WO2018135383A1 - Buoyant-type flying body - Google Patents

Buoyant-type flying body Download PDF

Info

Publication number
WO2018135383A1
WO2018135383A1 PCT/JP2018/000574 JP2018000574W WO2018135383A1 WO 2018135383 A1 WO2018135383 A1 WO 2018135383A1 JP 2018000574 W JP2018000574 W JP 2018000574W WO 2018135383 A1 WO2018135383 A1 WO 2018135383A1
Authority
WO
WIPO (PCT)
Prior art keywords
levitation
exoskeleton
air
shape
aircraft
Prior art date
Application number
PCT/JP2018/000574
Other languages
French (fr)
Japanese (ja)
Inventor
浩平 中村
Original Assignee
浩平 中村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浩平 中村 filed Critical 浩平 中村
Publication of WO2018135383A1 publication Critical patent/WO2018135383A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/06Rigid airships; Semi-rigid airships
    • B64B1/14Outer covering
    • B64B1/16Outer covering rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/06Rigid airships; Semi-rigid airships
    • B64B1/24Arrangement of propulsion plant
    • B64B1/30Arrangement of propellers
    • B64B1/32Arrangement of propellers surrounding hull
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/58Arrangements or construction of gas-bags; Filling arrangements

Definitions

  • the present invention relates to a levitation type aircraft including a levitation aircraft body.
  • a levitation type flying body including a levitation body formed by sealing a gas having a specific gravity smaller than that of air is known (for example, see Patent Document 1).
  • the external shape of the levitation machine described in Patent Document 1 is made of a resin film that is lightweight and has high strength.
  • a levitation vehicle equipped with a levitation body configured to give buoyancy to the body by expelling the internal air to the outside with thermal energy and lowering the air density in the body.
  • the outer shape of the levitation aircraft is constituted by a resin film, and there is a possibility of crashing if the resin film is damaged. Further, if the outer shape of the levitation aircraft is deformed under the influence of wind, there is a possibility that the high movement ability of the levitation aircraft cannot be exhibited. Therefore, it is desired that breakage of the levitating body and deformation of the outer shape can be suppressed.
  • an object of the present invention is to provide a levitation aircraft that can suppress breakage of the levitation aircraft and deformation of the outer shape.
  • the present invention is a levitation aircraft including a levitation body, wherein the levitation body is formed by sealing a gas having a specific gravity smaller than that of air inside, or expelling the inside air to the outside by heat energy.
  • the present invention relates to a levitation type flying body that is configured to give buoyancy to an airframe and that has an outer skeleton that forms an outer shape of the levitation body and has rigidity.
  • the exoskeleton body is preferably configured to include a planar partition structure that is formed into a planar shape having a predetermined thickness and is partitioned into a plurality of spaces by a plurality of walls.
  • planar partition structure has a honeycomb structure having a plurality of hexagonal structures each having a hexagonal cross-sectional shape extending in the thickness direction.
  • the exoskeleton has a core material that is disposed inside the planar partition structure and supports the planar partition structure.
  • a reinforcing member that reinforces the exoskeleton by protruding from the exoskeleton to the side of the exoskeleton.
  • the levitation body is formed with an acute outer peripheral edge in a side view.
  • one or a plurality of the levitation bodies are provided, and a thin portion serving as a horizontal wind passage is formed in at least two directions.
  • the levitation body is formed by sealing a gas having a specific gravity smaller than air inside, and the levitation body is arranged inside the exoskeleton body so as to partition the interior of the exoskeleton body into a plurality of air chambers. It is preferable to further have a plurality of air sac bodies that are formed by being surrounded by a resin-like film.
  • the levitation body further includes an outer air sac body that is disposed between the exoskeleton body and the plurality of air sac bodies and is formed in a shape substantially the same as the exoskeleton body by a resin-like film.
  • FIG. 6 is a cross-sectional perspective view showing a modification of the second embodiment and showing a case where the planar partition structure of the exoskeleton is a honeycomb structure. It is a figure which shows 3rd Embodiment of the floating type flying body which concerns on this invention.
  • the levitation type aircraft 1 includes a plurality (four) of levitation bodies 2 in which a gas having a specific gravity smaller than air is sealed, and a plurality of vertical propulsion units.
  • Propeller group 3 a plurality of horizontal propeller propeller groups 4, a plurality of floating body support frames 51, a plurality of vertical propeller propeller support frames 52, a plurality of horizontal propeller propeller support frames 53, and a camera 6 .
  • the levitation aircraft 1 is formed in a shape that is symmetrical in the front-rear direction and in the left-right direction in plan view. Further, as shown in FIG. 2, the floating flying vehicle 1 is formed in a vertically and laterally symmetrical shape in a side view except for a camera 6 described later. Each configuration will be described below.
  • the four levitation machines 2 of the present embodiment are each formed in a flat disk shape with a thin outer peripheral part.
  • the levitation body 2 is formed in a circular shape in plan view.
  • the four levitation bodies 2 are arranged in a horizontal direction in two vertical rows and two horizontal rows in a square range in plan view, and each is formed independently.
  • the four levitation machines 2 are arranged close to or in contact with each other with the flat portions of the levitation machines 2 arranged in the horizontal direction.
  • the levitation machine body 2 seals a gas having a specific gravity smaller than that of air inside, thereby obtaining buoyancy due to the difference in specific gravity between the surrounding air and the gas, thereby making it easier to float in the air.
  • the inside of the levitation body 2 is filled with a gas having a specific gravity smaller than that of the surrounding air, such as helium, hydrogen, or air heated from the surrounding air, oxygen, and nitrogen.
  • the shape of the levitation machine body 2 is not limited to a disk shape (circular shape).
  • the levitation machine body 2 is formed independently, it is not limited to this, Four levitation machine bodies 2 are formed integrally, and it connects and comprises in the flat part of each levitation machine body 2. May be.
  • the inside of the levitation machine body 2 is partitioned into a plurality of air chambers. Details of the levitation machine body 2 will be described later.
  • a vertical opening 10 is formed between the four levitating bodies 2 at a substantially central position of the levitation-type flying body 1 to allow the vertical air flow.
  • a connecting frame 512 of a levitation machine body support frame 51 to be described later is disposed in the vertical direction opening 10, and a plurality of vertical direction opening parts 10 are provided in the linking frame 512 of the levitation machine body support frame 51.
  • the levitating machine body 2 is formed in a shape in which the center bulges in the vertical direction in a side view, and is inclined toward the outer peripheral edge so that the inclination angle is acute. Is formed. Thereby, the levitation machine body 2 is formed in a flat shape with a thin outer peripheral portion by forming the outer peripheral edge in an acute angle shape.
  • the wind generated by the horizontal propulsion propeller 41 passes through the thin part of the levitation aircraft 2 as shown by the two-dot chain line arrow shown in FIG.
  • a thin portion serving as a wind path in the horizontal direction is formed in two directions.
  • the levitation machine body support frame 51 includes a levitation machine body support frame body 511 and a connection frame 512.
  • the levitation machine body support frame main body 511 is disposed so as to surround the outer surface of each levitation machine body 2.
  • the connection frame 512 is disposed at the approximate center of the floating aircraft 1 in plan view.
  • the connection frame 512 connects the four levitation aircraft body support frame bodies 511 at the approximate center of the levitation aircraft 1 in plan view.
  • the propeller support frame 52 for vertical propulsion is formed so as to protrude outward from each levitation body 2 at each corner of a square region where the four levitation bodies 2 of the levitation type aircraft 1 are arranged in plan view.
  • the levitation machine body support frame 51 is connected.
  • the propeller support frame 52 for vertical propulsion functions as a frame for attaching the propeller group 3 for vertical propulsion.
  • the propeller support frame 53 for horizontal propulsion is located outside the side of the levitation aircraft 1 at the center of each side of a square area where the four levitation aircraft bodies 2 of the levitation aircraft 1 are disposed. It is formed so as to protrude and is connected to the levitating machine body support frame 51.
  • the propeller support frame 52 for vertical propulsion functions as a frame for attaching the propeller group 4 for horizontal propulsion.
  • the levitating body support frame 51, the vertical propeller support frame 52, and the horizontal propeller support frame 53 need only be formed of a lightweight and high-strength material, such as plastic, aluminum, high-rigidity rubber, or urethane.
  • the resin may be coated with carbon fiber reinforced plastic or the like.
  • the levitation machine body support frame 51, the vertical propeller propeller support frame 52, and the horizontal propeller propeller support frame 53 are configured by, for example, a frame member having a hollow inside.
  • the levitation body support frame main body 511 is opposite to the levitation body 2 in the cross section orthogonal to the direction in which the levitation body support frame main body 511 extends.
  • the inner part 54 is formed in a planar shape and is disposed along the outer surface of the levitation machine body 2.
  • the outer portion 55 is formed in a mountain-valley shape, and includes two peak portions 551 and a valley portion 552 formed between the two peak portions 551.
  • the outer side part 55 is arrange
  • the vertical propeller group 3 is for propelling the levitation body 2 in the vertical direction, and includes a plurality of vertical propellers 31.
  • the plurality of vertical propeller propellers 31 are attached to the vertical propeller propeller support frame 52 at each corner of a square region where the four levitating aircraft bodies 2 of the buoyant aircraft 1 are disposed.
  • Each propeller 31 for vertical propulsion is fixed in a state where the rotation axis of the rotary motor 33 is directed in the vertical direction so that the propulsive force is exerted in the vertical direction.
  • each vertical propeller 31 has a set of three blades 32, a rotation motor 33 that rotates these blades 32, and a protective ring 34 provided on the outer periphery of the blades 32.
  • a blade used in a general propeller is adopted.
  • the propeller 31 for vertical propulsion can use a relatively small blade 32 because a large lift is not necessary because the levitation body 2 is easily lifted by buoyancy due to a difference in density between gas and air.
  • the horizontal propeller group 4 is for propelling the levitation body 2 in the horizontal direction, and includes a plurality of horizontal propellers 41.
  • the plurality of horizontal propulsion propellers 41 are attached to the horizontal propulsion propeller support frame 53 at the center of each side of the square area where the four levitating aircraft bodies 2 of the levitation type aircraft 1 are disposed.
  • Each horizontal propeller 41 is fixed in a state where the rotating shaft of the rotary motor 43 is directed toward the center of the levitation body 2 so that the propulsive force is exerted in the horizontal direction.
  • each horizontal propeller 41 has a set of three blades 42, a rotation motor 43 that rotates these blades 42, and a protective ring 44 provided on the outer periphery of the blades 42. . Since the horizontal propeller 41 is mainly used for horizontal movement, relatively small blades 42 can be used.
  • the camera 6 is installed below the vertical opening 10 (see FIG. 1).
  • the camera 6 is an omnidirectional camera for performing aerial shooting.
  • the installation position of the camera 6 is not limited to the lower part of the up-down direction opening part 10, You may select arbitrarily, such as the upper direction of the levitation machine body 2, an outer periphery.
  • the levitation aircraft 1 of the present invention is not limited to the camera 6 and may be configured to hold a load or carry a person.
  • a solar power generation element (not shown) is provided on the surface of the levitation machine body 2 to generate electric power for operating the vertical propeller 31 and the horizontal propeller 41. ing.
  • the levitating machine body 2 includes an outer skin body (exoskeleton body) 21 formed by a metal film (metal-like film) constituting the outer shape of the levitating machine body 2, and an inside of the outer skin body 21.
  • a plurality of air sac bodies 22 formed by being disposed and surrounded by a resin film (resin-like film), and an outer air sac body 23 disposed between the outer skin body 21 and the plurality of air sac bodies 22 .
  • the metal coating of the outer skin 21 has rigidity and constitutes the outer shape of the levitating machine body 2.
  • the metal film is formed in a film shape having a predetermined thickness. Since the metal coating forms the outer shape of the levitation machine body 2, it is formed in a circular shape in plan view and in a shape in which the center bulges in the vertical direction in side view as in the outer shape of the levitation machine body 2. Has been.
  • the metal film of the outer skin body 21 is inclined toward the outer peripheral edge, and the inclination angle is formed in an acute angle.
  • the metal coating of the outer skin 21 is preferably made of a coating of a metal material and has strength and weight reduction.
  • the thickness of the metal film is appropriately set in consideration of a portion requiring strength.
  • the thickness of the metal film is, for example, about 30 to 150 ⁇ m.
  • a metal film having a thickness of 30 ⁇ m and 1 m ⁇ 1 m and having a weight of about 70 g is used.
  • the material for the metal film examples include titanium alloys.
  • an alloy obtained by adding lithium and aluminum to magnesium is used as the material of the metal film.
  • the strength and specific gravity can be adjusted by the ratio of each substance.
  • the production of the metal film is performed, for example, by sticking a film-like metal formed of a predetermined material to an arc-shaped iron kiln and then baking the pasted metal. More specifically, a pair of upper and lower metal films having a central portion bulged so as to correspond to the upper half and the lower half of the outer skin body 21 are created by baking. And the metal film of the outer_body
  • cover_body 21 can be manufactured by joining the upper part and lower part created by baking by welding etc. FIG.
  • the strength of the metal film can be improved by tempering a film-like metal.
  • the exoskeleton is configured by the metal film of the outer skin 21, but the present invention is not limited to this.
  • the exoskeleton bodies 120 and 120A (see FIGS. 9 and 11) having the planar partition structures 130 and 130A of the second embodiment described later are configured. May be.
  • the honeycomb structure having a plurality of hexagonal structures 136 (see FIG. 11) having a hexagonal cross section. May be.
  • the plurality of air sac bodies 22 are arranged inside the outer body 21, as shown in FIGS.
  • the air sac 22 is disposed inside the outer skin 21 so as to partition the inner portion of the outer skin 21 into a plurality of air chambers.
  • the plurality of air sac bodies 22 are composed of a central side air sac body 221 and an outer peripheral side air sac body 222.
  • the inside of the central air bladder body 221 and the outer peripheral air bladder body 222 is filled with a gas having a specific gravity smaller than that of air.
  • a gas having a specific gravity smaller than that of air is hermetically filled between the outer air sac body 23 and the plurality of air sac bodies 22.
  • FIG.3 and FIG.4 several sealed space for filling with gas is formed in the inside of the levitation body 2.
  • the gas to be sealed is preferably helium gas or hydrogen gas, but is not limited thereto.
  • the central air sac body 221 is formed of a resin film, and is formed in a spherical shape as shown in FIGS. As shown in FIG. 4, the central air sac body 221 is disposed at a substantially center inside the outer skin body 21 in a plan view. As shown in FIG. 3, the upper end and the lower end of the central air sac body 221 are in contact with the upper inner surface and the lower inner surface of the outer skin body 21. As shown in FIGS. 3 and 4, the peripheral surface of the side portion of the central air sac body 221 abuts on the inner peripheral surface of the outer peripheral air sac body 222.
  • the outer peripheral air bladder 222 is formed of a resin film, and is formed in an annular shape as shown in FIG. 4 in a plan view. As shown in FIG. 3, the outer peripheral side air sac body 222 is formed in a flat shape with a thin outer peripheral part by forming the outer peripheral edge with an acute angle. As shown in FIG. 4, the outer peripheral air bladder 222 is disposed along the outer periphery of the side portion of the central air bladder 221 in plan view. The outer peripheral air bladder 222 is disposed between the outer peripheral surface of the central air bladder 221 and the inner surface of the outer skin 21. As shown in FIGS. 3 and 4, the inner peripheral surface of the outer peripheral air bladder 222 abuts on the peripheral surface of the side portion of the central air bladder 221. The outer surface of the acute angle portion on the outer side of the outer peripheral air bladder 222 is in contact with the inner surface of the acute angle portion of the outer edge portion of the outer skin body 21.
  • the resin film of the center side air sac body 221 and the outer peripheral side air sac body 222 is preferably formed of a resin material film and having strength and weight reduction.
  • the strength of the resin film of the central air bag body 221 and the outer air bag body 222 is configured to be lower than the strength of the metal film of the outer skin body 21 described above.
  • the thickness of the resin film is, for example, about 25 ⁇ m to 35 ⁇ m.
  • the outer air sac body 23 is formed by a resin-like film.
  • the outer air sac 23 is formed in substantially the same shape as the outer skin 21 and is disposed along the inner surface of the outer skin 21.
  • Examples of the material of the resin film on the air sac body 22 and the outer air sac body 23 include, for example, a resin such as a fiber reinforced plastic using carbon fiber or glass fiber as a lightweight and high strength material.
  • examples of the material for the resin film include a high barrier film, polyethylene, polyarylate fiber, and polyester fiber. Note that the resin film is not limited to this, and may be formed of other materials according to cost and the like.
  • a central air sac body 221 is disposed in the center of the outer air sac body 23 (outer skin body 21), and the outer side of the central air sac body 221 inside the outer air sac body 23 (outer body 21).
  • the outer peripheral air sac body 222 is disposed.
  • the outer air sac body 23 is formed in substantially the same shape as the outer skin body 21, and is disposed between the outer skin body 21 and the plurality of air sac bodies 22 along the inner surface of the outer skin body 21.
  • the center side air sac body 221 is filled with a gas having a specific gravity smaller than that of air
  • the center in the horizontal direction swells in the vertical direction and the outer peripheral edge is formed in a flat shape as shown in FIG.
  • the outer peripheral air bladder 222 is formed in an annular shape as a whole, and has a cross-sectional shape of an isosceles triangle having a vertex at the outer peripheral edge before filling with a gas having a specific gravity smaller than that of air. Formed.
  • the acute angle shape of the outer peripheral edge of the levitation machine body 2 can be suitably supported from the inside by the apex portion of the isosceles triangle shape.
  • the central air sac body 221 and the outer peripheral air sac body 222 are arranged inside the outer skin 21, the central air sac body 221 and the outer air sac body 222 inside the outer air sac body 23 are arranged.
  • the central air sac body 221 and the outer peripheral side air sac body 222 filled with gas inside the outer air sac body 23 are arranged in a portion that is not present, a small amount of gas having a specific gravity smaller than that of air is filled.
  • a gas having a specific gravity smaller than that of air is filled in the outer side air sac body 222 about 85% when the full filling is 100%.
  • a gas having a specific gravity smaller than that of air is filled in the central air sac body 221 to about 100% when full filling is assumed to be 100%.
  • the pressure inside the outer skin 21 becomes equal to the external pressure. Therefore, the pressure is applied to the outer skin body 21 evenly in any part.
  • the outer skin body 21 since the outer shape of the outer skin body 21 is formed of a metal film, the outer skin body 21 does not swell before and after the central air bladder body 221 and the outer circumferential air bladder body 222 are filled with a gas having a specific gravity smaller than that of air.
  • the shape of the outer skin 21 can be formed in a preset shape.
  • the shape of the levitation aircraft body 2 is stable due to air resistance. It is important to move in. In particular, when the shape of the outer skin body 21 is deformed or the film of the outer skin body 21 vibrates, the stability of the levitation machine body 2 is significantly reduced.
  • the outer skin body 21 filled with gas has a characteristic of naturally rounding even if it is not made of rubber and is a metal film, and a portion that is difficult to round tends to be rounded and rounded. Therefore, when the space inside the outer skin 21 is filled with gas at once, it is difficult to form the outer peripheral edge of the outer skin 21 with an acute angle.
  • a central central air sac body 221 and an outer peripheral air sac body 222 on the outer peripheral side are provided inside the outer skin body 21.
  • An air chamber is required.
  • the pressure of the central air sac body 221 increases, the pressure is equally applied to 360 degrees around the central air sac body 221.
  • the outer peripheral air sac body 222 on the outer peripheral side with a small amount of gas and low pressure is pressurized by the central air sac body 221.
  • the levitating machine body 2 can be brought closer to a flat sphere whose outer peripheral edge is formed in an acute angle shape more rationally than in the case of one air chamber.
  • the outer skin body 21 is formed of a metal film, and pressure is applied to the central air sac body 221 at the center so that the outer peripheral edge of the outer peripheral air sac body 222 is corrected to be flat, thereby making a single metal film.
  • a rational flat sphere can be formed reasonably with a thin metal film, rather than forming one air chamber with the outer skin body 21 configured as described above and correcting the gas layer to be flat.
  • the inside of the levitation machine body 2 is divided into a plurality of air chambers, and the inside of the outer peripheral air sac body 222 forming an acute-angled portion of the outer peripheral edge of the levitation machine body 2 is filled with about 85% of gas.
  • the levitation machine body 2 is formed by filling about 100% of the gas into the inside of the central air sac body 221 disposed inside the outer air sac body 222. Therefore, the shape of the levitation machine body 2 can be formed close to a preset shape.
  • the interior of the levitation body 2 into a plurality of air chambers, it is possible to reduce the tendency of the whole to become round when the levitation aircraft 1 moves, and the acute angle of the outer peripheral edge of the levitation body 2.
  • the deformation of the shaped part can be reduced.
  • the outer peripheral edge of the levitation body 2 since the outer peripheral edge of the levitation body 2 is formed in an acute angle shape, the wind pressure from the side surface of the levitation body 2 is received during the horizontal flight of the levitation aircraft 1. As shown, the wind pressure is divided in the vertical direction and flows along the upper and lower surfaces of the levitation machine body 2. Therefore, resistance due to wind pressure is suppressed, and the flight speed is improved. Furthermore, in this embodiment, since the sharp outer shape of the outer peripheral edge of the levitation machine body 2 is formed by the metal film of the outer skin body 21, the acute angle shape of the outer peripheral edge of the levitation machine body 2 is not easily deformed, and is long. Allows continuous flight of time.
  • the interior of the levitation machine body 2 is divided into a plurality of air chambers, and the outer skin body 21 formed of a metal film is formed with a portion where pressure is increased and a portion where pressure is decreased.
  • the levitation aircraft 1 moves, the deformation of the acute angle portion of the outer peripheral edge of the levitation aircraft body 2 can be reduced.
  • the levitation aircraft 1 includes a levitation body 2 formed by sealing a gas having a specific gravity smaller than that of air, and the levitation body 2 forms the outer shape of the levitation body 2 and is rigid. And a plurality of air sac bodies formed by being disposed inside the outer skin body 21 and surrounded by a resin film so as to partition the inside of the outer skin body 21 into a plurality of air chambers. 22 and so on.
  • the outer shape of the levitating body 2 with a metal film, the outer shape can be formed into a preset shape and having a strength rather than being formed with a resin film. Can be formed into a design.
  • the levitating body 2 can reduce the deflection due to the wind pressure when moving at a high speed, and can stabilize the flight of the levitating aircraft 1.
  • the outer skin body 21 has rigidity, the outer skin body 21 can be prevented from being damaged even when attacked by insects or birds.
  • the external shape of the levitating machine body 2 is formed with the metal film of the outer skin body 21, the external shape of the levitating machine body 2 is hard to deform
  • a central air sac body 221 and an outer peripheral air sac body 222 are arranged inside the outer skin 21.
  • the outer skin body 21 is supported by being pressurized by a plurality of air sac bodies 22 from the inside. Thereby, even if the thickness of the metal film that forms the outer skin body 21 is reduced, the strength of the levitation machine body 2 can be maintained. Even if any one of the outer skin 21, the central air sac body 221, or the outer peripheral air sac body 222 is damaged due to external pressure or the like, the inner part of the outer skin 21 is divided into a plurality of air chambers. Even if the portion is damaged, the entire buoyancy of the levitation type aircraft 1 is not lost. Thereby, the rapid descent of the levitation type flying vehicle 1 can be suppressed.
  • the outer skin body 21 is formed of a metal film, and the outer shape of the levitation machine body 2 can be formed into a preset shape and is not easily deformed. Therefore, even when the air sac body 22 surrounded by the resin film is about to expand when the levitation machine body 2 is raised, the outer skin body 21 formed of the metal film is disposed outside the air sac body 22, and the levitation body 2 is , The expansion is suppressed. Thereby, it can suppress that the buoyancy of the levitation machine body 2 becomes large too much, and can suppress that the levitation machine body 2 raises too much. Therefore, the buoyancy of the levitation aircraft 1 can be stabilized.
