WO2018135886A2 - 웨어러블 장치의 위치를 추정하는 방법 및 이를 이용하는 장치 - Google Patents

웨어러블 장치의 위치를 추정하는 방법 및 이를 이용하는 장치 Download PDF

Info

Publication number
WO2018135886A2
WO2018135886A2 PCT/KR2018/000869 KR2018000869W WO2018135886A2 WO 2018135886 A2 WO2018135886 A2 WO 2018135886A2 KR 2018000869 W KR2018000869 W KR 2018000869W WO 2018135886 A2 WO2018135886 A2 WO 2018135886A2
Authority
WO
WIPO (PCT)
Prior art keywords
axis
wearable device
pet
motion
mounting position
Prior art date
Application number
PCT/KR2018/000869
Other languages
English (en)
French (fr)
Other versions
WO2018135886A3 (ko
Inventor
김경수
최윤희
이후창
김건하
유광호
Original Assignee
만도헬라일렉트로닉스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 만도헬라일렉트로닉스(주) filed Critical 만도헬라일렉트로닉스(주)
Publication of WO2018135886A2 publication Critical patent/WO2018135886A2/ko
Publication of WO2018135886A3 publication Critical patent/WO2018135886A3/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a method and apparatus for estimating the position of a wearable device, and more particularly, to a method for estimating a position of a wearable device in which a mounting position can be changed according to the movement of a target such as a pet and a device using the same. will be.
  • Wearable device refers to a computer that can be worn on the human body, such as glasses, watches, clothing. Accordingly, the wearable device can be easily used anytime and anywhere, and is easy to wear. Wearable devices are mainly released in the form of a watch, such as a smart watch worn on the wrist, and is also released in a form that can be worn on the head or ankle.
  • the wearable device is also applied to a collar of a pet (for example, a pet) hereinafter, such as a dog or a cat.
  • Wearable devices for pets are being used to check the athletic or health status of a pet or to provide the location of the pet.
  • the mounting position of the wearable device In order to check the movement state of the pet, the mounting position of the wearable device must be specified.
  • the mounting position of the wearable device is used to determine the operation or state of the pet.
  • the wearable device including the motion recognition sensor such as an inertial sensor provides a relative sensor output based on the mounting position of the inertial sensor
  • the mounting position information of the wearable device is most important. Due to the characteristics of these inertial sensors, mounting initial values are usually specified through initial position correction after mounting.
  • the wearable device applied to the neck of the pet even if the device is worn in the initial position at the time of mounting the mounting position changes according to the movement of the pet (shake, neck scratching, lying on its side).
  • the wearable device may recognize the movement of the wearable device from the initial mounting position, and the device position correction may be performed by itself to the initial mounting position, but the pet may not perform the position correction to the initial mounting position by itself.
  • the problem is generally solved by specifying an absolute coordinate by adding a geomagnetic sensor.
  • a geomagnetic sensor that detects a direction based on a magnetic north pole has a disadvantage in that it is sensitive to external magnetic signals to detect a change in the direction of the sensor by measuring a small amount of the earth's magnetic field.
  • the senor is calibrated before use in an operating environment and the sensor is moved in an 8-character shape.
  • the wearable device is more sensitive to the influence of an external magnetic field due to its characteristic of being moved to various places while being exposed to the outside.
  • a frequent frequency of geomagnetic sensor calibration is required for stable operation, and this frequency directly affects the absolute coordinate accuracy of the wearable device.
  • An aspect of the present invention provides a method for estimating a position of a wearable device capable of performing correction of a wearable device using an inertial sensor instead of a geomagnetic sensor, and an apparatus using the same.
  • a position estimating apparatus for estimating a mounting position of a wearable device mounted on a pet, comprising: a sensor unit for sensing a movement of the pet and outputting a 3-axis sensor signal; A feature extraction unit for extracting the angular velocity signals of the x-axis, the y-axis, and the Z-axis and the acceleration signals of the 3-axis from the three-axis sensor signal output from the sensor unit, and then calculating feature values for each axis within a preset time period; An operation determination unit for processing an feature value output from the feature extraction unit by a classification algorithm to determine an operation; A pattern providing unit which stores an operation pattern learned by a machine learning algorithm; A gravity acceleration direction determination unit for filtering the stored acceleration signals of the determined operation or comparing the acceleration signals of each axis to determine a gravity acceleration direction; An angle calculator configured to calculate an angle with the ground based on the determined gravity acceleration direction; And a mounting position determining unit configured to calculate a mounting position of the wearable device
  • the feature value may be any one of a root sum square (RSS) value of an acceleration signal of each axis within the preset time interval, a standard deviation that can represent a corresponding time interval, an average value, and a principal component analysis value. It may include.
  • RSS root sum square
  • the machine learning algorithm may include a neural network, a support vector machine, a Bayesian network, a Naive Bayes classifier, a decision tree, and k-.
  • KNN K-nearest neighbor
  • boosting dynamic Bayesian network
  • HMM hidden Markov Model
  • reinforcement learning logistic regression
  • One or more of a genetic algorithm and a Gaussian process may be included.
  • the operation determining unit may determine the operation by comparing the degree of similarity between the operation pattern learned by the machine learning algorithm and the actual data pattern.
  • the mounting position determiner may determine the position of the wearable device by obtaining an average value of the positions of the wearable device periodically calculated according to Equation (1).
  • Equation 1 k is the order k times of data, and n is the quantity of data to be averaged.
  • a position estimation method for estimating the mounting position of the wearable device mounted on a pet comprising the steps of: sensing the movement of the pet to obtain a three-axis sensor signal; Extracting the angular velocity signals of the x-axis, the y-axis, and the Z-axis and the acceleration signals of the x-axis, the y-axis, and the Z-axis from the three-axis sensor signal, and then calculating feature values for each axis within a predetermined time period; Processing the feature value by a classification algorithm to determine an operation; Determining a gravity acceleration direction by comparing previously stored acceleration signals of the determined operation with acceleration signals of the respective axes; Calculating an angle with the ground based on the determined gravity acceleration direction; And calculating a mounting position of the wearable device based on the calculated angle with the ground and the determined gravitational acceleration direction.
  • the feature value may be any one of a root sum square (RSS) value of an acceleration signal of each axis within the preset time interval, a standard deviation that can represent a corresponding time interval, an average value, and a principal component analysis value. It may include.
  • RSS root sum square
  • the method may further include storing an operation pattern learned by a machine learning algorithm before determining the operation.
  • the determining of the motion may include determining the motion by comparing the degree of similarity between the motion pattern learned by the machine learning algorithm and the actual data pattern.
  • the position of the wearable device may be determined by obtaining an average value of the positions of the wearable device periodically calculated according to Equation 1.
  • Equation 1 k is the order k times of data, and n is the quantity of data to be averaged.
  • a position estimation method for estimating a mounting position of a wearable device mounted on a pet, the method comprising: obtaining a three-axis sensor signal by sensing the movement of the pet; Extracting angular velocity signals of x-axis, y-axis, and Z-axis and acceleration signals of x-axis, y-axis, and z-axis from the 3-axis sensor signal, and then calculating feature values for each axis within a predetermined time period; Processing the feature value by a classification algorithm to determine an operation; Obtaining a degree of walking pattern for each axis based on the similarity between the three-axis sensor signal and previously stored walking pattern data, and determining a direction of gravity acceleration based on a walking level corresponding to the degree of walking pattern; Calculating an angle with the ground based on the determined gravity acceleration direction; And calculating a mounting position of the wearable device based on the calculated angle with the ground and the determined gravitational acceleration direction.
  • the pet may recognize the operation pattern and effectively perform the correction of the mounting position of the wearable device.
  • the embodiment of the present invention utilizes angle information using the inertial sensor, thereby obtaining posture information as well as activity amount.
  • the extracted information about the pet can be notified to the owner, and if necessary, a warning message based on the extracted information can be delivered to the owner to actively take care of the pet.
  • FIG. 1 is a block diagram of an apparatus for estimating a position of a wearable device according to an exemplary embodiment of the present invention.
  • FIG. 2 is an exemplary diagram for describing a process of estimating a direction of an acceleration signal according to a position of a wearable device that may be employed in the position estimation device of FIG. 1.
  • 3A to 3C are exemplary diagrams for describing acceleration data according to a mounting position of a wearable device that may be employed in the position estimation device of FIG. 1.
  • 4A to 4C are exemplary diagrams illustrating acceleration data in the same motion according to a mounting position of a wearable device that may be employed in the position estimation device of FIG. 1.
  • FIGS. 4A to 4C are changed to different mounting positions.
  • FIG. 5 is a diagram for describing an angle extraction process with respect to the ground using gravity acceleration, which may be employed in the position estimation apparatus of FIG. 1.
  • FIG. 6 is a view showing an example of correcting the position of the wearable device according to the angle with the ground according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a change in sensor detection values according to the position of the wearable device.
  • FIG. 8 is a flowchart illustrating a mounting position estimation method of a wearable device according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of an apparatus for estimating a position of a wearable device according to an exemplary embodiment of the present invention.
  • the position estimating apparatus 100 includes a sensor 110, a feature extractor 120, an operation determiner 130, a pattern provider 135, a gravity acceleration direction determiner 140, and an angle.
  • the calculation unit 150, and the mounting position determination unit 160 is included.
  • the sensor unit 110 detects an acceleration signal on three axes (x-axis, y-axis, and z-axis) and outputs an acceleration signal on each axis.
  • the sensor unit 110 may include an inertial sensor.
  • Inertial sensors can be used to estimate motion in wearable devices.
  • Inertial sensors are six-axis sensors that measure angular velocity and acceleration.
  • the acceleration signal varies according to the position of the wearable device even with the same movement.
  • the mounting position which is a reference of the data, is important.
  • FIG. 2 is a view showing the direction of the acceleration signal according to the position of the wearable device mounted on the pet.
  • the axis in which the acceleration signal appears depending on the position where the wearable device is mounted on the pet. That is, the pattern of the acceleration signal may appear differently according to the mounting position of the wearable device.
  • the feature extractor 120 receives the sensor signals of the x, y, and z axes from the sensor unit 110, and the angular velocity signals of the x, y, and z axes and the x, y, and z axes from the three sensor signals. After extracting the acceleration signal of the axis, calculate the feature value for each axis.
  • the three axes of sensor signals may include three axes of angular velocity signals and three axes of acceleration signals.
  • the feature extractor 120 calculates a RSS (Root Sum Square) value of the angular velocity signal or the acceleration signal of each axis within a preset time interval or analyzes a standard deviation, an average value, and a principal component that can represent the corresponding time interval. (Principle Component Analysis) value and the like can be calculated.
