WO2018135677A1 - 무선 통신 시스템에서 단말 간 링크를 복원하는 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 단말 간 링크를 복원하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018135677A1
WO2018135677A1 PCT/KR2017/000715 KR2017000715W WO2018135677A1 WO 2018135677 A1 WO2018135677 A1 WO 2018135677A1 KR 2017000715 W KR2017000715 W KR 2017000715W WO 2018135677 A1 WO2018135677 A1 WO 2018135677A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
link
measurement
radio link
Prior art date
Application number
PCT/KR2017/000715
Other languages
English (en)
French (fr)
Inventor
김희진
변일무
조희정
한진백
강지원
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to US16/479,149 priority Critical patent/US11265948B2/en
Priority to PCT/KR2017/000715 priority patent/WO2018135677A1/ko
Publication of WO2018135677A1 publication Critical patent/WO2018135677A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/23Manipulation of direct-mode connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for recovering a disconnected communication link between terminals and an apparatus for supporting the same.
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded not only voice but also data service, and the explosive increase in traffic causes shortage of resources and users require faster services. Therefore, a more advanced mobile communication system is required. .
  • V2V vehicle to vehicle
  • the present invention proposes a method for recovering (or re-establishing) a link between terminals in a wireless communication system in order to solve the above problem.
  • the present invention proposes a method for transmitting data to another terminal using a vehicle to infrastructure to vehicle (V2I2V) link.
  • V2I2V vehicle to infrastructure to vehicle
  • the present invention proposes a method for restoring a link between terminals by performing aperiodic channel and / or beam measurement.
  • the method performed by the first terminal includes a radio link failure for a radio link with a second terminal. ), And transmitting a first message to a base station requesting a measurement for re-establishing a radio link with the second terminal based on the determined radio link failure, and transmitting the In response to the received first message, receiving a second message including information on a configuration of the measurement from the base station, performing the measurement based on the information on the configuration, and performing a measurement with the second terminal. And sending a third message to the base station, the third message comprising a report of the re-established radio link of the.
  • the step of determining the radio link failure (radio link failure) for the radio link with the second terminal, the received power for the reference signal received from the second terminal is a predetermined threshold value ( and determining the radio link failure according to at least one of the case less than or equal to the threshold) or when the ACK / NACK response is not received from the second terminal within a preset period.
  • the determining of the radio link failure of the radio link with the second terminal may include control information or data information received from the second terminal. And determining the radio link failure according to whether or not the decoding of the at least one is failed.
  • the radio link with the second terminal is established based on at least one of a unicast service or a multicast service between the first terminal and the second terminal.
  • the measurement includes a measurement using at least one of a channel or a beam between the first terminal and the second terminal.
  • the measurement using at least one of a channel or a beam between the first terminal and the second terminal includes a measurement aperiodically triggered by the base station.
  • the information on the setting of the measurement resource allocation information of the reference signal (reference signal) for the measurement using at least one of the channel or beam between the first terminal and the second terminal (resource allocation information) ).
  • the second message is transmitted using at least one of higher layer signaling or downlink control information.
  • the wireless link with the second terminal includes a vehicle to vehicle link (V2V) link between the first terminal and the second terminal.
  • V2V vehicle to vehicle link
  • a first terminal for re-establishing a link between terminals in a wireless communication system of the present invention comprising: a transceiver for transmitting and receiving a radio signal, and a processor functionally connected to the transceiver;
  • the processor is configured to determine a radio link failure for a radio link with a second terminal and based on the determined radio link failure, measurement to re-establish a radio link with the second terminal ( transmitting a first message requesting measurement to a base station, and receiving a second message from the base station, the second message including information on a configuration of the measurement, in response to the transmitted first message; Perform a measurement based on a control to transmit a third message to the base station, the third message including a report on the re-established radio link with the second terminal. do.
  • the radio link between terminals when the radio link between terminals is disconnected, it is possible to quickly restore the radio link between terminals by using the radio link between the terminal and the base station.
  • FIG. 1 illustrates a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • FIG. 3 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • FIG. 4 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • FIG 5 shows an example of V2V link establishment between vehicles according to an embodiment of the present invention.
  • FIG. 6 illustrates a breakdown of a link between terminals according to an embodiment of the present invention.
  • FIG. 7 illustrates methods performed by a terminal when a link between terminals is disconnected according to an embodiment of the present invention.
  • FIG. 8 illustrates a procedure of transmitting data to a terminal through V2I2V link transmission according to an embodiment of the present invention.
  • FIG 9 illustrates a procedure of reconstructing a V2V link through channel and / or beam measurement according to another embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating an operation of a terminal for re-establishing a link between terminals according to an embodiment of the present invention.
  • FIG. 11 is a block diagram illustrating a wireless communication device according to one embodiment of the present invention.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and the like. .
  • a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS Advanced Mobile Station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of IEEE 802, 3GPP, and 3GPP2, which are wireless access systems. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and the like. .
  • a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS Advanced Mobile Station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • FIG. 1 illustrates a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • 3GPP LTE / LTE-A supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • Type 1A illustrates the structure of a type 1 radio frame.
  • Type 1 radio frames may be applied to both full duplex and half duplex FDD.
  • a radio frame consists of 10 subframes.
  • One subframe consists of two consecutive slots in the time domain, and subframe i consists of slot 2i and slot 2i + 1.
  • the time taken to transmit one subframe is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • uplink transmission and downlink transmission are distinguished in the frequency domain. While there is no restriction on full-duplex FDD, the terminal cannot simultaneously transmit and receive in half-duplex FDD operation.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain. Since 3GPP LTE uses OFDMA in downlink, the OFDM symbol is for representing one symbol period. The OFDM symbol may be referred to as one SC-FDMA symbol or symbol period.
  • a resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
  • FIG. 1B illustrates a frame structure type 2.
  • an uplink-downlink configuration is a rule indicating whether uplink and downlink are allocated (or reserved) for all subframes.
  • Table 1 shows an uplink-downlink configuration.
  • 'D' represents a subframe for downlink transmission
  • 'U' represents a subframe for uplink transmission
  • 'S' represents a downlink pilot.
  • a special subframe consisting of three fields: a time slot, a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • GP is a section for removing interference caused in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • the uplink-downlink configuration can be classified into seven types, and the location and / or number of downlink subframes, special subframes, and uplink subframes are different for each configuration.
  • Switch-point periodicity refers to a period in which an uplink subframe and a downlink subframe are repeatedly switched in the same manner, and both 5ms or 10ms are supported.
  • the special subframe S exists every half-frame, and in case of having a period of 5ms downlink-uplink switching time, it exists only in the first half-frame.
  • subframes 0 and 5 and DwPTS are sections for downlink transmission only.
  • the subframe immediately following the UpPTS and the subframe subframe is always an interval for uplink transmission.
  • the uplink-downlink configuration may be known to both the base station and the terminal as system information.
  • the base station may notify the terminal of the change of the uplink-downlink allocation state of the radio frame by transmitting only an index of the configuration information.
  • the configuration information is a kind of downlink control information, which may be transmitted through a physical downlink control channel (PDCCH) like other scheduling information, and is commonly transmitted to all terminals in a cell through a broadcast channel as broadcast information. May be
  • PDCCH physical downlink control channel
  • Table 2 shows the configuration of the special subframe (length of DwPTS / GP / UpPTS).
  • the structure of a radio frame according to the example of FIG. 1 is just one example, and the number of subcarriers included in the radio frame or the number of slots included in the subframe and the number of OFDM symbols included in the slot may vary. Can be.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • one downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes seven OFDM symbols, and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
  • Each element on the resource grid is a resource element, and one resource block (RB) includes 12 ⁇ 7 resource elements.
  • the number N ⁇ DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 3 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • up to three OFDM symbols in the first slot in a subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which PDSCH (Physical Downlink Shared Channel) is allocated. data region).
  • PDSCH Physical Downlink Shared Channel
  • An example of a downlink control channel used in 3GPP LTE includes a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid-ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe.
  • the PHICH is a response channel for the uplink and carries an ACK (Acknowledgement) / NACK (Not-Acknowledgement) signal for a hybrid automatic repeat request (HARQ).
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • the downlink control information includes uplink resource allocation information, downlink resource allocation information or an uplink transmission (Tx) power control command for a certain terminal group.
  • the PDCCH is a resource allocation and transmission format of DL-SCH (Downlink Shared Channel) (also referred to as a downlink grant), resource allocation information of UL-SCH (Uplink Shared Channel) (also called an uplink grant), and PCH ( Paging information in paging channel, system information in DL-SCH, resource allocation for upper-layer control message such as random access response transmitted in PDSCH, arbitrary terminal It may carry a set of transmission power control commands for the individual terminals in the group, activation of Voice over IP (VoIP), and the like.
  • the plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH consists of a set of one or a plurality of consecutive CCEs.
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of available bits of the PDCCH are determined according to the association between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and attaches a CRC (Cyclic Redundancy Check) to the control information.
  • the CRC is masked with a unique identifier (referred to as RNTI (Radio Network Temporary Identifier)) according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • a unique identifier of the terminal for example, a C-RNTI (Cell-RNTI) may be masked to the CRC.
  • a paging indication identifier for example, P-RNTI (P-RNTI) may be masked to the CRC.
  • the system information more specifically, the PDCCH for the system information block (SIB), the system information identifier and the system information RNTI (SI-RNTI) may be masked to the CRC.
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • Enhanced PDCCH carries UE-specific signaling.
  • the EPDCCH is located in a physical resource block (PRB) that is UE-specifically configured.
  • PRB physical resource block
  • the PDCCH may be transmitted in up to three OFDM symbols in the first slot in the subframe, but the EPDCCH may be transmitted in a resource region other than the PDCCH.
  • the start time (ie, symbol) of the EPDCCH in the subframe may be configured in the terminal through higher layer signaling (eg, RRC signaling, etc.).
  • EPDCCH is a transport format associated with the DL-SCH, resource allocation and HARQ information, a transport format associated with the UL-SCH, resource allocation and HARQ information, resource allocation associated with Side-link Shared Channel (SL-SCH) and Physical Sidelink Control Channel (PSCCH) Can carry information, etc.
  • Multiple EPDCCHs may be supported and the UE may monitor a set of EPCCHs.
  • the EPDCCH may be transmitted using one or more consecutive enhanced CCEs (ECCEs), and the number of ECCEs per single EPDCCH may be determined for each EPDCCH format.
  • ECCEs enhanced CCEs
  • Each ECCE may be composed of a plurality of enhanced resource element groups (EREGs).
  • EREG is used to define the mapping of ECCE to RE.
  • the terminal may monitor the plurality of EPDCCHs. For example, one or two EPDCCH sets in one PRB pair in which the UE monitors EPDCCH transmission may be configured.
  • the EPCCH may use localized transmission or distributed transmission, so that the mapping of ECCE to the RE in the PRB may be different.
  • FIG. 4 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) carrying uplink control information is allocated to the control region.
  • the data region is allocated a Physical Uplink Shared Channel (PUSCH) that carries user data.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • a PUCCH for one UE is allocated a resource block (RB) pair in a subframe.
  • RBs belonging to the RB pair occupy different subcarriers in each of the two slots.
  • This RB pair allocated to the PUCCH is said to be frequency hopping at the slot boundary (slot boundary).
  • LTE Long Term Evolution
  • New RAT New Radio Access Technology
  • a vehicle to which technology for performing communication between vehicles is applied may provide services such as crowding, convoy, cooperative maneuver assistance, and the like.
  • a vehicle must collect information of surrounding vehicles in order to perform cluster driving.
  • the information of the surrounding vehicles may include the speed and location information of the vehicle in the front, rear and / or side of the vehicle.
  • the vehicle may control the speed and direction of the vehicle for cluster driving using the collected information.
  • the vehicle in order for a vehicle to collect information necessary for providing a service, the vehicle needs to be communicatively connected with surrounding vehicles.
  • V2V vehicle-to-vehicle
  • the V2V link is a connection between a vehicle or communication devices mounted on the vehicle, a communication connection, a communication link, a radio link, a side link between a terminal (or a vehicle).
  • (sidelink) may mean a connection.
  • Legacy LTE's V2V communication technology was developed for vehicles to broadcast their information around.
  • the V2V link establishment of the manner in which the vehicle unicasts its information is not considered.
  • the wireless device of the vehicle since the vehicle must transmit the signal in all directions, the wireless device of the vehicle needs to support the characteristic of the omni-antenna.
  • the vehicle when the vehicle transmits the signal in a unicast manner, a direct V2V link is formed between the vehicles.
  • the vehicle can be equipped with a number of wireless devices having the characteristics of a directional antenna to form direct V2V links between the vehicles.
  • the vehicle can support multiple V2V links more efficiently in terms of communication delay and / or capacity.
  • a terminal may be used as a generic term for a vehicle, a communication device installed in a vehicle, a mobile communication device, or a communication device installed in a specific region.
