WO2018137205A1 - 一种传输控制信道的方法、装置及系统 - Google Patents

一种传输控制信道的方法、装置及系统 Download PDF

Info

Publication number
WO2018137205A1
WO2018137205A1 PCT/CN2017/072679 CN2017072679W WO2018137205A1 WO 2018137205 A1 WO2018137205 A1 WO 2018137205A1 CN 2017072679 W CN2017072679 W CN 2017072679W WO 2018137205 A1 WO2018137205 A1 WO 2018137205A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
downlink time
location
base station
resource
Prior art date
Application number
PCT/CN2017/072679
Other languages
English (en)
French (fr)
Inventor
李振宇
韩金侠
任占阳
李志军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/072679 priority Critical patent/WO2018137205A1/zh
Publication of WO2018137205A1 publication Critical patent/WO2018137205A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a method, device, and system for transmitting a control channel.
  • LTE long term evolution
  • the NB-IOT implements coverage enhancement by repeatedly transmitting a narrowband physical downlink control channel (NPDCCH).
  • NPDCCH narrowband physical downlink control channel
  • the base station configures, by using the high layer signaling, the maximum number of repetitions of the NPDCCH, the sending period, and the starting subframe number that the base station may send the NPDCCH in each sending period.
  • the base station may not transmit the NPDCCH according to the maximum number of repetitions, that is, the base station may determine the number of repetitions of actually transmitting the NPDCCH (denoted as R) according to the actual coverage enhancement requirement of the terminal, and according to the requirements of the actual coverage enhancement of each terminal.
  • the terminal may not be able to determine the R number of the NPDCCH that may be sent by the base station according to the maximum number of repetitions configured by the base station, and the terminal may perform blind detection according to the possible repetition times according to the maximum number of repetitions configured by the base station. The correct reception of the NPDCCH is completed.
  • the above method can only be applied to the licensed spectrum.
  • the LTE system may share resources with other systems (such as wireless fidelity (Wi-Fi) systems) in a time division multiplexing manner, and each The time when the system occupies the resources is unpredictable. Therefore, the sending period of the NPDCCH and the starting subframe number of the NPDCCH that may be sent by the eNB may be inaccurate, which may result in the terminal not receiving the NPDCCH correctly.
  • the coverage of the NPDCCH is enhanced.
  • the present application provides a method, apparatus, and system for transmitting a control channel, which can implement coverage enhancement of a control channel on an unlicensed spectrum.
  • a method for transmitting a control channel comprising: determining, by a base station, a first resource on an unlicensed spectrum; and the base station determining to indicate a first location (a start of the first resource in a time domain) First) of the location and the number of repetitions (the number of times the base station repeatedly transmits the control channel); and the base station from the second location (a time domain location on the first resource, the second location being the same as the first location, or The second location begins after the first location in time, and the control channel is repeatedly transmitted according to the number of repetitions.
  • the method for transmitting a control channel since the base station can be determined to be used for its unauthorized After the first resource of the control channel is repeatedly transmitted in the spectrum (that is, the base station contends to the resource for transmitting the control channel), the starting position of the first resource in the time domain (ie, the first location) and the repeated transmission of the control channel are determined. The number of times (i.e., the number of repetitions described above), and then the base station starts from the second position on the first resource, and repeatedly transmits the control channel according to the repetition number, thereby ensuring that the base station can compete for the first resource on the unlicensed spectrum.
  • the method for transmitting a control channel provided by the application may further include: adjusting, by the base station, the first uplink and downlink time domain unit ratio currently used by the first resource to the second uplink and downlink Time domain unit ratio.
  • the first resource adopts the first uplink and downlink time domain unit ratio the number of available downlink time domain units in the first resource is smaller than the repetition number (that is, the number of times the base station repeatedly transmits the control channel);
  • the resource adopts the second uplink and downlink time domain unit ratio the number of available downlink time domain units in the first resource is greater than or equal to the repetition number.
  • the base station can increase the number of available downlink time domain units on the first resource by adjusting the first uplink and downlink time domain unit ratio currently used by the first resource to the second uplink and downlink time domain unit ratio. Therefore, the control channel can be transmitted on the first resource according to the number of repetitions, thereby achieving coverage enhancement of the control channel.
  • the method for transmitting a control channel provided by the application may further include: the base station sends a common control radio network temporary identifier (CC-RNTI) to the terminal.
  • CC-RNTI common control radio network temporary identifier
  • DCI Disrupted public downlink control information
  • the public DCI includes first indication information for indicating whether the downlink time domain unit of the base station transmitting the common DCI on the unlicensed spectrum is the first location.
  • the base station may send the first indication information to the terminal by using the common DCI scrambled by the CC-RNTI, so as to indicate to the terminal whether the current downlink time domain unit on the unlicensed spectrum is the first location, so that the terminal can compare the terminals.
  • the first location is accurately determined, thereby ensuring that the terminal can correctly receive the control channel repeatedly transmitted by the base station, thereby enabling coverage enhancement of the control channel on the unlicensed spectrum.
  • a second aspect provides a method for transmitting a control channel, where the method includes: determining, by the terminal, that a current downlink time domain unit on the unlicensed spectrum is a first location (the first location is a starting location of the first resource in the time domain, The first resource is a resource for repeatedly transmitting the control channel on the unlicensed spectrum determined by the base station; and when the terminal determines that the current downlink time domain unit is the first location, the terminal is based on the maximum number of repetitions (base station) The maximum number of times the control channel is repeatedly transmitted, the number of detections is determined; and the terminal starts to receive the control channel according to the number of detections on the first resource from the first location.
  • the method for determining, by the terminal, that the current downlink time domain unit on the unlicensed spectrum is the first location may include: receiving, by the terminal, a CC-RNTI scrambled public DCI sent by the base station ( The public DCI includes the current downlink time domain indicating If the first indication information in the common DCI indicates that the current downlink time domain unit is the first location, the terminal determines, according to the first indication information, that the terminal is determined according to the first indication information. The current downlink time domain unit is the first location.
  • the terminal may determine whether the current downlink time domain unit on the unlicensed spectrum is the first location by means of the blind detection, or determine whether the current downlink time domain unit on the unlicensed spectrum is determined by the manner indicated by the base station to the terminal. First position.
  • the terminal may determine whether the current downlink time domain unit is determined by detecting whether the pilot signal is transmitted on the current downlink time domain unit. First position.
  • the terminal may determine, by detecting, the content of the first indication information that is transmitted on the current downlink time domain unit. Whether the current downlink time domain unit is the first location.
  • the terminal may detect whether the current downlink time zone unit transmits or not to indicate the current downlink time.
  • the domain unit is the first indication information of the first location, and determines whether the current downlink time domain unit is the first location.
  • a base station may include a determining unit and a transmitting unit.
  • the determining unit may be configured to determine a first resource on the unlicensed spectrum and to indicate the first location (the starting location of the first resource in the time domain) and the number of repetitions (the number of times the sending unit repeatedly sends the control channel) First information; the sending unit may be configured to use a second location (a time domain location on the first resource, the second location being the same as the first location, or the second location being temporally located in the first location After the position is started, the control channel is repeatedly transmitted according to the number of repetitions determined by the determining unit.
  • the base station may further include an adjusting unit.
  • the adjusting unit may be configured to adjust the first uplink and downlink time domain unit ratio currently used by the first resource determined by the determining unit to the second uplink and downlink time domain unit ratio.
  • the number of available downlink time domain units in the first resource is smaller than the repetition number (that is, the number of times the sending unit repeatedly transmits the control channel);
  • the first resource adopts the second uplink and downlink time domain unit ratio the number of available downlink time domain units in the first resource is greater than or equal to the repetition number.
  • the foregoing sending unit may be further configured to send a CC-RNTI scrambled public DCI to the terminal.
  • the public DCI includes first indication information for indicating whether the downlink time domain unit of the public DCI that the sending unit sends the common DCI on the unlicensed spectrum is the first location determined by the determining unit.
  • a terminal in a fourth aspect, can include a determining unit and a receiving unit.
  • the determining unit may be configured to determine that the current downlink time domain unit on the unlicensed spectrum is the first location (the first location is a starting location of the first resource in the time domain, and the first resource is on the unlicensed spectrum determined by the base station And determining, in the case that the current downlink time domain unit is the first location, determining the number of detections according to the maximum number of repetitions (the maximum number of times the base station repeatedly transmits the control channel); the receiving unit Can be used to start from the first location determined by the determining unit, in the first The control channel is combined and received on a resource according to the number of detections determined by the determining unit.
  • the determining unit is specifically configured to receive a CC-RNTI scrambled common DCI sent by the base station, where the public DCI is used to indicate whether the current downlink time domain unit is And determining, according to the first indication information, the current downlink time, when the first indication information in the common DCI indicates that the current downlink time domain unit is the first location information; The domain unit is the first location.
  • the first position may be predefined.
  • the second location described above may also be predefined.
  • control channel and the data channel may be implemented in the following three possible implementation manners: a first possible implementation manner, a second possible implementation manner, and a third possible implementation. Any one of the modes is repeated.
  • control channel is repeatedly transmitted on consecutive downlink time domain units starting from the second location
  • data channel is repeatedly transmitted on consecutive downlink time domain units starting from the second location.
  • the number of times of repeatedly transmitting the data channel is greater than or equal to the number of repetitions (that is, the number of times the base station repeatedly transmits the control channel).
  • control channel is repeatedly sent on consecutive downlink time domain units starting from the second location, and the data channel is in a continuous downlink time domain unit starting from the n+kth downlink time domain unit. Repeatedly sent.
  • the control channel includes second indication information for indicating that the data channel is repeatedly transmitted from the n+kth downlink time domain unit, where the nth downlink time domain unit is the downlink time domain of the last time the control channel is sent.
  • Units, n and k are positive integers.
  • control channel is repeatedly sent on consecutive downlink time domain units starting from the second location, and the data channel is repeated on consecutive downlink time domain units starting from the first downlink time domain unit. send.
  • the first downlink time domain unit is a next downlink time domain unit of the downlink time domain unit where the second location is located.
  • the base station can repeatedly send the control channel and the data channel, so that the terminal can correctly receive the control channel and the data channel, thereby achieving coverage enhancement of the control channel and the data channel.
  • the first information may be further used to indicate a duration of the first resource.
  • the base station may specifically start from the second location, and repeatedly send the control channel according to the repetition quantity within the duration of the first resource.
  • the first resource may be any one of the following (1), (2), and (3).
  • the first resource includes all available downlink time domain units in a maximum continuous occupied time (MCOT) on the unlicensed spectrum.
  • MCOT maximum continuous occupied time
  • the first resource includes all available downlink time domain orders in one detection cycle on the unlicensed spectrum yuan.
  • the first resource includes all available downlink time domain units starting from the first complete MCOT in a detection cycle on the unlicensed spectrum, and the starting point of the complete MCOT is the starting boundary of the MCOT.
  • the first position may be any one of the following (4), (5), and (6).
  • the first location is the first available downlink time domain unit in an MCOT on the unlicensed spectrum.
  • the first location is the first available downlink time domain unit in a detection cycle on the unlicensed spectrum.
  • the first location is the first available downlink time domain unit of the first complete MCOT in a detection cycle on the unlicensed spectrum.
  • the foregoing detection period may be configured by the base station for the terminal.
  • the base station can configure the detection period for the terminal through high layer signaling.
  • the high layer signaling may be radio resource control (RRC) signaling.
  • RRC radio resource control
  • the first resource may be a time-frequency resource that is continuous in the time domain; or the first resource may be a time-frequency resource that is discrete in the time domain.
  • control channel may be a downlink control channel.
  • the downlink control channel may include at least one of a physical downlink control channel (PDCCH) and an enhanced physical downlink control channel (EPDCCH).
  • PDCCH physical downlink control channel
  • EPDCCH enhanced physical downlink control channel
  • the control channel is an EPDCCH
  • the first resource is a common search space of the EPDCCH.
  • the EPDCCH carries a first DCI.
  • the first DCI includes at least one of a DCI of a first message sent by the coverage enhancement terminal that the base station provides to the base station and a DCI of the second message sent by the base station to the coverage enhancement terminal.
  • the base station and the terminal can determine whether the terminal is a coverage enhanced terminal or a non-coverage enhanced terminal by using a preamble index
  • the base station can define a common search space of the EPDCCH and transmit the first message sent by the base station to the coverage enhanced terminal.
  • the DCI of the DCI and the second message are carried in the common search space of the EPDCCH.
  • the coverage enhancement of the EPDCCH the DCI and the second message of the first message sent by the base station to the terminal during the process of the terminal randomly accessing the base station can be implemented.
  • the coverage of DCI is enhanced.
  • the duration of the receiving window in which the terminal receives the first message and the duration of the receiving window in which the terminal receives the second message may also be adjusted. . Thereby, the terminal can correctly receive the first message and the second message repeatedly transmitted by the base station.
  • the downlink time domain unit may be a downlink subframe, or may be a downlink time slot, and may also be any other time domain having the same meaning but different names as the downlink subframe or the downlink slot. unit.
  • the available downlink time domain unit may be a downlink time domain unit that the base station can repeatedly transmit the control channel.
  • the available downlink time domain unit may be a complete downlink time domain unit, or Thought that the incomplete downlink time domain unit.
  • the first location may be predefined or configured for the terminal by the base station.
  • the above maximum number of repetitions may be predefined or configured for the terminal by the base station.
  • a base station in a fifth aspect, can include a processor and a memory coupled to the processor. This memory can be used to store computer instructions.
  • the processor executes the computer instructions stored in the memory to cause the base station to perform the method of transmitting a control channel in the first aspect or any one of its possible implementations.
  • a computer readable storage medium comprising computer instructions.
  • the base station is caused to perform the method of transmitting a control channel in the first aspect or any one of its possible implementations.
  • a seventh aspect a computer program product comprising computer instructions for causing a base station to perform a method of transmitting a control channel in the first aspect or any one of its possible implementations when the computer program product is run on a base station .
  • a terminal in an eighth aspect, can include a processor and a memory coupled to the processor. This memory can be used to store computer instructions.
  • the processor executes the computer instructions stored in the memory to cause the terminal to perform the method of transmitting a control channel in the second aspect or any one of its possible implementations.
  • a computer readable storage medium comprising computer instructions.
  • the terminal is caused to perform the method of transmitting a control channel in the second aspect or any one of its possible implementations.
  • a tenth aspect a computer program product comprising computer instructions, when the computer program product is run on a terminal, causing the terminal to perform the method of transmitting a control channel in the second aspect or any one of its possible implementation manners .
  • a wireless communication system which may include the base station in the foregoing third aspect or any possible implementation thereof, and the foregoing fourth aspect or any possible implementation manner thereof Terminal.
  • the wireless communication system may include the base station in the above fifth aspect, and the terminal in the above eighth aspect.
  • FIG. 1 is a schematic diagram of multiplexing an unlicensed spectrum between an LTE system and a Wi-Fi system according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an LTE system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of hardware of a base station according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of hardware of a mobile phone according to an embodiment of the present invention.
  • FIG. 5 is a first schematic diagram of a method for transmitting a control channel according to an embodiment of the present invention
  • FIG. 6 is a first schematic diagram of a first resource and a first location according to an embodiment of the present invention.
  • FIG. 7 is a second schematic diagram of a first resource and a first location according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram 3 of a first resource and a first location according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a terminal detecting a control channel according to an embodiment of the present invention.
  • FIG. 10 is a second schematic diagram of a method for transmitting a control channel according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram 1 of repeatedly transmitting a control channel and repeatedly transmitting a data channel according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram 2 of repeatedly transmitting a control channel and repeatedly transmitting a data channel according to an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram 3 of repeatedly transmitting a control channel and repeatedly transmitting a data channel according to an embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of a method for a terminal to randomly access a base station according to an embodiment of the present disclosure
  • FIG. 15 is a schematic diagram of a terminal receiving a message 2 according to an embodiment of the present invention.
  • FIG. 16 is a schematic diagram of a terminal sending a message 3 according to an embodiment of the present invention.
  • FIG. 17 is a schematic diagram of a terminal receiving a message 4 according to an embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram 1 of a base station according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram 2 of a base station according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic structural diagram 1 of a terminal according to an embodiment of the present disclosure.
  • FIG. 21 is a schematic structural diagram 2 of a terminal according to an embodiment of the present invention.
  • first and second in the specification and claims of the embodiments of the present invention are used to distinguish different objects, and are not intended to describe a specific order of the objects.
  • first location and the second location, etc. are used to distinguish different locations, rather than to describe a particular order of locations.
  • the words “exemplary” or “such as” are used to mean an example, illustration, or illustration. Any embodiment or design described as “exemplary” or “for example” in the embodiments of the invention should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of the words “exemplary” or “such as” is intended to present the concepts in a particular manner.
  • a plurality means two or more unless otherwise stated.
  • a plurality of processing units refers to two or more processing units;
  • a plurality of systems refers to two or more systems.
  • coverage enhancement that is, enhance signal strength in the coverage of the base station in the LTE system.
  • the coverage enhancement in the NB-IOT can be implemented by repeatedly transmitting the NPDCCH in time.
  • the licensed spectrum may cause the terminal to fail to receive the NPDCCH correctly, and the coverage enhancement of the NPDCCH cannot be implemented.
  • an embodiment of the present invention provides a method, an apparatus, and a system for transmitting a control channel. Determining, by the base station, the first resource on the unlicensed spectrum; and determining, by the base station, a first location (eg, a first location) and a number of repetitions (ie, the number of times the base station repeatedly transmits the control channel) on the time domain Information; and starting from a time domain location (eg, the second location) on the first resource, repeatedly transmitting the control channel according to the repetition number, can achieve coverage enhancement of the control channel.
  • a first location eg, a first location
  • a number of repetitions ie, the number of times the base station repeatedly transmits the control channel
  • the second location is the same as the first location (ie, the second location is the same time domain location as the first location on the first resource), or the second location is temporally located after the first location (ie, the second location and the second location A location is a different time domain location on the first resource).
  • the base station can determine the first resource for which the control channel is repeatedly transmitted on the unlicensed spectrum (ie, the base station competes for the resource that transmits the control channel), the first resource is determined to be in the time domain.
  • the base station may repeatedly transmit the control channel on the first resource after competing for the first resource on the unlicensed spectrum, and the first resource that the base station repeatedly transmits the control channel on the unlicensed spectrum is determined, so that when the base station is determined by the base station
  • the terminal providing the service detects the control channel on the first resource, it can ensure that the terminal can correctly receive the control channel repeatedly transmitted by the base station, thereby enabling the coverage enhancement of the control channel on the unlicensed spectrum.
  • FIG. 1 is a schematic diagram of multiplexing an unlicensed spectrum between an LTE system and a Wi-Fi system according to an embodiment of the present invention.
  • the base station 10 in the LTE system and the access point (AP) 11 in the Wi-Fi system can multiplex the unlicensed spectrum by means of a listen before talk (LBT).
  • LBT listen before talk
  • the base station 10 and the AP 11 may first monitor whether the resources of the unlicensed spectrum are idle before transmitting the data, and then retransmit the data when the base station 10 or the AP 11 monitors that the resources of the unlicensed spectrum are idle. That is to say, in the base station 10 and the AP 11, only one device can compete for idle resources on the unlicensed spectrum at the same time, and can advertise a maximum duration after competing for the idle resources (the finite duration can be one transmission)
  • the duration of the transmission opportunity (TXOP) or an MCOT, the duration of a TXOP or an MCOT can be 10 milliseconds or 8 milliseconds).
  • the method and apparatus for transmitting a control channel provided by the embodiments of the present invention can be applied to a wireless communication system.
  • the wireless communication system may be an LTE system, an LTE-Advanced (LTE-A) system, or a system using a fifth-generation mobile communication technology (hereinafter referred to as a 5G system).
  • LTE system is taken as an example of the LTE system.
  • FIG. 2 it is a schematic diagram of an LTE system according to an embodiment of the present invention.
  • the LTE system includes a base station 20 and a terminal 21.
  • the signal transmitted between the base station 20 and the terminal 21 may be relatively fading, which may result in the data transmitted by the base station 20.
  • the terminal 21 cannot receive it correctly. under these circumstances,
  • the correctness of the data received by the terminal 21 can be increased by the coverage enhancement.
  • the correctness of receiving the control channel by the terminal 21 can be increased by implementing coverage enhancement of the control channel (for example, the base station repeatedly transmits multiple control channels).
  • the base station provided by the embodiment of the present invention may be a commonly used base station, or an evolved node base station (eNB), or an access network device such as an access network device in a 5G system.
  • the embodiment of the present invention uses a base station as a commonly used base station as an example to introduce the hardware structure of the base station.
  • the components of the base station provided by the embodiment of the present invention are specifically described below with reference to FIG.
  • the base station provided by the embodiment of the present invention may include: a baseband unit (BBU) 30, a radio remote unit (RRU) 31, and an antenna 32.