  • RSS Root Sum Square
  • the motion determination unit 130 determines the motion of the pet wearing the necklace.
  • the operation determination unit 130 processes the feature value output from the feature extraction unit 120 by a classification algorithm to determine the operation.
  • the motion determination unit 130 may use various machine learning algorithms for motion determination.
  • the classification algorithm is, for example, a neural network, a support vector machine, a Bayesian network, a Naive Bayes classifier, a decision tree, k- K-nearest neighbor (KNN) approach, boosting, dynamic Bayesian network (DBN), hidden Markov Model (HMM), reinforcement learning, logistic regression, Genetic algorithms, and Gaussian processes.
  • the operation determining unit 130 determines the degree of similarity between the motion pattern learned by the machine learning algorithm and the actual sensor data pattern. To this end, the motion determination unit 130 receives the motion pattern learned by the machine learning algorithm from the pattern providing unit 135.
  • the pattern providing unit 135 stores operation patterns for a plurality of operations, and provides the stored operation patterns to the operation determination unit 130. Since learning a motion pattern by a machine learning algorithm requires a lot of time and resources, the motion pattern is learned in advance.
  • the motion determination unit 130 compares the sensor data pattern with the motion pattern learned by the machine learning algorithm, and determines which motion pattern the sensor data pattern corresponds to.
  • the gravity acceleration direction determination unit 140 analyzes the sensor signals of three axes of X, Y, and Z. For example, when the moving average as shown in Equation 1 is applied to the acceleration signal of each axis during the walking operation, only the DC component is detected by the filter effect, and the magnitude of the gravity acceleration is detected using the value of the DC component. Can be. Equation 1 shows a moving average filter equation. Moving average filter is a method of averaging only a certain number from recent data.
  • Equation 1 k is the k order of the data, n is the quantity of data to be averaged (for example, the interval of the walking pattern).
  • 3A to 3C are exemplary diagrams for describing acceleration data according to a mounting position of a wearable device that may be employed in the position estimation device of FIG. 1.
  • FIG. 3A illustrates acceleration data during walking behavior when the wearable device (including the sensor) is in position 1 of FIG. 2.
  • FIG. 3B illustrates acceleration data during walking behavior when the wearable device is in position 2 of FIG. 2.
  • 3C shows acceleration data during walking behavior when the wearable device is in position 3 of FIG. 2.
  • the moving average is indicated by a dotted line.
  • the direction of gravity acceleration can be detected according to the moving average indicated by the dotted lines in FIGS. 3A to 3C.
  • comparing the similarity between the pre-stored acceleration signals of the walking pattern and the acceleration signal of each axis it is possible to determine the degree of walking pattern for each axis. Similarity comparison, that is, the ratio of the gravitational acceleration of each axis can be obtained using the degree of walking pattern (hereinafter, referred to as walking level).
  • walking level the degree of walking pattern
  • 4A to 4C are exemplary views illustrating acceleration data in the same motion that may be employed in the position estimation apparatus of FIG. 1.
  • 4D is an exemplary diagram for describing a case where the acceleration data of FIGS. 4A to 4C are changed to different mounting positions.
  • FIG. 4A illustrates acceleration data in the same movement as when the wearable device is mounted at the position 1 of FIG. 2
  • FIG. 4B illustrates acceleration data in the same movement when the wearable device is mounted at the position 2 of FIG. 2.
  • 4C shows acceleration data in the same movement as when the wearable device is mounted at position 3 of FIG. 2.
  • FIG. 4D shows all the acceleration signals when the wearable device is mounted at the first to third positions. As shown in FIG. 4D, the shape of the acceleration signal measured in each axis varies depending on the mounting position of the wearable device. Accordingly, by obtaining the acceleration signals in each axis, it is possible to determine the direction of gravity acceleration.
  • the gravity acceleration direction determination unit 140 provides the determined gravity acceleration direction to the angle calculator 150.
  • FIG. 5 is a diagram for describing an angle extraction process with respect to the ground using gravity acceleration, which may be employed in the position estimation apparatus of FIG. 1.
  • the angle calculator 150 of the position estimation device may calculate an angle with the ground along the acceleration direction. That is, similar to the form of at least one of (a), (b), (c), and (d) shown in FIG. 5, the angle calculating unit 150 has an angle with the ground based on the gravity acceleration value of each axis. Can be calculated. This is represented as Equation 2 schematically.
  • Equation 2 above represents the inclination angle with respect to the x-axis, y-axis and z-axis, respectively, in the order described.
  • a X, OUT , A Y, OUT , A Z, OUT are acceleration values for three axes x, y and z output from the acceleration sensor, and ⁇ , ⁇ and ⁇ are the three axes x, y and z in FIG. Is the angle between
  • an angle with the ground may be calculated through an inverse tangent operation based on a ratio value of three axes of gravity acceleration through pattern comparison.
  • the mounting position determiner 160 may calculate a mounting position of the wearable device based on an angle with the ground provided from the angle calculator 150 and a gravity acceleration direction provided by the gravity acceleration direction determiner 140.
  • the mounting position determiner 160 may correct data obtained by estimating a position change of the device after the initial mounting position.
  • operation determination may be performed by requesting the owner to correct the device or by applying another algorithm learned for each mounting position.
  • FIG. 6 is a view showing an example of correcting the position of the wearable device in accordance with the angle with the ground in the position estimation device according to another embodiment of the present invention.
  • the mounting position determiner 160 corrects the position of the wearable device according to an angle with the ground provided from the angle calculator 150. do.
  • the mounting position determining unit 160 calculates mounting position information at the estimated rotation angle and utilizes the mounting position determination to determine an operation requiring a mounting position. For example, according to the mounting position information provided by the mounting position determining unit 160, it is possible to determine the lying, sleeping, sitting, lying down, jumping, and the like, which are the correcting motions of the pet.
  • the mounting position determiner 160 may calculate the position of the wearable device by obtaining an average value of positions of the wearable device periodically calculated as in Equation 3 below.
  • Equation 3 k means the k-th order.
  • the mounting position determiner 160 may determine the average value of the plurality of calculated positions as the position of the wearable device.
  • the mounting position determining unit 160 provides the operation determining unit 130 with information on the mounting position of the wearable device.
  • the operation determination unit 130 may determine the operation of the pet on the basis of the information on the mounting position of the wearable device provided from the mounting position determination unit 160.
  • the operation determiner 130 may calculate mounting position information at an estimated rotation angle and use the same to determine an operation requiring a mounting position. That is, the motion determination unit 130 may determine a stop motion, such as lying down, sleeping, sitting, lying down, jumping, and turning motion. In addition, the motion determination unit 130 may add directional (right, left) information to the pet movement by utilizing the position information (tilt angle) of the device.
  • FIG. 7 is a view showing a change in sensor detection value according to the position of the wearable device according to the present embodiment.
  • the gravity acceleration in the same direction is measured because the attitude of the pet is symmetrical even though the sensor is in a different position.
  • the position of the sensor can move from 1 to 2 in the lying posture. Therefore, in the present embodiment, by using the mounting position information to determine the motion of the data extracted by the wearable sensor, it is possible to extract the correct motion information regardless of the posture. In other words, by utilizing the angle information, the pet can be determined relatively accurately to the right, left, left or right.
  • FIG. 8 is a flowchart illustrating a method of estimating a position of a wearable device according to another exemplary embodiment of the present invention.
  • the position estimation apparatus using the position estimation method according to the present embodiment may first acquire sensor data (S610).
  • the location recommendation device may acquire a three-axis sensor signal by sensing the movement of the pet.
  • the position estimating apparatus extracts the angular velocity signals of the x-axis, the y-axis, and the Z-axis and the acceleration signals of the x-axis, the y-axis, and the Z-axis from the three-axis sensor signal in step S620, and then calculates feature values for each axis.
  • the feature value for each axis may be an RSS (root sum square) value of an angular velocity signal or an acceleration signal of each axis.
  • the position estimating apparatus may process the feature value by a classification algorithm to determine an operation. For example, the position estimating apparatus may determine the operation by comparing the degree of similarity between the motion pattern learned by the machine learning algorithm and the actual sensor data pattern.
  • the position estimating apparatus may determine whether the operation determined in operation S640 is a dynamic movement or a dynamic state. For example, the location estimating apparatus may determine whether the determined motion is a walking motion. When the walking motion is selected based on the walking motion, since the walking motion is generally performed in a predetermined pattern in the normal posture of the pet, which is a reference of the mounting position, the sensor data at this time can be effectively used for the position estimation of the present embodiment.
  • the position estimating apparatus obtains the degree of walking pattern for each axis based on the similarity between the three-axis sensor signal and the pre-stored walking pattern data in step S650, and based on the walking level corresponding to the degree of walking pattern.
  • the direction of acceleration can be extracted.
  • the position estimating apparatus may calculate an angle with the ground based on the magnitude of the gravity acceleration. Finally, the position estimating apparatus may calculate the mounting position of the wearable apparatus based on the angle with the ground and the gravity acceleration direction in step S670.
  • the mounting position of the wearable device can be inferred even during a walking pattern that is not stationary, thereby increasing the accuracy of the mounting position estimation.
  • the pet can extract information that runs, turns, or lies right or left.
  • the accuracy of the determination may be increased by applying an algorithm suitable for each situation.
  • the position estimation method and device of the wearable device of the present invention may also utilize angle information using the inertial sensor.
  • the extracted device mounting position information can be notified to the owner to help quickly intervene in the mounting position correction, or can be accurately performed by the self-calibration without the owner's intervention.
  • the method according to an embodiment of the present invention can be implemented in the form of program instructions that can be executed by various computer means and recorded in a computer readable medium.
  • the computer readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • the program instructions recorded on the media may be those specially designed and constructed for the purposes of the embodiments, or they may be of the kind well-known and available to those having skill in the computer software arts. Examples of program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
  • the wearable device mainly worn in the form of a necklace of the pet has been described with a focus on the form including all components, but the present invention is not limited to such a configuration, and the wearable device includes only a sensor,
  • the sensor data may be acquired by the computing device of the user to estimate the position of the wearable device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Theoretical Computer Science (AREA)
  • Physiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Navigation (AREA)

