WO2018134999A1 - Variable gain amplifier - Google Patents

Variable gain amplifier Download PDF

Info

Publication number
WO2018134999A1
WO2018134999A1 PCT/JP2017/002134 JP2017002134W WO2018134999A1 WO 2018134999 A1 WO2018134999 A1 WO 2018134999A1 JP 2017002134 W JP2017002134 W JP 2017002134W WO 2018134999 A1 WO2018134999 A1 WO 2018134999A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
gain control
terminal
impedance
terminals
Prior art date
Application number
PCT/JP2017/002134
Other languages
French (fr)
Japanese (ja)
Inventor
孝信 藤原
下沢 充弘
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018538798A priority Critical patent/JP6411006B1/en
Priority to PCT/JP2017/002134 priority patent/WO2018134999A1/en
Publication of WO2018134999A1 publication Critical patent/WO2018134999A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/22Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/02Manually-operated control
    • H03G3/04Manually-operated control in untuned amplifiers
    • H03G3/10Manually-operated control in untuned amplifiers having semiconductor devices

Definitions

  • the present invention relates to a variable gain amplifier capable of changing a gain.
  • variable gain amplifier a digitally controlled current steering type variable gain amplifier is widely used as a method capable of realizing high gain control accuracy (see, for example, Patent Document 1).
  • a variable gain amplifier includes an amplification stage transistor connected to a signal input end and a plurality of cascode stage transistors connected in cascade to the output end of the amplification stage transistor.
  • the plurality of cascode stage transistors constitute a unit cell circuit, and the variable gain amplifier includes a plurality of these unit cell circuits, and the amplification factor is obtained by controlling the conduction state and the cutoff state of each unit cell circuit by the control circuit. Is variable.
  • the current steering type variable gain amplifier can be regarded as a cascode amplifier using a common base transistor when viewed as one amplifier.
  • One important factor in designing the variable gain amplifier is that the input current is transmitted to the output terminal without being released to the base terminal side. Therefore, it is necessary to match the base terminal of the grounded base transistor, which is a cascode device, to the short point. That is, the impedance when the control circuit side that controls the transistor is viewed from the base terminal of the transistor needs to be sufficiently low at the operating frequency. When this impedance is high, an input signal from the emitter terminal leaks to the base terminal side, resulting in a decrease in gain. Therefore, conventionally, a stabilization capacitor has been arranged at the base terminal.
  • variable gain amplifier since it is necessary to arrange a capacitive element at the base terminal of the common base transistor, the area of the unit cell circuit becomes large. Therefore, when the unit cell circuits are arranged in an array, The wiring area of a transistor for transmitting a high frequency signal is increased. As a result, there has been a problem that high frequency characteristics are lowered in terms of operating band, gain and noise as a variable gain amplifier due to an increase in parasitic capacitance and inductance.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a variable gain amplifier capable of suppressing deterioration of high frequency characteristics.
  • the variable gain amplifier includes a grounded base type first transistor and a second transistor, a conductive state in which a signal from the input terminal is conducted to the output terminal through the first transistor, and from the input terminal
  • the first gain control terminal for controlling the respective bases of the first and second transistors and the second gain control are realized by releasing a signal from the first transistor to the terminals other than the output terminal via the second transistor.
  • a plurality of unit cell circuits having a plurality of unit terminals, wherein the input terminals and the output terminals of the plurality of unit cell circuits are connected in parallel and connected to the first and second gain control terminals. Are provided between the base of the first and second transistors and the first and second gain control terminals, and is set in the control circuit unit.
  • a switch circuit for realizing a conductive state and a cut-off state and an impedance transformer having a set value as an impedance when the first and second gain control terminals are viewed from the bases of the first and second transistors. It is a thing.
  • the first gain control terminal and the second transistor are provided between the first transistor and the second transistor and the switching transistor between the first transistor and the base of the second transistor.
  • An impedance transformer having an impedance as viewed from the gain control terminal side as a set value is provided.
  • FIG. 1A and 1B are configuration diagrams of a variable gain amplifier according to Embodiment 1 of the present invention. It is explanatory drawing which shows the layout image of the variable gain amplifier of Embodiment 1 of this invention. It is a perspective view which shows an example of the impedance transformer in the variable gain amplifier of Embodiment 1 of this invention. It is explanatory drawing which shows the locus
  • FIG. 1A and 1B are configuration diagrams of a variable gain amplifier according to the present embodiment.
  • the variable gain amplifier according to the present embodiment is a current steering type variable gain amplifier as shown in the figure.
  • a plurality of unit cell circuits 100a to 100n are connected in parallel, and the number is N.
  • Each of the unit cell circuits 100a to 100n includes a first transistor 101, a second transistor 102, a switching transistor 103, and an impedance transformer 104.
  • the emitters of the first transistor 101 and the second transistor 102 are connected to the emitter input terminals 105a to 105n of the unit cell circuits 100a to 100n.
  • the collector of the first transistor 101 is connected to the collector output terminals 106a to 106n of the unit cell circuits 100a to 100n.
  • the collector of the second transistor 102 is connected to the power source.
  • the bases of the first transistor 101 and the second transistor 102 are connected to the drain terminal of a switching transistor 103 made of an NMOS transistor via an impedance transformer 104, respectively.
  • the source of the switching transistor 103 is connected to the base bias terminals 107a to 107n of the unit cell circuits 100a to 100n.
  • the gate of the switching transistor 103 is connected to the first gain control terminals 108a to 108n and the second gain control terminals 109a to 109n in the unit cell circuits 100a to 100n.
  • the emitter input terminals 105a to 105n of the unit cell circuits 100a to 100n are connected to the source of the transistor 110.
  • the drain of the transistor 110 is grounded, and the gate is connected to the voltage input terminal 111.
  • the collector output terminals 106a to 106n of the unit cell circuits 100a to 100n are connected to the power supply via the load inductance 112 and also to the output terminal 113.
  • FIG. 1B shows the control circuit unit 114.
  • the control circuit unit 114 includes a base current source 115 and a logic generation circuit 116.
  • the base current source 115 is a power source for supplying base currents of the first transistor 101 and the second transistor 102 via the base bias terminals 107a to 107n.
  • the logic generation circuit 116 is a circuit that generates a control signal for controlling the gain as the variable gain amplifier, and is connected via the first gain control terminals 108a to 108n and the second gain control terminals 109a to 109n.
  • the switch transistor 103 is controlled.
  • the impedance when the base bias terminals 107a to 107n are viewed from the bases of the first transistor 101 and the second transistor 102 is the base current source 115 in the control circuit unit 114.
  • the on-resistance of the switching transistor 103, and the impedance transformer 104 Generally, the output impedance of a circuit that functions as a current source is high, the output impedance of the base current source 115 is high, and the on-resistance of the NMOS transistor also has a finite resistance value of several tens to several hundreds ⁇ depending on the transistor size. .
  • the base bias terminals 107a to 107n are viewed from the bases of the first transistor 101 and the second transistor 102.
  • the impedance at the time can be transformed near the short point.
  • the first transistor 101 and the second transistor 102 can operate as a cascode circuit, and the current gain from the emitter input terminals 105a to 105n to the collector output terminals 106a to 106n can be maintained at a high value. .
  • An input signal from the voltage input terminal 111 is converted into a current signal 117 by the transistor 110.
  • the current signal 117 is distributed N and is input to the emitter input terminals 105a to 105n of the unit cell circuits 100a to 100n.
  • Each of the unit cell circuits 100a to 100n controls the first gain control terminals 108a to 108n and the second gain control terminals 109a to 109n from the control circuit unit 114 and supplies power to the base bias terminals 107a to 107n.
  • the gain is controlled by controlling the amount of current transmitted to the output terminal 113 by the current signal 117.
  • the control circuit unit 114 generates a reference current for biasing the bases of the first transistor 101 and the second transistor 102 by the base current source 115, and passes through the base bias terminals 107 a to 107 n and the switching transistor 103. Supply power.