  • the BBU 30 and the RRU 31 may be connected by an optical fiber; the RRU 31 is connected to the antenna 32 through a coaxial cable and a power splitter (or coupler) or the like.
  • one BBU 30 can connect multiple RRUs 31.
  • the BBU 30 can be used to perform baseband processing functions (such as encoding, multiplexing, modulation, and spreading) of the Uu interface (ie, the interface between the base station and the terminal), a radio network controller (RNC), and a base station.
  • baseband processing functions such as encoding, multiplexing, modulation, and spreading
  • RNC radio network controller
  • the RRU 31 can include four modules: a digital intermediate frequency module, a transceiver module, a power amplifier module, and a filtering module.
  • the digital intermediate frequency module is used to complete modulation and demodulation of optical transmission, digital up-conversion, digital-to-analog conversion, etc.;
  • the transceiver module is used to complete the conversion of the intermediate frequency signal to the radio frequency signal;
  • the power amplifier module is used to complete the amplification of the radio frequency signal; After the amplification of the amplified RF signal, the filtered RF signal is transmitted through the antenna.
  • the terminal provided by the embodiment of the present invention may be a mobile phone, a tablet computer, a notebook computer, an ultra-mobile personal computer (UMPC), a netbook, or a personal digital assistant (PDA).
  • UMPC ultra-mobile personal computer
  • PDA personal digital assistant
  • the embodiment of the present invention takes a terminal as a mobile phone as an example, and introduces a hardware structure of the terminal.
  • the components of the mobile phone provided by the embodiment of the present invention are specifically described below with reference to FIG.
  • the mobile phone provided by the embodiment of the present invention includes a processor 40, a radio frequency (RF) circuit 41, a power source 42, a memory 43, an input unit 44, a display unit 45, and an audio circuit 46.
  • RF radio frequency
  • the structure of the mobile phone shown in FIG. 4 does not constitute a limitation to the mobile phone, and may include more or less components such as those shown in FIG. 4, or may be combined as shown in FIG. Some of the components may be different from the components shown in Figure 4.
  • the processor 40 is the control center of the mobile phone and connects various parts of the entire mobile phone using various interfaces and lines.
  • the mobile phone is integrally monitored by running or executing software programs and/or modules stored in the memory 43, and recalling data stored in the memory 43, performing various functions and processing data of the mobile phone.
  • processor 40 may include one or more processing units.
  • the processor 40 can integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, an application, and the like; and the modem processor mainly processes wireless communication. It can be understood that the above-mentioned modem processor can also be a processor that exists separately from the processor 40.
  • the RF circuit 41 can be used to receive and transmit signals during transmission or reception of information or calls. E.g, After the downlink information of the base station is received, it is processed by the processor 40; in addition, the uplink data is transmitted to the base station.
  • RF circuits include, but are not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • the handset can also communicate wirelessly with other devices in the network via the RF circuitry 41.
  • Wireless communication can use any communication standard or protocol, including but not limited to global system of mobile communication (GSM), general packet radio service (GPRS), code division multiple Access, CDMA), wideband code division multiple access (WCDMA), LTE, e-mail, and short messaging service (SMS).
  • GSM global system of mobile communication
  • GPRS general packet radio service
  • CDMA code division multiple Access
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • e-mail e-mail
  • SMS short messaging service
  • the power source 42 can be used to power various components of the handset, and the power source 42 can be a battery.
  • the power supply can be logically coupled to the processor 40 through the power management system to manage functions such as charging, discharging, and power management through the power management system.
  • the memory 43 can be used to store software programs and/or modules, and the processor 40 executes various functional applications and data processing of the mobile phone by running software programs and/or modules stored in the memory 43.
  • the memory 43 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, image data, phone book, etc.).
  • the memory 43 may include a high speed random access memory, and may also include a nonvolatile memory such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 44 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function controls of the handset.
  • input unit 44 may include touch screen 441 as well as other input devices 442.
  • the touch screen 441 also referred to as a touch panel, can collect touch operations on or near the user (such as the operation of the user using a finger, a stylus, or the like on the touch screen 441 or near the touch screen 441), and according to The preset program drives the corresponding connection device.
  • the touch screen 441 may include two parts of a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 40 is provided and can receive commands from the processor 40 and execute them.
  • the touch screen 441 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • Other input devices 442 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, power switch buttons, etc.), trackballs, mice, and joysticks.
  • the display unit 45 can be used to display information input by the user or information provided to the user as well as various menus of the mobile phone.
  • the display unit 45 may include a display panel 451.
  • the display panel 451 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch screen 441 may cover the display panel 451, and when the touch screen 441 detects a touch operation on or near it, transmits to the processor 40 to determine the type of the touch event, and then the processor 40 displays the panel according to the type of the touch event.
  • a corresponding visual output is provided on the 451.
  • the touch screen 441 and the display panel 451 function as two separate components to implement the input and output functions of the mobile phone, in some embodiments, the touch screen 441 can be integrated with the display panel 451 to implement the input of the mobile phone. And output function.
  • An audio circuit 46, a speaker 461 and a microphone 462 are provided for providing an audio interface between the user and the handset.
  • the audio circuit 46 can transmit the converted electrical data of the received audio data to the speaker 461 for conversion to a sound signal output by the speaker 461.
  • the microphone 462 converts the collected sound signal into an electrical signal, which is received by the audio circuit 46 and converted into audio data, and then the audio data is output to the RF circuit 41 through the processor 40 for transmission to, for example, another mobile phone, or The audio data is output to the memory 43 by the processor 40 for further processing.
  • the mobile phone shown in FIG. 4 may further include various sensors.
  • a gyro sensor, a hygrometer sensor, an infrared sensor, a magnetometer sensor, and the like are not described herein.
  • the mobile phone shown in FIG. 4 may further include a Wi-Fi module, a Bluetooth module, and the like, and details are not described herein again.
  • an embodiment of the present invention provides a method for transmitting a control channel. As shown in FIG. 5, the method may include S101-S107:
  • the base station determines a first resource on the unlicensed spectrum.
  • the unlicensed spectrum is usually multiplexed by multiple systems (which may be the same system or different systems, and different systems of LTE systems and Wi-Fi systems are used as examples), devices in multiple systems ( For example, before the base station in the LTE system and the AP in the Wi-Fi system transmit data, the devices may first contend for the resources of the unlicensed spectrum, and after contending for the resources of the unlicensed spectrum, send the resources on the unlicensed spectrum. data.
  • the base station when the base station uses the unlicensed spectrum to transmit data, the base station usually uses the LBT method, that is, the base station can first monitor whether the unlicensed spectrum resource is idle before transmitting the data, and listen to the unlicensed spectrum at the base station. The data is sent again when the resource is idle.
  • the idleness of the resource that the base station listens to the unlicensed spectrum can be understood as: the base station competing for the resources of the unlicensed spectrum or the base station preempting the resources of the unlicensed spectrum.
  • the base station can use resources of the finite duration unlicensed spectrum, for example, the base station can transmit data of a limited duration.
  • the finite duration can be a TXOP or an MCOT.
  • the data sent by the base station to the terminal is taken as an example of the control channel.
  • the control channel may be a downlink control channel.
  • the downlink control channel may include at least one of a PDCCH and an EPDCCH. That is, the downlink control channel may be a PDCCH, an EPDCCH, or a PDCCH and an EPDCCH.
  • the specifics may be determined according to the actual use requirements, and are not limited in the embodiment of the present invention.
  • the base station may determine the first resource on the unlicensed spectrum.
  • the first resource can be used by the base station to repeatedly transmit the control channel.
  • the base station may not immediately send the control channel on the first resource, for example, the base station may delay transmitting the control channel for a period of time, so the base station determines the non-authorization.
  • the first resource on the spectrum is that the base station can transmit the control channel. Resources.
  • the first resource may be a time-frequency resource in a time domain; or may be a time-frequency resource in a time domain.
  • the specifics may be determined according to the actual use requirements, and are not limited in the embodiment of the present invention.
  • the first resource in the embodiment of the present invention is a time-frequency resource on the unlicensed spectrum. Therefore, the embodiment of the present invention uses the time domain resource as an example to describe the first resource, and the frequency domain resource is not limited in the embodiment of the present invention.
  • the base station determines first information, where the first information is used to indicate the first location and the number of repetitions.
  • the first location may be a starting location of the first resource on the unlicensed spectrum determined by the base station, that is, the first location may be understood as a location where the base station may start to send the control channel on the first resource.
  • the number of repetitions may be the number of times the base station repeatedly transmits the control channel, that is, the number of repetitions may be the number of repetitions of the actual transmission of the control channel by the base station on the first resource (hereinafter referred to as the actual number of repetitions, that is, in the embodiment of the present invention, The number of repetitions has the same meaning as the actual number of repetitions).
  • the foregoing first location may be predefined in a base station.
  • the base station may determine, according to the degree of coverage enhancement of the control channel, the maximum number of repetitions of the control channel sent by the base station, and then the base station determines the actual number of repetitions according to the maximum number of repetitions.
  • the base station determines the number of repetitions of the actual transmission of the control channel by the base station, that is, after the actual number of repetitions, the base station may determine, according to the actual number of repetitions, the location where the base station may start transmitting the control channel on the first resource on the unlicensed spectrum, that is, the first position. Wherein, in the case that the maximum number of repetitions is the same, the actual number of repetitions is different, and the first location determined by the base station may be different.
  • the first resource includes one MCOT
  • the first location may be the 0th downlink time domain unit or the 4th downlink time domain unit in the MCOT.
  • a possible implementation manner is that the base station can start from the 0th downlink time domain unit in the MCOT, and each downlink in the 0th downlink time domain unit to the 3rd downlink time domain unit.
  • the control channel is transmitted once on the time domain unit, that is, the base station can repeatedly transmit the control channel four times on the 0th downlink time domain unit to the third downlink time domain unit in the MCOT.
  • the base station can be from the fourth of the MCOTs.
  • the downlink time domain unit starts, and the control channel is sent once on each downlink time domain unit in the fourth downlink time domain unit to the seventh downlink time domain unit, that is, the base station can be in the fourth downlink of the MCOT.
  • the control channel is repeatedly transmitted 4 times in the time domain unit to the 7th downlink time domain unit.
  • the downlink time domain unit may be a downlink subframe or a downlink time slot, and may also be any other time domain unit having the same meaning but different names as the downlink subframe or the downlink slot.
  • the embodiment of the invention is not limited.
  • the maximum number of repetitions for example, Rmax
  • the actual number of repetitions for example, R
  • the maximum number of repetitions and the actual number of repetitions of the control channel transmitted by the base station may be
  • the embodiment of the present invention is not limited as determined by the actual use requirements.
  • the first resource may be one of the following (1), (2), and (3):
  • the first resource includes all available downlink time domain units in one MCOT on the unlicensed spectrum.
  • an MCOT on an unlicensed spectrum is taken as an example.
  • the MCOT is represented by MCOT1 in FIG. 6, and MCOT1 involves eight time domain units (the numbers of eight time domain units are respectively 0 to 7).
  • the eight time domain units may all be located in MCOT1 or partially in MCOT1 (as shown in FIG. 6, the eight time domain units are located in MCOT1), and the eight time domain units include six downlink time domain units and two Upstream time domain units).
  • the first resource may include all available downlink time domain units in MCOT1 (6 downlink time domain units in FIG. 6).
  • the first resource may include the downlink time domain unit 0 in the MCOT1 (in FIG.
  • the downlink time domain unit 0 is an incomplete downlink time domain unit in the MCOT1, that is, the downlink time domain unit 0 is located in the MCOT1.
  • Medium downlink time domain unit 1 in MCOT1, downlink time domain unit 2 in MCOT1, downlink time domain unit 3 in MCOT1, downlink time domain unit 4 in MCOT1, and downlink time domain unit 5 in MCOT1.
  • D represents a downlink time domain unit
  • U represents an uplink time domain unit
  • D in each of the following embodiments refers to a downlink time domain unit
  • one MCOT is the maximum available duration of the resources of the unlicensed spectrum that the base station competes at one time.
  • the available downlink time domain unit may be understood as any downlink time domain unit that the base station can send the control channel.
  • the available downlink time domain unit may be a complete downlink time domain unit (for example, downlink time domain unit 1 in MCOT1 as shown in FIG. 6), or may be an incomplete downlink time domain unit (for example, as shown in FIG. 6).
  • the downlink time domain unit 0) in the MCOT1 is determined according to the actual use requirement, which is not limited in the embodiment of the present invention.
  • the starting point of the complete downlink time domain unit is the starting boundary of the downlink time domain unit.
  • the following line time domain unit For a subframe for example, the starting point of the complete downlink time domain unit is the starting boundary of the subframe.
  • the first resource shown in FIG. 6 is a continuous time-frequency resource in the time domain.
  • the first resource includes all available downlink time domain units in one detection cycle on the unlicensed spectrum.
  • a detection period on an unlicensed spectrum is taken as an example.
  • the detection period is represented as T in FIG. 7, and T refers to two MCOTs (shown as MCOT1 and MCOT2 in FIG. 7, respectively).
  • Each MCOT involves eight time domain units (the number of eight time domain units is 0 to 7 respectively).
  • 6 time domain units are all located in the detection period or partially in the detection period (as shown in FIG. 7, the 6 time domain units are located in the detection period), and the 6 time periods are
  • the domain unit includes 4 downlink time domain units and 2 uplink time domain units.
  • the eight time domain units involved in MCOT2 are all located in the detection period (as shown in FIG. 7), and the eight time domain units include five downlink time domain units and three uplink time domain units.
  • the first resource may include all available downlink time domain units in T (9 downlink time domain units in FIG. 7). Specifically, the first resource may include the downlink time domain unit 2 in the MCOT1 (in FIG.
  • the downlink time domain unit 2 is an incomplete downlink time domain unit in the T, that is, the downlink time domain unit 2 is located in the T In the downlink time domain unit 3 in MCOT1, the downlink time domain unit 4 in MCOT1, the downlink time domain unit 5 in MCOT1, the downlink time domain unit 0 in MCOT2, and the downlink time domain unit 1 and MCOT2 in MCOT2.
  • one MCOT in one detection period is the maximum available duration of resources of the unlicensed spectrum that the base station competes once.
  • the first resource shown in FIG. 7 is a discrete time-frequency resource in the time domain.
  • the first resource includes all available downlink time domain units starting from the first complete MCOT in a detection cycle on the unlicensed spectrum.
  • the starting point of the complete MCOT is the starting boundary of the MCOT.
  • a detection period on an unlicensed spectrum is taken as an example.
  • the detection period is represented as T in FIG. 8, and T refers to two MCOTs (shown as MCOT1 and MCOT2 in FIG. 8, respectively).
  • MCOT1 is an incomplete MCOT in T
  • MCOT2 is a complete MCOT in T.
  • Each MCOT involves eight time domain units (the number of eight time domain units is 0 to 7 respectively).
  • 6 time domain units are all located in the detection period or partially in the detection period (as shown in FIG.
  • the 6 time domain units are located in the detection period), and the 6 time periods are
  • the domain unit includes 4 downlink time domain units and 2 uplink time domain units.
  • the eight time domain units involved in MCOT2 are all located in the detection period (as shown in FIG. 8), and the eight time domain units include five downlink time domain units and three uplink time domain units.
  • the first resource may include all available downlink time domain units in T starting from the first complete MCOT (5 downlink time domain units in FIG. 8). Specifically, the first resource may include downlink time domain unit 0 in MCOT2, downlink time domain unit 1 in MCOT2, downlink time domain unit 2 in MCOT2, downlink time domain unit 3 in MCOT2, and downlink time in MCOT2. Domain unit 4.
  • one MCOT in one detection period is the maximum available duration of resources of the unlicensed spectrum that the base station competes once.
  • the first resource shown in FIG. 8 is a continuous time-frequency resource in the time domain.
  • the first resource in (3) above may also be a discrete time-frequency resource in the time domain.
  • one detection period includes three MCOTs (for example, MCOT1, MCOT2, and MCOT3, respectively), and MCOT1 is an incomplete MCOT in the detection period, MCOT2 and MCOT3 are both in the detection period.
  • the first resource may include all available downlink time domain units in the MCOT2 in the detection period and all available downlink time domain units in the MCOT3, that is, the first resource is the time domain in this case.
  • Discrete time-frequency resources are examples of available downlink time domain units in the MCOT2 in the detection period.
  • the detection period in (2) and (3) above may be configured by the base station for the terminal.
  • the base station can configure the detection period for the terminal through high layer signaling.
  • the higher layer signaling may be RRC signaling.
  • FIG. 7 and FIG. 8 are exemplarily illustrated by taking one detection period including all time domain units in one MCOT and partial time domain units in another MCOT as an example.
  • one detection period may also include all time domain units in one MCOT, or include some time domain units in one MCOT, or include all or part of a larger number (for example, three or more) MCOTs.
  • the base station does not send the control channel during the detection period, and the terminal does not receive the control channel sent by the base station in the detection period.
  • the first position may be one of the following (4), (5), and (6).
  • the first resource is the above (1)
  • the first location may be (4)
  • the first resource is the above (2)
  • the first location may be the following (5)
  • the resource is the above (3)
  • the first position can be as follows (6).
  • the first location is the first available downlink time domain unit in an MCOT on the unlicensed spectrum.
  • the first location may be the first available downlink time domain unit in the MCOT1 as shown in FIG. 6, that is, as shown in FIG. Downstream time domain unit 0 in MCOT1 shown in FIG.
  • FIG. 6 is an example in which the first available downlink time domain unit in the MCOT1 is an incomplete downlink time domain unit.
  • the first available downlink time domain unit in the MCOT1 may also be a complete downlink.
  • the time domain unit may be determined according to the actual use requirement, which is not limited by the embodiment of the present invention.
  • the first location is the first available downlink time domain unit in a detection cycle on the unlicensed spectrum.
  • the first location may be the first available downlink time domain unit in the MCOT1 as shown in FIG. 7, that is, as shown in FIG. Downstream time domain unit 2 in MCOT1 shown in FIG.
  • FIG. 7 is an example in which the first available downlink time domain unit in the MCOT1 is an incomplete downlink time domain unit.
  • the first available downlink time domain unit in the MCOT1 may also be a complete downlink.
  • the time domain unit can be determined according to actual use requirements, and the embodiment of the present invention Not limited.
  • the starting time domain resource is the first available downlink time domain unit in the first complete MCOT in a detection cycle on the unlicensed spectrum.
  • the first location may be in MCOT2 as shown in FIG. 8 (ie, the first complete MCOT in the detection period T).
  • the first available downlink time domain unit is the downlink time domain unit 0 in MCOT2 as shown in FIG.
  • the base station may repeatedly send the control channel multiple times on the first resource determined by the base station, so that the terminal may repeatedly receive the multiple control channels on the first resource, so that To some extent, the correctness of the terminal receiving the control channel is improved, thereby achieving coverage enhancement of the control channel.
  • the base station when the base station determines that the resource of the unlicensed spectrum is idle, the base station can be considered to compete for the unlicensed spectrum resource, and the base station can determine, on the unlicensed spectrum, the first for repeatedly transmitting the control channel.
  • the resource can then repeatedly transmit the control channel on the first resource. Specifically, the location at which the base station starts repeatedly transmitting the control channel on the first resource will be described in detail in S 103 below.
  • the base station starts to transmit the control channel according to the repetition quantity according to the second position.
  • the second location is a time domain location on the first resource determined by the base station on the unlicensed spectrum.
  • the second location may be the same as the first location, ie the second location and the first location may be the same time domain location on the first resource.
  • the second location may be located after the first location in time, that is, the second location and the first location may be two different time domain locations on the first resource, and the second location is the foregoing first resource A time domain position after a delay in the first position.
  • the relationship between the second location and the first location may be determined according to the actual usage requirements of the base station, which is not limited in the embodiment of the present invention.
  • the base station After the base station determines that the base station repeatedly transmits the first position and the number of repetitions of the control channel, since the base station may not repeatedly transmit the control channel from the first location, the base station may be based on the first location, for example, the base station may be from the first location The same or the second position after the first position is temporally started, and the control channel is repeatedly transmitted according to the number of repetitions.
  • the foregoing first information may also be used to indicate a duration of the first resource.
  • the foregoing S103 may include: the base station may start from the second location, and repeatedly send the control channel according to the repetition quantity within the duration of the first resource.
  • the foregoing second location may be predefined.
  • the terminal determines whether the current downlink time domain unit on the unlicensed spectrum is the first location.
  • the terminal may determine, by using a blind detection manner, whether the current downlink time domain unit on the unlicensed spectrum is the first location, or may determine, by using the manner indicated by the base station, the current unlicensed spectrum. Whether the downlink time domain unit is the first location.
  • the specifics may be determined according to the actual use requirements, and are not limited in the embodiment of the present invention.
  • the terminal may determine whether the current downlink time domain unit transmits the pilot signal to determine the current location. Whether the downlink time domain unit is the first location.
  • the terminal may determine that the current downlink time domain unit is in the above (4) The first position.
  • the terminal may determine that the current downlink time domain unit is the foregoing in (5) a location.