Abstract

웨어러블 장치의 위치를 추정하는 방법 및 이를 이용하는 장치가 개시된다. 본 발명의 일실시예에 따른 위치 추정 장치는 펫(pet)에 장착되는 웨어러블 장치의 장착 위치를 추정하는 위치 추정 장치에 있어서, 펫의 움직임을 센싱하여 3축 센서 신호를 출력하는 센서부와, 센서부로부터 출력된 3축 센서 신호로부터 x축, y축, 및 Z축의 각속도 신호 및 3축의 가속도 신호를 추출한 후, 기 설정된 시간구간 내의 각 축 별 특징값을 계산하는 특징 추출부와, 특징 추출부로부터 출력되는 특징값을 분류 알고리즘에 의해 처리하여 동작을 판별하는 동작 판별부와, 기계학습 알고리즘에 의해 학습된 동작패턴을 저장하는 패턴 제공부와, 판별된 동작의 기저장된 가속도 신호들을 필터링하거나 각 축의 가속도 신호를 비교하여 중력 가속도 방향을 판별하는 중력 가속도 방향 판별부와, 판별된 중력가속도 방향에 기초하여 지면과의 각도를 연산하는 각도 연산부 및 각도 연산부로부터 제공된 지면과의 각도 및 중력 가속도 방향 판별부로부터 제공된 중력 가속도 방향에 기초하여, 웨어러블 장치의 장착 위치를 산출하는 장착 위치 판별부를 포함한다.

