经元输入信息转换为第一脉冲神经元转换信息,则所述输出所述脉冲神经元转换信息,包括:输出所述第一脉冲神经元转换信息;
当所述输入模式为单次输入时,利用第二转换模式将所述人工神经元输入信息转换为第二脉冲神经元转换信息,则所述输出所述脉冲神经元转换信息,包括:输出所述第二脉冲神经元转换信息。
在其中一个实施例中,所述当所述输入模式为持续输入时,利用第一转换模式将所述人工神经元输入信息转换为第一脉冲神经元转换信息,包括:
将第一时间窗等间隔划分为多个时间步;
在所述第一时间窗内的第一个时间步,当所述人工神经元输入信息大于等于脉冲发射阈值时,发射脉冲尖峰信息,并根据所述人工神经元输入信息和发射递减值,获取神经元发射后信息;当所述人工神经元输入信息小于所述脉冲发射阈值时,不发射脉冲尖峰信息,并将所述人工神经元输入信息确定为神经元未发射信息;
将所述神经元发射后信息或所述神经元未发射信息,确认为所述第一个时间步的神经元中间信息;
在所述第一时间窗内的后续各时间步,分别根据所述人工神经元输入信息、前一个时间步的所述神经元中间信息、所述脉冲发射阈值和所述发射递减值,判断是否发射脉冲尖峰信息;
将所述第一时间窗内发射的所有脉冲尖峰信息,确定为第一脉冲神经元转换信息。
在其中一个实施例中,所述根据所述人工神经元输入信息、前一个时间步的所述神经元中间信息、所述脉冲发射阈值和所述发射递减值,判断是否发射脉冲尖峰信息,包括:
将所述人工神经元输入信息和所述前一个时间步的所述神经元中间信息进行累加,获取当前时间步的神经元累加信息;
当所述当前时间步的神经元累加信息大于等于所述预设的脉冲发射阈值时,发射脉冲尖峰信息,并将所述当前时间步的神经元累加信息减去所述预设的发射递减值,获取当前时间步的神经元发射后信息;
当所述当前时间步的神经元累加信息小于所述预设的脉冲发射阈值时,不发射脉冲尖峰信息,并将所述当前时间步的神经元累加信息确定为当前时间步的神经元未发射信息。
在其中一个实施例中,所述当所述输入模式为单次输入时,利用第二转换模式将所述人工神经元输入信息转换为第二脉冲神经元转换信息,包括:
根据所述人工神经元输入信息和第二时间窗,确定所述第二时间窗内的第四时长;
在所述第四时长内发射脉冲尖峰信息,并将所述第二时间窗内所有的所述脉冲尖峰信息确认为第二脉冲神经元转换信息。
在其中一个实施例中,所述在所述第四时长内发射脉冲尖峰信息,包括:
在所述第四时长内连续发射脉冲尖峰信息。
在其中一个实施例中,所述根据所述脉冲神经元输入信息,通过预设的脉冲信息转换算法,将所述脉冲神经元输入信息转换为人工神经元转换信息,包括:
获取转换时间步;
在所述转换时间步持续时长内,接收所述前继脉冲神经元输入的脉冲神经元输入信息,所述脉冲神经元输入信息包括脉冲尖峰信息;
根据所述前继脉冲神经元输入的所述脉冲尖峰信息,通过预设的脉冲转换算法,获取人工神经元转换信息;
输出所述人工神经元转换信息。
在其中一个实施例中,所述根据所述前继脉冲神经元输入的所述脉冲尖峰信息,通过预设的脉冲转换算法,获取人工神经元转换信息,包括:
将所述前继脉冲神经元输入的脉冲尖峰信息的数量进行累计,获取所述前继脉冲神经元输入的脉冲尖峰信息的第一总数量;
将所述前继脉冲神经元输入的脉冲尖峰信息的第一总数量,确定为所述时间步的,所述前继脉冲神经元输入的第一人工神经元转换信息。
在其中一个实施例中,所述接收前继脉冲神经元输入的脉冲神经元输入信息,还包括:
接收至少两个所述前继脉冲神经元分别输入的脉冲神经元输入信息;
则所述根据所述前继脉冲神经元输入的所述脉冲尖峰信息,通过预设的脉冲转换算法,获取人工神经元转换信息,还包括:
将所有所述前继脉冲神经元输入的脉冲尖峰信息的数量进行累计,获取所有所述前继脉冲神经元输入的脉冲尖峰信息的第二总数量;
将所有所述前继脉冲神经元输入的脉冲尖峰信息的第二总数量,确定为所述时间步的,所有所述前继脉冲神经元输入的第二人工神经元转换信息。
在其中一个实施例中,所述脉冲神经元输入信息,还包括:
前继脉冲神经元与当前神经元的连接权重索引;
所述根据所述前继脉冲神经元输入的所述脉冲尖峰信息,通过预设的脉冲转换算法,获 取人工神经元转换信息,还包括:
根据所述前继脉冲神经元与当前神经元的连接权重索引,读取前继脉冲神经元与当前神经元的连接权重信息;
根据所述前继脉冲神经元与当前神经元的连接权重信息,和所述前继脉冲神经元输入的所述脉冲尖峰信息,获取所述前继脉冲神经元的带权重脉冲尖峰信息;
根据所述前继脉冲神经元的带权重脉冲尖峰信息,通过预设的脉冲转换算法,获取第三人工神经元转换信息。
在其中一个实施例中,通过判断接收到的前继人工神经元输入的人工神经元输入信息的输入模式,将输入模式为持续输入或单次输入的人工神经元输入信息,别分采用不同的转换模式,转换为脉冲神经元信息。本实施例不但能够将人工神经元输入信息转换为脉冲神经元信息,而且能够兼容不同的人工神经元输入信息的输入模式,提高了神经网络对于人工神经元输入信息和脉冲神经元输入信息的兼容性。
在其中一个实施例中,当所述人工神经元输入信息的输入模式为持续输入时,通过将时间窗等间隔划分为时间步,在第一个时间步,根据所述人工神经元输入信息和脉冲发射阈值进行比较,确定是否发射脉冲尖峰信息,并获取第一个时间步的神经元中间信息,在后续的各时间步,则根据所述人工神经元输入信息、脉冲发射阈值和发射递减值,确定是否发射脉冲尖峰信息,最后将所述时间窗内发射的所有脉冲尖峰信息,确认为转换后的脉冲神经元信息。通过在时间窗内,利用脉冲发射阈值和发射递减值,控制是否根据所述人工神经元输入信息发射脉冲尖峰信号的方式,可以将所述人工神经元输入信息,根据不同的需求,通过调整脉冲发射阈值和发射递减值的方式,给出不同的脉冲神经元信息转换结果,实施方式简单。
在其中一个实施例中,根据所述人工神经元输入信息,确定一个时间窗内的发射脉冲尖峰信息的时长,并根据发射的所述脉冲尖峰信息,确定转换后的额脉冲神经元信息,本实施例,用一定时间窗内的脉冲尖峰信息的个数,或所述发射脉冲尖峰信息的时长和时间窗内未发射脉冲尖峰信息的时长的比值,确定转换后的脉冲神经元信息,实现方式简单。
在其中一个实施例中,通过获取转换时间步的设置,将前继脉冲神经元输入的脉冲尖峰信息,按照不同的时间步持续时长内接收到的脉冲尖峰信息,和预设的脉冲转换算法,将脉冲神经元输入信息,转换为人工神经元信息的表达方式。本实施例所提供的脉冲神经元信息转人工神经元信息的方法,将脉冲神经元信息,按照时间步的方式转换的方式,转换为人工神经元信息,提高了神经网络对于脉冲神经元信息和人工神经元信息的兼容能力。
在其中一个实施例中,通过对转换时间步内的脉冲尖峰信息的数量进行累计的方式,将前继脉冲神经元信息转换为人工神经元转换信息,实施方式简单可靠,且转换效率高。
在其中一个实施例中,对于多个前继脉冲神经元输入的脉冲神经元输入信息,将单个前 继脉冲神经元输入的脉冲信息转换为人工神经元信息,获取到多个前继脉冲神经元输入的人工神经元转换信息,以便当前的神经元再进行后续的计算,其分别转换的方式,适合前继脉冲神经元数量不多的情况,转换后的单个前继脉冲神经元的人工神经元转换信息,在当前神经元的计算使用中不会产生任何影响。
在其中一个实施例中,对于多个前继脉冲神经元输入的脉冲神经元输入信息,将所有前继脉冲神经元输入的脉冲信息进行累加后,将累加的和转换为人工神经元信息,获取到所有前继脉冲神经元输入的一个人工神经元转换信息,其累加后统一转换的方式,适合前继脉冲神经元数量较多的情况,可以提高脉冲神经元信息转换为人工神经元信息的转换效率。
在其中一个实施例中,所接收到的前继脉冲神经元信息,分别携带连接权重索引,对于多个前继脉冲神经元输入的携带连接权重索引的脉冲神经元输入信息,将单个前继脉冲神经元输入的脉冲尖峰信息,分别与其连接权重信息进行计算后,再单个前继脉冲神经元的人工神经元转换信息,保证信息转换过程不会影响最终的计算。