  • the terminal may determine that the current downlink time domain unit is in the above (6) The first position.
  • the terminal determines that the base station can repeatedly send the control channel in the current downlink time domain unit (for example, the terminal determines that the time in the current downlink time domain unit is sufficient for the base station to repeatedly send the control channel);
  • the current downlink time domain unit is located in the detection period
  • the current downlink time domain unit is the first downlink time domain unit in the MCOT.
  • the terminal may detect the first transmission on the current downlink time domain unit. Indicates the content of the information, and determines whether the current downlink time domain unit is the first location. It is assumed that the content of the first indication information can be expressed as “whether the current downlink time domain unit is the first downlink time domain unit in the MCOT”, then the first indication information can be used for indication (specifically, direct indication or indirect indication) Whether the current downlink time domain unit is the first location.
  • the first indication information may directly indicate whether the current downlink time domain unit is the first location; for the first location in (5) above and the first location in (6) above, The first indication information may indirectly indicate whether the current downlink time domain unit is the first location.
  • the terminal may determine that the current downlink time domain unit is the foregoing in (4) a location; if the terminal determines that the current downlink time domain unit on the unlicensed spectrum satisfies the following F, the terminal may determine that the current downlink time domain unit is not the first location in (4) above.
  • the terminal may determine that the current downlink time domain unit is the first location in (5) above.
  • the terminal may further determine whether the current downlink time domain unit is the first location in (5) above, for example, in combination with the foregoing one possible implementation manner, for example, If the terminal determines that the current downlink time domain unit on the unlicensed spectrum satisfies the following F and satisfies the above A, B, and C, the terminal may determine that the current downlink time domain unit is the first location in (5) above; Determining that the current downlink time domain unit on the unlicensed spectrum satisfies the following F, and does not satisfy at least one of the foregoing A, B, and C, the terminal may determine that the current downlink time domain unit is not the first location in (5) above.
  • the terminal may determine that the current downlink time domain unit is the first in (6) above. a location; if the terminal determines that the current downlink time domain unit on the unlicensed spectrum satisfies the following F, the terminal may determine that the current downlink time domain unit is not the first location in (6) above.
  • the content of the first indication information transmitted on the current downlink time domain unit is “the current downlink time domain unit is the first downlink time domain unit in the MCOT”;
  • the content of the first indication information transmitted on the current downlink time domain unit is “the current downlink time domain unit is not the first downlink time domain unit in the MCOT”;
  • the current downlink time domain unit is located in the detection period
  • the current downlink time domain unit is the first downlink time domain unit in the MCOT.
  • the value of the bit of the first indication information is used to indicate the content of the first indication information.
  • the value of the bit of the first indication information may be set to “1” to indicate that “the current downlink time domain unit is the first downlink time domain unit in the MCOT”, and the value of the bit of the first indication information may be set.
  • a value of “0” is used to indicate that “the current downlink time domain unit is not the first downlink time domain unit in the MCOT”.
  • the value of the bit of the first indication information may be set to “0” to indicate that “the current downlink time domain unit is the first downlink time domain unit in the MCOT”, and the value of the bit of the first indication information may be set. “1” is used to indicate that “the current downlink time domain unit is not the first downlink time domain unit in the MCOT”.
  • the terminal may detect whether the current downlink time domain unit is transmitted. And determining, by the first indication information that the current downlink time domain unit is the first location, whether the current downlink time domain unit is the first location.
  • the first indication information refer to the related description of the first indication information in another possible implementation manner, and details are not described herein again.
  • the terminal may determine whether the current downlink time domain unit is the foregoing (4), (5) in combination with the other possible implementation manner. And the first position in (6). If the terminal determines that the current downlink time domain unit on the unlicensed spectrum satisfies the following J, the terminal may further determine whether the current downlink time domain unit is the foregoing (4), (5), and (6) in combination with the foregoing one possible implementation manner. The first position in . For details, refer to the related description in one possible implementation manner and the other possible implementation manner, and details are not described herein again.
  • the first indication information is transmitted on the current downlink time domain unit
  • the first indication information is not transmitted on the current downlink time domain unit.
  • the other optional implementation manner is used as an example, when the terminal determines whether the current downlink time domain time domain unit is the first location by using another optional implementation manner.
  • it can be implemented by the following S201-S203.
  • the base station sends a CC-RNTI scrambled common DCI to the terminal.
  • the public DCI scrambled by the CC-RNTI includes first indication information.
  • the first indication information may be used to directly or indirectly indicate whether the downlink time domain unit of the common DCI of the CC-RNTI scrambled by the base station on the unlicensed spectrum is the foregoing first location.
  • the first indication information directly or indirectly indicates whether the base station sends the downlink time domain unit of the CC-RNTI scrambled common DCI to the first location on the unlicensed spectrum, and may refer to another possible implementation.
  • the first indication information directly indicates whether the current downlink time domain unit is the first location in the foregoing (4), And the first indication information indirectly indicates whether the current downlink time domain unit is a related description of the first location in the foregoing (5) and the first location in the foregoing (6), and details are not described herein again.
  • the terminal receives a CC-RNTI scrambled public DCI sent by the base station.
  • the base station may send the CC-RNTI scrambled common DCI to the terminal by using a common physical downlink control channel (CPDCCH).
  • the terminal may receive the CC-RNTI scrambled common DCI sent by the base station through the CPDCCH.
  • CPDCCH common physical downlink control channel
  • the downlink time domain unit of the public DCI that the terminal receives the CC-RNTI scrambling transmitted by the base station is the current downlink time domain unit.
  • the terminal determines, according to the first indication information, that the current downlink time domain unit is the first location.
  • the terminal may determine the current downlink time.
  • the domain unit is the first location. For example, if the value of the bit of the first indication information is “1”, “the current downlink time domain unit is the first downlink time domain unit in the MCOT” is taken as an example, if the terminal determines the CC-RNTI scrambled public DCI.
  • the value of the bit of the first indication information is “1”, and the terminal may determine that the downlink time domain unit (ie, the current downlink time domain unit) of the common DCI scrambled by the CC-RNTI transmitted by the base station is the first in the MCOT.
  • a downlink time domain unit so that the terminal can determine the current downlink time domain unit as the first location described above in combination with the other possible implementation manner.
  • the terminal when the terminal determines that the current downlink time domain unit on the unlicensed spectrum is the first location, the terminal starts detecting the control channel repeatedly sent by the base station, and after detecting the control channel repeatedly sent by the base station, Combine these control channels. Specifically, if the terminal determines that the current downlink time domain unit on the unlicensed spectrum is the first location, the terminal may perform the following S105-S106. If the terminal determines that the current downlink time domain unit on the unlicensed spectrum is not the first location, the terminal may perform the following S107.
  • the first location may be that the terminal detects the starting position of the control channel on the unlicensed spectrum (that is, the starting position of the first resource that can be used by the foregoing base station to repeatedly transmit the control channel;
  • the first resource may also be referred to as a search space, and the first resource indicates that the terminal can detect a resource range of the control channel.
  • the foregoing first location may be predefined in the terminal or configured by the base station as a terminal.
  • the specifics may be determined according to the actual use requirements, and are not limited in the embodiment of the present invention.
  • the terminal determines the number of detections according to the maximum number of repetitions.
  • the maximum number of repetitions is the maximum number of times the base station repeatedly transmits the control channel.
  • the maximum number of repetitions refer to the related description of the maximum number of repetitions in the above S102, and details are not described herein again.
  • the number of detections described above is the number of times the terminal detects the control channel.
  • the base station may repeatedly send the control channel in any time domain location on the first resource on the determined unlicensed spectrum, so for the terminal, the terminal The base station may repeatedly detect the specific resource of the control channel, so that the terminal may sequentially detect the control channel sent by the base station on the resource that the base station may repeatedly send the control channel, and then combine and detect the detected control channel after detecting the control channel sent by the base station. Control channel.
  • the maximum number of repetitions may be predefined in the terminal or configured by the base station as a terminal.
  • the specifics may be determined according to the actual use requirements, and are not limited in the embodiment of the present invention.
  • the terminal may determine, according to the maximum number of repetitions, the number of times the terminal detects the control channel, that is, the number of times of detection.
  • the number of detections may be all possible values of the number of times the base station actually repeatedly transmits the control channel.
  • the maximum number of repetitions ie, the maximum number of times the base station repeatedly transmits the control channel
  • the terminal detects the control channel it can sequentially detect 8 times, 4 times, 2 times, and 1 time.
  • FIG. 9 is taken as an example to illustrate an exemplary process of detecting a control channel in sequence by 8 times, 4 times, 2 times, and 1 time.
  • the candidate set indicates the number of times the terminal can detect the control channel.
  • the candidate sets 0 to 7 in FIG. 9 indicate that the terminal can detect 8 control channels
  • the candidate sets 8 to 11 indicate that the terminal can detect 4 control channels.
  • the candidate sets 12 to 13 indicate that the terminal can detect the control channel twice
  • the candidate set 14 indicates that the terminal can detect the control channel once.
  • the first resource indicates that the terminal can detect the resource range of the control channel. Exemplarily, first, the terminal may detect the control channel 8 times.
  • the terminal may detect the control channel once in each downlink time domain unit of the 8 downlink time domain units.
  • the terminal may perform 4 times detection control.
  • Channel for example, the terminal may detect the control channel once every 2 downlink time domain units of the 8 downlink time domain units; again, the terminal may detect the control channel twice, for example, the terminal may be in 8 downlink time domains.
  • the control channel is detected once every 4 downlink time domain units in the unit; finally, the terminal can detect the control channel once, for example, the terminal can detect the control channel once in 8 downlink time domain units.
  • the terminal does not necessarily detect the control channel according to all the values of the number of detections. For example, when the number of detections is 8 times, 4 times, 2 times, and 1 time as an example, when the terminal detects the control channel according to the process shown in FIG. 9 above, if the terminal detects the control channel 8 times, it has correctly received the channel. With the control channel, the terminal may no longer need to continue to detect the control channel 4 times, 2 times, and once. That is to say, when the terminal detects the control channel according to the determined number of detections, the terminal can sequentially detect the control channel according to each detection number until the terminal correctly receives the control channel to end the detection process.
  • the embodiment of the present invention may not limit the execution order of S103 and S104-S105, that is, the embodiment of the present invention may first execute S103, and then execute S104-S105; or may perform S104-S105 first, and then execute S103; S103 and S104-S105 can be performed simultaneously.
  • the terminal starts to receive the control channel according to the detection number on the first resource, starting from the first location.
  • the terminal After the terminal determines that the terminal can detect the starting position of the control channel (ie, the first location) and the number of detections on the unlicensed spectrum, the terminal may start from the first location, and detect the base station repetition according to the detection times on the first resource.
  • the control channel is transmitted, and these control channels are combined and received after detecting the control channel repeatedly transmitted by the base station.
  • the terminal continues to receive or wait to receive data sent by the base station.
  • the terminal may continue to receive or wait to receive data sent by the base station.
  • This data can be a public DCI scrambled by the CC-RNTI.
  • the method for transmitting a control channel provided by the embodiment of the present invention, after the base station can determine the first resource for which the control channel is repeatedly transmitted on the unlicensed spectrum (that is, the base station competes for the resource that sends the control channel), and then determines the first a starting position of a resource in the time domain (ie, the first location) and a number of times it repeatedly transmits a control channel (ie, the number of repetitions), and then the base station starts from a second location on the first resource, according to the number of repetitions
  • the control channel is repeatedly transmitted, so that the base station can repeatedly transmit the control channel on the first resource after competing for the first resource on the unlicensed spectrum, and the base station repeatedly transmits the first resource of the control channel on the unlicensed spectrum. It is determined that when the terminal served by the base station detects the control channel on the first resource, it can ensure that the terminal can correctly receive the control channel repeatedly transmitted by the base station, thereby enabling the coverage enhancement of the control channel on the unlicensed spectrum. .
  • the base station determines the first resource on the unlicensed spectrum, that is, after the base station performs the foregoing S101, if the base station determines that the number of available downlink time domain units on the first resource is smaller than the number of times the base station repeatedly transmits the control channel, then The coverage enhancement of the control channel can be implemented.
  • the base station can increase the number of available downlink time domain units on the first resource by adjusting the first uplink and downlink time domain unit ratio currently used by the first resource.
  • the method for transmitting a control channel may further include:
  • the base station adjusts the first uplink and downlink time domain unit ratio currently used by the first resource to the second uplink and downlink time domain unit ratio.
  • the number of available downlink time domain units in the first resource is smaller than the repetition number.
  • the number of available downlink time domain units in the first resource is greater than or equal to the repetition number.
  • the number of repetitions is the number of times the base station actually repeats transmitting the control channel. For a detailed description of the number of repetitions, refer to the related description of the number of repetitions in the above S102, and details are not described herein again.
  • the time domain unit is used as the subframe
  • the first uplink and downlink time domain unit ratio may be the first uplink and downlink subframe ratio
  • the second uplink and downlink time domain unit ratio may be the second. Up/down subframe ratio.
  • Table 2 an example of the ratio of uplink and downlink subframes in a time division duplexing (TDD) system according to an embodiment of the present invention is shown.
  • D indicates that a certain subframe is a downlink subframe, and a downlink subframe can be used for transmitting downlink data (for example, a downlink control channel);
  • U indicates that a certain subframe is an uplink subframe, and an uplink subframe can be For transmitting uplink data (for example, an uplink control channel);
  • S indicates that a certain subframe is a special subframe, and a special subframe can be used for transmitting a pilot signal.
  • the number of repetitions is 4, and the ratio of the first uplink and downlink time domain units currently used by the first resource is 0 to the uplink and downlink subframe ratio as shown in Table 2, as shown in Table 2
  • the number of downlink subframes in the row subframe ratio 0 is 2, that is, when the first resource uses the first uplink and downlink time domain unit ratio, the number of available downlink time domain units in the first resource is less than the repetition number, then the base station
  • the first uplink and downlink time domain unit ratio that is currently used by the first resource may be adjusted to the second uplink and downlink time domain unit ratio, for example, the uplink and downlink subframe ratios as shown in Table 2 that are currently used by the first resource are 0. Adjust to the uplink and downlink subframe ratio 1 as shown in Table 2.
  • the base station can increase the available uplink downlink time domain unit on the first resource by adjusting the first uplink and downlink time domain unit ratio currently used by the first resource to the second uplink and downlink time domain unit ratio.
  • the number so that the control channel can be sent on the first resource according to the number of repetitions, thereby achieving coverage enhancement of the control channel.
  • the base station in order to ensure that the terminal correctly receives the data channel sent by the base station, and the coverage enhancement of the data channel is implemented, the base station may also be located after the first resource on the first resource or the time determined by the terminal.
  • the data channel is repeatedly transmitted on the frequency resource.
  • any of the following three possible implementation manners (the first possible implementation manner, the second possible implementation manner, and the third possible implementation manner) may be adopted. Implementations repeatedly transmit control channels and data channels.
  • the base station repeatedly transmits the control channel on the continuous downlink time domain unit starting from the second location on the first resource; the base station is in the continuous downlink time domain starting from the second location on the first resource.
  • the data channel is repeatedly transmitted on the unit.
  • the number of times the base station repeatedly transmits the data channel is greater than or equal to the number of repetitions (that is, the number of times the base station repeatedly transmits the control channel).
  • the first resource includes all downlink time domain units in an MCOT, and the MCOT is represented as MCOT1 in FIG. 11 and 8 when MCOT1 is included.
  • the domain unit (the number of the eight time domain units is 0 to 7 respectively).
  • the eight time domain units include seven consecutive downlink time domain units (downstream time domain unit 0 to downlink time domain unit 6 in FIG. 11) and one uplink time domain unit (upstream time domain unit 7 in FIG. 11). It is assumed that the second location is the downlink time domain unit 0 in the eight time domain units.
  • the base station may be in a continuous downlink time domain unit starting from the downlink time domain unit 0 in MCOT1 (in FIG.
  • the base station can be in the continuous downlink time domain unit starting from the downlink time domain unit 0 in MCOT1 (in FIG. 11, there are seven consecutive downlink time domain units, that is, the downlink time domain unit 0 to the downlink)
  • the data channel is repeatedly transmitted on the domain unit 6).
  • the terminal since the DCI of the base station repeatedly transmitting the data channel (for example, information such as the location and the number of times the base station repeatedly transmits the data channel of the data channel) is usually carried in the control channel, the terminal cannot determine the data channel before detecting the correct control channel.
  • the initial downlink time domain unit so that the number of times the base station repeatedly transmits the data channel is greater than or equal to the number of times the base station repeatedly transmits the control channel (that is, the number of repetitions or the actual number of repetitions described above).
  • the terminal detects the control channel twice, and when the terminal detects the control channel in the downlink time domain unit 0 and the downlink time domain unit 1, the terminal is in the downlink time domain.
  • Unit 0 and downlink time domain unit 1 also detect the data channel.
  • the terminal detects the control channel in the downlink time domain unit 2 and the downlink time domain unit 3, it indicates that the terminal does not detect the control channel in the downlink time domain unit 0 and the downlink time domain unit 1, and the terminal can discard the downlink time domain unit 0 and The detection result of the downlink time domain unit 1, that is, the terminal re-detects the control channel and the data channel in the downlink time domain unit 2 and the downlink time domain unit 3.
  • the terminal may determine whether to continue in the subsequent downlink time domain unit according to the DCI carried by the control channel (ie, the downlink after the two downlink time domain units in time).
  • Time domain unit detects the data channel. Since the terminal cannot determine the downlink time domain unit at which the control channel ends before detecting the correct control channel, the terminal may buffer the already received data channel and combine and receive the data channel after detecting the correct control channel; or The terminal may also not buffer the already received data channel, but instead receive the data channel that has been received through the in-phase quadrature (IQ) symbol.
  • IQ in-phase quadrature
  • the base station repeatedly sends the control channel on the continuous downlink time domain unit starting from the second location on the first resource; the base station is in the n+kth downlink time domain unit from the first resource.
  • the data channel is repeatedly transmitted on the starting continuous downlink time domain unit.
  • the control channel includes second indication information, where the second indication information is used to indicate that the base station repeatedly transmits the data channel from the n+th downlink time domain unit on the first resource, where the nth downlink time domain unit is the last base station.
  • the downlink time domain unit of the control channel is transmitted once, and n and k are both positive integers.
  • the first resource includes all downlink time domain units in an MCOT, and the MCOT is represented as MCOT1 in FIG. 12, and the MCOT1 includes eight time domain units (eight times). The number of the domain unit is 0 to 7).
  • the eight time domain units include seven consecutive downlink time domain units (downstream time domain unit 0 to downlink time domain unit 6 in FIG. 12) and one uplink time domain unit (upstream time domain unit 7 in FIG. 12).
  • the base station may be in a continuous downlink time domain unit starting from the downlink time domain unit 0 in MCOT1 (in FIG. 12, three consecutive downlink time domain units, that is, downlink time domain unit 0 to downlink time domain unit 2) Repeatedly transmitting the control channel; and the base station is in the continuous downlink time domain unit starting from the downlink time domain unit 4 in MCOT1 (in FIG. 12,
  • the control channel may include second indication information for indicating which downlink time domain unit the base station specifically transmits the data channel, so that the terminal is detecting
  • the data channel may be continuously detected from the downlink time domain unit indicated by the second indication information according to the second indication information.
  • the base station repeatedly sends the control channel on the continuous downlink time domain unit starting from the second location on the first resource; the base station starts from the first downlink time domain unit on the first resource.
  • the data channel is repeatedly transmitted on the continuous downlink time domain unit.
  • the first downlink time domain unit on the first resource is the next downlink time domain unit of the downlink time domain unit where the second location on the first resource is located.
  • the first resource includes all downlink time domain units in an MCOT
  • the MCOT is represented as MCOT1 in FIG. 13
  • the MCOT 1 includes eight time domain units (8 times).
  • the number of the domain unit is 0 to 7).
  • the eight time domain units include seven consecutive downlink time domain units (downstream time domain unit 0 to downlink time domain unit 6 in FIG. 13) and one uplink time domain unit (upstream time domain unit 7 in FIG. 13).
  • the second location is the downlink time domain unit 0 in the eight time domain units
  • the first downlink time domain unit is the next downlink time domain unit of the downlink time domain unit 0 in the MCOT1, that is, the downlink time domain unit 1.
  • the base station may be in a continuous downlink time domain unit starting from the downlink time domain unit 0 in MCOT1 (in FIG. 13 , five consecutive downlink time domain units, that is, downlink time domain unit 0 to downlink time domain unit 4) Repeatedly transmitting the control channel; and the base station is in a continuous downlink time domain unit starting from the downlink time domain unit 1 in the MCOT1 (in FIG. 13, there are six consecutive downlink time domain units, that is, the downlink time domain unit 1 to the downlink time domain) The data channel is repeatedly transmitted on unit 6).
  • the downlink time domain unit where the second location is located may not be able to transmit the data channel, so that the base station may be in the downlink time domain unit from the second location.