Description

웨어러블 장치의 위치를 추정하는 방법 및 이를 이용하는 장치
본 발명은 웨어러블 장치의 위치를 추정하는 방법 및 장치에 관한 것으로, 보다 상세하게는, 애완동물 등의 타겟의 움직임에 따라 장착 위치가 가변될 수 있는 웨어러블 장치의 위치 추정 방법 및 이를 이용하는 장치에 관한 것이다.
최근 스마트폰과 함께 웨어러블 장치를 사용하는 추세가 증가하고 있다. 웨어러블 장치는 안경이나 시계, 의복과 같이 인체에 착용할 수 있는 컴퓨터를 의미한다. 그에 따라 웨어러블 장치는 언제 어디서나 쉽게 사용할 수 있으며, 착용이 편리하다. 웨어러블 장치는 주로 스마트 와치와 같이 시계의 형태와 같이 손목에 착용 하는 형태로 출시되고 있으며, 머리나 발목에 착용할 수 있는 형태로 출시되고도 있다.
이러한 웨어러블 장치는 애완동물 예컨대, 개, 고양이 등 애완동물(이하, 통칭하여 '펫'이라고 칭함)의 목줄에도 적용되고 있다. 펫(pets)용 웨어러블 장치는 펫의 운동 상태 또는 건강 상태를 체크하거나 펫의 위치를 제공하는 데 사용되고 있다.
펫의 운동 상태를 확인하기 위해서는 웨이러블 장치의 장착 위치가 특정되어야 한다. 웨어러블 장치의 장착 위치는 펫의 동작이나 상태를 판별하는데 이용된다. 특히, 관성 센서와 같은 동작인식 센서를 포함하는 웨어러블 장치는 관성 센서의 장착 위치를 기반으로 하여 상대적인 센서의 출력을 제공하기 때문에 웨어러블 장치의 장착 위치 정보가 무엇보다 중요하다. 이러한 관성 센서의 특징 때문에 보통은 장착 후에 초기 위치 보정 작업을 통해서 장착 초기값을 지정한다. 한편, 펫의 목줄에 적용된 웨어러블 장치는 초기 장착 시에 장치를 정위치에 착용시켜 주더라도 펫의 움직임(흔들기, 목 긁기, 옆으로 눕기)에 따라 장착 위치가 변하게 된다. 만일 웨어러블 장치의 장착 위치가 부정확하다면, 웨어러블 장치로부터 혹은 웨어러블 장치에서 측정한 위치 정보를 이용하여 정확한 운동 정보를 산출할 수 없다. 따라서, 정확한 웨어러블 장치의 장착 위치를 획득하는 것이 필요하다. 사람의 경우는 초기 장착 위치에서 웨어러블 장치가 이동한 것을 인지하여 초기 장착 위치로 장치 위치 보정을 스스로 수행 가능 하지만, 펫의 경우 스스로 초기 장착 위치로의 위치 보정을 스스로 수행할 수 없다. 이러한 관성 센서의 상대 좌표 문제를 해결하기 위하여 일반적으로는 지자기 센서를 추가하여 절대 좌표를 지정해줌으로써 문제를 해결한다. 하지만 자기적인 북극을 기준으로 방향을 감지하는 지자계 센서는 미량의 지구 자기장을 측정하여 센서의 방향 변화를 감지하는데 외부의 자기 신호에 민감하다는 단점을 가진다.
이러한 단점을 줄이기 위해서 사용 환경에서 사용 전에 보정을 수행하며 센서를 8자 형태로 움직이며 보정을 수행한다. 하지만 웨어러블 장치의 경우는 외부에 노출된 상태로 여러 장소에 이동하며 활용되는 특성상, 외부 자기장의 영향에 더 민감하다. 이를 위해 안정된 동작을 위하여 지자기 센서 보정에 대한 잦은 빈도가 요구되며 이러한 빈도는 웨어러블 장치의 절대좌표 정확도에 직접적으로 영향을 미친다.
본 발명의 일 측면은 지자계 센서 대신에 관성 센서를 이용하여 웨어러블 장치의 보정을 수행할 수 있는 웨어러블 장치의 위치를 추정하는 방법 및 이를 이용하는 장치를 제공한다.
본 발명의 일 측면에 따르면, 펫(pet)에 장착되는 웨어러블 장치의 장착 위치를 추정하는 위치 추정 장치에 있어서, 상기 펫의 움직임을 센싱하여 3축 센서 신호를 출력하는 센서부; 상기 센서부로부터 출력된 상기 3축 센서 신호로부터 x축, y축, 및 Z축의 각속도 신호 및 3축의 가속도 신호를 추출한 후, 기 설정된 시간구간 내의 상기 각 축 별 특징값을 계산하는 특징 추출부; 상기 특징 추출부로부터 출력되는 특징값을 분류 알고리즘에 의해 처리하여 동작을 판별하는 동작 판별부; 기계학습 알고리즘에 의해 학습된 동작패턴을 저장하는 패턴 제공부; 상기 판별된 동작의 기저장된 가속도 신호들을 필터링하거나 상기 각 축의 가속도 신호를 비교하여 중력 가속도 방향을 판별하는 중력 가속도 방향 판별부; 상기 판별된 중력가속도 방향에 기초하여 지면과의 각도를 연산하는 각도 연산부; 및 상기 각도 연산부로부터 제공된 지면과의 각도 및 상기 중력 가속도 방향 판별부로부터 제공된 중력 가속도 방향에 기초하여, 상기 웨어러블 장치의 장착 위치를 산출하는 장착 위치 판별부를 포함하는 위치 추정 장치가 제공될 수 있다.
또한, 상기 특징값은 상기 기 설정된 시간구간 내의 상기 각 축의 가속도 신호의 RSS(Root Sum Square) 값, 해당 시간 구간을 대표할 수 있는 표준편차, 평균값, 주성분 분석(Principle Component Analysis) 값 중 어느 하나를 포함할 수 있다.
또한, 상기 기계학습 알고리즘은, 뉴럴 네트워크(neural network), 서포트 벡터 머신(support vector machine), 베이지안 네트워크(Bayesian network), 나이브 베이즈 분류기(Naive Bayes classifier), 결정 트리(decision tree), k-최근접점(k-nearest neighbour; KNN) 접근법, 부스팅(boosting), 동적 베이지안 네 트워크(DBN), 은닉 마르코프 모델(Hidden Markov Model; HMM), 강화 학습(reinforcement learning), 로지스틱 회귀(logistic regression), 유전 알고리즘(genetic algorithm) 및 가우시안 프로세스(Gaussian process) 중 어느 하나 이상을 포함할 수 있다.
또한, 상기 동작 판별부는 상기 기계학습 알고리즘에 의해 학습된 동작패턴과 실제 데이터 패턴의 유사성 정도를 비교하여 판단함으로써 동작을 판별할 수 있다.
또한, 상기 장착 위치 판별부는 수학식 1에 따라 주기적으로 산출되는 웨어러블 장치의 위치들의 평균값을 구하여 웨어러블 장치의 위치로 판별할 수 있다.
[수학식 1]
Figure PCTKR2018000869-appb-I000001
수학식 1에서 k는 데이터의 k 번 순서이고, n은 평균을 내고자 하는 데이터의 수량이다.
본 발명의 다른 측면에 따르면, 펫(pet)에 장착되는 웨어러블 장치의 장착 위치를 추정하는 위치 추정 방법에 있어서, 상기 펫의 움직임을 센싱하여 3축 센서 신호를 획득하는 단계; 상기 3축 센서 신호로부터 x축, y축, 및 Z축의 각속도 신호 및 x축, y축, 및 Z축의 가속도 신호를 추출한 후, 기 설정된 시간구간 내의 상기 각 축 별 특징값을 계산하는 단계; 상기 특징값을 분류 알고리즘에 의해 처리하여 동작을 판별하는 단계; 상기 판별된 동작의 기저장된 가속도 신호들과 상기 각 축의 가속도 신호를 비교하여 중력 가속도 방향을 판별하는 단계; 상기 판별된 중력가속도 방향에 기초하여 지면과의 각도를 연산하는 단계; 및 상기 연산된 지면과의 각도 및 상기 판별된 중력 가속도 방향에 기초하여, 상기 웨어러블 장치의 장착 위치를 산출하는 단계를 포함하는 위치 추정 방법을 제공할 수 있다.
또한, 상기 특징값은 상기 기 설정된 시간구간 내의 상기 각 축의 가속도 신호의 RSS(Root Sum Square) 값, 해당 시간 구간을 대표할 수 있는 표준편차, 평균값, 주성분 분석(Principle Component Analysis) 값 중 어느 하나를 포함할 수 있다.
또한, 상기 동작을 판별하는 단계 전에 기계학습 알고리즘에 의해 학습된 동작패턴을 저장하는 단계를 더 포함할 수 있다.
또한, 상기 동작을 판별하는 단계는 상기 기계학습 알고리즘에 의해 학습된 동작패턴과 실제 데이터 패턴의 유사성 정도를 비교하여 판단함으로써 동작을 판별하는 단계를 포함할 수 있다.
또한, 상기 장착 위치를 산출하는 단계는 수학식 1에 따라 주기적으로 산출되는 웨어러블 장치의 위치들의 평균값을 구하여 웨어러블 장치의 위치를 결정할 수 있다.
[수학식 1]
Figure PCTKR2018000869-appb-I000002
수학식 1에서 k는 데이터의 k 번 순서이고, n은 평균을 내고자 하는 데이터의 수량이다.
본 발명의 또 다른 측면에 따르면, 펫에 장착되는 웨어러블 장치의 장착 위치를 추정하는 위치 추정 방법에 있어서, 상기 펫의 움직임을 센싱하여 3축 센서 신호를 획득하는 단계; 상기 3축 센서 신호로부터 x축, y축, 및 Z축의 각속도 신호 및 x축, y축 및 z축의 가속도 신호를 추출한 후, 기 설정된 시간구간 내의 상기 각 축 별 특징값을 계산하는 단계; 상기 특징값을 분류 알고리즘에 의해 처리하여 동작을 판별하는 단계; 상기 3축 센서 신호와 기저장된 걷기 패턴 데이터의 유사성에 기초하여 각 축 별의 걷기 패턴이 실린 정도를 획득하고, 걷기 패턴이 실린 정도에 대응하는 걷기 레벨을 토대로 중력 가속도의 방향을 판별하는 단계; 상기 판별된 중력가속도 방향에 기초하여 지면과의 각도를 연산하는 단계; 및 상기 연산된 지면과의 각도 및 상기 판별된 중력 가속도 방향에 기초하여, 상기 웨어러블 장치의 장착 위치를 산출하는 단계를 포함하는 웨어러블 장치의 위치 추정 방법이 제공될 수 있다.
