JPS5924037B2 - Method for manufacturing a structure having a central axis - Google Patents

Method for manufacturing a structure having a central axis

Info

Publication number
JPS5924037B2
JPS5924037B2 JP10124277A JP10124277A JPS5924037B2 JP S5924037 B2 JPS5924037 B2 JP S5924037B2 JP 10124277 A JP10124277 A JP 10124277A JP 10124277 A JP10124277 A JP 10124277A JP S5924037 B2 JPS5924037 B2 JP S5924037B2
Authority
JP
Japan
Prior art keywords
manufacturing
sector
central axis
item
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10124277A
Other languages
Japanese (ja)
Other versions
JPS5435996A (en
Inventor
国次 小塩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP10124277A priority Critical patent/JPS5924037B2/en
Publication of JPS5435996A publication Critical patent/JPS5435996A/en
Publication of JPS5924037B2 publication Critical patent/JPS5924037B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、金属板、ガラス繊維等の構造材を接着剤等の
結合材で接合して成る、中心軸を持つ大型構造体例えば
、硬式飛行船、パラボラアンテナ、多面筒体などの製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to large structures having a central axis, such as rigid airships, parabolic antennas, and polyhedral cylinders, which are made by bonding structural materials such as metal plates and glass fibers with bonding materials such as adhesives. Related to manufacturing methods for bodies, etc.

最近、硬式或は半硬式飛行船はますます大型化の傾向に
あり、全長100mのものはめずらしくなく、中には3
00mのものさえ計画されるようになつている。
Recently, rigid and semi-rigid airships have become increasingly larger, with 100 m long being not uncommon, and some having a total length of 100 m.
Even 00m lengths are being planned.

また船殼は、材料的にも金属接着剤、ハニカム芯材、強
化プラスチック等の材料も採用され始めている。空気よ
り軽いこの種の飛行体においては、船殼内の気ノウに充
填せるヘリウム等のガスと空気との比重差を主揚力とし
て利用するので、一般に船殼の構造パネルは1.3に9
/m2程度と、非常な軽量化が要求される。
In addition, materials such as metal adhesives, honeycomb core materials, and reinforced plastics are beginning to be used for ship hulls. In this type of flying vehicle, which is lighter than air, the difference in specific gravity between air and a gas such as helium filled in the air inside the hull is used as the main lift, so generally the structural panels of the hull are 1.3 to 9.
/m2, which requires extremely light weight.

参考迄に軽量化構造の見本にふさわしいと思われる他例
をあげるならば、ボーイング747ジェット旅客機の床
パネルでも、3.5に9/m2で設計されている。こう
した大型軽量化と、材料の多様化の進歩に較べて、その
製造方法は、一般の航空機機体や建材のそれの模倣の域
を出ず、旧態依然たるものしか無かつた。
For reference, another example that seems suitable as a sample of lightweight structure is the floor panel of the Boeing 747 jet airliner, which is designed with a ratio of 3.5 to 9/m2. Compared to these advances in size reduction and the diversification of materials, the manufacturing methods remained old-fashioned, no more than imitations of general aircraft fuselages and building materials.

すなわち、従来の金属製硬式或は半硬式飛行船船殼の製
造方法は、船殼を、縦横多数の小面積に分割して出来る
各区分を形成する夫々のパネルを先ず製作し、その后各
々のパネルを接着・スポット溶接或はリベット等により
化学的・機械的に結合して全体を組立てる方法が大部分
であつた。
In other words, the conventional manufacturing method for metal rigid or semi-rigid airship hulls is to first divide the hull into multiple small areas vertically and horizontally to create each panel forming each section, and then to In most cases, the entire assembly was assembled by chemically or mechanically bonding the panels together using adhesives, spot welding, rivets, or the like.