在其中一个实施例中,一种脉冲神经网络信息转换为人工神经网络信息的方法,其中,所述方法包括:
获取转换时间步;
在所述转换时间步持续时长内,接收前继脉冲神经元输入的脉冲神经元输入信息,所述脉冲神经元输入信息包括脉冲尖峰信息;
根据所述前继脉冲神经元输入的所述脉冲尖峰信息,通过预设的脉冲转换算法,获取人工神经元转换信息;
输出所述人工神经元转换信息。
在其中一个实施例中,一种人工神经元信息转换为脉冲神经元信息的方法,其中,所述方法包括:
接收前继人工神经元输入的人工神经元输入信息;
判断所述人工神经元输入信息的输入模式,当所述输入模式为持续输入时,利用第一转换模式将所述人工神经元输入信息转换为第一脉冲神经元信息,并输出所述第一脉冲神经元信息;
当所述输入模式为单次输入时,利用第二转换模式将所述人工神经元输入信息转换为第二脉冲神经元信息,并输出所述第二脉冲神经元信息。
一种计算机设备,其中,包括存储器、处理器,及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述实施例中任意一项方法的步骤。
本发明还提供一种神经网络信息转换系统,包括:
神经元输入信息获取模块,用于接收前继神经元输入的神经元输入信息,包括接收前继 人工神经元输入的人工神经元输入信息,或接收前继脉冲神经元输入的脉冲神经元输入信息;
人工转脉冲模块,用于根据所述前继人工神经元输入的所述人工神经元输入信息,通过预设的人工信息转换算法,将所述人工神经元输入信息转换为脉冲神经元转换信息;
神经元转换信息输出模块,用于输出所述脉冲神经元转换信息;
或脉冲转人工模块,用于根据所述脉冲神经元输入信息,通过预设的脉冲信息转换算法,将所述脉冲神经元输入信息转换为人工神经元转换信息;
所述神经元转换信息输出模块,用于输出所述人工神经元转换信息。
一种脉冲神经网络信息转换为人工神经网络信息的系统,其中,包括:
转换时间步获取模块,用于获取转换时间步;
脉冲神经元输入信息获取模块,用于在所述转换时间步的持续时长内,接收前继脉冲神经元输入的脉冲神经元输入信息,所述脉冲神经元输入信息包括脉冲尖峰信息;
人工神经元转换信息获取模块,用于根据所述前继脉冲神经元输入的所述脉冲尖峰信息,通过预设的脉冲转换算法,获取人工神经元转换信息;
人工神经元转换信息输出模块,用于输出所述人工神经元转换信息。
一种人工神经元信息转换为脉冲神经元信息的系统,其中,包括:
人工神经元输入信息接收模块,用于接收前继人工神经元输入的人工神经元输入信息;
输入模式判断模块,用于判断所述人工神经元输入信息的输入模式;
第一转换模块,用于当所述输入模式为持续输入时,利用第一转换模式将所述人工神经元输入信息转换为第一脉冲神经元信息;
脉冲神经元信息输出模块,用于输出所述第一脉冲神经元信息;
第二转换模块,用于当所述输入模式为单次输入时,利用第二转换模式将所述人工神经元输入信息转换为第二脉冲神经元信息;
所述脉冲神经元信息输出模块,用于输出第二脉冲神经元信息。
上述神经网络信息转换方法、系统和计算机设备,根据接收到的神经网络的信息,根据需求,通过预设的转换算法,将人工神经元信息转换为脉冲神经元信息,或将脉冲神经元信息转换为人工神经元信息,实现了在一个神经网络中,同时兼容两种不同的神经元信息的方式,提高了神经网络的信息处理能力。
附图说明
为了清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例的神经网络信息转换方法的流程示意图;
图2为一个实施例的神经网络信息转换方法的流程示意图;
图3为另一个实施例的神经网络信息转换方法的流程示意图;
图4为一个实施例的神经网络信息转换方法的流程示意图;
图5为另一个实施例的神经网络信息转换方法的流程示意图;
图6一个实施例的实现神经网络信息转换方法的计算核的结构示意图;
图7为另一个实施例的神经网络信息转换方法中第一脉冲神经元转换信息的示意图;
图8为另一个实施例的神经网络信息转换方法中第一脉冲神经元转换信息的示意图;
图9为一个实施例的神经网络信息转换方法的流程示意图;
图10为另一个实施例的神经网络信息转换方法的流程示意图;
图11为一个实施例的神经网络信息转换方法的流程示意图;
图12为另一个实施例的神经网络信息转换方法的流程示意图;
图13为另一个实施例的神经网络信息转换方法中计算核的结构示意图;
图14为一个实施例的神经网络信息转换系统的结构示意图;
图15为另一个实施例的神经网络信息转换系统的结构示意图;
图16为另一个实施例的神经网络信息转换系统的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
图1为一个实施例的神经网络信息转换方法的流程示意图,如图1所示的神经网络信息转换方法包括:
步骤S1,接收前继神经元输入的神经元输入信息,包括接收前继人工神经元输入的人工神经元输入信息,或接收前继脉冲神经元输入的脉冲神经元输入信息。
具体地,在本实施例所提供的神经网络信息转换方法,通过识别不同的神经网络的输入信号,可以将输入的人工神经元信息转换为脉冲神经元信息,也可以将输入的脉冲神经元信息转换为人工神经元信息。
步骤S2,根据所述前继人工神经元输入的所述人工神经元输入信息,通过预设的人工信息转换算法,将所述人工神经元输入信息转换为脉冲神经元转换信息。
步骤S3,根据所述脉冲神经元输入信息,通过预设的脉冲信息转换算法,将所述脉冲神 经元输入信息转换为人工神经元转换信息。
具体地,通过预设的人工信息转换算法,如通过判断累计膜电位和发射阈值电位之间的大小,发射脉冲尖峰信号的方式,将人工神经元信息转换为脉冲神经元信心,通过对转换时间窗内的脉冲尖峰信号的个数进行计数的方式,将脉冲神经元信息转换为人工神经元信息。
步骤S4,输出所述脉冲神经元转换信息或所述人工神经元转换信息。
在本实施中,根据接收到的神经网络的信息,根据需求,通过预设的转换算法,将人工神经元信息转换为脉冲神经元信息,或将脉冲神经元信息转换为人工神经元信息,实现了在一个神经网络中,同时兼容两种不同的神经元信息的方式,提高了神经网络的信息处理能力。
图2为一个实施例的神经网络信息转换方法的流程示意图,如图2所示的神经网络信息转换方法包括:
步骤S100,接收前继人工神经元输入的人工神经元输入信息。
具体地,脉冲神经网络神经元之间的连接采用Spike(1比特)实现,并带有一定的时间深度。在一定的时间范围内,脉冲发放的频率和模式代表着不同的信息。人工神经网络的神经元之间的连接采用多比特量(例如8比特)实现,且没有时间深度。当一个神经网路处理的任务,即需要处理脉冲神经网络信息,也需要处理脉冲神经网络信息时,两种不同的神经网络输出的信息不兼容。
所述接收前继人工神经元输入的人工神经元输入信息,包括采用多比特量(例如8比特量)实现的,不具有时间深度的神经元输入信号,是所述前继人工神经元输入的膜电位。
步骤S200,判断所述人工神经元输入信息的输入模式,当所述输入模式为持续输入时,接步骤S300a,当所述输入模式为单次输入时,跳至步骤S300b。
具体地,所述前继人工神经元输入的膜电位,有两种输入模式,一直为持续输入模式,即在预设的输入时段内,保持所述的膜电位的输入不变,另一种为单次的输入,即所述膜电位的输入,不是持续一段时间的输入,而是在某设定好的输出时刻进行单次输入。
步骤S300a,利用第一转换模式将所述人工神经元输入信息转换为第一脉冲神经元转换信息。
具体地,所述第一转换模式,用于将持续输入的人工神经元输入信息,根据膜电位持续输入的特征,转换为第一脉冲神经元转换信息,如利用高于预设发射阈值的膜电位的释放动作发送脉冲信号,并进行释放后的膜电位累积以判断是否继续释放从而发送脉冲信号。
