WO2018135386A1 - Magnetic heat pump apparatus - Google Patents

Magnetic heat pump apparatus Download PDF

Info

Publication number
WO2018135386A1
WO2018135386A1 PCT/JP2018/000584 JP2018000584W WO2018135386A1 WO 2018135386 A1 WO2018135386 A1 WO 2018135386A1 JP 2018000584 W JP2018000584 W JP 2018000584W WO 2018135386 A1 WO2018135386 A1 WO 2018135386A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat medium
magnetic
temperature end
magnetic working
Prior art date
Application number
PCT/JP2018/000584
Other languages
French (fr)
Japanese (ja)
Inventor
相哲 裴
Original Assignee
サンデンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデンホールディングス株式会社 filed Critical サンデンホールディングス株式会社
Priority to DE112018000412.0T priority Critical patent/DE112018000412T5/en
Priority to CN201880007061.7A priority patent/CN110177982A/en
Priority to US16/477,035 priority patent/US20200003461A1/en
Publication of WO2018135386A1 publication Critical patent/WO2018135386A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0021Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a static fixed magnet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0022Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a rotating or otherwise moving magnet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a magnetic heat pump device using the magnetocaloric effect of a magnetic working substance.
  • a magnetic heat pump device using a property (magnetocaloric effect) that causes a large temperature change when a magnetic working material is excited and demagnetized has been attracting attention in recent years. Yes.
  • a magnetic working material is filled in a duct of a magnetic working body, and a permanent magnet is separated from and attached to the magnetic working body, thereby changing a magnetic field applied to the magnetic working material.
  • the applied magnetic field is increased (excited)
  • the temperature of the magnetic working substance increases, and when it is decreased (demagnetized), the temperature decreases.
  • a heat medium such as water
  • a pump and a rotary valve is reciprocated between the high temperature end and the low temperature end of the magnetic working body using a pump and a rotary valve.
  • the magnetic working material is excited, the temperature is increased, and the heat medium is moved from the low temperature end side to the high temperature end side.
  • the magnetic working body has a temperature gradient that is high on the high temperature end side and low on the low temperature end side.
  • the present invention has been made to solve the conventional technical problems, and it is an object of the present invention to solve a problem caused by using a rotary valve and to provide a magnetic heat pump device that improves efficiency.
  • a magnetic heat pump device of the present invention includes a magnetic working material having a magnetocaloric effect, a magnetic working body through which a heat medium is circulated, a magnetic field changing device that changes the magnitude of a magnetic field applied to the magnetic working material, and a magnetic A displacer for reciprocating the heat medium between the high temperature end and the low temperature end of the work body, and an external heat medium circulation circuit having an external heat exchanger and circulating the second heat medium, the external heat medium circulation
  • the circuit is characterized in that heat exchange is performed between the second heat medium and the heat medium of the magnetic working body, and the heat exchanged second heat medium is circulated to an external heat exchanger.
  • a magnetic heat pump device is the first external heat medium circulation circuit having an external heat exchanger on the heat dissipation side and the second external heat medium circulation circuit having an external heat exchanger on the heat absorption side in the above invention.
  • the first external heat medium circulation circuit exchanges heat between the second heat medium and the heat medium on the high temperature end side of the magnetic working body, and transfers the heat exchanged second heat medium on the heat radiation side.
  • the second external heat medium circulating circuit heat-exchanges the second heat medium and the heat medium on the low temperature end side of the magnetic working body by circulating through the external heat exchanger. Is circulated through the external heat exchanger on the heat absorption side.
  • a magnetic heat pump device according to the above-described invention, wherein a displacer on the high temperature end side provided on the high temperature end side of the magnetic working body, a displacer on the low temperature end side provided on the low temperature end side of the magnetic working body, The displacer on the high temperature end side and the displacer on the low temperature end side are arranged back to back.
  • a magnetic working body including a magnetic working material having a magnetocaloric effect, through which a heat medium is circulated, and a magnetic field changing device that changes the magnitude of a magnetic field applied to the magnetic working material;
  • a displacer that reciprocates the heat medium between the high temperature end and the low temperature end of the magnetic working body, and an external heat medium circulation circuit that has an external heat exchanger and circulates the second heat medium.
  • the external heat medium circulation circuit exchanges heat between the second heat medium and the heat medium of the magnetic working body, and circulates the heat exchanged second heat medium to the external heat exchanger.
  • the heat medium on the high temperature end side and the low temperature end side of the body and the second heat medium are subjected to heat exchange and can be indirectly taken out to the external heat exchanger.
  • the heat medium of the magnetic working body is reciprocated by the displacer, the problems of mixing loss and frictional heat, such as when a rotary valve is used, are eliminated, and the temperature change due to the magnetocaloric effect of the magnetic working material is effectively and efficiently performed. Can be used.
  • a first external heat medium circulation circuit having a heat radiation side external heat exchanger and a second external heat medium circulation circuit having a heat absorption side external heat exchanger are provided as in the second aspect of the invention
  • the external heat medium circulation circuit 1 exchanges heat between the second heat medium and the heat medium on the high temperature end side of the magnetic working body, and the heat exchanged second heat medium is used as an external heat exchanger on the heat radiation side.
  • the second external heat medium circulation circuit exchanges heat between the second heat medium and the heat medium on the low temperature end side of the magnetic working body, and the heat exchanged second heat medium is transferred to the heat absorption side. If it is circulated to the external heat exchanger, the temperature of the heat medium on the high temperature end side of the magnetic working body is efficiently moved to the second heat medium, and the heat medium on the low temperature end side is transferred to the second heat medium. Heat can be moved efficiently.
  • displacer on the high temperature end side provided on the high temperature end side of the magnetic working body and the displacer on the low temperature end side provided on the low temperature end side of the magnetic working body may be arranged back to back as in the invention of claim 3. It is also possible to suppress the drive power of the displacer as much as possible.
  • FIG. 2 is a sectional view of the magnetic heat pump AMR (Active Magnetic Regenerator) of FIG. 1. It is a whole block diagram for demonstrating the magnetic heat pump apparatus of the other Example to which this invention is applied.
  • AMR Active Magnetic Regenerator
  • FIG. 1 is an overall configuration diagram of a magnetic heat pump device 1 according to an embodiment to which the present invention is applied
  • FIG. 2 is a cross-sectional view of an AMR 2 for magnetic heat pump of the magnetic heat pump device 1.
  • the magnetic heat pump AMR 2 of the magnetic heat pump apparatus 1 has a hollow cylindrical housing 3 in which both ends in the axial direction are closed and the inside is in a vacuum-tight state, and an axial center in the housing 3, and is axially symmetric.
  • a pair of (two) permanent magnets 6 are provided on a peripheral surface of the rotating body 7 attached radially. Both ends of the shaft of the rotating body 7 are rotatably supported by the housing 3 and are further connected to a rotating shaft 10 of a motor M (FIG. 1, servo motor) via a speed reducer (not shown). The rotation is controlled.
  • the rotating body 7, the permanent magnet 6, the motor M, and the like constitute a magnetic field changing device that changes the magnitude of the magnetic field applied to the magnetic working material 13 described later. Further, a cam 9 (FIG. 1) for driving a displacer (piston) 8 to be described later is also connected to the rotating shaft 10 of the motor M.
  • magnetic working bodies 11A, 11A, 11B, and 11B which are twice the number of permanent magnets 6, are arranged in the circumferential direction in the state of being close to the outer peripheral surface of the permanent magnet 6 on the inner periphery of the housing 3. Fixed at regular intervals.
  • the magnetic working bodies 11A and 11A are arranged in an axially symmetric position with the rotating body 7 interposed therebetween, and the magnetic working bodies 11B and 11B are arranged in an axially symmetric position with the rotating body 7 interposed therebetween (FIG. 2). .
  • Each of the magnetic working bodies 11A and 11B has a magnetic working material 13 having a magnetocaloric effect in a hollow duct 12 whose cross section is an arc shape along the inner periphery of the housing 3, and a heat medium (here, water. 1 heat medium) are filled so as to be able to circulate (FIG. 1).
  • a heat medium here, water. 1 heat medium
  • the magnetic working bodies 11A and 11B are actually arranged in two axially symmetrical positions as shown in FIG. 2, but one is shown as a representative in FIG. Moreover, in the Example, the duct 12 is comprised with the resin material with high heat insulation. As a result, the heat loss from the magnetic working material 13 to the atmosphere (external) that increases or decreases due to the change of the magnetic field (excitation and demagnetization) as will be described later is reduced. Further, in the embodiment, Mn-based or La-based material is used as the magnetic working substance 13.
  • each magnetic working body 11A, 11B has a high temperature end 14 at one end (the right end in FIG. 1) and the other end ( A cold end 16 is provided at the left end in FIG.
  • the high temperature piping 17 is attached to the high temperature end 14 of each magnetic working body 11A, 11A, 11B, 11B (one representative is shown in FIG. 1), and is pulled out from the housing 3 in FIG.
  • a low-temperature pipe 18 is attached to the low-temperature end 16 of each of the magnetic working bodies 11A, 11A, 11B, and 11B (one representative is shown in FIG. 1) and pulled out from the housing 3 in FIG.