  • the N unit cell circuits 100a to 100n are connected to the switching transistor 103 by a control signal from the control circuit unit 114 supplied to the first gain control terminals 108a to 108n and the second gain control terminals 109a to 109n. ON / OFF is controlled.
  • the conduction state of the first transistor 101 and the cutoff state of the second transistor 102 are controlled, and the two operations of releasing the current from the emitter input terminals 105a to 105n to the power source or transmitting the current to the output terminal 113 are performed.
  • control is performed so that only Nsel is transmitted to the output terminal 113, and the remainder is controlled so as to release current to the power supply, and the current gain G is expressed by the following equation.
  • G Nsel / N
  • FIG. 2 shows a layout image of the variable gain amplifier according to the first embodiment.
  • the element circuits in the unit cell circuits 100a to 100n in FIG. 1 are divided into a high-frequency signal block 204 and a bias block 205 and arranged in an N-array, and these two blocks are used as impedance transformation transmission lines.
  • 203 is connected.
  • the layout group 201 is N high frequency signal blocks 204, and the layout group 202 is N bias blocks 205.
  • the transmission line 203 is the impedance transformer 104 in FIG. 1A, and is mounted as a 1/4 wavelength transmission line at a desired frequency.
  • the high-frequency signal block 204 includes the first transistor 101 and the second transistor 102 in FIG. 1, and has a configuration in which only a circuit that passes a high-frequency signal is separated.
  • the bias block 205 includes a switch transistor 103.
  • the impedance transformer 104 is a 1/4 wavelength transmission line 203 at a desired frequency and has a physical length. By using this length, the bias block 205 can be arranged at a distance from the high-frequency signal block 204. In addition, as long as the bias block 205 can accurately transmit a bias current, which is a low-frequency signal, the sensitivity of characteristic changes to parasitic capacitance and inductance due to layout is low. Therefore, the chip area can be arranged in an arbitrary area that does not affect the high-frequency signal path, and the chip area can be effectively used.
  • the high-frequency signal block 204 can be densely laid out.
  • the high-frequency signal block 204 is a group of layouts 201 arranged together, and the wiring area of the emitter input terminals 105a to 105n and the collector output terminals 106a to 106n in FIG. 1 is reduced to reduce parasitic capacitance and inductance. Make it possible to do. By suppressing the parasitic components of these terminals, matching with impedance that optimizes high-frequency characteristics is facilitated, so that high-frequency performance improvement effects such as higher gain, wider bandwidth, and lower noise can be obtained.
  • FIG. 3 shows an implementation example of the transmission line 203 shown in FIG. 2 in the microstrip line system as an example of the impedance transformer 104.
  • the impedance transformer 104 (transmission line 203) desirably has a low characteristic impedance, and is compatible with a silicon process that can easily realize multilayer wiring.
  • the layout group 201 can be further downsized.
  • the layout group 303 (layout group 201 in FIG. 2) composed of high frequency blocks and the layout group 304 (layout group 202 in FIG. 2) composed of bias blocks are connected to optimize the high frequency characteristics. Impedance transformation is realized.
  • the layout example shown in FIGS. 2 and 3 is an example of layout design of the circuit configuration of the variable gain amplifier according to the present embodiment.
  • the layout example shown in FIG. 2 has a one-dimensional array arrangement. It is not limited. The same applies to a two-dimensional array arrangement.
  • the method of determining the array arrangement is one of the design items that should be optimized by minimizing the parasitic components on the path of the high-frequency signal, effectively using the chip area, and the parameters of the transistors of the high-frequency signal block 204. It is.
  • the impedance of the base current source 115 and the switching transistor 103 in FIG. 1 will be described as pure resistance, and an impedance transformer 104 using an ideal quarter wavelength line will be used. explained.
  • reactance components due to parasitic capacitance and inductance always exist, and after including these reactance components, the impedance viewed from the bases of the first transistor 101 and the second transistor 102 is brought close to the short point.
  • adjustment of the impedance transformer 104 is one of the design matters.
  • the case where bipolar transistors are used for the first transistor 101 and the second transistor 102 used in the high frequency block has been described.
  • the high frequency is used. The effect of improving the characteristics can be obtained.
  • the gate grounding type is used, and the impedance transformer 104 is disposed between the gate and the switching transistor 103.
  • the base-grounded first transistor and the second transistor are included, and the signal from the input terminal is output to the output terminal via the first transistor.
  • a plurality of unit cell circuits each having a control terminal and a second gain control terminal are provided, input terminals and output terminals of the plurality of unit cell circuits are connected in parallel, and the first and second gain control terminals are provided.
  • a control circuit unit that is connected to a terminal and sets a conduction state or a cutoff state for each unit cell circuit, and between the bases of the first and second transistors and the first and second gain control terminals.
  • the switch circuit that realizes the conduction state and the cutoff state by the setting of the control circuit unit, and the impedance when the first and second gain control terminal sides are viewed from the bases of the first and second transistors are set values.
  • the impedance transformer when the base bias terminal side is viewed from the base of the first transistor and the second transistor can be impedance-transformed near the short point, and the high frequency characteristics are deteriorated. Can be suppressed.
  • the impedance transformer has a characteristic impedance that is smaller than the total impedance of the switch circuit impedance and the control circuit unit impedance, and has a set operating frequency. In this case, the chip area can be effectively used when the semiconductor device is realized.
  • variable gain amplifier includes a grounded-gate first field effect transistor and a second field effect transistor, and outputs a signal from the input terminal via the first field effect transistor.
  • a conduction state for conducting to the terminal, and a blocking state for releasing a signal from the input terminal to a terminal other than the output terminal via the second field effect transistor, and the gates of the first and second field effect transistors are connected to each other.
  • a plurality of unit cell circuits each having a first gain control terminal and a second gain control terminal to be controlled; the input terminals and the output terminals of the plurality of unit cell circuits are connected in parallel; and A control circuit unit which is connected to the second gain control terminal and sets either a conduction state or a cutoff state for each unit cell circuit; and gates of the first and second field effect transistors; A switching circuit that is provided between the first and second gain control terminals and realizes a conductive state and a cut-off state according to the setting of the control circuit unit, and the first and second gates of the first and second field effect transistors And an impedance transformer whose setting value is an impedance when the gain control terminal side is viewed from the base of the first field effect transistor and the second field effect transistor. Impedance can be transformed near the short point, and deterioration of high frequency characteristics can be suppressed.
  • FIG. 3 when the impedance transformer is realized as a transmission line, the effect of this configuration can be increased by designing the layout so that the characteristic impedance becomes a sufficiently low value.
  • the impedance of the base current source 115 in FIG. 1 is R1 [ohm]
  • the on-resistance of the switching transistor 103 is R2 [ohm]
  • the characteristic impedance of the transmission lines 301a to 301n is In the case of Zo [ohm]
  • FIG. 4 is an explanatory diagram showing the impedance transformation locus using a Smith chart.
  • an impedance 401 when the control circuit unit 114 is viewed from the bases of the first transistor 101 and the second transistor 102 an impedance 402 when the control circuit unit 114 is viewed from the base bias terminals 107a to 107n, and an impedance transformer.
  • a locus 403 on the Smith chart according to 104 is shown.
  • variable gain amplifier relates to a configuration in which the gain can be changed by controlling the conduction state and the cutoff state for each of the plurality of unit cell circuits, and is used for a radio receiver or the like.
  • 100a to 100n unit cell circuit 101 first transistor, 102 second transistor, 103 switch transistor, 104 impedance transformer, 105a to 105n emitter input terminal, 106a to 106n collector output terminal, 107a to 107n base bias terminal, 108a to 108n, first gain control terminal, 109a to 109n, second gain control terminal, 110 transistor, 111 voltage input terminal, 112 load inductance, 113 output terminal, 114 control circuit section, 115 base current source, 116 logic Generator circuit, 117 current signal, 201, 202 layout group, 203, 301a to 301n transmission line, 204 high frequency signal block, 205 bias block, 302 group Command layer, 303 and 304 layout group.