步骤S300b,利用第二转换模式将所述人工神经元输入信息转换为第二脉冲神经元转换 信息。
具体地,所述第二转换模式,用于将单次输入的所述人工神经元输入信息,利用单次输入的特征,转换为第二脉冲神经元转换信息,如利用设定的脉冲信号发送频率和人工神经元膜电位之间的对应关系,确定不同的脉冲信号的发送频率表达不同的人工神经元膜电位信息,或利用预设时段内的固定发送频率的脉冲信号的发送时长和预设时段的时长的比值,来表示人工神经元膜电位信息。
步骤S400,输出所述第一脉冲神经元转换信息或第二脉冲神经元转换信息。
在神经网络的具体实现中,如图6所示,本发明的方法通过一个计算核来实现,其中,计算核接收前继ANN(人工神经网络)输入的人工神经元输入信息,将其转换为SNN(脉冲神经网络)信息后,发送给后续的SNN网路使用。在计算核中,轴突模块输入用于接收人工神经元输入信息,树突模块用于具体地信号的累计计算,包括积分计算等,胞体模块发放用于发放转换后的脉冲神经元信息。通过神经核的计算和处理,将前继的ANN网络和后续的SNN网络进行了无缝连接。
在本实施例中,通过判断接收到的前继人工神经元输入的人工神经元输入信息的输入模式,将输入模式为持续输入或单次输入的人工神经元输入信息,别分采用不同的转换模式,转换为脉冲神经元信息。本实施例不但能够将人工神经元输入信息转换为脉冲神经元信息,而且能够兼容不同的人工神经元输入信息的输入模式,提高了神经网络对于人工神经元输入信息和脉冲神经元输入信息的兼容性。
图3为另一个实施例的神经网络信息转换方法中,第一转换模式下的方法的流程示意图,如图3所示的神经网络信息转换方法包括:
步骤S310a,将第一时间窗等间隔划分为多个时间步。
具体地,所述第一转换模式,为根据持续输入的人工神经元输入信息转换脉冲神经元信息,根据所述持续输入的特征,将时长为第一时长的第一时间窗,等间隔划分为时长为第二时长的时间步,在每个时间步判断是否发送脉冲尖峰信号,然后将整个时间发送的脉冲尖峰信号,确定为转换后的脉冲神经元信息即可。本实施例中给出的转换模式,转换出的脉冲尖峰信息,也是等间隔的。
步骤S320a,在所述第一时间窗内的第一个时间步,当所述人工神经元输入信息大于等于脉冲发射阈值时,发射脉冲尖峰信息,并根据所述人工神经元输入信息和发射递减值,获取神经元发射后信息;当所述人工神经元输入信息小于所述脉冲发射阈值时,不发射脉冲尖 峰信息,并将所述人工神经元输入信息确定为神经元未发射信息。
具体地,根据预设的脉冲发射阈值,在第一个时间步内,所述人工神经元输入信息大于等于脉冲发射阈值时,发射脉冲尖峰信息,小于所述脉冲发射阈值时,不发射脉冲尖端信息。
当发射脉冲尖峰信息时,将所述人工神经元输入信息减去发射递减值后,获取一个神经元发射后信息的信息,所述神经元发射后信息的膜电位值小于所述人工神经元输入信息的膜电位值。
当不发射脉冲尖峰信息时,所述人工神经元输入信息,不和所述的发射递减值进行计算。
如图7所示,将一个时间窗等间隔划分为时间步后,在第一个时间步,发放时,根据膜电位值Vj与脉冲发射阈值Vth的关系,判定是否发放:
Figure PCTCN2017114660-appb-000001
其中,Fire=1表示发射脉冲尖峰信息,Fire=0表示不发射脉冲尖峰信息,Vj为当前时间步j的膜电位信息,Vth为脉冲发射阈值。
若Fire=1,则Vx=Vj-ΔV,其中Vx为当前时间步的神经元发射后信息;
若Fire=0,则Vy=Vj,其中Vy为当前时间步的神经元未发射信息。
步骤S330a,将所述神经元发射后信息或所述神经元未发射信息,确认为所述第一个时间步的神经元中间信息。
具体地,在所述时间窗的后续时间步中,第一个时间步获取到的神经元未发射信息和神经元未发射信息,均作为第一个时间步的神经元中间信息,参加后续时间步的计算。
将神经元发射后信息Vx和神经元未发射信息Vy为当前时间步的神经元中间信息Vi
步骤S340a,在所述第一时间窗内的后续各时间步,分别根据所述人工神经元输入信息、前一个时间步的所述神经元中间信息、所述脉冲发射阈值和所述发射递减值,判断是否发射脉冲尖峰信息。
具体地,在后续的各时间步,要分别根据人工神经元输入信息,和所述第一个时间步的神经元中间信息,判断是否发射脉冲尖峰信息。
步骤S350a,将所述第一时间窗内发射的所有脉冲尖峰信息,确定为第一脉冲神经元转换信息。
具体地,当一个时间窗内的时间步都完成脉冲尖峰信息发射或不发射的动作后,将所述时间窗内发射的所有的脉冲尖峰信息,确定为所述第一时间窗的第一脉冲神经元转换信息。
在本实施例中,当所述人工神经元输入信息的输入模式为持续输入时,通过将时间窗等间隔划分为时间步,在第一个时间步,根据所述人工神经元输入信息和脉冲发射阈值进行比较,确定是否发射脉冲尖峰信息,并获取第一个时间步的神经元中间信息,在后续的各时间步,则根据所述人工神经元输入信息、脉冲发射阈值和发射递减值,确定是否发射脉冲尖峰信息,最后将所述时间窗内发射的所有脉冲尖峰信息,确认为转换后的脉冲神经元信息。通过在时间窗内,利用脉冲发射阈值和发射递减值,控制是否根据所述人工神经元输入信息发射脉冲尖峰信号的方式,可以将所述人工神经元输入信息,根据不同的需求,通过调整脉冲发射阈值和发射递减值的方式,给出不同的脉冲神经元信息转换结果,实施方式简单。
图4为一个实施例的神经网络信息转换方法中,在第一时间窗内的除第一个时间步的后续时间步的脉冲转换方法的的流程示意图,如图4所示的神经网络信息转换方法包括:
步骤S341a,将所述人工神经元输入信息和所述前一个时间步的所述神经元中间信息进行累加,获取当前时间步的神经元累加信息。
具体地,在第一个时间步后的后续各时间步,将接收到的前续人工神经元的人工神经元输入信息,和上一个时间步获取的神经元中间信息进行累加,后获取当前时间步的神经元累加信息。由于所述人工神经元输入信息的输入模式是持续输入的,在每个时间步获取到的膜电位信息都是持续的、相等的。
根据当前时间步接收到的前续人工神经元输入的膜电位值Vj,前一个时间步的神经元中
Figure PCTCN2017114660-appb-000002
步骤S342a,当所述当前时间步的神经元累加信息大于等于所述预设的脉冲发射阈值时,发射脉冲尖峰信息,并将所述当前时间步的神经元累加信息减去所述预设的发射递减值,获取当前时间步的神经元发射后信息。
具体地,将每个时间步获取到的神经元累加信息,和预设的脉冲发射阈值进行比较,当所述神经元累加信息大于所述脉冲发射阈值时,发射脉冲尖峰信号,并将所述神经元累加信息减去所述预设的发射递减值后进入下一个时间步的计算。
步骤S343a,当所述当前时间步的神经元累加信息小于所述预设的脉冲发射阈值时,不发射脉冲尖峰信息,并将所述当前时间步的神经元累加信息确定为当前时间步的神经元未发射信息。
具体地,不发射脉冲尖峰信息时,将所述当前时间步的神经元累加信息确定为当前时间 步的神经元未发射信息,并参与后续的时间步的计算即可。
如图7所示,在一个时间窗内的各时间步,通过是否发射脉冲尖峰信息,获取多个脉冲尖峰信息组成的脉冲信号。根据输入的人工神经元输入信息的不同,发射脉冲尖峰信息的间隔不同,转换的脉冲神经元信息也不同。
在本实施例中,当所述人工神经元输入信息的输入模式为持续输入时,在除第一个时间步外的后续的各时间步,则根据所述人工神经元输入信息、脉冲发射阈值和发射递减值,确定是否发射脉冲尖峰信息,最后将所述时间窗内发射的所有脉冲尖峰信息,确认为转换后的脉冲神经元信息。通过在时间窗内,利用脉冲发射阈值和发射递减值,控制是否根据所述人工神经元输入信息发射脉冲尖峰信号的方式,可以将所述人工神经元输入信息,根据不同的需求,通过调整脉冲发射阈值和发射递减值的方式,给出不同的脉冲神经元信息转换结果,实施方式简单。