본 발명의 실시예에 의하면, 펫이 웨어러블 장치를 착용 후 펫의 움직임에 따라 웨어러블 장치의 장착 위치가 변동하는 경우에도 동작 패턴을 인식하여 웨어러블 장치의 장착 위치에 대한 보정을 효과적으로 수행할 수 있다.
또한, 웨어러블 장치의 센서에서 추출한 데이터를 효과적으로 보정하고 보정된 데이터에 기초하여 펫의 동작 판별을 수행함으로써 펫에 대한 정확한 동작 정보나 상태 정보의 추출이 가능하다.
또한, 웨어러블 장치의 각 위치 별로 동작 판별 알고리즘을 만들어 사용할 수 있고, 그에 의해 웨어러블 장치의 변동된 장착 위치 및 해당 상황 각각에 맞는 알고리즘을 적용하여 펫의 상태 또는 동작 판별의 정확도를 높일 수 있다.
또한, 기존에는 관성 센서로 방향성을 알 수 없기에 그 크기만으로 특징을 추출하여 움직임을 추정하였으나, 본 발명의 실시예는 관성 센서를 이용한 각도 정보를 활용하며, 이를 통해 활동량뿐만 아니라 자세 정보를 획득할 수 있다. 즉, 펫의 동작의 방향성을 알 수 있기 때문에 펫이 오른쪽이나 왼쪽으로 뛰거나 돌거나 누운 정보를 추출할 수 있고, 이를 통해 주인의 개입 없이도 자체 보정을 통해 펫의 건강 상태나 동작 상태를 정확하게 판별할 수 있는 장점이 있다.
또한, 펫에 대하여 추출한 정보를 주인에게 알려주고, 필요한 경우, 추출한 정보에 기초한 경고 메시지를 주인에게 전달하여 펫을 적극적으로 돌볼 수 있도록 할 수 있다.
도 1은 본 발명의 일 실시예에 따른 웨어러블 장치의 위치 추정 장치에 대한 블록도이다.
도 2는 도 1의 위치 추정 장치에 채용할 수 있는 웨어러블 장치의 위치에 따른 가속도 신호의 방향을 추정하는 과정을 설명하기 위한 예시도이다.
도 3a 내지 3c는 도 1의 위치 추정 장치에 채용할 수 있는 웨어러블 장치의 장착 위치에 따른 가속도 데이터를 설명하기 위한 예시도들이다.
도 4a 내지 4c는 도 1의 위치 추정 장치에 채용할 수 있는 웨어러블 장치의 장착 위치에 따른 동일한 움직임에서의 가속도 데이터를 나타낸 예시도들이다.
도 4d는 도 4a 내지 도 4c의 가속도 데이터를 서로 다른 장착 위치들로 변화한 경우를 설명하기 위한 예시도이다.
도 5는 도 1의 위치 추정 장치에 채용할 수 있는, 중력 가속도를 이용한 지면과의 각도 추출 과정을 설명하기 위한 도면이다.
도 6은 본 발명의 일 실시예에 따라 지면과의 각도에 따라 웨어러블 장치의 위치를 보정하는 예를 나타낸 도면이다.
도 7은 웨어러블 장치의 위치에 따른 센서 감지값의 변화를 나타낸 도면이다.
도 8은 본 발명의 실시예에 따른 웨어러블 장치의 장착 위치 추정 방법의 흐름도이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 한다. 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1은 본 발명의 일실시예에 따른 웨어러블 장치의 위치 추정 장치에 대한 블록도이다.
도 1을 참조하면, 위치 추정 장치(100)는 센서부(110), 특징 추출부(120), 동작 판별부(130), 패턴 제공부(135), 중력 가속도 방향 판별부(140), 각도 연산부(150), 및 장착 위치 판별부(160)를 포함한다.
센서부(110)는 3축 (x축, y축, z축) 상에서의 가속도 신호를 감지하여 각 축에서의 가속도 신호를 출력한다. 이를 위해, 센서부(110)는 관성 센서를 포함할 수 있다. 웨어러블 장치에서 움직임을 추정하는 데에는 관성 센서를 사용할 수 있다. 관성 센서는 각속도와 가속도를 측정하는 6축 센서를 말한다.
센서부(110)는 3축을 기준으로 데이터를 수집하기 때문에, 같은 움직임이라도 웨어러블 장치의 위치에 따라 가속도 신호가 달라진다. 그리고, 각속도와 가속도 데이터를 이용하여 펫의 움직임을 추정하기 위해서는 데이터의 기준이 되는 장착 위치가 중요하다.
도 2는 펫에 장착된 웨어러블 장치의 위치에 따른 가속도 신호의 방향을 나타낸 도면이다.
도 2를 참조하면, 펫에 웨어러블 장치가 장착되는 위치에 따라 가속도 신호가 나타나는 축이 달라지는 것을 알 수 있다. 즉, 웨어러블 장치의 장착 위치에 따라 가속도 신호의 패턴이 각각 다르게 나타날 수 있다.
특징 추출부(120)는 센서부(110)로부터 x축, y축 및 z축의 센서 신호를 수신하고, 3축의 센서 신호로부터 x축, y축 및 Z축의 각속도 신호 및 x축, y축 및 Z축의 가속도 신호를 추출한 후 각 축 별 특징값을 계산한다. 3축의 센서 신호를 3축의 각속도 신호와 3축의 가속도 신호를 포함할 수 있다.
구체적으로, 특징 추출부(120)는 기 설정된 시간구간 내의 상기 각 축의 각속도 신호 또는 가속도 신호의 RSS(Root Sum Square) 값을 산출하거나, 해당 시간 구간을 대표할 수 있는 표준편차, 평균값, 주성분 분석(Principle Component Analysis) 값 등을 산출할 수 있다.
동작 판별부(130)는 목걸이를 착용한 펫이 움직이면 그 동작을 판별한다. 또한, 동작 판별부(130)는 상기 특징 추출부(120)로부터 출력되는 특징값을 분류 알고리즘에 의해 처리하여 동작을 판별한다. 이를 위해, 동작 판별부(130)는 동작 판별을 위해 다양한 기계학습 알고리즘을 사용할 수 있다. 상기 분류 알고리즘은 예를 들면, 뉴럴 네트워크(neural network), 서포트 벡터 머신(support vector machine), 베이지안 네트워크(Bayesian network), 나이브 베이즈 분류기(Naive Bayes classifier), 결정 트리(decision tree), k-최근접점(k-nearest neighbour; KNN) 접근법, 부스팅(boosting), 동적 베이지안 네 트워크(DBN), 은닉 마르코프 모델(Hidden Markov Model; HMM), 강화 학습(reinforcement learning), 로지스틱 회귀(logistic regression), 유전 알고리즘(genetic algorithm), 및 가우시안 프로세스(Gaussian process)를 포함할 수 있다.
상세히 설명하면, 동작 판별부(130)는 기계학습 알고리즘에 의해 학습된 동작패턴과 실제 센서 데이터 패턴의 유사성 정도를 비교하여 판단한다. 이를 위해, 동작 판별부(130)는 패턴 제공부(135)로부터 기계학습 알고리즘에 의해 학습된 동작패턴을 제공받는다.
패턴 제공부(135)는 복수개의 동작들에 대한 동작 패턴을 저장하며, 동작 판별부(130)에 상기 저장된 동작 패턴을 제공한다. 기계학습 알고리즘에 의해 동작 패턴을 학습하는 데에는 많은 시간 및 자원이 필요하므로 미리 동작 패턴을 학습하여 둔다.
그에 따라, 동작 판별부(130)는 센서 데이터 패턴을 기계학습 알고리즘에 의해 학습된 동작 패턴과 비교하여, 센서 데이터 패턴이 어떤 동작 패턴에 대응하는 지를 판별한다.
중력 가속도 방향 판별부(140)는 X, Y, 및 Z의 3축의 센서 신호를 분석한다. 일례로, 걷기 동작 수행 중 각 축의 가속도 신호에 하기 수학식 1에 나타낸 바와 같은 이동평균을 적용하면 필터 효과로 DC 성분만이 검출되는데, 이 DC 성분의 값을 이용하여 중력가속도의 크기를 검출할 수 있다. 하기 수학식 1은 이동평균필터수식을 나타낸다. 이동평균필터란 최근 데이터로부터 일정 갯수 만큼으로만 평균을 내는 방식이다.
Figure PCTKR2018000869-appb-M000001
수학식 1에서 k는 데이터의 k 번 순서이고, n은 평균을 내고자 하는 데이터의 수량(예를 들면, 걷기 패턴의 구간)이다.
도 3a 내지 도 3c는 도 1의 위치 추정 장치에 채용할 수 있는 웨어러블 장치의 장착 위치에 따른 가속도 데이터를 설명하기 위한 예시도들이다.
도 3a는 웨어러블 장치(센서 포함)가 도 2의 1번 위치에 있는 경우로서 걷기 행동 중의 가속도 데이터를 나타낸다. 도 3b는 웨어러블 장치가 도 2의 2번 위치에 있는 경우로서 걷기 행동 중의 가속도 데이터를 나타낸다. 또한, 도 3c는 웨어러블 장치가 도 2의 3번 위치에 있는 경우로서 걷기 행동 중의 가속도 데이터를 나타낸다.
도 3a 내지 및 도 3c에서 이동평균은 점선으로 나타나 있다. 도 3a 내지 도 3c에서 점선으로 나타난 이동평균에 따라 중력 가속도의 방향을 검출할 수 있다.
구현에 따라서, 걷기 패턴의 기저장된 가속도 신호들과 각 축의 가속도 신호와의 유사성을 비교하면 각 축 별로 걷기 패턴이 실린 정도를 알 수 있다. 유사성 비교 즉, 걷기 패턴이 실린 정도(이하, 걷기 레벨이라 함)를 이용하여 각 축의 중력가속도의 크기에 대한 비율을 획득할 수 있다. 이러한 중력 가속도 방향 판별부(140)의 동작을 도 3을 참조하여 설명하기로 한다.
도 4a 내지 4c는 도 1의 위치 추정 장치에 채용할 수 있는 동일한 움직임에서의 가속도 데이터를 나타낸 예시도들이다. 도 4d는 도 4a 내지 도 4c의 가속도 데이터를 서로 다른 장착 위치들로 변화한 경우를 설명하기 위한 예시도이다.
도 4a는 웨어러블 장치가 도 2의 1번 위치에 장착된 경우로서 동일한 움직임에서의 가속도 데이터를 나타내고, 도 4b는 웨어러블 장치가 도 2의 2번 위치에 장착된 경우로서 동일한 움직임에서의 가속도 데이터를 나타내고, 도 4c는 웨어러블 장치가 도 2의 3번 위치에 장착된 경우로서 동일한 움직임에서의 가속도 데이터를 나타낸다.