  • the high temperature pipe 17 includes the heat exchangers 24 and 24 on the high temperature end side disposed in the high temperature end 14 of each magnetic working body 11A, 11A, 11B, and 11B, and the heat radiation side disposed outside the AMR 2 for magnetic heat pump.
  • the external heat exchanger 19 is connected, and a circulation pump 21 is interposed in the high-temperature pipe 17.
  • a second heat medium also water
  • the heat exchanger 24 provided in the high-temperature end 14 of the magnetic working bodies 11 ⁇ / b> A and 11 ⁇ / b> A is externally exchanged by the circulation pump 21.
  • the second heat medium is circulated in the order of the heat exchanger 24 and the heat exchanger 24 provided in the high temperature end 14 of the magnetic working bodies 11B and 11B.
  • the work bodies 11A, 11A, 11B, and 11B are configured to exchange heat with the heat medium on the high temperature end 14 side (the first heat medium).
  • the high-temperature pipe 17, the heat exchangers 24 and 24, the external heat exchanger 19, and the circulation pump 21 constitute a first external heat medium circulation circuit 27.
  • the low-temperature pipe 18 also includes heat exchangers 26 and 26 on the low-temperature end side disposed in the low-temperature end 16 of the magnetic working bodies 11A, 11A, 11B, and 11B, and heat absorption disposed outside the AMR 2 for magnetic heat pump.
  • the external heat exchanger 22 on the side is connected, and a circulation pump 23 is interposed in the low-temperature pipe 18.
  • the second heat medium is also enclosed in the low-temperature pipe 18, and the heat exchanger 26, the external heat exchanger 22, and the magnetic work provided in the low-temperature end 16 of the magnetic working bodies 11 ⁇ / b> A and 11 ⁇ / b> A by the circulation pump 23.
  • the second heat medium is circulated in the order of the heat exchanger 26 provided in the low temperature end 16 of the bodies 11B and 11B, and the second heat medium is supplied to the magnetic working bodies 11A and 11A in the heat exchangers 26 and 26, respectively.
  • 11B, and 11B are configured to exchange heat with the heat medium (the first heat medium) on the low temperature end 16 side.
  • the low-temperature pipe 18, the heat exchangers 26 and 26, the external heat exchanger 22, and the circulation pump 23 constitute a second external heat medium circulation circuit 28.
  • Displacers (pistons) 8 are respectively disposed at the high temperature end 14 and the low temperature end 16 of each magnetic working body 11A, 11A, 11B, 11B, and are driven by a cam 9 that is rotated by the rotating shaft 10 of the motor M.
  • the heat medium water, first heat medium
  • the heat medium is reciprocated between the high temperature end 14 and the low temperature end 16 of each of the magnetic working bodies 11A, 11A, 11B, 11B.
  • a heat medium moving device for reciprocating the heat medium between the high temperature end 14 and the low temperature end 16 of each of the magnetic working bodies 11A, 11A, 11B, and 11B by the displacer 8, the cam 9, and the motor M, the rotating shaft 10 and the like. Is configured.
  • the magnetic working bodies 11A and 11A of the magnetic working bodies 11A and 11A that have been excited by the permanent magnets 6 and 6 are heated to exchange heat with the low-temperature heat medium.
  • the 14 side is high, and the low temperature end 16 side is low.
  • the permanent magnets 6 and 6 come to the 90 ° and 270 ° positions, so the magnetic working bodies 11B and 11B at the 90 ° and 270 ° positions.
  • the magnitude of the magnetic field applied to the magnetic working material 13 increases and is excited to increase the temperature.
  • the magnitude of the magnetic field applied to the magnetic working material 13 of the magnetic working bodies 11A and 11A at the positions of 0 ° and 180 ° that are 90 ° out of phase with each other is reduced, demagnetized, and the temperature is lowered.
  • the cams 9 and 9 are driven by the rotating shaft 10 of the motor M, and the displacer 8 on the high temperature end 14 side of the magnetic working bodies 11A and 11A is moved.
  • the displacer 8 on the low temperature end 16 side is moved back.
  • the heat medium is moved from the high temperature end 14 side to the low temperature end 16 side of the magnetic working body 11A.
  • the magnetic working material 13 of the magnetic working bodies 11A and 11A whose temperature has decreased due to demagnetization is exchanged with the high-temperature heat medium, and the temperature gradient of the magnetic working bodies 11A and 11A is further expanded.
  • the temperature gradient of the magnetic working bodies 11B, 11B is obtained by exchanging heat between the magnetic working material 13 of the magnetic working bodies 11B, 11B excited by the permanent magnets 6, 6 and the low-temperature heat medium. Is further expanded.
  • the heat medium on the high temperature end 14 side of each of the magnetic working bodies 11A, 11A, 11B, 11B whose temperature has increased in this way is combined with the second heat medium of the first external heat medium circuit 27 in the heat exchanger 24. Heat exchange is performed, and the temperature of the second heat medium rises.
  • the second heat medium whose temperature has risen is circulated to the external heat exchanger 19 on the heat radiation side via the high-temperature pipe 17 by the circulation pump 21 and radiates heat to the outside.
  • the heat medium on the low temperature end 16 side of each of the magnetic working bodies 11A, 11A, 11B, and 11B whose temperature has been lowered exchanges heat with the second heat medium of the second external heat medium circuit 28 in the heat exchanger 26.
  • the temperature of the second heat medium decreases.
  • the second heat medium whose temperature has been lowered is circulated to the external heat exchanger 22 on the heat absorption side through the low-temperature pipe 18 by the circulation pump 23 and absorbs heat from the outside. Due to the reciprocal movement of the heat medium (first heat medium), temperature fluctuations associated with the reciprocal movement occur at the high temperature end 14 and the low temperature end 16 of each magnetic working body 11A, 11B.
  • the second heat medium The temperature fluctuations of the heat medium (first heat medium) are averaged by heat exchange with the external heat exchangers 19 and 22 for heat dissipation / heat absorption.
  • Such rotation of the rotating body 7 by the motor M and switching of the displacer 8 are performed at a relatively high speed and timing, and between the high temperature end 14 and the low temperature end 16 of each magnetic work body 11A, 11A, 11B, 11B.
  • the temperature of the low temperature end 16 of the bodies 11A, 11A, 11B, 11B decreases to a temperature at which the refrigeration capacity of the magnetic working material 13 and the thermal load of the cooled object cooled by the external heat exchanger 22 are balanced,
  • the temperature of the high temperature end 14 of each of the magnetic working bodies 11A, 11A, 11B, and 11B provided with the heat exchanger 24 through which the second heat medium circulated to the external heat exchanger 19 on the heat side is provided is the external heat exchanger 19.
  • the heat dissipating capacity and the refrigerating capacity are balanced to reach a substantially constant temperature.
  • the displacer 8 reciprocates the heat medium between the high temperature end 14 and the low temperature end 16 of the magnetic working bodies 11A and 11B, and the second heat medium is transferred to the external heat exchangers 19 and 22.
  • the external heat medium circulation circuits 27, 28 for circulating the heat are provided, and the external heat medium circulation circuits 27, 28 are used to exchange heat between the second heat medium and the heat medium of the magnetic working bodies 11A, 11B. Since the second heat medium is circulated to the external heat exchangers 19 and 22, the heat medium (first heat medium) and the heat medium (first heat medium) on the high temperature end 14 side and the low temperature end 16 side of the magnetic working bodies 11A and 11B. Heat exchange with the two heat mediums can be performed indirectly by the external heat exchangers 19 and 22.
  • the heat medium of the magnetic working bodies 11A and 11B is reciprocated by the displacer 8
  • the problem of mixing loss and frictional heat as in the case of using a rotary valve is solved.
  • the temperature change due to the magnetocaloric effect of the magnetic working material 13 can be used effectively and efficiently.
  • a first external heat medium circulation circuit 27 having a heat radiation side external heat exchanger 19 and a second external heat medium circulation circuit 28 having a heat absorption side external heat exchanger 22 are provided.
  • the external heat medium circulation circuit 27 exchanges heat between the second heat medium and the heat medium (first heat medium) on the high temperature end 14 side of the magnetic working bodies 11A and 11B, and performs heat exchange.
  • the medium is circulated to the external heat exchanger 19 on the heat radiating side, and the second external heat medium circulation circuit 28 is provided with the second heat medium and the heat medium on the low temperature end 16 side of the magnetic working bodies 11A and 11B (first medium).
  • Heat exchange and the heat exchanged second heat medium is circulated to the external heat exchanger 22 on the heat absorption side, so that the high temperature end 14 side of the magnetic working bodies 11A and 11B
  • the temperature of the heat medium (first heat medium) is efficiently moved to the second heat medium, and the low temperature end 6 side of the heat medium (the first heat medium) so as to be able to transfer heat of the second heat medium efficiently.
  • the displacer 8 and the cam 9 of the magnetic working bodies 11A and 11B are respectively driven on the high temperature end 14 side and the low temperature end 16 side, but each magnetic working body 11A and 11B is shown. It is also conceivable that the displacer 8 provided on the high temperature end 14 side (displacer on the high temperature end side) and the displacer 8 provided on the low temperature end 16 side (the displacer on the low temperature end side) are arranged back to back. In that case, it is necessary to change the shape of the magnetic working bodies 11A and 11B, for example, and the specific configuration of the magnetic heat pump AMR 2 is different from that shown in FIG.
  • cam 9 on the low temperature end 16 side is one, and the displacer 8 on the high temperature end 14 side is advanced / retracted as shown by broken arrows F1 and F2 in FIG. Since the cam 9 can be shared, the driving power for driving each displacer 8 can be suppressed as much as possible.
  • the entire configuration of the magnetic heat pump device is not limited to the embodiments, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.
  • Magnetic heat pump device 2 AMR for magnetic heat pump 3 Housing 6 Permanent magnet (Magnetic field changing device) 7 Rotating body (magnetic field changing device) 8 Displacer (heat transfer device) 9 cam (heat transfer device) 11A, 11B Magnetic working body 12 Duct 13 Magnetic working material 14 High temperature end 16 Low temperature end 19, 22 External heat exchanger 21, 23 Circulation pump 24, 26 Heat exchanger 27 First external heat medium circulation circuit 28 Second external Heat medium circulation circuit M Motor

Abstract

[Problem] To provide a magnetic heat pump apparatus that solves a problem arising when a rotary valve is in use and that aims to improve efficiency. [Solution] The present invention is provided with: magnetic work bodies 11A, 11B which are provided with a magnetic work substance 13 having a magnetocaloric effect and through which a heat medium is circulated; a permanent magnet 6 which changes the magnitude of a magnetic field to be applied to the magnetic work substance; a displacer 8 which moves the heat medium reciprocally between a high-temperature end 14 and a low-temperature end 16 of the magnetic work bodies; and external heat medium circulation circuits 27, 28 which respectively have external heat exchangers 19, 22 and which circulate a second heat medium. The external heat medium circulation circuits cause heat to be exchanged between the second heat medium and the heat medium in the magnetic work bodies, and then circulate, to the external heat exchangers, the second heat medium having undergone the heat exchange.

Description

磁気ヒートポンプ装置Magnetic heat pump device
 本発明は、磁気作業物質の磁気熱量効果を利用した磁気ヒートポンプ装置に関する。 The present invention relates to a magnetic heat pump device using the magnetocaloric effect of a magnetic working substance.
  フロン等の気体冷媒を使用した従来の蒸気圧縮冷凍装置に代わり、磁気作業物質が励磁と消磁の際に大きな温度変化を生じさせる性質(磁気熱量効果)を利用した磁気ヒートポンプ装置が近年注目されている。 Instead of conventional vapor compression refrigeration equipment using a gas refrigerant such as chlorofluorocarbon, a magnetic heat pump device using a property (magnetocaloric effect) that causes a large temperature change when a magnetic working material is excited and demagnetized has been attracting attention in recent years. Yes.
 従来よりこの種の磁気ヒートポンプ装置では、磁気作業物質を磁気作業体のダクト内に充填し、永久磁石を磁気作業体に離接させることで、磁気作業物質に印加する磁場を変更する。このとき、印加する磁場を増大(励磁)させると磁気作業物質の温度は上昇し、減少(消磁)させると温度は低下する。 Conventionally, in this type of magnetic heat pump device, a magnetic working material is filled in a duct of a magnetic working body, and a permanent magnet is separated from and attached to the magnetic working body, thereby changing a magnetic field applied to the magnetic working material. At this time, when the applied magnetic field is increased (excited), the temperature of the magnetic working substance increases, and when it is decreased (demagnetized), the temperature decreases.
 一方、ポンプとロータリ弁を用い、磁気作業体の高温端と低温端の間で熱媒体(水等)を往復移動させる。この場合、磁気作業物質を励磁し、その温度を上昇させ、熱媒体を低温端側から高温端側に移動させることで、励磁によって温度が上昇した磁気作業物質と低温の熱媒体とを熱交換させる。これにより、磁気作業体には高温端側が高く、低温端側が低い温度勾配が生じる。 On the other hand, a heat medium (such as water) is reciprocated between the high temperature end and the low temperature end of the magnetic working body using a pump and a rotary valve. In this case, the magnetic working material is excited, the temperature is increased, and the heat medium is moved from the low temperature end side to the high temperature end side. Let As a result, the magnetic working body has a temperature gradient that is high on the high temperature end side and low on the low temperature end side.
 次に、磁気作業物質を消磁すると、その温度は低下するが、熱媒体を高温端側から低温端側に移動させることで、消磁によって温度が低下した磁気作業物質と高温の熱媒体とを熱交換させる。これにより、磁気作業体の温度勾配は更に拡大する。 Next, when the magnetic working material is demagnetized, its temperature decreases.However, by moving the heat medium from the high temperature end side to the low temperature end side, the magnetic working material whose temperature has been decreased by demagnetization and the high temperature heat medium are heated. Let them exchange. Thereby, the temperature gradient of the magnetic working body is further expanded.
 このようにして磁気熱量効果により生じる温度変化を磁気作業体自身に蓄熱し、低温端側と高温端側の熱媒体を外部の熱交換器に取り出すことで、吸熱(冷凍)や放熱(加熱)を行うものであった(例えば、特許文献1参照)。 In this way, the temperature change caused by the magnetocaloric effect is stored in the magnetic working body itself, and the heat medium at the low-temperature end side and the high-temperature end side is taken out to the external heat exchanger, so that heat absorption (freezing) and heat dissipation (heating) are achieved. (For example, refer to Patent Document 1).
特開2008-51409号公報JP 2008-51409 A
 しかしながら、ロータリ弁を使用すると構造上の理由で温度の異なる熱媒体の混合損失や摩擦熱が発生する。また、外部の熱交換器と磁気作業体側で熱媒体の流量が異なってくる問題もあった。 However, when a rotary valve is used, mixing loss and frictional heat of heat media having different temperatures are generated due to structural reasons. There is also a problem that the flow rate of the heat medium differs between the external heat exchanger and the magnetic working body.
 本発明は、係る従来の技術的課題を解決するために成されたものであり、ロータリ弁を使用することで生じる問題を解決し、効率の向上を図った磁気ヒートポンプ装置を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made to solve the conventional technical problems, and it is an object of the present invention to solve a problem caused by using a rotary valve and to provide a magnetic heat pump device that improves efficiency. And
 本発明の磁気ヒートポンプ装置は、磁気熱量効果を有する磁気作業物質を備え、熱媒体が流通される磁気作業体と、磁気作業物質に印加される磁場の大きさを変更する磁場変更装置と、磁気作業体の高温端と低温端の間で熱媒体を往復移動させるディスプレーサと、外部熱交換器を有し、第2の熱媒体を循環させる外部熱媒体循環回路とを備え、この外部熱媒体循環回路は、第2の熱媒体と磁気作業体の熱媒体とを熱交換させ、熱交換した当該第2の熱媒体を、外部熱交換器に循環させることを特徴とする。 A magnetic heat pump device of the present invention includes a magnetic working material having a magnetocaloric effect, a magnetic working body through which a heat medium is circulated, a magnetic field changing device that changes the magnitude of a magnetic field applied to the magnetic working material, and a magnetic A displacer for reciprocating the heat medium between the high temperature end and the low temperature end of the work body, and an external heat medium circulation circuit having an external heat exchanger and circulating the second heat medium, the external heat medium circulation The circuit is characterized in that heat exchange is performed between the second heat medium and the heat medium of the magnetic working body, and the heat exchanged second heat medium is circulated to an external heat exchanger.
 請求項2の発明の磁気ヒートポンプ装置は、上記発明において放熱側の外部熱交換器を有する第1の外部熱媒体循環回路と、吸熱側の外部熱交換器を有する第2の外部熱媒体循環回路とを備え、第1の外部熱媒体循環回路は、第2の熱媒体と磁気作業体の高温端側の熱媒体とを熱交換させ、熱交換した当該第2の熱媒体を、放熱側の外部熱交換器に循環させると共に、第2の外部熱媒体循環回路は、第2の熱媒体と磁気作業体の低温端側の熱媒体とを熱交換させ、熱交換した当該第2の熱媒体を、吸熱側の外部熱交換器に循環させることを特徴とする。 A magnetic heat pump device according to a second aspect of the present invention is the first external heat medium circulation circuit having an external heat exchanger on the heat dissipation side and the second external heat medium circulation circuit having an external heat exchanger on the heat absorption side in the above invention. And the first external heat medium circulation circuit exchanges heat between the second heat medium and the heat medium on the high temperature end side of the magnetic working body, and transfers the heat exchanged second heat medium on the heat radiation side. The second external heat medium circulating circuit heat-exchanges the second heat medium and the heat medium on the low temperature end side of the magnetic working body by circulating through the external heat exchanger. Is circulated through the external heat exchanger on the heat absorption side.
 請求項3の発明の磁気ヒートポンプ装置は、上記各発明において磁気作業体の高温端側に設けられた高温端側のディスプレーサと、磁気作業体の低温端側に設けられた低温端側のディスプレーサとを備え、高温端側のディスプレーサと低温端側のディスプレーサを背中合わせに配置したことを特徴とする。 According to a third aspect of the present invention, there is provided a magnetic heat pump device according to the above-described invention, wherein a displacer on the high temperature end side provided on the high temperature end side of the magnetic working body, a displacer on the low temperature end side provided on the low temperature end side of the magnetic working body, The displacer on the high temperature end side and the displacer on the low temperature end side are arranged back to back.
 本発明の磁気ヒートポンプ装置によれば、磁気熱量効果を有する磁気作業物質を備え、熱媒体が流通される磁気作業体と、磁気作業物質に印加される磁場の大きさを変更する磁場変更装置と、磁気作業体の高温端と低温端の間で熱媒体を往復移動させるディスプレーサと、外部熱交換器を有し、第2の熱媒体を循環させる外部熱媒体循環回路とを備えており、この外部熱媒体循環回路が、第2の熱媒体と磁気作業体の熱媒体とを熱交換させ、熱交換した当該第2の熱媒体を、外部熱交換器に循環させるようにしたので、磁気作業体の高温端側と低温端側の熱媒体と第2の熱媒体とを熱交換させ、外部熱交換器に間接的に取り出すことができるようになる。 According to the magnetic heat pump device of the present invention, a magnetic working body including a magnetic working material having a magnetocaloric effect, through which a heat medium is circulated, and a magnetic field changing device that changes the magnitude of a magnetic field applied to the magnetic working material; A displacer that reciprocates the heat medium between the high temperature end and the low temperature end of the magnetic working body, and an external heat medium circulation circuit that has an external heat exchanger and circulates the second heat medium. The external heat medium circulation circuit exchanges heat between the second heat medium and the heat medium of the magnetic working body, and circulates the heat exchanged second heat medium to the external heat exchanger. The heat medium on the high temperature end side and the low temperature end side of the body and the second heat medium are subjected to heat exchange and can be indirectly taken out to the external heat exchanger.
 また、ディスプレーサにより磁気作業体の熱媒体を往復移動させるので、ロータリ弁を使用した場合の如き混合損失や摩擦熱の問題も解消され、磁気作業物質の磁気熱量効果による温度変化を有効且つ効率的に利用することができるようになる。 In addition, since the heat medium of the magnetic working body is reciprocated by the displacer, the problems of mixing loss and frictional heat, such as when a rotary valve is used, are eliminated, and the temperature change due to the magnetocaloric effect of the magnetic working material is effectively and efficiently performed. Can be used.
 この場合、請求項2の発明の如く放熱側の外部熱交換器を有する第1の外部熱媒体循環回路と、吸熱側の外部熱交換器を有する第2の外部熱媒体循環回路を設け、第1の外部熱媒体循環回路が、第2の熱媒体と磁気作業体の高温端側の熱媒体とを熱交換させ、熱交換した当該第2の熱媒体を、放熱側の外部熱交換器に循環させると共に、第2の外部熱媒体循環回路が、第2の熱媒体と磁気作業体の低温端側の熱媒体とを熱交換させ、熱交換した当該第2の熱媒体を、吸熱側の外部熱交換器に循環させるようにすれば、磁気作業体の高温端側の熱媒体の温度を第2の熱媒体に効率的に移動させ、低温端側の熱媒体に第2の熱媒体の熱を効率的に移動させることができるようなる。 In this case, a first external heat medium circulation circuit having a heat radiation side external heat exchanger and a second external heat medium circulation circuit having a heat absorption side external heat exchanger are provided as in the second aspect of the invention, The external heat medium circulation circuit 1 exchanges heat between the second heat medium and the heat medium on the high temperature end side of the magnetic working body, and the heat exchanged second heat medium is used as an external heat exchanger on the heat radiation side. And the second external heat medium circulation circuit exchanges heat between the second heat medium and the heat medium on the low temperature end side of the magnetic working body, and the heat exchanged second heat medium is transferred to the heat absorption side. If it is circulated to the external heat exchanger, the temperature of the heat medium on the high temperature end side of the magnetic working body is efficiently moved to the second heat medium, and the heat medium on the low temperature end side is transferred to the second heat medium. Heat can be moved efficiently.
 更に、請求項3の発明の如く磁気作業体の高温端側に設けられた高温端側のディスプレーサと、磁気作業体の低温端側に設けられた低温端側のディスプレーサとを背中合わせに配置すれば、ディスプレーサの駆動動力を極力抑えることも可能となる。 Further, the displacer on the high temperature end side provided on the high temperature end side of the magnetic working body and the displacer on the low temperature end side provided on the low temperature end side of the magnetic working body may be arranged back to back as in the invention of claim 3. It is also possible to suppress the drive power of the displacer as much as possible.
本発明を適用した実施例の磁気ヒートポンプ装置の全体構成図である。It is a whole block diagram of the magnetic heat pump apparatus of the Example to which this invention is applied. 図1の磁気ヒートポンプ用AMR(Active Magnetic Regenerator)の断面図である。FIG. 2 is a sectional view of the magnetic heat pump AMR (Active Magnetic Regenerator) of FIG. 1. 本発明を適用した他の実施例の磁気ヒートポンプ装置を説明するための全体構成図である。It is a whole block diagram for demonstrating the magnetic heat pump apparatus of the other Example to which this invention is applied.
  以下、本発明の一実施形態を図面に基づいて説明する。図1は本発明を適用した実施例の磁気ヒートポンプ装置1の全体構成図、図2は磁気ヒートポンプ装置1の磁気ヒートポンプ用AMR2の断面図を示している。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an overall configuration diagram of a magnetic heat pump device 1 according to an embodiment to which the present invention is applied, and FIG. 2 is a cross-sectional view of an AMR 2 for magnetic heat pump of the magnetic heat pump device 1.
(1)磁気ヒートポンプ装置1の構成
 先ず、図2の磁気ヒートポンプ用AMR2について説明する。磁気ヒートポンプ装置1の磁気ヒートポンプ用AMR2は、軸方向の両端が閉塞され、内部が真空気密状態とされた中空筒状の筐体3と、この筐体3内の軸心にあって、軸対称となる周面に一対(二個)の永久磁石6(磁場発生部材)が放射状に取り付けられた回転体7とを備える。回転体7の軸の両端は筐体3によって回転自在に軸支されると共に、更に図示しない減速機を介してモータM(図1。サーボモータ)の回転軸10に連結され、このモータMにより回転制御される。これら回転体7や永久磁石6、モータM等により後述する磁気作業物質13に印加される磁場の大きさを変更する磁場変更装置が構成される。また、モータMの回転軸10には後述するディスプレーサ(ピストン)8を駆動するカム9(図1)も連結される。
(1) Configuration of Magnetic Heat Pump Device 1 First, the magnetic heat pump AMR 2 in FIG. 2 will be described. The magnetic heat pump AMR 2 of the magnetic heat pump apparatus 1 has a hollow cylindrical housing 3 in which both ends in the axial direction are closed and the inside is in a vacuum-tight state, and an axial center in the housing 3, and is axially symmetric. A pair of (two) permanent magnets 6 (magnetic field generating members) are provided on a peripheral surface of the rotating body 7 attached radially. Both ends of the shaft of the rotating body 7 are rotatably supported by the housing 3 and are further connected to a rotating shaft 10 of a motor M (FIG. 1, servo motor) via a speed reducer (not shown). The rotation is controlled. The rotating body 7, the permanent magnet 6, the motor M, and the like constitute a magnetic field changing device that changes the magnitude of the magnetic field applied to the magnetic working material 13 described later. Further, a cam 9 (FIG. 1) for driving a displacer (piston) 8 to be described later is also connected to the rotating shaft 10 of the motor M.
  一方、筐体3の内周には、永久磁石6の二倍の個数である四本の磁気作業体11A、11A、11B、11Bが、永久磁石6の外周面に近接する状態で周方向に等間隔で固定されている。実施例の場合、磁気作業体11Aと11Aが回転体7を挟んで軸対称位置に配置され、磁気作業体11Bと11Bが回転体7を挟んで軸対称位置に配置されている(図2)。各磁気作業体11A、11Bは、断面が筐体3の内周に沿った円弧状となる中空のダクト12内に、磁気熱量効果を有する磁気作業物質13を、熱媒体(ここでは水。第1の熱媒体)が流通可能にそれぞれ充填したものである(図1)。 On the other hand, four magnetic working bodies 11A, 11A, 11B, and 11B, which are twice the number of permanent magnets 6, are arranged in the circumferential direction in the state of being close to the outer peripheral surface of the permanent magnet 6 on the inner periphery of the housing 3. Fixed at regular intervals. In the case of the embodiment, the magnetic working bodies 11A and 11A are arranged in an axially symmetric position with the rotating body 7 interposed therebetween, and the magnetic working bodies 11B and 11B are arranged in an axially symmetric position with the rotating body 7 interposed therebetween (FIG. 2). . Each of the magnetic working bodies 11A and 11B has a magnetic working material 13 having a magnetocaloric effect in a hollow duct 12 whose cross section is an arc shape along the inner periphery of the housing 3, and a heat medium (here, water. 1 heat medium) are filled so as to be able to circulate (FIG. 1).
 尚、磁気作業体11Aと11Bは実際には図2の如く二つずつ軸対称位置に配置されているが、図1ではそれぞれ一つずつを代表して示している。また、実施例ではダクト12を断熱性の高い樹脂材料にて構成している。これにより、後述する如き磁場の変更(励磁と消磁)で温度が上昇し、或いは、低下する磁気作業物質13から大気(外部)への熱損失を低減させている。更に、実施例では磁気作業物質13としてMn系、又は、La系材料を使用している。 Incidentally, the magnetic working bodies 11A and 11B are actually arranged in two axially symmetrical positions as shown in FIG. 2, but one is shown as a representative in FIG. Moreover, in the Example, the duct 12 is comprised with the resin material with high heat insulation. As a result, the heat loss from the magnetic working material 13 to the atmosphere (external) that increases or decreases due to the change of the magnetic field (excitation and demagnetization) as will be described later is reduced. Further, in the embodiment, Mn-based or La-based material is used as the magnetic working substance 13.
 そして、係る磁気ヒートポンプ用AMR2を組み込んだ図1の磁気ヒートポンプ装置1の全体構成図において、各磁気作業体11A、11Bは、一端(図1における右端)に高温端14を有し、他端(図1における左端)に低温端16を有している。そして、各磁気作業体11A、11A、11B、11B(図1では一つずつを代表して示す)の高温端14に高温配管17が取り付けられ、図2の筐体3から引き出されている。また、各磁気作業体11A、11A、11B、11B(図1では一つずつを代表して示す)の低温端16に低温配管18が取り付けられ、図2の筐体3から引き出されている。 And in the whole block diagram of the magnetic heat pump apparatus 1 of FIG. 1 incorporating the magnetic heat pump AMR 2, each magnetic working body 11A, 11B has a high temperature end 14 at one end (the right end in FIG. 1) and the other end ( A cold end 16 is provided at the left end in FIG. And the high temperature piping 17 is attached to the high temperature end 14 of each magnetic working body 11A, 11A, 11B, 11B (one representative is shown in FIG. 1), and is pulled out from the housing 3 in FIG. Further, a low-temperature pipe 18 is attached to the low-temperature end 16 of each of the magnetic working bodies 11A, 11A, 11B, and 11B (one representative is shown in FIG. 1) and pulled out from the housing 3 in FIG.
 上記高温配管17には各磁気作業体11A、11A、11B、11Bの高温端14内に配置された高温端側の熱交換器24、24と、磁気ヒートポンプ用AMR2の外部に配置された放熱側の外部熱交換器19が接続されており、更に、高温配管17中には循環ポンプ21が介設されている。高温配管17内には第2の熱媒体(これも水)が封入されており、循環ポンプ21により、磁気作業体11A、11Aの高温端14内に設けられた熱交換器24、外部熱交換器19、磁気作業体11B、11Bの高温端14内に設けられた熱交換器24の順で第2の熱媒体が循環され、第2の熱媒体は各熱交換器24、24において各磁気作業体11A、11A、11B、11Bの高温端14側の熱媒体(前記第1の熱媒体)と熱交換するように構成されている。そして、これら高温配管17、熱交換器24、24、外部熱交換器19、循環ポンプ21により第1の外部熱媒体循環回路27が構成される。 The high temperature pipe 17 includes the heat exchangers 24 and 24 on the high temperature end side disposed in the high temperature end 14 of each magnetic working body 11A, 11A, 11B, and 11B, and the heat radiation side disposed outside the AMR 2 for magnetic heat pump. The external heat exchanger 19 is connected, and a circulation pump 21 is interposed in the high-temperature pipe 17. A second heat medium (also water) is sealed in the high-temperature pipe 17, and the heat exchanger 24 provided in the high-temperature end 14 of the magnetic working bodies 11 </ b> A and 11 </ b> A is externally exchanged by the circulation pump 21. The second heat medium is circulated in the order of the heat exchanger 24 and the heat exchanger 24 provided in the high temperature end 14 of the magnetic working bodies 11B and 11B. The work bodies 11A, 11A, 11B, and 11B are configured to exchange heat with the heat medium on the high temperature end 14 side (the first heat medium). The high-temperature pipe 17, the heat exchangers 24 and 24, the external heat exchanger 19, and the circulation pump 21 constitute a first external heat medium circulation circuit 27.
 また、低温配管18には各磁気作業体11A、11A、11B、11Bの低温端16内に配置された低温端側の熱交換器26、26と、磁気ヒートポンプ用AMR2の外部に配置された吸熱側の外部熱交換器22が接続されており、更に、低温配管18中には循環ポンプ23が介設されている。低温配管18内にも第2の熱媒体が封入されており、循環ポンプ23により、磁気作業体11A、11Aの低温端16内に設けられた熱交換器26、外部熱交換器22、磁気作業体11B、11Bの低温端16内に設けられた熱交換器26の順で第2の熱媒体が循環され、第2の熱媒体は各熱交換器26、26において各磁気作業体11A、11A、11B、11Bの低温端16側の熱媒体(前記第1の熱媒体)と熱交換するように構成されている。そして、これら低温配管18、熱交換器26、26、外部熱交換器22、循環ポンプ23により第2の外部熱媒体循環回路28が構成される。 The low-temperature pipe 18 also includes heat exchangers 26 and 26 on the low-temperature end side disposed in the low-temperature end 16 of the magnetic working bodies 11A, 11A, 11B, and 11B, and heat absorption disposed outside the AMR 2 for magnetic heat pump. The external heat exchanger 22 on the side is connected, and a circulation pump 23 is interposed in the low-temperature pipe 18. The second heat medium is also enclosed in the low-temperature pipe 18, and the heat exchanger 26, the external heat exchanger 22, and the magnetic work provided in the low-temperature end 16 of the magnetic working bodies 11 </ b> A and 11 </ b> A by the circulation pump 23. The second heat medium is circulated in the order of the heat exchanger 26 provided in the low temperature end 16 of the bodies 11B and 11B, and the second heat medium is supplied to the magnetic working bodies 11A and 11A in the heat exchangers 26 and 26, respectively. , 11B, and 11B are configured to exchange heat with the heat medium (the first heat medium) on the low temperature end 16 side. The low-temperature pipe 18, the heat exchangers 26 and 26, the external heat exchanger 22, and the circulation pump 23 constitute a second external heat medium circulation circuit 28.
 また、ディスプレーサ(ピストン)8は各磁気作業体11A、11A、11B、11Bの高温端14と低温端16にそれぞれ配置されており、モータMの回転軸10で回転されるカム9により駆動され、各磁気作業体11A、11A、11B、11Bの高温端14と低温端16の間で熱媒体(水。第1の熱媒体)を往復移動させる。 Displacers (pistons) 8 are respectively disposed at the high temperature end 14 and the low temperature end 16 of each magnetic working body 11A, 11A, 11B, 11B, and are driven by a cam 9 that is rotated by the rotating shaft 10 of the motor M. The heat medium (water, first heat medium) is reciprocated between the high temperature end 14 and the low temperature end 16 of each of the magnetic working bodies 11A, 11A, 11B, 11B.
 即ち、図1の如く磁気作業体11A、11Aの高温端14側のディスプレーサ8が後退し、低温端16側のディスプレーサ8が進出すると、熱媒体は磁気作業体11Aの低温端16側から高温端14側に移動される。一方、磁気作業体11B、11Bの低温端16側のディスプレーサ8は図1の如く後退し、高温端14側のディスプレーサ8は進出し、熱媒体は磁気作業体11Bの高温端14側から低温端16側に移動される。これらディスプレーサ8やカム9、更にはモータM、回転軸10等により、各磁気作業体11A、11A、11B、11Bの高温端14と低温端16の間で熱媒体を往復移動させる熱媒体移動装置が構成される。 That is, as shown in FIG. 1, when the displacer 8 on the high temperature end 14 side of the magnetic working bodies 11A and 11A moves backward and the displacer 8 on the low temperature end 16 side advances, the heat medium is transferred from the low temperature end 16 side of the magnetic working body 11A to the high temperature end. 14 side is moved. On the other hand, the displacer 8 on the low temperature end 16 side of the magnetic working bodies 11B and 11B retreats as shown in FIG. 1, the displacer 8 on the high temperature end 14 side advances, and the heat medium moves from the high temperature end 14 side of the magnetic working body 11B to the low temperature end. It is moved to the 16 side. A heat medium moving device for reciprocating the heat medium between the high temperature end 14 and the low temperature end 16 of each of the magnetic working bodies 11A, 11A, 11B, and 11B by the displacer 8, the cam 9, and the motor M, the rotating shaft 10 and the like. Is configured.
(2)磁気ヒートポンプ装置1の動作
 以上の構成の磁気ヒートポンプ装置1の動作について説明する。先ず、回転体7が0°の位置(図2に示す位置)にあるとき、永久磁石6、6が0°及び180°の位置にあるので、この0°及び180°の位置にある磁気作業体11A、11Aの磁気作業物質13に印加される磁場の大きさは増大し、励磁されて温度が上昇する。一方、これと90°位相が異なる90°及び270°の位置にある磁気作業体11B、11Bの磁気作業物質13に印加される磁場の大きさは減少し、消磁されて温度が低下する。
(2) Operation of Magnetic Heat Pump Device 1 The operation of the magnetic heat pump device 1 having the above configuration will be described. First, when the rotating body 7 is at the 0 ° position (the position shown in FIG. 2), the permanent magnets 6 and 6 are at the 0 ° and 180 ° positions. Therefore, the magnetic work at the 0 ° and 180 ° positions is performed. The magnitude of the magnetic field applied to the magnetic working material 13 of the bodies 11A and 11A increases, and the temperature increases due to excitation. On the other hand, the magnitude of the magnetic field applied to the magnetic working material 13 of the magnetic working bodies 11B and 11B at the 90 ° and 270 ° positions that are 90 ° out of phase with each other decreases, demagnetizing and lowering the temperature.
  また、モータMの回転により回転体7が0°の位置(図2)にあるとき、カム9、9がモータMの回転軸10で駆動されて、図1の如く磁気作業体11A、11Aの高温端14側のディスプレーサ8を後退させ、低温端16側のディスプレーサ8を進出させる。これにより、熱媒体は磁気作業体11Aの低温端16側から高温端14側に移動される。 When the rotating body 7 is at the 0 ° position (FIG. 2) due to the rotation of the motor M, the cams 9 and 9 are driven by the rotating shaft 10 of the motor M, and the magnetic working bodies 11A and 11A are driven as shown in FIG. The displacer 8 on the high temperature end 14 side is retracted, and the displacer 8 on the low temperature end 16 side is advanced. Thereby, the heat medium is moved from the low temperature end 16 side to the high temperature end 14 side of the magnetic working body 11A.
 これにより、永久磁石6、6により励磁されての温度が上昇した磁気作業体11A、11Aの磁気作業物質13と低温の熱媒体とを熱交換させることで、磁気作業体11A、11Aに高温端14側が高く、低温端16側が低い温度勾配を生じさせる。 As a result, the magnetic working bodies 11A and 11A of the magnetic working bodies 11A and 11A that have been excited by the permanent magnets 6 and 6 are heated to exchange heat with the low-temperature heat medium. The 14 side is high, and the low temperature end 16 side is low.
 また、モータMの回転により回転体7が0°の位置(図2)にあるとき、カム9、9がモータMの回転軸10で駆動されて、図1の如く磁気作業体11B、11Bの高温端14側のディスプレーサ8を進出させ、低温端16側のディスプレーサ8を後退させる。これにより、熱媒体は磁気作業体11Bの高温端14側から低温端16側に移動される。これにより、消磁によって温度が低下した磁気作業体11B、11Bの磁気作業物質13と高温の熱媒体とを熱交換させ、磁気作業体11B、11Bの温度勾配を更に拡大させる。 When the rotating body 7 is at the 0 ° position (FIG. 2) due to the rotation of the motor M, the cams 9 and 9 are driven by the rotating shaft 10 of the motor M, and the magnetic working bodies 11B and 11B are driven as shown in FIG. The displacer 8 on the high temperature end 14 side is advanced, and the displacer 8 on the low temperature end 16 side is retracted. Thereby, the heat medium is moved from the high temperature end 14 side to the low temperature end 16 side of the magnetic working body 11B. As a result, heat exchange is performed between the magnetic working material 13 of the magnetic working bodies 11B and 11B whose temperature has decreased due to demagnetization and the high-temperature heat medium, and the temperature gradient of the magnetic working bodies 11B and 11B is further expanded.
 次に、モータMにより回転体7が90°回転されると、永久磁石6、6が90°及び270°の位置に来るので、この90°及び270°の位置にある磁気作業体11B、11Bの磁気作業物質13に印加される磁場の大きさは増大し、励磁されて温度が上昇する。一方、これと90°位相が異なる0°及び180°の位置にある磁気作業体11A、11Aの磁気作業物質13に印加される磁場の大きさは減少し、消磁されて温度が低下する。 Next, when the rotating body 7 is rotated 90 ° by the motor M, the permanent magnets 6 and 6 come to the 90 ° and 270 ° positions, so the magnetic working bodies 11B and 11B at the 90 ° and 270 ° positions. The magnitude of the magnetic field applied to the magnetic working material 13 increases and is excited to increase the temperature. On the other hand, the magnitude of the magnetic field applied to the magnetic working material 13 of the magnetic working bodies 11A and 11A at the positions of 0 ° and 180 ° that are 90 ° out of phase with each other is reduced, demagnetized, and the temperature is lowered.
  また、モータMの回転により回転体7が90°の位置にあるとき、カム9、9がモータMの回転軸10で駆動されて、磁気作業体11A、11Aの高温端14側のディスプレーサ8を進出させ、低温端16側のディスプレーサ8を後退させる。これにより、熱媒体は磁気作業体11Aの高温端14側から低温端16側に移動される。これにより、消磁によって温度が低下した磁気作業体11A、11Aの磁気作業物質13と高温の熱媒体とを熱交換させ、磁気作業体11A、11Aの温度勾配を更に拡大させる。 When the rotating body 7 is at a 90 ° position due to the rotation of the motor M, the cams 9 and 9 are driven by the rotating shaft 10 of the motor M, and the displacer 8 on the high temperature end 14 side of the magnetic working bodies 11A and 11A is moved. The displacer 8 on the low temperature end 16 side is moved back. Thereby, the heat medium is moved from the high temperature end 14 side to the low temperature end 16 side of the magnetic working body 11A. As a result, the magnetic working material 13 of the magnetic working bodies 11A and 11A whose temperature has decreased due to demagnetization is exchanged with the high-temperature heat medium, and the temperature gradient of the magnetic working bodies 11A and 11A is further expanded.
 また、モータMの回転により回転体7が90°の位置に来ると、カム9、9がモータMの回転軸10で駆動されて、磁気作業体11B、11Bの低温端16側のディスプレーサ8を進出させ、高温端14側のディスプレーサ8を後退させる。これにより、熱媒体は磁気作業体11Bの低温端16側から高温端14側に移動される。 When the rotating body 7 reaches the 90 ° position by the rotation of the motor M, the cams 9 and 9 are driven by the rotating shaft 10 of the motor M, and the displacer 8 on the low temperature end 16 side of the magnetic working bodies 11B and 11B is moved. The displacer 8 on the high temperature end 14 side is moved back. Thereby, the heat medium is moved from the low temperature end 16 side to the high temperature end 14 side of the magnetic working body 11B.
 これにより、永久磁石6、6により励磁されての温度が上昇した磁気作業体11B、11Bの磁気作業物質13と低温の熱媒体とを熱交換させることで、磁気作業体11B、11Bの温度勾配を更に拡大させる。 Thereby, the temperature gradient of the magnetic working bodies 11B, 11B is obtained by exchanging heat between the magnetic working material 13 of the magnetic working bodies 11B, 11B excited by the permanent magnets 6, 6 and the low-temperature heat medium. Is further expanded.
 このようにして温度が上昇した各磁気作業体11A、11A、11B、11Bの高温端14側の熱媒体は、熱交換器24において第1の外部熱媒体循環回路27の第2の熱媒体と熱交換し、第2の熱媒体の温度は上昇する。この温度が上昇した第2の熱媒体は、循環ポンプ21により高温配管17を経て放熱側の外部熱交換器19に循環され、外部に放熱する。 The heat medium on the high temperature end 14 side of each of the magnetic working bodies 11A, 11A, 11B, 11B whose temperature has increased in this way is combined with the second heat medium of the first external heat medium circuit 27 in the heat exchanger 24. Heat exchange is performed, and the temperature of the second heat medium rises. The second heat medium whose temperature has risen is circulated to the external heat exchanger 19 on the heat radiation side via the high-temperature pipe 17 by the circulation pump 21 and radiates heat to the outside.
 また、温度が低下した各磁気作業体11A、11A、11B、11Bの低温端16側の熱媒体は、熱交換器26において第2の外部熱媒体循環回路28の第2の熱媒体と熱交換し、第2の熱媒体の温度は低下する。この温度が低下した第2の熱媒体は、循環ポンプ23により低温配管18を経て吸熱側の外部熱交換器22に循環され、外部から吸熱する。熱媒体(第1の熱媒体)の往復移動により、各磁気作業体11A、11Bの高温端14と低温端16には往復移動に連動した温度変動が生じるが、上述の如く第2の熱媒体と熱交換させて各外部熱交換器19、22にて放熱/吸熱させることで、熱媒体(第1の熱媒体)の温度変動は平均化されることになる。 Further, the heat medium on the low temperature end 16 side of each of the magnetic working bodies 11A, 11A, 11B, and 11B whose temperature has been lowered exchanges heat with the second heat medium of the second external heat medium circuit 28 in the heat exchanger 26. However, the temperature of the second heat medium decreases. The second heat medium whose temperature has been lowered is circulated to the external heat exchanger 22 on the heat absorption side through the low-temperature pipe 18 by the circulation pump 23 and absorbs heat from the outside. Due to the reciprocal movement of the heat medium (first heat medium), temperature fluctuations associated with the reciprocal movement occur at the high temperature end 14 and the low temperature end 16 of each magnetic working body 11A, 11B. As described above, the second heat medium The temperature fluctuations of the heat medium (first heat medium) are averaged by heat exchange with the external heat exchangers 19 and 22 for heat dissipation / heat absorption.
 このようなモータMによる回転体7の回転とディスプレーサ8の切り換えを比較的高速の回転数とタイミングで行い、各磁気作業体11A、11A、11B、11Bの高温端14と低温端16の間で熱媒体(水)を往復移動させ、励磁/消磁される各磁気作業体11A、11A、11B、11Bの磁気作業物質13からの吸熱/放熱を繰り返すことによって、各磁気作業体11A、11A、11B、11Bの高温端14と低温端16の温度差が徐々に拡大し、やがて吸熱側の外部熱交換器22に循環される第2の熱媒体が流れる熱交換器26が設けられた各磁気作業体11A、11A、11B、11Bの低温端16の温度は磁気作業物質13の冷凍能力と外部熱交換器22で冷却される被冷却体の熱負荷とがバランスする温度まで低下し、放熱側の外部熱交換器19に循環される第2の熱媒体が流れる熱交換器24が設けられた各磁気作業体11A、11A、11B、11Bの高温端14の温度は外部熱交換器19の放熱能力と冷凍能力とがバランスして略一定温度になる。 Such rotation of the rotating body 7 by the motor M and switching of the displacer 8 are performed at a relatively high speed and timing, and between the high temperature end 14 and the low temperature end 16 of each magnetic work body 11A, 11A, 11B, 11B. By reciprocating the heat medium (water) and repeating heat absorption / dissipation from the magnetic working material 13 of each magnetic working body 11A, 11A, 11B, 11B to be excited / demagnetized, each magnetic working body 11A, 11A, 11B. 11B, each magnetic work provided with a heat exchanger 26 in which the temperature difference between the high temperature end 14 and the low temperature end 16 of 11B gradually increases and eventually the second heat medium circulated to the external heat exchanger 22 on the heat absorption side flows. The temperature of the low temperature end 16 of the bodies 11A, 11A, 11B, 11B decreases to a temperature at which the refrigeration capacity of the magnetic working material 13 and the thermal load of the cooled object cooled by the external heat exchanger 22 are balanced, The temperature of the high temperature end 14 of each of the magnetic working bodies 11A, 11A, 11B, and 11B provided with the heat exchanger 24 through which the second heat medium circulated to the external heat exchanger 19 on the heat side is provided is the external heat exchanger 19. The heat dissipating capacity and the refrigerating capacity are balanced to reach a substantially constant temperature.
 以上の如く本発明によれば、ディスプレーサ8により磁気作業体11A、11Bの高温端14と低温端16の間で熱媒体を往復移動させると共に、外部熱交換器19、22に第2の熱媒体を循環させる外部熱媒体循環回路27、28を設け、この外部熱媒体循環回路27、28により、第2の熱媒体と磁気作業体11A、11Bの熱媒体とを熱交換させ、熱交換した当該第2の熱媒体を、外部熱交換器19、22に循環させるようにしたので、磁気作業体11A、11Bの高温端14側と低温端16側の熱媒体(第1の熱媒体)と第2の熱媒体とを熱交換させ、外部熱交換器19、22に間接的に取り出すことができるようになる。 As described above, according to the present invention, the displacer 8 reciprocates the heat medium between the high temperature end 14 and the low temperature end 16 of the magnetic working bodies 11A and 11B, and the second heat medium is transferred to the external heat exchangers 19 and 22. The external heat medium circulation circuits 27, 28 for circulating the heat are provided, and the external heat medium circulation circuits 27, 28 are used to exchange heat between the second heat medium and the heat medium of the magnetic working bodies 11A, 11B. Since the second heat medium is circulated to the external heat exchangers 19 and 22, the heat medium (first heat medium) and the heat medium (first heat medium) on the high temperature end 14 side and the low temperature end 16 side of the magnetic working bodies 11A and 11B. Heat exchange with the two heat mediums can be performed indirectly by the external heat exchangers 19 and 22.
 また、ディスプレーサ8により磁気作業体11A、11Bの熱媒体を往復移動させるので、ロータリ弁を使用した場合の如き混合損失や摩擦熱の問題も解消される。これらにより本発明によれば、磁気作業物質13の磁気熱量効果による温度変化を有効且つ効率的に利用することができるようになる。 In addition, since the heat medium of the magnetic working bodies 11A and 11B is reciprocated by the displacer 8, the problem of mixing loss and frictional heat as in the case of using a rotary valve is solved. Thus, according to the present invention, the temperature change due to the magnetocaloric effect of the magnetic working material 13 can be used effectively and efficiently.
 また、実施例では放熱側の外部熱交換器19を有する第1の外部熱媒体循環回路27と、吸熱側の外部熱交換器22を有する第2の外部熱媒体循環回路28を設け、第1の外部熱媒体循環回路27が、第2の熱媒体と磁気作業体11A、11Bの高温端14側の熱媒体(第1の熱媒体)とを熱交換させ、熱交換した当該第2の熱媒体を、放熱側の外部熱交換器19に循環させると共に、第2の外部熱媒体循環回路28が、第2の熱媒体と磁気作業体11A、11Bの低温端16側の熱媒体(第1の熱媒体)とを熱交換させ、熱交換した当該第2の熱媒体を、吸熱側の外部熱交換器22に循環させるようにしているので、磁気作業体11A、11Bの高温端14側の熱媒体(第1の熱媒体)の温度を第2の熱媒体に効率的に移動させ、低温端16側の熱媒体(第1の熱媒体)に第2の熱媒体の熱を効率的に移動させることができるようなる。 Further, in the embodiment, a first external heat medium circulation circuit 27 having a heat radiation side external heat exchanger 19 and a second external heat medium circulation circuit 28 having a heat absorption side external heat exchanger 22 are provided. The external heat medium circulation circuit 27 exchanges heat between the second heat medium and the heat medium (first heat medium) on the high temperature end 14 side of the magnetic working bodies 11A and 11B, and performs heat exchange. The medium is circulated to the external heat exchanger 19 on the heat radiating side, and the second external heat medium circulation circuit 28 is provided with the second heat medium and the heat medium on the low temperature end 16 side of the magnetic working bodies 11A and 11B (first medium). Heat exchange) and the heat exchanged second heat medium is circulated to the external heat exchanger 22 on the heat absorption side, so that the high temperature end 14 side of the magnetic working bodies 11A and 11B The temperature of the heat medium (first heat medium) is efficiently moved to the second heat medium, and the low temperature end 6 side of the heat medium (the first heat medium) so as to be able to transfer heat of the second heat medium efficiently.
 尚、実施例では図1に示す如く磁気作業体11A、11Bのディスプレーサ8やカム9を高温端14側と低温端16側とでそれぞれ駆動させるかたちで示したが、各磁気作業体11A、11Bの高温端14側に設けられたディスプレーサ8(高温端側のディスプレーサ)と、低温端16側に設けられたディスプレーサ8(低温端側のディスプレーサ)とを背中合わせに配置することも考えられる。その場合には、磁気作業体11A、11Bを環状にする等の形状変更が必要になり、磁気ヒートポンプ用AMR2の具体的な構成も図2とは異なって来るものの、高温端14側のカム9と低温端16側のカム9を一つのものとし、その両側で図3中に破線矢印F1、F2で示すように高温端14側のディスプレーサ8を進出/後退させ、低温端16側のディスプレーサ8を後退/進出させることができるようになるので、カム9も共用できるようになると共に、各ディスプレーサ8を駆動するための駆動動力を極力抑えることが可能となる。 In the embodiment, as shown in FIG. 1, the displacer 8 and the cam 9 of the magnetic working bodies 11A and 11B are respectively driven on the high temperature end 14 side and the low temperature end 16 side, but each magnetic working body 11A and 11B is shown. It is also conceivable that the displacer 8 provided on the high temperature end 14 side (displacer on the high temperature end side) and the displacer 8 provided on the low temperature end 16 side (the displacer on the low temperature end side) are arranged back to back. In that case, it is necessary to change the shape of the magnetic working bodies 11A and 11B, for example, and the specific configuration of the magnetic heat pump AMR 2 is different from that shown in FIG. And the cam 9 on the low temperature end 16 side is one, and the displacer 8 on the high temperature end 14 side is advanced / retracted as shown by broken arrows F1 and F2 in FIG. Since the cam 9 can be shared, the driving power for driving each displacer 8 can be suppressed as much as possible.
 また、磁気ヒートポンプ装置の全体構成も実施例に限られるものでは無く、本発明の趣旨を逸脱しない範囲で種々変更可能であることは云うまでもない。 Also, the entire configuration of the magnetic heat pump device is not limited to the embodiments, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.
 1 磁気ヒートポンプ装置
 2 磁気ヒートポンプ用AMR
 3 筐体
 6 永久磁石(磁場変更装置)
 7 回転体(磁場変更装置)
 8 ディスプレーサ(熱媒体移動装置)
 9 カム(熱媒体移動装置)
 11A、11B 磁気作業体
 12 ダクト
 13 磁気作業物質
 14 高温端
 16 低温端
 19、22 外部熱交換器
 21、23 循環ポンプ
 24、26 熱交換器
 27 第1の外部熱媒体循環回路
 28 第2の外部熱媒体循環回路
 M モータ
1 Magnetic heat pump device 2 AMR for magnetic heat pump
3 Housing 6 Permanent magnet (Magnetic field changing device)
7 Rotating body (magnetic field changing device)
8 Displacer (heat transfer device)
9 cam (heat transfer device)
11A, 11B Magnetic working body 12 Duct 13 Magnetic working material 14 High temperature end 16 Low temperature end 19, 22 External heat exchanger 21, 23 Circulation pump 24, 26 Heat exchanger 27 First external heat medium circulation circuit 28 Second external Heat medium circulation circuit M Motor