图5为另一个实施例的神经网络信息转换方法中,第二转换模式下的方法的流程示意图,如图5所示的神经网络信息转换方法包括:
步骤S310b,根据所述人工神经元输入信息和第二时间窗,确定所述第二时间窗内的第四时长。
具体地,当所述人工神经元输入信息的输入模式为单次输入时,输入的膜电位不是持续输入,需要将所述单次输入的非持续的膜电位信息,转换为脉冲神经元信息。
步骤S320b,在所述第四时长内发射脉冲尖峰信息,并将所述第二时间窗内所有的所述脉冲尖峰信息确认为第二脉冲神经元转换信息。
具体地,在一个时间窗内,根据所述人工神经元输入信息的膜电位值,来确定发射和不发射脉冲尖峰信息的时长的比值。所述在所述第四时长内发射脉冲尖峰信息,包括连续发送,或在第四时长的开始和结束时刻,各发送一个脉冲尖峰信息即可。所述连续发送方式,包括:在所述第四时长内连续发射脉冲尖峰信息。所述连续发射脉冲尖峰信息,包括连续等间隔发送,和连续不等间隔发送。
如图8所示,通过在第四时长内连续发送脉冲尖峰信息,并根据第四时长和第二时间窗时长之间的关系的比值,确定第二脉冲神经元转换信息。
在本实施例中,根据所述人工神经元输入信息,确定一个时间窗内的发射脉冲尖峰信息的时长,并根据发射的所述脉冲尖峰信息,确定转换后的额脉冲神经元信息,本实施例,用一定时间窗内的脉冲尖峰信息的个数,或所述发射脉冲尖峰信息的时长和时间窗内未发射脉 冲尖峰信息的时长的比值,确定转换后的脉冲神经元信息,实现方式简单。
图9为一个实施例的神经网络信息转换方法的流程示意图,如图9所示的神经网络信息转换方法,包括:
步骤S10,获取转换时间步。
具体地,脉冲神经网络神经元之间的连接采用Spike(1比特)实现,并带有一定的时间深度。在一定的时间范围内,脉冲发放的频率和模式代表着不同的信息。人工神经网络的神经元之间的连接采用多比特量(例如8比特)实现,且没有时间深度。当一个神经网路处理的任务,即需要处理脉冲神经网络信息,也需要处理脉冲神经网络信息时,两种不同的神经网络输出的信息不兼容。
所述转换时间步,是一个预设的时间段,由于所接收到的脉冲神经元输入信息,是具有时间深度的脉冲尖峰信号组成的信息,不同的时间段内的不同发射数量相同发射间隔的尖峰信息,或相同发射数量不同发射间隔的脉冲尖峰信息,也代表不同的含义。因此,需要设定一个预设的时间段,用于将预设时间段内的脉冲尖峰信息进行分析,转换为人工神经元转换信息。
步骤S20,在所述转换时间步持续时长内,接收前继脉冲神经元输入的脉冲神经元输入信息,所述脉冲神经元输入信息包括脉冲尖峰信息。
具体地,所述接收前继脉冲神经元输入的脉冲神经元输入信息,在实际的神经网络中,包括多个所述前继脉冲神经元输入的多个脉冲神经元输入信息。
步骤S30,根据所述前继脉冲神经元输入的所述脉冲尖峰信息,通过预设的脉冲转换算法,获取人工神经元转换信息。
具体地,所述将一个时间步的持续时长内接收到所述脉冲尖峰信息进行转换,包括将脉冲尖峰信号的数量进行累加,或将脉冲尖峰信号的膜电位进行累积,将累加后的脉冲尖峰信号的总数量,或累积后的脉冲尖峰信号的总的膜电位,按照预设的脉冲转换算法进行转换,获取到人工神经元转换信息。
步骤S40,输出所述人工神经元转换信息。
在神经网络的具体实现中,如图13所示,本发明的方法通过一个计算核来实现,其中,计算核接收前继SNN(脉冲神经网络)输入的人工神经元输入信息,将其转换为ANN(人工神经网络)信息后,发送给后续的ANN网路使用。在计算核中,轴突输入用于接收人工神经元输入信息,树突用于具体地信号的累计计算,包括积分计算等,胞体发放用于发放转 换后的脉冲神经元信息。通过神经核的计算和处理,将前继的SNN网络和后续的ANN网络进行了无缝连接。
在本实施例中,通过获取转换时间步的设置,将前继脉冲神经元输入的脉冲尖峰信息,按照不同的时间步持续时长内接收到的脉冲尖峰信息,和预设的脉冲转换算法,将脉冲神经元输入信息,转换为人工神经元信息的表达方式。本实施例所提供的脉冲神经元信息转人工神经元信息的方法,将脉冲神经元信息,按照时间步的方式转换的方式,转换为人工神经元信息,提高了神经网络对于脉冲神经元信息和人工神经元信息的兼容能力。
图10为另一个实施例的神经网络信息转换方法的流程示意图,如图10所示的神经网络信息转换方法,包括:
步骤S31a,将所述前继脉冲神经元输入的脉冲尖峰信息的数量进行累计,获取所述前继脉冲神经元输入的脉冲尖峰信息的第一总数量。
具体地,将接收到的脉冲尖峰信号的个数进行累加,获取所述时间步持续时长内接收到的脉冲尖峰信号的总数量。
步骤S32a,将所述前继脉冲神经元输入的脉冲尖峰信息的第一总数量,确定为所述时间步的,所述前继脉冲神经元输入的第一人工神经元转换信息。
具体地,将所述总数量,直接用数字的形式表现出来即可,根据实际需求的不同,也可经过一定的数学算法的转换,转换为一定取值范围内的数字,或取不同精度的数字均可。
在本实施例中,通过对转换时间步内的脉冲尖峰信息的数量进行累计的方式,将前继脉冲神经元信息转换为人工神经元转换信息,实施方式简单可靠,且转换效率高。
图11为一个实施例的神经网络信息转换方法的流程示意图,如图11所示的神经网络信息转换方法,包括:
步骤S10b,获取转换时间步。
具体地,同步骤S100。
步骤S20b,接收至少两个所述前继脉冲神经元分别输入的脉冲神经元输入信息。
步骤S30b,将所有所述前继脉冲神经元输入的脉冲尖峰信息的数量进行累计,获取所有所述前继脉冲神经元输入的脉冲尖峰信息的第二总数量;将所有所述前继脉冲神经元输入的脉冲尖峰信息的第二总数量,确定为所述时间步的,所有所述前继脉冲神经元输入的第二人工神经元转换信息。
具体地,当所述前继脉冲神经元信息包括至少两个时,将所述至少两个前继神经元输入 的脉冲尖峰信号的数量进行累加后,获取到所接收到的脉冲尖峰信号的总数量,在将所述的总数量进行转换。
也可将所述至少两个前继脉冲神经元输入的脉冲尖峰信号的膜电位全部进行累积后,获取一个总的膜电位值,再进行转换均可。
步骤S40b,输出所述第二人工神经元转换信息。
在本实施例中,对于多个前继脉冲神经元输入的脉冲神经元输入信息,将所有前继脉冲神经元输入的脉冲信息进行累加后,将累加的和转换为人工神经元信息,获取到所有前继脉冲神经元输入的一个人工神经元转换信息,其累加后统一转换的方式,适合前继脉冲神经元数量较多的情况,可以提高脉冲神经元信息转换为人工神经元信息的转换效率。
图12为另一个实施例的神经网络信息转换方法的流程示意图,如图12所示的神经网络信息转换方法,包括:
步骤S10c,获取转换时间步。
具体地,同步骤S100。
步骤S20c,接收至少两个所述前继脉冲神经元分别输入的脉冲神经元输入信息,所述脉冲神经元输入信息,还包括前继脉冲神经元与当前神经元的连接权重索引。
具体地,所述前继脉冲神经元与当前神经元的连接权重索引,是前继脉冲神经元信息在当前神经元的计算中所占的权重信息的索引值。采用权重索引的方式,可以在信息的传递过程中,占用更小的信息传递空间,不但降低了硬件的处理需求,并且只需要改变索引信息,就能够更加灵活的方便的对权重信息的变化进行更新,使得神经网络中权重信息的更新更加方便。
步骤S30c,根据所述前继脉冲神经元与当前神经元的连接权重索引,读取前继脉冲神经元与当前神经元的连接权重信息;根据所述前继脉冲神经元与当前神经元的连接权重信息,和所述前继脉冲神经元输入的所述脉冲尖峰信息,获取所述前继脉冲神经元的带权重脉冲尖峰信息;根据所述前继脉冲神经元的带权重脉冲尖峰信息,通过预设的脉冲转换算法,获取第三人工神经元转换信息。