さらに金属製でない強化プラスチック等の硬式或は半硬
式飛行船においても、多数の小区分パネルを、まず型上
において成契約は接着組立を行い硬化させた后、飛行船
の金属製骨組の土に貼り合せるか或は全体組立治具上で
順次パネル対パネルの鋲結合等を行い大型化して行くも
のであつた。これら従来の製造方法においては、軟式飛
行船の如く、ガス圧によつてふくらませて実寸大にする
のではなく、所定の実寸形状の船殼を細分化した各部分
パネルを、前もつて必要数だけ作つておき、次にそれら
を組立てて行くために、完成船体の空力的な設計要求を
満たすための形状精度を保ち難いうえに、パネルとパネ
ル間の結合部分長さは著しく大きいものとなつて、重量
増加の一因となり、性能上極めて不利であつた。
Furthermore, even for rigid or semi-rigid airships made of reinforced plastic, etc., which are not made of metal, a large number of sub-section panels are first assembled on a mold, adhesively assembled, and then hardened, and then bonded to the soil of the airship's metal frame. Alternatively, the size of the assembly was increased by successively joining panels with rivets on an overall assembly jig. In these conventional manufacturing methods, instead of inflating the hull using gas pressure to make it to the actual size, as in the case of soft airships, each partial panel is made by subdividing the hull of a predetermined actual size shape, and is made in advance in the required number. Because they are manufactured in advance and then assembled, it is difficult to maintain the shape accuracy necessary to meet the aerodynamic design requirements of the completed hull, and the length of the joints between panels becomes significantly large. This caused an increase in weight and was extremely disadvantageous in terms of performance.

参考迄に、50m級の船体組立に必要な盲鋲の数は50
万本に達すると云われる。さらに、成形及び組立用治具
を多数必要とし、組立に要する敷地や人件費もかさみ、
経済的にも好ましい方法ではなかつた。
For reference, the number of blind studs required to assemble a 50m class hull is 50.
It is said that there will be up to 10,000 copies. Furthermore, a large number of molding and assembly jigs are required, which increases the site and labor costs required for assembly.
It was not an economically preferable method.

かかる超軽量大型構造物を製造する場合の最大の問題点
は、組立の困難lにあるものと考えられる。
The biggest problem in manufacturing such ultra-light and large structures is thought to be the difficulty in assembling them.

すなわち、大型軽量であればあるほど、パネルに発生す
る歪量も大きくなり、また完全な組立ができる迄は、構
造的に組立途中部品の変形量も大きいため、完成船殼の
形状精度は空力的にも、外見上からも満足しないものと
なつてしまうおそれが多かつた。上述せる従来の製造方
法の諸欠点は、極めて大型軽量の構造物を、例えばプラ
モデルの如く細分化した小部品の順次組立により製造す
る点に起因するものである。
In other words, the larger and lighter the ship is, the greater the amount of distortion that occurs in the panel, and the greater the amount of structural deformation of parts that are being assembled until complete assembly is completed, so the shape accuracy of the completed hull is dependent on aerodynamics. There was a high risk that the result would be unsatisfactory both physically and externally. The various drawbacks of the conventional manufacturing methods described above are due to the fact that very large and lightweight structures are manufactured by sequentially assembling small parts, such as plastic models, for example.

それを避けるためには、部品を大型一体化して断き目を
少なくすれば良い事が明白であり、かかる観点より、本
発明は性能面のみならず、経済的にも優れた、細分割組
立によらぬ製法を提供せんと意図するものである。一箇
の継ぎ目無しパネルの大きさは、製造技術的には制約が
ないものと考える事ができる。
In order to avoid this, it is obvious that the parts should be integrated in a large size to reduce the number of cuts.From this point of view, the present invention has been developed to provide a subdivided assembly system that is superior not only in terms of performance but also in terms of economy. The intention is to provide a manufacturing method that does not depend on the product. It can be considered that the size of a single seamless panel is not limited in terms of manufacturing technology.