  • the levitation machine body 2 has an outer peripheral edge formed in an acute angle shape in a side view. Therefore, since the levitation body 2 is formed in a shape that can reduce the air resistance, the flight control of the levitation aircraft 1 can be easily performed, the flight speed can be improved, and continuous flight for a long time is possible. And
  • the levitation type aircraft 1 is formed with at least two thin portions that serve as wind paths in the horizontal direction. Therefore, since the wind passes through the thin part of the levitation aircraft 1 in the horizontal direction, the lift can be efficiently converted into propulsion in the levitation aircraft 1.
  • the horizontal movement of the levitation aircraft 1 is performed mainly by operating the horizontal propeller group 4.
  • the propeller group 4 for horizontal propulsion exerts a thrust in the horizontal direction by rotating the blades 42 with a rotary motor 43.
  • the wind generated by the propeller 41 for horizontal propulsion passes through a thin portion of the floating aircraft 1 as shown in FIG. 1, so that the lift force of the blades 42 can be efficiently converted into a propulsion force. .
  • the levitation machine body 2 is configured to include an outer air sac body 23 which is disposed between the outer skin body 21 and the plurality of air sac bodies 22 and is formed by a resin-like film having substantially the same shape as the outer skin body 21. Thereby, since the outer air sac body 23 holds the plurality of air sac bodies 22 from the outside, the levitation body 2 can be formed in a stable shape, and the shape of the levitation body 2 can be maintained during the flight of the buoyant aircraft 1. .
  • the levitated flying vehicle 100 of the present embodiment is formed in a shape that is symmetrical in the front-rear and left-right directions in plan view.
  • the levitation-type flying body 100 includes one levitation body 110 in which a gas having a specific gravity smaller than that of air is sealed, and a vertical center of the levitation body 110 that is substantially horizontally laterally from an end in the front-rear direction.
  • a pair of outwardly extending reinforcing members (reinforcing members) 160, a plurality of vertical propeller group 3A, and a plurality of horizontal propeller group 4A are provided.
  • the levitation machine body 110 of the present embodiment is formed to extend in the left-right direction in a plan view, is formed in a shape in which the center in the longitudinal direction bulges in the front-rear direction, and the width decreases toward the outside in the left-right direction. It is inclined so as to be connected by an end 122 extending in the front-rear direction at the end in the longitudinal direction.
  • the levitation machine body 110 like the levitation machine body 2 of the first embodiment, encloses a gas having a specific gravity smaller than that of air inside to obtain buoyancy due to the specific gravity difference between the surrounding air and the gas, and floats in the air. It is easy to do.
  • the levitation machine body 110 includes an exoskeleton body 120 that forms the outer shape of the levitation machine body 110, an inner support frame 170 that is disposed inside the exoskeleton body 120, and an inner support frame 170.
  • a plurality of air sac bodies (not shown).
  • a plurality of air sac bodies are arranged inside the exoskeleton body 120 as in the first embodiment.
  • the air bag body is filled with a gas having a specific gravity smaller than that of air, as in the first embodiment.
  • the plurality of air sac bodies according to the second embodiment have the same configuration as the air sac body according to the first embodiment.
  • the number and shape of the plurality of air sac bodies are appropriately set depending on the shape of the exoskeleton 120 and the like.
  • the inner support frame 170 is configured by combining a plurality of frames with a space inside. As shown in FIG. 6, the inner support frame 170 is formed in a shape in which the center in the left-right direction (longitudinal direction) bulges in the front-rear direction in a plan view, and is inclined toward the outer peripheral edge. The inclination angle is formed into an acute angle. Further, as shown in FIG. 7, the inner support frame 170 is formed in a shape in which the center in the left-right direction (longitudinal direction) bulges up and down in a side view, and is inclined toward the outer peripheral edge. The inclination angle is formed into an acute angle.
  • the inner support frame 170 includes a plurality of arc-shaped outer edge constituting arc frames 171 and a plurality of vertical frames arranged around the right and left directions at predetermined positions in the left and right directions.
  • the rotating frame 172 and a plurality of horizontal rotating frames 173 arranged to rotate in the left-right direction at a predetermined position in the front-rear direction.
  • the outer edge constituting arc frame 171, the longitudinal circulation frame 172, and the transverse circulation frame 173 are only required to be formed of a lightweight and high-strength material.
  • a resin such as plastic, aluminum, rigid rubber, or urethane is used as a carbon fiber. It may be coated with reinforced plastic or the like.
  • the four outer edge constituting arc frames 171 constitute the outer edge of the inner support frame 170.
  • the four outer edge-constituting arc frames 171 are formed in an arc shape that bulges outward, and both end portions are connected to each other and are spaced apart from each other by 90 ° in the circumferential direction.
  • the inner support frame 170 is framed by four outer edge constituting arc frames 171, a plurality of longitudinal circulation frames 172, and a plurality of transverse circulation frames 173 with a space inside.
  • the exoskeleton 120 is attached to the outside of the inner support frame 170 as shown in FIG. As shown in FIGS. 9 and 10, the exoskeleton 120 includes a planar planar partition structure 130 having a predetermined thickness, and a core member 140 disposed inside the planar partition structure 130. A reinforcing skin material 150 disposed on the outer surface of the planar partition structure 130.
  • the planar partition structure 130 and the reinforcing skin material 150 constitute the outer shape of the levitation machine body 110.
  • the planar partition structure 130 is attached to the outside of the inner support frame 170 (see FIGS. 6 to 8).
  • the planar partition structure 130 is formed in a planar shape having a predetermined thickness, and is configured by a partition structure in which the interior is partitioned into a plurality of spaces by a plurality of walls. Since the planar partition structure 130 is attached to the outside of the inner support frame 170, it is formed in a shape in which the center in the longitudinal direction bulges in the front-rear direction in plan view, like the outer shape of the inner support frame 170, and In the side view, the center in the longitudinal direction is formed in a shape bulging up and down.
  • the planar partition structure 130 includes an outer surface wall 131 disposed on the outer side and an inner surface wall 132 disposed on the inner side in the cross-sectional structure. A space between the inner wall 132 and the inner wall 132 is defined.
  • the planar partition structure 130 has an intermediate wall 133 disposed between the outer wall 131 and the inner wall 132 in parallel with the outer wall 131 and the inner wall 132.
  • a two-layer structure is formed between the inner wall 132 and the intermediate wall 133 so as to overlap in the thickness direction.
  • the planar partition structure 130 includes a thickness direction extending wall 134 formed at predetermined intervals and extending in the thickness direction, and a thickness direction extending wall 134 in a cross-sectional view. And a semicircular arc wall 135 having a radius.
  • a plurality of arc walls 135 are arranged side by side in a direction orthogonal to the thickness direction in two layers overlapping in the thickness direction.
  • the arc wall 135 is formed in a semicircular arc shape having the thickness direction extending wall 134 as a radius and the intermediate wall 133 side being convex in a state where the thickness direction extending wall 134 is arranged in the radius portion.
  • the two arc walls 135 formed in each of the two layers of the planar partition structure 130 and arranged in the thickness direction are arranged such that the apexes of the arc portions are in contact with the intermediate wall 133 and face each other.
  • the intermediate wall 133, the thickness direction extending wall 134, and the arc wall 135 are formed between the outer wall 131 and the inner wall 132, and extend in a direction orthogonal to the direction in which the arc walls 135 are arranged.
  • Examples of the material of the planar partition structure 130 include a resin material, a metal material, and a carbon nanohorn (carbon). Lightweight and high strength (rigidity) material such as nanohorn (CNH) is used.
  • the core member 140 is disposed inside the planar partition structure 130 and supports the planar partition structure 130 inside the planar partition structure 130, thereby reinforcing the strength of the planar partition structure 130.
  • the core member 140 is disposed along the intermediate wall 133 between the outer wall 131 and the inner wall 132 inside the planar partition structure 130.
  • the core member 140 is connected to the intermediate wall 133 in a state of being embedded in the intermediate wall 133, and one semicircular portion of the core member 140 is outside (on the outer surface wall 131 side) with respect to the intermediate wall 133.
  • the other semicircular portion of the core member 140 is disposed on the inner side (inner wall 132 side) with respect to the intermediate wall 133.
  • the core member 140 includes a pipe-shaped member 141 formed in a long pipe shape and a long reinforcing fiber material 142 disposed inside the pipe-shaped member 141.
  • the pipe-shaped member 141 is made of, for example, carbon nanotube (CNT)
  • the reinforcing fiber material 142 is made of, for example, an aramid fiber (reinforcing fiber material) that is a highly rigid fiber material. Is done.
  • the reinforcing skin material 150 is formed in a sheet shape, and is disposed on the outer surface of the planar partition structure 130 so as to cover the outer surface of the planar partition structure 130.
  • the reinforcing skin material 150 is attached to the surface of the planar partition structure 130 so as to reinforce the surface of the exoskeleton 120.
  • a lightweight and high strength material such as carbon nanohorn (CNH) is used.
  • the reinforcing skin material 150 is made of, for example, a coating material of 1 mm or less.
  • the outwardly extending reinforcing member 160 is formed so as to protrude outward from the arcuate edge 121 at the center in the vertical direction of the exoskeleton 120 to the side of the exoskeleton 120. 120 is reinforced.
  • the outwardly extending reinforcing member 160 extends along the arc edge 121 of the exoskeleton 120 and protrudes substantially horizontally from the arc edge 121 outward to the side.
  • the arc edge 121 of the exoskeleton 120 is formed with an acute angle.
  • the outwardly extending reinforcing member 160 is recessed in the exoskeleton body 120 side in the center in the left-right direction, and four projecting arc portions 161 that project in an arc shape on the outer side of the exoskeleton body 120 are formed on both ends in the left-right direction. Is done.
  • the four projecting arc portions 161 are provided with a pair of left and right projecting arc portions 161 projecting in a curved shape on the outside of the exoskeleton 120 so as to be separated in the front-rear direction.
  • a vertical propeller group 3A is attached to the outwardly extending reinforcing member 160.
  • the propeller group 3A for vertical propulsion is for propelling the levitating body 110 in the vertical direction.
  • Plural (eight) propellers 31A for vertical propulsion are arranged on the outwardly extending reinforcing member 160.
  • the eight vertical propellers 31A are each provided with two vertical propellers 31A on the four projecting arc portions 161 of the outwardly extending reinforcing member 160.
  • Each vertical propeller 31A has the same configuration as the vertical propeller 31 of the first embodiment.
  • Horizontal propeller groups 4A are arranged at both ends in the left-right direction of the floating aircraft 100. As shown in FIG. 6, the horizontal propeller group 4A is for propelling the levitating body 110 in the horizontal direction, and includes a pair of horizontal propellers 41A on the left and right. Each horizontal propeller 41A has the same configuration as the horizontal propeller 41 of the first embodiment.
  • the levitation vehicle 100 configured as described above is configured to have rigidity by the exoskeleton 120.
  • water called ballast water is stored in a ballast tank provided inside the flying body, and the flying body is balanced while moving the ballast water by tilting the flying body.
  • the flying object was raised or lowered.
  • the levitation aircraft 100 is configured to have rigidity by the exoskeleton 120.
  • the levitation-type aircraft 100 has the propeller group 3A for vertical propulsion and the propulsion group 3A for vertical propulsion in a state in which the outwardly extending reinforcing member 160 maintains the outer shape due to the rigidity of the exoskeleton 120 by strengthening the rigidity of the exoskeleton 120.
  • the horizontal propeller group 4A By driving the horizontal propeller group 4A, it can move freely up, down, left and right without using ballast water.
  • the levitation type aircraft 100 is provided with a levitation body 110 formed by sealing a gas having a specific gravity smaller than that of air, and the levitation body 110 constitutes the outer shape of the levitation body 110 and has a rigidity outside.
  • the same effect as (1) of a 1st embodiment can be produced. More specifically, the same effect as that exhibited by the “outer body 21” of the first embodiment can be achieved by the “exoskeleton 120” of the second embodiment.
  • the exoskeleton 120 is configured to include a planar partition structure 130 that is formed in a planar shape having a predetermined thickness and is partitioned into a plurality of spaces by a plurality of walls. Thereby, the exoskeleton 120 can be further reduced in weight, and the rigidity of the exoskeleton 120 can be further improved.
  • the exoskeleton 120 is configured to have a core material 140 disposed inside the planar partition structure 130 and supporting the planar partition structure 130. Thereby, since the planar partition structure 130 is supported from the inner side by the core member 140, the rigidity of the exoskeleton 120 can be further improved.
  • An outwardly extending reinforcing member 160 that protrudes from the exoskeleton body 120 to the side of the exoskeleton body 120 and reinforces the exoskeleton body 120 is further provided. Thereby, since the exoskeleton 120 can be reinforced from the side, the rigidity of the exoskeleton 120 can be further improved.
  • a planar partition structure 130 ⁇ / b> A includes an outer surface wall 131, an inner surface wall 132, and a plurality of hexagonal structures 136 that are sectioned in a hexagonal shape. And a honeycomb structure.
  • the plurality of hexagonal structures 136 are each formed in a cylindrical shape having a hexagonal cross section between the outer wall 131 and the inner wall 132 and extending in the thickness direction.
  • a resin material or a material similar to the material of the planar partition structure 130 of the second embodiment can be used.
  • a light material with high strength (rigidity) such as a metal material or carbon nanohorn (CNH) is used.
  • the above-described planar partition structure 130A has a honeycomb structure, so that it is light and rigid, and can be strengthened.
  • the planar partition structure 130A can be easily formed. Thereby, a fine curved surface shape can be easily formed in the honeycomb structure.
  • planar partition structure 130A by forming the planar partition structure 130A with a honeycomb structure, it can be processed with a fine curved surface shape while being a rigid exoskeleton structure of a rigid honeycomb structure. This makes it possible to design a sports-type floating flying object 100 that can reduce wind pressure resistance capable of high-speed flight and is surrounded by a curved surface having a center in the longitudinal direction bulged in the front-rear direction and the vertical direction. Further, by forming the arc edge 121 of the exoskeleton 120 at an acute angle so as to cut the wind, the angle of entry into the wind pressure can be made shallow and the wind pressure resistance can be reduced.
  • the core material 140 is disposed inside the planar partition structure 130A, as in the second embodiment.
  • the core member 140 reinforces the strength of the planar partition structure 130A by supporting the planar partition structure 130A inside the planar partition structure 130A. Since the configuration of the core member 140 is the same as that of the second embodiment described above, the description thereof is omitted.
  • the planar partition structure 130A of the exoskeleton 120A is configured with a honeycomb structure.
  • the exoskeleton 120A can be further reduced in weight, and the rigidity of the exoskeleton 120 can be further improved.
  • the planar partition structure 130A of the exoskeleton 120A can be easily formed.
  • the levitated aircraft 100 of the second embodiment is a hermetic type of aircraft with gas sealed therein
  • the levitated aircraft 100A of the third embodiment is a balloon type aircraft.
  • the exoskeletons 120 and 120A have the same configuration.
  • components that are the same as or similar to those in the above-described embodiment may be denoted by the same reference numerals and description thereof may be omitted.
  • the levitation type aircraft 100A includes a single levitation aircraft 110A and a pair of horizontally extending laterally from the front and rear end portions in the vertical center portion of the levitation aircraft 110A.
  • a device 16, a transmission unit 17, a plurality of distance measurement cameras 18, and a control unit 12 are provided.
  • the floating body 110A is formed so as to extend in the left-right direction in a plan view, is formed in a shape in which the center in the longitudinal direction bulges in the front-rear direction and the up-down direction, and becomes narrower toward the outside in the left-right direction. So as to be inclined.
  • the levitating machine body 110A is constituted by a balloon type machine body, and the internal air is passed through an opening 111 formed in the upper part. It is configured to give buoyancy to the aircraft by expelling it to the outside with thermal energy and lowering the air density in the aircraft.
  • the heat source device 13 generates heat energy that drives the air inside the levitation machine body 110 ⁇ / b> A to the outside.
  • the levitation body 110A includes an exoskeleton body 120A that forms the outer shape of the levitation body 110A, and an inner support frame 170 (see FIG. 12) that is disposed inside the exoskeleton body 120A. 12 (not shown, see FIGS. 7 and 8). Since the exoskeleton 120A has the same configuration as that of the exoskeleton 120 of the second embodiment except that the opening 111 is provided in the upper part, the description thereof is omitted. Moreover, since the inner side support frame 170 (refer FIG.7 and FIG.8) is the structure similar to 2nd Embodiment, description is abbreviate
  • the heat source device 13 is a device that continuously generates a certain amount of heat energy using a predetermined heat energy generating gas (for example, hydrogen gas) inside the levitation body 110A.
  • a predetermined heat energy generating gas for example, hydrogen gas
  • the heat energy generated by the heat source device 13 expels the air inside the levitation machine body 110A to the outside and gives buoyancy to the levitation machine body 110A. Further, the heat energy generated by the heat source device 13 is converted into electric energy and stored in the battery 14.
  • the battery 14 stores electric energy converted from the heat energy generated by the heat source device 13 and supplies the stored electric energy to various devices.
  • the battery 14 is electrically connected to the GPS sensor 15, the monitoring camera device 16, the transmission unit 17, the plurality of distance measurement cameras 18, and the control unit 12.
  • the electric energy stored in the battery 14 becomes power for driving the plurality of vertical propeller group 3A and the plurality of horizontal propeller group 4A in the floating aircraft 100A, and the GPS sensor 15, the monitoring camera device 16, A power source for various devices such as the transmission unit 17, the plurality of distance measurement cameras 18, and the control unit 12.
  • the GPS sensor 15 is a position sensor that detects position information of a current position in GPS (Global Positioning System).
  • the monitoring camera device 16 captures an image of the lower part of the levitation aircraft 100A during the flight of the levitation aircraft 100A.
  • the monitoring camera device 16 includes a main camera 16a and a spare camera 16b.
  • the main camera 16a is used during normal times, and the spare camera 16b is used in an emergency such as when the main camera 16a breaks down.
  • the transmission unit 17 transmits an image or video captured by the monitoring camera device 16 to the control unit 12.
  • the plurality of distance measurement cameras 18 can acquire the surrounding shooting information necessary for performing position control using artificial intelligence (AI) of the control unit 12 to be described later. It is attached to the appropriate part.
  • the plurality of distance measurement cameras 18 acquire imaging information around the floating flying object 100 ⁇ / b> A during flight, and transmit the acquired imaging information to the control unit 12.
  • a GPS sensor 15, a monitoring camera device 16, a transmission unit 17, a plurality of distance measurement cameras 18, a plurality of vertical propeller group 3A and a plurality of horizontal propeller group 4A are electrically connected to the control unit 12. Has been.
  • the control unit 12 performs position control using artificial intelligence (AI) based on surrounding shooting information shot by a plurality of distance measuring cameras 18.
  • the control unit 12 controls the driving of the plurality of vertical propeller group 3A and the plurality of horizontal propeller group 4A based on the flight path analyzed by the position control using artificial intelligence (AI), so that the floating type The operation of the flying object 100A is controlled.
  • AI artificial intelligence
  • the control unit 12 grasps the position of the floating flying object 100 ⁇ / b> A based on the position information acquired by the GPS sensor 15. In the present embodiment, during normal times, the control unit 12 controls the operation of the levitation aircraft 100A based on the flight path analyzed by position control using artificial intelligence (AI). On the other hand, in the event of an emergency or abnormality, the control unit 12 acquires position information from the GPS sensor 15 in order to grasp the position of the levitation aircraft 100A and collect the levitation aircraft 100A. Control is performed so as to transmit position information to a base station or the like.
  • AI artificial intelligence
  • the levitated aircraft 100A basically flies by position control using artificial intelligence (AI).
  • the GPS sensor 15 is used to collect the levitation aircraft 100A when the location of the levitation aircraft 100A is unknown.
  • the levitation aircraft 100 ⁇ / b> A basically does not use the GPS sensor 15. To fly.
  • the control unit 12 receives the image information and video information captured by the monitoring camera device 16 and transmitted by the transmission unit 17, and controls image analysis of the captured image captured by the monitoring camera device 16.
  • the balloon type levitation aircraft 100A of the third embodiment as described above also has the same effects as the above (5) to (9), like the sealed type levitation aircraft 100 of the second embodiment. Obtainable.
  • the levitation vehicle 1 is not limited to the embodiment described above, and can be changed as appropriate.
  • the outer shape of the levitation machine body 2 is configured by the outer skin body 21 formed of a metal film
  • the air sac body 22 is formed by being surrounded by a resin film
  • the outer air sac body 23 is formed by a resin film.
  • a metal film a metal-like film composed of a material that is not a metal but has a property similar to a metal may be used.Although it is not a resin, it has a property similar to a resin instead of a resin film. You may use the resin-like film
  • the outer air sac body 23 is provided.
  • the present invention is not limited to this, and the outer air sac body 23 may not be provided.
  • the two resin films are disposed inside the metal film, but the present invention is not limited to this.
  • three or more resin films may be disposed inside the metal film.
  • levitation machines 2 are provided, but the present invention is not limited to this.
  • One levitation machine body may be provided, and two, three, five or more may be provided.
  • the camera is mounted.
  • the present invention is not limited to this.
  • it may be configured such that a person can be boarded or a pesticide for spraying a pesticide may be mounted.
  • the inner support frame 170 is disposed inside the exoskeleton 120.
  • the inner support frame 170 may not be disposed inside the exoskeleton 120.
  • the reinforcing outer skin material 150 is disposed on the outer surface of the exoskeleton body 120, the present invention is not limited to this, and the outer skeleton body 120 is not provided with the reinforcing outer skin material 150 on the outer surface of the exoskeleton body 120. You may comprise only the structure 130.
  • the planar partition structures 130 and 130A are configured by a honeycomb structure having a plurality of hexagonal structures each having a hexagonal cross-sectional shape extending in the thickness direction. It is not limited to.
  • the cross-sectional shape of the planar partition structure may be constituted by other polygons or may be constituted by a circle.
  • the planar partition structure may be constituted by a single polygon or a combination of a plurality of polygons.
  • the exoskeleton body was comprised with the skin body 21, it is not limited to this, It replaces with the skin body 21 of the said 1st Embodiment, and the planar division structure of 2nd Embodiment.
  • You may comprise with the exoskeleton 120,120A which has 130,130A.
  • the honeycomb structure may have a plurality of hexagonal structures 136 that are sectioned in a hexagonal shape.
  • control unit 12 is configured to control, for example, position control using artificial intelligence (AI) and image analysis of the monitoring camera device 16. Also in the first embodiment and the second embodiment, as in the third embodiment, the control unit 12 controls the position control using, for example, artificial intelligence (AI) and the image analysis of the monitoring camera device 16. And so on.
  • AI artificial intelligence
  • the levitation aircraft 1 of the first embodiment is a gas-filled aircraft in which the inside of the levitation aircraft 2 is filled with a gas having a specific gravity smaller than air, such as helium gas.
  • the floating flying object 100A of the third embodiment is a hot air balloon type flying object.
  • You may comprise the hybrid type flight body which used both the gas filling type flight body and the hot air balloon type flight body. For example, in order from the upper side to the lower side, a hot air balloon type flying object and a gas filling type flying object are arranged, and an occupant and a luggage are arranged below the gas filling type flying object.
  • the state of gas such as helium gas can be controlled even in a place where the outside air temperature is low by using the thermal energy of the hot air balloon type flying body.
  • the thermal energy of the hot air balloon type aircraft can be used even in a low temperature region such as the polar region. Because it can use maximum buoyancy, it can fly stably even when the outside air temperature changes.
  • a gas-filled aircraft such as helium gas between the hot-air balloon type aircraft and the occupant or baggage, the occupant or baggage is generated from the hot-air balloon type by the gas-filled aircraft. Is shielded from the heat generated.