도 4a 내지 도 4c에 도시한 바와 같이, 2번 위치에서의 가속도 신호가 y축에 많이 있으므로, 동일한 움직임에서 2번 위치의 가속도 신호가 지구 중심축을 가장 정확하게 가리키고 있음을 알 수 있다.
도 4d는 웨어러블 장치가 1번 내지 3번 위치에 장착된 경우의 가속도 신호들을 모두 나타낸다. 도 4d에 나타낸 바와 같이, 웨이러블 장치의 장착 위치에 따라 각 축에서 측정되는 가속도 신호의 형태가 달라진다. 그에 따라, 각 축에서의 가속도 신호를 획득함으로써, 중력가속도 방향을 판별할 수 있다.
중력 가속도 방향 판별부(140)는 판별된 중력가속도 방향을 각도 연산부(150)에 제공한다.
도 5는 도 1의 위치 추정 장치에 채용할 수 있는, 중력 가속도를 이용한 지면과의 각도 추출 과정을 설명하기 위한 도면이다.
본 실시예에 따른 위치 추정 장치의 각도 연산부(150)는 가속도 방향에 따른 지면과의 각도를 연산할 수 있다. 즉, 도 5에 도시한 (a), (b), (c) 및 (d) 중 적어도 어느 하나의 형태와 유사하게, 각도 연산부(150)는 각 축의 중력가속도 값에 기초하여 지면과의 각도를 연산할 수 있다. 이를 모식적으로 나타내면 수학식 2와 같다.
Figure PCTKR2018000869-appb-M000002
위의 수학식 2는 기재된 순서대로 x축, y축 및 z축에 대한 기울기(inclination) 각도를 각각 나타낸다.
AX,OUT, AY,OUT, AZ,OUT 는 가속도센서에서 출력되는 x, y, z 3축에 대한 가속도값이고, θ, Ψ, φ 는 도 5에서의 x, y, z 3축과 이루는 각도이다.
또한, 다른 실시예에서는 패턴 비교를 통해 중력가속도 3축의 비율 값에 기초하여 역탄젠트 연산을 통해 지면과의 각도를 연산할 수 있다.
장착 위치 판별부(160)는 각도 연산부(150)으로부터 제공된 지면과의 각도 및 중력 가속도 방향 판별부(140)에서 제공된 중력 가속도 방향에 기초하여, 웨어러블 장치의 장착 위치를 산출할 수 있다.
구체적으로, 장착 위치 판별부(160)는 초기 장착 위치를 기준점으로 이후 장치의 위치 변동을 추정해 얻어진 데이터를 보정해 줄 수 있다.
또한, 구현에 따라서, 주인에게 장치 보정을 요청하거나 각 장착 위치별로 학습되어 있는 다른 알고리즘을 적용하여 동작 판별을 수행할 수 있다.
도 6은 본 발명의 다른 실시예에 따른 위치 추정 장치에서 지면과의 각도에 따라 웨어러블 장치의 위치를 보정하는 예를 나타낸 도면이다.
도 6을 참조하면, 장착 위치 판별부(160)는 웨어러블 장치가 1번의 초기 위치에서 2번의 위치로 변동된 경우, 상기 각도 연산부(150)으로부터 제공된 지면과의 각도에 따라 웨어러블 장치의 위치를 보정한다.
장착 위치 판별부(160)는 추정한 회전각으로 장착 위치 정보를 계산하여 장착 위치가 필요한 동작 판별에 활용한다. 예컨대, 장착 위치 판별부(160)에서 제공된 장착 위치 정보에 따라, 펫의 정정지 동작인 눕기, 자기, 앉기, 엎드리기, 점프하기, 돌기 등을 판별할 수 있다.
다른 실시예에 따라, 장착 위치 판별부(160)는 주기적으로 산출되는 웨어러블 장치의 위치들의 평균값을 하기 수학식 3과 같이 구하여 웨어러블 장치의 위치를 산출할 수 있다.
Figure PCTKR2018000869-appb-M000003
수학식 3에서 k는 k번째 순서를 의미한다.
이와 같이, 장착 위치 판별부(160)는 복수개의 산출된 위치들의 평균값을 웨어러블 장치의 위치로 결정할 수 있다.
또한, 장착 위치 판별부(160)는 웨어러블 장치의 장착 위치에 대한 정보를 동작 판별부(130)에 제공한다. 또한, 동작 판별부(130)는 장착 위치 판별부(160)로부터 제공된 웨어러블 장치의 장착 위치에 대한 정보에 기초하여, 펫의 동작을 판별할 수 있다.
다른 실시에에 따라, 동작 판별부(130)는 추정한 회전각으로 장착 위치 정보를 계산하여 장착 위치가 필요한 동작 판별에 활용할 수 있다. 즉, 동작 판별부(130)는 정지 동작인 눕기, 자기, 앉기, 엎드리기, 점프하기, 돌기 동작 등을 판별할 수 있다. 또한, 동작 판별부(130)는 장치의 위치 정보(기울어짐 각도)를 활용하여 펫 움직임에 방향성(오른쪽, 왼쪽) 정보를 추가할 수 있다.
도 7은 본 실시예에 따른 웨어러블 장치의 위치에 따른 센서 감지값의 변화를 나타낸 도면이다.
도 7을 참조하면, 센서가 다른 위치에 있음에도 불구하고 펫의 자세가 대칭되기 때문에 같은 방향의 중력가속도가 측정됨을 알 수 있다. 물론, 실제로는 정자세와 달리 누운 자세에서는 센서의 위치가 1번에서 2번으로 이동할 수 있다. 따라서 본 실시예에서는 장착 위치 정보를 웨어러블 센서에서 추출하는 데이터의 동작 판별에 활용함으로써 자세에 상관없이 정확한 동작 정보를 추출하는 것이 가능하다. 즉, 각도 정보를 활용함으로써, 펫이 오른쪽이나 왼쪽으로 뛰어나가거나 돌거나 누운 정보를 상대적으로 정확하게 판단할 수 있다.
도 8은 본 발명의 다른 실시예에 따른 웨어러블 장치의 위치 추정 방법의 흐름도이다.
도 8을 참조하면, 본 실시예에 따른 위치 추정 방법을 이용하는 위치 추정 장치는 먼저 센서 데이터를 획득할 수 있다(S610). 예컨대, 위치 추장 장치는 펫의 움직임을 센싱하여 3축 센서 신호를 획득할 수 있다.
다음, 위치 추정 장치는 단계 S620에서 3축 센서 신호로부터 x축, y축 및 Z축의 각속도 신호 및 x축, y축 및 Z축의 가속도 신호를 추출한 후, 각 축 별 특징값을 계산할 수 있다. 각 축 별 특징값은 각 축의 각속도 신호 또는 가속도 신호의 RSS(Root Sum Square) 값이 될 수 있다.
다음, 위치 추정 장치는 단계 S630에서 상기 특징값을 분류 알고리즘에 의해 처리하여 동작을 판별할 수 있다. 일례로, 위치 추정 장치는 기계학습 알고리즘에 의해 학습된 동작 패턴과 실제 센서 데이터 패턴의 유사성 정도를 비교하여 동작을 판단할 수 있다.
다음, 위치 추정 장치는 단계 S640에서 판별된 동작이 동적 움직임 혹은 동적 상태인지를 판단할 수 있다. 일례로, 위치 추정 장치는 판별된 동작이 걷기 동작인지를 판단할 수 있다. 걷기 동작을 기준으로 선택하면, 걷기 동작이 대게 장착 위치의 기준이 되는 펫의 정자세에서 일정한 패턴으로 수행되기 때문에 이때의 센서 데이터를 본 실시예의 위치 추정에 효과적으로 이용할 수 있다.
다음, 위치 추정 장치는 단계 S650에서 3축 센서 신호와 기저장된 걷기 패턴 데이터의 유사성에 기초하여 각 축 별의 걷기 패턴이 실린 정도를 획득하고, 걷기 패턴이 실린 정도에 대응하는 걷기 레벨을 토대로 중력 가속도의 방향을 추출할 수 있다.
다음, 위치 추정 장치는 단계 S660에서 상기 중력가속도 크기에 기초하여 지면과의 각도를 연산할 수 있다. 그리고, 최종적으로, 위치 추정 장치는 단계 S670에서 지면과의 각도 및 상기 중력 가속도 방향에 기초하여 웨어러블 장치의 장착 위치를 산출할 수 있다.
전술한 구성(단계들)에 의하면, 펫이 웨어러블 장치를 처음 착용 후 정지상태가 아닌 걷기 패턴 중에도 웨어러블 장치의 장착 위치를 유추하여 장착 위치 추정의 정확도를 높일 수 있다.
또한, 장착 위치 정보를 웨어러블 센서에서 추출하는 데이터의 동작 판별에 활용함으로써 정확한 동작 정보 추출이 가능하다. 즉 각도 정보를 활용할 수 있다면 펫이 오른쪽이나 왼쪽으로 뛰거나 돌거나 누운 정보를 추출할 수 있다.
또한, 각 장착 위치 별로 동작 판별 알고리즘을 만든다면 각 상황에 맞는 알고리즘을 적용하여 판별의 정확도를 높일 수 있다.
또한, 종래에는 관성 센서로 방향성을 알 수 없기에 그 크기만으로 특징을 추출하여 움직임을 추정하는 반면, 본 발명의 웨어러블 장치의 위치 추정 방법 및 장치는 관성 센서를 이용하여 각도 정보도 활용할 수 있다.
또한, 추출한 장치 장착 위치 정보는 주인에게 알려주어 빠르게 장착 위치 보정에 개입할 수 있게 도와주거나 주인의 개입 없이도 자체 보정을 통해 정확하게 동작판별을 수행할 수 있도록 할 수 있다.
본 발명의 실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다.
전술한 실시예에서는 주로 펫의 목걸이 형태로 착용되는 웨어러블 장치가 모든 구성요소를 포함하는 형태를 중심으로 설명하였지만, 본 발명은 그러한 구성으로 한정되지 않고, 웨어러블 장치가 센서만을 포함하고, 사용자 단말이나 사용자의 컴퓨팅 장치에서 센서 데이터를 획득하여 웨어러블 장치의 위치를 추정하도록 구현될 수 있다.
상기의 본 발명의 상세한 설명에서는 첨부된 도면에 의해 참조되는 바람직한 실시 예를 중심으로 구체적으로 기술되었으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형 가능함은 물론이다. 그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 안되며 후술하는 청구범위뿐 아니라 이 청구범위와 균등한 것들에 의해서 정해져야 한다.