材料供給の面からも、ガラス布と常温硬化接着剤の組合
せ等を用いれば、単体パネルの寸法制限は成形型のみに
依存し、よつてパネル長さを船殼全長にほば等しくとる
事も可能であり、それ故にパネルの大型化はこの種製品
における必須要件と考えることができる。本発明は、組
立完成品が中心軸を有するような構造体を製造するに、
該構造体の中心軸に沿つて分割される所要数のセクター
に合せた大型構造体の製造方法において、構造軸成形型
を用い、この土に使用基材を添着せしめつつセクターを
成形し、分割これを順次連続して構造体を完成させるこ
とを特徴としたものである。
From the perspective of material supply, if a combination of glass cloth and room-temperature curing adhesive is used, the size limit of a single panel depends only on the mold, and therefore the panel length can be made almost equal to the overall length of the hull. Therefore, increasing the size of the panel can be considered an essential requirement for this type of product. The present invention provides the following advantages in manufacturing a structure in which the assembled finished product has a central axis.
In a method for manufacturing a large structure divided into a required number of sectors along the central axis of the structure, a structural axis mold is used to attach the base material to the soil, form sectors, and divide the structure. This method is characterized in that the structure is completed in sequence.

ここにセクターとは構造体をその中心軸に沿つて所要数
に分割してなる構造体の構成部分を指す。
Here, a sector refers to a constituent part of a structure formed by dividing the structure into a required number of parts along its central axis.

本発明の製造方法によれば、1つのセクターを成形治具
型の上で製作している時、すでに成形されたセクターか
同じ成形治具型上に隣接しておかれているため、両方の
セクターともに、形状精度が保持された状態で接合が行
われうる。
According to the manufacturing method of the present invention, when one sector is manufactured on a molding jig mold, since the already molded sector is placed adjacent to the same molding jig mold, both Both sectors can be joined while maintaining shape accuracy.

故に、この工程の繰返しによつて製造された飛行船殼に
おいては、前記した問題点は効果的に解消し、同時に継
手加工の工程が成形治具型上のセクター成形工程の一部
として完了してしまう大きな利点が派生する。すなわち
本発明の方法によれば、船体形状の極めて高度な設計要
求もこのようにして充分に満す事が司能となるばかりで
なく成型治具型は一種類で良く組立のための治具費と人
件費をも全く省略でき、従来の製造方法の諸欠点を全て
排除する事ができる。次に図面により、本発明を飛行船
の船殼製造に応用した場合の実施例を述べる。
Therefore, in an airship shell manufactured by repeating this process, the above-mentioned problems are effectively solved, and at the same time, the joint processing process is completed as part of the sector forming process on the forming jig mold. A great advantage derives from this. That is, according to the method of the present invention, not only can extremely sophisticated design requirements for the hull shape be fully satisfied in this way, but also only one type of molding jig is required, and only one jig for assembly can be used. Costs and labor costs can be completely eliminated, and all the drawbacks of conventional manufacturing methods can be eliminated. Next, an embodiment in which the present invention is applied to manufacturing an airship hull will be described with reference to the drawings.

第1図は、工程の1サイクルを、飛行船の中心軸方向よ
り見た断面図によつて概念的に示したもので次の諸工程
を包含する。
FIG. 1 conceptually shows one cycle of the process as a sectional view viewed from the direction of the central axis of the airship, and includes the following steps.

I 外板レィアツブ工程 成形治具型1の面に離型処理を施し、外板2用の所要形
状のガラス布強化材を所要枚数(例えば0.r27ミリ
材を1ないし3枚)積層し、常温硬化系樹脂接着剤を塗
布含浸する。
I. Exterior panel layering process: Apply mold release treatment to the surface of the molding jig mold 1, and laminate the required number of glass cloth reinforcing materials of the desired shape for the exterior panel 2 (for example, 1 to 3 sheets of 0.r27 mm material). Apply and impregnate with room temperature curing resin adhesive.