Abstract

A control circuit (114) determines a conductive state and a cut-off state for unit cell circuits (100a-100n) by executing control via first gain control terminals (108a-108n) and second gain control terminals (109a-109n). Between a first transistor (101) and a switch transistor (103), and between a second transistor (102) and the switch transistor (103), in each of the unit cell circuits (100a-100n), impedance transformers (104) are provided, in which impedances viewed from the bases of the first transistor (101) and the second transistor (102) to the corresponding first gain control terminal (108a-108n) and the corresponding second gain control terminal (109a-109n), respectively, are set as setting values.

Description

可変利得増幅器Variable gain amplifier
 本発明は、利得を変更可能な可変利得増幅器に関する。 The present invention relates to a variable gain amplifier capable of changing a gain.
 可変利得増幅器において、高い利得制御精度を実現することが可能な方式として、デジタル制御方式のカレントステアリング型の可変利得増幅器が広く用いられている(例えば、特許文献1参照)。このような可変利得増幅器は、信号入力端に接続された増幅段トランジスタと、この増幅段トランジスタの出力端にカスコード接続された複数のカスコード段トランジスタを含むものである。複数のカスコード段トランジスタは単位セル回路を構成しており、可変利得増幅器は、これら単位セル回路を複数備え、それぞれの単位セル回路の導通状態と遮断状態とを制御回路で制御することにより増幅率を可変としている。 In a variable gain amplifier, a digitally controlled current steering type variable gain amplifier is widely used as a method capable of realizing high gain control accuracy (see, for example, Patent Document 1). Such a variable gain amplifier includes an amplification stage transistor connected to a signal input end and a plurality of cascode stage transistors connected in cascade to the output end of the amplification stage transistor. The plurality of cascode stage transistors constitute a unit cell circuit, and the variable gain amplifier includes a plurality of these unit cell circuits, and the amplification factor is obtained by controlling the conduction state and the cutoff state of each unit cell circuit by the control circuit. Is variable.
 カレントステアリング型の可変利得増幅器は、一つのアンプと見たときにベース接地トランジスタを用いたカスコードアンプとみなすことができる。可変利得増幅器を設計する上で重要なことの一つとして、入力電流をベース端子側に逃がすことなく出力端子に伝える点がある。従って、カスコードデバイスであるベース接地トランジスタのベース端子はショート点に整合を取ることが必要となる。つまり、トランジスタのベース端子から、このトランジスタを制御する制御回路側を見たときのインピーダンスが、動作周波数において十分に低い必要がある。このインピーダンスが高いと、エミッタ端子からの入力信号がベース端子側に漏れるために利得低下を招く。そのために、従来、ベース端子には、安定化容量を配置していた。 The current steering type variable gain amplifier can be regarded as a cascode amplifier using a common base transistor when viewed as one amplifier. One important factor in designing the variable gain amplifier is that the input current is transmitted to the output terminal without being released to the base terminal side. Therefore, it is necessary to match the base terminal of the grounded base transistor, which is a cascode device, to the short point. That is, the impedance when the control circuit side that controls the transistor is viewed from the base terminal of the transistor needs to be sufficiently low at the operating frequency. When this impedance is high, an input signal from the emitter terminal leaks to the base terminal side, resulting in a decrease in gain. Therefore, conventionally, a stabilization capacitor has been arranged at the base terminal.
特開2007-259297号公報JP 2007-259297 A
 しかしながら、従来の可変利得増幅器では、ベース接地トランジスタのベース端子に容量素子を配置する必要があるために、単位セル回路の面積が大きくなり、従って、単位セル回路をアレイ状に配置した場合には高周波信号を伝えるためのトランジスタの配線面積が大きくなる。その結果、寄生容量やインダクタンスの増加により、可変利得増幅器としての動作帯域、利得及び雑音などの点で高周波特性を低下させるという問題点を有していた。 However, in the conventional variable gain amplifier, since it is necessary to arrange a capacitive element at the base terminal of the common base transistor, the area of the unit cell circuit becomes large. Therefore, when the unit cell circuits are arranged in an array, The wiring area of a transistor for transmitting a high frequency signal is increased. As a result, there has been a problem that high frequency characteristics are lowered in terms of operating band, gain and noise as a variable gain amplifier due to an increase in parasitic capacitance and inductance.
 この発明は、かかる問題を解決するためになされたもので、高周波特性の劣化を抑えることが可能な可変利得増幅器を提供することを目的とする。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a variable gain amplifier capable of suppressing deterioration of high frequency characteristics.
 この発明に係る可変利得増幅器は、ベース接地型の第1のトランジスタと第2のトランジスタを含み、入力端子からの信号を第1のトランジスタを介して出力端子へ導通させる導通状態と、入力端子からの信号を第2のトランジスタを介して出力端子以外の端子に逃がす遮断状態を実現し、第1及び第2のトランジスタのそれぞれのベースを制御する第1の利得制御用端子と第2の利得制御用端子とを有する単位セル回路を複数備えると共に、複数の単位セル回路の入力端子と出力端子とを並列接続し、かつ、第1及び第2の利得制御用端子に接続され、単位セル回路毎に、導通状態か遮断状態のいずれかを設定する制御回路部と、第1及び第2のトランジスタのベースと第1及び第2の利得制御用端子の間に設けられ、制御回路部の設定により、導通状態と遮断状態を実現するスイッチ回路と、第1及び第2のトランジスタのベースから第1及び第2の利得制御用端子側を見たインピーダンスを設定値とするインピーダンス変成器とを備えたものである。 The variable gain amplifier according to the present invention includes a grounded base type first transistor and a second transistor, a conductive state in which a signal from the input terminal is conducted to the output terminal through the first transistor, and from the input terminal The first gain control terminal for controlling the respective bases of the first and second transistors and the second gain control are realized by releasing a signal from the first transistor to the terminals other than the output terminal via the second transistor. A plurality of unit cell circuits having a plurality of unit terminals, wherein the input terminals and the output terminals of the plurality of unit cell circuits are connected in parallel and connected to the first and second gain control terminals. Are provided between the base of the first and second transistors and the first and second gain control terminals, and is set in the control circuit unit. And a switch circuit for realizing a conductive state and a cut-off state, and an impedance transformer having a set value as an impedance when the first and second gain control terminals are viewed from the bases of the first and second transistors. It is a thing.
 この発明に係る可変利得増幅器は、第1のトランジスタ及び第2のトランジスタとスイッチ用トランジスタとの間に、第1のトランジスタ及び第2のトランジスタのベースから第1の利得制御用端子及び第2の利得制御用端子側を見たインピーダンスを設定値とするインピーダンス変成器を設けるようにしたものである。これにより、第1のトランジスタ及び第2のトランジスタのベースからベースバイアス端子側を見た時のインピーダンスをショート点付近にインピーダンス変成することができ、その結果、高周波特性の劣化を抑えることができる。 In the variable gain amplifier according to the present invention, the first gain control terminal and the second transistor are provided between the first transistor and the second transistor and the switching transistor between the first transistor and the base of the second transistor. An impedance transformer having an impedance as viewed from the gain control terminal side as a set value is provided. Thereby, the impedance when the base bias terminal side is seen from the bases of the first transistor and the second transistor can be transformed near the short point, and as a result, deterioration of the high frequency characteristics can be suppressed.
図1A及び図1Bは、この発明の実施の形態1による可変利得増幅器の構成図である。1A and 1B are configuration diagrams of a variable gain amplifier according to Embodiment 1 of the present invention. この発明の実施の形態1の可変利得増幅器のレイアウトイメージを示す説明図である。It is explanatory drawing which shows the layout image of the variable gain amplifier of Embodiment 1 of this invention. この発明の実施の形態1の可変利得増幅器におけるインピーダンス変成器の一例を示す斜視図である。It is a perspective view which shows an example of the impedance transformer in the variable gain amplifier of Embodiment 1 of this invention. この発明の実施の形態2の可変利得増幅器におけるインピーダンス変成の軌跡をスミスチャートを用いて示す説明図である。It is explanatory drawing which shows the locus | trajectory of impedance transformation in the variable gain amplifier of Embodiment 2 of this invention using a Smith chart.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1A及び図1Bは、本実施の形態による可変利得増幅器の構成図である。