  • 5 shows an example of V2V link establishment between vehicles according to an embodiment of the present invention. 5 is merely for convenience of description and does not limit the scope of the present invention.
  • the terminals 502, 504, 506, 508, and 510 may each include a plurality of wireless devices.
  • the location where the wireless devices shown in FIG. 5 are installed is for convenience of description, and the wireless devices may include various parts of the terminal (for example, front / rear bumpers, side mirrors, wheels, Doors, etc.).
  • a wireless device mounted on the front of the terminal 502 may be connected to a wireless device mounted on the rear of the terminal 504. Accordingly, a V2V link between the terminal 502 and the terminal 504 may be established (or formed).
  • the wireless devices mounted on the rear surface of the terminal 502 may be connected to the wireless devices mounted on the side mirrors of the terminal 508. Accordingly, a V2V link between the terminal 502 and the terminal 508 may be established.
  • the terminal 502 may establish a V2V link with the terminal 510 or the terminal 506 using a wireless device mounted on the left or right side of the terminal 502, respectively.
  • the terminal may set a V2V link with a plurality of neighboring terminals to perform functions such as cluster driving, convoy, cooperative driving assistance, or autonomous driving.
  • the antenna module or panel is damaged due to beam blocking (for example, when the beam is blocked by a building or other obstacle) or an accident. Accordingly, disconnection of the V2V link may occur.
  • disconnection of the V2V link may refer to a state in which the terminal cannot directly transmit or receive data to another terminal.
  • the transmission terminal and the reception terminal determine that the current V2V link is disconnected through the method described below, and as a result, the link has failed. can do.
  • 6 illustrates a breakdown of a link between terminals according to an embodiment of the present invention. 6 is for illustration only and does not limit the scope of the invention.
  • the terminal 605 may mean a transmitting terminal and the terminal 615 may mean a receiving terminal. Further, it is assumed that the terminal 605 and the terminal 615 are communicatively connected to the base station 610, and the V2V link between the terminal 605 and the terminal 615 is disconnected.
  • the transmitting terminal may mean a terminal to which data is to be transmitted to another terminal
  • the receiving terminal may mean a terminal to receive data from another terminal.
  • the terminal 605 is connected between the terminals 602 and / or when the received power for a reference signal for transmission channel measurement transmitted from the terminal 615 is less than or equal to a certain threshold value. Alternatively, it may be determined that the 604 is disconnected (or the link has failed).
  • the link 602 means a link for a channel from the terminal 605 to the terminal 615
  • the link 604 means a link for a channel from the terminal 615 to the terminal 605.
  • the reference signal for measuring the transmission channel may be a sounding reference signal (SRS).
  • SRS sounding reference signal
  • the threshold value used for determining the disconnection of the link between the terminals may be changed according to a chipset implementation between the base station and the terminal and / or the terminals.
  • a channel measurement reference signal for inter-terminal communication (eg, side link) needs to be newly defined.
  • the terminal 605 and the terminal 615 each have one (single or one direction) channel measurement criterion regardless of the direction of the communication between the terminals.
  • the channel can be measured using only the signal. This is because, when channel interactivity is applied, bidirectional channel (channel of link 602 and channel of link 604) characteristics are very similar.
  • the terminal may measure the channel using different channel measurement reference signals for the link 602 and the link 604, respectively.
  • the terminal 605 may determine that the link between the terminals is disconnected (or failed) when the ACK / NACK response for data reception from the terminal 615 is not received for a specific time period.
  • the terminal 605 may determine that the link 602 and / or the link 604 are disconnected. Can be.
  • ACK or NACK acknowledgment
  • the ACK / NACK response procedure used in legacy LTE that is, the Automatic Repeat ReQuest (ARQ) and / or the Hybrid Automatic Repeat reQuest (HARQ) procedure, is used for communication between the terminals. It is assumed to also be performed.
  • ARQ Automatic Repeat ReQuest
  • HARQ Hybrid Automatic Repeat reQuest
  • the terminal 615 may determine that the link between the terminals is disconnected when a reference signal received power (RSRP) value for the reference signal transmitted from the terminal 605 is less than or equal to a certain threshold value.
  • RSRP reference signal received power
  • the specific threshold value may be preset according to the network environment, the link preference of the user, and the like.
  • the terminal 615 cannot decode the control information and / or data information because the received power level of the signal transmitted from the terminal 605 is low. In case that the decoding fails, it may be determined that the link between the terminals is broken.
  • the terminal 615 may determine the disconnection of the link according to whether the decoding of the control channel and / or the data channel for the sidelink is successful.
  • the terminal detects (identifies or confirms) that the V2V link with another terminal is disconnected according to the above-described methods, the V2V link is restored (repaired or reestablished) for data transmission and reception between the terminals. Need to be.
  • two methods for transmitting data to another terminal may be considered.
  • One is a method in which a terminal transmits data to another terminal through a base station that is communicatively connected, and the other is a method of restoring a V2V link through aperiodic channel measurement between terminals triggered by the base station's intervention.
  • 7 illustrates methods performed by a terminal when a link between terminals is disconnected according to an embodiment of the present invention. 7 is for illustration only and does not limit the scope of the invention.
  • the terminal 705 and the terminal 715 are communicatively connected to the base station 710. In other words, in another embodiment of the present disclosure, the terminal 705 and the terminal 715 may not be connected to the base station 710.
  • the terminal 705 means a transmitting terminal
  • the terminal 715 means a receiving terminal
  • the terminal 705 may be a receiving terminal
  • the terminal 715 may be a transmitting terminal
  • the terminal 705 may transmit data to the terminal 715 through a vehicle to infrastructure to vehicle (V2I2V) link (or V2I2V communication) using the base station 710. .
  • V2I2V vehicle to infrastructure to vehicle
  • the wireless device used to transmit data to the base station 710 may be different from the wireless device used for communication with the terminal 715.
  • the terminal 705 may request recovery of a link (or V2V link) between terminals while transmitting data to the base station 710 (or attempting to transmit data through the V2I2V link through the base station 710).
  • the request may be performed through a request message transmitted from the terminal 705 to the base station 710.
  • the V2V link between the terminal 705 and the terminal 715 may be restored through channel measurement between the terminal 705 and the terminal 715 determined at predetermined intervals (or periodically). Can be.
  • the terminal 705 may consider resources that can transmit and receive with the terminal 715 and resources that can transmit and receive with the base station 710.
  • the terminal 705 may consider resources that can transmit and receive with the terminal 715 and resources that the terminal 715 can transmit and receive with the base station 710.
  • the resources that can transmit and receive between terminals may mean resources defined for a link between terminals (eg, sidelinks).
  • the sidelink is a concept including sidelink discovery, sidelink communication, and V2X sidelink communication.
  • uplink transmission means that the terminal transmits a signal to the base station
  • downlink reception means that the terminal receives a signal from the base station
  • the terminal 705 may request scheduling information related to an uplink transmission resource or a downlink reception resource allocated to the terminal 715 to the base station 710. Thereafter, the terminal 705 may check resource allocation information of the downlink signal transmitted from the base station 710 to the terminal 715 through the information received from the base station 710. Accordingly, the terminal 705 may transmit resources not used for the transmission of the downlink signal and data to be transmitted to the terminal 715 to the base station 710 through the V2I2V link.
  • the terminal 705 may use information on the Cell Radio Network Temporary Identifier (C-RNTI) of the terminal 715.
  • C-RNTI Cell Radio Network Temporary Identifier
  • the terminal 705 receives a downlink control channel (PDCCH) transmitted from the base station 710 to identify a C-RNTI of the terminal 715.
  • the uplink resource information may be checked.
  • the terminal 705 may transmit data to the terminal 715 through the V2I2V link by avoiding a time point when the terminal 715 receives the other downlink signal.
  • the terminal 705 can prevent a case in which data transmitted to the terminal 715 through the V2I2V link is dropped by another downlink signal.
  • a method of transmitting data using a V2I2V link when a link (or a connection) between terminals is disconnected will be described in detail with reference to FIG. 8.
  • the terminal 705 may restore the disconnected V2V link by measuring a channel for the V2V link with the terminal 715 or performing a beam search procedure.
  • the channel measurement and / or beam search procedure may mean a case where the aperiodic measurement is performed in addition to the case where the channel measurement and / or beam search procedure is performed periodically.
  • 8 illustrates a procedure of transmitting data to a terminal through V2I2V link transmission according to an embodiment of the present invention. 8 is merely for convenience of description and does not limit the scope of the present invention.
  • a transmitting terminal eg, terminal 705
  • a receiving terminal eg, terminal 715
  • a base station eg, base station 710
  • the transmitting terminal means a terminal transmitting data to the receiving terminal
  • the receiving terminal means a terminal receiving data from the transmitting terminal.
  • the transmitting terminal and / or the receiving terminal may confirm (or identify) that the link between the terminals is disconnected.
  • each transmitting terminal and / or receiving terminal may identify the disconnection of the link through the method described in the section for FIG. 6.
  • the receiving terminal may determine the connection state of the V2V link between the terminals based on whether the ACK / NACK response to the transmitted signal is received based on the measured reception signal quality.
  • each terminal may determine whether the terminal is connected to the base station.
  • each terminal may request a connection to the base station. For example, a transmitting terminal and / or a receiving terminal transmits a message requesting random access to a base station or a message requesting a radio resource control (RRC) connection (eg, an RRC connection request). Can be transmitted.
  • RRC radio resource control
  • the transmitting terminal may receive allocation information on the uplink resource from the base station.
  • the uplink resource refers to a resource used for transmitting data to be transmitted to the receiving terminal to the base station.
  • the transmitting terminal may transmit at least one scheduling request (SR) to the base station.
  • SR scheduling request
  • at least one SR may include one default SR and a spare SR for sidelink (bypass) transmission.
  • the transmitting terminal may receive a response to the SR after transmitting the SR to the base station. Thereafter, the transmitting terminal transmits a buffer status report (BSR) to the base station in response to the response, and information about a resource (for example, UL grant) to transmit data in response to the BSR. Can be received from the base station.
  • BSR buffer status report
  • the transmitting terminal information on the receiving terminal that is, identifier information (for example, information) of the receiving terminal in order to indicate (or represent) the terminal (or receiving terminal) to receive the transmitted data.
  • a BSR including a field of C-RNTI, etc. may be transmitted to a base station.
  • the ID information of the receiving terminal may mean a destination of data that the transmitting terminal intends to transmit through the base station.
  • the ID information of the receiving terminal may be included in a message (or message of the PHY terminal) of the physical layer (or physical layer) transmitted by the transmitting terminal to the base station.
  • the transmitting terminal may transmit a plurality of SRs to the base station for uplink transmission.
  • the transmitting terminal may perform the above example procedures (SR transmission, SR response reception, BSR transmission, and BSR response reception) when transmitting the first SR.
  • the transmitting terminal transmits another SR (for example, an urgent message or a message used in Ultra-Reliable Low Latency Communication) after the first SR transmission to the base station, it will be described in the above example. Some of the procedures may be omitted.
  • another SR for example, an urgent message or a message used in Ultra-Reliable Low Latency Communication
  • the transmitting terminal when the transmitting terminal transmits the other SR, the transmitting terminal may omit the procedure of transmitting the BSR and receiving a response (for example, a UL grant) for the BSR.
  • the transmitting terminal may receive allocation information (eg, UL grant) for uplink resources from the base station after transmitting the SR.
  • allocation information eg, UL grant
  • the transmitting terminal since the transmitting terminal does not transmit the BSR, the transmitting terminal cannot transmit ID information of the receiving terminal to the base station through the BSR.
  • the transmitting terminal may transmit data (or data to be transmitted to the receiving terminal) to the base station through the allocated uplink resource.
  • the data transmitted to the base station may include ID information of the receiving terminal.
  • the ID information of the receiving terminal may not be included in the data.
  • the transmitting terminal may transmit data including ID information of the receiving terminal to the base station.
  • the base station may transmit data to another terminal (or receiving terminal) through the allocated downlink resources.
  • the base station may transmit the allocation information (eg, downlink grant (DL grant)) for the downlink resource to the receiving terminal before transmitting data to the receiving terminal.
  • the receiving terminal can identify the resource to which the data is transmitted using the allocation information, and as a result, can receive the transmitted data.
  • the transmitting terminal may transmit data to the receiving terminal through the V2I2V link.
  • the receiving terminal may transmit an ACK / NACK response for data reception to the transmitting terminal through the V2I2V link.
  • the channel (or beam) measurement period between the terminal and the base station may be shorter than the link discovery measurement period between the terminals. Accordingly, it may be more efficient in terms of time to transmit data through the V2I2V link after the terminal attempts to connect the terminal to the base station rather than to restore the direct V2V link.
  • 9 illustrates a procedure of reconstructing a V2V link through channel and / or beam measurement according to another embodiment of the present invention. 9 is merely for convenience of description and does not limit the scope of the invention.