型は鋼管溶接構造の骨組を補強芯材としたコンクリート
製の場合、成形表面にはプラスチツク層を持たせるのが
好ましい。強化材層はガラス布である必要はなくケブラ
一材等化強度・比剛性及び耐候性等の技術的要求を満す
ものから自由に選択して良い。また樹脂接着剤は、加熱
硬化を必要としない常温硬化系耐候性エポキシ(例えば
工ホン927成分)等が望ましい。また、品質を重視す
るならば、この積層した強化ブラスチツク外板を予め無
圧或は真空袋内で硬化させることが望ましい。しかし、
この硬化処理は後の程で行なつてもよい。いずれにせよ
通常のFRP成形の技術を応用し本工程を進める事がで
きる。コア材レ4アツプ工程 ハニカムコア又は発泡プラスチツクのコア材3を前工程
で配置された外板の上におく。
If the mold is made of concrete with a reinforcing core of a welded steel pipe structure, it is preferable to have a plastic layer on the molding surface. The reinforcing material layer is not necessarily made of glass cloth, but may be freely selected from materials that satisfy technical requirements such as Kevlar mono-material equivalent strength, specific rigidity, and weather resistance. The resin adhesive is preferably a weather-resistant epoxy that cures at room temperature (for example, Kohon 927 component), which does not require heat curing. Furthermore, if quality is important, it is desirable to cure the laminated reinforced plastic outer panel in advance without pressure or in a vacuum bag. but,
This curing treatment may be performed at a later stage. In any case, this process can be carried out by applying ordinary FRP molding techniques. Core material 4-up step A core material 3 of honeycomb core or foamed plastic is placed on top of the outer panel placed in the previous step.

コア材の見かけ比重は0.05f/Cd程度が良い。ま
た、外板が予め硬化されている場合は、コア材の両面に
同材質の未硬化接着剤層をはさむ必要がある。内板レイ
アツプ工程次に前記工程1と同要領で内板4をレイアツ
プし、硬化する。
The apparent specific gravity of the core material is preferably about 0.05 f/Cd. Furthermore, if the outer panel is pre-cured, it is necessary to sandwich uncured adhesive layers of the same material on both sides of the core material. Inner plate lay-up step Next, the inner plate 4 is laid up and hardened in the same manner as in step 1 above.

内板4は外板2と共にコア材3よりも大き目に裁断し、
内外板を重ねて積層硬化すると、継手強度上好都合であ
る。以上の工程によつて飛行船殼をその軸方向に沿つて
所要の数に分割してなる飛行船殼の一区分つまり1セク
ターがパネル状で成形されたことになる。
The inner plate 4 and the outer plate 2 are cut larger than the core material 3,
Laminating and curing the inner and outer plates is advantageous in terms of joint strength. Through the above steps, one section, ie, one sector, of the airship shell, which is formed by dividing the airship shell into a required number of parts along the axial direction, is formed into a panel shape.

離型工程 積層硬化した外板、コア材、内板よりなる前述の1セク
ター分のパネルを、型から離す。
Mold release process The above-mentioned one sector panel consisting of the laminated and hardened outer panel, core material, and inner panel is released from the mold.

この離型作業は、型面に前もつて一般の゛ピニールフイ
ルムやワツクス等の剥離剤塗布することによつて容易化
されることは前述の通りであるが、パネルに損傷を与え
ず離型を行うため、パネルと型との隙間に高圧空気を吹
き込んだり、ワイヤーを素通りさせたりの工夫が好結果
を生む。また次工程をなめらかに行わしめるためには、
パネル全体を型面から数センチ離す工程を加えると好都
合である。この方法としては、重量大なる型を下げるよ
りも、船殼の前後を支える機構部に偏心カムを備えつけ
、それによつてパネル全体を持ち土げる方が効率的であ
る。Vセクター(パネル)回転工程 船殼の前後軸(つまり船殼の中心軸)を回転の中心とし
て、成形した前記パネルを1セクター分の角度だけ、モ
ーター駆動等によつて回転させる。
As mentioned above, this mold release work can be facilitated by applying a release agent such as general pineal film or wax to the mold surface in advance, but it is possible to release the mold without damaging the panel. To do this, techniques such as blowing high-pressure air into the gap between the panel and mold and letting wires pass through can produce good results. In addition, in order to ensure that the next process is carried out smoothly,
It is advantageous to add a step to move the entire panel a few centimeters away from the mold surface. Rather than lowering a heavy mold, it is more efficient to install an eccentric cam in the mechanism that supports the front and rear of the hull and use this to lift the entire panel. V-sector (panel) rotation process The formed panel is rotated by an angle corresponding to one sector by a motor drive or the like, with the longitudinal axis of the hull (that is, the central axis of the hull) as the center of rotation.