Abstract

The purpose of the present invention is to provide a buoyant-type flying body with which it is possible to inhibit deformation of the outer shape or breakage of a buoyant body. A buoyant-type floating body 1, 100, 100A provided with a buoyant body 2, 110, 110A formed by sealing therein a gas having a specific gravity lower than that of air, wherein: the buoyant body 2, 110, 110A is formed by sealing therein a gas having a specific gravity lower than that of air, or configured so that air therein is expelled to the exterior by thermal energy so as to impart the body with buoyancy; and the buoyant body 2, 110, 110A has an outer skeleton body 21, 120, 120A constituting the outer shape of the buoyant body 2, 110, 110A and exhibiting rigidity.

Description

浮揚型飛行体Levitation aircraft
 本発明は、浮揚機体を備える浮揚型飛行体に関する。 The present invention relates to a levitation type aircraft including a levitation aircraft body.
 従来、内部に空気よりも小さい比重のガスを密閉して形成される浮揚機体を備える浮揚型飛行体が知られている(例えば、特許文献1参照)。特許文献1に記載の浮揚機体の外形は、軽量で強度の高い素材の樹脂フィルムで構成される。また、内部の空気を熱エネルギーで外部に追い出して機体内の空気密度を下げることにより、機体に浮力を与えるように構成される浮揚機体を備える浮揚飛行体も知られている。 2. Description of the Related Art Conventionally, a levitation type flying body including a levitation body formed by sealing a gas having a specific gravity smaller than that of air is known (for example, see Patent Document 1). The external shape of the levitation machine described in Patent Document 1 is made of a resin film that is lightweight and has high strength. There is also known a levitation vehicle equipped with a levitation body configured to give buoyancy to the body by expelling the internal air to the outside with thermal energy and lowering the air density in the body.
特許第5875093号公報Japanese Patent No. 5875093
 特許文献1に記載の浮揚型飛行体は、浮揚機体の外形が樹脂フィルムにより構成されており、樹脂フィルムが破損すると、墜落する可能性がある。また、風の影響を受けて浮揚機体の外形が変形すると、浮揚型飛行体の高い移動能力を発揮できない可能性がある。そのため、浮揚機体の破損や外形の変形を抑制できることが望まれる。 In the levitation type aircraft described in Patent Document 1, the outer shape of the levitation aircraft is constituted by a resin film, and there is a possibility of crashing if the resin film is damaged. Further, if the outer shape of the levitation aircraft is deformed under the influence of wind, there is a possibility that the high movement ability of the levitation aircraft cannot be exhibited. Therefore, it is desired that breakage of the levitating body and deformation of the outer shape can be suppressed.
 従って、本発明は、浮揚機体の破損や外形の変形を抑制できる浮揚型飛行体を提供することを目的とする。 Therefore, an object of the present invention is to provide a levitation aircraft that can suppress breakage of the levitation aircraft and deformation of the outer shape.
 本発明は、浮揚機体を備える浮揚型飛行体であって、前記浮揚機体は、内部に空気よりも小さい比重のガスを密閉して形成され、又は、内部の空気を熱エネルギーで外部に追い出して機体に浮力を与えるように構成されており、前記浮揚機体の外形を構成すると共に剛性を有する外骨格体を有する浮揚型飛行体に関する。 The present invention is a levitation aircraft including a levitation body, wherein the levitation body is formed by sealing a gas having a specific gravity smaller than that of air inside, or expelling the inside air to the outside by heat energy. The present invention relates to a levitation type flying body that is configured to give buoyancy to an airframe and that has an outer skeleton that forms an outer shape of the levitation body and has rigidity.
 また、前記外骨格体は、所定の厚さを有した面状に形成され複数の壁によって内部が複数の空間に区画された面状区画構造体を含んで構成されることが好ましい。 In addition, the exoskeleton body is preferably configured to include a planar partition structure that is formed into a planar shape having a predetermined thickness and is partitioned into a plurality of spaces by a plurality of walls.
 また、前記面状区画構造体は、厚さ方向に延びる断面形状が六角形の複数の六角形構造体を有するハニカム構造で構成される。 Further, the planar partition structure has a honeycomb structure having a plurality of hexagonal structures each having a hexagonal cross-sectional shape extending in the thickness direction.
 また、前記外骨格体は、前記面状区画構造体の内部に配置され前記面状区画構造体を支持する芯材を有することが好ましい。 Further, it is preferable that the exoskeleton has a core material that is disposed inside the planar partition structure and supports the planar partition structure.
 また、前記外骨格体から前記外骨格体の側方に突出して前記外骨格体を補強する補強部材を更に備えることが好ましい。 Further, it is preferable to further include a reinforcing member that reinforces the exoskeleton by protruding from the exoskeleton to the side of the exoskeleton.
 また、前記浮揚機体は、側面視において、外周縁が鋭角状に形成されることが好ましい。 Further, it is preferable that the levitation body is formed with an acute outer peripheral edge in a side view.
 また、前記浮揚機体を1又は複数備え、水平方向の風の通り道となる薄い部分が少なくとも2方向に形成されることが好ましい。 Further, it is preferable that one or a plurality of the levitation bodies are provided, and a thin portion serving as a horizontal wind passage is formed in at least two directions.
 また、前記浮揚機体は、内部に空気よりも小さい比重のガスを密閉して形成され、前記浮揚機体は、前記外骨格体の内部を複数の気室に区画するように前記外骨格体の内部に配置され樹脂様皮膜に囲まれることで形成される複数の気嚢体を更に有することが好ましい。 Further, the levitation body is formed by sealing a gas having a specific gravity smaller than air inside, and the levitation body is arranged inside the exoskeleton body so as to partition the interior of the exoskeleton body into a plurality of air chambers. It is preferable to further have a plurality of air sac bodies that are formed by being surrounded by a resin-like film.
 また、前記浮揚機体は、前記外骨格体と前記複数の気嚢体との間に配置され樹脂様皮膜により前記外骨格体と略同形状に形成される外側気嚢体を更に有することが好ましい。 Further, it is preferable that the levitation body further includes an outer air sac body that is disposed between the exoskeleton body and the plurality of air sac bodies and is formed in a shape substantially the same as the exoskeleton body by a resin-like film.
 本発明によれば、浮揚機体の破損や外形の変形を抑制できる浮揚型飛行体を提供することができる。 According to the present invention, it is possible to provide a levitation aircraft that can suppress breakage of the levitation aircraft and deformation of the outer shape.
本発明に係る浮揚型飛行体の第1実施形態を示す平面図である。It is a top view which shows 1st Embodiment of the floating type flying body which concerns on this invention. 第1実施形態の浮揚型飛行体を示す側面図である。It is a side view which shows the floating type flying body of 1st Embodiment. 浮揚機体を示す縦断面図である。It is a longitudinal cross-sectional view which shows a levitation machine body. 浮揚機体を示す横断面図である。It is a cross-sectional view which shows a levitation machine body. 浮揚機体にガスを注入して浮揚機体に内圧を与える過程を示す図である。It is a figure which shows the process which inject | pours gas into a levitation machine body and gives an internal pressure to a levitation machine body. 本発明に係る浮揚型飛行体の第2実施形態を示す平面図である。It is a top view which shows 2nd Embodiment of the floating type flying body which concerns on this invention. 第2実施形態の内側支持フレームを示す側面図である。It is a side view which shows the inner side support frame of 2nd Embodiment. 第2実施形態の内側支持フレームを示す斜視図である。It is a perspective view which shows the inner side support frame of 2nd Embodiment. 第2実施形態の外骨格体を示す断面斜視図である。It is a cross-sectional perspective view which shows the exoskeleton body of 2nd Embodiment. 第2実施形態の外骨格体を示す断面図である。It is sectional drawing which shows the exoskeleton body of 2nd Embodiment. 第2実施形態の変形形態であって、外骨格体の面状区画構造をハニカム構造とした場合を示す断面斜視図である。FIG. 6 is a cross-sectional perspective view showing a modification of the second embodiment and showing a case where the planar partition structure of the exoskeleton is a honeycomb structure. 本発明に係る浮揚型飛行体の第3実施形態を示す図である。It is a figure which shows 3rd Embodiment of the floating type flying body which concerns on this invention.
(第1実施形態)
 以下、本発明の浮揚型飛行体の第1実施形態について、図面を参照しながら説明する。本実施形態の浮揚型飛行体1の全体構成につき、図1及び図2を参照しながら説明する。
(First embodiment)
Hereinafter, a first embodiment of a buoyant aircraft of the present invention will be described with reference to the drawings. The overall configuration of the levitation aircraft 1 according to the present embodiment will be described with reference to FIGS. 1 and 2.
 本実施形態の浮揚型飛行体1は、図1及び図2に示すように、内部に空気よりも小さい比重のガスを密閉してなる複数(4つ)の浮揚機体2と、複数の垂直推進用プロペラ群3と、複数の水平推進用プロペラ群4と、複数の浮揚機体支持フレーム51と、複数の垂直推進用プロペラ支持フレーム52と、複数の水平推進用プロペラ支持フレーム53と、カメラ6と、を備える。 As shown in FIGS. 1 and 2, the levitation type aircraft 1 according to the present embodiment includes a plurality (four) of levitation bodies 2 in which a gas having a specific gravity smaller than air is sealed, and a plurality of vertical propulsion units. Propeller group 3, a plurality of horizontal propeller propeller groups 4, a plurality of floating body support frames 51, a plurality of vertical propeller propeller support frames 52, a plurality of horizontal propeller propeller support frames 53, and a camera 6 .
 浮揚型飛行体1は、図1に示すように、平面視において、前後及び左右対称の形状に形成される。また、浮揚型飛行体1は、図2に示すように、後述するカメラ6を除いて、側面視において、上下及び左右対称の形状に形成される。以下、各構成について説明する。 As shown in FIG. 1, the levitation aircraft 1 is formed in a shape that is symmetrical in the front-rear direction and in the left-right direction in plan view. Further, as shown in FIG. 2, the floating flying vehicle 1 is formed in a vertically and laterally symmetrical shape in a side view except for a camera 6 described later. Each configuration will be described below.
 本実施形態の4つの浮揚機体2は、それぞれ、外周部が薄い扁平状の円盤状に形成される。浮揚機体2は、平面視において円形状に形成される。4つの浮揚機体2は、平面視において、正方形の範囲に、縦2列及び横2列に水平方向に並べられて配置され、それぞれが独立して形成されている。4つの浮揚機体2は、各浮揚機体2の扁平部分が水平方向に対向して配置された状態で、互いに、近接又は当接して配置されている。 The four levitation machines 2 of the present embodiment are each formed in a flat disk shape with a thin outer peripheral part. The levitation body 2 is formed in a circular shape in plan view. The four levitation bodies 2 are arranged in a horizontal direction in two vertical rows and two horizontal rows in a square range in plan view, and each is formed independently. The four levitation machines 2 are arranged close to or in contact with each other with the flat portions of the levitation machines 2 arranged in the horizontal direction.
 浮揚機体2は、内部に空気よりも小さい比重のガスを密閉することで、周囲の空気とガスとの比重差によって浮力を得て、空中に浮揚しやすくするものである。浮揚機体2の内部には、例えば、ヘリウム、水素または周囲の空気より暖められた空気、酸素および窒素等の周囲の空気よりも小さい比重のガスが充填される。なお、浮揚機体2の形状は円盤状(円形状)に限定されるものではない。また、本実施形態では、浮揚機体2が独立して形成されているが、これに限定されず、4つの浮揚機体2が一体的に形成され、各浮揚機体2の扁平部分において連結して構成されていてもよい。
 浮揚機体2の内部は、複数の気室に区画されている。浮揚機体2の詳細については後述する。
The levitation machine body 2 seals a gas having a specific gravity smaller than that of air inside, thereby obtaining buoyancy due to the difference in specific gravity between the surrounding air and the gas, thereby making it easier to float in the air. The inside of the levitation body 2 is filled with a gas having a specific gravity smaller than that of the surrounding air, such as helium, hydrogen, or air heated from the surrounding air, oxygen, and nitrogen. In addition, the shape of the levitation machine body 2 is not limited to a disk shape (circular shape). Moreover, in this embodiment, although the levitation machine body 2 is formed independently, it is not limited to this, Four levitation machine bodies 2 are formed integrally, and it connects and comprises in the flat part of each levitation machine body 2. May be.
The inside of the levitation machine body 2 is partitioned into a plurality of air chambers. Details of the levitation machine body 2 will be described later.
 浮揚型飛行体1の略中央位置における4つの浮揚機体2の間には、図1に示すように、上下方向の空気の流通を可能にするための上下方向開口部10が形成されている。本実施形態においては、上下方向開口部10には、後述する浮揚機体支持フレーム51の連結フレーム512が配置されており、上下方向開口部10は、浮揚機体支持フレーム51の連結フレーム512において、複数の開口11に区画されている。 As shown in FIG. 1, a vertical opening 10 is formed between the four levitating bodies 2 at a substantially central position of the levitation-type flying body 1 to allow the vertical air flow. In the present embodiment, a connecting frame 512 of a levitation machine body support frame 51 to be described later is disposed in the vertical direction opening 10, and a plurality of vertical direction opening parts 10 are provided in the linking frame 512 of the levitation machine body support frame 51. Are divided into openings 11.
 また、浮揚機体2は、図2に示すように、側面視において、中央が上下方向に膨出された形状に形成されていると共に、外周縁に向けて傾斜されてその傾斜角度が鋭角状に形成されている。これにより、浮揚機体2は、外周縁が鋭角状に形成されることで、外周部が薄い扁平状に形成される。 Further, as shown in FIG. 2, the levitating machine body 2 is formed in a shape in which the center bulges in the vertical direction in a side view, and is inclined toward the outer peripheral edge so that the inclination angle is acute. Is formed. Thereby, the levitation machine body 2 is formed in a flat shape with a thin outer peripheral portion by forming the outer peripheral edge in an acute angle shape.
 浮揚型飛行体1には、水平推進用プロペラ41によって発生した風が、図1に示す二点鎖線の矢印のように、浮揚機体2の薄い部分を通り抜ける。本実施形態においては、水平方向の風の通り道となる薄い部分が2方向に形成されている。水平方向の風の通り道となる薄い部分が2方向に形成されることで、羽根42(図2参照)の揚力を推進力へと効率的に変換することができる。 The wind generated by the horizontal propulsion propeller 41 passes through the thin part of the levitation aircraft 2 as shown by the two-dot chain line arrow shown in FIG. In the present embodiment, a thin portion serving as a wind path in the horizontal direction is formed in two directions. By forming the thin portion that becomes the path of the wind in the horizontal direction in two directions, the lift force of the blades 42 (see FIG. 2) can be efficiently converted into a propulsive force.
 浮揚機体支持フレーム51は、図1及び図2に示すように、浮揚機体支持フレーム本体511と、連結フレーム512と、を有する。浮揚機体支持フレーム本体511は、各浮揚機体2の外面を囲むように配置されている。連結フレーム512は、平面視において浮揚型飛行体1の略中央に配置されている。連結フレーム512は、4つの浮揚機体支持フレーム本体511を、平面視において浮揚型飛行体1の略中央において連結する。 As shown in FIGS. 1 and 2, the levitation machine body support frame 51 includes a levitation machine body support frame body 511 and a connection frame 512. The levitation machine body support frame main body 511 is disposed so as to surround the outer surface of each levitation machine body 2. The connection frame 512 is disposed at the approximate center of the floating aircraft 1 in plan view. The connection frame 512 connects the four levitation aircraft body support frame bodies 511 at the approximate center of the levitation aircraft 1 in plan view.
 垂直推進用プロペラ支持フレーム52は、平面視において、浮揚型飛行体1の4つの浮揚機体2が配置される正方形領域の各角部において、各浮揚機体2から外方に突出するように形成され、浮揚機体支持フレーム51に連結されている。垂直推進用プロペラ支持フレーム52は、垂直推進用プロペラ群3を取り付ける枠体として機能する。 The propeller support frame 52 for vertical propulsion is formed so as to protrude outward from each levitation body 2 at each corner of a square region where the four levitation bodies 2 of the levitation type aircraft 1 are arranged in plan view. The levitation machine body support frame 51 is connected. The propeller support frame 52 for vertical propulsion functions as a frame for attaching the propeller group 3 for vertical propulsion.
 水平推進用プロペラ支持フレーム53は、平面視において、浮揚型飛行体1の4つの浮揚機体2が配置される正方形領域の各辺の中央部において、浮揚型飛行体1の側部の外方に突出するように形成され、浮揚機体支持フレーム51に連結されている。垂直推進用プロペラ支持フレーム52は、水平推進用プロペラ群4を取り付ける枠体として機能する。 In a plan view, the propeller support frame 53 for horizontal propulsion is located outside the side of the levitation aircraft 1 at the center of each side of a square area where the four levitation aircraft bodies 2 of the levitation aircraft 1 are disposed. It is formed so as to protrude and is connected to the levitating machine body support frame 51. The propeller support frame 52 for vertical propulsion functions as a frame for attaching the propeller group 4 for horizontal propulsion.
 浮揚機体支持フレーム51、垂直推進用プロペラ支持フレーム52及び水平推進用プロペラ支持フレーム53は、軽量かつ高強度な素材によって形成されていればよく、プラスチック、アルミニウム、剛性の高いゴム、あるいはウレタン等の樹脂を炭素繊維強化プラスチック等で被覆したようなものでもよい。 The levitating body support frame 51, the vertical propeller support frame 52, and the horizontal propeller support frame 53 need only be formed of a lightweight and high-strength material, such as plastic, aluminum, high-rigidity rubber, or urethane. The resin may be coated with carbon fiber reinforced plastic or the like.
 浮揚機体支持フレーム51、垂直推進用プロペラ支持フレーム52及び水平推進用プロペラ支持フレーム53は、例えば、内部が空洞の枠部材により構成される。
 例えば、浮揚機体支持フレーム本体511は、図2に示すように、浮揚機体支持フレーム本体511が延びる方向に直交する断面において、浮揚機体2側に形成される内側部54と、浮揚機体2と反対側に形成される外側部55と、を有する。内側部54は、平面状に形成され、浮揚機体2の外面に沿って配置される。外側部55は、山谷状に形成され、2つの山部551と、2つの山部551との間に形成される谷部552と、を有する。外側部55は、浮揚機体2と反対側を向いて配置される。
The levitation machine body support frame 51, the vertical propeller propeller support frame 52, and the horizontal propeller propeller support frame 53 are configured by, for example, a frame member having a hollow inside.
For example, as shown in FIG. 2, the levitation body support frame main body 511 is opposite to the levitation body 2 in the cross section orthogonal to the direction in which the levitation body support frame main body 511 extends. And an outer portion 55 formed on the side. The inner part 54 is formed in a planar shape and is disposed along the outer surface of the levitation machine body 2. The outer portion 55 is formed in a mountain-valley shape, and includes two peak portions 551 and a valley portion 552 formed between the two peak portions 551. The outer side part 55 is arrange | positioned facing the opposite side to the levitation machine body 2.
 垂直推進用プロペラ群3は、浮揚機体2を垂直方向に推進させるためのものであり、複数の垂直推進用プロペラ31からなる。複数の垂直推進用プロペラ31は、浮揚型飛行体1の4つの浮揚機体2が配置される正方形領域の各角部において、垂直推進用プロペラ支持フレーム52に取り付けられている。各垂直推進用プロペラ31は、推進力が垂直方向に発揮されるように回転モータ33の回転軸が垂直方向に向けられた状態で固定されている。 The vertical propeller group 3 is for propelling the levitation body 2 in the vertical direction, and includes a plurality of vertical propellers 31. The plurality of vertical propeller propellers 31 are attached to the vertical propeller propeller support frame 52 at each corner of a square region where the four levitating aircraft bodies 2 of the buoyant aircraft 1 are disposed. Each propeller 31 for vertical propulsion is fixed in a state where the rotation axis of the rotary motor 33 is directed in the vertical direction so that the propulsive force is exerted in the vertical direction.
 各垂直推進用プロペラ31は、図1に示すように、3枚で一組の羽根32と、これらの羽根32を回転させる回転モータ33と、羽根32の外周に設けられる保護リング34とを有する。羽根32は一般的なプロペラに使用される羽根が採用されている。垂直推進用プロペラ31は、浮揚機体2がガスと空気との密度差による浮力よって浮揚し易くなっているため、大きな揚力は必要としていないことから、比較的小さな羽根32を用いることができる。 As shown in FIG. 1, each vertical propeller 31 has a set of three blades 32, a rotation motor 33 that rotates these blades 32, and a protective ring 34 provided on the outer periphery of the blades 32. . As the blade 32, a blade used in a general propeller is adopted. The propeller 31 for vertical propulsion can use a relatively small blade 32 because a large lift is not necessary because the levitation body 2 is easily lifted by buoyancy due to a difference in density between gas and air.