Claims (11)

  1. 펫(pet)에 장착되는 웨어러블 장치의 장착 위치를 추정하는 위치 추정 장치에 있어서,
    상기 펫의 움직임을 센싱하여 3축 센서 신호를 출력하는 센서부;
    상기 센서부로부터 출력된 상기 3축 센서 신호로부터 x축, y축, 및 Z축의 각속도 신호 및 3축의 가속도 신호를 추출한 후, 기 설정된 시간구간 내의 상기 각 축 별 특징값을 계산하는 특징 추출부;
    상기 특징 추출부로부터 출력되는 특징값을 분류 알고리즘에 의해 처리하여 동작을 판별하는 동작 판별부;
    기계학습 알고리즘에 의해 학습된 동작패턴을 저장하는 패턴 제공부;
    상기 판별된 동작의 기저장된 가속도 신호들을 필터링하거나 상기 각 축의 가속도 신호를 비교하여 중력 가속도 방향을 판별하는 중력 가속도 방향 판별부;
    상기 판별된 중력가속도 방향에 기초하여 지면과의 각도를 연산하는 각도 연산부; 및
    상기 각도 연산부로부터 제공된 지면과의 각도 및 상기 중력 가속도 방향 판별부로부터 제공된 중력 가속도 방향에 기초하여, 상기 웨어러블 장치의 장착 위치를 산출하는 장착 위치 판별부를 포함하는 위치 추정 장치.
  2. 제1항에 있어서,
    상기 특징값은 상기 기 설정된 시간구간 내의 상기 각 축의 가속도 신호의 RSS(Root Sum Square) 값, 해당 시간 구간을 대표할 수 있는 표준편차, 평균값, 주성분 분석(Principle Component Analysis) 값 중 어느 하나를 포함하는 위치 추정 장치.
  3. 제1항에 있어서,
    상기 기계학습 알고리즘은, 뉴럴 네트워크(neural network), 서포트 벡터 머신(support vector machine), 베이지안 네트워크(Bayesian network), 나이브 베이즈 분류기(Naive Bayes classifier), 결정 트리(decision tree), k-최근접점(k-nearest neighbour; KNN) 접근법, 부스팅(boosting), 동적 베이지안 네 트워크(DBN), 은닉 마르코프 모델(Hidden Markov Model; HMM), 강화 학습(reinforcement learning), 로지스틱 회귀(logistic regression), 유전 알고리즘(genetic algorithm) 및 가우시안 프로세스(Gaussian process) 중 어느 하나 이상을 포함하는 위치 추정 장치.
  4. 제1항에 있어서,
    상기 동작 판별부는 상기 기계학습 알고리즘에 의해 학습된 동작패턴과 실제 데이터 패턴의 유사성 정도를 비교하여 판단함으로써 동작을 판별하는 위치 추정 장치.
  5. 제1항에 있어서,
    상기 장착 위치 판별부는 수학식 1에 따라 주기적으로 산출되는 웨어러블 장치의 위치들의 평균값을 구하여 웨어러블 장치의 위치로 판별하는 위치 추정 장치.
    [수학식 1]
    Figure PCTKR2018000869-appb-I000003
    수학식 1에서 k는 데이터의 k 번 순서이고, n은 평균을 내고자 하는 데이터의 수량이다.
  6. 펫(pet)에 장착되는 웨어러블 장치의 장착 위치를 추정하는 위치 추정 방법에 있어서,
    상기 펫의 움직임을 센싱하여 3축 센서 신호를 획득하는 단계;
    상기 3축 센서 신호로부터 x축, y축, 및 Z축의 각속도 신호 및 x축, y축, 및 Z축의 가속도 신호를 추출한 후, 기 설정된 시간구간 내의 상기 각 축 별 특징값을 계산하는 단계;
    상기 특징값을 분류 알고리즘에 의해 처리하여 동작을 판별하는 단계;
    상기 판별된 동작의 기저장된 가속도 신호들과 상기 각 축의 가속도 신호를 비교하여 중력 가속도 방향을 판별하는 단계;
    상기 판별된 중력가속도 방향에 기초하여 지면과의 각도를 연산하는 단계; 및
    상기 연산된 지면과의 각도 및 상기 판별된 중력 가속도 방향에 기초하여, 상기 웨어러블 장치의 장착 위치를 산출하는 단계를 포함하는 위치 추정 방법.
  7. 제6항에 있어서,
    상기 특징값은 상기 기 설정된 시간구간 내의 상기 각 축의 가속도 신호의 RSS(Root Sum Square) 값, 해당 시간 구간을 대표할 수 있는 표준편차, 평균값, 주성분 분석(Principle Component Analysis) 값 중 어느 하나를 포함하는 위치 추정 방법.
  8. 제6항에 있어서,
    상기 동작을 판별하는 단계 전에 기계학습 알고리즘에 의해 학습된 동작패턴을 저장하는 단계를 더 포함하는 위치 추정 방법.
  9. 제8항에 있어서,
    상기 동작을 판별하는 단계는 상기 기계학습 알고리즘에 의해 학습된 동작패턴과 실제 데이터 패턴의 유사성 정도를 비교하여 판단함으로써 동작을 판별하는 단계를 포함하는 위치 추정 방법.
  10. 제6항에 있어서,
    상기 장착 위치를 산출하는 단계는 수학식 1에 따라 주기적으로 산출되는 웨어러블 장치의 위치들의 평균값을 구하여 웨어러블 장치의 위치를 결정하는 위치 추정 방법.
    [수학식 1]
    Figure PCTKR2018000869-appb-I000004
    수학식 1에서 k는 데이터의 k 번 순서이고, n은 평균을 내고자 하는 데이터의 수량이다.
  11. 펫에 장착되는 웨어러블 장치의 장착 위치를 추정하는 위치 추정 방법에 있어서,
    상기 펫의 움직임을 센싱하여 3축 센서 신호를 획득하는 단계;
    상기 3축 센서 신호로부터 x축, y축, 및 Z축의 각속도 신호 및 x축, y축 및 z축의 가속도 신호를 추출한 후, 기 설정된 시간구간 내의 상기 각 축 별 특징값을 계산하는 단계;
    상기 특징값을 분류 알고리즘에 의해 처리하여 동작을 판별하는 단계;
    상기 3축 센서 신호와 기저장된 걷기 패턴 데이터의 유사성에 기초하여 각 축 별의 걷기 패턴이 실린 정도를 획득하고, 걷기 패턴이 실린 정도에 대응하는 걷기 레벨을 토대로 중력 가속도의 방향을 판별하는 단계;
    상기 판별된 중력가속도 방향에 기초하여 지면과의 각도를 연산하는 단계; 및
    상기 연산된 지면과의 각도 및 상기 판별된 중력 가속도 방향에 기초하여, 상기 웨어러블 장치의 장착 위치를 산출하는 단계를 포함하는 웨어러블 장치의 위치 추정 방법.
PCT/KR2018/000869 2017-01-20 2018-01-18 웨어러블 장치의 위치를 추정하는 방법 및 이를 이용하는 장치 WO2018135886A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0009591 2017-01-20
KR1020170009591A KR101941604B1 (ko) 2017-01-20 2017-01-20 웨어러블 장치의 위치를 추정하는 방법 및 이를 이용하는 장치