  • the control channel is repeatedly transmitted on the initial continuous downlink time domain unit, and the data channel is repeatedly transmitted on the continuous downlink time domain unit starting from the next downlink time domain unit of the downlink time domain unit where the second location is located.
  • the data channel may be a downlink data channel.
  • the downlink data channel may be a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • the method for transmitting a control channel provided by the embodiment of the present invention may also be applied to a process in which a terminal randomly accesses a base station.
  • the control channel provided by the embodiment of the present invention may be an EPDCCH.
  • the first resource that can be used for repeatedly transmitting the control channel on the unlicensed spectrum determined by the foregoing base station may be a common search space of the EPDCCH (that is, the base station may repeatedly send the EPDCCH resource on the unlicensed spectrum).
  • the EPDCCH may be used to carry a first DCI, where the first DCI includes a DCI of a first message sent by a coverage enhancement terminal that the base station provides to the base station, and the base station enhances the coverage to the coverage At least one of the DCIs of the second message sent by the terminal.
  • the first message may be message 2 (msg2)
  • the second message may be message 4 (msg4)
  • the first message may be message 4
  • the second message may be message 2.
  • the specifics may be determined according to the actual use requirements, and are not limited in the embodiment of the present invention.
  • the DCI of the message 2 and the DCI of the message 4 sent by the base station to the terminal may be carried in the EPDCCH.
  • the terminal is a non-coverage enhanced terminal, the DCI of the message 2 and the DCI of the message 4 transmitted by the base station to the terminal may be carried in the PDCCH.
  • the method for transmitting a control channel (bearing DCI in the control channel) provided by the embodiment of the present invention may be compatible with the coverage enhanced terminal and the non-coverage enhanced terminal.
  • the base station and the terminal may determine whether the terminal is a coverage enhanced terminal or a non-coverage enhanced terminal by using a preamble index, so the base station may define a common search space of the EPDCCH and send a message sent by the base station to the coverage enhanced terminal.
  • the DCI of the DCI and the DCI of the message 4 are carried in the common search space of the EPDCCH.
  • the coverage enhancement of the EPDCCH the DCI of the message 2 and the DCI of the message 4 sent by the base station to the terminal during the process of the terminal randomly accessing the base station can be implemented. Coverage enhancement.
  • FIG. 14 is a schematic diagram of a method for a terminal to randomly access a base station according to an embodiment of the present invention.
  • the terminal first sends a message 1 to the base station (msg1, for example, the message 1 is a random access request message, and the random access request message may carry a random access sequence); then the base station sends a message 2 to the terminal again (for example, the message 2 is The random access response message, because the terminal is an overlay enhanced terminal, the base station can repeatedly send the message to the terminal 2); then the terminal sends a message 3 to the base station (msg3, for example, message 3 is an RRC connection setup request message);
  • the message 4 is sent to the terminal (for example, the message 4 is an RRC connection setup message, and since the terminal is an coverage enhanced terminal, the base station can repeatedly send the message 4 to the terminal).
  • the common search space of the EPDCCH may be defined by a base station by using a SIB-MF1 (System Information Block (SIB) defined by the MulteFire Alliance or an SI-MF (MF Alliance Definition).
  • SIB System Information Block
  • SI-MF MF Alliance Definition
  • the system information (SI) is configured for the terminal.
  • the common search space of the EPDCCH may include a maximum number of sets (max EPDCCH-Set) of the common search space of the EPDCCH, and a physical resource allocation (the physical resource allocation includes the number of physical resource block (PRB) pairs and the PRB pair.
  • the PRB pair refers to the PRB of the same frequency domain position in two time slots of one downlink time domain unit, the scrambling sequenceInt (SS), and the first position of the DCI of the message 2 repeatedly transmitted by the base station to the terminal.
  • the maximum number of repetitions, and the first position and the maximum number of repetitions of the DCI of the message 4 repeatedly transmitted by the base station to the terminal For a detailed description of the first location and the maximum number of repetitions of the DCI of the message 2 repeatedly transmitted by the base station to the terminal, and the first location and the maximum number of repetitions of the DCI of the message 4 repeatedly transmitted by the base station to the terminal, refer to the foregoing method embodiment.
  • a description of the first location and the maximum number of repetitions of the control channel is repeatedly sent to the terminal by the base station, and details are not described herein again.
  • the base station repeats to the terminal during the process of the terminal randomly accessing the base station.
  • Message 2 and message 4 are sent, and correspondingly, the terminal can repeatedly receive the message 2 and the message 4 sent by the base station. Therefore, it can be ensured that the terminal can correctly receive the message 2 and the message 4, thereby realizing the coverage enhancement of the message 2 and the message 4.
  • the terminal when the base station repeatedly sends the message 2 and the message 4 to the terminal, in order to enable the terminal to correctly receive the message 2 and the message 4 repeatedly transmitted by the base station, the terminal may also adaptively adjust the duration of the terminal receiving the message 2 ( Hereinafter, the duration of the reception window in which the terminal receives the message 2) and the duration of the message 4 (hereinafter referred to as the duration of the reception window in which the terminal receives the message 4).
  • the base station when the base station sends the message 2 to the terminal, the duration of the receiving window of the message 2 sent by the terminal to the terminal is N, and the total length of time that the base station repeatedly sends the message 2 to the terminal is M (specifically, the base station may be The total duration of the data channel of the DCI and the message 2 of the message 2 repeatedly transmitted to the terminal, including the duration of the base station not competing for the resource and the duration of the uplink time domain unit, where M is greater than or equal to the maximum DCI of the base station repeatedly transmitting the message 2 to the terminal.
  • the number of repetitions when the base station repeatedly sends the message 2 to the terminal, the duration of the reception window of the terminal receiving the message 2 (ie, the length of time that the terminal starts transmitting the message 1 to the message 2 sent by the base station) may be as shown in FIG.
  • the N is adjusted to N+M.
  • the terminal may send the message 3, and the scheduling timing between the message 2 and the message 3 does not change.
  • the scheduling timing between message 2 and message 3 is n+L, where n is the number of the time domain unit of the message 2 sent by the terminal to the base station, and L is the terminal transmitting the message to the base station.
  • n is the number of the time domain unit that the terminal last received the message 2 in the embodiment of the present invention.
  • the terminal may wait to receive the message 4 sent by the base station. Specifically, the terminal may start the contention resolution timer (that is, the receiving window of the terminal receiving the message 4 is used to record the duration of the message 4 sent by the terminal from the time of sending the message 3 to the receiving of the base station, thereby determining whether the terminal randomly accesses the base station successfully) Waiting to receive the DCI of message 4 and the data channel of message 4 sent by the base station. As shown in FIG.
  • the duration of the contention resolution timer is P
  • the total length of the base station repeatedly transmitting the message 4 to the terminal is Z (specifically, the message that the base station repeatedly transmits to the terminal) 4
  • the total duration of the data channel of the DCI and the message 4 including the duration of the base station not competing for the resource and the duration of the uplink time domain unit, where Z is greater than or equal to the maximum number of repetitions of the DCI of the base station repeatedly transmitting the message 4 to the terminal)
  • the duration of the contention resolution timer ie, the duration of the receiving window in which the terminal receives the message 4) can be adjusted to P+Z by P as shown in FIG.
  • the method for transmitting a control channel is applicable to a process in which a terminal accesses a base station in a random manner, and is not only compatible with a coverage enhanced terminal and a non-coverage enhanced terminal, but also implements an EPDCCH coverage enhancement to implement a base station transmitting to the terminal.
  • the DCI of the first message and the coverage of the DCI of the second message are enhanced.
  • each network element such as a base station, a terminal, etc.
  • each network element includes hardware structures and/or software modules corresponding to each function.
  • Those skilled in the art should be very It will be readily appreciated that the embodiments of the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiments of the present invention may divide a function module into a base station, a terminal, and the like according to the foregoing method.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 18 is a schematic diagram showing a possible structure of a base station involved in the foregoing embodiment.
  • the base station may include: a determining unit 50 and a sending unit. 51.
  • the determining unit 50 may be configured to support the base station to perform S101 and S102 in the foregoing method embodiment; the sending unit 51 may be configured to support the base station to perform S103 and S201 in the foregoing method embodiment.
  • the base station may further include an adjusting unit 52.
  • the adjusting unit 52 can be configured to support the base station to perform S111 in the foregoing method embodiment. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 19 shows a possible structural diagram of the base station involved in the above embodiment.
  • the base station may include a processing module 60 and a communication module 61.
  • the processing module 60 can be used to control and control the actions of the base station.
  • the processing module 60 can be used to support the base station to perform S101, S102, and S111 in the foregoing method embodiments, and/or other processes for the techniques described herein.
  • the communication module 61 can be used to support communication between the base station and other network entities.
  • the communication module 61 can be used to support the base station to perform S103 and S201 in the foregoing method embodiments.