 水平推進用プロペラ群4は、浮揚機体2を水平方向に推進させるためのものであり、複数の水平推進用プロペラ41からなる。複数の水平推進用プロペラ41は、浮揚型飛行体1の4つの浮揚機体2が配置される正方形領域の各辺の中央部において、水平推進用プロペラ支持フレーム53に取り付けられている。各水平推進用プロペラ41は、推進力が水平方向に発揮されるように、回転モータ43の回転軸が浮揚機体2の中央方向に向けられた状態で固定されている。 The horizontal propeller group 4 is for propelling the levitation body 2 in the horizontal direction, and includes a plurality of horizontal propellers 41. The plurality of horizontal propulsion propellers 41 are attached to the horizontal propulsion propeller support frame 53 at the center of each side of the square area where the four levitating aircraft bodies 2 of the levitation type aircraft 1 are disposed. Each horizontal propeller 41 is fixed in a state where the rotating shaft of the rotary motor 43 is directed toward the center of the levitation body 2 so that the propulsive force is exerted in the horizontal direction.
 各水平推進用プロペラ41は、図2に示すように、3枚で一組の羽根42と、これらの羽根42を回転させる回転モータ43と、羽根42の外周に設けられる保護リング44とを有する。水平推進用プロペラ41は、主に、水平移動のために用いられるため、比較的小さな羽根42を用いることができる。 As shown in FIG. 2, each horizontal propeller 41 has a set of three blades 42, a rotation motor 43 that rotates these blades 42, and a protective ring 44 provided on the outer periphery of the blades 42. . Since the horizontal propeller 41 is mainly used for horizontal movement, relatively small blades 42 can be used.
 カメラ6は、図2に示すように、上下方向開口部10(図1参照)の下方に設置されている。カメラ6は、空中撮影を行うための全方位型のカメラである。なお、カメラ6の設置位置は、上下方向開口部10の下方に限定されるものではなく、浮揚機体2の上方や外周等、任意に選択してよい。また、本発明の浮揚型飛行体1には、カメラ6に限らず、荷物を保持させたり、人を搭載するようにしてもよい。 As shown in FIG. 2, the camera 6 is installed below the vertical opening 10 (see FIG. 1). The camera 6 is an omnidirectional camera for performing aerial shooting. In addition, the installation position of the camera 6 is not limited to the lower part of the up-down direction opening part 10, You may select arbitrarily, such as the upper direction of the levitation machine body 2, an outer periphery. In addition, the levitation aircraft 1 of the present invention is not limited to the camera 6 and may be configured to hold a load or carry a person.
 また、浮揚機体2の表面には、太陽光発電素子(図示せず)が設けられており、垂直推進用プロペラ31や、水平推進用プロペラ41などを稼働させるための電力を発電するようになっている。 Further, a solar power generation element (not shown) is provided on the surface of the levitation machine body 2 to generate electric power for operating the vertical propeller 31 and the horizontal propeller 41. ing.
 次に、浮揚機体2の詳細について説明する。
 浮揚機体2は、図3及び図4に示すように、浮揚機体2の外形を構成する金属皮膜(金属様皮膜)により形成された外皮体(外骨格体)21と、外皮体21の内部に配置されると共に樹脂皮膜(樹脂様皮膜)により囲まれることで形成された複数の気嚢体22と、外皮体21と複数の気嚢体22との間に配置される外側気嚢体23と、を有する。
Next, the details of the levitation machine body 2 will be described.
As shown in FIGS. 3 and 4, the levitating machine body 2 includes an outer skin body (exoskeleton body) 21 formed by a metal film (metal-like film) constituting the outer shape of the levitating machine body 2, and an inside of the outer skin body 21. A plurality of air sac bodies 22 formed by being disposed and surrounded by a resin film (resin-like film), and an outer air sac body 23 disposed between the outer skin body 21 and the plurality of air sac bodies 22 .
 外皮体21の金属皮膜は、剛性を有し、浮揚機体2の外形を構成する。金属皮膜は、所定の厚さを有する膜状に形成される。金属皮膜は、浮揚機体2の外形を構成するため、浮揚機体2の外形と同様に、平面視において円形状に形成され、且つ、側面視において、中央が上下方向に膨出された形状に形成されている。また、外皮体21の金属皮膜は、外周縁に向けて傾斜されてその傾斜角度が鋭角状に形成されている。 The metal coating of the outer skin 21 has rigidity and constitutes the outer shape of the levitating machine body 2. The metal film is formed in a film shape having a predetermined thickness. Since the metal coating forms the outer shape of the levitation machine body 2, it is formed in a circular shape in plan view and in a shape in which the center bulges in the vertical direction in side view as in the outer shape of the levitation machine body 2. Has been. In addition, the metal film of the outer skin body 21 is inclined toward the outer peripheral edge, and the inclination angle is formed in an acute angle.
 外皮体21の金属皮膜は、金属材料の皮膜から構成され、強度と軽量化とを備えたものが好ましい。金属皮膜の厚さは、強度を必要とする部分などを考慮して、適宜設定される。本実施形態では、金属皮膜の厚さは、例えば、30~150μm程度である。なお、本実施形態においては、例えば、厚さ30μm、1m×1mにおける金属皮膜において、70g程度の重さのものを使用している。 The metal coating of the outer skin 21 is preferably made of a coating of a metal material and has strength and weight reduction. The thickness of the metal film is appropriately set in consideration of a portion requiring strength. In the present embodiment, the thickness of the metal film is, for example, about 30 to 150 μm. In the present embodiment, for example, a metal film having a thickness of 30 μm and 1 m × 1 m and having a weight of about 70 g is used.
 金属皮膜の材料としては、例えば、チタン合金などが挙げられる。本実施形態においては、金属皮膜の材料として、例えば、マグネシウムに、リチウム及びアルミニウムを添加した合金などを用いている。金属皮膜の材料は、金属合金を用いる場合には、各物質の比率により、強度と比重を調整できる。 Examples of the material for the metal film include titanium alloys. In the present embodiment, for example, an alloy obtained by adding lithium and aluminum to magnesium is used as the material of the metal film. When a metal alloy is used as the material for the metal film, the strength and specific gravity can be adjusted by the ratio of each substance.
 金属皮膜の製作は、例えば、円弧状の鉄の窯に、所定の材料で形成したフィルム状の金属を貼り付け、その後貼り付けたフィルム状の金属に焼き付け処理を施すことにより行う。詳細には、外皮体21の上方側及び下方側の各半分に対応するように、中央部分が膨出した上下一対の金属皮膜を、焼き付けにより作成する。そして、焼き付けにより作成した上側部分及び下側部分を溶接等により接合することで、外皮体21の金属皮膜を製作できる。金属皮膜は、フィルム状の金属の調質処理により強度を向上できる。 The production of the metal film is performed, for example, by sticking a film-like metal formed of a predetermined material to an arc-shaped iron kiln and then baking the pasted metal. More specifically, a pair of upper and lower metal films having a central portion bulged so as to correspond to the upper half and the lower half of the outer skin body 21 are created by baking. And the metal film of the outer_body | cover_body 21 can be manufactured by joining the upper part and lower part created by baking by welding etc. FIG. The strength of the metal film can be improved by tempering a film-like metal.
 なお、本実施形態では、外骨格体を外皮体21の金属皮膜で構成したが、これに限定されない。例えば、本実施形態の外皮体21の金属皮膜に代えて、後述する第2実施形態の面状区画構造体130、130Aを有する外骨格体120,120A(図9、図11参照)で構成してもよい。この場合に、第2実施形態の変形形態の面状区画構造体130Aのように、断面形状が六角形形状で区画される複数の六角形構造体136を有するハニカム構造(図11参照)で構成してもよい。 In this embodiment, the exoskeleton is configured by the metal film of the outer skin 21, but the present invention is not limited to this. For example, instead of the metal film of the outer skin body 21 of the present embodiment, the exoskeleton bodies 120 and 120A (see FIGS. 9 and 11) having the planar partition structures 130 and 130A of the second embodiment described later are configured. May be. In this case, like a planar partition structure 130A according to a modification of the second embodiment, the honeycomb structure having a plurality of hexagonal structures 136 (see FIG. 11) having a hexagonal cross section. May be.
 複数の気嚢体22は、図3及び図4に示すように、外皮体21の内部に配置される。気嚢体22は、外皮体21の内部を複数の気室に区画するように、外皮体21の内部に配置される。本実施形態では、複数の気嚢体22は、中央側気嚢体221と、外周側気嚢体222と、から構成される。 The plurality of air sac bodies 22 are arranged inside the outer body 21, as shown in FIGS. The air sac 22 is disposed inside the outer skin 21 so as to partition the inner portion of the outer skin 21 into a plurality of air chambers. In the present embodiment, the plurality of air sac bodies 22 are composed of a central side air sac body 221 and an outer peripheral side air sac body 222.
 中央側気嚢体221及び外周側気嚢体222の内部には、空気よりも小さい比重のガスが密閉して充填される。また、外側気嚢体23と複数の気嚢体22との間にも、空気よりも小さい比重のガスが密閉して充填される。これにより、浮揚機体2の内部には、図3及び図4に示すように、ガスを充填するための複数の密閉空間が形成される。なお、密封するガスはヘリウムガスや水素ガスが好ましいが、これに限られるものではない。 The inside of the central air bladder body 221 and the outer peripheral air bladder body 222 is filled with a gas having a specific gravity smaller than that of air. A gas having a specific gravity smaller than that of air is hermetically filled between the outer air sac body 23 and the plurality of air sac bodies 22. Thereby, as shown in FIG.3 and FIG.4, several sealed space for filling with gas is formed in the inside of the levitation body 2. As shown in FIG. The gas to be sealed is preferably helium gas or hydrogen gas, but is not limited thereto.
 中央側気嚢体221は、樹脂皮膜により形成され、図3及び図4に示すように、球状に形成される。中央側気嚢体221は、図4に示すように、平面視において、外皮体21の内部の略中央に配置される。中央側気嚢体221の上端及び下端は、図3に示すように、外皮体21の上部の内面及び下部の内面に当接する。中央側気嚢体221の側部の周面は、図3及び図4に示すように、外周側気嚢体222の内側の周面に当接する。 The central air sac body 221 is formed of a resin film, and is formed in a spherical shape as shown in FIGS. As shown in FIG. 4, the central air sac body 221 is disposed at a substantially center inside the outer skin body 21 in a plan view. As shown in FIG. 3, the upper end and the lower end of the central air sac body 221 are in contact with the upper inner surface and the lower inner surface of the outer skin body 21. As shown in FIGS. 3 and 4, the peripheral surface of the side portion of the central air sac body 221 abuts on the inner peripheral surface of the outer peripheral air sac body 222.
 外周側気嚢体222は、樹脂皮膜により形成され、平面視において、図4に示すように、円環状に形成される。外周側気嚢体222は、図3に示すように、外周縁が鋭角状に形成されることで、外周部が薄い扁平状に形成されている。外周側気嚢体222は、図4に示すように、平面視において、中央側気嚢体221の側部の外周に沿って配置される。外周側気嚢体222は、中央側気嚢体221の外周面と外皮体21の内面との間に配置される。外周側気嚢体222の内側の周面は、図3及び4に示すように、中央側気嚢体221の側部の周面に当接する。外周側気嚢体222の外側の鋭角状の部分の外面は、外皮体21の外縁部の鋭角状の部分の内面に当接する。 The outer peripheral air bladder 222 is formed of a resin film, and is formed in an annular shape as shown in FIG. 4 in a plan view. As shown in FIG. 3, the outer peripheral side air sac body 222 is formed in a flat shape with a thin outer peripheral part by forming the outer peripheral edge with an acute angle. As shown in FIG. 4, the outer peripheral air bladder 222 is disposed along the outer periphery of the side portion of the central air bladder 221 in plan view. The outer peripheral air bladder 222 is disposed between the outer peripheral surface of the central air bladder 221 and the inner surface of the outer skin 21. As shown in FIGS. 3 and 4, the inner peripheral surface of the outer peripheral air bladder 222 abuts on the peripheral surface of the side portion of the central air bladder 221. The outer surface of the acute angle portion on the outer side of the outer peripheral air bladder 222 is in contact with the inner surface of the acute angle portion of the outer edge portion of the outer skin body 21.
 中央側気嚢体221及び外周側気嚢体222の樹脂皮膜は、樹脂材料の皮膜から構成され、強度と軽量化とを備えたものが好ましい。なお、本実施形態においては、中央側気嚢体221及び外周側気嚢体222の樹脂皮膜の強度は、前述の外皮体21の金属皮膜の強度よりも低いように構成されている。本実施形態では、樹脂皮膜の厚さは、例えば、25μm~35μm程度である。 The resin film of the center side air sac body 221 and the outer peripheral side air sac body 222 is preferably formed of a resin material film and having strength and weight reduction. In the present embodiment, the strength of the resin film of the central air bag body 221 and the outer air bag body 222 is configured to be lower than the strength of the metal film of the outer skin body 21 described above. In the present embodiment, the thickness of the resin film is, for example, about 25 μm to 35 μm.
 外側気嚢体23は、樹脂様皮膜により形成される。外側気嚢体23は、外皮体21と略同形状に形成され、外皮体21の内面に沿って配置される。 The outer air sac body 23 is formed by a resin-like film. The outer air sac 23 is formed in substantially the same shape as the outer skin 21 and is disposed along the inner surface of the outer skin 21.
 気嚢体22及び外側気嚢体23における樹脂皮膜の材料としては、例えば、軽量で強度の高い素材として、カーボンファイバー、ガラス繊維を用いた繊維強化プラスチックなどの樹脂が挙げられる。具体的には、樹脂皮膜の素材として、例えば、ハイバリアーフィルム、ポリエチレン、ポリアリレート繊維、ポリエステル繊維などを挙げることができる。なお、樹脂皮膜は、これに限定されず、コストなどに応じて他の素材で構成してよい。 Examples of the material of the resin film on the air sac body 22 and the outer air sac body 23 include, for example, a resin such as a fiber reinforced plastic using carbon fiber or glass fiber as a lightweight and high strength material. Specifically, examples of the material for the resin film include a high barrier film, polyethylene, polyarylate fiber, and polyester fiber. Note that the resin film is not limited to this, and may be formed of other materials according to cost and the like.
 次に、浮揚機体2を製作する手順について説明する。本実施形態では、複数の気嚢体22(中央側気嚢体221、外周側気嚢体222)の内部と、外皮体21の内部とに、空気よりも小さい比重のガスを充填する手順について説明する。 Next, the procedure for manufacturing the levitation machine body 2 will be described. In the present embodiment, a procedure for filling a gas having a specific gravity smaller than that of air into the plurality of air sac bodies 22 (center side air sac body 221, outer peripheral side air sac body 222) and outer skin body 21 will be described.
 まず、浮揚機体2における外皮体21及び複数の気嚢体22の内部に空気よりも小さい比重のガスを充填する前に、図5に示すように、外皮体21の内面に沿うように外側気嚢体23を配置し、外側気嚢体23(外皮体21)の内部の中央に、中央側気嚢体221を配置し、外側気嚢体23(外皮体21)の内部における中央側気嚢体221の外周側に、外周側気嚢体222を配置する。 First, before filling the inside of the outer skin body 21 and the plurality of air sac bodies 22 in the levitation body 2 with a gas having a specific gravity smaller than air, the outer air sac body along the inner surface of the outer skin body 21 as shown in FIG. 23, a central air sac body 221 is disposed in the center of the outer air sac body 23 (outer skin body 21), and the outer side of the central air sac body 221 inside the outer air sac body 23 (outer body 21). The outer peripheral air sac body 222 is disposed.
 外側気嚢体23は、図5に示すように、外皮体21と略同形状に形成され、外皮体21と複数の気嚢体22の間において、外皮体21の内面に沿うように配置される。
 中央側気嚢体221は、空気よりも小さい比重のガスを充填する前においては、図5に示すように、水平方向の中央が上下方向に膨出し、外周縁が扁平状に形成される。
 外周側気嚢体222は、空気よりも小さい比重のガスを充填する前においては、図5に示すように、全体として環状に形成され、断面形状が、外周縁に頂点を有する二等辺三角形の形状に形成される。外周側気嚢体222の断面形状を二等辺三角形の形状で形成することで、二等辺三角形の形状の頂点部分により、浮揚機体2の外周縁の鋭角形状を好適に内側から支持させられる。
As shown in FIG. 5, the outer air sac body 23 is formed in substantially the same shape as the outer skin body 21, and is disposed between the outer skin body 21 and the plurality of air sac bodies 22 along the inner surface of the outer skin body 21.
Before the center side air sac body 221 is filled with a gas having a specific gravity smaller than that of air, the center in the horizontal direction swells in the vertical direction and the outer peripheral edge is formed in a flat shape as shown in FIG.
As shown in FIG. 5, the outer peripheral air bladder 222 is formed in an annular shape as a whole, and has a cross-sectional shape of an isosceles triangle having a vertex at the outer peripheral edge before filling with a gas having a specific gravity smaller than that of air. Formed. By forming the cross-sectional shape of the outer air bladder 222 in the shape of an isosceles triangle, the acute angle shape of the outer peripheral edge of the levitation machine body 2 can be suitably supported from the inside by the apex portion of the isosceles triangle shape.
 外皮体21の内部に、外側気嚢体23、中央側気嚢体221及び外周側気嚢体222を配置した後、外側気嚢体23の内部における中央側気嚢体221及び外周側気嚢体222が配置されていない部分に、外側気嚢体23の内部にガスが充填された中央側気嚢体221及び外周側気嚢体222が配置されることを考慮して、空気よりも小さい比重のガスを少量充填する。そして、外周側気嚢体222の内部に、空気よりも小さい比重のガスを、満充填を100%とした場合における85%程度充填する。そして、中央側気嚢体221の内部に、空気よりも小さい比重のガスを、満充填を100%とした場合における100%程度充填する。 After the outer air sac body 23, the central air sac body 221 and the outer peripheral air sac body 222 are arranged inside the outer skin 21, the central air sac body 221 and the outer air sac body 222 inside the outer air sac body 23 are arranged. Considering that the central air sac body 221 and the outer peripheral side air sac body 222 filled with gas inside the outer air sac body 23 are arranged in a portion that is not present, a small amount of gas having a specific gravity smaller than that of air is filled. Then, a gas having a specific gravity smaller than that of air is filled in the outer side air sac body 222 about 85% when the full filling is 100%. Then, a gas having a specific gravity smaller than that of air is filled in the central air sac body 221 to about 100% when full filling is assumed to be 100%.
 これにより、図5に示すように、外皮体21の内部の圧力が外圧と均等になる。よって、外皮体21には、いずれの部位においても、均等に圧力が掛かる。 Thereby, as shown in FIG. 5, the pressure inside the outer skin 21 becomes equal to the external pressure. Therefore, the pressure is applied to the outer skin body 21 evenly in any part.
 ここで、外皮体21の外形が金属皮膜により構成されるため、中央側気嚢体221及び外周側気嚢体222に空気よりも小さい比重のガスを充填する前後において、外皮体21が膨れることはなく、外皮体21の形状を、予め設定した形状に形成できる。 Here, since the outer shape of the outer skin body 21 is formed of a metal film, the outer skin body 21 does not swell before and after the central air bladder body 221 and the outer circumferential air bladder body 222 are filled with a gas having a specific gravity smaller than that of air. The shape of the outer skin 21 can be formed in a preset shape.
 また、外皮体21の内部に複数の気嚢体22を配置することで、浮揚機体2の外周縁の鋭角状の形状を維持しやすくしている。より具体的には、浮揚型飛行体1が遅い動きで移動する場合には影響は少ないが、速度を上げて移動する場合には、空気抵抗の関係で、浮揚機体2の形状が安定した状態で移動することが重要となる。特に、外皮体21の形状が変形したり外皮体21の膜が振動したりする場合には、浮揚機体2の安定性を著しく低下させることになる。ただし、内部に気体が充填される外皮体21は、ゴム製でなくて金属皮膜であっても自然と丸くなろうとする特性があり、丸くなりにくい部分は皺となって丸くなろうとする。そのため、外皮体21の内部の空間に一度にガスを充填した場合には、外皮体21の外周縁を鋭角状に形成しにくい。 Further, by arranging a plurality of air sac bodies 22 inside the outer skin body 21, it is easy to maintain the acute-angled shape of the outer peripheral edge of the levitation machine body 2. More specifically, there is little effect when the levitation aircraft 1 moves in a slow motion, but when the levitation aircraft 1 moves at a higher speed, the shape of the levitation aircraft body 2 is stable due to air resistance. It is important to move in. In particular, when the shape of the outer skin body 21 is deformed or the film of the outer skin body 21 vibrates, the stability of the levitation machine body 2 is significantly reduced. However, the outer skin body 21 filled with gas has a characteristic of naturally rounding even if it is not made of rubber and is a metal film, and a portion that is difficult to round tends to be rounded and rounded. Therefore, when the space inside the outer skin 21 is filled with gas at once, it is difficult to form the outer peripheral edge of the outer skin 21 with an acute angle.