Publications (2)

Publication Number Publication Date
WO2018135886A2 true WO2018135886A2 (ko) 2018-07-26
WO2018135886A3 WO2018135886A3 (ko) 2018-09-27

Family

ID=62908181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000869 WO2018135886A2 (ko) 2017-01-20 2018-01-18 웨어러블 장치의 위치를 추정하는 방법 및 이를 이용하는 장치

Country Status (2)

Country Link
KR (1) KR101941604B1 (ko)
WO (1) WO2018135886A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112130678A (zh) * 2020-09-23 2020-12-25 深圳市爱都科技有限公司 一种手臂放下识别方法及可穿戴终端

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020246713A1 (ko) * 2019-06-03 2020-12-10 주식회사 바딧 사용자의 특정 동작을 통해 센서 데이터를 보정하는 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체
KR102176769B1 (ko) * 2019-06-03 2020-11-09 주식회사 바딧 사용자의 행동 특징을 기반으로 센서 데이터를 보정하는 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체
KR102567459B1 (ko) 2021-03-09 2023-08-16 우주라컴퍼니 주식회사 반려동물의 사냥 본능 유발형 놀이식 디지털 헬스케어 장치 및 그의 제어방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100455286B1 (ko) * 2002-01-11 2004-11-06 삼성전자주식회사 생리신호획득 및 해석을 이용한 동물의 상태 파악 방법 및장치
JP4243684B2 (ja) * 2003-10-07 2009-03-25 独立行政法人産業技術総合研究所 歩行動作検出処理装置および歩行動作検出処理方法
JP2011044787A (ja) * 2009-08-19 2011-03-03 Sric Corp 動物行動管理装置、動物行動管理方法及びそのプログラム
KR101956173B1 (ko) * 2012-03-26 2019-03-08 삼성전자주식회사 3차원 위치/방향 추정 시스템의 보정 장치 및 방법
KR20160108491A (ko) 2014-01-31 2016-09-19 애플 인크. 웨어러블 디바이스의 착용 의존적 동작

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112130678A (zh) * 2020-09-23 2020-12-25 深圳市爱都科技有限公司 一种手臂放下识别方法及可穿戴终端

Also Published As

Publication number Publication date
WO2018135886A3 (ko) 2018-09-27
KR101941604B1 (ko) 2019-01-24
KR20180085916A (ko) 2018-07-30

Similar Documents

Publication Publication Date Title
WO2018135886A2 (ko) 웨어러블 장치의 위치를 추정하는 방법 및 이를 이용하는 장치
Sabatini Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing
Yan et al. Ronin: Robust neural inertial navigation in the wild: Benchmark, evaluations, and new methods
US8758275B2 (en) Moving body posture angle processing device
US9804189B2 (en) Upper body motion measurement system and upper body motion measurement method
JP5028751B2 (ja) 行動認識装置
US9599634B2 (en) System and method for calibrating inertial measurement units
US10126108B2 (en) Apparatus and method for classifying orientation of a body of a mammal
US20050125191A1 (en) Device for rotational motion capture of a solid
EP3622375A1 (en) Method and wearable device for performing actions using body sensor array
JP2001311628A (ja) 屋内環境におけるナビゲーションを行うための方法及び装置
JP2010534316A (ja) 対象物の動きを捕捉するシステム及び方法
WO2016018078A1 (ko) 골프클럽에 장착되는 클럽디바이스, 상기 클럽디바이스의 자세 틀어짐 감지방법, 상기 클럽디바이스의 정보 처리 방법 및 상기 클럽디바이스와 무선 통신하는 단말장치의 정보 처리 방법
CN107923740A (zh) 传感器设备、传感器系统以及信息处理设备
WO2019027260A1 (en) METHOD FOR COMPENSATING THE DRIVE OF A GYROSCOPE ON AN ELECTRONIC DEVICE
CN113229806A (zh) 可穿戴人体步态检测及导航系统及其运行方法
KR20160020915A (ko) 스마트폰 환경에서 보행 수 검출 장치 및 방법
WO2018147654A1 (ko) 펫 동작 구분 방법 및 이를 이용하는 장치
CN114587346B (zh) 一种基于imu的人体下肢运动监测方法及系统
US10678337B2 (en) Context aware movement recognition system
CN104913772B (zh) 一种基于腿部姿态信息的行人运动检测方法
WO2020116836A1 (ko) 인체 무게 중심의 이동을 이용한 모션 캡쳐 장치 및 그 방법
Orozco-Soto et al. Development of a Visual-Inertial Motion Tracking System for Muscular-Effort/Angular Joint-Position Relation to Obtain a Quantifiable Variable of Spasticity
CN106456051A (zh) 一种呼吸监测设备、方法和装置
WO2022269985A1 (ja) 情報処理装置、および情報処理方法、並びにプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741295

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18741295

Country of ref document: EP

Kind code of ref document: A2