 本実施の形態による可変利得増幅器は、図示のように、カレントステアリング型の可変利得増幅器である。単位セル回路100a~100nは複数個並列に接続されており、個数はN個とする。単位セル回路100a~100nは、それぞれ第1のトランジスタ101、第2のトランジスタ102、スイッチ用トランジスタ103、インピーダンス変成器104を備えている。
Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
1A and 1B are configuration diagrams of a variable gain amplifier according to the present embodiment.
The variable gain amplifier according to the present embodiment is a current steering type variable gain amplifier as shown in the figure. A plurality of unit cell circuits 100a to 100n are connected in parallel, and the number is N. Each of the unit cell circuits 100a to 100n includes a first transistor 101, a second transistor 102, a switching transistor 103, and an impedance transformer 104.
 第1のトランジスタ101と第2のトランジスタ102のエミッタは、単位セル回路100a~100nのエミッタ入力端子105a~105nに接続されている。第1のトランジスタ101のコレクタは、単位セル回路100a~100nのコレクタ出力端子106a~106nに接続されている。第2のトランジスタ102のコレクタは電源に接続されている。第1のトランジスタ101及び第2のトランジスタ102のベースは、それぞれインピーダンス変成器104を介して、NMOSトランジスタからなるスイッチ用トランジスタ103のドレイン端子に接続されている。 The emitters of the first transistor 101 and the second transistor 102 are connected to the emitter input terminals 105a to 105n of the unit cell circuits 100a to 100n. The collector of the first transistor 101 is connected to the collector output terminals 106a to 106n of the unit cell circuits 100a to 100n. The collector of the second transistor 102 is connected to the power source. The bases of the first transistor 101 and the second transistor 102 are connected to the drain terminal of a switching transistor 103 made of an NMOS transistor via an impedance transformer 104, respectively.
 スイッチ用トランジスタ103のソースは、単位セル回路100a~100nのベースバイアス端子107a~107nに接続されている。スイッチ用トランジスタ103のゲートは、単位セル回路100a~100nにおける第1の利得制御用端子108a~108n及び第2の利得制御用端子109a~109nに接続されている。単位セル回路100a~100nのエミッタ入力端子105a~105nは、トランジスタ110のソースに接続されている。トランジスタ110のドレインは接地され、ゲートは電圧入力端子111に接続されている。単位セル回路100a~100nのコレクタ出力端子106a~106nは、負荷インダクタンス112を介して電源に接続されていると共に、出力端子113に接続されている。 The source of the switching transistor 103 is connected to the base bias terminals 107a to 107n of the unit cell circuits 100a to 100n. The gate of the switching transistor 103 is connected to the first gain control terminals 108a to 108n and the second gain control terminals 109a to 109n in the unit cell circuits 100a to 100n. The emitter input terminals 105a to 105n of the unit cell circuits 100a to 100n are connected to the source of the transistor 110. The drain of the transistor 110 is grounded, and the gate is connected to the voltage input terminal 111. The collector output terminals 106a to 106n of the unit cell circuits 100a to 100n are connected to the power supply via the load inductance 112 and also to the output terminal 113.
 図1Bは制御回路部114を示している。制御回路部114はベース電流源115とロジック生成回路116を備える。ベース電流源115は、ベースバイアス端子107a~107nを介して、第1のトランジスタ101及び第2のトランジスタ102のベース電流を供給するための電源である。ロジック生成回路116は、可変利得増幅器としての利得を制御するための制御信号を生成する回路であり、第1の利得制御用端子108a~108n及び第2の利得制御用端子109a~109nを介してのスイッチ用トランジスタ103の制御を行うよう構成されている。 FIG. 1B shows the control circuit unit 114. The control circuit unit 114 includes a base current source 115 and a logic generation circuit 116. The base current source 115 is a power source for supplying base currents of the first transistor 101 and the second transistor 102 via the base bias terminals 107a to 107n. The logic generation circuit 116 is a circuit that generates a control signal for controlling the gain as the variable gain amplifier, and is connected via the first gain control terminals 108a to 108n and the second gain control terminals 109a to 109n. The switch transistor 103 is controlled.
 このように構成された可変利得増幅器において、第1のトランジスタ101及び第2のトランジスタ102のベースからベースバイアス端子107a~107n側を見たときのインピーダンスは、制御回路部114内のベース電流源115のインピーダンスと、スイッチ用トランジスタ103のオン抵抗と、インピーダンス変成器104によって決定される。一般に電流源として機能する回路の出力インピーダンスは高く、ベース電流源115の出力インピーダンスは高く、さらにNMOSトランジスタのオン抵抗もトランジスタサイズにもよるが数十Ωから数百Ωと有限の抵抗値を有する。従って、インピーダンス変成器104の特性インピーダンスをこれらの合成インピーダンスよりも十分に低い値に設計することで、第1のトランジスタ101及び第2のトランジスタ102のベースからベースバイアス端子107a~107n側を見た時のインピーダンスをショート点付近にインピーダンス変成することができる。結果として、第1のトランジスタ101及び第2のトランジスタ102がカスコード回路として動作することが可能となり、エミッタ入力端子105a~105nからコレクタ出力端子106a~106nへの電流利得を高い値に保つことができる。 In the variable gain amplifier configured as described above, the impedance when the base bias terminals 107a to 107n are viewed from the bases of the first transistor 101 and the second transistor 102 is the base current source 115 in the control circuit unit 114. , The on-resistance of the switching transistor 103, and the impedance transformer 104. Generally, the output impedance of a circuit that functions as a current source is high, the output impedance of the base current source 115 is high, and the on-resistance of the NMOS transistor also has a finite resistance value of several tens to several hundreds Ω depending on the transistor size. . Accordingly, by designing the characteristic impedance of the impedance transformer 104 to a value sufficiently lower than these combined impedances, the base bias terminals 107a to 107n are viewed from the bases of the first transistor 101 and the second transistor 102. The impedance at the time can be transformed near the short point. As a result, the first transistor 101 and the second transistor 102 can operate as a cascode circuit, and the current gain from the emitter input terminals 105a to 105n to the collector output terminals 106a to 106n can be maintained at a high value. .
 次に、実施の形態1の動作について説明する。
 電圧入力端子111からの入力信号は、トランジスタ110により電流信号117に変換される。電流信号117はN分配されて、単位セル回路100a~100nのエミッタ入力端子105a~105nに入力される。それぞれの単位セル回路100a~100nは、制御回路部114からの第1の利得制御用端子108a~108n及び第2の利得制御用端子109a~109nの制御及びベースバイアス端子107a~107nへの電源供給によって、電流信号117が出力端子113へと伝わる電流量を制御することで、利得が制御される。
Next, the operation of the first embodiment will be described.
An input signal from the voltage input terminal 111 is converted into a current signal 117 by the transistor 110. The current signal 117 is distributed N and is input to the emitter input terminals 105a to 105n of the unit cell circuits 100a to 100n. Each of the unit cell circuits 100a to 100n controls the first gain control terminals 108a to 108n and the second gain control terminals 109a to 109n from the control circuit unit 114 and supplies power to the base bias terminals 107a to 107n. Thus, the gain is controlled by controlling the amount of current transmitted to the output terminal 113 by the current signal 117.
 制御回路部114は、ベース電流源115によって、第1のトランジスタ101及び第2のトランジスタ102のベースをバイアスするための基準電流を生成し、ベースバイアス端子107a~107n及びスイッチ用トランジスタ103を介して電源を供給する。
 N個の単位セル回路100a~100nは、第1の利得制御用端子108a~108nと第2の利得制御用端子109a~109nとに与えられる制御回路部114からの制御信号によってスイッチ用トランジスタ103のオンオフが制御される。これにより、第1のトランジスタ101導通状態と第2のトランジスタ102の遮断状態が制御され、エミッタ入力端子105a~105nからの電流を電源に逃がすか、出力端子113へと伝えるかの二つの動作が可能である。例えば、単位セル回路100a~100nのうちで、Nsel個だけを出力端子113に伝わるよう制御し、残りは電流を電源に逃がすように制御した場合の電流利得Gは下式の通りとなる。
  G=Nsel/N
The control circuit unit 114 generates a reference current for biasing the bases of the first transistor 101 and the second transistor 102 by the base current source 115, and passes through the base bias terminals 107 a to 107 n and the switching transistor 103. Supply power.
The N unit cell circuits 100a to 100n are connected to the switching transistor 103 by a control signal from the control circuit unit 114 supplied to the first gain control terminals 108a to 108n and the second gain control terminals 109a to 109n. ON / OFF is controlled. As a result, the conduction state of the first transistor 101 and the cutoff state of the second transistor 102 are controlled, and the two operations of releasing the current from the emitter input terminals 105a to 105n to the power source or transmitting the current to the output terminal 113 are performed. Is possible. For example, among the unit cell circuits 100a to 100n, control is performed so that only Nsel is transmitted to the output terminal 113, and the remainder is controlled so as to release current to the power supply, and the current gain G is expressed by the following equation.