 ここで、浮揚機体2の外周縁を鋭角状とするためには、外皮体21の内部には、中央の中央側気嚢体221と、外周側の外周側気嚢体222との少なくとも2つ以上の気室が必要となる。中央側気嚢体221の圧力が高くなったときに、その圧力は、中央側気嚢体221の周囲の360度の四方に均等に掛かる。しかし、外皮体21の中央部の中央側気嚢体221の上下への膨張の制限により、ガスの量が少なく圧力の少ない外周側の外周側気嚢体222は、中央側気嚢体221により加圧される。そのため、浮揚機体2の外周縁に充分な圧力を加えることで、気室が1つの場合よりも合理的に、浮揚機体2を、外周縁が鋭角状に形成された扁平球体に近づけることができる。更に、この外皮体21を金属皮膜で形成するとともに、中央の中央側気嚢体221に圧力を加えて、外周側の外周側気嚢体222において外周縁を扁平に補正することにより、単体の金属皮膜で構成された外皮体21により1つの気室を形成してガス層を扁平に補正するよりも、薄い金属皮膜で無理なく合理的な扁平球体を形成できる。 Here, in order to make the outer peripheral edge of the levitation body 2 have an acute angle shape, at least two or more of a central central air sac body 221 and an outer peripheral air sac body 222 on the outer peripheral side are provided inside the outer skin body 21. An air chamber is required. When the pressure of the central air sac body 221 increases, the pressure is equally applied to 360 degrees around the central air sac body 221. However, due to the restriction of the expansion of the central air sac body 221 in the center of the outer skin 21 to the upper and lower sides, the outer peripheral air sac body 222 on the outer peripheral side with a small amount of gas and low pressure is pressurized by the central air sac body 221. The Therefore, by applying sufficient pressure to the outer peripheral edge of the levitating machine body 2, the levitating machine body 2 can be brought closer to a flat sphere whose outer peripheral edge is formed in an acute angle shape more rationally than in the case of one air chamber. . Further, the outer skin body 21 is formed of a metal film, and pressure is applied to the central air sac body 221 at the center so that the outer peripheral edge of the outer peripheral air sac body 222 is corrected to be flat, thereby making a single metal film. A rational flat sphere can be formed reasonably with a thin metal film, rather than forming one air chamber with the outer skin body 21 configured as described above and correcting the gas layer to be flat.
 本実施形態においては、浮揚機体2の内部を複数の気室に分けると共に、浮揚機体2の外周縁の鋭角状の部分を形成する外周側気嚢体222の内部にガスを85%程度充填し、その後、外周側気嚢体222の内側に配置された中央側気嚢体221の内部にガスを100%程度充填することで、浮揚機体2を形成している。そのため、浮揚機体2の形状を、予め設定した形状に近づけて形成できる。また、浮揚機体2の内部を複数の気室に分けて形成することで、浮揚型飛行体1が移動する際に、全体が丸くなろうとすることが低減され、浮揚機体2の外周縁の鋭角状の部分の変形を低減できる。 In the present embodiment, the inside of the levitation machine body 2 is divided into a plurality of air chambers, and the inside of the outer peripheral air sac body 222 forming an acute-angled portion of the outer peripheral edge of the levitation machine body 2 is filled with about 85% of gas. After that, the levitation machine body 2 is formed by filling about 100% of the gas into the inside of the central air sac body 221 disposed inside the outer air sac body 222. Therefore, the shape of the levitation machine body 2 can be formed close to a preset shape. Further, by forming the interior of the levitation body 2 into a plurality of air chambers, it is possible to reduce the tendency of the whole to become round when the levitation aircraft 1 moves, and the acute angle of the outer peripheral edge of the levitation body 2. The deformation of the shaped part can be reduced.
 以上の浮揚機体2においては、浮揚機体2の外周縁が鋭角状に形成されていることから、浮揚型飛行体1の水平飛行中は、浮揚機体2の側面からの風圧を受けるが、図2に示すように、風圧は上下方向に分断されて浮揚機体2の上下面に沿って流れる。そのため、風圧による抵抗が抑制され、飛行速度が向上する。更に、本実施形態においては、浮揚機体2の外周縁の鋭角状の外形が、外皮体21の金属皮膜により形成されるため、浮揚機体2の外周縁の鋭角状の形状が変形しにくく、長時間の連続飛行を可能とする。また、前述のように、浮揚機体2の内部を複数の気室に分けると共に、金属皮膜により形成された外皮体21に、圧力を多くかける部分と、圧力を少なくかける部分とを作っているため、浮揚型飛行体1が移動する際に、浮揚機体2の外周縁の鋭角状の部分の変形を低減できる。 In the above levitation body 2, since the outer peripheral edge of the levitation body 2 is formed in an acute angle shape, the wind pressure from the side surface of the levitation body 2 is received during the horizontal flight of the levitation aircraft 1. As shown, the wind pressure is divided in the vertical direction and flows along the upper and lower surfaces of the levitation machine body 2. Therefore, resistance due to wind pressure is suppressed, and the flight speed is improved. Furthermore, in this embodiment, since the sharp outer shape of the outer peripheral edge of the levitation machine body 2 is formed by the metal film of the outer skin body 21, the acute angle shape of the outer peripheral edge of the levitation machine body 2 is not easily deformed, and is long. Allows continuous flight of time. In addition, as described above, the interior of the levitation machine body 2 is divided into a plurality of air chambers, and the outer skin body 21 formed of a metal film is formed with a portion where pressure is increased and a portion where pressure is decreased. When the levitation aircraft 1 moves, the deformation of the acute angle portion of the outer peripheral edge of the levitation aircraft body 2 can be reduced.
 以上のような本実施形態の浮揚型飛行体1によれば、以下の効果を得ることができる。 According to the floating aircraft 1 of the present embodiment as described above, the following effects can be obtained.
 (1)浮揚型飛行体1を、内部に空気よりも小さい比重のガスを密閉して形成される浮揚機体2を備えて構成し、浮揚機体2を、浮揚機体2の外形を構成すると共に剛性を有する金属皮膜により形成される外皮体21と、外皮体21の内部を複数の気室に区画するように外皮体21の内部に配置され樹脂皮膜に囲まれることで形成される複数の気嚢体22と、を含んで構成した。
 これにより、浮揚機体2の外形を金属皮膜により形成することで、樹脂皮膜で形成するよりも外形を予め設定した形状に形成でき且つ強度を有するため、浮揚機体2を、飛行体として好ましい流線型のデザインに形成できる。よって、浮揚機体2は、高速で移動した際に、風圧による撓みを減少させることができ、浮揚型飛行体1の飛行を安定させることができる。
 また、外皮体21が剛性を有するため、虫や鳥類から攻撃を受けても、外皮体21の破損を防止できる。
 また、浮揚機体2の外形が外皮体21の金属皮膜で形成されるため、浮揚機体2の外形が変形しにくく、外形が樹脂皮膜で形成されるよりも、空気抵抗を低減できる。よって、浮揚型飛行体1の飛行制御が安定し易く、長時間の連続飛行を可能とする。
 また、外皮体21の内部に、中央側気嚢体221及び外周側気嚢体222が配置されている。そのため、外皮体21は、内部から複数の気嚢体22により加圧されることにより支持されている。これにより、外皮体21を構成する金属皮膜の厚さを薄くしても、浮揚機体2の強度を維持できる。また、外部の圧力などにより、外皮体21、中央側気嚢体221又は外周側気嚢体222のいずれかが破損したとしても、外皮体21の内部が複数の気室に分かれているため、その一部が破損しても、浮揚型飛行体1の浮力の全部を失うことがない。これにより、浮揚型飛行体1の急激な降下を抑制できる。
 また、外皮体21が金属皮膜により形成されており、浮揚機体2の外形を予め設定した形状に形成でき且つ変形しにくい。そのため、浮揚機体2の上昇時に、樹脂皮膜で囲まれる気嚢体22が膨張しようとしても、気嚢体22の外部には、金属皮膜により形成された外皮体21が配置されており、浮揚機体2は、膨張されることが抑制される。これにより、浮揚機体2の浮力が大きくなり過ぎることを抑制でき、浮揚機体2が上昇し過ぎることを抑制できる。よって、浮揚型飛行体1の浮力を安定させることができる。
(1) The levitation aircraft 1 includes a levitation body 2 formed by sealing a gas having a specific gravity smaller than that of air, and the levitation body 2 forms the outer shape of the levitation body 2 and is rigid. And a plurality of air sac bodies formed by being disposed inside the outer skin body 21 and surrounded by a resin film so as to partition the inside of the outer skin body 21 into a plurality of air chambers. 22 and so on.
Thus, by forming the outer shape of the levitating body 2 with a metal film, the outer shape can be formed into a preset shape and having a strength rather than being formed with a resin film. Can be formed into a design. Therefore, the levitating body 2 can reduce the deflection due to the wind pressure when moving at a high speed, and can stabilize the flight of the levitating aircraft 1.
In addition, since the outer skin body 21 has rigidity, the outer skin body 21 can be prevented from being damaged even when attacked by insects or birds.
Moreover, since the external shape of the levitating machine body 2 is formed with the metal film of the outer skin body 21, the external shape of the levitating machine body 2 is hard to deform | transform, and air resistance can be reduced rather than an external shape being formed with a resin film. Therefore, the flight control of the levitation aircraft 1 is easy to be stabilized, and a long continuous flight is possible.
A central air sac body 221 and an outer peripheral air sac body 222 are arranged inside the outer skin 21. Therefore, the outer skin body 21 is supported by being pressurized by a plurality of air sac bodies 22 from the inside. Thereby, even if the thickness of the metal film that forms the outer skin body 21 is reduced, the strength of the levitation machine body 2 can be maintained. Even if any one of the outer skin 21, the central air sac body 221, or the outer peripheral air sac body 222 is damaged due to external pressure or the like, the inner part of the outer skin 21 is divided into a plurality of air chambers. Even if the portion is damaged, the entire buoyancy of the levitation type aircraft 1 is not lost. Thereby, the rapid descent of the levitation type flying vehicle 1 can be suppressed.
Moreover, the outer skin body 21 is formed of a metal film, and the outer shape of the levitation machine body 2 can be formed into a preset shape and is not easily deformed. Therefore, even when the air sac body 22 surrounded by the resin film is about to expand when the levitation machine body 2 is raised, the outer skin body 21 formed of the metal film is disposed outside the air sac body 22, and the levitation body 2 is , The expansion is suppressed. Thereby, it can suppress that the buoyancy of the levitation machine body 2 becomes large too much, and can suppress that the levitation machine body 2 raises too much. Therefore, the buoyancy of the levitation aircraft 1 can be stabilized.
 (2)浮揚機体2は、側面視において、外周縁が鋭角状に形成される。そのため、浮揚機体2が空気抵抗を低減しうる形状に形成されているため、浮揚型飛行体1の飛行制御がし易く、飛行速度を向上させることができ、かつ、長時間の連続飛行を可能とする。 (2) The levitation machine body 2 has an outer peripheral edge formed in an acute angle shape in a side view. Therefore, since the levitation body 2 is formed in a shape that can reduce the air resistance, the flight control of the levitation aircraft 1 can be easily performed, the flight speed can be improved, and continuous flight for a long time is possible. And
 (3)浮揚型飛行体1は、水平方向の風の通り道となる薄い部分が少なくとも2方向に形成される。そのため、風が、浮揚型飛行体1の薄い部分を水平方向に通り抜けるため、浮揚型飛行体1において、揚力を推進力へと効率的に変換することができる。
 例えば、浮揚型飛行体1の水平移動は、主に水平推進用プロペラ群4を稼働させることにより行う。水平推進用プロペラ群4は、羽根42を回転モータ43で回転させることにより水平方向の推力を発揮する。このとき、水平推進用プロペラ41によって発生した風は、図1に示すように、浮揚型飛行体1の薄い部分を通り抜けるため、羽根42の揚力を推進力へと効率的に変換することができる。
(3) The levitation type aircraft 1 is formed with at least two thin portions that serve as wind paths in the horizontal direction. Therefore, since the wind passes through the thin part of the levitation aircraft 1 in the horizontal direction, the lift can be efficiently converted into propulsion in the levitation aircraft 1.
For example, the horizontal movement of the levitation aircraft 1 is performed mainly by operating the horizontal propeller group 4. The propeller group 4 for horizontal propulsion exerts a thrust in the horizontal direction by rotating the blades 42 with a rotary motor 43. At this time, the wind generated by the propeller 41 for horizontal propulsion passes through a thin portion of the floating aircraft 1 as shown in FIG. 1, so that the lift force of the blades 42 can be efficiently converted into a propulsion force. .
 (4)浮揚機体2を、外皮体21と複数の気嚢体22との間に配置され外皮体21と略同形状の樹脂様皮膜により形成される外側気嚢体23を含んで構成した。これにより、外側気嚢体23が、複数の気嚢体22を外側から保持するため、浮揚機体2を安定した形状に形成できると共に、浮揚型飛行体1の飛行時において浮揚機体2の形状を維持できる。 (4) The levitation machine body 2 is configured to include an outer air sac body 23 which is disposed between the outer skin body 21 and the plurality of air sac bodies 22 and is formed by a resin-like film having substantially the same shape as the outer skin body 21. Thereby, since the outer air sac body 23 holds the plurality of air sac bodies 22 from the outside, the levitation body 2 can be formed in a stable shape, and the shape of the levitation body 2 can be maintained during the flight of the buoyant aircraft 1. .
(第2実施形態)
 以下、本発明の第2実施形態の浮揚型飛行体100について、図面を参照しながら説明する。第2実施形態の浮揚型飛行体100の全体構成につき、図6~図8を参照しながら説明する。
(Second Embodiment)
Hereinafter, a floating aircraft 100 according to a second embodiment of the present invention will be described with reference to the drawings. The overall configuration of the levitation aircraft 100 according to the second embodiment will be described with reference to FIGS.
 本実施形態の浮揚型飛行体100は、図6に示すように、平面視において、前後及び左右対称の形状に形成される。浮揚型飛行体100は、内部に空気よりも小さい比重のガスを密閉してなる1つの浮揚機体110と、浮揚機体110の上下方向の中央部分において前後方向の端部から側方に略水平に延びる一対の外方延出補強部材(補強部材)160と、複数の垂直推進用プロペラ群3Aと、複数の水平推進用プロペラ群4Aと、を備える。 As shown in FIG. 6, the levitated flying vehicle 100 of the present embodiment is formed in a shape that is symmetrical in the front-rear and left-right directions in plan view. The levitation-type flying body 100 includes one levitation body 110 in which a gas having a specific gravity smaller than that of air is sealed, and a vertical center of the levitation body 110 that is substantially horizontally laterally from an end in the front-rear direction. A pair of outwardly extending reinforcing members (reinforcing members) 160, a plurality of vertical propeller group 3A, and a plurality of horizontal propeller group 4A are provided.
 本実施形態の浮揚機体110は、平面視において、左右方向に延びて形成され、長手方向の中央が前後方向に膨出された形状に形成されると共に、左右方向の外側に向かうに従って幅が狭くなるように傾斜されて、長手方向端部において前後方向に延びる端辺122によって接続されている。 The levitation machine body 110 of the present embodiment is formed to extend in the left-right direction in a plan view, is formed in a shape in which the center in the longitudinal direction bulges in the front-rear direction, and the width decreases toward the outside in the left-right direction. It is inclined so as to be connected by an end 122 extending in the front-rear direction at the end in the longitudinal direction.
 浮揚機体110は、第1実施形態の浮揚機体2と同様に、内部に空気よりも小さい比重のガスを密閉することで、周囲の空気とガスとの比重差によって浮力を得て、空中に浮揚しやすくするものである。浮揚機体110は、図6に示すように、浮揚機体110の外形を構成する外骨格体120と、外骨格体120の内側に配置される内側支持フレーム170と、内側支持フレーム170の内側に配置される複数の気嚢体(図示せず)と、を有する。 The levitation machine body 110, like the levitation machine body 2 of the first embodiment, encloses a gas having a specific gravity smaller than that of air inside to obtain buoyancy due to the specific gravity difference between the surrounding air and the gas, and floats in the air. It is easy to do. As shown in FIG. 6, the levitation machine body 110 includes an exoskeleton body 120 that forms the outer shape of the levitation machine body 110, an inner support frame 170 that is disposed inside the exoskeleton body 120, and an inner support frame 170. A plurality of air sac bodies (not shown).
 第2実施形態においても、第1実施形態と同様に、複数の気嚢体(図示せず)は、外骨格体120の内側に配置される。気嚢体の内部には、第1実施形態と同様に、空気よりも小さい比重のガスが密閉して充填される。第2実施形態の複数の気嚢体は、第1実施形態の気嚢体と同様の構成である。複数の気嚢体の数や形状は、外骨格体120の形状などにより適宜設定される。 Also in the second embodiment, a plurality of air sac bodies (not shown) are arranged inside the exoskeleton body 120 as in the first embodiment. The air bag body is filled with a gas having a specific gravity smaller than that of air, as in the first embodiment. The plurality of air sac bodies according to the second embodiment have the same configuration as the air sac body according to the first embodiment. The number and shape of the plurality of air sac bodies are appropriately set depending on the shape of the exoskeleton 120 and the like.
 内側支持フレーム170は、内部に空間を有した状態で、複数のフレームが組み合わされて構成される。内側支持フレーム170は、図6に示すように、平面視において、左右方向(長手方向)の中央が前後方向に膨出された形状に形成されていると共に、外周縁に向けて傾斜されてその傾斜角度が鋭角状に形成されている。また、内側支持フレーム170は、図7に示すように、側面視において、左右方向(長手方向)の中央が上下方向に膨出された形状に形成されていると共に、外周縁に向けて傾斜されてその傾斜角度が鋭角状に形成されている。 The inner support frame 170 is configured by combining a plurality of frames with a space inside. As shown in FIG. 6, the inner support frame 170 is formed in a shape in which the center in the left-right direction (longitudinal direction) bulges in the front-rear direction in a plan view, and is inclined toward the outer peripheral edge. The inclination angle is formed into an acute angle. Further, as shown in FIG. 7, the inner support frame 170 is formed in a shape in which the center in the left-right direction (longitudinal direction) bulges up and down in a side view, and is inclined toward the outer peripheral edge. The inclination angle is formed into an acute angle.
 内側支持フレーム170は、図7及び図8に示すように、円弧状の4つの外縁構成円弧フレーム171と、左右方向の所定位置において左右方向に直交する方向に周回して配置される複数の縦周回フレーム172と、前後方向の所定位置において左右方向に周回して配置される複数の横周回フレーム173と、を有する。外縁構成円弧フレーム171、縦周回フレーム172及び横周回フレーム173は、軽量かつ高強度な素材によって形成されていればよく、例えば、プラスチック、アルミニウム、剛性の高いゴム、あるいはウレタン等の樹脂を炭素繊維強化プラスチック等で被覆したようなものでもよい。 As shown in FIGS. 7 and 8, the inner support frame 170 includes a plurality of arc-shaped outer edge constituting arc frames 171 and a plurality of vertical frames arranged around the right and left directions at predetermined positions in the left and right directions. The rotating frame 172 and a plurality of horizontal rotating frames 173 arranged to rotate in the left-right direction at a predetermined position in the front-rear direction. The outer edge constituting arc frame 171, the longitudinal circulation frame 172, and the transverse circulation frame 173 are only required to be formed of a lightweight and high-strength material. For example, a resin such as plastic, aluminum, rigid rubber, or urethane is used as a carbon fiber. It may be coated with reinforced plastic or the like.
 4つの外縁構成円弧フレーム171は、内側支持フレーム170の外縁を構成する。4つの外縁構成円弧フレーム171は、外側に膨出する円弧状に形成され、両端部同士が接続され、互いに周方向に90°ずつ離間して配置される。内側支持フレーム170は、4つの外縁構成円弧フレーム171、複数の縦周回フレーム172及び複数の横周回フレーム173により、内部に空間を有した状態で、枠組みされる。 The four outer edge constituting arc frames 171 constitute the outer edge of the inner support frame 170. The four outer edge-constituting arc frames 171 are formed in an arc shape that bulges outward, and both end portions are connected to each other and are spaced apart from each other by 90 ° in the circumferential direction. The inner support frame 170 is framed by four outer edge constituting arc frames 171, a plurality of longitudinal circulation frames 172, and a plurality of transverse circulation frames 173 with a space inside.
 外骨格体120は、図6に示すように、内側支持フレーム170の外側に取り付けられる。外骨格体120は、図9及び図10に示すように、所定の厚さを有する面状の面状区画構造体130と、面状区画構造体130の内部に配置される芯材140と、面状区画構造体130の外面に配置される補強外皮材150と、を備える。面状区画構造体130及び補強外皮材150は、浮揚機体110の外形を構成する。 The exoskeleton 120 is attached to the outside of the inner support frame 170 as shown in FIG. As shown in FIGS. 9 and 10, the exoskeleton 120 includes a planar planar partition structure 130 having a predetermined thickness, and a core member 140 disposed inside the planar partition structure 130. A reinforcing skin material 150 disposed on the outer surface of the planar partition structure 130. The planar partition structure 130 and the reinforcing skin material 150 constitute the outer shape of the levitation machine body 110.