  • the base station may further include a storage module 62, configured to store program codes and data of the base station.
  • the processing module 60 may be a processor or a controller (for example, the BBU 30 shown in FIG. 3 above), and may be, for example, a central processing unit (CPU), a general-purpose processor, or a digital signal processor ( Digital signal processor (DSP), application-specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof . It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the embodiments of the invention.
  • the above processors may also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 61 may be a transceiver, a transceiver circuit, or a communication interface or the like (for example, may be the RRU 31 as shown in FIG. 3 described above).
  • the storage module 62 can be a memory.
  • the processing module 60 is a processor
  • the communication module 61 is a transceiver
  • the storage module 62 is a memory
  • the processor, the transceiver, and the memory can be connected by a bus.
  • the bus can be a peripheral component interconnect A peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like.
  • FIG. 20 is a schematic diagram showing a possible structure of a terminal involved in the foregoing embodiment.
  • the terminal may include: a determining unit 70 and a receiving unit. 71.
  • the determining unit 70 can be used to support the terminal to perform S104, S105 and S203 in the above method embodiment; the receiving unit 71 can be used to support the terminal to execute S106, S107 and S202 in the above method embodiment. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 21 shows a possible structural diagram of the terminal involved in the above embodiment.
  • the terminal may include: a processing module 80 and a communication module 81.
  • the processing module 80 can be used to control and manage the actions of the terminal.
  • the processing module 80 can be used to support the terminal to execute S104, S105, and S203 in the foregoing method embodiments, and/or other processes for the techniques described herein.
  • the communication module 81 can be used to support communication between the terminal and other network entities.
  • the communication module 81 can be used to support the terminal to execute S106, S107, and S202 in the foregoing method embodiments.
  • the terminal may further include a storage module 82 for storing program codes and data of the terminal.
  • the processing module 80 may be a processor or a controller (for example, the processor 40 shown in FIG. 4 above), and may be, for example, a CPU, a general-purpose processor, a DSP, an ASIC, an FPGA, or other programmable logic device, a transistor. Logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the embodiments of the invention.
  • the above processors may also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 81 may be a transceiver, a transceiver circuit or a communication interface or the like (for example, may be the RF circuit 41 as shown in FIG. 4 described above).
  • the storage module 82 may be a memory (for example, may be the memory 43 as shown in FIG. 4 described above).
  • the processing module 80 is a processor
  • the communication module 81 is a transceiver
  • the storage module 82 is a memory
  • the processor, the transceiver, and the memory can be connected by a bus.
  • the bus can be a PCI bus or an EISA bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on a computer, the processes or functions in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be wired from a website site, computer, server or data center (for example, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) to another website, computer, server or data center.
  • the computer readable storage medium can be any available medium that the computer can access or include one Or a data storage device such as a server, data center, or the like that is integrated with available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a magnetic disk, a magnetic tape), an optical medium (for example, a digital video disc (DVD)), or a semiconductor medium (such as a solid state drives (SSD)).
  • a magnetic medium for example, a floppy disk, a magnetic disk, a magnetic tape
  • an optical medium for example, a digital video disc (DVD)
  • a semiconductor medium such as a solid state drives (SSD)
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a flash memory, a mobile hard disk, a read only memory, a random access memory, a magnetic disk, or an optical disk, and the like, which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种传输控制信道的方法、装置及系统,涉及通信领域,能够在非授权频谱上实现控制信道的覆盖增强。该方法包括:基站确定非授权频谱上的第一资源;并且基站确定用于指示第一位置和重复次数的第一信息,该第一位置为该第一资源在时域上的起始位置,该重复次数为基站重复发送控制信道的次数;以及基站从第二位置开始,按照该重复次数重复发送该控制信道,该第二位置为该第一资源上的一个时域位置;其中,该第二位置与该第一位置相同,或者该第二位置在时间上位于该第一位置之后。

Description

一种传输控制信道的方法、装置及系统 技术领域
本发明实施例涉及通信领域,尤其涉及一种传输控制信道的方法、装置及系统。
背景技术
随着长期演进(long term evolution,LTE)系统的广泛应用,一些LTE系统的应用场景,如工厂、港口以及仓库等应用场景都需要实现覆盖增强(即增强LTE系统中基站覆盖范围内的信号强度)。
以窄带物联网(narrowband internet of thing,NB-IOT)中的覆盖增强为例,NB-IOT中采用时间上重复发送窄带物理下行控制信道(narrowband physical downlink control channel,NPDCCH)的方式实现覆盖增强。具体的,基站通过高层信令为终端配置基站发送NPDCCH的最大重复次数、发送周期和每个发送周期中基站可能发送NPDCCH的起始子帧号。由于每个终端实际覆盖增强的需求不同,因此基站可能并不会按照该最大重复次数发送NPDCCH,即基站可能根据终端实际覆盖增强的需求确定实际发送NPDCCH的重复次数(记为R),并按照R向终端重复发送R次NPDCCH。如此终端在正确接收基站重复发送的NPDCCH之前可能无法确定R,从而终端可以根据基站配置的最大重复次数确定基站可能发送NPDCCH的重复次数的取值,并按照这些可能的重复次数依次盲检,以完成NPDCCH的正确接收。
然而,上述方法通常只能应用于授权频谱,对于非授权频谱,由于LTE系统可能与其他系统(例如无线保真(wireless fidelity,Wi-Fi)系统)采用时分复用的方式共享资源,且每个系统占用资源的时间无法预测,因此基站采用上述方式为终端配置的发送NPDCCH的发送周期和可能发送NPDCCH的起始子帧号可能并不准确,从而可能导致终端无法正确接收NPDCCH,进而无法实现NPDCCH的覆盖增强。
发明内容
本申请提供一种传输控制信道的方法、装置及系统,能够在非授权频谱上实现控制信道的覆盖增强。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种传输控制信道的方法,该方法包括:基站确定非授权频谱上的第一资源;并且该基站确定用于指示第一位置(该第一资源在时域上的起始位置)和重复次数(基站重复发送控制信道的次数)的第一信息;以及该基站从第二位置(该第一资源上的一个时域位置,该第二位置与该第一位置相同,或者该第二位置在时间上位于该第一位置之后)开始,按照该重复次数重复发送该控制信道。
本申请提供的传输控制信道的方法,由于基站可在确定用于其在非授权 频谱上重复发送控制信道的第一资源(即基站竞争到发送控制信道的资源)之后,再确定该第一资源在时域上的起始位置(即上述第一位置)和其重复发送控制信道的次数(即上述重复次数),然后基站再从第一资源上的第二位置开始,按照该重复次数重复发送控制信道,因此能够保证基站可以在竞争到非授权频谱上的第一资源之后再在该第一资源上重复发送控制信道,并且基站在非授权频谱上重复发送控制信道的该第一资源是确定的,从而当由基站提供服务的终端在该第一资源上检测控制信道时,能够保证该终端可以正确接收基站重复发送的控制信道,进而能够在非授权频谱上实现控制信道的覆盖增强。
在第一方面的第一种可能的实现方式中,本申请提供的传输控制信道的方法还可以包括:基站将第一资源当前采用的第一上下行时域单元配比调整为第二上下行时域单元配比。其中,该第一资源采用该第一上下行时域单元配比时,该第一资源中的可用下行时域单元的数量小于上述重复次数(即基站重复发送控制信道的次数);该第一资源采用该第二上下行时域单元配比时,该第一资源中的可用下行时域单元的数量大于或者等于该重复次数。
本申请中,基站通过将第一资源当前采用的第一上下行时域单元配比调整为上述第二上下行时域单元配比,可以增加第一资源上的可用下行时域单元的数量,从而能够在第一资源上按照重复次数发送控制信道,进而实现控制信道的覆盖增强。
在第一方面的第二种可能的实现方式中,本申请提供的传输控制信道的方法还可以包括:基站向终端发送公共控制无线网络临时标识(common control radio network temporary identifier,CC-RNTI)加扰的公共下行控制信息(downlink control information,DCI)。该公共DCI中包括用于指示基站在非授权频谱上发送该公共DCI的下行时域单元是否为上述第一位置的第一指示信息。
本申请中,基站可以通过CC-RNTI加扰的公共DCI向终端发送第一指示信息,以用于向终端指示非授权频谱上的当前下行时域单元是否为第一位置,如此可以使得终端比较准确地确定第一位置,从而保证终端能够正确接收基站重复发送的控制信道,进而能够在非授权频谱上实现控制信道的覆盖增强。
第二方面,提供一种传输控制信道的方法,该方法包括:终端确定非授权频谱上的当前下行时域单元为第一位置(第一位置为第一资源在时域上的起始位置,该第一资源为基站确定的非授权频谱上用于重复发送控制信道的资源);并且在该终端确定该当前下行时域单元为该第一位置的情况下,该终端根据最大重复次数(基站重复发送该控制信道的最大次数),确定检测次数;以及该终端从该第一位置开始,在该第一资源上按照该检测次数合并接收该控制信道。
在第二方面的第一种可能的实现方式中,上述终端确定非授权频谱上的当前下行时域单元为第一位置的方法可以包括:终端接收基站发送的CC-RNTI加扰的公共DCI(该公共DCI中包括用于指示上述当前下行时域单 元是否为上述第一位置的第一指示信息);并且在该公共DCI中的第一指示信息指示该当前下行时域单元为该第一位置的情况下,终端根据该第一指示信息,确定该当前下行时域单元为该第一位置。
本申请中,终端可以通过盲检的方式确定非授权频谱上的当前下行时域单元是否为第一位置,也可以通过基站向终端指示的方式确定非授权频谱上的当前下行时域单元是否为第一位置。
例如,如果终端通过盲检的方式确定非授权频谱上的当前下行时域单元是否为第一位置,那么终端可以通过检测当前下行时域单元上是否传输导频信号确定当前下行时域单元是否为第一位置。
再例如,如果终端通过基站向终端指示的方式确定非授权频谱上的当前下行时域单元是否为第一位置,那么终端可以通过检测当前下行时域单元上传输的第一指示信息的内容,确定当前下行时域单元是否为第一位置。
又例如,如果终端通过基站向终端指示的方式确定非授权频谱上的当前下行时域单元是否为第一位置,那么终端可以通过检测当前下行时域单元上是否传输有可以用于指示当前下行时域单元为第一位置的第一指示信息,确定当前下行时域单元是否为第一位置。
第三方面,提供一种基站,该基站可以包括确定单元和发送单元。该确定单元可以用于确定非授权频谱上的第一资源和用于指示第一位置(该第一资源在时域上的起始位置)和重复次数(该发送单元重复发送控制信道的次数)的第一信息;该发送单元可以用于从第二位置(该第一资源上的一个时域位置,该第二位置与该第一位置相同,或者该第二位置在时间上位于该第一位置之后)开始,按照该确定单元确定的该重复次数重复发送该控制信道。
在第三方面的第一种可能的实现方式中,该基站还可以包括调整单元。该调整单元可以用于将上述确定单元确定的第一资源当前采用的第一上下行时域单元配比调整为第二上下行时域单元配比。其中,该第一资源采用该第一上下行时域单元配比时,该第一资源中的可用下行时域单元的数量小于上述重复次数(即上述发送单元重复发送控制信道的次数);该第一资源采用该第二上下行时域单元配比时,该第一资源中的可用下行时域单元的数量大于或者等于该重复次数。
在第三方面的第二种可能的实现方式中,上述发送单元还可以用于向终端发送CC-RNTI加扰的公共DCI。该公共DCI中包括用于指示该发送单元在非授权频谱上发送该公共DCI的下行时域单元是否为上述确定单元确定的第一位置的第一指示信息。
第四方面,提供一种终端,该终端可以包括确定单元和接收单元。该确定单元可以用于确定非授权频谱上的当前下行时域单元为第一位置(第一位置为第一资源在时域上的起始位置,该第一资源为基站确定的非授权频谱上用于重复发送控制信道的资源);并在确定该当前下行时域单元为该第一位置的情况下,根据最大重复次数(基站重复发送控制信道的最大次数),确定检测次数;该接收单元可以用于从该确定单元确定的该第一位置开始,在该第 一资源上按照该确定单元确定的该检测次数合并接收该控制信道。
在第四方面的第一种可能的实现方式中,上述确定单元具体可以用于接收基站发送的CC-RNTI加扰的公共DCI(该公共DCI中包括用于指示上述当前下行时域单元是否为上述第一位置的第一指示信息);并在该公共DCI中的第一指示信息指示该当前下行时域单元为该第一位置的情况下,根据该第一指示信息,确定该当前下行时域单元为该第一位置。
第二方面或其任意一种可能的实现方式、第三方面或其任意一种可能的实现方式以及第四方面或其任意一种可能的实现方式的相关内容和技术效果的描述可以参见上述对第一方面或其任意一种可能的实现方式的相关内容和技术效果的相关描述,此处不再赘述。
在上述第一方面和第三方面中,上述第一位置可以为预定义的。上述第二位置也可以为预定义的。
在上述第一方面和第三方面中,上述控制信道和数据信道可以按照下述三种可能的实现方式(第一种可能的实现方式、第二种可能的实现方式和第三种可能的实现方式)中的任意一种实现方式重复发送。
在第一种可能的实现方式中,上述控制信道在从上述第二位置开始的连续下行时域单元上重复发送,数据信道在从该第二位置开始的连续下行时域单元上重复发送。其中,重复发送数据信道的次数大于或者等于上述重复次数(即基站重复发送该控制信道的次数)。
在第二种可能的实现方式中,上述控制信道在从上述第二位置开始的连续下行时域单元上重复发送,数据信道在从第n+k个下行时域单元开始的连续下行时域单元上重复发送。其中,该控制信道中包括用于指示从第n+k个下行时域单元开始重复发送该数据信道的第二指示信息,第n个下行时域单元为最后一次发送该控制信道的下行时域单元,n和k均为正整数。
在第三种可能的实现方式中,上述控制信道在从上述第二位置开始的连续下行时域单元上重复发送,数据信道在从第一下行时域单元开始的连续下行时域单元上重复发送。其中,该第一下行时域单元为该第二位置所在下行时域单元的下一个下行时域单元。
通过上述三种可能的实现方式,基站可以重复发送控制信道和数据信道,如此,可以保证终端正确接收控制信道和数据信道,从而实现控制信道和数据信道的覆盖增强。
在上述第一方面和第三方面中,上述第一信息还可以用于指示上述第一资源的持续时长。基站具体可以从第二位置开始,在该第一资源的持续时长内,按照上述重复次数重复发送控制信道。
在上述第一方面至第四方面中,上述第一资源可以为下述(1)、(2)和(3)三种中的任意一种。
(1)第一资源包括非授权频谱上一个最大连续占用时长(max continuous occupied time,MCOT)中的所有可用下行时域单元。
(2)第一资源包括非授权频谱上一个检测周期中的所有可用下行时域单 元。
(3)第一资源包括非授权频谱上一个检测周期中从第一个完整的MCOT开始的所有可用下行时域单元,该完整的MCOT的起始点为MCOT的起始边界。
在上述第一方面至第四方面中,上述第一位置可以为下述(4)、(5)和(6)三种中的任意一种。
(4)第一位置为非授权频谱上一个MCOT中的第一个可用下行时域单元。
(5)第一位置为非授权频谱上一个检测周期中的第一个可用下行时域单元
(6)第一位置为非授权频谱上一个检测周期中第一个完整的MCOT中的第一个可用下行时域单元。
本申请中,上述检测周期可以是基站为终端配置的。例如,基站可以通过高层信令为终端配置检测周期。该高层信令可以为无线资源控制(radio resource control,RRC)信令。
在上述第一方面至第四方面中,上述第一资源可以为时域上连续的时频资源;或者,上述第一资源可以为时域上离散的时频资源。
在上述第一方面至第四方面中,上述控制信道可以为下行控制信道。下行控制信道可以包括物理下行控制信道(physical downlink control channel,PDCCH)和增强的物理下行控制信道(enhanced physical downlink control channel,EPDCCH)中的至少一项。
在上述第一方面至第四方面中,上述控制信道为EPDCCH,上述第一资源为该EPDCCH的公共搜索空间。该EPDCCH承载第一DCI。该第一DCI包括基站向该基站提供服务的覆盖增强终端发送的第一消息的DCI和该基站向该覆盖增强终端发送的第二消息的DCI中的至少一项。
本申请中,由于基站和终端可以通过前导码索引确定终端为覆盖增强终端还是非覆盖增强终端,所以基站可以通过定义上述的EPDCCH的公共搜索空间,并将基站向覆盖增强终端发送的第一消息的DCI和第二消息的DCI承载在EPDCCH的公共搜索空间,如此,通过实现EPDCCH的覆盖增强,可以实现终端随机接入基站的过程中基站向终端发送的第一消息的DCI和第二消息的DCI的覆盖增强。
在上述第一方面至第四方面中,当基站向终端重复发送第一消息和第二消息时,还可以调整终端接收第一消息的接收窗口的时长和终端接收第二消息的接收窗口的时长。从而使得终端能够正确地接收基站重复发送的第一消息和第二消息。
在上述第一方面至第四方面中,上述下行时域单元可以为下行子帧,也可以为下行时隙,还可以为其他任意与下行子帧或者下行时隙含义相同但名称不同的时域单元。上述可用下行时域单元可以为基站能够重复发送控制信道的下行时域单元。该可用下行时域单元可以为完整的下行时域单元,也可 以为不完整的下行时域单元。
在上述第二方面和第四方面中,上述第一位置可以为预定义的或者为基站为终端配置的。上述最大重复次数可以为预定义的或者为基站为终端配置的。
第五方面,提供一种基站,该基站可以包括处理器和与该处理器耦合连接的存储器。该存储器可以用于存储计算机指令。当该基站运行时,该处理器执行该存储器存储的该计算机指令,以使得该基站执行上述第一方面或其任意一种可能的实现方式中的传输控制信道的方法。
第六方面,提供一种计算机可读存储介质,该计算机可读存储介质可以包括计算机指令。当该计算机指令在基站上运行时,使得该基站执行上述第一方面或其任意一种可能的实现方式中的传输控制信道的方法。
第七方面,提供一种包括计算机指令的计算机程序产品,当该计算机程序产品在基站上运行时,使得该基站执行上述第一方面或其任意一种可能的实现方式中的传输控制信道的方法。
第八方面,提供一种终端,该终端可以包括处理器和与该处理器耦合连接的存储器。该存储器可以用于存储计算机指令。当该终端运行时,该处理器执行该存储器存储的该计算机指令,以使得该终端执行上述第二方面或其任意一种可能的实现方式中的传输控制信道的方法。
第九方面,提供一种计算机可读存储介质,该计算机可读存储介质可以包括计算机指令。当该计算机指令在终端上运行时,使得该终端执行上述第二方面或其任意一种可能的实现方式中的传输控制信道的方法。
第十方面,提供一种包括计算机指令的计算机程序产品,当该计算机程序产品在终端上运行时,使得该终端执行上述第二方面或其任意一种可能的实现方式中的传输控制信道的方法。
第十一方面,提供一种无线通信系统,该无线通信系统可以包括上述第三方面或其任意一种可能的实现方式中的基站,以及上述第四方面或其任意一种可能的实现方式中的终端。
或者,该无线通信系统可以包括上述第五方面中的基站,以及上述第八方面中的终端。
第五方面至第十一方面的相关内容和技术效果的描述可以参见上述对第一方面或其任意一种可能的实现方式的相关内容和技术效果的相关描述,此处不再赘述。
附图说明
图1为本发明实施例提供的LTE系统和Wi-Fi系统复用非授权频谱的示意图;
图2为本发明实施例提供的LTE系统的架构示意图;
图3为本发明实施例提供的基站的硬件示意图;
图4为本发明实施例提供的手机的硬件示意图;
图5为本发明实施例提供的传输控制信道的方法示意图一;
图6为本发明实施例提供的第一资源和第一位置的示意图一;
图7为本发明实施例提供的第一资源和第一位置的示意图二;
图8为本发明实施例提供的第一资源和第一位置的示意图三;
图9为本发明实施例提供的终端检测控制信道的示意图;
图10为本发明实施例提供的传输控制信道的方法示意图二;
图11为本发明实施例提供的重复发送控制信道和重复发送数据信道的示意图一;