G = Nsel / N
 本構成は、半導体デバイスとして実現するために回路図をマスクパターンへとレイアウト設計する際に、従来の回路よりも優れた効果を有している。図2に、実施の形態1の可変利得増幅器のレイアウトイメージを示す。図1中の単位セル回路100a~100n中の要素回路を、高周波信号用ブロック204とバイアス用ブロック205に分割して、N個アレイ状に配置し、これら二つのブロックをインピーダンス変成用の伝送線路203により接続している。レイアウト群201がN個の高周波信号用ブロック204であり、レイアウト群202がN個のバイアス用ブロック205を示している。伝送線路203は、図1A中のインピーダンス変成器104であり、所望周波数における1/4波長の伝送線路として実装されている。高周波信号用ブロック204は、図1中の第1のトランジスタ101及び第2のトランジスタ102が含まれ、高周波信号を通す回路のみが分離された構成である。バイアス用ブロック205にはスイッチ用トランジスタ103が含まれる。 This configuration has an effect superior to that of a conventional circuit when designing a layout of a circuit diagram into a mask pattern for realization as a semiconductor device. FIG. 2 shows a layout image of the variable gain amplifier according to the first embodiment. The element circuits in the unit cell circuits 100a to 100n in FIG. 1 are divided into a high-frequency signal block 204 and a bias block 205 and arranged in an N-array, and these two blocks are used as impedance transformation transmission lines. 203 is connected. The layout group 201 is N high frequency signal blocks 204, and the layout group 202 is N bias blocks 205. The transmission line 203 is the impedance transformer 104 in FIG. 1A, and is mounted as a 1/4 wavelength transmission line at a desired frequency. The high-frequency signal block 204 includes the first transistor 101 and the second transistor 102 in FIG. 1, and has a configuration in which only a circuit that passes a high-frequency signal is separated. The bias block 205 includes a switch transistor 103.
 インピーダンス変成器104は、所望周波数における1/4波長の伝送線路203であって、物理的な長さを有する。この長さを利用することでバイアス用ブロック205を高周波信号用ブロック204から距離を離して配置することができる。また、バイアス用ブロック205は低周波信号であるバイアス電流を正確に伝えることさえできれば、レイアウトによる寄生容量やインダクタンスに対する特性変化の感度は低い。従って、高周波信号経路に影響を与えないような、チップ面積の余った任意の領域に配置することができて、チップ面積の有効活用を可能とする。 The impedance transformer 104 is a 1/4 wavelength transmission line 203 at a desired frequency and has a physical length. By using this length, the bias block 205 can be arranged at a distance from the high-frequency signal block 204. In addition, as long as the bias block 205 can accurately transmit a bias current, which is a low-frequency signal, the sensitivity of characteristic changes to parasitic capacitance and inductance due to layout is low. Therefore, the chip area can be arranged in an arbitrary area that does not affect the high-frequency signal path, and the chip area can be effectively used.
 もっとも大きな効果は、高周波信号用ブロック204を、密集してレイアウトできる点にある。高周波信号用ブロック204はN個まとめて配置されたレイアウト群201となり、図1中のエミッタ入力端子105a~105nとコレクタ出力端子106a~106nの配線面積を小さくして、寄生の容量やインダクタンスを小さくすることを可能にする。これらの端子の寄生成分を抑えることで、高周波特性を最適化するインピーダンスへの整合を容易にするため、高利得化や広帯域化、低雑音化といった高周波性能の改善効果が得られる。 The greatest effect is that the high-frequency signal block 204 can be densely laid out. The high-frequency signal block 204 is a group of layouts 201 arranged together, and the wiring area of the emitter input terminals 105a to 105n and the collector output terminals 106a to 106n in FIG. 1 is reduced to reduce parasitic capacitance and inductance. Make it possible to do. By suppressing the parasitic components of these terminals, matching with impedance that optimizes high-frequency characteristics is facilitated, so that high-frequency performance improvement effects such as higher gain, wider bandwidth, and lower noise can be obtained.
 図3には、インピーダンス変成器104の一例として、図2に示した伝送線路203のマイクロストリップ線路方式での実現例を示す。本発明の回路構成では、インピーダンス変成器104(伝送線路203)の特性インピーダンスは低い方が望ましく、多層配線を容易に実現可能なシリコンプロセスとの相性が良い。伝送線路301a,…,301m、301nと、グランド層302との距離を近づけることで線路幅の短い伝送線路を実現でき、レイアウト群201をさらに小型化することもできる。伝送線路のパターンは、高周波用ブロックからなるレイアウト群303(図2中のレイアウト群201)とバイアス用ブロックからなるレイアウト群304(図2中のレイアウト群202)を接続して、高周波特性を最適化するようなインピーダンス変成を実現している。 FIG. 3 shows an implementation example of the transmission line 203 shown in FIG. 2 in the microstrip line system as an example of the impedance transformer 104. In the circuit configuration of the present invention, the impedance transformer 104 (transmission line 203) desirably has a low characteristic impedance, and is compatible with a silicon process that can easily realize multilayer wiring. By shortening the distance between the transmission lines 301a,..., 301m, 301n and the ground layer 302, a transmission line with a short line width can be realized, and the layout group 201 can be further downsized. For the transmission line pattern, the layout group 303 (layout group 201 in FIG. 2) composed of high frequency blocks and the layout group 304 (layout group 202 in FIG. 2) composed of bias blocks are connected to optimize the high frequency characteristics. Impedance transformation is realized.
 なお、図2及び図3に示したレイアウト例は、本実施の形態の可変利得増幅器の回路構成をレイアウト設計する場合の一例であって、例えば図2に示したような1次元のアレイ配置に限定するものではない。2次元のアレイ配置でも同様に有効である。アレイ配置の決め方は、高周波信号の経路につく寄生成分を最小化することや、チップ面積の有効活用観点や、高周波信号用ブロック204のトランジスタのパラメータなどによって最適化されるべき設計事項の一つである。 The layout example shown in FIGS. 2 and 3 is an example of layout design of the circuit configuration of the variable gain amplifier according to the present embodiment. For example, the layout example shown in FIG. 2 has a one-dimensional array arrangement. It is not limited. The same applies to a two-dimensional array arrangement. The method of determining the array arrangement is one of the design items that should be optimized by minimizing the parasitic components on the path of the high-frequency signal, effectively using the chip area, and the parameters of the transistors of the high-frequency signal block 204. It is.
 また、説明を簡略化するために、図1中のベース電流源115やスイッチ用トランジスタ103のインピーダンスを純粋な抵抗性として説明し、理想的な1/4波長線路によるインピーダンス変成器104を用いて説明した。しかしながら、厳密には寄生の容量やインダクタンスによるリアクタンス成分が必ず存在し、これらのリアクタンス成分を含めた上で、第1のトランジスタ101及び第2のトランジスタ102のベースから見たインピーダンスをショート点に近づけるインピーダンス変成器104の調整(例えば線路長の調整)が設計事項の一つであることは言うまでもない。 In order to simplify the description, the impedance of the base current source 115 and the switching transistor 103 in FIG. 1 will be described as pure resistance, and an impedance transformer 104 using an ideal quarter wavelength line will be used. explained. However, strictly speaking, reactance components due to parasitic capacitance and inductance always exist, and after including these reactance components, the impedance viewed from the bases of the first transistor 101 and the second transistor 102 is brought close to the short point. Needless to say, adjustment of the impedance transformer 104 (for example, adjustment of the line length) is one of the design matters.
 なお、上記例では、高周波用ブロックに用いる第1のトランジスタ101及び第2のトランジスタ102に対して、バイポーラトランジスタを用いた場合について説明したが、これらのトランジスタとして電界効果トランジスタを用いても、高周波特性の改善効果は得られる。電界効果トランジスタを用いた場合は、ゲート接地型となり、ゲートとスイッチ用トランジスタ103との間にインピーダンス変成器104を配設することになる。 In the above example, the case where bipolar transistors are used for the first transistor 101 and the second transistor 102 used in the high frequency block has been described. However, even if field effect transistors are used as these transistors, the high frequency is used. The effect of improving the characteristics can be obtained. When a field effect transistor is used, the gate grounding type is used, and the impedance transformer 104 is disposed between the gate and the switching transistor 103.