回転の停止位置は、パネルが成形型から外れる直前の数
センチ手前が良い。もし必要があれば、パネルの自重に
よる捩れを防止する目的で、補助的にパネルの回転方向
ヘベツド等を利用して回転を行なわしめるのも一法であ
る。セクター(パネル)下降工程 再びパネルを下げて成形型端部成型面に密着させる。
The best place to stop the rotation is a few centimeters before the panel comes off the mold. If necessary, one method is to use the heave in the rotational direction of the panel to perform the rotation in order to prevent the panel from twisting due to its own weight. Sector (panel) lowering process Lower the panel again and bring it into close contact with the molding surface at the end of the mold.

外板レィアツブ工程 隣接するセクターの外板を成形型上に配置する。Outer panel layering process Place the skins of adjacent sectors onto the mold.

この外板のレィアツプは、先に成形したセクターの端末
部に一部重なるように積層すると、継手強度上有利であ
り、また、このようにすることによつて、隣接するセク
ター同志の結合つまり継手加工が、セクターの成形工程
の一部として完了させることが可能となる。内板につい
ても同要領とする。第2図、この外板レイアツプ工程に
おいて形成される基本的な継手部分の断面図であつて、
成形中のセクター6が隣接する成形済セクター5の端部
に;部重なつて二つのセクターの接合を兼ねている様子
を示す。
It is advantageous for the strength of the joint to be stacked so as to partially overlap the ends of the previously formed sectors. Processing can be completed as part of the sector forming process. The same procedure applies to the inner panels. FIG. 2 is a sectional view of the basic joint part formed in this skin lay-up process,
It shows how the sector 6 being molded partially overlaps the end of the adjacent molded sector 5, thereby serving as a joint between the two sectors.

強度要求上から本継手部の積層枚数を増加したり、コア
材内部に充填材をつめたりする事は何ら差支えない。内
外板とも極めて薄いため、コアの端末部は図示した通り
のステツブ7の加を予め行わなくても良い場合が多い。
このように、隣接するセクター同志を同一の成形型上で
形状精度を保持しつつ結合して順次構造体を完成させて
行くので、完成された構造体の形状精度は極めて優れた
ものとなる。第3図は、本発明の方法により製造された
飛行船船殼の例を示すもので、第3図Aにおいては、各
セクター10は船殼全長にわたる長さを有し、第3図B
においては、船殼は前後に2分割した形で製造され、そ
の前胴8と後胴9が後工程で通常のフアスナ一等の機械
的結合法により結合される。
There is no problem in increasing the number of laminated sheets in this joint part or filling the inside of the core material due to strength requirements. Since both the inner and outer plates are extremely thin, it is often not necessary to add the step 7 at the end of the core in advance as shown.
In this way, since the structure is successively completed by joining adjacent sectors on the same mold while maintaining shape accuracy, the completed structure has extremely high shape precision. FIG. 3 shows an example of an airship shell manufactured by the method of the present invention. In FIG. 3A, each sector 10 has a length spanning the entire length of the hull, and in FIG. 3B,
In this case, the hull is manufactured in two parts, front and rear, and the front shell 8 and rear shell 9 are joined in a subsequent process by a conventional fastener type mechanical joining method.

この第3図Bの方法は、前後胴が同一形状の場合に特に
便利であり、内部ガス袋の組込み等が容易であるという
利点も有する。前記した実施例は、飛行船の如き中心軸
を持つ大型構造体における強化プラスチツク外皮サンド
ウイツチ接着構造について説明したものであるが他の材
料例えば金属板一木材合板等の構造材と、結合材との組
合せによる構造の場合であつても、本発明の実施を妨げ
ることはなく、利益を得る事ができる。
The method shown in FIG. 3B is particularly convenient when the front and rear trunks have the same shape, and also has the advantage that it is easy to assemble the internal gas bag. The above-mentioned embodiment describes a reinforced plastic shell sandwich bonding structure for a large structure with a central axis such as an airship, but other materials such as structural materials such as metal plates and wood plywood, and combinations of binding materials may also be used. Even in the case of a structure according to the present invention, the implementation of the present invention is not hindered and benefits can be obtained.

本発明の飛行船以外の実施例を図面によつてさらに説明
する。
Embodiments other than airships of the present invention will be further described with reference to the drawings.