 面状区画構造体130は、内側支持フレーム170(図6~図8参照)の外側に取り付けられる。面状区画構造体130は、所定の厚さを有した面状に形成され、複数の壁によって内部が複数の空間に区画された区画構造により構成される。面状区画構造体130は、内側支持フレーム170の外側に取り付けられるため、内側支持フレーム170の外形と同様に、平面視において長手方向の中央が前後方向に膨出された形状に形成され、且つ、側面視において、長手方向の中央が上下方向に膨出された形状に形成されている。 The planar partition structure 130 is attached to the outside of the inner support frame 170 (see FIGS. 6 to 8). The planar partition structure 130 is formed in a planar shape having a predetermined thickness, and is configured by a partition structure in which the interior is partitioned into a plurality of spaces by a plurality of walls. Since the planar partition structure 130 is attached to the outside of the inner support frame 170, it is formed in a shape in which the center in the longitudinal direction bulges in the front-rear direction in plan view, like the outer shape of the inner support frame 170, and In the side view, the center in the longitudinal direction is formed in a shape bulging up and down.
 面状区画構造体130は、図9及び図10に示すように、断面構造において、外側に配置される外面壁131と、内側に配置される内面壁132と、を有し、外面壁131と内面壁132との間の空間を区画して構成される。 As shown in FIGS. 9 and 10, the planar partition structure 130 includes an outer surface wall 131 disposed on the outer side and an inner surface wall 132 disposed on the inner side in the cross-sectional structure. A space between the inner wall 132 and the inner wall 132 is defined.
 本実施形態においては、面状区画構造体130は、外面壁131と内面壁132との間において外面壁131と内面壁132とに平行に配置される中間壁133を有し、外面壁131と内面壁132との間において、中間壁133を境に厚さ方向に重なる2層構造に形成される。 In the present embodiment, the planar partition structure 130 has an intermediate wall 133 disposed between the outer wall 131 and the inner wall 132 in parallel with the outer wall 131 and the inner wall 132. A two-layer structure is formed between the inner wall 132 and the intermediate wall 133 so as to overlap in the thickness direction.
 面状区画構造体130は、厚さ方向に重なる2層それぞれにおいて、断面視で、所定間隔毎に形成され厚さ方向に延びる厚さ方向延在壁134と、厚さ方向延在壁134を半径とする半円弧状の円弧壁135と、を有して形成される。円弧壁135は、厚さ方向に重なる2層において、それぞれ、厚さ方向に直交する方向に複数並んで配置される。円弧壁135は、厚さ方向延在壁134が半径部分に配置された状態で、厚さ方向延在壁134を半径として、中間壁133側が凸となる半円弧状に形成される。面状区画構造体130の2層それぞれに形成されて厚さ方向に並ぶ2つの円弧壁135は、円弧部分の頂点が、互いに中間壁133に当接して、互いに対向するように配置される。 In each of the two layers overlapping in the thickness direction, the planar partition structure 130 includes a thickness direction extending wall 134 formed at predetermined intervals and extending in the thickness direction, and a thickness direction extending wall 134 in a cross-sectional view. And a semicircular arc wall 135 having a radius. A plurality of arc walls 135 are arranged side by side in a direction orthogonal to the thickness direction in two layers overlapping in the thickness direction. The arc wall 135 is formed in a semicircular arc shape having the thickness direction extending wall 134 as a radius and the intermediate wall 133 side being convex in a state where the thickness direction extending wall 134 is arranged in the radius portion. The two arc walls 135 formed in each of the two layers of the planar partition structure 130 and arranged in the thickness direction are arranged such that the apexes of the arc portions are in contact with the intermediate wall 133 and face each other.
 中間壁133、厚さ方向延在壁134及び円弧壁135は、外面壁131及び内面壁132の間に形成され、円弧壁135が並ぶ方向に直交する方向に延びる。面状区画構造体130(外面壁131、内面壁132、中間壁133、厚さ方向延在壁134、円弧壁135)の材料としては、例えば、樹脂材料や、金属材料や、カーボンナノホーン(carbon nanohorn:CNH)などの軽量で強度(剛性)の高い材料が使用される。 The intermediate wall 133, the thickness direction extending wall 134, and the arc wall 135 are formed between the outer wall 131 and the inner wall 132, and extend in a direction orthogonal to the direction in which the arc walls 135 are arranged. Examples of the material of the planar partition structure 130 (the outer wall 131, the inner wall 132, the intermediate wall 133, the thickness extending wall 134, and the arc wall 135) include a resin material, a metal material, and a carbon nanohorn (carbon). Lightweight and high strength (rigidity) material such as nanohorn (CNH) is used.
 芯材140は、面状区画構造体130の内部に配置され、面状区画構造体130の内部において面状区画構造体130を支持することで、面状区画構造体130の強度を補強する。芯材140は、面状区画構造体130の内部において、外面壁131と内面壁132との間の中間壁133に沿って配置される。本実施形態においては、芯材140は、中間壁133に埋め込まれた状態で中間壁133に接続され、芯材140の一方の半円部分が中間壁133に対して外側(外面壁131側)に配置され、芯材140の他方の半円部分が中間壁133に対して内側(内面壁132側)に配置される。 The core member 140 is disposed inside the planar partition structure 130 and supports the planar partition structure 130 inside the planar partition structure 130, thereby reinforcing the strength of the planar partition structure 130. The core member 140 is disposed along the intermediate wall 133 between the outer wall 131 and the inner wall 132 inside the planar partition structure 130. In the present embodiment, the core member 140 is connected to the intermediate wall 133 in a state of being embedded in the intermediate wall 133, and one semicircular portion of the core member 140 is outside (on the outer surface wall 131 side) with respect to the intermediate wall 133. The other semicircular portion of the core member 140 is disposed on the inner side (inner wall 132 side) with respect to the intermediate wall 133.
 本実施形態においては、芯材140は、長尺のパイプ状に形成されるパイプ状部材141と、パイプ状部材141の内部に配置される長尺の補強繊維材142と、を有する。本実施形態においては、パイプ状部材141は、例えば、カーボンナノチューブ(carbon nanotube:CNT)で構成され、補強繊維材142は、例えば、剛性が高い繊維素材であるアラミド繊維(補強繊維材)により構成される。 In the present embodiment, the core member 140 includes a pipe-shaped member 141 formed in a long pipe shape and a long reinforcing fiber material 142 disposed inside the pipe-shaped member 141. In the present embodiment, the pipe-shaped member 141 is made of, for example, carbon nanotube (CNT), and the reinforcing fiber material 142 is made of, for example, an aramid fiber (reinforcing fiber material) that is a highly rigid fiber material. Is done.
 補強外皮材150は、シート状に構成され、面状区画構造体130の外表面を覆うように、面状区画構造体130の外面に配置される。補強外皮材150は、外骨格体120の表面を補強するように、面状区画構造体130の表面に取り付けられている。補強外皮材150は、例えば、カーボンナノホーン(carbon nanohorn:CNH)などの軽量で強度の高い素材が使用される。補強外皮材150は、例えば、1ミリ以下の皮膜材で構成される。 The reinforcing skin material 150 is formed in a sheet shape, and is disposed on the outer surface of the planar partition structure 130 so as to cover the outer surface of the planar partition structure 130. The reinforcing skin material 150 is attached to the surface of the planar partition structure 130 so as to reinforce the surface of the exoskeleton 120. As the reinforcing skin material 150, for example, a lightweight and high strength material such as carbon nanohorn (CNH) is used. The reinforcing skin material 150 is made of, for example, a coating material of 1 mm or less.
 外方延出補強部材160は、図6に示すように、外骨格体120の上下方向の中央の円弧縁121から、外骨格体120の側方の外方に突出して形成され、外骨格体120を補強する。外方延出補強部材160は、外骨格体120の円弧縁121に沿って延びると共に円弧縁121から側方の外方に略水平に突出する。外骨格体120の円弧縁121は、鋭角状に形成される。 As shown in FIG. 6, the outwardly extending reinforcing member 160 is formed so as to protrude outward from the arcuate edge 121 at the center in the vertical direction of the exoskeleton 120 to the side of the exoskeleton 120. 120 is reinforced. The outwardly extending reinforcing member 160 extends along the arc edge 121 of the exoskeleton 120 and protrudes substantially horizontally from the arc edge 121 outward to the side. The arc edge 121 of the exoskeleton 120 is formed with an acute angle.
 外方延出補強部材160は、左右方向の中央において外骨格体120側に窪み、左右方向の両端部側において、外骨格体120の外側に円弧状に突出する4つの突出円弧部分161が形成される。4つの突出円弧部分161は、外骨格体120の外側に曲線状に突出する左右一対の突出円弧部分161が、前後方向に離間して一組設けられる。 The outwardly extending reinforcing member 160 is recessed in the exoskeleton body 120 side in the center in the left-right direction, and four projecting arc portions 161 that project in an arc shape on the outer side of the exoskeleton body 120 are formed on both ends in the left-right direction. Is done. The four projecting arc portions 161 are provided with a pair of left and right projecting arc portions 161 projecting in a curved shape on the outside of the exoskeleton 120 so as to be separated in the front-rear direction.
 外方延出補強部材160には、図6に示すように、垂直推進用プロペラ群3Aが取り付けられる。垂直推進用プロペラ群3Aは、浮揚機体110を垂直方向に推進させるためのものである。外方延出補強部材160には、複数(8つ)の垂直推進用プロペラ31Aが配置される。8つの垂直推進用プロペラ31Aは、外方延出補強部材160における4つの突出円弧部分161に、それぞれ、垂直推進用プロペラ31Aが2つずつ設けられる。各垂直推進用プロペラ31Aは、第1実施形態の垂直推進用プロペラ31と同様の構成を有する。 As shown in FIG. 6, a vertical propeller group 3A is attached to the outwardly extending reinforcing member 160. The propeller group 3A for vertical propulsion is for propelling the levitating body 110 in the vertical direction. Plural (eight) propellers 31A for vertical propulsion are arranged on the outwardly extending reinforcing member 160. The eight vertical propellers 31A are each provided with two vertical propellers 31A on the four projecting arc portions 161 of the outwardly extending reinforcing member 160. Each vertical propeller 31A has the same configuration as the vertical propeller 31 of the first embodiment.
 浮揚型飛行体100の左右方向の両端部には、水平推進用プロペラ群4Aが配置される。水平推進用プロペラ群4Aは、図6に示すように、浮揚機体110を水平方向に推進させるためのものであり、左右に一対の水平推進用プロペラ41Aからなる。各水平推進用プロペラ41Aは、第1実施形態の水平推進用プロペラ41と同様の構成を有する。 Horizontal propeller groups 4A are arranged at both ends in the left-right direction of the floating aircraft 100. As shown in FIG. 6, the horizontal propeller group 4A is for propelling the levitating body 110 in the horizontal direction, and includes a pair of horizontal propellers 41A on the left and right. Each horizontal propeller 41A has the same configuration as the horizontal propeller 41 of the first embodiment.
 以上のように構成される浮揚型飛行体100は、外骨格体120により剛性を有して構成される。ここで、従来、飛行体においては、飛行体の内部に設けられたバラストタンク内にバラスト水と呼ばれる水を貯留して、飛行体を傾けることでバラスト水を移動させつつ飛行体のバランスを取りながら、飛行体を上昇又は下降させていた。これに対して、本発明は、浮揚型飛行体100が、外骨格体120により剛性を有して構成される。そのため、浮揚型飛行体100は、外方延出補強部材160が外骨格体120の剛性を強化することにより、外骨格体120の剛性により外形を維持した状態で、垂直推進用プロペラ群3A及び水平推進用プロペラ群4Aを駆動することで、バラスト水を用いずに、上下左右に自在に移動可能である。 The levitation vehicle 100 configured as described above is configured to have rigidity by the exoskeleton 120. Conventionally, in a flying body, water called ballast water is stored in a ballast tank provided inside the flying body, and the flying body is balanced while moving the ballast water by tilting the flying body. However, the flying object was raised or lowered. On the other hand, according to the present invention, the levitation aircraft 100 is configured to have rigidity by the exoskeleton 120. Therefore, the levitation-type aircraft 100 has the propeller group 3A for vertical propulsion and the propulsion group 3A for vertical propulsion in a state in which the outwardly extending reinforcing member 160 maintains the outer shape due to the rigidity of the exoskeleton 120 by strengthening the rigidity of the exoskeleton 120. By driving the horizontal propeller group 4A, it can move freely up, down, left and right without using ballast water.
 以上のような第2実施形態の浮揚型飛行体100によれば、以下の効果を得ることができる。
 (5)浮揚型飛行体100を、内部に空気よりも小さい比重のガスを密閉して形成される浮揚機体110を備え、浮揚機体110を、浮揚機体110の外形を構成すると共に剛性を有する外骨格体120と、外骨格体120の内部を複数の気室に区画するように外骨格体120の内部に配置され樹脂様皮膜に囲まれることで形成される複数の気嚢体(図示せず)と、を含んで構成した。これにより、第1実施形態の(1)と同様の効果を奏することができる。より具体的には、第1実施形態の「外皮体21」において奏される効果と同様の効果を、第2実施形態の「外骨格体120」において奏することができる。
According to the floating aircraft 100 of the second embodiment as described above, the following effects can be obtained.
(5) The levitation type aircraft 100 is provided with a levitation body 110 formed by sealing a gas having a specific gravity smaller than that of air, and the levitation body 110 constitutes the outer shape of the levitation body 110 and has a rigidity outside. Skeletal body 120 and a plurality of air sac bodies (not shown) formed by being placed inside exoskeleton body 120 and surrounded by a resin-like film so as to partition the inside of exoskeleton body 120 into a plurality of air chambers And including. Thereby, the same effect as (1) of a 1st embodiment can be produced. More specifically, the same effect as that exhibited by the “outer body 21” of the first embodiment can be achieved by the “exoskeleton 120” of the second embodiment.
 (6)外骨格体120を、所定の厚さを有した面状に形成され複数の壁によって内部が複数の空間に区画された面状区画構造体130を含んで構成した。これにより、外骨格体120を一層軽量化できると共に、外骨格体120の剛性を一層向上できる。 (6) The exoskeleton 120 is configured to include a planar partition structure 130 that is formed in a planar shape having a predetermined thickness and is partitioned into a plurality of spaces by a plurality of walls. Thereby, the exoskeleton 120 can be further reduced in weight, and the rigidity of the exoskeleton 120 can be further improved.
 (7)外骨格体120を、面状区画構造体130の内部に配置され面状区画構造体130を支持する芯材140を有して構成した。これにより、芯材140により、面状区画構造体130を内部側から支持するため、外骨格体120の剛性を一層向上できる。 (7) The exoskeleton 120 is configured to have a core material 140 disposed inside the planar partition structure 130 and supporting the planar partition structure 130. Thereby, since the planar partition structure 130 is supported from the inner side by the core member 140, the rigidity of the exoskeleton 120 can be further improved.
 (8)外骨格体120から外骨格体120の側方に突出して外骨格体120を補強する外方延出補強部材160を更に備えて構成した。これにより、外骨格体120を側方から補強できるため、外骨格体120の剛性を一層向上できる。 (8) An outwardly extending reinforcing member 160 that protrudes from the exoskeleton body 120 to the side of the exoskeleton body 120 and reinforces the exoskeleton body 120 is further provided. Thereby, since the exoskeleton 120 can be reinforced from the side, the rigidity of the exoskeleton 120 can be further improved.
(第2実施形態の変形形態)
 第2実施形態の変形形態について説明する。第2実施形態の変形形態においては、第2実施形態の外骨格体120の面状区画構造体130に代えて、外骨格体120Aの面状区画構造体130Aをハニカム構造で構成する場合について説明する。なお、以下の説明において上記実施形態と共通又は同様の構成については同じ符号を付してその説明を省略する場合がある。
(Modification of the second embodiment)
A modification of the second embodiment will be described. In the modification of the second embodiment, a description will be given of a case where the planar partition structure 130A of the exoskeleton 120A is configured with a honeycomb structure instead of the planar partition structure 130 of the exoskeleton 120 of the second embodiment. To do. In the following description, components that are the same as or similar to those in the above-described embodiment may be denoted by the same reference numerals and description thereof may be omitted.
 図11に示すように、第2実施形態の変形形態の面状区画構造体130Aは、外面壁131と、内面壁132と、断面形状が六角形形状で区画される複数の六角形構造体136と、を有するハニカム構造で構成される。複数の六角形構造体136は、それぞれ、外面壁131と内面壁132との間において、断面形状が六角形形状で、厚さ方向に延びる筒状に形成される。面状区画構造体130A(外面壁131、内面壁132、複数の六角形構造体136)の材料としては、第2実施形態の面状区画構造体130の材料と同様に、例えば、樹脂材料や、金属材料や、カーボンナノホーン(carbon nanohorn:CNH)などの軽量で強度(剛性)の高い材料が使用される。 As shown in FIG. 11, a planar partition structure 130 </ b> A according to a modification of the second embodiment includes an outer surface wall 131, an inner surface wall 132, and a plurality of hexagonal structures 136 that are sectioned in a hexagonal shape. And a honeycomb structure. The plurality of hexagonal structures 136 are each formed in a cylindrical shape having a hexagonal cross section between the outer wall 131 and the inner wall 132 and extending in the thickness direction. As the material of the planar partition structure 130A (the outer surface wall 131, the inner wall 132, and the plurality of hexagonal structures 136), for example, a resin material or a material similar to the material of the planar partition structure 130 of the second embodiment can be used. In addition, a light material with high strength (rigidity) such as a metal material or carbon nanohorn (CNH) is used.
 以上の面状区画構造体130Aは、ハニカム構造で構成されることにより、軽量で、剛性を有して構成され、強度を強固にできる。また、本実施形態においては、ハニカム構造において厚さや面の曲率を容易に設定できるため、面状区画構造体130Aを容易に形成できる。これにより、ハニカム構造において細やかな曲面形状を容易に形成できる。 The above-described planar partition structure 130A has a honeycomb structure, so that it is light and rigid, and can be strengthened. In the present embodiment, since the thickness and the curvature of the surface can be easily set in the honeycomb structure, the planar partition structure 130A can be easily formed. Thereby, a fine curved surface shape can be easily formed in the honeycomb structure.
 また、面状区画構造体130Aをハニカム構造体で構成することにより、剛性を有する硬いハニカム構造体の外骨格構造でありながら、細やかな曲面形状で加工することができる。これにより、高速飛行可能な風圧抵抗を低減可能な、長手方向の中央が前後方向及び上下方向に膨出された形状の曲面で囲まれたスポーツタイプの浮揚型飛行体100を設計できる。また、風を切るように外骨格体120の円弧縁121を鋭角に形成することで、風圧への侵入角度を浅くして、風圧抵抗を低減できる。 Further, by forming the planar partition structure 130A with a honeycomb structure, it can be processed with a fine curved surface shape while being a rigid exoskeleton structure of a rigid honeycomb structure. This makes it possible to design a sports-type floating flying object 100 that can reduce wind pressure resistance capable of high-speed flight and is surrounded by a curved surface having a center in the longitudinal direction bulged in the front-rear direction and the vertical direction. Further, by forming the arc edge 121 of the exoskeleton 120 at an acute angle so as to cut the wind, the angle of entry into the wind pressure can be made shallow and the wind pressure resistance can be reduced.
 また、面状区画構造体130Aの内部には、第2実施形態と同様に、芯材140が配置される。芯材140は、面状区画構造体130Aの内部において面状区画構造体130Aを支持することで、面状区画構造体130Aの強度を補強する。芯材140の構成は、前述の第2実施形態と同様であるため、説明を省略する。 Also, the core material 140 is disposed inside the planar partition structure 130A, as in the second embodiment. The core member 140 reinforces the strength of the planar partition structure 130A by supporting the planar partition structure 130A inside the planar partition structure 130A. Since the configuration of the core member 140 is the same as that of the second embodiment described above, the description thereof is omitted.
 (9)第2実施形態の変形形態において、外骨格体120Aの面状区画構造体130Aをハニカム構造体で構成した。これにより、外骨格体120Aを一層軽量化できると共に、外骨格体120の剛性を一層向上できる。また、ハニカム構造において厚さや面の曲率を容易に設定できるため、外骨格体120Aの面状区画構造体130Aを容易に形成できる。 (9) In the modification of the second embodiment, the planar partition structure 130A of the exoskeleton 120A is configured with a honeycomb structure. Thereby, the exoskeleton 120A can be further reduced in weight, and the rigidity of the exoskeleton 120 can be further improved. Further, since the thickness and the curvature of the surface can be easily set in the honeycomb structure, the planar partition structure 130A of the exoskeleton 120A can be easily formed.
(第3実施形態)