  • a transmitting terminal eg, terminal 705
  • a receiving terminal eg, terminal 715
  • a base station eg, base station 710
  • the transmitting terminal means a terminal transmitting data to the receiving terminal
  • the receiving terminal means a terminal receiving data from the transmitting terminal.
  • the transmitting terminal and the receiving terminal may confirm (or identify) that the link between the terminals is disconnected.
  • each transmitting terminal and the receiving terminal can identify the disconnection of the link through the method described in the section for FIG. 6.
  • the receiving terminal may determine the connection state of the V2V link between the terminals based on whether the ACK / NACK response to the transmitted signal is received based on the measured reception signal quality.
  • each terminal may determine whether the terminal is connected to the base station.
  • each terminal may request a connection to the base station.
  • the transmitting terminal and / or the receiving terminal may transmit a message for requesting random access to the base station, a message for requesting an RRC connection (eg, an RRC connection request), and the like.
  • step S920 the transmitting terminal transmits a measurement triggering request to the base station for triggering a measurement for V2V link establishment (formation or recovery). Can be sent.
  • the request may be a request to trigger a measurement for a channel and / or beam associated with a V2V link.
  • the request may be a message for requesting non-periodic measurement (e.g., event triggered beam measurement, event triggered channel measurement) in addition to the previously set periodic measurement. have.
  • the base station may transmit a message indicating a measurement to the transmitting terminal and / or the receiving terminal in response to the request.
  • the measurement may mean event triggered beam and / or channel measurement (aperiodic measurement) separate from the periodic beam measurement.
  • the terminals may recover the link between the terminals more quickly and configure a beam and / or a channel.
  • the base station when the base station instructs the measurement, the base station is a terminal for receiving the message for the indication through higher layer signaling (eg, RRC) and / or downlink control information (DCI). Can be sent to.
  • higher layer signaling eg, RRC
  • DCI downlink control information
  • the base station may allocate resources for the reference signal for aperiodic channel and / or beam measurement in response to the request, in addition to the reference signal for periodic channel and / or beam measurement.
  • the channel and / or beam refers to a channel and / or a beam used for a link between terminals (eg, a V2V link).
  • the base station may transmit information on the allocated resource to the transmitting terminal and / or the receiving terminal through the higher layer signaling and / or downlink control information.
  • a procedure for transmitting a message indicating a measurement by a base station and allocating a resource for a reference signal for aperiodic channel and / or beam measurement may be simultaneously, independently, or sequentially performed. Can be.
  • step S940 when the terminal receives a message indicating the measurement from the base station, the terminal may perform the triggered (triggered) channel and / or beam measurement.
  • the terminals may identify a channel and / or beam suitable for restoring the V2V link between the terminals, and as a result, the V2V link between the terminals may be restored based on the identified channel and / or beam.
  • each terminal receives the reference signal for channel and / or beam measurement through the allocated resources. May be transmitted to another terminal.
  • the transmitting terminal may transmit a reference signal (for example, SRS) for transmitting channel measurement to the receiving terminal.
  • SRS reference signal
  • each terminal may perform channel and / or beam measurement using a reference signal and transmit a measurement report to the base station. Through the measurement, the V2V link between terminals can be restored. For example, when the received power measurement value for the reference signal is determined to be equal to or greater than a specific threshold value, the terminal may restore the V2V link using the corresponding channel and / or beam.
  • the transmission period of the reference signal for beam search is very long, and the transmission of the reference signal for channel and / or beam measurement may be performed aperiodically.
  • the base station does not allocate a separate resource for restoring the V2V link, significant time delay may occur in beam recovery, and thus may require intervention of the base station. That is, when the base station allocates reference signal resources for aperiodic channel and / or beam measurement as described above, the V2V link between terminals may be restored (or restored) more quickly.
  • the operation of transmitting data to the disconnected terminal through the V2I2V link described above and the operation of restoring the V2V link through measurement between the terminals may be performed simultaneously, independently, or sequentially.
  • 10 is a flowchart illustrating an operation of a terminal for re-establishing a link between terminals according to an embodiment of the present invention. 10 is merely for convenience of description and does not limit the scope of the invention.
  • a transmitting terminal eg, a terminal 705
  • a receiving terminal eg, a terminal 715
  • a base station eg, a base station 710
  • the transmitting terminal means a terminal transmitting data to the receiving terminal
  • the receiving terminal means a terminal receiving data from the transmitting terminal.
  • the first terminal may determine a radio link failure for a radio link with the second terminal.
  • the second terminal is a receiving terminal
  • the second terminal is a transmitting terminal.
  • the first terminal can determine the radio link failure similarly to the determination procedure for the case where the link between the terminals described in the above-described part of FIG. 6 is disconnected.
  • the radio link failure may refer to a state in which the first terminal cannot transmit / receive control information and / or data information with the second terminal.
  • the first terminal when the first terminal is a transmitting terminal, the first terminal may determine that the radio link has failed when the received power of the reference signal received from the second terminal is less than or equal to a preset threshold.
  • the first terminal when the first terminal is a transmitting terminal, when the ACK / NACK response is not received within a preset period from the second terminal, the first terminal may determine that the radio link has failed.
  • the preset period may be set by the network service manager or the network service user. In this case, it is assumed that the communication service between the first terminal and the second terminal supports the ARQ and / or HARQ procedure.
  • the first terminal when the first terminal is the receiving terminal, the first terminal may determine that the radio link has failed when it is unable to decode the control information and / or data information received from the second terminal.
  • the radio link between the first terminal and the second terminal may be established based on a unicast service or a multicast service.
  • the first terminal may transmit a first message to the base station requesting measurement for re-establishing a radio link with the second terminal.
  • the base station and the first terminal are communicatively connected (or a state capable of transmitting and receiving a signal).
  • Operation of the first terminal in step S1020 may be similar to the operation of the transmitting terminal described in the above section for FIG.
  • the measurement requested by the first terminal may be a measurement using at least one of a channel or a beam between the first terminal and the second terminal.
  • the measurement requested by the first terminal may include an aperiodic measurement in addition to the periodic measurement.
  • the first terminal may transmit a message including a V2V beam measurement triggering request to the base station.
  • the first terminal may receive a second message including information on the configuration of the measurement in response to the transmitted first message.
  • step S1030 the operation of the first terminal may be similar to the operation of the transmitting terminal described in the above section for FIG.
  • the information on the setting may include an indication about the measurement.
  • the information on the configuration may include a resource allocation channel of the reference signal for the measurement using the channel and / or beam between the first terminal and the second terminal.
  • the reference signal resource may be allocated by the base station for aperiodic inter-terminal measurement.
  • the second message including the information on the configuration may be received by the first terminal through higher layer signaling or downlink control information.
  • the first terminal may transmit a third message including a report on the re-established radio link with the second terminal to the base station.
  • the re-established radio link may be established through measurement based on the configuration information received in step S1030.
  • the first terminal performs channel and / or beam measurement with the second terminal using configuration information (eg, resource allocation information of a reference signal for measurement) received from the base station, and then transmits the measurement result to the base station. You can report it.
  • configuration information eg, resource allocation information of a reference signal for measurement
  • FIG. 11 is a block diagram illustrating a wireless communication device according to one embodiment of the present invention.
  • a wireless communication system includes a network node 1110 and a plurality of terminals (UEs) 1120.
  • UEs terminals
  • the network node 1110 includes a processor 1111, a memory 1112, and a communication module 1113.
  • the processor 2511 implements the functions, processes, and / or methods proposed in FIGS. 1 to 10. Layers of the wired / wireless interface protocol may be implemented by the processor 1111.
  • the memory 1112 is connected to the processor 1111 and stores various information for driving the processor 1111.
  • the communication module 1113 is connected to the processor 1111 and transmits and / or receives a wired / wireless signal.
  • the communication module 1113 may include a radio frequency unit (RF) for transmitting / receiving a radio signal.
  • RF radio frequency unit
  • the terminal 1120 includes a processor 1121, a memory 1122, and a communication module (or RF unit) 1123.
  • the processor 1121 implements the functions, processes, and / or methods proposed in FIGS. 1 to 10. Layers of the air interface protocol may be implemented by the processor 1121.
  • the memory 1122 is connected to the processor 1121 and stores various information for driving the processor 1121.
  • the communication module 1123 is connected to the processor 1121 and transmits and / or receives a radio signal.
  • the memories 1112 and 1122 may be inside or outside the processors 1111 and 1121, and may be connected to the processors 1111 and 1121 by various well-known means.
  • the network node 1110 if the base station
  • the terminal 1120 may have a single antenna (multiple antenna) or multiple antenna (multiple antenna).
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명에서는 무선 통신 시스템에서 단말 간 링크를 재-설립(re-establish)하는 방법 및 이를 위한 장치가 개시된다. 구체적으로, 무선 통신 시스템에서 제1 단말이 단말 간 링크를 재-설립하는 방법에 있어서, 제2 단말과의 무선 링크에 대한 무선 링크 실패(radio link failure)를 결정하는 과정과, 상기 결정된 무선 링크 실패에 기반하여, 상기 제2 단말과의 무선 링크를 재-설립하기 위한 측정(measurement)을 요청하는 제1 메시지를 기지국으로 전송하는 과정과, 상기 전송된 제1 메시지에 대응하여, 상기 측정의 설정(configuration)에 대한 정보를 포함하는 제2 메시지를 상기 기지국으로부터 수신하는 과정과, 상기 설정에 대한 정보에 기반한 상기 측정을 수행하여 상기 제2 단말과의 재-설립된 무선 링크에 대한 보고(report)를 포함하는 제3 메시지를 상기 기지국으로 전송하는 과정을 포함한다.

Description

무선 통신 시스템에서 단말 간 링크를 복원하는 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 단말 간의 단절된 통신 링크를 복원하기 위한 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스를 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
외부 또는 내부적 요인으로 인하여, 단말 간 링크(예: V2V(vehicle to vehicle) 링크)가 단절되는 문제가 야기된다.
본 발명은, 상술한 문제점을 해결하기 위하여, 무선 통신 시스템에서 단말 간 링크를 복원(recover)(또는 재-설립(re-establish))하기 위한 방법을 제안한다.
또한, 본 발명은, V2I2V(Vehicle to infrastructure to vehicle) 링크를 이용하여 다른 단말로 데이터를 전송하는 방법을 제안한다.
또한, 본 발명은, 비주기적인 채널 및/또는 빔 측정을 수행하여 단말 간 링크를 복원하는 방법을 제안한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 무선 통신 시스템에서 단말 간 링크를 재-설립(re-establish)하는 방법에 있어서, 제1 단말에 의해 수행되는 방법은, 제2 단말과의 무선 링크에 대한 무선 링크 실패(radio link failure)를 결정하는 과정과, 상기 결정된 무선 링크 실패에 기반하여, 상기 제2 단말과의 무선 링크를 재-설립하기 위한 측정(measurement)을 요청하는 제1 메시지를 기지국으로 전송하는 과정과, 상기 전송된 제1 메시지에 대응하여, 상기 측정의 설정(configuration)에 대한 정보를 포함하는 제2 메시지를 상기 기지국으로부터 수신하는 과정과, 상기 설정에 대한 정보에 기반한 상기 측정을 수행하여 상기 제2 단말과의 재-설립된 무선 링크에 대한 보고(report)를 포함하는 제3 메시지를 상기 기지국으로 전송하는 과정을 포함한다.
또한, 본 발명에서, 상기 제2 단말과의 무선 링크에 대한 상기 무선 링크 실패(radio link failure)를 결정하는 과정은, 상기 제2 단말로부터 수신된 기준 신호에 대한 수신 전력이 미리 설정된 임계 값(threshold)보다 작거나 같은 경우 또는 상기 제2 단말로부터 ACK/NACK 응답이 미리 설정된 기간 내에 수신되지 않는 경우 중 적어도 하나에 따라 상기 무선 링크 실패를 결정하는 과정을 포함한다.
또한, 본 발명에서, 상기 제2 단말과의 무선 링크의 상기 무선 링크 실패(radio link failure)를 결정하는 과정은, 상기 제2 단말로부터 수신된 제어 정보(control information) 또는 데이터 정보(data information) 중 적어도 하나에 대한 복호화(decoding)의 실패 여부에 따라 상기 무선 링크 실패를 결정하는 과정을 포함한다.
또한, 본 발명에서, 상기 제2 단말과의 무선 링크는, 상기 제1 단말과 상기 제2 단말 간의 유니캐스트 서비스(unicast service) 또는 멀티캐스트 서비스(multicast service) 중 적어도 하나에 기반하여 설정된다.
또한, 본 발명에서, 상기 측정은, 상기 제1 단말과 상기 제2 단말 간의 채널(channel) 또는 빔(beam) 중 적어도 하나를 이용하는 측정을 포함한다.
또한, 본 발명에서, 상기 제1 단말과 상기 제2 단말 간의 채널 또는 빔 중 적어도 하나를 이용하는 측정은, 상기 기지국에 의해 비주기적으로 트리거된(aperiodically triggered) 측정을 포함한다.