 以上説明したように、実施の形態1の可変利得増幅器によれば、ベース接地型の第1のトランジスタと第2のトランジスタを含み、入力端子からの信号を第1のトランジスタを介して出力端子へ導通させる導通状態と、入力端子からの信号を第2のトランジスタを介して出力端子以外の端子に逃がす遮断状態を実現し、第1及び第2のトランジスタのそれぞれのベースを制御する第1の利得制御用端子と第2の利得制御用端子とを有する単位セル回路を複数備えると共に、複数の単位セル回路の入力端子と出力端子とを並列接続し、かつ、第1及び第2の利得制御用端子に接続され、単位セル回路毎に、導通状態か遮断状態のいずれかを設定する制御回路部と、第1及び第2のトランジスタのベースと第1及び第2の利得制御用端子の間に設けられ、制御回路部の設定により、導通状態と遮断状態を実現するスイッチ回路と、第1及び第2のトランジスタのベースから第1及び第2の利得制御用端子側を見たインピーダンスを設定値とするインピーダンス変成器とを備えたので、第1のトランジスタ及び第2のトランジスタのベースからベースバイアス端子側を見た時のインピーダンスをショート点付近にインピーダンス変成することができ、高周波特性の劣化を抑えることができる。 As described above, according to the variable gain amplifier of the first embodiment, the base-grounded first transistor and the second transistor are included, and the signal from the input terminal is output to the output terminal via the first transistor. A first gain for controlling a base of each of the first and second transistors by realizing a conduction state for conducting and a cutoff state for allowing a signal from the input terminal to escape to a terminal other than the output terminal through the second transistor. A plurality of unit cell circuits each having a control terminal and a second gain control terminal are provided, input terminals and output terminals of the plurality of unit cell circuits are connected in parallel, and the first and second gain control terminals are provided. A control circuit unit that is connected to a terminal and sets a conduction state or a cutoff state for each unit cell circuit, and between the bases of the first and second transistors and the first and second gain control terminals. The switch circuit that realizes the conduction state and the cutoff state by the setting of the control circuit unit, and the impedance when the first and second gain control terminal sides are viewed from the bases of the first and second transistors are set values. The impedance transformer when the base bias terminal side is viewed from the base of the first transistor and the second transistor can be impedance-transformed near the short point, and the high frequency characteristics are deteriorated. Can be suppressed.
 また、実施の形態1の可変利得増幅器によれば、インピーダンス変成器は、スイッチ回路のインピーダンスと制御回路部のインピーダンスを合計したインピーダンスよりも、小さい値の特性インピーダンスを有し、設定された動作周波数における波長の1/4の線路長を有するようにしたので、半導体デバイスとして実現する場合にチップ面積を有効活用することができる。 Further, according to the variable gain amplifier of the first embodiment, the impedance transformer has a characteristic impedance that is smaller than the total impedance of the switch circuit impedance and the control circuit unit impedance, and has a set operating frequency. In this case, the chip area can be effectively used when the semiconductor device is realized.
 また、実施の形態1の可変利得増幅器によれば、ゲート接地型の第1の電界効果トランジスタと第2の電界効果トランジスタを含み、入力端子からの信号を第1の電界効果トランジスタを介して出力端子へ導通させる導通状態と、入力端子からの信号を第2の電界効果トランジスタを介して出力端子以外の端子に逃がす遮断状態を実現し、第1及び第2の電界効果トランジスタのそれぞれのゲートを制御する第1の利得制御用端子と第2の利得制御用端子とを有する単位セル回路を複数備えると共に、複数の単位セル回路の入力端子と出力端子とを並列接続し、かつ、第1及び第2の利得制御用端子に接続され、単位セル回路毎に、導通状態か遮断状態のいずれかを設定する制御回路部と、第1及び第2の電界効果トランジスタのゲートと第1及び第2の利得制御用端子の間に設けられ、制御回路部の設定により、導通状態と遮断状態を実現するスイッチ回路と、第1及び第2の電界効果トランジスタのゲートから第1及び第2の利得制御用端子側を見たインピーダンスを設定値とするインピーダンス変成器とを備えたので、第1の電界効果トランジスタ及び第2の電界効果トランジスタのベースからベースバイアス端子側を見た時のインピーダンスをショート点付近にインピーダンス変成することができ、高周波特性の劣化を抑えることができる。 In addition, the variable gain amplifier according to the first embodiment includes a grounded-gate first field effect transistor and a second field effect transistor, and outputs a signal from the input terminal via the first field effect transistor. A conduction state for conducting to the terminal, and a blocking state for releasing a signal from the input terminal to a terminal other than the output terminal via the second field effect transistor, and the gates of the first and second field effect transistors are connected to each other. A plurality of unit cell circuits each having a first gain control terminal and a second gain control terminal to be controlled; the input terminals and the output terminals of the plurality of unit cell circuits are connected in parallel; and A control circuit unit which is connected to the second gain control terminal and sets either a conduction state or a cutoff state for each unit cell circuit; and gates of the first and second field effect transistors; A switching circuit that is provided between the first and second gain control terminals and realizes a conductive state and a cut-off state according to the setting of the control circuit unit, and the first and second gates of the first and second field effect transistors And an impedance transformer whose setting value is an impedance when the gain control terminal side is viewed from the base of the first field effect transistor and the second field effect transistor. Impedance can be transformed near the short point, and deterioration of high frequency characteristics can be suppressed.
実施の形態2.
 図3に示したように、インピーダンス変成器を伝送線路として実現した場合、その特性インピーダンスを十分に低い値となるようにレイアウト設計することで、本構成の効果を大きくすることができる。具体的には、図1中のベース電流源115のインピーダンスをR1[ohm]とし、スイッチ用トランジスタ103のオン抵抗をR2[ohm]、伝送線路301a~301n(インピーダンス変成器104)の特性インピーダンスをZo[ohm]とした場合に、以下の関係を満たすことが望ましい。
  Zo<<(R1+R2)
 図4は、インピーダンス変成の軌跡をスミスチャートを用いて示す説明図である。図では、第1のトランジスタ101及び第2のトランジスタ102のベースから制御回路部114側を見たインピーダンス401、ベースバイアス端子107a~107nから制御回路部114側を見たインピーダンス402、及びインピーダンス変成器104によるスミスチャート上の軌跡403を図示している。
Embodiment 2. FIG.
As shown in FIG. 3, when the impedance transformer is realized as a transmission line, the effect of this configuration can be increased by designing the layout so that the characteristic impedance becomes a sufficiently low value. Specifically, the impedance of the base current source 115 in FIG. 1 is R1 [ohm], the on-resistance of the switching transistor 103 is R2 [ohm], and the characteristic impedance of the transmission lines 301a to 301n (impedance transformer 104) is In the case of Zo [ohm], it is desirable to satisfy the following relationship.
Zo << (R1 + R2)
FIG. 4 is an explanatory diagram showing the impedance transformation locus using a Smith chart. In the figure, an impedance 401 when the control circuit unit 114 is viewed from the bases of the first transistor 101 and the second transistor 102, an impedance 402 when the control circuit unit 114 is viewed from the base bias terminals 107a to 107n, and an impedance transformer. A locus 403 on the Smith chart according to 104 is shown.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, any combination of the embodiments, or any modification of any component in each embodiment, or omission of any component in each embodiment is possible. .
 以上のように、この発明に係る可変利得増幅器は、複数の単位セル回路毎に導通状態と遮断状態とを制御することで利得を変更可能とする構成に関するものであり、無線受信機などに用いるのに適している。 As described above, the variable gain amplifier according to the present invention relates to a configuration in which the gain can be changed by controlling the conduction state and the cutoff state for each of the plurality of unit cell circuits, and is used for a radio receiver or the like. Suitable for
 100a~100n 単位セル回路、101 第1のトランジスタ、102 第2のトランジスタ、103 スイッチ用トランジスタ、104 インピーダンス変成器、105a~105n エミッタ入力端子、106a~106n コレクタ出力端子、107a~107n ベースバイアス端子、108a~108n 第1の利得制御用端子、109a~109n 第2の利得制御用端子、110 トランジスタ、111 電圧入力端子、112 負荷インダクタンス、113 出力端子、114 制御回路部、115 ベース電流源、116 ロジック生成回路、117 電流信号、201,202 レイアウト群、203,301a~301n 伝送線路、204 高周波信号用ブロック、205 バイアス用ブロック、302 グランド層、303,304 レイアウト群。 100a to 100n unit cell circuit, 101 first transistor, 102 second transistor, 103 switch transistor, 104 impedance transformer, 105a to 105n emitter input terminal, 106a to 106n collector output terminal, 107a to 107n base bias terminal, 108a to 108n, first gain control terminal, 109a to 109n, second gain control terminal, 110 transistor, 111 voltage input terminal, 112 load inductance, 113 output terminal, 114 control circuit section, 115 base current source, 116 logic Generator circuit, 117 current signal, 201, 202 layout group, 203, 301a to 301n transmission line, 204 high frequency signal block, 205 bias block, 302 group Command layer, 303 and 304 layout group.

Claims (3)

  1.  ベース接地型の第1のトランジスタと第2のトランジスタを含み、入力端子からの信号を前記第1のトランジスタを介して出力端子へ導通させる導通状態と、前記入力端子からの信号を前記第2のトランジスタを介して前記出力端子以外の端子に逃がす遮断状態を実現し、前記第1及び第2のトランジスタのそれぞれのベースを制御する第1の利得制御用端子と第2の利得制御用端子とを有する単位セル回路を複数備えると共に、当該複数の単位セル回路の前記入力端子と前記出力端子とを並列接続し、かつ、
     前記第1及び第2の利得制御用端子に接続され、前記単位セル回路毎に、前記導通状態か前記遮断状態のいずれかを設定する制御回路部と、
     前記第1及び第2のトランジスタの前記ベースと前記第1及び第2の利得制御用端子の間に設けられ、前記制御回路部の設定により、前記導通状態と前記遮断状態を実現するスイッチ回路と、
     前記第1及び第2のトランジスタの前記ベースから前記第1及び第2の利得制御用端子側を見たインピーダンスを設定値とするインピーダンス変成器とを備えたことを特徴とする可変利得増幅器。
    A grounded base type first transistor and a second transistor, a conduction state for conducting a signal from an input terminal to the output terminal via the first transistor; and a signal from the input terminal for the second A first gain control terminal and a second gain control terminal for controlling a base of each of the first and second transistors by realizing a cut-off state that escapes to a terminal other than the output terminal through a transistor. A plurality of unit cell circuits, and the input terminals and the output terminals of the plurality of unit cell circuits connected in parallel; and
    A control circuit unit which is connected to the first and second gain control terminals and sets either the conduction state or the cutoff state for each unit cell circuit;
    A switch circuit provided between the bases of the first and second transistors and the first and second gain control terminals, and configured to realize the conduction state and the cutoff state according to the setting of the control circuit unit; ,
    A variable gain amplifier comprising: an impedance transformer having a set value as an impedance when the first and second gain control terminals are viewed from the bases of the first and second transistors.
  2.  前記インピーダンス変成器は、前記スイッチ回路のインピーダンスと前記制御回路部のインピーダンスを合計したインピーダンスよりも、小さい値の特性インピーダンスを有し、設定された動作周波数における波長の1/4の線路長を有することを特徴とする請求項1記載の可変利得増幅器。 The impedance transformer has a characteristic impedance that is smaller than the total impedance of the switch circuit and the control circuit, and has a line length that is ¼ of the wavelength at the set operating frequency. The variable gain amplifier according to claim 1.
  3.  ゲート接地型の第1の電界効果トランジスタと第2の電界効果トランジスタを含み、入力端子からの信号を前記第1の電界効果トランジスタを介して出力端子へ導通させる導通状態と、前記入力端子からの信号を前記第2の電界効果トランジスタを介して前記出力端子以外の端子に逃がす遮断状態を実現し、前記第1及び第2の電界効果トランジスタのそれぞれのゲートを制御する第1の利得制御用端子と第2の利得制御用端子とを有する単位セル回路を複数備えると共に、当該複数の単位セル回路の前記入力端子と前記出力端子とを並列接続し、かつ、
     前記第1及び第2の利得制御用端子に接続され、前記単位セル回路毎に、前記導通状態か前記遮断状態のいずれかを設定する制御回路部と、
     前記第1及び第2の電界効果トランジスタの前記ゲートと前記第1及び第2の利得制御用端子の間に設けられ、前記制御回路部の設定により、前記導通状態と前記遮断状態を実現するスイッチ回路と、
     前記第1及び第2の電界効果トランジスタの前記ゲートから前記第1及び第2の利得制御用端子側を見たインピーダンスを設定値とするインピーダンス変成器とを備えたことを特徴とする可変利得増幅器。
    A grounded gate type first field effect transistor and a second field effect transistor, a conduction state for conducting a signal from the input terminal to the output terminal via the first field effect transistor; A first gain control terminal for controlling a gate of each of the first and second field effect transistors by realizing a cut-off state in which a signal is released to a terminal other than the output terminal via the second field effect transistor. And a plurality of unit cell circuits each having a second gain control terminal, the input terminal and the output terminal of the plurality of unit cell circuits are connected in parallel, and
    A control circuit unit which is connected to the first and second gain control terminals and sets either the conduction state or the cutoff state for each unit cell circuit;
    A switch that is provided between the gates of the first and second field effect transistors and the first and second gain control terminals, and realizes the conduction state and the cutoff state by setting the control circuit unit. Circuit,
    A variable gain amplifier comprising: an impedance transformer having a set value as an impedance when the first and second gain control terminals are viewed from the gates of the first and second field effect transistors. .
PCT/JP2017/002134 2017-01-23 2017-01-23 Variable gain amplifier WO2018134999A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018538798A JP6411006B1 (en) 2017-01-23 2017-01-23 Variable gain amplifier
PCT/JP2017/002134 WO2018134999A1 (en) 2017-01-23 2017-01-23 Variable gain amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/002134 WO2018134999A1 (en) 2017-01-23 2017-01-23 Variable gain amplifier

Publications (1)

Publication Number Publication Date
WO2018134999A1 true WO2018134999A1 (en) 2018-07-26

Family

ID=62907925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002134 WO2018134999A1 (en) 2017-01-23 2017-01-23 Variable gain amplifier

Country Status (2)

Country Link
JP (1) JP6411006B1 (en)
WO (1) WO2018134999A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359530A (en) * 2001-03-28 2002-12-13 Sharp Corp High-frequency amplifier
JP2003188665A (en) * 2002-10-29 2003-07-04 Mitsubishi Electric Corp Microwave high-power amplifier
JP2007259297A (en) * 2006-03-24 2007-10-04 Sharp Corp Variable gain amplifier and communication equipment provided with the variable gain amplifier
US20120056681A1 (en) * 2010-09-06 2012-03-08 Chih-Hung Lee Signal amplification circuits for receiving/transmitting signals according to input signal
JP2013183412A (en) * 2012-03-05 2013-09-12 Renesas Electronics Corp High frequency amplifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359530A (en) * 2001-03-28 2002-12-13 Sharp Corp High-frequency amplifier
JP2003188665A (en) * 2002-10-29 2003-07-04 Mitsubishi Electric Corp Microwave high-power amplifier
JP2007259297A (en) * 2006-03-24 2007-10-04 Sharp Corp Variable gain amplifier and communication equipment provided with the variable gain amplifier
US20120056681A1 (en) * 2010-09-06 2012-03-08 Chih-Hung Lee Signal amplification circuits for receiving/transmitting signals according to input signal
JP2013183412A (en) * 2012-03-05 2013-09-12 Renesas Electronics Corp High frequency amplifier

Also Published As

Publication number Publication date
JP6411006B1 (en) 2018-10-24
JPWO2018134999A1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
US7444124B1 (en) Adjustable segmented power amplifier
US6566963B1 (en) Transformer-based low noise variable gain driver amplifier
JP7071860B2 (en) Amplifier circuit
US9438191B2 (en) Radio frequency power amplifier circuit
JP2006501678A (en) RF power transistor housed in a package with RF bypass and output matching network
US6342813B1 (en) Variable gain amplifier
US10985715B2 (en) Power amplifier circuit
TWI631762B (en) High frequency signal attenuators
US7405626B2 (en) Distributed amplifier having a variable terminal resistance
US8860508B1 (en) Digitally controlled wideband variable gain amplifier
CN113574798B (en) Variable gain amplifier and phased array system
JP2014175675A (en) High frequency amplifier circuit, radio communication device, and high frequency amplifier circuit control method
JP6411006B1 (en) Variable gain amplifier
US10411658B2 (en) Semiconductor device
JP5862653B2 (en) Switching circuit and high frequency module
US9667211B1 (en) Variable gain and slope active topology
Vangerow et al. Circuit building blocks for efficient in-antenna power combining at 240 GHz with non-50 Ohm amplifier matching impedance
KR20080109301A (en) Multi-band amplifier with cascode structure
JP2008236354A (en) Amplifier
WO2022168966A1 (en) Power amplifier circuit
JP7444251B2 (en) amplifier circuit
Hamani et al. A 77 GHz high power and gain transformer-coupled amplifier in CMOS FD-SOI 28 NM
WO2021240830A1 (en) Amplification circuit
CN116488595A (en) Variable gain amplifier circuit and electronic device
JP2023179080A (en) variable gain amplifier

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018538798

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893278

Country of ref document: EP

Kind code of ref document: A1