具体地,所述连接权重索引信息,可以存储在当前神经元本地,也可以存储在神经网络中的其它位置,只要当前神经元能够读取到即可。在接收到多个前继脉冲神经元输入的携带连接权重索引的脉冲神经元输入信息后,需要将单个前继脉冲神经元的连接权重信息读取后,与各自接收到的脉冲尖峰信息进行运算后,获取单个前继脉冲神经元输入的脉冲神经元输入 信息即可。即,所述的连接权重信息,需要单个前继脉冲神经元在进行脉冲神经元信息和人工神经元信息的转换前,将其与脉冲尖峰信息进行计算。
步骤S40c,输出所述第三人工神经元转换信息。
在本实施例中,所接收到的前继脉冲神经元信息,分别携带连接权重索引,对于多个前继脉冲神经元输入的携带连接权重索引的脉冲神经元输入信息,将单个前继脉冲神经元输入的脉冲尖峰信息,分别与其连接权重信息进行计算后,再单个前继脉冲神经元的人工神经元转换信息,保证信息转换过程不会影响最终的计算。
图14为一个实施例的神经网络信息转换系统的结构示意图,如图14所示的神经网络信息转换系统包括:
神经元输入信息获取模块1,用于接收前继神经元输入的神经元输入信息,包括接收前继人工神经元输入的人工神经元输入信息,或接收前继脉冲神经元输入的脉冲神经元输入信息;
人工转脉冲模块2,用于根据所述前继人工神经元输入的所述人工神经元输入信息,通过预设的人工信息转换算法,将所述人工神经元输入信息转换为脉冲神经元转换信息;
神经元转换信息输出模块4,用于输出所述脉冲神经元转换信息;
或脉冲转人工模块3,用于根据所述脉冲神经元输入信息,通过预设的脉冲信息转换算法,将所述脉冲神经元输入信息转换为人工神经元转换信息;
所述神经元转换信息输出模块4,用于输出所述人工神经元转换信息。
在本实施中,根据接收到的神经网络的信息,根据需求,通过预设的转换算法,将人工神经元信息转换为脉冲神经元信息,或将脉冲神经元信息转换为人工神经元信息,实现了在一个神经网络中,同时兼容两种不同的神经元信息的方式,提高了神经网络的信息处理能力。
图15为另一个实施例的神经网络信息转换系统的结构示意图,如图15所示的神经网络信息转换系统包括:
人工神经元输入信息接收模块100,用于接收前继人工神经元输入的人工神经元输入信息;
输入模式判断模块200,用于判断所述人工神经元输入信息的输入模式;
第一转换模块300,用于当所述输入模式为持续输入时,利用第一转换模式将所述人工神经元输入信息转换为第一脉冲神经元转换信息;
第二转换模块400,用于当所述输入模式为单次输入时,利用第二转换模式将所述人工 神经元输入信息转换为第二脉冲神经元转换信息;所述第二转换模块,用于根据所述人工神经元输入信息和第二时间窗,确定所述第二时间窗内的第四时长;在所述第四时长内发射脉冲尖峰信息,并将所述第二时间窗内所有的所述脉冲尖峰信息确认为第二脉冲神经元转换信息。所述第四时长内发射脉冲尖峰信息,包括在所述第四时长内连续发射脉冲尖峰信息。
脉冲神经元信息输出模块500,用于输出所述第一脉冲神经元转换信息或第二脉冲神经元转换信息。
在本实施例中,通过判断接收到的前继人工神经元输入的人工神经元输入信息的输入模式,将输入模式为持续输入或单次输入的人工神经元输入信息,别分采用不同的转换模式,转换为脉冲神经元信息。本实施例不但能够将人工神经元输入信息转换为脉冲神经元信息,而且能够兼容不同的人工神经元输入信息的输入模式,提高了神经网络对于人工神经元输入信息和脉冲神经元输入信息的兼容性。根据所述人工神经元输入信息,确定一个时间窗内的发射脉冲尖峰信息的时长,并根据发射的所述脉冲尖峰信息,确定转换后的额脉冲神经元信息,本实施例,用一定时间窗内的脉冲尖峰信息的个数,或所述发射脉冲尖峰信息的时长和时间窗内未发射脉冲尖峰信息的时长的比值,确定转换后的脉冲神经元信息,实现方式简单。
在其中一个实施例中,所述第一转换模块包括:
时间步划分单元,用于将第一时间窗等间隔划分为多个时间步。
第一时间步处理单元,用于在所述第一时间窗内的第一个时间步,当所述人工神经元输入信息大于等于脉冲发射阈值时,发射脉冲尖峰信息,并根据所述人工神经元输入信息和发射递减值,获取神经元发射后信息;当所述人工神经元输入信息小于所述脉冲发射阈值时,不发射脉冲尖峰信息,并将所述人工神经元输入信息确定为神经元未发射信息;将所述神经元发射后信息或所述神经元未发射信息,确认为所述第一个时间步的神经元中间信息;
后续时间步处理单元,用于在所述第一时间窗内的后续各时间步,分别根据所述人工神经元输入信息、前一个时间步的所述神经元中间信息、所述脉冲发射阈值和所述发射递减值,判断是否发射脉冲尖峰信息;用于将所述人工神经元输入信息和所述前一个时间步的所述神经元中间信息进行累加,获取当前时间步的神经元累加信息;当所述当前时间步的神经元累加信息大于等于所述预设的脉冲发射阈值时,发射脉冲尖峰信息,并将所述当前时间步的神经元累加信息减去所述预设的发射递减值,获取当前时间步的神经元发射后信息;当所述当前时间步的神经元累加信息小于所述预设的脉冲发射阈值时,不发射脉冲尖峰信息,并将所述当前时间步的神经元累加信息确定为当前时间步的神经元未发射信息。
第一脉冲神经元转换信息确定单元,用于将所述第一时间窗内发射的所有脉冲尖峰信息,确定为第一脉冲神经元转换信息。
在本实施例中,当所述人工神经元输入信息的输入模式为持续输入时,通过将时间窗等间隔划分为时间步,在第一个时间步,根据所述人工神经元输入信息和脉冲发射阈值进行比较,确定是否发射脉冲尖峰信息,并获取第一个时间步的神经元中间信息,在后续的各时间步,则根据所述人工神经元输入信息、脉冲发射阈值和发射递减值,确定是否发射脉冲尖峰信息,最后将所述时间窗内发射的所有脉冲尖峰信息,确认为转换后的脉冲神经元信息。通过在时间窗内,利用脉冲发射阈值和发射递减值,控制是否根据所述人工神经元输入信息发射脉冲尖峰信号的方式,可以将所述人工神经元输入信息,根据不同的需求,通过调整脉冲发射阈值和发射递减值的方式,给出不同的脉冲神经元信息转换结果,实施方式简单。
图16为另一个实施例的神经网络信息转换系统的结构示意图,如图16所示的神经网络信息转换系统包括:
转换时间步获取模块10,用于获取转换时间步,还用于接收至少两个所述前继脉冲神经元分别输入的脉冲神经元输入信息。
脉冲神经元输入信息获取模块20,用于在所述转换时间步的持续时长内,接收前继脉冲神经元输入的脉冲神经元输入信息,所述脉冲神经元输入信息包括脉冲尖峰信息;还用于接收至少两个所述前继脉冲神经元分别输入的脉冲神经元输入信息。
人工神经元转换信息获取模块30,用于根据所述前继脉冲神经元输入的所述脉冲尖峰信息,通过预设的脉冲转换算法,获取人工神经元转换信息;包括前继脉冲神经元脉冲尖峰信息获取单元,用于将所述前继脉冲神经元输入的脉冲尖峰信息的数量进行累计,获取所述前继脉冲神经元输入的脉冲尖峰信息的第一总数量;所述脉冲神经元输入信息,还包括前继脉冲神经元与当前神经元的连接权重索引。第一人工神经元转换信息获取单元,用于将所述前继脉冲神经元输入的脉冲尖峰信息的第一总数量,确定为所述时间步的,所述前继脉冲神经元输入的第一人工神经元转换信息。还包括:多前继脉冲神经元脉冲尖峰信息获取单元,用于将所有所述前继脉冲神经元输入的脉冲尖峰信息的数量进行累计,获取所有所述前继脉冲神经元输入的脉冲尖峰信息的第二总数量。第二人工神经元转换信息获取单元,用于将所有所述前继脉冲神经元输入的脉冲尖峰信息的第二总数量,确定为所述时间步的,所有所述前继脉冲神经元输入的第二人工神经元转换信息。带权重前继脉冲神经元获取单元,用于根据所述前继脉冲神经元与当前神经元的连接权重索引,读取前继脉冲神经元与当前神经元的连 接权重信息;根据所述前继脉冲神经元与当前神经元的连接权重信息,和所述前继脉冲神经元输入的所述脉冲尖峰信息,获取所述前继脉冲神经元的带权重脉冲尖峰信息。第三人工神经元转换信息获取单元,用于根据所述前继脉冲神经元的带权重脉冲尖峰信息,通过预设的脉冲转换算法,获取第三人工神经元转换信息。