또한, 본 발명에서, 상기 측정의 설정에 대한 정보는, 상기 제1 단말과 상기 제2 단말 간의 채널 또는 빔 중 적어도 하나를 이용하는 측정을 위한 기준 신호(reference signal)의 자원 할당 정보(resource allocation information)를 포함한다.
또한, 본 발명에서, 상기 제2 메시지는 상위 계층 시그널링(higher layer signaling) 또는 하향링크 제어 정보(downlink control information) 중 적어도 하나를 이용하여 전송된다.
또한, 본 발명에서, 상기 제2 단말과의 무선 링크는, 상기 제1 단말과 상기 제2 단말 간의 V2V 링크(Vehicle to Vehicle link)를 포함한다.
본 발명의 무선 통신 시스템에서 단말 간 링크를 재-설립(re-establish)하는 제1 단말에 있어서, 무선 신호를 송수신하기 위한 송수신부와, 상기 송수신부와 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는, 제2 단말과의 무선 링크에 대한 무선 링크 실패(radio link failure)를 결정하고, 상기 결정된 무선 링크 실패에 기반하여, 상기 제2 단말과의 무선 링크를 재-설립하기 위한 측정(measurement)을 요청하는 제1 메시지를 기지국으로 전송하고, 상기 전송된 제1 메시지에 대응하여, 상기 측정의 설정(configuration)에 대한 정보를 포함하는 제2 메시지를 상기 기지국으로부터 수신하고, 상기 설정 정보에 기반한 상기 측정을 수행하여 상기 제2 단말과의 재-설립된 무선 링크에 대한 보고(report)를 포함하는 제3 메시지를 상기 기지국으로 전송하도록 제어한다.
본 발명의 실시 예에 따르면, 단말 간 무선 링크가 단절된 경우, 단말과 기지국간의 무선 링크를 이용하여 신속하게 단말 간 무선 링크를 복원할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 5는 본 발명의 일 실시 예에 따른 차량들 간의 V2V 링크 설정의 예를 나타낸다.
도 6은 본 발명의 일 실시 예에 따른 단말 간 링크의 단절을 나타낸다.
도 7은 본 발명의 일 실시 예에 따른 단말 간 링크가 단절된 경우에 단말이 수행하는 방법들을 나타낸다.
도 8은 본 발명의 일 실시 예에 따른 V2I2V 링크 전송(V2I2V link transmission)을 통해 단말로 데이터를 전송하는 절차를 나타낸다.
도 9는 본 발명의 다른 실시 예에 따른 채널 및/또는 빔 측정을 통해 V2V 링크를 복원하는 절차를 나타낸다.
도 10은 본 발명의 일 실시 예에 따른 단말 간 링크를 재-설립(re-establish)하는 단말의 동작 순서도를 나타낸다.
도 11은 본 발명의 일 실시 예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
시스템 일반
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
3GPP LTE/LTE-A에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 1에서 무선 프레임의 시간 영역에서의 크기는 T_s=1/(15000*2048)의 시간 단위의 배수로 표현된다. 하향링크 및 상향링크 전송은 T_f=307200*T_s=10ms의 구간을 가지는 무선 프레임으로 구성된다.
도 1의 (a)는 타입 1 무선 프레임의 구조를 예시한다. 타입 1 무선 프레임은 전이중(full duplex) 및 반이중(half duplex) FDD에 모두 적용될 수 있다.
무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성된다. 하나의 무선 프레임은 T_slot=15360*T_s=0.5ms 길이의 20개의 슬롯으로 구성되고, 각 슬롯은 0부터 19까지의 인덱스가 부여된다. 하나의 서브프레임은 시간 영역(time domain)에서 연속적인 2개의 슬롯(slot)으로 구성되고, 서브프레임 i는 슬롯 2i 및 슬롯 2i+1로 구성된다. 하나의 서브프레임을 전송하는데 걸리는 시간을 TTI(transmission time interval)이라 한다. 예를 들어, 하나의 서브 프레임은 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms일 수 있다.
FDD에서 상향링크 전송 및 하향링크 전송은 주파수 도메인에서 구분된다. 전이중 FDD에 제한이 없는 반면, 반이중 FDD 동작에서 단말은 동시에 전송 및 수신을 할 수 없다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(RB: Resource Block)을 포함한다. 3GPP LTE는 하향링크에서 OFDMA를 사용하므로 OFDM 심볼은 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블록(resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부 반송파(subcarrier)를 포함한다.
도 1의 (b)는 타입 2 프레임 구조(frame structure type 2)를 나타낸다.
타입 2 무선 프레임은 각 153600*T_s=5ms의 길이의 2개의 하프 프레임(half frame)으로 구성된다. 각 하프 프레임은 30720*T_s=1ms 길이의 5개의 서브프레임으로 구성된다.
TDD 시스템의 타입 2 프레임 구조에서 상향링크-하향링크 구성(uplink-downlink configuration)은 모든 서브프레임에 대하여 상향링크와 하향링크가 할당(또는 예약)되는지 나타내는 규칙이다.
표 1은 상향링크-하향링크 구성을 나타낸다.
Figure PCTKR2017000715-appb-T000001
표 1을 참조하면, 무선 프레임의 각 서브프레임 별로, 'D'는 하향링크 전송을 위한 서브프레임을 나타내고, 'U'는 상향링크 전송을 위한 서브프레임을 나타내며, 'S'는 DwPTS(Downlink Pilot Time Slot), 보호구간(GP: Guard Period), UpPTS(Uplink Pilot Time Slot) 3가지의 필드로 구성되는 스페셜 서브프레임(special subframe)을 나타낸다.
DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. GP는 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
각 서브프레임 i는 각 T_slot=15360*T_s=0.5ms 길이의 슬롯 2i 및 슬롯 2i+1로 구성된다.
상향링크-하향링크 구성은 7가지로 구분될 수 있으며, 각 구성 별로 하향링크 서브프레임, 스페셜 서브프레임, 상향링크 서브프레임의 위치 및/또는 개수가 다르다.
하향링크에서 상향링크로 변경되는 시점 또는 상향링크에서 하향링크로 전환되는 시점을 전환 시점(switching point)이라 한다. 전환 시점의 주기성(Switch-point periodicity)은 상향링크 서브프레임과 하향링크 서브프레임이 전환되는 양상이 동일하게 반복되는 주기를 의미하며, 5ms 또는 10ms가 모두 지원된다. 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 스페셜 서브프레임(S)은 하프-프레임 마다 존재하고, 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 첫번째 하프-프레임에만 존재한다.
모든 구성에 있어서, 0번, 5번 서브프레임 및 DwPTS는 하향링크 전송만을 위한 구간이다. UpPTS 및 서브프레임 서브프레임에 바로 이어지는 서브프레임은 항상 상향링크 전송을 위한 구간이다.
이러한, 상향링크-하향링크 구성은 시스템 정보로써 기지국과 단말이 모두 알고 있을 수 있다. 기지국은 상향링크-하향링크 구성 정보가 바뀔 때마다 구성 정보의 인덱스만을 전송함으로써 무선 프레임의 상향링크-하향링크 할당상태의 변경을 단말에 알려줄 수 있다. 또한, 구성 정보는 일종의 하향링크 제어정보로서 다른 스케줄링 정보와 마찬가지로 PDCCH(Physical Downlink Control Channel)를 통해 전송될 수 있으며, 방송 정보로서 브로드캐스트 채널(broadcast channel)을 통해 셀 내의 모든 단말에 공통으로 전송될 수도 있다.
표 2는 스페셜 서브프레임의 구성(DwPTS/GP/UpPTS의 길이)을 나타낸다.
Figure PCTKR2017000715-appb-T000002
도 1의 예시에 따른 무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 부 반송파의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 2를 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
자원 그리드 상에서 각 요소(element)를 자원 요소(resource element)하고, 하나의 자원 블록(RB: resource block)은 12 × 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 N^DL은 하향링크 전송 대역폭(bandwidth)에 종속한다.
상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 3을 참조하면, 서브 프레임내의 첫번째 슬롯에서 앞의 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH(Physical Downlink Shared Channel)이 할당되는 데이터 영역(data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다.
PCFICH는 서브 프레임의 첫번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Not-Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보(DCI: downlink control information)라고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함한다.
PDCCH는 DL-SCH(Downlink Shared Channel)의 자원 할당 및 전송 포맷(이를 하향링크 그랜트라고도 한다.), UL-SCH(Uplink Shared Channel)의 자원 할당 정보(이를 상향링크 그랜트라고도 한다.), PCH(Paging Channel)에서의 페이징(paging) 정보, DL-SCH에서의 시스템 정보, PDSCH에서 전송되는 랜덤 액세스 응답(random access response)과 같은 상위 레이어(upper-layer) 제어 메시지에 대한 자원 할당, 임의의 단말 그룹 내 개별 단말들에 대한 전송 파워 제어 명령들의 집합, VoIP(Voice over IP)의 활성화 등을 나를 수 있다. 복수의 PDCCH들은 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH들을 모니터링할 수 있다. PDCCH는 하나 또는 복수의 연속적인 CCE(control channel elements)의 집합으로 구성된다. CCE는 무선 채널의 상태에 따른 부호화율(coding rate)을 PDCCH에 제공하기 위하여 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)들에 대응된다. PDCCH의 포맷 및 사용 가능한 PDCCH의 비트 수는 CCE들의 수와 CCE들에 의해 제공되는 부호화율 간의 연관 관계에 따라 결정된다.
기지국은 단말에게 전송하려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(Cyclic Redundancy Check)를 붙인다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다.)가 마스킹된다. 특정의 단말을 위한 PDCCH라면 단말의 고유한 식별자, 예를 들어 C-RNTI(Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(Paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보, 더욱 구체적으로 시스템 정보 블록(SIB: system information block)를 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(system information RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위하여, RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다.
EPDCCH(enhanced PDCCH)는 단말 특정(UE-specific) 시그널링을 나른다. EPDCCH는 단말 특정하게 설정된 물리 자원 블록(PRB: physical resource block)에 위치한다. 다시 말해, 상술한 바와 같이 PDCCH는 서브 프레임내의 첫번째 슬롯에서 앞의 최대 3개의 OFDM 심볼들에서 전송될 수 있으나, EPDCCH는 PDCCH 이외의 자원 영역에서 전송될 수 있다. 서브프레임 내 EPDCCH가 시작되는 시점(즉, 심볼)은 상위 계층 시그널링(예를 들어, RRC 시그널링 등)을 통해 단말에 설정될 수 있다.
EPDCCH는 DL-SCH와 관련된 전송 포맷, 자원 할당 및 HARQ 정보, UL-SCH와 관련된 전송 포맷, 자원 할당 및 HARQ 정보, SL-SCH(Sidelink Shared Channel) 및 PSCCH(Physical Sidelink Control Channel)과 관련된 자원 할당 정보 등을 나를 수 있다. 다중의 EPDCCH가 지원될 수 있으며, 단말은 EPCCH의 세트를 모니터링할 수 있다.
EPDCCH는 하나 또는 그 이상의 연속된 진보된 CCE(ECCE: enhanced CCE)를 이용하여 전송될 수 있으며, 각 EPDCCH 포맷 별로 단일의 EPDCCH 당 ECCE의 개수가 정해질 수 있다.
각 ECCE는 복수의 자원 요소 그룹(EREG: enhanced resource element group)으로 구성될 수 있다. EREG는 ECCE의 RE에의 매핑을 정의하기 위하여 사용된다. PRB 쌍 별로 16개의 EREG가 존재한다. 각 PRB 쌍 내에서 DMRS를 나르는 RE를 제외하고, 모든 RE는 주파수가 증가하는 순서대로 그 다음 시간이 증가하는 순서대로 0 내지 15까지의 번호가 부여된다.
단말은 복수의 EPDCCH를 모니터링할 수 있다. 예를 들어, 단말이 EPDCCH 전송을 모니터링하는 하나의 PRB 쌍 내 하나 또는 두 개의 EPDCCH 세트가 설정될 수 있다.
서로 다른 개수의 ECCE가 병합됨으로써 EPCCH를 위한 서로 다른 부호화율(coding rate)이 실현될 수 있다. EPCCH는 지역적 전송(localized transmission) 또는 분산적 전송(distributed transmission)을 사용할 수 있으며, 이에 따라 PRB 내 RE에 ECCE의 매핑이 달라질 수 있다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 4를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH(Physical Uplink Control Channel)이 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)이 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH을 동시에 전송하지 않는다.
하나의 단말에 대한 PUCCH에는 서브 프레임 내에 자원 블록(RB: Resource Block) 쌍이 할당된다. RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이를 PUCCH에 할당된 RB 쌍은 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.
LTE(-A) 또는 새로운 무선 통신 기술(New Radio Access Technology, New RAT)이 발달하면서, 차량 간의 통신을 이용하는 서비스들이 개발되고 있다.