第4図は、パラボラ型のレーダー等の反射用アンテナの
場合を概念的に見取図で示したものであつて、成形型1
の上でアンテナの中心軸は沿つた1セクター分の単体パ
ネル11を成形し、1セクター成形毎に、これを中心軸
まわりに回転せしめて型からずらし次いで次のセクター
を成形しつつ順次アンテナを組立結合する基本工程は前
記した飛行船船殼と同要領で行なうことができる。
Fig. 4 is a conceptual diagram showing the case of a reflecting antenna such as a parabolic radar.
A single panel 11 for one sector is molded along the central axis of the antenna, and after each sector is molded, it is rotated around the central axis and moved from the mold, and then the antenna is sequentially molded while molding the next sector. The basic assembly and connection process can be carried out in the same manner as for the airship shell described above.

第5図は多面筒体の構造物であつて、前記実施例と同要
領で製造できる事が明白である。図中符号12は各セク
ターである。以上述べた如く、本発明は、中心軸を持つ
形状大型構造体の製造において、形状精度が成形型にて
保持された状態で接合が行なわれ且つ組立のための継手
加工が極めて簡略化されるため寸法、性能および経済性
に極めて優れた製造方法を提供するものである。
FIG. 5 shows a multifaceted cylindrical structure, and it is clear that it can be manufactured in the same manner as in the previous embodiment. Reference numeral 12 in the figure represents each sector. As described above, in the manufacture of a large-sized structure having a central axis, the present invention allows joining to be performed while maintaining shape accuracy in a mold, and extremely simplifies joint processing for assembly. Therefore, the present invention provides a manufacturing method that is extremely superior in size, performance, and economical efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法における各工程を−サイクル分だ
け示した断面図、第2図は継手部分の断面図、第3図A
,Bは本発明により飛行船船殼を組立てる例を示す側面
図、第4及び5図はその他の実施例を示す斜視図である
。 1・・・・・・成形型、2・・・・・・外板、3・・・
・・・コア材、4・・・・・・内板、5・・・・・・成
型済みセクター、6・・・・・・成型中のセクター、7
・・・・・・コアのステツプ加工部、8・・・・・・成
型中の前胴、9・・・・・・成型済の後胴。
Fig. 1 is a sectional view showing each step in the method of the present invention by one cycle, Fig. 2 is a sectional view of the joint part, and Fig. 3A
, B are side views showing an example of assembling an airship shell according to the present invention, and FIGS. 4 and 5 are perspective views showing other embodiments. 1... Molding mold, 2... Outer plate, 3...
... Core material, 4 ... Inner plate, 5 ... Molded sector, 6 ... Sector under molding, 7
. . . Core step processing section, 8 . . . Front body under molding, 9 . . . Rear body already molded.

Claims (1)

【特許請求の範囲】 1 組立完成品が中心軸を有するような構造体の製造方
法であつて、該構造体の中心軸に沿つて、分割される所
要数のセクターに合せた整形型を用い、この上に使用基
材を添着せしめつつ、該セクターを完成し、これを順次
連続して完成する中心軸を有する構造体の製造方法。 2 前記第1項に於て、完成されたセクターが構造体の
中心軸まわりに順次ほぼ1セクター分の角度づつ回転せ
しめられることを特徴とする中心軸を有する構造体の製
造方法。 3 前記第1項において、各セクターは構造体のほぼ全
長にわたつて長さを有することを特徴とする構造体の製
造方法。 4 前記第1項において、各セクターは構造体を前後に
少くとも2分割した長さを有し、別々に完成された各構
造体部分が互に接合されることを特徴とする構造体の製
造方法。 5 前記第4項において、構造体は飛行船の船殼である
ような構造体の製造方法。 6 前記第2項において、成形されたセクターは回転工
程前に成形型表面から持ち上げられることを特徴とする
構造体の製造方法。 7 前記第1項において、各セクターはFRP外皮とハ
ニカムコアとからなるサイドイツチ構造を有することを
特徴とする構造体の製造方法。
[Claims] 1. A method for manufacturing a structure in which the assembled finished product has a central axis, which uses a shaping mold that is divided into a required number of sectors along the central axis of the structure. A method for manufacturing a structure having a central axis, in which the sectors are completed while attaching a base material thereon, and the sectors are successively completed. 2. The method for manufacturing a structure having a central axis according to item 1 above, characterized in that the completed sectors are sequentially rotated about the central axis of the structure by approximately one sector angle at a time. 3. The method of manufacturing a structure according to item 1 above, wherein each sector has a length spanning substantially the entire length of the structure. 4. Manufacturing a structure according to item 1 above, wherein each sector has a length that divides the structure into at least two parts in the front and back, and each of the separately completed structure parts are joined to each other. Method. 5. A method for manufacturing a structure as set forth in item 4 above, wherein the structure is the hull of an airship. 6. The method of manufacturing a structure according to item 2 above, characterized in that the molded sector is lifted from the surface of the mold before the rotation step. 7. The method for manufacturing a structure according to item 1 above, wherein each sector has a side German trench structure consisting of an FRP outer skin and a honeycomb core.
JP10124277A 1977-08-24 1977-08-24 Method for manufacturing a structure having a central axis Expired JPS5924037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10124277A JPS5924037B2 (en) 1977-08-24 1977-08-24 Method for manufacturing a structure having a central axis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10124277A JPS5924037B2 (en) 1977-08-24 1977-08-24 Method for manufacturing a structure having a central axis