人工神经元转换信息输出模块40,用于输出所述人工神经元转换信息。
在本实施例中,通过获取转换时间步的设置,将前继脉冲神经元输入的脉冲尖峰信息,按照不同的时间步持续时长内接收到的脉冲尖峰信息,和预设的脉冲转换算法,将脉冲神经元输入信息,转换为人工神经元信息的表达方式。本实施例所提供的脉冲神经元信息转人工神经元信息的方法,将脉冲神经元信息,按照时间步的方式转换的方式,转换为人工神经元信息,提高了神经网络对于脉冲神经元信息和人工神经元信息的兼容能力。
在本实施例中,通过对转换时间步内的脉冲尖峰信息的数量进行累计的方式,将前继脉冲神经元信息转换为人工神经元转换信息,实施方式简单可靠,且转换效率高。对于多个前继脉冲神经元输入的脉冲神经元输入信息,将单个前继脉冲神经元输入的脉冲信息转换为人工神经元信息,获取到多个前继脉冲神经元输入的人工神经元转换信息,以便当前的神经元再进行后续的计算,其分别转换的方式,适合前继脉冲神经元数量不多的情况,转换后的单个前继脉冲神经元的人工神经元转换信息,在当前神经元的计算使用中不会产生任何影响。进一步,对于多个前继脉冲神经元输入的脉冲神经元输入信息,将所有前继脉冲神经元输入的脉冲信息进行累加后,将累加的和转换为人工神经元信息,获取到所有前继脉冲神经元输入的一个人工神经元转换信息,其累加后统一转换的方式,适合前继脉冲神经元数量较多的情况,可以提高脉冲神经元信息转换为人工神经元信息的转换效率。所接收到的前继脉冲神经元信息,分别携带连接权重索引,对于多个前继脉冲神经元输入的携带连接权重索引的脉冲神经元输入信息,将单个前继脉冲神经元输入的脉冲尖峰信息,分别与其连接权重信息进行计算后,再进行单个前继脉冲神经元的人工神经元转换信息,保证信息转换过程不会影响最终的计算。
基于同样的发明思想,本发明一个实施例还提供一种计算机设备,包括存储器、处理器,及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现上述实施例所提及方法的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序或指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程 序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种神经网络信息转换方法,其特征在于,所述方法包括:
    接收前继神经元输入的神经元输入信息,包括接收前继人工神经元输入的人工神经元输入信息,或接收前继脉冲神经元输入的脉冲神经元输入信息;
    根据所述前继人工神经元输入的所述人工神经元输入信息,通过预设的人工信息转换算法,将所述人工神经元输入信息转换为脉冲神经元转换信息;
    输出所述脉冲神经元转换信息;
    或根据所述脉冲神经元输入信息,通过预设的脉冲信息转换算法,将所述脉冲神经元输入信息转换为人工神经元转换信息;
    输出所述人工神经元转换信息。
  2. 根据权利要求1所述的神经网络信息转换方法,其特征在于,所述根据所述前继人工神经元输入的所述人工神经元输入信息,通过预设的人工信息转换算法,将所述人工神经元输入信息转换为脉冲神经元转换信息,包括:
    判断所述人工神经元输入信息的输入模式,当所述输入模式为持续输入时,利用第一转换模式将所述人工神经元输入信息转换为第一脉冲神经元转换信息,则所述输出所述脉冲神经元转换信息,包括:输出所述第一脉冲神经元转换信息;
    当所述输入模式为单次输入时,利用第二转换模式将所述人工神经元输入信息转换为第二脉冲神经元转换信息,则所述输出所述脉冲神经元转换信息,包括:输出所述第二脉冲神经元转换信息。
  3. 根据权利要求2所述的神经网络信息转换方法,其特征在于,所述当所述输入模式为持续输入时,利用第一转换模式将所述人工神经元输入信息转换为第一脉冲神经元转换信息,包括:
    将第一时间窗等间隔划分为多个时间步;
    在所述第一时间窗内的第一个时间步,当所述人工神经元输入信息大于等于脉冲发射阈值时,发射脉冲尖峰信息,并根据所述人工神经元输入信息和发射递减值,获取神经元发射后信息;当所述人工神经元输入信息小于所述脉冲发射阈值时,不发射脉冲尖峰信息,并将所述人工神经元输入信息确定为神经元未发射信息;
    将所述神经元发射后信息或所述神经元未发射信息,确认为所述第一个时间步的神经元中间信息;
    在所述第一时间窗内的后续各时间步,分别根据所述人工神经元输入信息、前一个时间步的所述神经元中间信息、所述脉冲发射阈值和所述发射递减值,判断是否发射脉冲尖峰信息;
    将所述第一时间窗内发射的所有脉冲尖峰信息,确定为第一脉冲神经元转换信息。
  4. 根据权利要求3所述的神经网络信息转换方法,其特征在于,所述根据所述人工神经 元输入信息、前一个时间步的所述神经元中间信息、所述脉冲发射阈值和所述发射递减值,判断是否发射脉冲尖峰信息,包括:
    将所述人工神经元输入信息和所述前一个时间步的所述神经元中间信息进行累加,获取当前时间步的神经元累加信息;
    当所述当前时间步的神经元累加信息大于等于所述预设的脉冲发射阈值时,发射脉冲尖峰信息,并将所述当前时间步的神经元累加信息减去所述预设的发射递减值,获取当前时间步的神经元发射后信息;
    当所述当前时间步的神经元累加信息小于所述预设的脉冲发射阈值时,不发射脉冲尖峰信息,并将所述当前时间步的神经元累加信息确定为当前时间步的神经元未发射信息。
  5. 根据权利要求2所述的神经网络信息转换方法,其特征在于,所述当所述输入模式为单次输入时,利用第二转换模式将所述人工神经元输入信息转换为第二脉冲神经元转换信息,包括:
    根据所述人工神经元输入信息和第二时间窗,确定所述第二时间窗内的第四时长;
    在所述第四时长内发射脉冲尖峰信息,并将所述第二时间窗内所有的所述脉冲尖峰信息确认为第二脉冲神经元转换信息。
  6. 根据权利要求5所述的神经网络信息转换方法,其特征在于,所述在所述第四时长内发射脉冲尖峰信息,包括:
    在所述第四时长内连续发射脉冲尖峰信息。
  7. 根据权利要求1所述的神经网络信息转换方法,其特征在于,所述根据所述脉冲神经元输入信息,通过预设的脉冲信息转换算法,将所述脉冲神经元输入信息转换为人工神经元转换信息,包括:
    获取转换时间步;
    在所述转换时间步持续时长内,接收所述前继脉冲神经元输入的脉冲神经元输入信息,所述脉冲神经元输入信息包括脉冲尖峰信息;
    根据所述前继脉冲神经元输入的所述脉冲尖峰信息,通过预设的脉冲转换算法,获取人工神经元转换信息;
    输出所述人工神经元转换信息。
  8. 根据权利要求7所述的神经网络信息转换方法,其特征在于,所述根据所述前继脉冲神经元输入的所述脉冲尖峰信息,通过预设的脉冲转换算法,获取人工神经元转换信息,包括:
    将所述前继脉冲神经元输入的脉冲尖峰信息的数量进行累计,获取所述前继脉冲神经元输入的脉冲尖峰信息的第一总数量;
    将所述前继脉冲神经元输入的脉冲尖峰信息的第一总数量,确定为所述时间步的,所述前继脉冲神经元输入的第一人工神经元转换信息。
  9. 根据权利要求7所述的神经网络信息转换方法,其特征在于,所述接收前继脉冲神经元输入的脉冲神经元输入信息,还包括:
    接收至少两个所述前继脉冲神经元分别输入的脉冲神经元输入信息;
    则所述根据所述前继脉冲神经元输入的所述脉冲尖峰信息,通过预设的脉冲转换算法,获取人工神经元转换信息,还包括:
    将所有所述前继脉冲神经元输入的脉冲尖峰信息的数量进行累计,获取所有所述前继脉冲神经元输入的脉冲尖峰信息的第二总数量;
    将所有所述前继脉冲神经元输入的脉冲尖峰信息的第二总数量,确定为所述时间步的,所有所述前继脉冲神经元输入的第二人工神经元转换信息。
  10. 根据权利要求7所述的神经网络信息转换方法,其特征在于,所述脉冲神经元输入信息,还包括:
    前继脉冲神经元与当前神经元的连接权重索引;
    所述根据所述前继脉冲神经元输入的所述脉冲尖峰信息,通过预设的脉冲转换算法,获取人工神经元转换信息,还包括:
    根据所述前继脉冲神经元与当前神经元的连接权重索引,读取前继脉冲神经元与当前神经元的连接权重信息;
    根据所述前继脉冲神经元与当前神经元的连接权重信息,和所述前继脉冲神经元输入的所述脉冲尖峰信息,获取所述前继脉冲神经元的带权重脉冲尖峰信息;
    根据所述前继脉冲神经元的带权重脉冲尖峰信息,通过预设的脉冲转换算法,获取第三人工神经元转换信息。
  11. 一种脉冲神经网络信息转换为人工神经网络信息的方法,其特征在于,所述方法包括:
    获取转换时间步;
    在所述转换时间步持续时长内,接收前继脉冲神经元输入的脉冲神经元输入信息,所述脉冲神经元输入信息包括脉冲尖峰信息;
    根据所述前继脉冲神经元输入的所述脉冲尖峰信息,通过预设的脉冲转换算法,获取人工神经元转换信息;
    输出所述人工神经元转换信息。
  12. 一种人工神经元信息转换为脉冲神经元信息的方法,其特征在于,所述方法包括:
    接收前继人工神经元输入的人工神经元输入信息;
    判断所述人工神经元输入信息的输入模式,当所述输入模式为持续输入时,利用第一转换模式将所述人工神经元输入信息转换为第一脉冲神经元信息,并输出所述第一脉冲神经元信息;
    当所述输入模式为单次输入时,利用第二转换模式将所述人工神经元输入信息转换为第 二脉冲神经元信息,并输出所述第二脉冲神经元信息。
  13. 一种计算机设备,其特征在于,包括存储器、处理器,及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现权利要求1-12中任意一项方法的步骤。
  14. 一种神经网络信息转换系统,其特征在于,包括:
    神经元输入信息获取模块,用于接收前继神经元输入的神经元输入信息,包括接收前继人工神经元输入的人工神经元输入信息,或接收前继脉冲神经元输入的脉冲神经元输入信息;
    人工转脉冲模块,用于根据所述前继人工神经元输入的所述人工神经元输入信息,通过预设的人工信息转换算法,将所述人工神经元输入信息转换为脉冲神经元转换信息;
    神经元转换信息输出模块,用于输出所述脉冲神经元转换信息;
    或脉冲转人工模块,用于根据所述脉冲神经元输入信息,通过预设的脉冲信息转换算法,将所述脉冲神经元输入信息转换为人工神经元转换信息;
    所述神经元转换信息输出模块,用于输出所述人工神经元转换信息。
  15. 一种脉冲神经网络信息转换为人工神经网络信息的系统,其特征在于,包括:
    转换时间步获取模块,用于获取转换时间步;
    脉冲神经元输入信息获取模块,用于在所述转换时间步的持续时长内,接收前继脉冲神经元输入的脉冲神经元输入信息,所述脉冲神经元输入信息包括脉冲尖峰信息;
    人工神经元转换信息获取模块,用于根据所述前继脉冲神经元输入的所述脉冲尖峰信息,通过预设的脉冲转换算法,获取人工神经元转换信息;
    人工神经元转换信息输出模块,用于输出所述人工神经元转换信息。
  16. 一种人工神经元信息转换为脉冲神经元信息的系统,其特征在于,包括:
    人工神经元输入信息接收模块,用于接收前继人工神经元输入的人工神经元输入信息;
    输入模式判断模块,用于判断所述人工神经元输入信息的输入模式;
    第一转换模块,用于当所述输入模式为持续输入时,利用第一转换模式将所述人工神经元输入信息转换为第一脉冲神经元信息;
    脉冲神经元信息输出模块,用于输出所述第一脉冲神经元信息;
    第二转换模块,用于当所述输入模式为单次输入时,利用第二转换模式将所述人工神经元输入信息转换为第二脉冲神经元信息;
    所述脉冲神经元信息输出模块,用于输出第二脉冲神经元信息。
PCT/CN2017/114660 2017-01-25 2017-12-05 神经网络信息转换方法、系统及计算机设备 WO2018137411A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/520,792 US20190347546A1 (en) 2017-01-25 2019-07-24 Method, system and computer device for converting neural network information

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201710056188.5 2017-01-25
CN201710056200.2A CN106845632B (zh) 2017-01-25 2017-01-25 脉冲神经网络信息转换为人工神经网络信息的方法和系统
CN201710056211.0A CN106845633B (zh) 2017-01-25 2017-01-25 神经网络信息转换方法和系统
CN201710056188.5A CN106875006B (zh) 2017-01-25 2017-01-25 人工神经元信息转换为脉冲神经元信息的方法和系统
CN201710056211.0 2017-01-25
CN201710056200.2 2017-01-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/520,792 Continuation US20190347546A1 (en) 2017-01-25 2019-07-24 Method, system and computer device for converting neural network information

Publications (1)

Publication Number Publication Date
WO2018137411A1 true WO2018137411A1 (zh) 2018-08-02

Family

ID=62977781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114660 WO2018137411A1 (zh) 2017-01-25 2017-12-05 神经网络信息转换方法、系统及计算机设备

Country Status (2)

Country Link
US (1) US20190347546A1 (zh)
WO (1) WO2018137411A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103164741A (zh) * 2011-12-09 2013-06-19 三星电子株式会社 神经工作存储装置
CN105122278A (zh) * 2013-03-15 2015-12-02 Hrl实验室有限责任公司 神经网络及编程方法
US20160224886A1 (en) * 2011-09-16 2016-08-04 International Business Machines Corporation Neuromorphic event-driven neural computing architecture in a scalable neural network
CN106845633A (zh) * 2017-01-25 2017-06-13 清华大学 神经网络信息转换方法和系统
CN106845632A (zh) * 2017-01-25 2017-06-13 清华大学 脉冲神经网络信息转换为人工神经网络信息的方法和系统
CN106875006A (zh) * 2017-01-25 2017-06-20 清华大学 人工神经元信息转换为脉冲神经元信息的方法和系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5167006A (en) * 1989-12-29 1992-11-24 Ricoh Company, Ltd. Neuron unit, neural network and signal processing method
JP4780921B2 (ja) * 2004-03-17 2011-09-28 キヤノン株式会社 並列パルス信号処理装置、及びその制御方法
FR2983664B1 (fr) * 2011-12-05 2013-12-20 Commissariat Energie Atomique Convertisseur analogique-numerique et circuit neuromorphique utilisant un tel convertisseur
WO2014190155A1 (en) * 2013-05-22 2014-11-27 The Trustees Of Columbia University In The City Of New York Systems and methods for channel identification, encoding, and decoding multiple signals having different dimensions
US9886662B2 (en) * 2014-09-19 2018-02-06 International Business Machines Corporation Converting spike event data to digital numeric data
JP6703265B2 (ja) * 2016-06-27 2020-06-03 富士通株式会社 ニューラルネットワーク装置及びニューラルネットワーク装置の制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160224886A1 (en) * 2011-09-16 2016-08-04 International Business Machines Corporation Neuromorphic event-driven neural computing architecture in a scalable neural network
CN103164741A (zh) * 2011-12-09 2013-06-19 三星电子株式会社 神经工作存储装置
CN105122278A (zh) * 2013-03-15 2015-12-02 Hrl实验室有限责任公司 神经网络及编程方法
CN106845633A (zh) * 2017-01-25 2017-06-13 清华大学 神经网络信息转换方法和系统
CN106845632A (zh) * 2017-01-25 2017-06-13 清华大学 脉冲神经网络信息转换为人工神经网络信息的方法和系统
CN106875006A (zh) * 2017-01-25 2017-06-20 清华大学 人工神经元信息转换为脉冲神经元信息的方法和系统

Also Published As

Publication number Publication date
US20190347546A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
CN104714852B (zh) 一种适用于分布式机器学习的参数同步优化方法及其系统
EP3129920B1 (en) Parallelizing the training of convolutional neural networks
CN106845633B (zh) 神经网络信息转换方法和系统
CN103279958B (zh) 一种基于Spiking神经网络的图像分割方法
US9436908B2 (en) Apparatus and methods for rate-modulated plasticity in a neuron network
CN106845632B (zh) 脉冲神经网络信息转换为人工神经网络信息的方法和系统
KR102032146B1 (ko) 소자 결점을 보완하기 위한 구간 선형 정류 유닛을 사용하는 인공신경망 시스템
EP3525139A1 (en) Automatically scaling neural networks based on load
CN106934457B (zh) 一种可灵活时分复用的脉冲神经元实现架构
Luo et al. Real-time simulation of passage-of-time encoding in cerebellum using a scalable FPGA-based system
WO2018133568A1 (zh) 复合模式神经元信息处理方法、系统及计算机设备
JP2016539407A (ja) 因果顕著性時間推論
CN111340181A (zh) 基于增强脉冲的深层双阈值脉冲神经网络转换训练方法
KR20160125967A (ko) 일반적인 뉴런 모델들의 효율적인 구현을 위한 방법 및 장치
Li et al. Medical image segmentation based on maximum entropy multi-threshold segmentation optimized by improved cuckoo search algorithm
CN113935475A (zh) 具有脉冲时刻偏移量的脉冲神经网络的仿真与训练方法
CN110599444B (zh) 预测血管树的血流储备分数的设备、系统以及非暂时性可读存储介质
US11604943B2 (en) Domain adaptation for structured output via disentangled representations
CN114819114A (zh) 脉冲神经网络硬件加速器及其在卷积运算中的优化方法
CN114358250A (zh) 数据处理方法、装置、计算机设备、介质及程序产品
WO2018137411A1 (zh) 神经网络信息转换方法、系统及计算机设备
JP2003512683A (ja) ニューラルネットワーク素子
CN113033782B (zh) 一种手写数字识别模型训练方法和系统
Kaensar Analysis on the parameter of back propagation algorithm with three weight adjustment structure for hand written digit recognition
CN116339942A (zh) 一种基于强化学习的分布式训练任务的自适应调度方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894419

Country of ref document: EP

Kind code of ref document: A1