Claims (3)

  1.  磁気熱量効果を有する磁気作業物質を備え、熱媒体が流通される磁気作業体と、
     前記磁気作業物質に印加される磁場の大きさを変更する磁場変更装置と、
     前記磁気作業体の高温端と低温端の間で前記熱媒体を往復移動させるディスプレーサと、
     外部熱交換器を有し、第2の熱媒体を循環させる外部熱媒体循環回路とを備え、
     該外部熱媒体循環回路は、前記第2の熱媒体と前記磁気作業体の熱媒体とを熱交換させ、熱交換した当該第2の熱媒体を、前記外部熱交換器に循環させることを特徴とする磁気ヒートポンプ装置。
    A magnetic working body comprising a magnetic working material having a magnetocaloric effect and through which a heat medium is distributed;
    A magnetic field changing device for changing the magnitude of the magnetic field applied to the magnetic working substance;
    A displacer for reciprocating the heat medium between a high temperature end and a low temperature end of the magnetic working body;
    An external heat medium circulation circuit having an external heat exchanger and circulating the second heat medium,
    The external heat medium circulation circuit exchanges heat between the second heat medium and the heat medium of the magnetic working body, and circulates the heat exchanged second heat medium to the external heat exchanger. Magnetic heat pump device.
  2.  放熱側の前記外部熱交換器を有する第1の前記外部熱媒体循環回路と、
     吸熱側の前記外部熱交換器を有する第2の前記外部熱媒体循環回路とを備え、
     前記第1の外部熱媒体循環回路は、前記第2の熱媒体と前記磁気作業体の高温端側の熱媒体とを熱交換させ、熱交換した当該第2の熱媒体を、前記放熱側の外部熱交換器に循環させると共に、
     前記第2の外部熱媒体循環回路は、前記第2の熱媒体と前記磁気作業体の低温端側の熱媒体とを熱交換させ、熱交換した当該第2の熱媒体を、前記吸熱側の外部熱交換器に循環させることを特徴とする請求項1に記載の磁気ヒートポンプ装置。
    The first external heat medium circuit having the external heat exchanger on the heat radiating side;
    A second external heat medium circulation circuit having the external heat exchanger on the heat absorption side,
    The first external heat medium circulation circuit exchanges heat between the second heat medium and the heat medium on the high temperature end side of the magnetic working body, and transfers the heat exchanged second heat medium on the heat dissipation side. Circulating to external heat exchanger,
    The second external heat medium circulation circuit exchanges heat between the second heat medium and the heat medium on the low temperature end side of the magnetic working body, and transfers the heat exchanged second heat medium on the heat absorption side. The magnetic heat pump device according to claim 1, wherein the magnetic heat pump device is circulated through an external heat exchanger.
  3.  前記磁気作業体の高温端側に設けられた高温端側の前記ディスプレーサと、
     前記磁気作業体の低温端側に設けられた低温端側の前記ディスプレーサとを備え、
     前記高温端側のディスプレーサと前記低温端側のディスプレーサを背中合わせに配置したことを特徴とする請求項1又は請求項2に記載の磁気ヒートポンプ装置。
    The displacer on the high temperature end side provided on the high temperature end side of the magnetic working body;
    The displacer on the cold end side provided on the cold end side of the magnetic working body,
    The magnetic heat pump device according to claim 1 or 2, wherein the displacer on the high temperature end side and the displacer on the low temperature end side are arranged back to back.
PCT/JP2018/000584 2017-01-17 2018-01-12 Magnetic heat pump apparatus WO2018135386A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018000412.0T DE112018000412T5 (en) 2017-01-17 2018-01-12 Magnetic heat pump device
CN201880007061.7A CN110177982A (en) 2017-01-17 2018-01-12 Magnetic heat pump assembly
US16/477,035 US20200003461A1 (en) 2017-01-17 2018-01-12 Magnetic Heat Pump Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-006054 2017-01-17
JP2017006054A JP2018115792A (en) 2017-01-17 2017-01-17 Magnetic heat pump device

Publications (1)

Publication Number Publication Date
WO2018135386A1 true WO2018135386A1 (en) 2018-07-26

Family

ID=62908257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000584 WO2018135386A1 (en) 2017-01-17 2018-01-12 Magnetic heat pump apparatus

Country Status (5)

Country Link
US (1) US20200003461A1 (en)
JP (1) JP2018115792A (en)
CN (1) CN110177982A (en)
DE (1) DE112018000412T5 (en)
WO (1) WO2018135386A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3812667A4 (en) * 2018-09-14 2022-03-23 Daikin Industries, Ltd. Magnetic refrigeration module

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7108183B2 (en) * 2018-09-27 2022-07-28 ダイキン工業株式会社 magnetic refrigeration system
EP3862658A1 (en) * 2020-02-06 2021-08-11 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Method for stabilizing and / or controlling and / or regulating the working temperature, heat exchanger unit, device for transporting energy, refrigerating machine and heat pump
DE102020213158A1 (en) 2020-10-19 2022-04-21 Robert Bosch Gesellschaft mit beschränkter Haftung Magnetocaloric distillation unit
JP2022130124A (en) * 2021-02-25 2022-09-06 キオクシア株式会社 Semiconductor manufacturing device and method for manufacturing semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012518149A (en) * 2009-02-17 2012-08-09 クールテック アプリケーションズ エス.エー.エス. Magnetic heat quantity heat generator
JP2016053445A (en) * 2014-09-03 2016-04-14 株式会社デンソー Thermal apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3316356B2 (en) * 1995-10-26 2002-08-19 三菱重工業株式会社 Magnetic refrigerator
JP4533838B2 (en) * 2005-12-06 2010-09-01 株式会社東芝 Heat transport device, refrigerator and heat pump
DE102006006326B4 (en) * 2006-02-11 2007-12-06 Bruker Biospin Ag Hybrid heat pump / chiller with magnetic cooling stage
FR2922999A1 (en) * 2007-10-30 2009-05-01 Cooltech Applic Soc Par Action Heat generator for use in e.g. domestic application, has unit synchronized with field variation to move coolant in directions such that fraction of coolant circulates in direction of cold exchange chamber across elements at cooling cycle
FR2937182B1 (en) * 2008-10-14 2010-10-22 Cooltech Applications THERMAL GENERATOR WITH MAGNETOCALORIC MATERIAL
FR2943407B1 (en) * 2009-03-20 2013-04-12 Cooltech Applications MAGNETOCALORIC THERMAL GENERATOR AND ITS THERMAL EXCHANGE METHOD
JP5267689B2 (en) * 2011-04-26 2013-08-21 株式会社デンソー Magnetic heat pump device
JP5338889B2 (en) * 2011-04-28 2013-11-13 株式会社デンソー Magnetic heat pump system and air conditioner using the system
JP5724603B2 (en) * 2011-05-11 2015-05-27 株式会社デンソー Magnetic refrigeration system and air conditioner using the magnetic refrigeration system
FR2982015B1 (en) * 2011-10-28 2019-03-15 Cooltech Applications MAGNETOCALORIC THERMAL GENERATOR

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012518149A (en) * 2009-02-17 2012-08-09 クールテック アプリケーションズ エス.エー.エス. Magnetic heat quantity heat generator
JP2016053445A (en) * 2014-09-03 2016-04-14 株式会社デンソー Thermal apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3812667A4 (en) * 2018-09-14 2022-03-23 Daikin Industries, Ltd. Magnetic refrigeration module

Also Published As

Publication number Publication date
US20200003461A1 (en) 2020-01-02
CN110177982A (en) 2019-08-27
DE112018000412T5 (en) 2019-10-02
JP2018115792A (en) 2018-07-26

Similar Documents

Publication Publication Date Title
WO2018135386A1 (en) Magnetic heat pump apparatus
EP2813785B1 (en) Magnetic cooling apparatus and method of controlling the same
CN107726664B (en) Magnetic Refrigerator
US10443905B2 (en) Magnetocaloric refrigeration using fully solid state working medium
JP5884806B2 (en) Magneto-caloric element and thermomagnetic cycle apparatus having the same
KR102158130B1 (en) Magnetic cooling apparatus
US10598411B2 (en) Magnetic refrigerating device
US20070125095A1 (en) Heat transporting apparatus
CN107726663B (en) Magnetic heat exchange system, magnetic heating type refrigerating device and thermoelastic cooling equipment
JP6003879B2 (en) Thermomagnetic cycle equipment
JP2017526890A (en) Magnetic refrigeration system with unequal blow
JP2005090921A (en) Temperature controlling device using magnetic body
WO2002016835A1 (en) Sterling refrigerating system and cooling device
JP6384255B2 (en) Magneto-caloric element and thermomagnetism cycle device
US20200191449A1 (en) Magnetic Heat Pump Device
JP6384256B2 (en) Magneto-caloric element and thermomagnetism cycle device
JP6344103B2 (en) Thermomagnetic cycle equipment
WO2018088167A1 (en) Magnetic heat pump device
US11549729B2 (en) Cool air supplying apparatus and refrigerator having the same
CN107300268B (en) Heat pipe assembly with magnetic refrigeration function and magnetic refrigeration equipment
JP6586401B2 (en) Magnetic refrigeration equipment
JP7030658B2 (en) Magnetic refrigerator
KR101812183B1 (en) Magnetic cooling system
JP2021165618A (en) Magnetic refrigeration device
JPH0460354A (en) Air conditioner with stirling refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741279

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18741279

Country of ref document: EP

Kind code of ref document: A1