图12为本发明实施例提供的重复发送控制信道和重复发送数据信道的示意图二;
图13为本发明实施例提供的重复发送控制信道和重复发送数据信道的示意图三;
图14为本发明实施例提供的终端随机接入基站的方法示意图;
图15为本发明实施例提供的终端接收消息2的示意图;
图16为本发明实施例提供的终端发送消息3的示意图;
图17为本发明实施例提供的终端接收消息4的示意图;
图18为本发明实施例提供的基站的结构示意图一;
图19为本发明实施例提供的基站的结构示意图二;
图20为本发明实施例提供的终端的结构示意图一;
图21为本发明实施例提供的终端的结构示意图二。
具体实施方式
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本发明实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一位置和第二位置等是用于区别不同的位置,而不是用于描述位置的特定顺序。
在本发明实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本发明实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本发明实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系统。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行详细地描述。
通常,在LTE系统的一些应用场景,如工厂、港口以及仓库等应用场景都需要实现覆盖增强(即增强LTE系统中基站覆盖范围内的信号强度)。以NB-IOT中的覆盖增强为例,可以采用时间上重复发送NPDCCH的方式实现覆盖增强。然而由于NB-IOT中的覆盖增强只能应用于授权频谱,而对于非 授权频谱,可能会导致终端无法正确接收NPDCCH,进而无法实现NPDCCH的覆盖增强。
为了解决上述问题,本发明实施例提供一种传输控制信道的方法、装置及系统。通过基站确定非授权频谱上的第一资源;并且确定用于指示第一资源在时域上的起始位置(例如第一位置)和重复次数(即基站重复发送控制信道的次数)的第一信息;以及从第一资源上的一个时域位置(例如第二位置)开始,按照该重复次数重复发送控制信道,可以实现控制信道的覆盖增强。其中,第二位置与第一位置相同(即第二位置与第一位置为第一资源上相同的时域位置),或者第二位置在时间上位于第一位置之后(即第二位置与第一位置为第一资源上不同的时域位置)。通过该方案,由于基站可在确定用于其在非授权频谱上重复发送控制信道的第一资源(即基站竞争到发送控制信道的资源)之后,再确定该第一资源在时域上的起始位置(即上述第一位置)和其重复发送控制信道的次数(即上述重复次数),然后基站再从第一资源上的第二位置开始,按照该重复次数重复发送控制信道,因此能够保证基站可以在竞争到非授权频谱上的第一资源之后再在该第一资源上重复发送控制信道,并且基站在非授权频谱上重复发送控制信道的该第一资源是确定的,从而当由基站提供服务的终端在该第一资源上检测控制信道时,能够保证该终端可以正确接收基站重复发送的控制信道,进而能够在非授权频谱上实现控制信道的覆盖增强。
本发明实施例提供的传输控制信道的方法、装置及系统可以应用于在非授权频谱上传输控制信道的场景中。通信技术中,可以允许不同制式的系统复用非授权频谱。如图1所示,为本发明实施例提供的一种LTE系统和Wi-Fi系统复用非授权频谱的示意图。在图1中,LTE系统中的基站10和Wi-Fi系统中的接入点(access point,AP)11可以通过先听后说(listen before talk,LBT)方式复用非授权频谱。即基站10和AP 11在发送数据之前,可以先监听非授权频谱的资源是否空闲,并在基站10或AP 11监听到非授权频谱的资源空闲时再发送数据。也就是说,基站10和AP 11中,在同一时刻只能有一个设备竞争到非授权频谱上的空闲资源,并且在竞争到该空闲资源后最多可以发送有限时长(该有限时长可以为一个传输机会(transmission opportunity,TXOP)的时长或者一个MCOT,一个TXOP的时长或一个MCOT可以为10毫秒,也可以为8毫秒)。
本发明实施例提供的发送控制信道的方法及装置可以应用于无线通信系统中。该无线通信系统可以为LTE系统、LTE演进(LTE-Advanced,LTE-A)系统或者采用第五代移动通信技术的系统(以下简称为5G系统)等。以本发明实施例提供的无线通信系统为LTE系统为例,如图2所示,为本发明实施例提供的一种LTE系统的架构示意图。在图2中,LTE系统包括基站20和终端21。当基站20和终端21之间被遮挡物22(比如一些应用场景中的集装箱或者立柱)遮挡时,基站20和终端21之间传输的信号可能衰落比较严重,如此可能会导致基站20发送的数据,终端21无法正确接收。在这种情况下, 可以通过覆盖增强增加终端21接收数据的正确性。例如,以控制信道为例,可以通过实现控制信道的覆盖增强(例如基站重复发送多次控制信道)增加终端21接收控制信道的正确性。
本发明实施例提供的基站可以为通常所用的基站,也可以为演进型基站(evolved node base station,eNB),还可以为5G系统中的接入网设备等具有接入功能的设备。示例性的,本发明实施例以基站为通常所用的基站为例,介绍基站的硬件结构。下面结合图3具体介绍本发明实施例提供的基站的各个构成部件。如图3所示,本发明实施例提供的基站可以包括:基带处理单元(building base band unit,BBU)30、射频拉远单元(radio remote unit,RRU)31和天线32。BBU 30和RRU 31之间可以用光纤连接;RRU 31再通过同轴电缆及功分器(或者耦合器)等连接到天线32。一般情况下,一个BBU 30可以连接多个RRU 31。
BBU 30可以用于完成Uu接口(即基站与终端之间的接口)的基带处理功能(例如编码、复用、调制和扩频等)、无线网络控制器(radio network controller,RNC)和基站之间的逻辑接口的接口功能、信令处理、本地和远程操作维护功能,以及基站系统的工作状态监控和告警信息上报功能等。
RRU 31可以包括4个模块:数字中频模块、收发信机模块、功放模块和滤波模块。数字中频模块用于完成光传输的调制解调、数字上下变频、数模转换等;收发信机模块用于完成中频信号到射频信号的变换;功放模块用于完成射频信号的放大;滤波模块用于完成放大后的射频信号的滤波,并将滤波后的射频信号再通过天线发射出去。
本发明实施例提供的终端可以为手机、平板电脑、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal Digital Assistant,PDA)等。
示例性的,本发明实施例以终端为手机为例,介绍终端的硬件结构。下面结合图4具体介绍本发明实施例提供的手机的各个构成部件。如图4所示,本发明实施例提供的手机包括:处理器40、射频(radio frequency,RF)电路41、电源42、存储器43、输入单元44、显示单元45以及音频电路46等部件。本领域技术人员可以理解,图4中示出的手机的结构并不构成对手机的限定,其可以包括比如图4所示的部件更多或更少的部件,或者可以组合如图4所示的部件中的某些部件,或者可以与如图4所示的部件布置不同。
处理器40是手机的控制中心,利用各种接口和线路连接整个手机的各个部分。通过运行或执行存储在存储器43内的软件程序和/或模块,以及调用存储在存储器43内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器40可包括一个或多个处理单元。可选的,处理器40可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等;调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以为与处理器40单独存在的处理器。
RF电路41可用于在收发信息或通话过程中,接收和发送信号。例如, 将基站的下行信息接收后,给处理器40处理;另外,将上行的数据发送给基站。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(low noise amplifier,LNA)以及双工器等。此外,手机还可以通过RF电路41与网络中的其他设备实现无线通信。无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(global system of mobile communication,GSM)、通用分组无线服务(general packet radio service,GPRS)、码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、LTE、电子邮件以及短消息服务(short messaging service,SMS)等。
电源42可用于给手机的各个部件供电,电源42可以为电池。可选的,电源可以通过电源管理系统与处理器40逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
存储器43可用于存储软件程序和/或模块,处理器40通过运行存储在存储器43的软件程序和/或模块,从而执行手机的各种功能应用以及数据处理。存储器43可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、图像数据、电话本等)等。此外,存储器43可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件或其他易失性固态存储器件。
输入单元44可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元44可包括触摸屏441以及其他输入设备442。触摸屏441,也称为触摸面板,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触摸屏441上或在触摸屏441附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触摸屏441可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器40,并能接收处理器40发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触摸屏441。其他输入设备442可以包括但不限于物理键盘、功能键(比如音量控制按键、电源开关按键等)、轨迹球、鼠标以及操作杆等中的一种或多种。
显示单元45可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元45可包括显示面板451。可选的,可以采用液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light-emitting diode,OLED)等形式来配置显示面板451。进一步的,触摸屏441可覆盖显示面板451,当触摸屏441检测到在其上或附近的触摸操作后,传送给处理器40以确定触摸事件的类型,随后处理器40根据触摸事件的类型在显示面板 451上提供相应的视觉输出。虽然在图4中,触摸屏441与显示面板451是作为两个独立的部件来实现手机的输入和输出功能,但是在某些实施例中,可以将触摸屏441与显示面板451集成而实现手机的输入和输出功能。
音频电路46、扬声器461和麦克风462,用于提供用户与手机之间的音频接口。一方面,音频电路46可将接收到的音频数据转换后的电信号,传输到扬声器461,由扬声器461转换为声音信号输出。另一方面,麦克风462将收集的声音信号转换为电信号,由音频电路46接收后转换为音频数据,再将音频数据通过处理器40输出至RF电路41以发送给比如另一手机,或者将音频数据通过处理器40输出至存储器43以便进一步处理。
可选的,如图4所示的手机还可以包括各种传感器。例如陀螺仪传感器、湿度计传感器、红外线传感器、磁力计传感器等,在此不再赘述。
可选的,如图4所示的手机还可以包括Wi-Fi模块、蓝牙模块等,在此不再赘述。
结合上述应用场景以及无线通信系统,本发明实施例提供一种传输控制信道的方法,如图5所示,该方法可以包括S101-S107:
S101、基站确定非授权频谱上的第一资源。
本发明实施例中,由于非授权频谱通常由多个系统(可以是相同制式或者不同制式,以不同制式的LTE系统和Wi-Fi系统为例)复用,因此在多个系统中的设备(例如,LTE系统中的基站和Wi-Fi系统中的AP)发送数据之前,这些设备可以先竞争非授权频谱的资源,在竞争到非授权频谱的资源之后再在该非授权频谱的资源上发送数据。以LTE系统中的基站为例,基站在使用非授权频谱发送数据时,通常使用LBT方式,即基站在发送数据之前,可以先监听非授权频谱的资源是否空闲,并在基站监听到非授权频谱的资源空闲时再发送数据。其中,基站监听到非授权频谱的资源空闲可以理解为:基站竞争到非授权频谱的资源或者基站抢占到非授权频谱的资源。基站在竞争到非授权频谱的资源之后,基站最多可以使用有限时长非授权频谱的资源,例如基站最多可以发送有限时长的数据。该有限时长可以为一个TXOP或者一个MCOT。
需要说明的是,为了更好地理解本发明实施例的实现方式,本发明实施例中均以基站向终端发送的数据为控制信道为例示例性的说明。
可选的,本发明实施例中,控制信道可以为下行控制信道。下行控制信道可以包括PDCCH和EPDCCH中的至少一项。即下行控制信道可以为PDCCH,也可以为EPDCCH,还可以PDCCH和EPDCCH。具体的可以根据实际使用需求确定,本发明实施例不作限定。
本发明实施例中,基站在监听非授权频谱的资源空闲之后,基站可以确定非授权频谱上的第一资源。该第一资源可以用于基站重复发送控制信道。由于实际应用中,基站确定非授权频谱上的第一资源之后,基站可能不会立即在该第一资源上发送控制信道,例如基站可能延迟一段时间后再发送控制信道,因此基站确定的非授权频谱上的第一资源为基站可以发送控制信道的 资源。
可选的,本发明实施例中,上述第一资源可以为时域上连续的时频资源;也可以为时域上离散的时频资源。具体的可以根据实际使用需求确定,本发明实施例不作限定。由于本发明实施例中的第一资源为非授权频谱上的时频资源,因此本发明实施例都是以时域资源为例说明第一资源的,对于频域资源本发明实施例不作限定。
S102、基站确定第一信息,第一信息用于指示第一位置和重复次数。
其中,上述第一位置可以为基站确定的非授权频谱上的第一资源的起始位置,即该第一位置可以理解为基站在该第一资源上可能开始发送控制信道的位置。上述重复次数可以为基站重复发送控制信道的次数,即该重复次数可以理解为基站在该第一资源上实际发送控制信道的重复次数(以下可简称为实际重复次数,即本发明实施例中,重复次数和实际重复次数含义相同)。
可选的,本发明实施例中,上述第一位置可以为在基站中预定义的。
可选的,本发明实施例中,通常基站可以根据控制信道增强覆盖的程度确定基站发送控制信道的最大重复次数,然后基站再根据该最大重复次数,确定上述实际重复次数。
示例性的,假设基站确定的最大重复次数为Rmax次,(其中,Rmax≤MCOT),实际重复次数为R次,(R为正整数),则R的取值可以为Rmax、Rmax/2、Rmax/4或Rmax/8。例如,Rmax=8次,则R=1次、2次、4次或8次。
基站确定基站实际发送控制信道的重复次数,即上述实际重复次数之后,基站可以根据该实际重复次数,确定基站在非授权频谱上的第一资源上可能开始发送控制信道的位置,即上述第一位置。其中,在最大重复次数相同的情况下,实际重复次数不同,基站确定的第一位置可能也不相同。
举例来说,假设上述第一资源包括一个MCOT,该MCOT包括8个下行时域单元,该8个下行时域单元的编号分别为0~7;Rmax=8次;R=1次、2次、4次或8次;则不同的实际重复次数对应的第一位置可以如下述表1所示:
表1
Figure PCTCN2017072679-appb-000001
如表1所示,如果R=4次,那么第一位置可能为该MCOT中的第0个下行时域单元或者第4个下行时域单元。这种情况下,一种可能的实现方式是,基站可以从该MCOT中的第0个下行时域单元开始,在第0个下行时域单元~第3个下行时域单元中的每个下行时域单元上分别发送1次控制信道,即基站可以在该MCOT中的第0个下行时域单元~第3个下行时域单元上重复发送4次控制信道。另一种可能的实现方式是,基站可以从该MCOT中的第4个 下行时域单元开始,在第4个下行时域单元~第7个下行时域单元中的每个下行时域单元上分别发送1次控制信道,即基站可以在该MCOT中的第4个下行时域单元~第7个下行时域单元上重复发送4次控制信道。
可以理解,对于R=1次、2次或8次的情况,与R=4次的情况类似,具体可以参见上述表1所示的实际重复次数和第一位置的对应关系,此处不再一一赘述。
可选的,本发明实施例中,上述下行时域单元可以为下行子帧,也可以为下行时隙,还可以为其他任意与下行子帧或者下行时隙含义相同但名称不同的时域单元,本发明实施例不作限定。
需要说明的是,本发明实施例中,上述最大重复次数(例如Rmax)和实际重复次数(例如R)均是示例性的列举,具体的,基站发送控制信道的最大重复次数和实际重复次数可以根据实际使用需求确定,本发明实施例不作限定。
可选的,本发明实施例中,上述第一资源可以为下述(1)、(2)和(3)中的一种:
(1)第一资源包括非授权频谱上一个MCOT中的所有可用下行时域单元。
如图6所示,本发明实施例中,以非授权频谱上的一个MCOT为例,该MCOT在图6中表示为MCOT1,MCOT1涉及8个时域单元(8个时域单元的编号分别为0~7)。该8个时域单元可以全部位于MCOT1中或者部分位于MCOT1中(如图6所示,该8个时域单元部分位于MCOT1中),该8个时域单元包括6个下行时域单元和2个上行时域单元)。该第一资源可以包括MCOT1中的所有可用下行时域单元(图6中为6个下行时域单元)。具体的,该第一资源可以包括MCOT1中的下行时域单元0(在图6中,下行时域单元0为MCOT1中的一个不完整的下行时域单元,即下行时域单元0部分位于MCOT1中)、MCOT1中的下行时域单元1、MCOT1中的下行时域单元2、MCOT1中的下行时域单元3、MCOT1中的下行时域单元4和MCOT1中的下行时域单元5。
上述图6中以D表示下行时域单元,以U表示上行时域单元。相应的,下述实施例中的各个附图中涉及到的D均表示下行时域单元,涉及到的U均表示上行时域单元。
本发明实施例中,一个MCOT为基站一次竞争到的非授权频谱的资源的最大可用时长。
可选的,本发明实施例中,上述可用下行时域单元可以理解为基站可以发送控制信道的任意下行时域单元。该可用下行时域单元可以为完整的下行时域单元(例如,如图6所示的MCOT1中的下行时域单元1),也可以为不完整的下行时域单元(例如,如图6所示的MCOT1中的下行时域单元0),具体的可以根据实际使用需求确定,本发明实施例不作限定。其中,完整的下行时域单元的起始点为下行时域单元的起始边界。例如,以下行时域单元 为子帧为例,完整的下行时域单元的起始点为子帧的起始边界。
可以理解,如图6所示的第一资源为时域上连续的时频资源。
(2)第一资源包括非授权频谱上一个检测周期中的所有可用下行时域单元。
如图7所示,本发明实施例中,以非授权频谱上的一个检测周期为例,该检测周期在图7中表示为T,T涉及2个MCOT(图7中分别表示为MCOT1和MCOT2)。每个MCOT涉及8个时域单元(8个时域单元的编号分别为0~7)。MCOT1涉及的8个时域单元中有6个时域单元全部位于检测周期中或者部分位于检测周期中(如图7所示,该6个时域单元部分位于检测周期中),该6个时域单元包括4个下行时域单元和2个上行时域单元。MCOT2涉及的8个时域单元全部位于检测周期中(如图7所示),该8个时域单元包括5个下行时域单元和3个上行时域单元。该第一资源可以包括T中的所有可用下行时域单元(图7中为9个下行时域单元)。具体的,该第一资源可以包括MCOT1中的下行时域单元2(在图7中,下行时域单元2为T内的一个不完整的下行时域单元,即下行时域单元2部分位于T内)、MCOT1中的下行时域单元3、MCOT1中的下行时域单元4、MCOT1中的下行时域单元5、MCOT2中的下行时域单元0、MCOT2中的下行时域单元1、MCOT2中的下行时域单元2、MCOT2中的下行时域单元3和MCOT2中的下行时域单元4。
本发明实施例中,一个检测周期中的一个MCOT为基站一次竞争到的非授权频谱的资源的最大可用时长。
可以理解,如图7所示的第一资源为时域上离散的时频资源。
(3)第一资源包括非授权频谱上一个检测周期中从第一个完整的MCOT开始的所有可用下行时域单元。完整的MCOT的起始点为MCOT的起始边界。
如图8所示,本发明实施例中,以非授权频谱上的一个检测周期为例,该检测周期在图8中表示为T,T涉及2个MCOT(图8中分别表示为MCOT1和MCOT2),MCOT1为T中一个不完整的MCOT,MCOT2为T中一个完整的MCOT。每个MCOT涉及8个时域单元(8个时域单元的编号分别为0~7)。MCOT1涉及的8个时域单元中有6个时域单元全部位于检测周期中或者部分位于检测周期中(如图8所示,该6个时域单元部分位于检测周期中),该6个时域单元包括4个下行时域单元和2个上行时域单元。MCOT2涉及的8个时域单元全部位于检测周期中(如图8所示),该8个时域单元包括5个下行时域单元和3个上行时域单元。该第一资源可以包括T中从第一个完整的MCOT开始的所有可用下行时域单元(图8中为5个下行时域单元)。具体的,该第一资源可以包括MCOT2中的下行时域单元0、MCOT2中的下行时域单元1、MCOT2中的下行时域单元2、MCOT2中的下行时域单元3和MCOT2中的下行时域单元4。
本发明实施例中,一个检测周期中的一个MCOT为基站一次竞争到的非授权频谱的资源的最大可用时长。
可以理解,如图8所示的第一资源为时域上连续的时频资源。当然,上 述图8是以第一资源为时域上连续的时频资源为例示例性说明的。上述(3)中的第一资源也可以为时域上离散的时频资源。示例性的,如果上述(3)中,一个检测周期包括3个MCOT(例如分别为MCOT1、MCOT2和MCOT3),且MCOT1为检测周期中一个不完整的MCOT,MCOT2和MCOT3均为检测周期中两个完整的MCOT,这种情况下,第一资源可以包括检测周期中的MCOT2中所有的可用下行时域单元和MCOT3中所有的可用下行时域单元,即这种情况下第一资源为时域上离散的时频资源。
可选的,本发明实施例中,上述(2)和(3)中的检测周期可以是基站为终端配置的。例如,基站可以通过高层信令为终端配置检测周期。该高层信令可以为RRC信令。
需要说明的是,本发明实施例中,上述图7和图8均是以一个检测周期包括一个MCOT中的所有时域单元和另一个MCOT中的部分时域单元为例示例性说明的。具体的,一个检测周期还可能包括一个MCOT中的所有时域单元,或者包括一个MCOT中的部分时域单元,或者包括更多数量(例如3个或者3个以上)的MCOT中的所有或者部分时域单元,或者不包括一个MCOT中的任意时域单元。其中,当一个检测周期不包括一个MCOT中的任意时域单元时,基站在该检测周期内就不会发送控制信道,那么终端在该检测周期内也就接收不到基站发送的控制信道。
相应的,对应于上述(1)、(2)和(3),上述第一位置可以为下述(4)、(5)和(6)中的一种。具体的,如果第一资源为上述(1),那么第一位置可以为下述(4);如果第一资源为上述(2),那么第一位置可以为下述(5);如果第一资源为上述(3),那么第一位置可以为下述(6)。
(4)第一位置为非授权频谱上一个MCOT中的第一个可用下行时域单元。
如图6所示,本发明实施例中,基于如图6所示的第一资源,上述第一位置可以为如图6所示的MCOT1中的第一个可用下行时域单元,即为如图6所示的MCOT1中的下行时域单元0。
图6是以MCOT1中的第一个可用下行时域单元为不完整的下行时域单元为例示意的,实际应用中,MCOT1中的第一个可用下行时域单元也可以为一个完整的下行时域单元,具体可以根据实际使用需求确定,本发明实施例不作限定。
(5)第一位置为非授权频谱上一个检测周期中的第一个可用下行时域单元。
如图7所示,本发明实施例中,基于如图7所示的第一资源,上述第一位置可以为如图7所示的MCOT1中的第一个可用下行时域单元,即为如图7所示的MCOT1中的下行时域单元2。
图7是以MCOT1中的第一个可用下行时域单元为不完整的下行时域单元为例示意的,实际应用中,MCOT1中的第一个可用下行时域单元也可以为一个完整的下行时域单元,具体可以根据实际使用需求确定,本发明实施例 不作限定。
(6)起始时域资源为非授权频谱上一个检测周期中第一个完整的MCOT中的第一个可用下行时域单元。
如图8所示,本发明实施例中,基于如图8所示的第一资源,上述第一位置可以为如图8所示的MCOT2(即检测周期T中第一个完整的MCOT)中的第一个可用下行时域单元,即为如图8所示的MCOT2中的下行时域单元0。
本发明实施例中,为了实现控制信道的覆盖增强,基站可以在其确定的第一资源上重复发送多次控制信道,这样,终端可以在该第一资源上重复接收多次控制信道,如此可以在一定程度上提高终端接收控制信道的正确性,从而实现控制信道的覆盖增强。
本发明实施例中,在基站确定非授权频谱的资源空闲的情况下,即可认为基站竞争到非授权频谱的资源,此时基站可以在非授权频谱上确定用于重复发送控制信道的第一资源,然后基站可以在该第一资源上重复发送控制信道。具体的,基站在第一资源上开始重复发送控制信道的位置将在下述S 103中详细地说明。
S103、基站从第二位置开始,按照该重复次数重复发送控制信道。
其中,上述第二位置为基站在非授权频谱上确定的第一资源上的一个时域位置。该第二位置可以与第一位置相同,即该第二位置与该第一位置可以为该第一资源上相同的时域位置。或者该第二位置可以在时间上位于该第一位置之后,即该第二位置与该第一位置可以为该第一资源上不同的两个时域位置,并且第二位置为上述第一资源上第一位置延迟一段时间后的一个时域位置。具体的,第二位置和第一位置的关系可以根据基站的实际使用需求确定,本发明实施例不作限定。
基站确定基站重复发送控制信道的第一位置和重复次数之后,由于基站可能并不从该第一位置开始重复发送控制信道,因此基站可以基于该第一位置,例如,基站可以从与第一位置相同或者在时间上位于第一位置之后的第二位置开始,按照该重复次数重复发送控制信道。
可选的,本发明实施例中,上述第一信息还可以用于指示第一资源的持续时长。具体的,上述S103可以包括:基站可以从第二位置开始,在该第一资源的持续时长内,按照该重复次数重复发送控制信道。
可选的,本发明实施例中,上述第二位置可以为预定义的。
S104、终端确定非授权频谱上的当前下行时域单元是否为第一位置。
可选的,本发明实施例中,终端可以通过盲检的方式确定非授权频谱上的当前下行时域单元是否为第一位置,也可以通过基站向终端指示的方式确定非授权频谱上的当前下行时域单元是否为第一位置。具体的可以根据实际使用需求确定,本发明实施例不作限定。
一种可能的实现方式中,如果终端通过盲检的方式确定非授权频谱上的当前下行时域单元是否为第一位置,那么终端可以通过检测当前下行时域单元上是否传输导频信号确定当前下行时域单元是否为第一位置。