Publications (2)

Publication Number Publication Date
JPS5435996A JPS5435996A (en) 1979-03-16
JPS5924037B2 true JPS5924037B2 (en) 1984-06-06

Family

ID=14295426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10124277A Expired JPS5924037B2 (en) 1977-08-24 1977-08-24 Method for manufacturing a structure having a central axis

Country Status (1)

Country Link
JP (1) JPS5924037B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135383A1 (en) * 2017-01-23 2018-07-26 浩平 中村 Buoyant-type flying body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020048044A (en) * 2018-09-18 2020-03-26 株式会社東芝 Reflector, manufacturing method of reflector base, antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135383A1 (en) * 2017-01-23 2018-07-26 浩平 中村 Buoyant-type flying body

Also Published As

Publication number Publication date
JPS5435996A (en) 1979-03-16

Similar Documents

Publication Publication Date Title
US4657615A (en) Composite leading edge/spar member for an aircraft control surface
US8741092B2 (en) Production, forming, bonding, joining and repair systems for composite and metal components
EP2084057B1 (en) Composite aircraft structures with hat stiffeners
KR102047554B1 (en) Composite hat stiffener, composite hat-stiffened pressure webs, and methods of making the same
JP5745081B2 (en) Method for forming an integral composite part using an SMP apparatus
US6190484B1 (en) Monolithic composite wing manufacturing process
CA2278693C (en) Method and apparatus for manufacturing composite structures
US7097731B2 (en) Method of manufacturing a hollow section, grid stiffened panel
JP2001510746A (en) Method of assembling large-sized parts such as aircraft fuselage made of composite material having thermoplastic matrix
JPH07187085A (en) Fiber reinforced composite panel structure and manufacture thereof
JP5763206B2 (en) Method and system for interconnecting or mutually curing composite parts using a rigid / malleable SMP apparatus
JPH02299820A (en) Divided mandrel
WO1998032589A9 (en) Method and apparatus for manufacturing composite structures
US20050147790A1 (en) Method for making a soundproofing panel with at least one double resonator
JP2023054346A (en) Manufacture of fibre-reinforced composite material structure body
JPS5924037B2 (en) Method for manufacturing a structure having a central axis
US20200377191A1 (en) Stringerless sandwich fuselage panels
US3687795A (en) Tubular laminate
JP2685549B2 (en) Manufacturing method of fiber reinforced plastic truss structure
CN115958818A (en) Embedded metal beam honeycomb sandwich structure, forming method and fairing
JPS6323040B2 (en)
JP2002160302A (en) Frp structural body
JP2019089318A (en) Manufacturing method of composite repair component and relating kit
US20200384721A1 (en) Composite Panel Sandwich Structures with Integrated Joints
CA2598765C (en) Method and apparatus for manufacturing composite structures