 以下、本発明の第3実施形態の浮揚型飛行体100Aについて、図12を参照しながら説明する。第2実施形態の浮揚型飛行体100が内部にガスを密閉した密閉タイプの飛行体であるのに対して、第3実施形態の浮揚型飛行体100Aは、気球タイプの飛行体である。第2実施形態及び第3実施形態において、外骨格体120,120Aは、同様の構成である。なお、以下の説明において上記実施形態と共通又は同様の構成については同じ符号を付してその説明を省略する場合がある。
(Third embodiment)
Hereinafter, a floating flying object 100A according to a third embodiment of the present invention will be described with reference to FIG. Whereas the levitated aircraft 100 of the second embodiment is a hermetic type of aircraft with gas sealed therein, the levitated aircraft 100A of the third embodiment is a balloon type aircraft. In the second embodiment and the third embodiment, the exoskeletons 120 and 120A have the same configuration. In the following description, components that are the same as or similar to those in the above-described embodiment may be denoted by the same reference numerals and description thereof may be omitted.
 本実施形態の浮揚型飛行体100Aは、図12に示すように、1つの浮揚機体110Aと、浮揚機体110Aの上下方向の中央部分において前後方向の端部から側方に略水平に延びる一対の外方延出補強部材(補強部材)160と、複数の垂直推進用プロペラ群3Aと、複数の水平推進用プロペラ群4Aと、熱源装置13と、バッテリー14と、GPSセンサ15と、監視用カメラ装置16と、送信部17と、複数の距離計測用カメラ18と、制御部12と、を備える。 As shown in FIG. 12, the levitation type aircraft 100A according to the present embodiment includes a single levitation aircraft 110A and a pair of horizontally extending laterally from the front and rear end portions in the vertical center portion of the levitation aircraft 110A. An outwardly extending reinforcing member (reinforcing member) 160, a plurality of vertical propeller group 3A, a plurality of horizontal propeller group 4A, a heat source device 13, a battery 14, a GPS sensor 15, and a monitoring camera A device 16, a transmission unit 17, a plurality of distance measurement cameras 18, and a control unit 12 are provided.
 浮揚機体110Aは、平面視において、左右方向に延びて形成され、長手方向の中央が前後方向及び上下方向に膨出された形状に形成されると共に、左右方向の外側に向かうに従って幅が狭くなるように傾斜される。 The floating body 110A is formed so as to extend in the left-right direction in a plan view, is formed in a shape in which the center in the longitudinal direction bulges in the front-rear direction and the up-down direction, and becomes narrower toward the outside in the left-right direction. So as to be inclined.
 浮揚機体110Aは、第1実施形態の浮揚機体2及び第2実施形態の浮揚機体110とは異なり、気球タイプの機体で構成され、上部に形成される開口部111を介して、内部の空気を熱エネルギーで外部に追い出して、機体内の空気密度を下げることにより、機体に浮力を与えるように構成される。浮揚機体110Aの内部の空気を外部に追い出す熱エネルギーは、熱源装置13により発生される。 Unlike the levitating machine body 2 of the first embodiment and the levitating machine body 110 of the second embodiment, the levitating machine body 110A is constituted by a balloon type machine body, and the internal air is passed through an opening 111 formed in the upper part. It is configured to give buoyancy to the aircraft by expelling it to the outside with thermal energy and lowering the air density in the aircraft. The heat source device 13 generates heat energy that drives the air inside the levitation machine body 110 </ b> A to the outside.
 浮揚機体110Aは、図12に示すように、第2実施形態と同様に、浮揚機体110Aの外形を構成する外骨格体120Aと、外骨格体120Aの内側に配置される内側支持フレーム170(図12には図示せず、図7及び図8参照)と、を有する。外骨格体120Aは、上部に開口部111を有する以外は、第2実施形態の外骨格体120と同様の構成であるため、説明を省略する。また、内側支持フレーム170(図7及び図8参照)は、第2実施形態と同様の構成であるため、説明を省略する。 As shown in FIG. 12, the levitation body 110A includes an exoskeleton body 120A that forms the outer shape of the levitation body 110A, and an inner support frame 170 (see FIG. 12) that is disposed inside the exoskeleton body 120A. 12 (not shown, see FIGS. 7 and 8). Since the exoskeleton 120A has the same configuration as that of the exoskeleton 120 of the second embodiment except that the opening 111 is provided in the upper part, the description thereof is omitted. Moreover, since the inner side support frame 170 (refer FIG.7 and FIG.8) is the structure similar to 2nd Embodiment, description is abbreviate | omitted.
 熱源装置13は、浮揚機体110Aの内部において、所定の熱エネルギー発生ガス(例えば、水素ガス)を使用して、一定量の熱エネルギーを発生し続ける装置である。熱源装置13により発生された熱エネルギーは、浮揚機体110Aの内部の空気を外部に追い出して、浮揚機体110Aに浮力を与える。また、熱源装置13により発生された熱エネルギーは、電気エネルギーに変換されてバッテリー14に蓄電される。 The heat source device 13 is a device that continuously generates a certain amount of heat energy using a predetermined heat energy generating gas (for example, hydrogen gas) inside the levitation body 110A. The heat energy generated by the heat source device 13 expels the air inside the levitation machine body 110A to the outside and gives buoyancy to the levitation machine body 110A. Further, the heat energy generated by the heat source device 13 is converted into electric energy and stored in the battery 14.
 バッテリー14は、熱源装置13により発生された熱エネルギーから変換された電気エネルギーを蓄電すると共に、蓄電された電気エネルギーを各種機器に供給する。バッテリー14には、GPSセンサ15、監視用カメラ装置16、送信部17、複数の距離計測用カメラ18及び制御部12に電気的に接続されている。バッテリー14に蓄電された電気エネルギーは、浮揚型飛行体100Aにおいて、複数の垂直推進用プロペラ群3A及び複数の水平推進用プロペラ群4Aを駆動する動力となり、GPSセンサ15、監視用カメラ装置16、送信部17、複数の距離計測用カメラ18及び制御部12などの各種機器の電源となる。 The battery 14 stores electric energy converted from the heat energy generated by the heat source device 13 and supplies the stored electric energy to various devices. The battery 14 is electrically connected to the GPS sensor 15, the monitoring camera device 16, the transmission unit 17, the plurality of distance measurement cameras 18, and the control unit 12. The electric energy stored in the battery 14 becomes power for driving the plurality of vertical propeller group 3A and the plurality of horizontal propeller group 4A in the floating aircraft 100A, and the GPS sensor 15, the monitoring camera device 16, A power source for various devices such as the transmission unit 17, the plurality of distance measurement cameras 18, and the control unit 12.
 GPSセンサ15は、GPS(Global Positioning System)において現在位置の位置情報を検知する位置センサである。
 監視用カメラ装置16は、浮揚型飛行体100Aの飛行時に、浮揚型飛行体100Aの下方を撮影する。監視用カメラ装置16は、メインカメラ16aと、予備カメラ16bと、を有する。メインカメラ16aは通常時に使用され、予備カメラ16bは、メインカメラ16aが故障した場合などの緊急時に使用される。
 送信部17は、監視用カメラ装置16により撮影した画像や映像を制御部12に送信する。
The GPS sensor 15 is a position sensor that detects position information of a current position in GPS (Global Positioning System).
The monitoring camera device 16 captures an image of the lower part of the levitation aircraft 100A during the flight of the levitation aircraft 100A. The monitoring camera device 16 includes a main camera 16a and a spare camera 16b. The main camera 16a is used during normal times, and the spare camera 16b is used in an emergency such as when the main camera 16a breaks down.
The transmission unit 17 transmits an image or video captured by the monitoring camera device 16 to the control unit 12.
 複数の距離計測用カメラ18は、後述する制御部12の人工知能(AI)を用いて位置制御を行うために必要な周囲の撮影情報を取得可能なように、浮揚型飛行体100Aの前後左右の適宜部分に取り付けられる。複数の距離計測用カメラ18は、浮揚型飛行体100Aの飛行時の周囲の撮影情報を取得し、取得した撮影情報を制御部12に送信する。 The plurality of distance measurement cameras 18 can acquire the surrounding shooting information necessary for performing position control using artificial intelligence (AI) of the control unit 12 to be described later. It is attached to the appropriate part. The plurality of distance measurement cameras 18 acquire imaging information around the floating flying object 100 </ b> A during flight, and transmit the acquired imaging information to the control unit 12.
 制御部12には、GPSセンサ15、監視用カメラ装置16、送信部17、複数の距離計測用カメラ18、複数の垂直推進用プロペラ群3A及び複数の水平推進用プロペラ群4Aが電気的に接続されている。 A GPS sensor 15, a monitoring camera device 16, a transmission unit 17, a plurality of distance measurement cameras 18, a plurality of vertical propeller group 3A and a plurality of horizontal propeller group 4A are electrically connected to the control unit 12. Has been.
 制御部12は、複数の距離計測用カメラ18により撮影された飛行時の周囲の撮影情報に基づいて、人工知能(AI)を用いた位置制御を行う。制御部12は、人工知能(AI)を用いた位置制御により解析した飛行経路に基づいて、複数の垂直推進用プロペラ群3A及び複数の水平推進用プロペラ群4Aを駆動制御することで、浮揚型飛行体100Aの動作を制御する。 The control unit 12 performs position control using artificial intelligence (AI) based on surrounding shooting information shot by a plurality of distance measuring cameras 18. The control unit 12 controls the driving of the plurality of vertical propeller group 3A and the plurality of horizontal propeller group 4A based on the flight path analyzed by the position control using artificial intelligence (AI), so that the floating type The operation of the flying object 100A is controlled.
 制御部12は、GPSセンサ15により取得した位置情報に基づいて、浮揚型飛行体100Aの位置を把握する。なお、本実施形態においては、通常時、制御部12は、人工知能(AI)を用いた位置制御により解析された飛行経路に基づいて浮揚型飛行体100Aの動作を制御する。一方、緊急時や異常時などには、制御部12は、浮揚型飛行体100Aの位置を把握して浮揚型飛行体100Aを回収などするために、GPSセンサ15から位置情報を取得して、基地局などに位置情報を送信するように制御する。 The control unit 12 grasps the position of the floating flying object 100 </ b> A based on the position information acquired by the GPS sensor 15. In the present embodiment, during normal times, the control unit 12 controls the operation of the levitation aircraft 100A based on the flight path analyzed by position control using artificial intelligence (AI). On the other hand, in the event of an emergency or abnormality, the control unit 12 acquires position information from the GPS sensor 15 in order to grasp the position of the levitation aircraft 100A and collect the levitation aircraft 100A. Control is performed so as to transmit position information to a base station or the like.
 なお、本実施形態においては、浮揚型飛行体100Aは、基本的には、人工知能(AI)を用いた位置制御により飛行する。GPSセンサ15は、浮揚型飛行体100Aの所在が分からなくなった場合に、浮揚型飛行体100Aを回収するために用いられる。GPSセンサ15による位置制御を中心に飛行すると、浮揚型飛行体100Aの乗っ取りのリスクが発生するため、本実施形態では、浮揚型飛行体100Aは、基本的には、GPSセンサ15を使用しないで飛行する。 In the present embodiment, the levitated aircraft 100A basically flies by position control using artificial intelligence (AI). The GPS sensor 15 is used to collect the levitation aircraft 100A when the location of the levitation aircraft 100A is unknown. When flying centering on position control by the GPS sensor 15, there is a risk of takeover of the levitation aircraft 100 </ b> A. Therefore, in this embodiment, the levitation aircraft 100 </ b> A basically does not use the GPS sensor 15. To fly.
 制御部12は、監視用カメラ装置16により撮影されて送信部17により送信された画像情報及び映像情報を受信して、監視用カメラ装置16により撮影された撮影画像の画像解析の制御を行う。 The control unit 12 receives the image information and video information captured by the monitoring camera device 16 and transmitted by the transmission unit 17, and controls image analysis of the captured image captured by the monitoring camera device 16.
 以上のような第3実施形態の気球タイプの浮揚型飛行体100Aにおいても、第2実施形態の密閉タイプの浮揚型飛行体100と同様に、上記(5)~(9)と同様の効果を得ることができる。 The balloon type levitation aircraft 100A of the third embodiment as described above also has the same effects as the above (5) to (9), like the sealed type levitation aircraft 100 of the second embodiment. Obtainable.
 なお、本発明に係る浮揚型飛行体1は、前述した実施形態に限定されるものではなく、適宜変更することができる。例えば、前記実施形態では、浮揚機体2の外形を、金属皮膜により形成された外皮体21により構成し、気嚢体22を樹脂皮膜により囲まれることで形成し、外側気嚢体23を樹脂皮膜により形成したが、これに限定されない。金属皮膜に代えて、金属ではないが、金属に類似する性質を有する材料で構成された金属様皮膜を用いてもよいし、樹脂ではないが、樹脂皮膜に代えて、樹脂に類似する性質を有する材料で構成された樹脂様皮膜を用いてもよい。 Note that the levitation vehicle 1 according to the present invention is not limited to the embodiment described above, and can be changed as appropriate. For example, in the above-described embodiment, the outer shape of the levitation machine body 2 is configured by the outer skin body 21 formed of a metal film, the air sac body 22 is formed by being surrounded by a resin film, and the outer air sac body 23 is formed by a resin film. However, it is not limited to this. Instead of a metal film, a metal-like film composed of a material that is not a metal but has a property similar to a metal may be used.Although it is not a resin, it has a property similar to a resin instead of a resin film. You may use the resin-like film | membrane comprised with the material which has.
 また、前記第1実施形態では、外側気嚢体23を設けたが、これに限定されず、外側気嚢体23を設けなくてもよい。 In the first embodiment, the outer air sac body 23 is provided. However, the present invention is not limited to this, and the outer air sac body 23 may not be provided.
 また、前記第1実施形態では、金属皮膜の内部に、2つの樹脂皮膜を配置したが、これに限定されない。例えば、金属皮膜の内部に、3つ以上の樹脂皮膜を配置してもよい。 In the first embodiment, the two resin films are disposed inside the metal film, but the present invention is not limited to this. For example, three or more resin films may be disposed inside the metal film.
 また、前記第1実施形態では、浮揚機体2を4つ備えて構成したが、これに限定されない。浮揚機体を、1つ備えていてもよいし、2つ、3つ、5つ以上備えていてもよい。 In the first embodiment, four levitation machines 2 are provided, but the present invention is not limited to this. One levitation machine body may be provided, and two, three, five or more may be provided.
 また、前記第1実施形態では、カメラを搭載するように構成したが、これに限定されない。例えば、人を搭乗可能に構成してもよいし、農薬散布のための農薬を搭載するように構成してもよい。 In the first embodiment, the camera is mounted. However, the present invention is not limited to this. For example, it may be configured such that a person can be boarded or a pesticide for spraying a pesticide may be mounted.
 また、前記第2実施形態では、外骨格体120の内部に内側支持フレーム170を配置したが、これに限定されない。外骨格体120の内部に内側支持フレーム170を配置しなくてもよい。また、外骨格体120の外面に補強外皮材150を配置したが、これに限定されず、外骨格体120の外面に補強外皮材150を配置せずに、外骨格体120を、面状区画構造体130のみで構成してもよい。 In the second embodiment, the inner support frame 170 is disposed inside the exoskeleton 120. However, the present invention is not limited to this. The inner support frame 170 may not be disposed inside the exoskeleton 120. Further, although the reinforcing outer skin material 150 is disposed on the outer surface of the exoskeleton body 120, the present invention is not limited to this, and the outer skeleton body 120 is not provided with the reinforcing outer skin material 150 on the outer surface of the exoskeleton body 120. You may comprise only the structure 130. FIG.
 また、前記第2実施形態では、面状区画構造体130、130Aを、厚さ方向に延びる断面形状が六角形の複数の六角形構造体を有するハニカム構造で構成したが、断面形状は六角形に限定されない。例えば、面状区画構造体の断面形状を、他の多角形で構成してもよいし、円形で構成してもよい。また、面状区画構造体を、単体の多角形で構成してもよいし、複数の多角形の組み合わせで構成してもよい。 Further, in the second embodiment, the planar partition structures 130 and 130A are configured by a honeycomb structure having a plurality of hexagonal structures each having a hexagonal cross-sectional shape extending in the thickness direction. It is not limited to. For example, the cross-sectional shape of the planar partition structure may be constituted by other polygons or may be constituted by a circle. Further, the planar partition structure may be constituted by a single polygon or a combination of a plurality of polygons.
 また、前記第1実施形態では、外骨格体を外皮体21で構成したが、これに限定されず、前記第1実施形態の外皮体21に代えて、第2実施形態の面状区画構造体130、130Aを有する外骨格体120,120Aで構成してもよい。この場合に、第2実施形態の変形形態の面状区画構造体130Aのように、断面形状が六角形形状で区画される複数の六角形構造体136を有するハニカム構造で構成してもよい。 Moreover, in the said 1st Embodiment, although the exoskeleton body was comprised with the skin body 21, it is not limited to this, It replaces with the skin body 21 of the said 1st Embodiment, and the planar division structure of 2nd Embodiment. You may comprise with the exoskeleton 120,120A which has 130,130A. In this case, as in a planar partition structure 130A according to a modification of the second embodiment, the honeycomb structure may have a plurality of hexagonal structures 136 that are sectioned in a hexagonal shape.
 また、前記第3実施形態では、制御部12により、例えば、人工知能(AI)を用いた位置制御、監視用カメラ装置16の画像解析の制御を行うように構成した。前記第1実施形態及び前記第2実施形態においても、第3実施形態と同様に、制御部12により、例えば、人工知能(AI)を用いた位置制御、監視用カメラ装置16の画像解析の制御などを行うことができる。 In the third embodiment, the control unit 12 is configured to control, for example, position control using artificial intelligence (AI) and image analysis of the monitoring camera device 16. Also in the first embodiment and the second embodiment, as in the third embodiment, the control unit 12 controls the position control using, for example, artificial intelligence (AI) and the image analysis of the monitoring camera device 16. And so on.
 また、前記第1実施形態の浮揚型飛行体1は、浮揚機体2の内部に、例えば、ヘリウムガスなどの空気よりも小さい比重のガスを充填したガス充填タイプの飛行体である。また、前記第3実施形態の浮揚型飛行体100Aは、熱気球タイプの飛行体である。しかし、本発明は、これに限定されない。ガス充填タイプの飛行体と熱気球タイプの飛行体との両方を併用したハイブリット型の飛行体を構成してもよい。例えば、上側から下側に向けて順に、熱気球タイプの飛行体及びガス充填タイプの飛行体を配置し、ガス充填タイプの飛行体の下方に乗員や荷物を配置する。ハイブリット型の飛行体を構成した場合には、熱気球タイプの飛行体の熱エネルギーを使用することで、ヘリウムガスなどのガスの状態(活性など)を外気温の低い場所でもコントロール可能となる。具体的には、ガスの状態は外気温が低い場合には体積が小さくなり気嚢体の体積も低下するが、極地のような低温域においても、熱気球タイプの飛行体の熱エネルギーを使用でき、最大浮力を使えるため、外気温が変化しても安定して飛行できる。また、熱気球タイプの飛行体と乗員や荷物との間にヘリウムガスなどのガス充填タイプの飛行体を配置することで、乗員や荷物は、ガス充填タイプの飛行体により、熱気球タイプから発生された熱から遮断される。 Further, the levitation aircraft 1 of the first embodiment is a gas-filled aircraft in which the inside of the levitation aircraft 2 is filled with a gas having a specific gravity smaller than air, such as helium gas. Further, the floating flying object 100A of the third embodiment is a hot air balloon type flying object. However, the present invention is not limited to this. You may comprise the hybrid type flight body which used both the gas filling type flight body and the hot air balloon type flight body. For example, in order from the upper side to the lower side, a hot air balloon type flying object and a gas filling type flying object are arranged, and an occupant and a luggage are arranged below the gas filling type flying object. When a hybrid type flying body is configured, the state of gas such as helium gas (activity, etc.) can be controlled even in a place where the outside air temperature is low by using the thermal energy of the hot air balloon type flying body. Specifically, when the outside air temperature is low, the volume of the gas decreases and the volume of the air sac decreases, but the thermal energy of the hot air balloon type aircraft can be used even in a low temperature region such as the polar region. Because it can use maximum buoyancy, it can fly stably even when the outside air temperature changes. Also, by placing a gas-filled aircraft such as helium gas between the hot-air balloon type aircraft and the occupant or baggage, the occupant or baggage is generated from the hot-air balloon type by the gas-filled aircraft. Is shielded from the heat generated.
 1,100,100A 浮揚型飛行体
 2,110,110A 浮揚機体
 21 外皮体(外骨格体)
 22 気嚢体
 23 外側気嚢体
 120,120A 外骨格体
 130,130A 面状区画構造体
 140 芯材
 160 外方延出補強部材(補強部材)
1,100,100A Levitation Type Aircraft 2,110,110A Levitation Aircraft 21 Outer Body (Exoskeleton Body)
22 Air sac body 23 Outer air sac body 120, 120A Exoskeleton body 130, 130A Planar partition structure 140 Core material 160 Outward extending reinforcing member (reinforcing member)