예를 들어, 차량 간의 통신을 수행하는 기술이 적용된 차량은 군집 주행(platooning), 호송(convoy), 협력 주행 보조(cooperative maneuver assistance) 등의 서비스를 제공할 수 있다.
예를 들어, 차량은 군집 주행을 수행하기 위하여, 주변의 차량들의 정보를 수집해야 한다. 여기에서 주변 차량들의 정보는 차량을 기준으로 전방, 후방 및/또는 측면의 차량의 속도와 위치 정보를 포함할 수 있다. 차량이 주변 차량들의 정보를 수집함에 따라, 차량은 상기 수집된 정보를 이용하여 군집 주행을 위한 차량의 속도 및 방향을 제어할 수 있다.
상술한 바와 같이 차량이 서비스를 제공하기 위해 필요한 정보를 수집하기 위하여, 차량은 주변의 차량들과 통신적으로 연결될 필요가 있다.
다시 말해, 상기 서비스를 제공하기 위해서, 차량은 주변 차량들과 다수의 V2V(vehicle-to-vehicle) 링크(link)(또는 연결(connection))들을 형성해야 할 필요가 있다.
여기에서, V2V 링크는 차량 또는 차량에 장착된 통신 장치들 간의 연결(connection), 통신 연결(communication connection), 통신 링크(communication link), 무선 링크(radio link), 단말(또는 차량) 간의 사이드링크(sidelink) 연결 등을 의미할 수 있다.
레거시(legacy) LTE의 V2V 통신 기술은 차량이 자신의 정보를 주변으로 브로트캐스트(broadcast)하는 것을 목적으로 개발되었다. 다시 말해, 레거시 LTE의 V2V 통신 기술 에서, 차량이 자신의 정보를 유니캐스트(unicast)하는 방식의 V2V 링크 설정은 고려되지 않았다.
여기에서, 브로드캐스트 방식의 경우에는 차량이 신호를 전방향으로 전송해야 하므로, 차량의 무선 장치는 전방향 안테나(omni-antenna)의 특성을 지원할 필요가 있다.
그러나, 차량이 신호를 유니캐스트 방식으로 전송하는 경우에는, 차량 간의 직접적인 V2V 링크가 형성된다. 따라서, 이 경우, 차량은 차량들 간의 직접적인 V2V 링크들을 형성하기 위하여 지향성 안테나(directional antenna)의 특성을 갖는 다수의 무선 장치들을 장착할 수 있다.
차량에 다수의 무선 장치들이 장착되는 경우, 차량은 통신 지연(delay) 및/또는 용량(capacity) 측면에서 보다 효율적으로 다수의 V2V 링크들을 지원할 수 있다.
이하 설명에서, 단말(terminal)은 차량(vehicle), 차량에 설치된 통신 장치, 이동 가능한 통신 장치, 또는 특정 지역에 설치된 통신 장치를 통칭하는 용어로 사용될 수 있다.
도 5는 본 발명의 일 실시 예에 따른 차량들 간의 V2V 링크 설정의 예를 나타낸다. 도 5는 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 5를 참고하면, 단말들 502, 504, 506, 508, 및 510은 각각 다수의 무선 장치들을 포함할 수 있다. 도 5에 나타난 무선 장치들이 설치된 위치는 설명의 편의를 위한 것으로, 무선 장치들은 단말의 다양한 부분(예: 전방/후방 범퍼(front/rear bumper), 사이드 미러(side mirror), 휠(wheel), 문(door) 등) 에 설치될 수 있다.
도 5의 경우, 단말 502의 전면부(front)에 장착된 무선 장치는 단말 504의 후면부(rear)에 장착된 무선 장치와 연결될 수 있다. 이에 따라, 단말 502와 단말 504간의 V2V 링크가 설정(또는 형성)될 수 있다.
또한, 단말 502의 후면부에 장착된 무선 장치는 단말 508의 측면 거울(side mirror)들에 장착된 무선 장치들과 연결될 수 있다. 이에 따라, 단말 502와 단말 508간의 V2V 링크가 설정될 수 있다.
또한, 단말 502는 단말 502의 좌측 또는 우측에 장착된 무선 장치를 이용하여 각각 단말 510 또는 단말 506과 V2V 링크를 설정할 수 있다.
단말 간의 V2V 링크의 단절을 판단하는 방법
상술한 바와 같이, 단말은 주변의 다수의 단말들과 V2V 링크들을 설정하여 군집 주행, 호송, 협력 주행 보조 또는 자율 주행(automatic driving) 등의 기능을 수행할 수 있다.
그러나, 단말 간의 V2V 링크가 설정된 후, 빔 차단(예: 건물 또는 다른 장애물에 의해 빔이 차단되는 경우) 또는 사고(accident) 등의 이유로 안테나 모듈(antenna module) 또는 패널(panel) 등이 손상됨에 따라 V2V 링크의 단절(disconnection)이 발생될 수 있다.
여기에서, V2V 링크의 단절은 단말이 다른 단말로 직접 데이터를 송수신할 수 없는 상태를 의미할 수 있다.
단말 간 유니캐스트 통신 상황이 고려되는 경우, 송신 단말(transmission terminal)과 수신 단말(reception terminal)은 이하 설명되는 방법을 통해 현재 V2V 링크가 단절되고, 그 결과 링크가 실패(link failure)된 것으로 판단할 수 있다.
도 6은 본 발명의 일 실시 예에 따른 단말 간 링크의 단절을 나타낸다. 도 6은 단지 설명을 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 6을 참고하면, 단말 605는 송신 단말을, 단말 615는 수신 단말을 의미할 수 있다. 또한, 단말 605 및 단말 615가 기지국 610에 통신적으로 연결되고, 단말 605 및 단말 615 간의 V2V 링크가 단절된 경우가 가정된다.
여기에서, 송신 단말은 다른 단말로 데이터를 전송하고자 하는 단말을 의미하고, 수신 단말은 다른 단말로부터 데이터를 수신하고자 하는 단말을 의미할 수 있다.
일 실시 예에서, 단말 605는 단말 615로부터 전송된 송신 채널 측정(transmission channel measurement)을 위한 기준 신호(reference signal)에 대한 수신 전력이 특정 임계(threshold) 값 이하인 경우에 단말간 링크들 602 및/또는 604가 단절된 상황(또는 링크가 실패된 상황)으로 판단할 수 있다.
여기에서, 링크 602는 단말 605로부터 단말 615로의 채널에 대한 링크를 의미하고, 링크 604는 단말 615로부터 단말 605로의 채널에 대한 링크를 의미한다.
여기에서, 송신 채널 측정을 위한 기준 신호는 사운딩 기준 신호(Sounding Reference Signal, SRS)일 수 있다.
또한, 단말 간 링크의 단절을 판단하기 위해 이용되는 상기 임계 값은 기지국과 단말 및/또는 단말들 간의 칩셋(chipset) 구현에 따라 변경될 수 있다.
또한, 앞서 설명한 바와 같이, 레거시 LTE에서 지원하는 V2X(vehicle to everything) 시스템에서는 브로드캐스트 통신만이 고려되기 때문에, 단말 간 채널 측정을 위한 기준 신호가 존재하지 않는다.
따라서, 단말 간의 유니캐스트 또는 멀티캐스트(multicast) 통신이 고려되는 경우, 단말 간 통신(예: 사이드 링크)을 위한 채널 측정 기준 신호가 새롭게 정의될 필요가 있다.
이 때, 링크 602와 링크 604 간에 채널 상호성(reciprocity)이 성립되는 경우, 단말 605 및 단말 615 각각은 단말 간 통신의 방향성에 관계없이 하나의(단일의(single) 또는 한 방향의) 채널 측정 기준 신호만을 이용하여 채널을 측정할 수 있다. 이는, 채널 상호성이 적용되는 경우, 양방향의 채널(링크 602의 채널 및 링크 604의 채널) 특성이 매우 유사하기 때문이다.
반면에, 링크 602와 링크 604 간에 채널 상호성이 성립되지 않는 경우, 링크 602의 채널과 링크 604의 채널의 특성이 상이하다. 따라서, 이 경우, 단말은 링크 602 및 링크 604에 대해 각각 다른 채널 측정 기준 신호를 이용하여 채널을 측정할 수 있다.
다른 실시 예에서, 단말 605는 단말 615로부터 데이터 수신에 대한 ACK/NACK 응답(response)를 특정 시간 기간 동안 수신하지 못한 경우에 단말 간 링크가 단절된(또는 실패된) 상황으로 판단할 수 있다.
예를 들어, 단말 605가 단말 615로 데이터를 전송한 후, 1초(second) 내에 수신 응답(ACK 또는 NACK)을 수신하지 못한 경우, 단말 605는 링크 602 및/또는 링크 604가 단절된 것으로 판단할 수 있다.
이 경우, 단말 605 및 단말 615 간의 유니캐스트 통신이 수행되는 경우, 레거시 LTE에서 이용되는 ACK/NACK 응답 절차 즉, ARQ(Automatic Repeat reQuest) 및/또는 HARQ(Hybrid Automatic Repeat reQuest) 절차가 단말 간의 통신에서도 수행됨이 가정된다.
또 다른 실시 예에서, 단말 615는 단말 605로부터 송신되는 기준 신호에 대한 기준 신호 수신 전력(Reference Signal Received Power, RSRP) 값이 특정 임계 값 이하인 경우에 단말 간의 링크가 단절된 것으로 판단할 수 있다.
여기에서, 특정 임계 값은 네트워크 환경, 사용자의 연결 선호도(link preference) 등에 따라 미리 설정될 수 있다.
또 다른 실시 예에서, 단말 615는 단말 605로부터 송신되는 신호에 대한 수신 전력 수준(received power level)이 낮아서 제어 정보(control information) 및/또는 데이터 정보(data information)를 복호(decode)할 수 없는 경우, 즉 복호에 실패한 경우에 단말 간의 링크가 단절된 것으로 판단할 수 있다.
보다 구체적으로, 단말 615는 사이드링크(sidelink)에 대한 제어 채널(control channel) 및/또는 데이터 채널(data channel)에 대한 복호화(decoding) 성공 여부에 따라 링크의 단절을 판단할 수 있다.
상술한 방법들에 따라 단말이 다른 단말과의 V2V 링크가 단절된 것을 탐지(detect)(식별 또는 확인)한 경우, 단말 간의 데이터 송수신을 위하여 V2V 링크가 복원(복구 또는 재설립(re-establish))될 필요가 있다.
이 경우, 다른 단말로 데이터를 전송하기 위한 두 가지 방식이 고려될 수 있다. 하나는 단말이 통신적으로 연결된 기지국을 통해 다른 단말로 데이터를 전송하는 방식이고, 다른 하나는 기지국의 개입으로 트리거(trigger)되는 단말 간의 비주기적인 채널 측정을 통해 V2V 링크를 복구하는 방식이다.
도 7은 본 발명의 일 실시 예에 따른 단말 간 링크가 단절된 경우에 단말이 수행하는 방법들을 나타낸다. 도 7은 단지 설명을 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 7을 참고하면, 단말 705 및 단말 715가 기지국 710과 통신적으로 연결된 경우가 가정된다. 다시 말해, 본 발명의 다른 실시 예에서는, 단말 705 및 단말 715는 기지국 710과 연결되어있지 않을 수 있다.
또한, 단말 705는 송신 단말을 의미하고, 단말 715는 수신 단말을 의미하는 경우가 가정된다. 다시 말해, 본 발명의 다른 실시 예에서, 단말 705는 수신 단말, 단말 715는 송신 단말일 수 있다.
단말 705와 단말 715 간의 V2V 링크(V2V 연결 또는 V2V 통신)가 단절된 경우, 단말 705는 기지국 710을 이용하는 V2I2V(vehicle to infrastructure to vehicle) 링크(또는 V2I2V 통신)를 통해 데이터를 단말 715로 전송할 수 있다.
여기에서 기지국 710으로 데이터를 전송하기 위해 이용되는 무선 장치는 단말 715와의 통신에 이용되었던 무선 장치와 다를 수 있다.
이 경우, 단말 705는 기지국 710으로 데이터를 전송하면서(또는 기지국 710을 통한 V2I2V 링크를 통한 데이터 전송을 시도하면서) 단말 간의 링크(또는 V2V 링크)의 복원(recovery)을 요청할 수 있다. 상기 요청은 단말 705가 기지국 710으로 전송하는 요청 메시지를 통해 수행될 수 있다.
이와 달리 단말 705가 상기 별도의 요청을 수행하지 않는 경우, 단말 705 및 단말 715 간의 V2V 링크는 미리 정해진 주기에 정해진(또는 주기적인) 단말 705 및 단말 715 간의 채널 측정(channel measurement)을 통해 복원될 수 있다.
또한, 단말 705가 V2I2V 링크를 통해 단말 715로 데이터를 전송하는 경우, 단말 705는 단말 715와 송수신할 수 있는 자원과 기지국 710과 송수신할 수 있는 자원을 고려할 수 있다.
또한, 단말 705는 단말 715와 송수신할 수 있는 자원과 단말 715가 기지국 710과 송수신할 수 있는 자원을 고려할 수 있다.
여기에서, 단말 간 단말 간 송수신할 수 있는 자원은 단말 간 링크(예: 사이드링크(sidelink))를 위해 정의된 자원을 의미할 수 있다. 이 경우, 상기 사이드링크는 사이드링크 탐색(sidelink discovery), 사이드링크 통신(sidelink communication), V2X 사이드링크 통신을 포함하는 개념이다.
또한, 상향링크 전송은 단말이 기지국으로 신호를 전송하는 것을 의미하며, 하향링크 수신은 단말이 기지국으로부터 신호를 수신하는 것을 의미한다.
보다 구체적으로, 단말 705는 기지국 710으로 단말 715에 대하여 할당된 상향링크 전송 자원 또는 하향링크 수신 자원과 관련된 스케줄링 정보를 요청할 수 있다. 이 후, 단말 705는 기지국 710으로부터 수신된 정보를 통해 기지국 710이 단말 715로 전송하는 하향링크 신호의 자원 할당 정보를 확인할 수 있다. 이에 따라, 단말 705는 상기 하향링크 신호의 전송에 이용되지 않는 자원과 V2I2V 링크를 통해 단말 715로 전송할 데이터를 기지국 710으로 전송할 수 있다.
또는, 이 경우, 단말 705은 단말 715의 C-RNTI(Cell Radio Network Temporary Identifier)에 대한 정보를 이용할 수 있다. 예를 들어, 단말 705는, 기지국 710으로부터 전송(또는 브로드캐스트)되는 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH)를 수신하여 단말 715의 C-RNTI를 식별함에 따라, 단말 715에 대한 하향링크 또는 상향링크 자원 정보를 확인할 수도 있다.
상술한 방식들을 이용하여, 단말 705는 단말 715가 상기 다른 하향링크 신호를 수신하는 시점을 회피하여 V2I2V 링크를 통해 데이터를 단말 715로 전송할 수 있다.
그 결과, 단말 705은 V2I2V 링크를 통해 단말 715로 전송되는 데이터가 다른 하향링크 신호에 의해 드롭(drop)되는 경우를 방지할 수 있다.
단말 간의 링크(또는 연결)이 단절된 경우에 V2I2V 링크를 이용하여 데이터를 전송하는 방법에 대한 내용은 후술되는 도 8에 대한 부분에서 구체적으로 설명된다.
또한, 단말 705는 단말 715와의 V2V 링크에 대한 채널을 측정하거나 빔 검색(search) 절차를 수행하여 단절된(disconnected) V2V 링크를 복원할 수 있다.
여기에서, 채널 측정 및/또는 빔 검색 절차는 주기적으로 수행되는 경우 이외에, 비주기적으로 수행되는 경우를 의미할 수 있다.
비주기적인 채널 측정 및/또는 빔 검색 절차를 통해 V2V 링크를 복구하는 방법에 대한 내용은 후술되는 도 9에 대한 부분에서 구체적으로 설명된다.
V2I2V 링크를 통해 단절된 단말로 데이터를 전송하는 방법
도 8은 본 발명의 일 실시 예에 따른 V2I2V 링크 전송(V2I2V link transmission)을 통해 단말로 데이터를 전송하는 절차를 나타낸다. 도 8은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 8을 참고하면, 도 7에 나타난 것과 같이 송신 단말(예: 단말 705), 수신 단말(예: 단말 715) 및 기지국(예: 기지국 710)이 존재하는 경우가 가정된다. 여기에서, 송신 단말은 수신 단말로 데이터를 전송하는 단말을 의미하고, 수신 단말은 송신 단말로부터 데이터를 수신하는 단말을 의미한다.
S810 단계에서, 송신 단말 및/또는 수신 단말은 단말 간의 링크가 단절된 것을 확인(또는 식별)할 수 있다. 여기에서, 각 송신 단말 및/또는 수신 단말은 도 6에 대한 부분에서 설명된 방법을 통해 링크의 단절을 식별할 수 있다.
예를 들어, 수신 단말은 측정된 수신 신호 품질에 기반하여, 송신 단말은 전송된 신호에 대한 ACK/NACK 응답의 수신 여부에 기반하여 단말 간 V2V 링크의 연결 상태를 판단할 수 있다.
송신 단말 및/또는 수신 단말이 단말 간의 링크가 단절된 것으로 판단한 경우, 각 단말은 기지국과 연결되어 있는지 여부를 판단할 수 있다.
각 단말이 기지국과 연결되어 있지 않은 경우, 각 단말은 기지국으로 연결을 요청할 수 있다. 예를 들어, 송신 단말 및/또는 수신 단말은 기지국으로 랜덤 액세스(random access)를 요청하는 메시지를 전송하거나, 무선 자원 제어(Radio Resource Control, RRC) 연결을 요청하는 메시지(예: RRC connection request)를 전송할 수 있다.
송신 단말 및/또는 수신 단말이 단말 간의 링크가 단절된 것으로 판단하고 기지국과 연결된 경우, S820 단계에서, 송신 단말은 기지국으로부터 상향링크 자원에 대한 할당 정보를 수신할 수 있다. 여기에서, 상향링크 자원은 수신 단말로 전송하고자 하는 데이터를 기지국으로 전송하기 위해 이용되는 자원을 의미한다.
이 경우, 상향링크 자원에 대한 할당 정보를 수신하기 위하여, 송신 단말은 기지국으로 적어도 하나의 스케줄링 요청(Scheduling Request, SR)을 전송할 수 있다. 여기에서, 적어도 하나의 SR은 1개의 디폴트(default) SR 및 사이드링크 (우회) 전송을 위한 여분의 SR을 포함할 수 있다.
예를 들어, 송신 단말이 1개의 SR을 전송하는 경우, 송신 단말은 기지국으로 SR을 전송한 후, 상기 SR에 대한 응답을 수신할 수 있다. 이후, 송신 단말은 상기 응답에 대응하여 기지국으로 버퍼 상태 보고(Buffer Status Report, BSR)를 전송하고, 상기 BSR에 대한 응답으로 데이터를 전송할 자원에 대한 정보(예: 상향링크 승인(UL grant))를 기지국으로부터 수신할 수 있다.
이 경우, 송신 단말은 전송되는 데이터를 수신할 단말(또는 수신 단말)을 지시(indicate)(또는 표시(represent))하기 위해 수신 단말에 대한 정보 즉, 수신 단말의 ID(identifier) 정보(예: C-RNTI 등)의 필드(field)가 포함된 BSR을 기지국으로 전송할 수 있다.
여기에서, 수신 단말의 ID 정보는 송신 단말이 기지국을 통해 전송하려는 데이터의 목적지(destination)를 의미할 수 있다. 또한, 상기 수신 단말의 ID 정보는 송신 단말이 기지국으로 전송하는 물리 계층(Physical Layer)의 메시지(또는 PHY단의 메시지)에 포함될 수 있다.
다른 예를 들어, 송신 단말은 상향링크 전송을 위하여 기지국으로 복수의 SR들을 전송할 수 있다. 이 경우, 송신 단말은 첫 번째 SR을 전송하는 경우에 상기 예시의 절차들(SR 전송, SR 응답 수신, BSR 전송, 및 BSR 응답 수신)을 수행할 수 있다.
그러나, 송신 단말이 첫 번째 SR 전송 이후에 다른 SR(예: 긴급한 메시지 또는 초신뢰성 저지연 통신 서비스(Ultra-Reliable Low Latency Communication)에서 이용되는 메시지 등)을 기지국으로 전송하는 경우, 상기 예시에서 설명된 절차 중 일부가 생략될 수 있다.
다시 말해, 송신 단말이 상기 다른 SR을 전송하는 경우, 송신 단말은 BSR을 전송하고, 상기 BSR에 대한 응답(예: UL grant)을 수신하는 절차를 생략할 수 있다.
따라서, 송신 단말은 SR을 전송한 후 기지국으로부터 상향링크 자원에 대한 할당 정보(예: UL grant)를 수신할 수 있다. 이 경우, 송신 단말이 BSR을 전송하지 않으므로, 송신 단말은 BSR을 통해 기지국으로 수신 단말의 ID 정보를 전송할 수 없다.
송신 단말이 상향링크 자원에 대한 할당 정보를 수신한 경우, S830 단계에서, 송신 단말은 할당된 상향링크 자원을 통해 기지국으로 데이터(또는 수신 단말로 전송될 데이터)를 전송할 수 있다.
여기에서, 기지국으로 전송되는 데이터는 수신 단말의 ID 정보를 포함할 수 있다.
보다 구체적으로, 상기 상향링크 자원에 대한 할당 정보가 단일의 SR을 이용하여 수신되는 경우, 상기 데이터에 수신 단말의 ID 정보가 포함되지 않을 수 있다.
이와 달리, 상기 상향링크 자원에 대한 할당 정보가 복수의 SR을 이용하여 수신된 경우, 송신 단말은 BSR 전송을 생략하기 때문에 수신 단말의 ID 정보가 포함된 데이터를 기지국으로 전송할 수 있다.
기지국이 송신 단말로부터 데이터를 수신한 경우, S840 단계에서, 기지국은 할당된 하향링크 자원을 통해 다른 단말(또는 수신 단말)로 데이터를 전송할 수 있다.
이 경우, 기지국은, 데이터를 수신 단말로 전송하기 이전에, 상기 하향링크 자원에 대한 할당 정보(예: 하향링크 승인(DL grant))를 수신 단말로 전송할 수 있다. 이에 따라, 수신 단말은 상기 할당 정보를 이용하여 데이터가 전송되는 자원을 식별할 수 있고, 그 결과, 전송되는 데이터를 수신할 수 있다.
상술한 절차에 따라, 단말 간의 V2V 링크가 단절된 경우, 송신 단말은 V2I2V 링크를 통해 수신 단말로 데이터를 전송할 수 있다. 이 경우, 수신 단말은 데이터 수신에 대한 ACK/NACK 응답을 V2I2V 링크를 통해 송신 단말로 전송할 수 있다.
일반적으로 단말과 기지국 간의 채널(또는 빔) 측정 주기가 단말 간 링크 탐색(discovery) 측정 주기보다 짧을 수 있다. 이에 따라, 단말들이 직접적인 V2V 링크를 복원하는 경우보다 단말과 기지국 간의 연결 시도 후 V2I2V 링크를 통해 데이터를 전송하는 경우가 시간적 측면에서 효율적일 수 있다.
단말 간 측정(measurement)을 통해 V2V 링크를 복원하는 방법
도 9는 본 발명의 다른 실시 예에 따른 채널 및/또는 빔 측정을 통해 V2V 링크를 복원하는 절차를 나타낸다. 도 9는 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 9를 참고하면, 도 7에 나타난 것과 같이 송신 단말(예: 단말 705), 수신 단말(예: 단말 715) 및 기지국(예: 기지국 710)이 존재하는 경우가 가정된다. 여기에서, 송신 단말은 수신 단말로 데이터를 전송하는 단말을 의미하고, 수신 단말은 송신 단말로부터 데이터를 수신하는 단말을 의미한다.
S910 단계에서, 송신 단말 및 수신 단말은 단말 간의 링크가 단절된 것을 확인(또는 식별)할 수 있다. 여기에서, 각 송신 단말 및 수신 단말은 도 6에 대한 부분에서 설명된 방법을 통해 링크의 단절을 식별할 수 있다.
예를 들어, 수신 단말은 측정된 수신 신호 품질에 기반하여, 송신 단말은 전송된 신호에 대한 ACK/NACK 응답의 수신 여부에 기반하여 단말 간 V2V 링크의 연결 상태를 판단할 수 있다.
송신 단말 및/또는 수신 단말이 단말 간의 링크가 단절된 것으로 판단한 경우, 각 단말은 기지국과 연결되어 있는지 여부를 판단할 수 있다.
각 단말이 기지국과 연결되어 있지 않은 경우, 각 단말은 기지국으로 연결을 요청할 수 있다. 예를 들어, 송신 단말 및/또는 수신 단말은 기지국으로 랜덤 액세스를 요청하는 메시지, RRC 연결을 요청하는 메시지(예: RRC connection request) 등을 전송할 수 있다.
송신 단말 및/또는 수신 단말이 단말 간의 링크가 단절된 것으로 판단하고 기지국과 연결된 경우, S920 단계에서, 송신 단말은 V2V 링크 설정(형성 또는 복구)을 위한 측정을 트리거링하는 요청(measurement triggering request)을 기지국으로 전송할 수 있다.
여기에서, 상기 요청은 V2V 링크와 관련된 채널 및/또는 빔(beam)에 대한 측정을 트리거링하는 요청일 수 있다. 이 경우, 상기 요청은 기존에 설정된 주기적인 측정 이외에 비주기적인 측정(예: 이벤트 트리거된 빔 측정(event triggered beam measurement), 이벤트 트리거된 채널 측정(event triggered channel measurement))을 요청하는 메시지일 수 있다.
기지국이 상기 요청을 송신 단말로부터 수신한 후, S930 단계에서, 기지국은 상기 요청에 대응하여 측정(measurement)을 지시하는 메시지를 송신 단말 및/또는 수신 단말로 전송할 수 있다.
여기에서, 상기 측정은 주기적 빔 측정과는 별개의 이벤트 트리거된 빔 및/또는 채널 측정(비주기적인 측정)을 의미할 수 있다.
단말이 상기 메시지를 수신하여 측정을 수행함에 따라, 단말들(송신 단말 및 수신 단말)은 보다 빠르게 단말 간 링크를 복원(recover)하고, 빔 및/또는 채널을 설정(configure)할 수 있다.
상술한 바와 같이 기지국이 측정을 지시하는 경우, 기지국은 상위 계층 시그널링(higher layer signaling)(예: RRC) 및/또는 하향링크 제어 정보(Downlink Control Information, DCI)를 통해 상기 지시에 대한 메시지를 단말로 전송할 수 있다.
또한, 기지국은 주기적인 채널 및/또는 빔 측정을 위한 기준 신호 이외에, 상기 요청에 대응하여 비주기적인 채널 및/또는 빔 측정을 위한 기준 신호에 대한 자원(resource)을 할당할 수 있다.
여기에서, 상기 채널 및/또는 빔은 단말 간의 링크(예: V2V 링크)에 이용되는 채널 및/또는 빔을 의미한다.
이 경우, 기지국은 할당된 자원에 대한 정보를 상위 계층 시그널링 및/또는 하향링크 제어 정보를 통해 송신 단말 및/또는 수신 단말로 전송할 수 있다.
본 발명의 다양한 실시 예들에서, 기지국이 측정을 지시하는 메시지를 전송하는 절차와 비주기적인 채널 및/또는 빔 측정을 위한 기준 신호에 대한 자원을 할당하는 절차는 동시에, 독립적으로, 또는 순차적으로 수행될 수 있다.
이 후, S940 단계에서, 단말들이 기지국으로부터 측정을 지시하는 메시지를 수신하는 경우, 단말들은 트리거된(triggered) 채널 및/또는 빔 측정을 수행할 수 있다.
이에 따라, 단말들은 단말 간 V2V 링크를 복원하기에 적합한 채널 및/또는 빔을 식별할 수 있고, 그 결과 식별된 채널 및/또는 빔에 기반하여 단말 간 V2V 링크가 복구될 수 있다.
또한, 비주기적인 채널 및/또는 빔 측정을 위한 기준 신호에 대한 자원 할당 정보(resource allocation information)를 단말들이 수신하는 경우, 각 단말은 할당된 자원을 통해 채널 및/또는 빔 측정을 위한 기준 신호를 다른 단말로 전송할 수 있다. 예를 들어, 송신 단말은 송신 채널 측정을 위한 기준 신호(예: SRS)를 수신 단말로 전송할 수 있다.
이에 따라, 각 단말은 기준 신호를 이용하여 채널 및/또는 빔 측정을 수행하고, 측정 보고(measurement report)를 기지국으로 전송할 수 있다. 상기 측정을 통해, 단말 간 V2V 링크는 복구될 수 있다. 예를 들어, 상기 기준 신호에 대한 수신 전력 측정 값이 특정 임계 값 이상으로 판단되면, 단말은 해당 채널 및/또는 빔을 이용하여 V2V 링크를 복원할 수 있다.
일반적으로, 빔 검색(search)를 위한 기준신호의 전송 주기가 매우 길고, 채널 및/또는 빔 측정을 위한 기준 신호의 전송은 비주기적으로 수행될 수 있다.
따라서, 기지국이 V2V 링크를 복원하기 위한 별도의 자원을 할당해주지 않는 경우, 빔 복구에 상당한 시간적 지연이 발생될 수 있으므로, 기지국의 개입이 필요할 수 있다. 즉, 상술한 바와 같이 기지국이 비주기적인 채널 및/또는 빔 측정을 위한 기준 신호 자원을 할당해주는 경우, 단말 간 V2V 링크는 보다 빨리 복구(또는 복원)될 수 있다.
또한, 본 발명의 다양한 실시 예들에서, 앞서 설명된 V2I2V 링크를 통해 단절된 단말로 데이터를 전송하는 동작과 단말 간 측정을 통해 V2V 링크를 복원하는 동작은 동시에, 독립적으로, 또는 순차적으로 수행될 수 있다.
도 10은 본 발명의 일 실시 예에 따른 단말 간 링크를 재-설립(re-establish)하는 단말의 동작 순서도를 나타낸다. 도 10은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 10을 참고하면, 도 7에 나타난 것과 같이 송신 단말(예: 단말 705), 수신 단말(예: 단말 715) 및 기지국(예: 기지국 710)이 존재하는 경우가 가정된다. 여기에서, 송신 단말은 수신 단말로 데이터를 전송하는 단말을 의미하고, 수신 단말은 송신 단말로부터 데이터를 수신하는 단말을 의미한다.
S1010 단계에서, 제1 단말은 제2 단말과의 무선 링크에 대한 무선 링크 실패(radio link failure)를 결정할 수 있다. 여기에서, 제1 단말이 송신 단말인 경우 제2 단말은 수신 단말이고, 제1 단말이 수신 단말인 경우 제2 단말은 송신 단말이다.
여기에서, 제1 단말은 상술한 도 6에 대한 부분에서 설명된 단말 간 링크가 단절된 경우에 대한 판단 절차와 유사하게 무선 링크 실패를 결정할 수 있다. 무선 링크 실패는 제1 단말이 제2 단말과 제어 정보 및/또는 데이터 정보를 송수신할 수 없는 상태를 의미할 수 있다.
또한, 제1 단말이 송신 단말인 경우, 제1 단말은, 제2 단말로부터 수신된 기준 신호에 대한 수신 전력이 미리 설정된 임계 값보다 작거나 같은 경우, 무선 링크가 실패된 것으로 판단할 수 있다.
또한, 제1 단말이 송신 단말인 경우, 제1 단말은, 제2 단말로부터 ACK/NACK 응답이 미리 설정된 기간 내에 수신되지 않는 경우, 무선 링크가 실패된 것으로 판단할 수 있다. 여기에서, 미리 설정된 기간은 네트워크 서비스 관리자 또는 네트워크 서비스 이용자에 의해 설정될 수 있다. 이 경우, 제1 단말과 제2 단말 간의 통신 서비스가 ARQ 및/또는 HARQ 절차를 지원하는 것이 가정된다.
또한, 제1 단말이 수신 단말인 경우, 제1 단말은, 제2 단말로부터 수신된 제어 정보 및/또는 데이터 정보를 복호(decode)할 수 없는 경우에 무선 링크가 실패된 것으로 판단할 수 있다.
또한, 제1 단말과 제2 단말 간의 무선 링크는 유니캐스트 서비스(unicast service) 또는 멀티캐스트 서비스(multicast service)에 기반하여 설정될 수 있다.
제1 단말이 무선 링크 실패인 것으로 결정한 경우, S1020 단계에서, 제1 단말은 제2 단말과의 무선 링크를 재-설립하기 위한 측정을 요청하는 제1 메시지를 기지국으로 전송할 수 있다. 이 경우, 기지국과 제1 단말은 통신적으로 연결되어있음(또는 신호를 송수신할 수 있는 상태)이 가정된다.
S1020 단계에서의 제1 단말의 동작은 상술한 도 9에 대한 부분에서 설명된 송신 단말의 동작과 유사할 수 있다.
여기에서, 제1 단말이 요청하는 측정은 제1 단말과 제2 단말 간의 채널 또는 빔 중 적어도 하나를 이용하는 측정일 수 있다.
또한, 제1 단말이 요청하는 측정은 주기적인 측정 이외에 비주기적인(aperiodic) 측정을 포함할 수 있다. 예를 들어, 제1 단말은 기지국으로 V2V 빔 측정 트리거링 요청(V2V beam measurement triggering request)을 포함하는 메시지를 전송할 수 있다.
제1 단말이 기지국으로 제1 메시지를 전송한 후, S1030 단계에서, 제1 단말은 전송된 제1 메시지에 대응하여 측정의 설정(configuration)에 대한 정보를 포함하는 제2 메시지를 수신할 수 있다.
S1030 단계에서, 제1 단말의 동작은 상술한 도 9에 대한 부분에서 설명된 송신 단말의 동작과 유사할 수 있다.
여기에서, 상기 설정에 대한 정보는 측정에 대한 지시를 포함할 수 있다.
또한, 상기 설정에 대한 정보는 제1 단말과 제2 단말 간의 채널 및/또는 빔을 이용하는 측정을 위한 기준 신호의 자원 할당 정로를 포함할 수 있다.
상기 기준 신호 자원은 비주기적인 단말 간 측정을 위하여 상기 기지국에 의해 할당될 수 있다.
또한, 상기 설정에 대한 정보를 포함하는 제2 메시지는 상위 계층 시그널링 또는 하향링크 제어 정보를 통해 제1 단말로 수신될 수 있다.
제1 단말이 제2 메시지를 수신한 후, S1040 단계에서, 제1 단말은 제2 단말과의 재-설립된 무선 링크에 대한 보고(report)를 포함하는 제3 메시지를 기지국으로 전송할 수 있다.
여기에서, 상기 재-설립된 무선 링크는 S1030 단계에서 수신된 설정 정보에 기반하는 측정을 통해 설정될 수 있다.
다시 말해, 제1 단말은 기지국으로부터 수신된 설정 정보(예: 측정을 위한 기준 신호의 자원 할당 정보 등)를 이용하여 제2 단말과 채널 및/또는 빔 측정을 수행한 후, 기지국으로 측정 결과를 보고할 수 있다.
본 발명이 적용될 수 있는 장치 일반
도 11은 본 발명의 일 실시 예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 11을 참조하면, 무선 통신 시스템은 네트워크 노드(1110)와 다수의 단말(UE)(1120)을 포함한다.
네트워크 노드(1110)는 프로세서(processor, 1111), 메모리(memory, 1112) 및 통신 모듈(communication module, 1113)을 포함한다. 프로세서(2511)는 앞서 도 1 내지 도 10에서 제안된 기능, 과정 및/또는 방법을 구현한다. 유/무선 인터페이스 프로토콜의 계층들은 프로세서(1111)에 의해 구현될 수 있다. 메모리(1112)는 프로세서(1111)와 연결되어, 프로세서(1111)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(1113)은 프로세서(1111)와 연결되어, 유/무선 신호를 송신 및/또는 수신한다. 특히, 네트워크 노드(1110)가 기지국인 경우, 통신 모듈(1113)은 무선 신호를 송/수신하기 위한 RF부(radio frequency unit)을 포함할 수 있다.
단말(1120)은 프로세서(1121), 메모리(1122) 및 통신 모듈(또는 RF부)(1123)을 포함한다. 프로세서(1121)는 앞서 도 1 내지 도 10에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(1121)에 의해 구현될 수 있다. 메모리(1122)는 프로세서(1121)와 연결되어, 프로세서(1121)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(1123)는 프로세서(1121)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(1112, 1122)는 프로세서(1111, 1121) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1111, 1121)와 연결될 수 있다. 또한, 네트워크 노드(1110)(기지국인 경우) 및/또는 단말(1120)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시 예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명의 무선 통신 시스템에서 단말 간 통신 링크를 복원하는 방안은 3GPP LTE/LTE-A 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (10)

  1. 무선 통신 시스템에서 단말 간 링크를 재-설립(re-establish)하는 방법에 있어서, 제1 단말에 의해 수행되는 방법은,
    제2 단말과의 무선 링크에 대한 무선 링크 실패(radio link failure)를 결정하는 과정과,
    상기 결정된 무선 링크 실패에 기반하여, 상기 제2 단말과의 무선 링크를 재-설립하기 위한 측정(measurement)을 요청하는 제1 메시지를 기지국으로 전송하는 과정과,
    상기 전송된 제1 메시지에 대응하여, 상기 측정의 설정(configuration)에 대한 정보를 포함하는 제2 메시지를 상기 기지국으로부터 수신하는 과정과,
    상기 설정에 대한 정보에 기반한 상기 측정을 수행하여 상기 제2 단말과의 재-설립된 무선 링크에 대한 보고(report)를 포함하는 제3 메시지를 상기 기지국으로 전송하는 과정을 포함하는 방법.
  2. 제 1항에 있어서,
    상기 제2 단말과의 무선 링크에 대한 상기 무선 링크 실패(radio link failure)를 결정하는 과정은,
    상기 제2 단말로부터 수신된 기준 신호에 대한 수신 전력이 미리 설정된 임계 값(threshold)보다 작거나 같은 경우 또는 상기 제2 단말로부터 ACK/NACK 응답이 미리 설정된 기간 내에 수신되지 않는 경우 중 적어도 하나에 따라 상기 무선 링크 실패를 결정하는 과정을 포함하는 방법.
  3. 제 1항에 있어서,
    상기 제2 단말과의 무선 링크의 상기 무선 링크 실패(radio link failure)를 결정하는 과정은,
    상기 제2 단말로부터 수신된 제어 정보(control information) 또는 데이터 정보(data information) 중 적어도 하나에 대한 복호화(decoding)의 실패 여부에 따라 상기 무선 링크 실패를 결정하는 과정을 포함하는 방법.
  4. 제 1항에 있어서,
    상기 제2 단말과의 무선 링크는, 상기 제1 단말과 상기 제2 단말간의 유니캐스트 서비스(unicast service) 또는 멀티캐스트 서비스(multicast service) 중 적어도 하나에 기반하여 설정되는 방법.
  5. 제1 항에 있어서,
    상기 측정은, 상기 제1 단말과 상기 제2 단말 간의 채널(channel) 또는 빔(beam) 중 적어도 하나를 이용하는 측정을 포함하는 방법.
  6. 제 5항에 있어서,
    상기 제1 단말과 상기 제2 단말 간의 채널 또는 빔 중 적어도 하나를 이용하는 측정은, 상기 기지국에 의해 비주기적으로 트리거된(aperiodically triggered) 측정을 포함하는 방법.
  7. 제 5항에 있어서,
    상기 측정의 설정에 대한 정보는, 상기 제1 단말과 상기 제2 단말 간의 채널 또는 빔 중 적어도 하나를 이용하는 측정을 위한 기준 신호(reference signal)의 자원 할당 정보(resource allocation information)를 포함하는 방법.
  8. 제 1항에 있어서,
    상기 제2 메시지는 상위 계층 시그널링(higher layer signaling) 또는 하향링크 제어 정보(downlink control information) 중 적어도 하나를 이용하여 전송되는 방법.
  9. 제 1항에 있어서,
    상기 제2 단말과의 무선 링크는, 상기 제1 단말과 상기 제2 단말 간의 V2V 링크(Vehicle to Vehicle link)를 포함하는 방법.
  10. 무선 통신 시스템에서 단말 간 링크를 재-설립(re-establish)하는 제1 단말에 있어서,
    무선 신호를 송수신하기 위한 송수신부와,
    상기 송수신부와 기능적으로 연결되어 있는 프로세서를 포함하고,
    상기 프로세서는,
    제2 단말과의 무선 링크에 대한 무선 링크 실패(radio link failure)를 결정하고,
    상기 결정된 무선 링크 실패에 기반하여, 상기 제2 단말과의 무선 링크를 재-설립하기 위한 측정(measurement)을 요청하는 제1 메시지를 기지국으로 전송하고,
    상기 전송된 제1 메시지에 대응하여, 상기 측정의 설정(configuration)에 대한 정보를 포함하는 제2 메시지를 상기 기지국으로부터 수신하고,
    상기 설정 정보에 기반한 상기 측정을 수행하여 상기 제2 단말과의 재-설립된 무선 링크에 대한 보고(report)를 포함하는 제3 메시지를 상기 기지국으로 전송하도록 제어하는 장치.
PCT/KR2017/000715 2017-01-20 2017-01-20 무선 통신 시스템에서 단말 간 링크를 복원하는 방법 및 이를 위한 장치 WO2018135677A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/479,149 US11265948B2 (en) 2017-01-20 2017-01-20 Method for recovering link between terminals in wireless communication system, and device therefor
PCT/KR2017/000715 WO2018135677A1 (ko) 2017-01-20 2017-01-20 무선 통신 시스템에서 단말 간 링크를 복원하는 방법 및 이를 위한 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/000715 WO2018135677A1 (ko) 2017-01-20 2017-01-20 무선 통신 시스템에서 단말 간 링크를 복원하는 방법 및 이를 위한 장치

Publications (1)

Publication Number Publication Date
WO2018135677A1 true WO2018135677A1 (ko) 2018-07-26

Family

ID=62909018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000715 WO2018135677A1 (ko) 2017-01-20 2017-01-20 무선 통신 시스템에서 단말 간 링크를 복원하는 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US11265948B2 (ko)
WO (1) WO2018135677A1 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020057760A1 (en) * 2018-09-20 2020-03-26 Huawei Technologies Co., Ltd. Devices and methods for communication in a wireless communication network
WO2020167773A1 (en) * 2019-02-12 2020-08-20 Idac Holdings, Inc. Method for sidelink radio link monitoring and determining radio link failure
CN111586621A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 侧行链路管理方法及装置
WO2020191747A1 (en) * 2019-03-28 2020-10-01 Mediatek Singapore Pte. Ltd. Link configuration and radio link management on a sidelink radio interface
CN111918416A (zh) * 2019-05-10 2020-11-10 华为技术有限公司 通信方法和通信装置
WO2021029811A1 (en) * 2019-08-09 2021-02-18 Telefonaktiebolaget Lm Ericsson (Publ) Sidelink radio link failure
WO2021033023A1 (en) * 2019-08-21 2021-02-25 Lenovo (Singapore) Pte. Ltd. Radio link failure recovery
WO2021041079A1 (en) * 2019-08-29 2021-03-04 Qualcomm Incorporated Radio link monitoring for sidelink communications
EP3799330A1 (en) * 2019-09-30 2021-03-31 Comcast Cable Communications LLC Beam management and failure recovery for communications

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140138235A (ko) * 2012-04-13 2014-12-03 인텔 코오퍼레이션 D2d 접속 복구 스킴들
US20150282243A1 (en) * 2012-11-09 2015-10-01 Nokia Technologies Oy Methods and apparatuses of radio resource control connection recovery
WO2016153774A1 (en) * 2015-03-24 2016-09-29 Qualcomm Incorporated Configuration by enb for d2d ue to network relay search
US20160285935A1 (en) * 2015-03-27 2016-09-29 Qualcomm Incorporated Point-to-multipoint broadcast assisted vehicle-to-x broadcast
US20170006560A1 (en) * 2014-02-10 2017-01-05 Telefonaktiebolaget Lm Ericsson (Publ) Transmit configuration adaptation for device to device communications based on timing measurements

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI626855B (zh) * 2012-04-27 2018-06-11 內數位專利控股公司 最佳化鄰近資料路徑設置方法及裝置
US9763274B2 (en) * 2012-11-06 2017-09-12 Nokia Technologies Oy Method and apparatus for device-to-device communication
WO2015016567A1 (ko) * 2013-07-30 2015-02-05 엘지전자 주식회사 무선 통신 시스템에서 링크 적응 수행 방법 및 장치
CN105101046B (zh) * 2014-05-14 2020-11-03 索尼公司 无线通信系统中的电子设备和无线通信方法
KR102183333B1 (ko) * 2014-08-08 2020-11-26 주식회사 아이티엘 단말간 통신을 지원하는 무선 통신 시스템에서 버퍼상태보고 전송 방법 및 장치
US9814050B2 (en) * 2015-11-30 2017-11-07 Qualcomm Incorporated Systems and methods for performing network configurable access and data transfer procedures
US10820336B2 (en) * 2016-04-01 2020-10-27 Intel Corporation Geo-information reporting for vehicle-to-vehicle sidelink communications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140138235A (ko) * 2012-04-13 2014-12-03 인텔 코오퍼레이션 D2d 접속 복구 스킴들
US20150282243A1 (en) * 2012-11-09 2015-10-01 Nokia Technologies Oy Methods and apparatuses of radio resource control connection recovery
US20170006560A1 (en) * 2014-02-10 2017-01-05 Telefonaktiebolaget Lm Ericsson (Publ) Transmit configuration adaptation for device to device communications based on timing measurements
WO2016153774A1 (en) * 2015-03-24 2016-09-29 Qualcomm Incorporated Configuration by enb for d2d ue to network relay search
US20160285935A1 (en) * 2015-03-27 2016-09-29 Qualcomm Incorporated Point-to-multipoint broadcast assisted vehicle-to-x broadcast

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112740567A (zh) * 2018-09-20 2021-04-30 华为技术有限公司 在无线通信网络中进行通信的设备和方法
WO2020057760A1 (en) * 2018-09-20 2020-03-26 Huawei Technologies Co., Ltd. Devices and methods for communication in a wireless communication network
CN112740567B (zh) * 2018-09-20 2022-08-26 华为技术有限公司 在无线通信网络中进行通信的设备和方法
WO2020167773A1 (en) * 2019-02-12 2020-08-20 Idac Holdings, Inc. Method for sidelink radio link monitoring and determining radio link failure
CN111586621A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 侧行链路管理方法及装置
WO2020191747A1 (en) * 2019-03-28 2020-10-01 Mediatek Singapore Pte. Ltd. Link configuration and radio link management on a sidelink radio interface
CN111918416A (zh) * 2019-05-10 2020-11-10 华为技术有限公司 通信方法和通信装置
CN111918416B (zh) * 2019-05-10 2023-10-10 华为技术有限公司 通信方法和通信装置
WO2021029811A1 (en) * 2019-08-09 2021-02-18 Telefonaktiebolaget Lm Ericsson (Publ) Sidelink radio link failure
WO2021033023A1 (en) * 2019-08-21 2021-02-25 Lenovo (Singapore) Pte. Ltd. Radio link failure recovery
US11477705B2 (en) 2019-08-21 2022-10-18 Lenovo (Singapore) Pte. Ltd. Radio link failure recovery
WO2021041079A1 (en) * 2019-08-29 2021-03-04 Qualcomm Incorporated Radio link monitoring for sidelink communications
US11750330B2 (en) 2019-08-29 2023-09-05 Qualcomm Incorporated Radio link monitoring for sidelink communications
EP3799330A1 (en) * 2019-09-30 2021-03-31 Comcast Cable Communications LLC Beam management and failure recovery for communications

Also Published As

Publication number Publication date
US20190394827A1 (en) 2019-12-26
US11265948B2 (en) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2018135677A1 (ko) 무선 통신 시스템에서 단말 간 링크를 복원하는 방법 및 이를 위한 장치
WO2018124776A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 이를 위한 장치
WO2016048068A1 (ko) D2d 신호의 송신 방법 및 이를 위한 단말
WO2018044080A1 (ko) 무선 통신 시스템에서 하향링크 제어 정보 전송 방법 및 상기 방법을 이용하는 장치
WO2017222327A1 (ko) 랜덤 액세스를 수행하는 방법 및 그 방법을 수행하는 단말
WO2019164353A1 (ko) 무선 통신 시스템에서 단말의 v2x 통신 방법 및 상기 방법을 이용하는 장치
WO2014204202A1 (en) Methods of ul tdm for inter-enodeb carrier aggregation
WO2021060786A1 (ko) 사이드링크 통신을 제어하는 방법 및 그 장치
WO2014112850A1 (ko) Tdd을 지원하는 이동통신 시스템에서 tdd 설정 정보를 단말에게 효과적으로 제공하고 상향링크 전송 타이밍을 결정하기 위한 방법 및 장치
WO2016200236A1 (ko) 무선 통신 시스템에서 v2v 통신을 위한 참조 신호 설정 방법 및 이를 위한 장치
WO2013109100A1 (ko) 장치 대 장치 통신 방법 및 이를 수행하기 위한 장치
WO2016204590A1 (ko) 무선 통신 시스템에서 v2v 통신을 위한 참조 신호 설정 방법 및 이를 위한 장치
WO2013066072A1 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2014137105A1 (ko) Epdcch를 통한 제어 정보 수신 방법
WO2019031927A1 (ko) 무선 통신 시스템에서 사이드링크 전송과 관련된 그랜트를 전송하는 방법 및 이를 위한 장치
WO2016018068A1 (ko) 무선 통신 시스템에서 d2d 통신을 위한 자원 정보 송신 송신 방법 및 이를 위한 장치
WO2013048137A2 (ko) 다중 반송파를 지원하는 무선 통신 시스템에서 임의 접속 방법 및 장치
WO2016056843A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 동기화 신호를 전송하는 방법 및 이를 위한 장치
WO2016018075A1 (ko) 무선 통신 시스템에서 d2d(device-to-device) 통신을 위한 신호 송수신 방법 및 이를 위한 장치
WO2016018069A1 (ko) 무선 통신 시스템에서 d2d 통신을 위한 제어 정보 송신 방법 및 이를 위한 장치
WO2018151340A1 (ko) 무선 통신 시스템에서 단말 간 채널을 측정하는 방법 및 이를 위한 장치
WO2021187933A1 (ko) 릴레이 노드를 제어하는 방법 및 그 장치
WO2016195411A1 (ko) 무선 통신 시스템에서 v2v 통신을 위한 참조 신호 설정 방법 및 이를 위한 장치
WO2018230995A1 (en) Method for performing a random access procedure in wireless communication system and a device therefor
WO2021034079A1 (ko) Nr v2x에서 bwp를 기반으로 사이드링크 관련 정보를 기지국에게 전송하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892367

Country of ref document: EP

Kind code of ref document: A1