示例性的,对于上述(4)中的第一位置,如果终端确定非授权频谱上的当前下行时域单元满足下述A和B,那么终端可以确定当前下行时域单元为上述(4)中的第一位置。对于上述(5)中的第一位置,如果终端确定非授权频谱上的当前下行时域单元满足下述A、B和C,那么终端可以确定当前下行时域单元为上述(5)中的第一位置。对于上述(6)中的第一位置,如果终端确定非授权频谱上的当前下行时域单元满足下述A、B、C和D,那么终端可以确定当前下行时域单元为上述(6)中的第一位置。
A、在非授权频谱上的当前下行时域单元之前的几个连续的下行时域单元上都没有检测到导频信号,并且在当前下行时域单元上检测到导频信号;
B、终端确定基站在当前下行时域单元能够重复发送控制信道(例如终端确定当前下行时域单元中的时间足够基站重复发送控制信道);
C、当前下行时域单元位于检测周期中;
D、当前下行时域单元为MCOT中的第一个下行时域单元。
另一种可能的实现方式中,如果终端通过基站向终端指示的方式确定非授权频谱上的当前下行时域单元是否为第一位置,那么终端可以通过检测当前下行时域单元上传输的第一指示信息的内容,确定当前下行时域单元是否为第一位置。假设第一指示信息的内容可以表示为“当前下行时域单元是否为MCOT中的第一个下行时域单元”,那么,该第一指示信息可以用于指示(具体可以为直接指示或者间接指示)当前下行时域单元是否为第一位置。对于上述(4)中的第一位置,第一指示信息可以直接指示当前下行时域单元是否为第一位置;对于上述(5)中的第一位置和上述(6)中的第一位置,第一指示信息可以间接指示当前下行时域单元是否为第一位置。
示例性的,对于上述(4)中的第一位置,如果终端确定非授权频谱上的当前下行时域单元满足下述E,那么终端可以确定当前下行时域单元为上述(4)中的第一位置;如果终端确定非授权频谱上的当前下行时域单元满足下述F,那么终端可以确定当前下行时域单元不是上述(4)中的第一位置。对于上述(5)中的第一位置,如果终端确定非授权频谱上的当前下行时域单元满足下述E和G,那么终端可以确定当前下行时域单元为上述(5)中的第一位置;如果终端确定非授权频谱上的当前下行时域单元满足下述F,那么终端可以进一步结合上述一种可能的实现方式确定当前下行时域单元是否为上述(5)中的第一位置,例如,如果终端确定非授权频谱上的当前下行时域单元满足下述F,并且满足上述A、B和C,那么终端可以确定当前下行时域单元为上述(5)中的第一位置;如果终端确定非授权频谱上的当前下行时域单元满足下述F,并且不满足上述A、B和C中的至少一项,那么终端可以确定当前下行时域单元不是上述(5)中的第一位置。对于上述(6)中的第一位置,如果终端确定非授权频谱上的当前下行时域单元满足下述E、G和H,那么终端可以确定当前下行时域单元为上述(6)中的第一位置;如果终端确定非授权频谱上的当前下行时域单元满足下述F,那么终端可以确定当前下行时域单元不是上述(6)中的第一位置。
E、当前下行时域单元上传输的第一指示信息的内容为“当前下行时域单元为MCOT中的第一个下行时域单元”;
F、当前下行时域单元上传输的第一指示信息的内容为“当前下行时域单元不是MCOT中的第一个下行时域单元”;
G、当前下行时域单元位于检测周期中;
H、当前下行时域单元为MCOT中的第一个下行时域单元。
可选的,本发明实施例中,可以通过设置第一指示信息所在比特位的数值用于表示第一指示信息的内容。例如,可以设置第一指示信息所在比特位的数值为“1”用于表示“当前下行时域单元为MCOT中的第一个下行时域单元”,可以设置第一指示信息所在比特位的数值为“0”用于表示“当前下行时域单元不是MCOT中的第一个下行时域单元”。或者,可以设置第一指示信息所在比特位的数值为“0”用于表示“当前下行时域单元为MCOT中的第一个下行时域单元”,可以设置第一指示信息所在比特位的数值为“1”用于表示“当前下行时域单元不是MCOT中的第一个下行时域单元”。
又一种可能的实现方式中,如果终端通过基站向终端指示的方式确定非授权频谱上的当前下行时域单元是否为第一位置,那么终端可以通过检测当前下行时域单元上是否传输有可以用于指示当前下行时域单元为第一位置的第一指示信息,确定当前下行时域单元是否为第一位置。对于第一指示信息的描述具体可以参见上述另一种可能的实现方式中对第一指示信息的相关描述,此处不再赘述。
示例性的,如果终端确定非授权频谱上的当前下行时域单元满足下述I,则终端可以结合上述另一种可能的实现方式确定当前下行时域单元是否为上述(4)、(5)和(6)中的第一位置。如果终端确定非授权频谱上的当前下行时域单元满足下述J,那么终端可以进一步结合上述一种可能的实现方式确定当前下行时域单元是否为上述(4)、(5)和(6)中的第一位置。具体的可以参见上述一种可能的实现方式和另一种可能的实现方式中的相关描述,此处不再赘述。
I、当前下行时域单元上传输有第一指示信息;
J、当前下行时域单元上没有传输第一指示信息。
可选的,本发明实施例中,以上述另一种可选的实现方式为例,终端在使用上述另一种可选的实现方式确定当前下行时域时域单元是否为第一位置时,具体可以通过下述S201-S203实现。
S201、基站向终端发送CC-RNTI加扰的公共DCI。
其中,上述CC-RNTI加扰的公共DCI中包括第一指示信息。该第一指示信息可以用于直接或者间接指示基站在非授权频谱上发送该CC-RNTI加扰的公共DCI的下行时域单元是否为上述第一位置。具体的,第一指示信息直接或者间接指示基站在非授权频谱上发送该CC-RNTI加扰的公共DCI的下行时域单元是否为上述第一位置的方法,可以参见上述另一种可能的实现方式中对第一指示信息直接指示当前下行时域单元是否为上述(4)中的第一位置, 以及第一指示信息间接指示当前下行时域单元是否为上述(5)中的第一位置和上述(6)中的第一位置的相关描述,此处不再赘述。
S202、终端接收基站发送的CC-RNTI加扰的公共DCI。
可选的,本发明实施例中,基站可以通过公共物理下行控制信道(common physical downlink control channel,CPDCCH)向终端发送CC-RNTI加扰的公共DCI。相应的,终端可以通过CPDCCH接收基站发送的该CC-RNTI加扰的公共DCI。
本发明实施例中,终端接收基站发送的CC-RNTI加扰的公共DCI的下行时域单元即为当前下行时域单元。
S203、在CC-RNTI加扰的公共DCI中的第一指示信息指示当前下行时域单元为第一位置的情况下,终端根据该第一指示信息,确定当前下行时域单元为第一位置。
本发明实施例中,如果终端确定其接收到的CC-RNTI加扰的公共DCI中的第一指示信息可以用于指示当前下行时域单元为上述的第一位置,那么终端可以确定当前下行时域单元为第一位置。例如,以第一指示信息所在比特位的数值为“1”表示“当前下行时域单元为MCOT中的第一个下行时域单元”为例,如果终端确定CC-RNTI加扰的公共DCI中的第一指示信息所在比特位的数值为“1”,那么终端可以确定其接收基站发送的CC-RNTI加扰的公共DCI的下行时域单元(即当前下行时域单元)为MCOT中的第一个下行时域单元,从而终端可以再结合上述另一种可能的实现方式确定当前下行时域单元为上述的第一位置。
本发明实施例中,在终端确定非授权频谱上的当前下行时域单元为第一位置的情况下,终端才开始检测基站重复发送的控制信道,并在检测到基站重复发送的控制信道之后,合并接收这些控制信道。具体的,如果终端确定非授权频谱上的当前下行时域单元为第一位置,那么终端可以执行下述S105-S106。如果终端确定非授权频谱上的当前下行时域单元不是第一位置,那么终端可以执行下述S107。
对于终端来说,上述第一位置可以为终端在非授权频谱上检测控制信道的起始位置(即上述基站确定的可以用于重复发送控制信道的第一资源的起始位置;对于终端来说,该第一资源也可以称为搜索空间,该第一资源表示终端可以检测控制信道的资源范围)。对于第一位置的具体描述,可以参见上述S102中对第一位置的相关描述,此处不再赘述。
可选的,本发明实施例中,上述第一位置可以为在终端中预定义的或者为基站为终端配置的。具体的可以根据实际使用需求确定,本发明实施例不作限定。
S105、终端根据最大重复次数,确定检测次数。
其中,上述最大重复次数为基站重复发送控制信道的最大次数。对于该最大重复次数的具体描述,可以参见上述S102中对最大重复次数的相关描述,此处不再赘述。
上述检测次数为终端检测控制信道的次数。本发明实施例中,由于基站在竞争到非授权频谱的资源后,基站可以在其确定的非授权频谱上的第一资源上的任意时域位置重复发送控制信道,因此对于终端来说,终端可能并不知道基站重复发送控制信道的具体资源,从而终端可以在基站可能重复发送控制信道的资源上依次检测基站发送的控制信道,并在检测到基站发送的控制信道之后再合并接收检测到的控制信道。
可选的,本发明实施例中,上述最大重复次数可以为在终端中预定义的或者为基站为终端配置的。具体的可以根据实际使用需求确定,本发明实施例不作限定。
终端确定基站发送控制信道的最大重复次数之后,终端可以根据该最大重复次数,确定终端检测控制信道的次数,即上述检测次数。
可以理解,本发明实施例中,上述检测次数可以为基站实际重复发送控制信道的次数的所有可能的取值。例如,假设上述最大重复次数(即基站重复发送控制信道的最大次数)为Rmax次,则该检测次数可以为Rmax次、Rmax/2次、Rmax/4次或Rmax/8次。以Rmax=8次为例,该检测次数可能的取值为8次、4次、2次或1次。终端在检测控制信道时,可以依次按照8次、4次、2次和1次检测。
下面以图9为例,示例性的说明终端依次按照8次、4次、2次和1次检测控制信道的过程。如图9所示,候选集表示终端可以检测控制信道的次数,例如图9中的候选集0~7表示终端可以检测8次控制信道,候选集8~11表示终端可以检测4次控制信道,候选集12~13表示终端可以检测2次控制信道,候选集14表示终端可以检测1次控制信道。第一资源表示终端可以检测控制信道的资源范围。示例性的,首先,终端可以按照8次检测控制信道,例如,终端可以在8个下行时域单元中的每个下行时域单元中检测1次控制信道;其次,终端可以按照4次检测控制信道,例如,终端可以在8个下行时域单元中的每2个下行时域单元中检测1次控制信道;再次,终端可以按照2次检测控制信道,例如,终端可以在8个下行时域单元中的每4个下行时域单元中检测1次控制信道;最后,终端可以按照1次检测控制信道,例如,终端可以在8个下行时域单元中检测1次控制信道。
需要说明的是,实际应用中,即使检测次数的取值有多个,终端也不一定按照检测次数的所有取值检测控制信道。例如,以检测次数为上述8次、4次、2次和1次为例,终端在按照上述如图9所示的过程检测控制信道时,如果终端按照8次检测控制信道后,已经正确接收控制信道,那么终端可能就无需再继续按照4次、2次和1次检测控制信道。也就是说,终端在按照其确定的检测次数检测控制信道时,可以依次按照每个检测次数检测控制信道,直至终端正确接收控制信道即可结束检测过程。
需要说明的是,本发明实施例可以不限定S103和S104-S105的执行顺序,即本发明实施例可以先执行S103,后执行S104-S105;也可以先执行S104-S105,后执行S103;还可以同时执行S103和S104-S105。
S106、终端从第一位置开始,在第一资源上按照该检测次数合并接收控制信道。
终端确定终端可以在非授权频谱上检测控制信道的起始位置(即上述第一位置)和检测次数之后,终端可以从该第一位置开始,在该第一资源上按照该检测次数检测基站重复发送的控制信道,并在检测到基站重复发送的控制信道后合并接收这些控制信道。
S107、终端继续接收或者等待接收基站发送的数据。
本发明实施例中,如果终端确定当前下行时域单元不是上述第一位置,那么终端可以继续接收或者等待接收基站发送的数据。该数据可以为CC-RNTI加扰的公共DCI。
本发明实施例提供的传输控制信道的方法,由于基站可在确定用于其在非授权频谱上重复发送控制信道的第一资源(即基站竞争到发送控制信道的资源)之后,再确定该第一资源在时域上的起始位置(即上述第一位置)和其重复发送控制信道的次数(即上述重复次数),然后基站再从第一资源上的第二位置开始,按照该重复次数重复发送控制信道,因此能够保证基站可以在竞争到非授权频谱上的第一资源之后再在该第一资源上重复发送控制信道,并且基站在非授权频谱上重复发送控制信道的该第一资源是确定的,从而当由基站提供服务的终端在该第一资源上检测控制信道时,能够保证该终端可以正确接收基站重复发送的控制信道,进而能够在非授权频谱上实现控制信道的覆盖增强。
本发明实施例中,基站确定非授权频谱上的第一资源,即基站执行上述S101之后,如果基站确定第一资源上的可用下行时域单元的数量小于基站重复发送控制信道的次数,那么为了能够实现控制信道的覆盖增强,基站可以通过调整第一资源当前采用的第一上下行时域单元配比来增加第一资源上的可用下行时域单元的数量。
可选的,结合图5,如图10所示,本发明实施例提供的传输控制信道的方法还可以包括:
S108、基站将第一资源当前采用的第一上下行时域单元配比调整为第二上下行时域单元配比。
其中,上述第一资源采用第一上下行时域单元配比时,该第一资源中的可用下行时域单元的数量小于上述重复次数。该第一资源采用第二上下行时域单元配比时,该第一资源中的可用下行时域单元的数量大于或者等于该重复次数。
上述重复次数为基站实际重复发送控制信道的次数。对于重复次数的具体描述可以参见上述S102中对重复次数的相关描述,此处不再赘述。
本发明实施例中,以时域单元为子帧为例,上述第一上下行时域单元配比可以为第一上下行子帧配比,第二上下行时域单元配比可以为第二上下行子帧配比。如表2所示,为本发明实施例提供的一种时分双工(time division duplexing,TDD)系统中上下行子帧配比的示例。
表2
Figure PCTCN2017072679-appb-000002
如表2所示,“D”表示某个子帧为下行子帧,下行子帧可以用于传输下行数据(例如下行控制信道);“U”表示某个子帧为上行子帧,上行子帧可以用于传输上行数据(例如上行控制信道);“S”表示某个子帧为特殊子帧,特殊子帧可以用于传输导频信号。
示例性的,假设上述重复次数为4次,第一资源当前采用的第一上下行时域单元配比为如表2所示的上下行子帧配比0,由于如表2所示的上下行子帧配比0中的下行子帧的数量为2,即第一资源采用第一上下行时域单元配比时,第一资源中的可用下行时域单元的数量小于重复次数,那么基站可以将第一资源当前采用的第一上下行时域单元配比调整为第二上下行时域单元配比,例如将第一资源当前采用的如表2所示的上下行子帧配比0调整为如表2所示的上下行子帧配比1。
本发明实施例中,基站通过将第一资源当前采用的第一上下行时域单元配比调整为上述第二上下行时域单元配比,可以增加第一资源上的可用下行时域单元的数量,从而能够在第一资源上按照重复次数发送控制信道,进而实现控制信道的覆盖增强。
需要说明的是,本发明实施例中,实际应用中,上述S108可以在上述S103之前执行。
可选的,本发明实施例中,为了保证终端正确接收基站发送的数据信道,实现数据信道的覆盖增强,基站也可以在其确定的第一资源上或者时间上位于该第一资源之后的时频资源上重复发送数据信道。当基站重复发送控制信道和数据信道时,可以通过下述三种可能的实现方式(第一种可能的实现方式、第二种可能的实现方式和第三种可能的实现方式)中的任意一种实现方式重复发送控制信道和数据信道。
第一种可能的实现方式中,基站在从第一资源上的第二位置开始的连续下行时域单元上重复发送控制信道;基站在从第一资源上的第二位置开始的连续下行时域单元上重复发送数据信道。其中,基站重复发送数据信道的次数大于或者等于上述重复次数(即基站重复发送控制信道的次数)。
如图11所示,本发明实施例中,以第一资源包括一个MCOT中的所有下行时域单元为例,该MCOT在图11中表示为MCOT1,MCOT1包括8个时 域单元(8个时域单元的编号分别为0~7)。该8个时域单元包括7个连续的下行时域单元(图11中为下行时域单元0~下行时域单元6)和1个上行时域单元(图11中为上行时域单元7),假设第二位置为该8个时域单元中的下行时域单元0。这种情况下,基站可以在从MCOT1中的下行时域单元0开始的连续下行时域单元(图11中为连续的6个下行时域单元,即下行时域单元0~下行时域单元5)上重复发送控制信道;并且基站可以在从MCOT1中的下行时域单元0开始的连续下行时域单元(图11中为连续的7个下行时域单元,即下行时域单元0~下行时域单元6)上重复发送数据信道。在这种情况下,由于基站重复发送数据信道的DCI(例如基站重复发送数据信道的资源位置和次数等信息)通常承载在控制信道中,因此终端在检测出正确的控制信道之前无法确定数据信道起始的下行时域单元,从而要求基站重复发送数据信道的次数大于或者等于基站重复发送控制信道的次数(即上述的重复次数或者实际重复次数)。
在上述第一种可能的实现方式中,如图11所示,假设终端按照2次检测控制信道,当终端在下行时域单元0和下行时域单元1检测控制信道时,终端在下行时域单元0和下行时域单元1也检测数据信道。当终端在下行时域单元2和下行时域单元3检测控制信道时,表示终端在下行时域单元0和下行时域单元1没有检测到控制信道,此时终端可以丢弃下行时域单元0和下行时域单元1的检测结果,即终端重新在下行时域单元2和下行时域单元3检测控制信道和数据信道。一旦终端在某两个下行时域单元检测到控制信道,那么终端可以根据控制信道承载的DCI确定是否继续在后面的下行时域单元(即在时间上位于该两个下行时域单元之后的下行时域单元)检测数据信道。由于终端在检测出正确的控制信道之前也无法确定控制信道结束的下行时域单元,因此终端可以缓存已经接收到的数据信道,并在检测出正确的控制信道之后再合并接收这些数据信道;或者终端也可以不缓存已经接收到的数据信道,而是一边接收一边通过同相正交(in-phase quadrature,IQ)符号合并已经接收到的数据信道。
第二种可能的实现方式中,基站在从第一资源上的第二位置开始的连续下行时域单元上重复发送控制信道;基站在从第一资源上的第n+k个下行时域单元开始的连续下行时域单元上重复发送数据信道。其中,控制信道中包括第二指示信息,第二指示信息用于指示基站从第一资源上的第n+k个下行时域单元开始重复发送数据信道,第n个下行时域单元为基站最后一次发送控制信道的下行时域单元,n和k均为正整数。
如图12所示,本发明实施例中,以第一资源包括一个MCOT中的所有下行时域单元为例,该MCOT在图12中表示为MCOT1,MCOT1包括8个时域单元(8个时域单元的编号分别为0~7)。该8个时域单元包括7个连续的下行时域单元(图12中为下行时域单元0~下行时域单元6)和1个上行时域单元(图12中为上行时域单元7),假设第二位置为该8个时域单元中的下行时域单元0,第n个下行时域单元为下行时域单元2,k=2(即第n+k个下行 时域单元为下行时域单元4)。这种情况下,基站可以在从MCOT1中的下行时域单元0开始的连续下行时域单元(图12中为连续的3个下行时域单元,即下行时域单元0~下行时域单元2)上重复发送控制信道;并且基站在从MCOT1中的下行时域单元4开始的连续下行时域单元(图12中为连续的3个下行时域单元,即下行时域单元4~下行时域单元6)上重复发送数据信道。在这种情况下,由于终端在检测数据信道之前已经检测到控制信道,因此控制信道中可以包括用于指示基站具体从哪个下行时域单元开始发送数据信道的第二指示信息,从而终端在检测到控制信道之后,可以根据该第二指示信息,从第二指示信息指示的下行时域单元开始继续检测数据信道。
第三种可能的实现方式中,基站在从第一资源上的第二位置开始的连续下行时域单元上重复发送控制信道;基站在从第一资源上的第一下行时域单元开始的连续下行时域单元上重复发送数据信道。其中,第一资源上的第一下行时域单元为第一资源上的第二位置所在下行时域单元的下一个下行时域单元。
如图13所示,本发明实施例中,以第一资源包括一个MCOT中的所有下行时域单元为例,该MCOT在图13中表示为MCOT1,MCOT1包括8个时域单元(8个时域单元的编号分别为0~7)。该8个时域单元包括7个连续的下行时域单元(图13中为下行时域单元0~下行时域单元6)和1个上行时域单元(图13中为上行时域单元7),假设第二位置为该8个时域单元中的下行时域单元0,第一下行时域单元为MCOT1中下行时域单元0的下一个下行时域单元,即下行时域单元1。这种情况下,基站可以在从MCOT1中的下行时域单元0开始的连续下行时域单元(图13中为连续的5个下行时域单元,即下行时域单元0~下行时域单元4)上重复发送控制信道;并且基站在从MCOT1中的下行时域单元1开始的连续下行时域单元(图13中为连续的6个下行时域单元,即下行时域单元1~下行时域单元6)上重复发送数据信道。在这种情况下,由于第二位置可能并不是一个完整的下行时域单元,因此第二位置所在的下行时域单元可能无法发送数据信道,这样基站可以在从第二位置所在下行时域单元开始的连续下行时域单元上重复发送控制信道,并在从第二位置所在下行时域单元的下一个下行时域单元开始的连续下行时域单元上重复发送数据信道。
可选的,本发明实施例中,上述数据信道可以为下行数据信道。下行数据信道可以为物理下行共享信道(physical downlink shared channel,PDSCH)。
可选的,本发明实施例提供的传输控制信道的方法还可以应用于终端随机接入基站的过程中。当本发明实施例提供的传输控制信道的方法应用于终端随机接入基站的过程中时,本发明实施例提供的控制信道可以为EPDCCH。上述基站确定的非授权频谱上可以用于重复发送控制信道的第一资源可以为该EPDCCH的公共搜索空间(即基站在非授权频谱上可以重复发送EPDCCH的资源)。该EPDCCH可以用于承载第一DCI,该第一DCI包括基站向该基站提供服务的覆盖增强终端发送的第一消息的DCI和该基站向该覆盖增强终 端发送的第二消息的DCI中的至少一项。
本发明实施例中,上述第一消息可以为消息2(msg2),第二消息可以为消息4(msg4);或者第一消息可以为消息4,第二消息可以为消息2。具体的可以根据实际使用需求确定,本发明实施例不作限定。
本发明实施例中,上述消息2可以为随机接入响应消息;上述消息4可以为资源竞争决议消息或者RRC连接建立消息。
需要说明的是,本发明实施例中,如果终端为覆盖增强终端,那么基站向终端发送的消息2的DCI和消息4的DCI可以承载在EPDCCH中。如果终端是非覆盖增强终端,那么基站向终端发送的消息2的DCI和消息4的DCI可以承载在PDCCH中。如此,本发明实施例提供的传输控制信道(控制信道中承载DCI)的方法可以兼容覆盖增强终端和非覆盖增强终端。
本发明实施例中,由于基站和终端可以通过前导码索引确定终端为覆盖增强终端还是非覆盖增强终端,所以基站可以通过定义上述的EPDCCH的公共搜索空间,并将基站向覆盖增强终端发送的消息2的DCI和消息4的DCI承载在EPDCCH的公共搜索空间,如此,通过实现EPDCCH的覆盖增强,可以实现终端随机接入基站的过程中基站向终端发送的消息2的DCI和消息4的DCI的覆盖增强。
如图14所示,为本发明实施例提供的终端随机接入基站的方法示意图。终端先向基站发送消息1(msg1,例如,消息1为随机接入请求消息,该随机接入请求消息中可以携带随机接入序列);然后基站再向终端发送消息2(例如,消息2为随机接入响应消息,由于终端为覆盖增强终端,因此基站可以向终端重复发送消息2);然后终端再向基站发送消息3(msg3,例如,消息3为RRC连接建立请求消息);最后基站再向终端发送消息4(例如,消息4为RRC连接建立消息,由于终端为覆盖增强终端,因此基站可以向终端重复发送消息4)。
可选的,本发明实施例中,上述EPDCCH的公共搜索空间可以由基站通过SIB-MF1(MF(MulteFire)联盟定义的系统信息块(system information block,SIB))或者SI-MF(MF联盟定义的系统信息(system information,SI))为终端配置。该EPDCCH的公共搜索空间可以包括EPDCCH的公共搜索空间的最大集合个数(max EPDCCH-Set)、物理资源分配(物理资源分配包括物理资源块(physical resource block,PRB)对的个数和PRB对的索引,PRB对指一个下行时域单元的两个时隙中相同频域位置的PRB)、加扰初始化值(scrambling sequenceInt,SS)、基站向终端重复发送的消息2的DCI的第一位置和最大重复次数,以及基站向终端重复发送的消息4的DCI的第一位置和最大重复次数等。其中,基站向终端重复发送的消息2的DCI的第一位置和最大重复次数,以及基站向终端重复发送的消息4的DCI的第一位置和最大重复次数的具体描述可以参见上述方法实施例中对基站向终端重复发送控制信道的第一位置和最大重复次数的相关描述,此处不再赘述。
本发明实施例中,假设在终端随机接入基站的过程中,基站向终端重复 发送消息2和消息4,那么相应的,终端可以重复接收基站发送的消息2和消息4。从而可以保证终端能够正确接收消息2和消息4,进而实现消息2和消息4的覆盖增强。
本发明实施例中,当基站向终端重复发送消息2和消息4时,为了使得终端能够正确地接收基站重复发送的消息2和消息4,终端还可以适应性的调整终端接收消息2的时长(以下称为终端接收消息2的接收窗口的时长)和消息4的时长(以下称为终端接收消息4的接收窗口的时长)。
如图15所示,假设基站向终端发送1次消息2时,终端接收基站发送的消息2的接收窗口的时长为N,并且基站向终端重复发送消息2的总时长为M(具体可以为基站向终端重复发送的消息2的DCI和消息2的数据信道的总时长,包括基站未竞争到资源的时长以及上行时域单元的时长,M大于或者等于基站向终端重复发送消息2的DCI的最大重复次数),则当基站向终端重复发送消息2时,终端接收消息2的接收窗口的时长(即终端从发送消息1开始到接收到基站发送的消息2的时长)可以由如图15所示的N调整为N+M。
终端接收到基站重复发送的消息2后终端可以发送消息3,并且消息2和消息3之间的调度时序不变。例如,如图16所示,假设消息2和消息3之间的调度时序为n+L,其中,n为终端接收基站发送的消息2的时域单元的编号,L为终端向基站发送消息3的时域单元相对于终端接收消息2的时域单元的偏移量,那么本发明实施例中,上述n可以理解为终端最后一次接收消息2的时域单元的编号。
本发明实施例中,终端向基站发送消息3之后,终端可以等待接收基站发送的消息4。具体的,终端可以启动竞争决议定时器(即终端接收消息4的接收窗口,用于记录终端从发送消息3开始到接收到基站发送的消息4的时长,从而判断终端随机接入基站是否成功),等待接收基站发送的消息4的DCI和消息4的数据信道。如图17所示,假设基站向终端发送1次消息4时,竞争决议定时器的时长为P,并且基站向终端重复发送消息4的总时长为Z(具体可以为基站向终端重复发送的消息4的DCI和消息4的数据信道的总时长,包括基站未竞争到资源的时长以及上行时域单元的时长,Z大于或者等于基站向终端重复发送消息4的DCI的最大重复次数),则当基站向终端重复发送消息4时,竞争决议定时器的时长(即终端接收消息4的接收窗口的时长)可以由如图17所示的P调整为P+Z。
本发明实施例提供的传输控制信道的方法应用于终端随机接入基站的过程中时,不但可以兼容覆盖增强终端和非覆盖增强终端,而且可以通过实现EPDCCH的覆盖增强,实现基站向终端发送的第一消息的DCI和第二消息的DCI的覆盖增强。
上述主要从各个网元之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,各个网元,例如基站、终端等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很 容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本发明实施例可以根据上述方法示例对基站、终端等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图18示出了上述实施例中所涉及的基站的一种可能的结构示意图,如图18所示,基站可以包括:确定单元50和发送单元51。确定单元50可以用于支持基站执行上述方法实施例中的S101和S102;发送单元51可以用于支持基站执行上述方法实施例中的S103和S201。可选的,如图18所示,该基站还可以包括调整单元52。调整单元52可以用于支持基站执行上述方法实施例中的S111。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图19示出了上述实施例中所涉及的基站的一种可能的结构示意图。如图19所示,基站可以包括:处理模块60和通信模块61。处理模块60可以用于对基站的动作进行控制管理,例如,处理模块60可以用于支持基站执行上述方法实施例中的S101、S102和S111,和/或用于本文所描述的技术的其它过程。通信模块61可以用于支持基站与其他网络实体的通信,例如通信模块61可以用于支持基站执行上述方法实施例中的S103和S201。可选的,如图19所示,该基站还可以包括存储模块62,用于存储基站的程序代码和数据。
其中,处理模块60可以是处理器或控制器(例如可以是上述如图3所示的BBU 30),例如可以是中央处理器(central processing unit,CPU)、通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明实施例公开内容所描述的各种示例性的逻辑方框、模块和电路。上述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块61可以是收发器、收发电路或通信接口等(例如可以是上述如图3所示的RRU 31)。存储模块62可以是存储器。
当处理模块60为处理器,通信模块61为收发器,存储模块62为存储器时,处理器、收发器和存储器可以通过总线连接。总线可以是外设部件互连 标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended Industry standard architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。
在采用对应各个功能划分各个功能模块的情况下,图20示出了上述实施例中所涉及的终端的一种可能的结构示意图,如图20所示,终端可以包括:确定单元70和接收单元71。确定单元70可以用于支持终端执行上述方法实施例中的S104、S105和S203;接收单元71可以用于支持终端执行上述方法实施例中的S106、S107和S202。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图21示出了上述实施例中所涉及的终端的一种可能的结构示意图。如图21所示,终端可以包括:处理模块80和通信模块81。处理模块80可以用于对终端的动作进行控制管理,例如,处理模块80可以用于支持终端执行上述方法实施例中的S104、S105和S203,和/或用于本文所描述的技术的其它过程。通信模块81可以用于支持终端与其他网络实体的通信,例如通信模块81可以用于支持终端执行上述方法实施例中的S106、S107和S202。可选的,如图21所示,该终端还可以包括存储模块82,用于存储终端的程序代码和数据。
其中,处理模块80可以是处理器或控制器(例如可以是上述如图4所示的处理器40),例如可以是CPU、通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明实施例公开内容所描述的各种示例性的逻辑方框、模块和电路。上述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块81可以是收发器、收发电路或通信接口等(例如可以是上述如图4所示的RF电路41)。存储模块82可以是存储器(例如可以是上述如图4所示的存储器43)。
当处理模块80为处理器,通信模块81为收发器,存储模块82为存储器时,处理器、收发器和存储器可以通过总线连接。总线可以是PCI总线或EISA总线等。总线可以分为地址总线、数据总线、控制总线等。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机指令时,全部或部分地产生按照本发明实施例中的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))方式或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个 或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、磁盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state drives,SSD))等。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (37)

  1. 一种传输控制信道的方法,其特征在于,包括:
    基站确定非授权频谱上的第一资源;
    所述基站确定第一信息,所述第一信息用于指示第一位置和重复次数,所述第一位置为所述第一资源在时域上的起始位置,所述重复次数为所述基站重复发送控制信道的次数;
    所述基站从第二位置开始,按照所述重复次数重复发送所述控制信道,所述第二位置为所述第一资源上的一个时域位置;其中,所述第二位置与所述第一位置相同,或者所述第二位置在时间上位于所述第一位置之后。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一位置为预定义的;
    所述第二位置为预定义的。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第一资源包括所述非授权频谱上一个最大连续占用时长MCOT中的所有可用下行时域单元;或者,
    所述第一资源包括所述非授权频谱上一个检测周期中的所有可用下行时域单元;或者,
    所述第一资源包括所述非授权频谱上一个检测周期中从第一个完整的MCOT开始的所有可用下行时域单元,所述完整的MCOT的起始点为MCOT的起始边界。
  4. 根据权利要求3所述的方法,其特征在于,
    所述第一位置为所述非授权频谱上一个MCOT中的第一个可用下行时域单元;或者,
    所述第一位置为所述非授权频谱上一个检测周期中的第一个可用下行时域单元;或者,
    所述第一位置为所述非授权频谱上一个检测周期中第一个完整的MCOT中的第一个可用下行时域单元。
  5. 根据权利要求3或4所述的方法,其特征在于,所述方法还包括:
    所述基站将所述第一资源当前采用的第一上下行时域单元配比调整为第二上下行时域单元配比;其中,所述第一资源采用所述第一上下行时域单元配比时,所述第一资源中的可用下行时域单元的数量小于所述重复次数;所述第一资源采用所述第二上下行时域单元配比时,所述第一资源中的可用下行时域单元的数量大于或者等于所述重复次数。
  6. 根据权利要求1至5任意一项所述的方法,其特征在于,所述方法还包括:
    所述基站向终端发送公共控制无线网络临时标识CC-RNTI加扰的公共下行控制信息DCI,所述公共DCI中包括第一指示信息,所述第一指示信息用于指示所述基站在所述非授权频谱上发送所述公共DCI的下行时域单元是否为所述第一位置。
  7. 根据权利要求1至6任意一项所述的方法,其特征在于,
    所述第一资源为时域上连续的时频资源;或者,
    所述第一资源为时域上离散的时频资源。
  8. 根据权利要求1至7任意一项所述的方法,其特征在于,
    所述控制信道在从所述第二位置开始的连续下行时域单元上重复发送,所述数据信道在从所述第二位置开始的连续下行时域单元上重复发送,其中,重复发送所述数据信道的次数大于或者等于所述重复次数;或者,
    所述控制信道在从所述第二位置开始的连续下行时域单元上重复发送,所述数据信道在从第n+k个下行时域单元开始的连续下行时域单元上重复发送,其中,所述控制信道中包括第二指示信息,所述第二指示信息用于指示从第n+k个下行时域单元开始重复发送所述数据信道,第n个下行时域单元为最后一次发送所述控制信道的下行时域单元,n和k均为正整数;或者,
    所述控制信道在从所述第二位置开始的连续下行时域单元上重复发送,所述数据信道在从第一下行时域单元开始的连续下行时域单元上重复发送,所述第一下行时域单元为所述第二位置所在下行时域单元的下一个下行时域单元。
  9. 根据权利要求1至8任意一项所述的方法,其特征在于,
    所述控制信道为增强的物理下行控制信道EPDCCH,所述第一资源为所述EPDCCH的公共搜索空间,所述EPDCCH承载第一DCI,所述第一DCI包括所述基站向所述基站提供服务的覆盖增强终端发送的第一消息的DCI和所述基站向所述覆盖增强终端发送的第二消息的DCI中的至少一项。
  10. 一种传输控制信道的方法,其特征在于,包括:
    终端确定非授权频谱上的当前下行时域单元为第一位置,所述第一位置为第一资源在时域上的起始位置,所述第一资源为基站确定的非授权频谱上用于重复发送控制信道的资源;
    在所述终端确定所述当前下行时域单元为所述第一位置的情况下,所述终端根据最大重复次数,确定检测次数,所述最大重复次数为所述基站重复发送所述控制信道的最大次数;
    所述终端从所述第一位置开始,在所述第一资源上按照所述检测次数合并接收所述控制信道。
  11. 根据权利要求10所述的方法,其特征在于,
    所述第一位置为预定义的或者为所述基站为所述终端配置的;
    所述最大重复次数为预定义的或者为所述基站为所述终端配置的。
  12. 根据权利要求10或11所述的方法,其特征在于,
    所述第一资源包括所述非授权频谱上一个最大连续占用时长MCOT中的所有可用下行时域单元;或者,
    所述第一资源包括所述非授权频谱上一个检测周期中的所有可用下行时域单元;或者,
    所述第一资源包括所述非授权频谱上一个检测周期中从第一个完整的MCOT开始的所有可用下行时域单元,所述完整的MCOT的起始点为MCOT 的起始边界。
  13. 根据权利要求12所述的方法,其特征在于,
    所述第一位置为所述非授权频谱上一个MCOT中的第一个可用下行时域单元;或者,
    所述第一位置为所述非授权频谱上一个检测周期中的第一个可用下行时域单元;或者,
    所述第一位置为所述非授权频谱上一个检测周期中第一个完整的MCOT中的第一个可用下行时域单元。
  14. 根据权利要求10至13任意一项所述的方法,其特征在于,所述终端确定非授权频谱上的当前下行时域单元为第一位置,包括:
    所述终端接收所述基站发送的公共控制无线网络临时标识CC-RNTI加扰的公共下行控制信息DCI,所述公共DCI中包括第一指示信息,所述第一指示信息用于指示所述当前下行时域单元是否为所述第一位置;
    在所述第一指示信息指示所述当前下行时域单元为所述第一位置的情况下,所述终端根据所述第一指示信息,确定所述当前下行时域单元为所述第一位置。
  15. 根据权利要求10至14任意一项所述的方法,其特征在于,
    所述第一资源为时域上连续的时频资源;或者,
    所述第一资源为时域上离散的时频资源。
  16. 根据权利要求10至15任意一项所述的方法,其特征在于,
    所述控制信道为增强的物理下行控制信道EPDCCH,所述第一资源为所述EPDCCH的公共搜索空间,所述EPDCCH承载第一DCI,所述第一DCI包括所述基站向所述基站提供服务的覆盖增强终端发送的第一消息的DCI和所述基站向所述覆盖增强终端发送的第二消息的DCI中的至少一项,所述覆盖增强终端包括所述终端。
  17. 一种基站,其特征在于,包括确定单元和发送单元;
    所述确定单元,用于确定非授权频谱上的第一资源和第一信息,所述第一信息用于指示第一位置和重复次数,所述第一位置为所述第一资源在时域上的起始位置,所述重复次数为所述发送单元重复发送控制信道的次数;
    所述发送单元,用于从第二位置开始,按照所述确定单元确定的所述重复次数重复发送所述控制信道,所述第二位置为所述第一资源上的一个时域位置;其中,所述第二位置与所述第一位置相同,或者所述第二位置在时间上位于所述第一位置之后。
  18. 根据权利要求17所述的基站,其特征在于,
    所述第一位置为预定义的;
    所述第二位置为预定义的。
  19. 根据权利要求17或18所述的基站,其特征在于,
    所述第一资源包括所述非授权频谱上一个最大连续占用时长MCOT中的所有可用下行时域单元;或者,
    所述第一资源包括所述非授权频谱上一个检测周期中的所有可用下行时域单元;或者,
    所述第一资源包括所述非授权频谱上一个检测周期中从第一个完整的MCOT开始的所有可用下行时域单元,所述完整的MCOT的起始点为MCOT的起始边界。
  20. 根据权利要求19所述的基站,其特征在于,
    所述第一位置为所述非授权频谱上一个MCOT中的第一个可用下行时域单元;或者,
    所述第一位置为所述非授权频谱上一个检测周期中的第一个可用下行时域单元;或者,
    所述第一位置为所述非授权频谱上一个检测周期中第一个完整的MCOT中的第一个可用下行时域单元。
  21. 根据权利要求19或20所述的基站,其特征在于,所述基站还包括调整单元;
    所述调整单元,用于将所述确定单元确定的所述第一资源当前采用的第一上下行时域单元配比调整为第二上下行时域单元配比;其中,所述第一资源采用所述第一上下行时域单元配比时,所述第一资源中的可用下行时域单元的数量小于所述重复次数;所述第一资源采用所述第二上下行时域单元配比时,所述第一资源中的可用下行时域单元的数量大于或者等于所述重复次数。
  22. 根据权利要求17至21任意一项所述的基站,其特征在于,
    所述发送单元,还用于向终端发送公共控制无线网络临时标识CC-RNTI加扰的公共下行控制信息DCI,所述公共DCI中包括第一指示信息,所述第一指示信息用于指示所述发送单元在所述非授权频谱上发送所述公共DCI的下行时域单元是否为所述确定单元确定的所述第一位置。
  23. 根据权利要求17至22任意一项所述的基站,其特征在于,
    所述第一资源为时域上连续的时频资源;或者,
    所述第一资源为时域上离散的时频资源。
  24. 根据权利要求17至23任意一项所述的基站,其特征在于,
    所述控制信道在从所述第二位置开始的连续下行时域单元上重复发送,所述数据信道在从所述第二位置开始的连续下行时域单元上重复发送,其中,重复发送所述数据信道的次数大于或者等于所述重复次数;或者,
    所述控制信道在从所述第二位置开始的连续下行时域单元上重复发送,所述数据信道在从第n+k个下行时域单元开始的连续下行时域单元上重复发送,其中,所述控制信道中包括第二指示信息,所述第二指示信息用于指示从第n+k个下行时域单元开始重复发送所述数据信道,第n个下行时域单元为最后一次发送所述控制信道的下行时域单元,n和k均为正整数;或者,
    所述控制信道在从所述第二位置开始的连续下行时域单元上重复发送,所述数据信道在从第一下行时域单元开始的连续下行时域单元上重复发送,所述第一下行时域单元为所述第二位置所在下行时域单元的下一个下行时域单元。
  25. 根据权利要求17至24任意一项所述的基站,其特征在于,
    所述控制信道为增强的物理下行控制信道EPDCCH,所述第一资源为所述EPDCCH的公共搜索空间,所述EPDCCH承载第一DCI,所述第一DCI包括所述基站向所述基站提供服务的覆盖增强终端发送的第一消息的DCI和所述基站向所述覆盖增强终端发送的第二消息的DCI中的至少一项。
  26. 一种终端,其特征在于,包括确定单元和接收单元;
    所述确定单元,用于确定非授权频谱上的当前下行时域单元为第一位置,并在确定所述当前下行时域单元为所述第一位置的情况下,根据最大重复次数,确定检测次数,所述第一位置为第一资源在时域上的起始位置,所述第一资源为基站确定的非授权频谱上用于重复发送控制信道的资源,所述最大重复次数为所述基站重复发送所述控制信道的最大次数;
    所述接收单元,用于从所述确定单元确定的所述第一位置开始,在所述第一资源上按照所述确定单元确定的所述检测次数合并接收所述控制信道。
  27. 根据权利要求26所述的终端,其特征在于,
    所述第一位置为预定义的或者为所述基站为所述终端配置的;
    所述最大重复次数为预定义的或者为所述基站为所述终端配置的。
  28. 根据权利要求26或27所述的终端,其特征在于,
    所述第一资源包括所述非授权频谱上一个最大连续占用时长MCOT中的所有可用下行时域单元;或者,
    所述第一资源包括所述非授权频谱上一个检测周期中的所有可用下行时域单元;或者,
    所述第一资源包括所述非授权频谱上一个检测周期中从第一个完整的MCOT开始的所有可用下行时域单元,所述完整的MCOT的起始点为MCOT的起始边界。
  29. 根据权利要求28所述的终端,其特征在于,
    所述第一位置为所述非授权频谱上一个MCOT中的第一个可用下行时域单元;或者,
    所述第一位置为所述非授权频谱上一个检测周期中的第一个可用下行时域单元;或者,
    所述第一位置为所述非授权频谱上一个检测周期中第一个完整的MCOT中的第一个可用下行时域单元。
  30. 根据权利要求26至29任意一项所述的终端,其特征在于,
    所述确定单元,具体用于接收所述基站发送的公共控制无线网络临时标识CC-RNTI加扰的公共下行控制信息DCI,所述公共DCI中包括第一指示信息,所述第一指示信息用于指示所述当前下行时域单元是否为所述第一位置;并在所述第一指示信息指示所述当前下行时域单元为所述第一位置的情况下,根据所述第一指示信息,确定所述当前下行时域单元为所述第一位置。
  31. 根据权利要求26至30任意一项所述的终端,其特征在于,
    所述第一资源为时域上连续的时频资源;或者,
    所述第一资源为时域上离散的时频资源。
  32. 根据权利要求26至31任意一项所述的终端,其特征在于,
    所述控制信道为增强的物理下行控制信道EPDCCH,所述第一资源为所述EPDCCH的公共搜索空间,所述EPDCCH承载第一DCI,所述第一DCI包括所述基站向所述基站提供服务的覆盖增强终端发送的第一消息的DCI和所述基站向所述覆盖增强终端发送的第二消息的DCI中的至少一项,所述覆盖增强终端包括所述终端。
  33. 一种基站,其特征在于,包括处理器和与所述处理器耦合连接的存储器;
    所述存储器用于存储计算机指令,当所述基站运行时,所述处理器执行所述存储器存储的所述计算机指令,以使得所述基站执行如权利要求1至9任意一项所述的传输控制信道的方法。
  34. 一种终端,其特征在于,包括处理器和与所述处理器耦合连接的存储器;
    所述存储器用于存储计算机指令,当所述终端运行时,所述处理器执行所述存储器存储的所述计算机指令,以使得所述终端执行如权利要求10至16任意一项所述的传输控制信道的方法。
  35. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在基站上运行时,使得所述基站执行如权利要求1至9任意一项所述的传输控制信道的方法。
  36. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在终端上运行时,使得所述终端执行如权利要求10至16任意一项所述的传输控制信道的方法。
  37. 一种无线通信系统,其特征在于,包括如权利要求17至25任意一项或者权利要求33所述的基站,以及如权利要求26至32任意一项或者权利要求34所述的终端。
PCT/CN2017/072679 2017-01-25 2017-01-25 一种传输控制信道的方法、装置及系统 WO2018137205A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/072679 WO2018137205A1 (zh) 2017-01-25 2017-01-25 一种传输控制信道的方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/072679 WO2018137205A1 (zh) 2017-01-25 2017-01-25 一种传输控制信道的方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2018137205A1 true WO2018137205A1 (zh) 2018-08-02

Family

ID=62978903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072679 WO2018137205A1 (zh) 2017-01-25 2017-01-25 一种传输控制信道的方法、装置及系统

Country Status (1)

Country Link
WO (1) WO2018137205A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140031054A1 (en) * 2011-04-12 2014-01-30 Renesas Mobile Corporation Methods and Apparatus of Spectrum Sharing for Cellular-Controlled Offloading Using Unlicensed Band
CN104348580A (zh) * 2013-08-06 2015-02-11 夏普株式会社 下行物理信道的发送和接收方法以及基站和用户设备
CN105451251A (zh) * 2015-11-06 2016-03-30 东莞酷派软件技术有限公司 一种非授权频谱的drs配置方法、测量方法和相关设备
CN105515741A (zh) * 2014-09-26 2016-04-20 电信科学技术研究院 一种在非授权频段上的数据传输方法及装置
CN105659514A (zh) * 2013-10-04 2016-06-08 株式会社Kt 用于传输和接收下行链路控制信道的方法及其设备
CN105991274A (zh) * 2015-03-03 2016-10-05 电信科学技术研究院 数据传输的方法、反馈信息传输方法及相关设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140031054A1 (en) * 2011-04-12 2014-01-30 Renesas Mobile Corporation Methods and Apparatus of Spectrum Sharing for Cellular-Controlled Offloading Using Unlicensed Band
CN104348580A (zh) * 2013-08-06 2015-02-11 夏普株式会社 下行物理信道的发送和接收方法以及基站和用户设备
CN105659514A (zh) * 2013-10-04 2016-06-08 株式会社Kt 用于传输和接收下行链路控制信道的方法及其设备
CN105515741A (zh) * 2014-09-26 2016-04-20 电信科学技术研究院 一种在非授权频段上的数据传输方法及装置
CN105991274A (zh) * 2015-03-03 2016-10-05 电信科学技术研究院 数据传输的方法、反馈信息传输方法及相关设备
CN105451251A (zh) * 2015-11-06 2016-03-30 东莞酷派软件技术有限公司 一种非授权频谱的drs配置方法、测量方法和相关设备

Similar Documents

Publication Publication Date Title
US11510186B2 (en) Uplink control channel resource configuration method and apparatus
CN109392151B (zh) 一种确定pdcch搜索空间的方法、装置及系统
WO2019029511A1 (zh) 接收广播消息的资源位置指示方法、网络设备、用户终端及系统
WO2022152176A1 (zh) 传输处理方法及相关设备
WO2023025016A1 (zh) 传输处理方法、装置及设备
WO2017049615A1 (zh) 测量结果上报方法、定时器计数的方法、装置及用户设备
WO2022083634A1 (zh) 资源配置方法、装置、设备及可读存储介质
WO2022078387A1 (zh) 信息处理方法、装置及通信设备
WO2021249476A1 (zh) Srs资源指示方法、srs资源确定方法及相关设备
US11497009B2 (en) Frequency domain resource allocation method and apparatus
JP2023532537A (ja) 伝送処理方法、装置及び端末
WO2022017409A1 (zh) 上行传输方法、装置及相关设备
WO2022017354A1 (zh) Pdcch的校验方法、发送方法、终端及网络侧设备
WO2022028524A1 (zh) 物理下行控制信道的监听方法、装置和设备
WO2018137205A1 (zh) 一种传输控制信道的方法、装置及系统
WO2019149111A1 (zh) 一种测量方法及测量装置
WO2022206593A1 (zh) Pdcch监听处理方法、监听配置方法及相关设备
WO2023051525A1 (zh) 行为确定方法、装置及相关设备
WO2022007951A1 (zh) 资源传输方法、装置及通信设备
WO2023036142A1 (zh) 时隙配置方法、终端及网络侧设备
US20230422253A1 (en) Physical uplink control channel resource determining method, terminal, and network-side device
WO2022152273A1 (zh) Srs传输方法、装置、设备及存储介质
WO2022033424A1 (zh) 资源传输方法、装置及通信设备
WO2022242677A1 (zh) 波束应用时间的确定方法、装置及通信设备
WO2023078327A1 (zh) 上行传输信息确定、上行传输以及上行传输配置的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894181

Country of ref document: EP

Kind code of ref document: A1