Claims (9)

  1.  浮揚機体を備える浮揚型飛行体であって、
     前記浮揚機体は、内部に空気よりも小さい比重のガスを密閉して形成され、又は、内部の空気を熱エネルギーで外部に追い出して機体に浮力を与えるように構成されており、前記浮揚機体の外形を構成すると共に剛性を有する外骨格体を有する浮揚型飛行体。
    A levitation aircraft with a levitation aircraft,
    The levitation body is formed by sealing a gas having a specific gravity smaller than that of air inside, or configured to expel the inside air to the outside with thermal energy to give buoyancy to the body. A buoyant flying vehicle having an exoskeleton that forms an outer shape and has rigidity.
  2.  前記外骨格体は、所定の厚さを有した面状に形成され複数の壁によって内部が複数の空間に区画された面状区画構造体を含んで構成される請求項1に記載の浮揚型飛行体。 The floating type according to claim 1, wherein the exoskeleton is configured to include a planar partition structure that is formed into a planar shape having a predetermined thickness and is partitioned into a plurality of spaces by a plurality of walls. Flying body.
  3.  前記面状区画構造体は、厚さ方向に延びる断面形状が六角形の複数の六角形構造体を有するハニカム構造で構成される請求項2に記載の浮揚型飛行体。 3. The floating flying object according to claim 2, wherein the planar partition structure is configured by a honeycomb structure having a plurality of hexagonal structures each having a hexagonal cross-sectional shape extending in a thickness direction.
  4.  前記外骨格体は、前記面状区画構造体の内部に配置され前記面状区画構造体を支持する芯材を有する請求項2又は3に記載の浮揚型飛行体。 4. The levitated flying vehicle according to claim 2, wherein the exoskeleton has a core member disposed inside the planar partition structure and supporting the planar partition structure.
  5.  前記外骨格体から前記外骨格体の側方に突出して前記外骨格体を補強する補強部材を更に備える請求項1から4のいずれかに記載の浮揚型飛行体。 The floating flying object according to any one of claims 1 to 4, further comprising a reinforcing member that protrudes from the exoskeleton body to a side of the exoskeleton body to reinforce the exoskeleton body.
  6.  前記浮揚機体は、側面視において、外周縁が鋭角状に形成される請求項1から5のいずれかに記載の浮揚型飛行体。 The levitation aircraft according to any one of claims 1 to 5, wherein the levitation body has an outer peripheral edge formed in an acute angle shape in a side view.
  7.  前記浮揚機体を1又は複数備え、
     水平方向の風の通り道となる薄い部分が少なくとも2方向に形成される請求項1から6のいずれかに記載の浮揚型飛行体。
    One or more of the levitation bodies,
    The levitation-type flying body according to any one of claims 1 to 6, wherein a thin portion serving as a wind passage in the horizontal direction is formed in at least two directions.
  8.  前記浮揚機体は、内部に空気よりも小さい比重のガスを密閉して形成され、
     前記浮揚機体は、前記外骨格体の内部を複数の気室に区画するように前記外骨格体の内部に配置され樹脂様皮膜に囲まれることで形成される複数の気嚢体を更に有する請求項1から7のいずれかに記載の浮揚型飛行体。
    The levitation body is formed by sealing a gas having a specific gravity smaller than air inside,
    The levitation machine further includes a plurality of air sac bodies formed by being disposed inside the exoskeleton body and surrounded by a resin-like film so as to partition the inside of the exoskeleton body into a plurality of air chambers. The floating type flying body according to any one of 1 to 7.
  9.  前記浮揚機体は、前記外骨格体と前記複数の気嚢体との間に配置され樹脂様皮膜により前記外骨格体と略同形状に形成される外側気嚢体を更に有する請求項8に記載の浮揚型飛行体。 The levitation body according to claim 8, wherein the levitation body further includes an outer air sac body that is disposed between the exoskeleton body and the plurality of air sac bodies and is formed in a substantially same shape as the exoskeleton body by a resin-like film. Type flying object.
PCT/JP2018/000574 2017-01-23 2018-01-12 Buoyant-type flying body WO2018135383A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017009491A JP2020055323A (en) 2017-01-23 2017-01-23 Floating type flying object
JP2017-009491 2017-01-23

Publications (1)

Publication Number Publication Date
WO2018135383A1 true WO2018135383A1 (en) 2018-07-26

Family

ID=62908126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000574 WO2018135383A1 (en) 2017-01-23 2018-01-12 Buoyant-type flying body

Country Status (2)

Country Link
JP (1) JP2020055323A (en)
WO (1) WO2018135383A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110155306A (en) * 2019-07-05 2019-08-23 徐更修 Multi-rotor unmanned aerial vehicle with floating air-bag
IT201900005232A1 (en) * 2019-04-05 2020-10-05 Silvano Pascucci Rigid bearing structure airship

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924037B2 (en) * 1977-08-24 1984-06-06 川崎重工業株式会社 Method for manufacturing a structure having a central axis
JPH11513635A (en) * 1995-10-24 1999-11-24 ボセ ハンス−ユーゲン Hybrid aircraft
JP2007038945A (en) * 2005-08-05 2007-02-15 Kyoto Univ Tethered balloon
JP5875093B1 (en) * 2015-06-17 2016-03-02 浩平 中村 Levitation aircraft

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924037B2 (en) * 1977-08-24 1984-06-06 川崎重工業株式会社 Method for manufacturing a structure having a central axis
JPH11513635A (en) * 1995-10-24 1999-11-24 ボセ ハンス−ユーゲン Hybrid aircraft
JP2007038945A (en) * 2005-08-05 2007-02-15 Kyoto Univ Tethered balloon
JP5875093B1 (en) * 2015-06-17 2016-03-02 浩平 中村 Levitation aircraft

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900005232A1 (en) * 2019-04-05 2020-10-05 Silvano Pascucci Rigid bearing structure airship
WO2020202237A1 (en) * 2019-04-05 2020-10-08 Silvano Pascucci Airship with rigid supporting structure
CN110155306A (en) * 2019-07-05 2019-08-23 徐更修 Multi-rotor unmanned aerial vehicle with floating air-bag

Also Published As

Publication number Publication date
JP2020055323A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
JP5875093B1 (en) Levitation aircraft
US4366936A (en) Aircraft having buoyant gas balloon
JP6640729B2 (en) System and method for UAV fuel cells
EP3145735B1 (en) Unmanned air and underwater vehicle
ES2537182T3 (en) Aircraft that includes aerodynamic structures
EP0854821B1 (en) Hybrid aircraft
US20190002093A1 (en) Aircraft
US8052082B1 (en) Optimized aerodynamic, propulsion, structural and operations features for lighter-than-air vehicles
US20130037650A1 (en) Systems and Methods for Long Endurance Airship Operations
WO2018135383A1 (en) Buoyant-type flying body
RU2567496C1 (en) Multirotor vtol drone
US20220089269A1 (en) Large-Scale Semi-Rigid Structure Airship
US20090294582A1 (en) Propulsion Unit for Lighter-Than-Air Aircraft
CN110723270A (en) Stratospheric airship with large-scale rigid-flexible integrated structure
WO2017132515A2 (en) Almost lighter than air vehicle
EP2897860B1 (en) Systems and methods for long endurance airship operations
CN113022845B (en) Coaxial tilt rotor aircraft and thin-film aircraft combined with same
JP2019516616A (en) System and method for a high altitude platform lighter than air
JP2004217077A (en) Mounting structure of solar battery
US11577813B2 (en) Outer membrane for aerial vehicles
US20150048203A1 (en) Payload suspension for lighter-than-air structures
CN112224381B (en) Variant airship and variant device
CN111994254B (en) Large-scale rigid-flexible combined structure stratospheric airship
JP6823113B2 (en) UAV Fuel Cell Systems and Methods
WO2017107781A1 (en) Multi-rotor air vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18742307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18742307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP