WO2018134955A1 - Bipolar plate, cell frame, cell stack and redox flow battery - Google Patents

Bipolar plate, cell frame, cell stack and redox flow battery Download PDF

Info

Publication number
WO2018134955A1
WO2018134955A1 PCT/JP2017/001825 JP2017001825W WO2018134955A1 WO 2018134955 A1 WO2018134955 A1 WO 2018134955A1 JP 2017001825 W JP2017001825 W JP 2017001825W WO 2018134955 A1 WO2018134955 A1 WO 2018134955A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
bipolar plate
frame
cell
peripheral edge
Prior art date
Application number
PCT/JP2017/001825
Other languages
French (fr)
Japanese (ja)
Inventor
勇人 藤田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to PCT/JP2017/001825 priority Critical patent/WO2018134955A1/en
Publication of WO2018134955A1 publication Critical patent/WO2018134955A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a bipolar plate, a cell frame, a cell stack, and a redox flow battery.
  • a redox flow battery is one of large-capacity storage batteries that store electric power derived from natural energy such as solar power generation and wind power generation.
  • An RF battery mainly includes a battery cell including a positive electrode to which a positive electrode electrolyte is supplied, a negative electrode to which a negative electrode electrolyte is supplied, and a diaphragm interposed between both electrodes. Charging / discharging is performed by supplying an electrolytic solution of each electrode to the electrode.
  • the battery cell is typically formed using a cell frame including a bipolar plate in which electrodes of each electrode are arranged on the front and back surfaces, and a resin frame provided on the outer peripheral edge of the bipolar plate. .
  • a cell stack including a laminate formed by laminating a cell frame, a positive electrode, a diaphragm, and a negative electrode in this order is used.
  • the cell frame includes a rectangular bipolar plate and a rectangular frame-shaped frame surrounding the outer peripheral edge thereof.
  • recesses are formed on the surface of the bipolar plate and the inner peripheral surface of the frame.
  • An electrode (positive electrode or negative electrode) is disposed in the recess, and a space surrounded by the recess and the diaphragm forms a cell (positive cell or negative cell).
  • the bipolar plate of the present disclosure is A bipolar plate having a surface on which electrodes are disposed, A fitting groove is formed on the surface and into which the outer peripheral edge of the electrode is fitted.
  • the cell frame of the present disclosure is A bipolar plate of the present disclosure; A frame surrounding an outer peripheral edge of the bipolar plate.
  • the cell stack of the present disclosure is A cell frame of the present disclosure; An electrode having an outer peripheral edge fitted in the fitting groove of the bipolar plate; An electrode pressing plate facing the outer peripheral edge of the electrode.
  • the redox flow battery of the present disclosure includes the cell stack of the present disclosure.
  • FIG. 5 is a partial cross-sectional view showing a state in which the cell frame shown in FIG. 4 is cut along a (V)-(V) cutting line.
  • FIG. 5 is a partial cross-sectional view showing a state in which the cell frame shown in FIG. 4 is cut along a (VI)-(VI) cutting line.
  • the cell stack, the positive electrode, the diaphragm, and the negative electrode are normally stacked in this order to assemble the laminate of the cell stack. Since the electrodes are merely arranged in the recesses of the cell frame without being positioned with respect to the bipolar plate, the electrodes are liable to be displaced during assembly. In particular, when the size of the electrode is considerably smaller than the recess, the positional deviation of the electrode tends to be remarkable.
  • an object of the present invention to provide a bipolar plate, a cell frame, and a cell stack that can prevent positional displacement of electrodes during assembly and improve the assembly workability of a redox flow battery.
  • Another object of the present invention is to provide a redox flow battery excellent in assembly workability.
  • the bipolar plate according to one aspect of the present invention is: A bipolar plate having a surface on which electrodes are disposed, A fitting groove is formed on the surface and into which the outer peripheral edge of the electrode is fitted.
  • the cell frame, the positive electrode, the diaphragm, and the negative electrode having the bipolar plate as described above are stacked in this order, so that the electrode is pressed by the member overlying the outer peripheral edge portion. This is because it is fitted in the fitting groove of the bipolar plate. Therefore, positioning of the electrode with respect to the bipolar plate is easy, and the assembly workability of the redox flow battery can be improved.
  • the fitting groove may be formed in an annular shape along the entire outer peripheral edge of the electrode.
  • the outer peripheral edge portion of the electrode is fitted over the entire circumference and is fitted into the groove portion, it is easy to suppress positional displacement over a wide range of the electrode, so that the electrode can be positioned more easily with respect to the bipolar plate.
  • the assembly workability of the redox flow battery can be further enhanced.
  • a cell frame according to an aspect of the present invention includes the bipolar plate according to (1) or (2) above and a frame that surrounds an outer peripheral edge of the bipolar plate.
  • the combination workability of the redox flow battery can be improved by providing the bipolar plate that easily suppresses the displacement of the electrode.
  • a cell stack according to an aspect of the present invention includes: The cell frame of (3) above; An electrode having an outer peripheral edge fitted in the fitting groove of the bipolar plate; An electrode pressing plate facing the outer peripheral edge of the electrode.
  • the assembly workability of the redox flow battery can be improved by providing the cell frame.
  • the electrode pressing plate by providing the electrode pressing plate, it is easy to suppress the positional deviation of the electrode during assembly, and the electrode is arranged on the bipolar plate so that the cell frame and the electrode are integrated into a battery cell or Since the cell stack can be assembled, it is easy to improve the assembly workability of the redox flow battery. It is also possible to assemble the battery cell and the cell stack by stacking the cell frame and the electrodes so that the electrodes are on top and putting them together with an electrode pressing plate, and then turning them over so that the electrodes are on the bottom. In this case, it is easy to suppress the displacement of the electrode and the electrode can be supported by the electrode pressing plate. Therefore, it is easy to suppress the electrode from dropping between the cell frame and the electrode pressing plate.
  • the fitting groove portion is not provided, if the electrode is thinned, the electrode is excessively pressed by the bipolar plate and the electrode pressing plate, and the surface pressure is concentrated, so that the bipolar plate may be broken.
  • the fitting groove is provided, it is easy to suppress the concentration of surface pressure without excessively pressing the electrode with the bipolar plate and the electrode holding plate even if the electrode is thin. Can be prevented from cracking.
  • the thinner the electrode the less likely it is to generate a repulsive force, and the effect of preventing the displacement of the electrode during assembly by the electrode retainer plate is likely to be reduced.However, the electrode is formed between the bipolar plate and the electrode retainer plate by the corners that form the fitting groove. It is because it is easy to press. The thinner the electrode, the more preferable it is to suppress the increase in the internal resistance of the battery.
  • a redox flow battery according to an aspect of the present invention includes the cell stack of (4) above.
  • the assembly workability is excellent.
  • the RF battery 1 typically includes a power generation unit (for example, a solar power generation device, a wind power generation device, and other general power plants) and a load (demand) via an AC / DC converter.
  • the power generated by the power generation unit is charged and stored, and the stored power is discharged and supplied to the load.
  • This charging / discharging uses an electrolytic solution containing metal ions whose valence is changed by oxidation-reduction as an active material for the positive electrode electrolyte and the negative electrode electrolyte, and the redox potential of the ions contained in the positive electrode electrolyte and the negative electrode electrolysis. This is performed using the difference between the redox potential of ions contained in the liquid.
  • a power generation unit for example, a solar power generation device, a wind power generation device, and other general power plants
  • a load demand
  • the power generated by the power generation unit is charged and stored, and the stored power is discharged and supplied to the load.
  • This charging / discharging uses an electro
  • the RF battery 1 is used for, for example, load leveling applications, applications such as sag compensation and emergency power supplies, and output smoothing of natural energy such as solar power generation and wind power generation, which are being introduced in large quantities. .
  • the RF battery 1 includes a battery cell 100 separated into a positive electrode cell 102 and a negative electrode cell 103 by a diaphragm 101 that transmits hydrogen ions.
  • a positive electrode 71 is built in the positive electrode cell 102, and the positive electrode electrolyte is circulated by the positive electrode circulation mechanism 100P.
  • the positive electrode circulation mechanism 100P is provided in the middle of the positive electrode electrolyte tank 106 that stores the positive electrode electrolyte, the supply conduit 108 that connects the positive electrode cell 102 and the positive electrode electrolyte tank 106, the discharge conduit 110, and the supply conduit 108.
  • a negative electrode 72 is built in the negative electrode cell 103, and the negative electrode electrolyte is circulated by the negative electrode circulation mechanism 100N.
  • the negative electrode circulation mechanism 100N is provided in the middle of the negative electrode electrolyte tank 107 that stores the negative electrode electrolyte, the supply conduit 109 that connects the negative electrode cell 103 and the negative electrode electrolyte tank 107, and the supply conduit 109.
  • the pump 113 is provided. During the operation of charging / discharging, each of the electrode electrolytes is supplied from the electrode electrolyte tanks 106 and 107 through the supply conduits 108 and 109 to the electrode cells 102 and 103 by the pumps 112 and 113.
  • the cells 102 and 103 are circulated to the electrode cells 102 and 103 by flowing through the discharge conduits 110 and 111 and being discharged to the electrode electrolyte tanks 106 and 107. During standby when charging / discharging is not performed, the pumps 112 and 113 are stopped, and each electrode electrolyte is not circulated.
  • the battery cell 100 is usually formed inside a structure called a cell stack 2 shown in the lower diagrams of FIGS.
  • the cell stack 2 is configured by sandwiching a laminated body called a sub stack 200 (the lower diagram in FIG. 3) between two end plates 220 from both sides, and tightening both end plates 220 with a tightening mechanism 230.
  • a form including a plurality of substacks 200 is illustrated. 2 and 3, the sub-stack 200 is formed by laminating a plurality of cell frames 3, a positive electrode 71, a diaphragm 101, and a negative electrode 72 in this order, and supplying them to both ends of the laminated body.
  • a drain plate 210 (the lower diagram in FIG. 3 and omitted in FIG. 2) is arranged.
  • the cell frame 3 includes a bipolar plate 4 and a frame 5 surrounding the outer peripheral edge portion 40, and a recess 30 in which the electrode 7 is disposed is formed by the surface of the bipolar plate 4 and the inner peripheral surface of the frame 5.
  • One battery cell 100 is formed between the bipolar plates 4 of the adjacent cell frames 3, and the positive electrode 71 (positive electrode cell 102) and the negative electrode 72 (negative electrode) of the adjacent battery cell 100 are placed on both sides of the bipolar plate 4.
  • Cell 103 ).
  • the cell frame 3 includes an intermediate cell frame disposed between adjacent battery cells 100 (FIGS. 1 to 3) of the stacked body and end cell frames disposed at both ends of the stacked body.
  • the positive electrode 71 of one battery cell 100 and the negative electrode 72 of the other battery cell 100 are in contact with the front and back of the bipolar plate 4, and the end cell frame has the battery cell 100 on one surface of the bipolar plate 4.
  • the configuration of the front and back (positive electrode side / negative electrode side) surfaces of the cell frame 3 is the same in both the intermediate cell frame and the end cell frame.
  • the frame 5 supports the bipolar plate 4 and forms a region to be the battery cell 100 on the inner side.
  • the shape of the frame 5 is a rectangular frame shape, and the opening shape of the recessed part 30 is a rectangular shape.
  • the frame 5 is opposed to the liquid supply side piece 51 (lower side in FIG. 3) having a liquid supply manifold 51m and a liquid supply slit 51s for supplying the electrolyte into the battery cell 100, and the liquid supply side piece 51.
  • the battery cell 100 includes a drainage manifold 52m that drains the electrolyte and a drainage side piece 52 (upper side in FIG. 3) having a drainage slit 52s.
  • the direction in which the liquid supply side piece 51 and the drainage side piece 52 are opposed to each other is the vertical direction, and the direction orthogonal to the vertical direction is the horizontal direction, the liquid supply side piece 51 is The drain side piece 52 is located on the upper side in the vertical direction. That is, the flow of the electrolytic solution is a direction from the lower side in the vertical direction of the frame 5 toward the upper side in the vertical direction.
  • the liquid supply side piece 51 may be formed with a liquid supply rectification portion (not shown) that is formed on the inner edge thereof and diffuses the electrolyte flowing through the liquid supply slit 51s along the inner edge.
  • the drainage side piece 52 may be formed with a drainage rectification unit (not shown) that is formed on the inner edge of the drainage piece 52 and collects the electrolyte solution that has passed through the electrode 7 and flows it to the drainage slit 52s.
  • each electrolyte solution in the cell frame 3 is as follows.
  • the positive electrode electrolyte is supplied from the supply manifold 51m to the positive electrode 71 through the supply slit 51s formed in the supply side piece 51 on the one surface side (the front side of the paper) of the frame 5.
  • the positive electrolyte flows from the lower side to the upper side of the positive electrode 71 and flows through the drain slit 52s formed in the drain side piece 52 as shown by the arrow in the upper diagram of FIG. It is discharged at 52m.
  • the supply and discharge of the negative electrode electrolyte are the same as those of the positive electrode electrolyte except that the negative electrode electrolyte is supplied and discharged on the other surface side (the back side of the paper).
  • annular seal member 80 such as an O-ring or a flat packing is disposed in an annular seal groove to suppress leakage of the electrolyte from the battery cell 100.
  • Embodiment 1 The RF battery 1 according to Embodiment 1 will be described with reference to FIGS. 4 to 6 (FIGS. 1 to 3 as appropriate).
  • One of the features of the RF battery 1 according to the first embodiment is that the bipolar plate 4 has a fitting groove portion 41 into which the outer peripheral edge portion 70 of the electrode 7 is fitted.
  • one of the features of the RF battery 1 according to the first embodiment includes an electrode pressing plate 6 having opposing surfaces facing both the outer peripheral edge portions 70 of the electrode 7, and the electrode pressing plate 6 and the bipolar plate 4
  • the object is to provide a displacement prevention structure that prevents the displacement of the electrode 7 by sandwiching the outer peripheral edge portion 70 of the electrode 7 between the fitting groove 41.
  • FIG. 1 For convenience of explanation, in FIG.
  • the electrode pressing plate 6 is indicated by a thin two-dot chain line
  • the electrode 7 is indicated by a thick two-dot chain line.
  • each manifold, each slit, and the seal member of the frame 5 are omitted. It shows.
  • the horizontal direction on the paper is the horizontal direction
  • the vertical direction on the paper is the vertical direction.
  • the frame 5 is formed by laminating two frame-shaped plate members whose cross-sectional shapes are symmetric (FIGS. 5 and 6).
  • the inner peripheral edge portion 50i of the frame-shaped plate material is formed thin, and when the outer peripheral edge portions 50o of the two frame-shaped plate materials are bonded to each other, the outer periphery of the bipolar plate 4 is between the inner peripheral edge portions 50i of the two frame-shaped plate materials.
  • a space for accommodating the peripheral edge portion 40 is formed.
  • the frame 5 is not integrated with the bipolar plate 4, but may be integrated with the bipolar plate 4 by injection molding, for example.
  • a storage recess 57 for the electrode pressing plate 6 is formed on the outer side surfaces of both frame-shaped plate members.
  • the thickness Ft of the frame 5 can be 4 mm or more. If the thickness Ft of the frame 5 is 4 mm or more, the strength of the laminate (cell stack 2) can be easily maintained.
  • the upper limit of the thickness Ft of the frame 5 can be set to 8 mm or less, for example. As the thickness Ft of the frame 5 increases, the strength can be maintained. However, if the thickness Ft is excessively thick, the laminated body becomes larger.
  • the thickness Ft of the frame 5 can be 4 mm or more and 7 mm or less.
  • the material of the frame 5 includes a material satisfying acid resistance, electrical insulation, and mechanical properties.
  • Examples thereof include various fluorine resins such as polytetrafluoroethylene, polypropylene resin, polyethylene resin, and vinyl chloride resin.
  • the bipolar plate 4 partitions adjacent battery cells 100 (FIGS. 2 and 3).
  • One surface side of the bipolar plate 4 provided in the intermediate cell frame is in contact with the positive electrode 71, and the other surface side is in contact with the negative electrode 72.
  • One surface side of the bipolar plate 4 provided in the end cell frame is in contact with the positive electrode 71 or the negative electrode 72, and the other surface side is not in contact with the electrode.
  • the bipolar plate 4 has a rectangular shape (FIG. 4).
  • the outer peripheral edge 40 of the bipolar plate 4 is an area sandwiched between the inner peripheral edges 50i of the frame 5 and is fixed to the frame 5 (FIGS. 5 and 6).
  • the bipolar plate 4 is fixed to the frame 5 by sandwiching the outer peripheral edge portion 40 of the bipolar plate 4 between the two frame-shaped plate members constituting the frame 5.
  • a fitting groove 41 into which the outer peripheral edge 70 of the electrode 7 is fitted is formed in a portion of the bipolar plate 4 exposed from the frame 5 (FIGS. 4 to 6).
  • the fitting groove 41 In the fitting groove 41, the outer peripheral edge 70 of the electrode 7 is fitted. Thereby, it is easy to suppress the displacement of the electrode 7 with respect to the bipolar plate 4.
  • the cell frame 3, the positive electrode 71, the diaphragm 101, and the negative electrode 72 are stacked in this order, so that the electrode 7 is pressed by the member overlying the outer peripheral edge 70. This is because it is fitted into the fitting groove 41 of the plate 4. Therefore, the positioning of the electrode 7 with respect to the bipolar plate 4 is easy, and the assembly workability of the RF battery 1 can be improved.
  • the fitting groove 41 prevents the positional deviation of the electrode 7 with respect to the bipolar plate 4 by sandwiching the outer peripheral edge 70 of the electrode 7 between the electrode pressing plate 6 described later. At this time, even if the electrode 7 is thin, concentration of surface pressure can be easily suppressed without excessively pressing the electrode 7 with the bipolar plate 4 and the electrode pressing plate 6. Therefore, the crack of the bipolar plate 4 accompanying the concentration of the surface pressure can be suppressed. In addition, even if the electrode 7 is thin, it is easy to suppress the displacement of the electrode 7.
  • the thickness of the electrode 7 is thinner, a repulsive force is less likely to be generated, and the effect of preventing the displacement of the electrode 7 during assembly by the electrode pressing plate 6 can be easily reduced, but the bipolar plate 4 and the electrode are formed by the corners formed in the fitting groove 41. This is because it is easy to press the electrode 7 with the presser plate 6. The thinner the electrode 7 is, the easier it is to suppress the increase in the internal resistance of the battery, which is preferable.
  • the fitting groove portion 41 may be formed intermittently along the circumferential direction of the outer peripheral edge portion 70 of the electrode 7 so as to fit a part of the outer peripheral edge portion 70 of the electrode 7 in the circumferential direction.
  • the outer circumferential edge 70 may be formed continuously along the circumferential direction of the outer circumferential edge 70 of the electrode 7 so as to fit the entire circumferential circumference.
  • the place where the fitting groove portion 41 is formed can be appropriately selected according to the arrangement position of the electrode 7, that is, the position of the outer peripheral edge portion 70 of the electrode 7.
  • the fitting groove portion 41 is formed in an annular shape continuous along the entire circumference so as to fit the entire circumference of the outer peripheral edge portion 70 of the electrode 7 (FIG. 4). Therefore, the concentration of the surface pressure can be suppressed over the entire circumference of the outer peripheral edge portion 70 of the electrode 7.
  • the shape of the fitting groove portion 41 when the bipolar plate 4 is viewed in plan is a shape along the outer shape of the electrode 7, in this case, a rectangular frame shape.
  • the fitting groove 41 fits a pair of fitting lateral groove portions 41x into which the outer peripheral edge portions 70 on the lower side (liquid supply side) and upper side (drainage side) of the electrode 7 are fitted, and the outer peripheral edge portions 70 on both the left and right sides of the electrode 7.
  • the pair of fitting horizontal groove portions 41x are formed in parallel to each other, and the pair of fitting vertical groove portions 41y are orthogonal to the both fitting horizontal groove portions 41x and face each other. Both fitting horizontal groove portions 41x and both fitting vertical groove portions 41y are continuous.
  • the place where the fitting groove 41 is formed is a position overlapping with a flow path 42 described later. Specifically, it is between an introduction lateral groove 43x and a discharge lateral groove 44x, which will be described later. More specifically, the lower fitting horizontal groove portion 41x crosses the introduction vertical groove portion 43y and the horizontal flange portion 45x between the introduction horizontal groove portion 43x and the introduction side end portion (lower end portion) of the discharge vertical groove portion 44y. Formed.
  • the upper fitting horizontal groove portion 41x is formed so as to cross the discharge vertical groove portion 44y and the horizontal flange portion 45x between the discharge horizontal groove portion 44x and the discharge side end portion (upper end side) of the introduction vertical groove portion 43y.
  • each fitting horizontal groove part 41x constitutes a part of each vertical groove part 43y, 44y.
  • the pair of fitting vertical groove portions 41 y are formed outside the introduction vertical groove portions 43 y at the left and right ends on the surface of the bipolar plate 4.
  • the cross-sectional shape of the fitting groove 41 is a quadrangular shape whose width is uniform from the opening to the bottom. That is, the depth Dd and the width Wd of the fitting groove 41 are uniform in the longitudinal direction.
  • the depth Dd of the fitting groove 41 can be appropriately selected mainly depending on the type of the electrode 7 described later (FIGS. 5 and 6). As will be described later, the depth Dd corresponding to the type of the electrode 7 is preferably about 0.1 mm to 2.5 mm. If the depth Dd is 0.1 mm or more, it is easy to prevent displacement of the electrode 7 without excessively pressing the electrode 7 with the bipolar plate 4 and the electrode pressing plate 6. If the depth Dd is 2.5 mm or less, the electrode 7 can be sufficiently sandwiched between the bipolar plate 4 and the electrode pressing plate 6, and the electrode 7 is not easily displaced from between the bipolar plate 4 and the electrode pressing plate 6.
  • the depth Dd is more preferably 0.3 mm or greater and 1.0 mm or less, still more preferably 0.7 mm or less, and particularly preferably 0.5 mm or less.
  • the depth Dd of the fitting groove 41 is smaller than the depth of the flow path 42.
  • the width Wd of the fitting groove portion 41 can be appropriately selected mainly in accordance with a lapping margin Wr of the electrode pressing plate 6 described later.
  • the width Wd of the fitting groove portion 41 is larger than the wrapping margin Wr, and is preferably about 10 mm or more. If the width Wd of the fitting groove portion 41 is 10 mm or more, the outer peripheral edge portion 70 of the electrode 7 can be fitted into the fitting groove portion 41 over a wide range, and the positional deviation of the electrode 7 can be easily prevented.
  • the upper limit of the width Wd of the fitting groove 41 is, for example, 25 mm or less.
  • the width Wd of the fitting groove 41 refers to the length along the direction orthogonal to the longitudinal direction of the fitting groove 41.
  • the linear distance D between the corner portion constituting the fitting groove portion 41 and the corner portion of the inner peripheral edge portion of the electrode pressing plate 6 may be approximately equal to the thickness Et (described later) of the outer peripheral edge portion 70 of the electrode 7. preferable. If it does so, it will be easy to suppress the position shift of the electrode 7 at the time of the assembly of the said laminated body, and it will be easier to further suppress the excessive load to the electrode 7 by both corners after the said laminated body is assembled.
  • the fitting groove 41 may be composed of a plurality of grooves formed intermittently along the circumferential direction of the outer peripheral edge 70 of the electrode 7.
  • the fitting groove portion 41 is constituted by a plurality of groove portions
  • the shape and formation location of the groove portions are not particularly limited and can be selected as appropriate.
  • the fitting groove portion 41 can be configured to include only one of the pair of fitting horizontal groove portions 41x and the pair of fitting vertical groove portions 41y, but not the other.
  • the fitting groove 41 may be formed at a position where the outer peripheral edge 70 of the electrode 7 is fitted.
  • the flow path 42 adjusts the flow of the electrolyte solution on the bipolar plate 4 (FIG. 4).
  • the flow of the electrolyte can be adjusted by the shape and size of the flow path 42.
  • the flow path 42 includes an introduction path 43 for introducing the electrolytic solution into the electrode 7 and a discharge path 44 for discharging the electrolytic solution from the electrode 7.
  • the introduction path 43 is connected to the liquid supply slit 51s (FIG. 3), and the discharge path 44 is connected to the liquid discharge slit 52s (FIG. 3).
  • the introduction path 43 and the discharge path 44 may communicate with each other, but are preferably independent.
  • the shape of the flow path 42 is a mesh-type opposed comb tooth in which the introduction path 43 and the discharge path 44 each have a comb-shaped region and are arranged so that the respective comb teeth mesh with each other and face each other.
  • the introduction path 43 includes an introduction port 43i that guides the electrolyte from the liquid supply slit 51s into the introduction path 43, a single introduction lateral groove 43x that extends in the left and right directions and diffuses the electrolyte from the introduction port 43i to the left and right. And a plurality of introduction longitudinal groove portions 43y extending upward from the lateral groove portions.
  • the discharge path 44 extends to the left and right and communicates with the plurality of discharge vertical groove portions 44y disposed between the introduction vertical groove portions 43y, and collects the electrolyte from the discharge vertical groove portions 44y.
  • One discharge horizontal groove 44x and a discharge port 44o for discharging the electrolyte from the discharge horizontal groove 44x to the drain slit 52s are provided. That is, the longitudinal groove portions of the introduction path 43 and the discharge path 44 are arranged in parallel so as to alternately mesh with each other.
  • a flange portion 45 is formed between the groove portions.
  • the collar portion 45 is hatched for convenience of explanation.
  • the flange portion 45 includes a vertical flange portion 45y formed between the adjacent introduction vertical groove portion 43y and the discharge vertical groove portion 44y, between the introduction horizontal groove portion 43x and the discharge vertical groove portion 44y, and between the introduction vertical groove portion 43y and the discharge horizontal groove portion. 44x is formed between and 44x.
  • the flange portions 45 between the introduction vertical groove portions 43y and between the discharge vertical groove portions 44y connect one ends of the adjacent vertical flange portions 45y.
  • the width and depth of the groove and the interval between adjacent grooves are not particularly limited, and can be appropriately selected according to the size and thickness of the bipolar plate 4.
  • the width of the groove portion may be uniform in the longitudinal direction, or may be different in the longitudinal direction so that the width decreases from one of the inflow port and the outflow port to the other, for example.
  • the width of the flow path 42 may be uniform in the depth direction, or may be different in the depth direction, such as a dovetail that narrows from the opening toward the bottom. .
  • the width and depth of the flow path 42 are uniform in the longitudinal direction. That is, the cross-sectional shape of the flow path 42 is a quadrangular shape whose width is uniform from the opening to the bottom.
  • the flow of the electrolytic solution forms a flow along the flow path 42 (indicated by horizontal and vertical thin arrows) and a flow that crosses the flange 45 (obliquely inclined thin arrows). That is, when the electrolytic solution introduced from the introduction passage 43 flows through the electrode 7 to the discharge passage 44, the electrolytic solution performs a battery reaction in the electrode 7 at the flange portion 45. Since the introduced electrolytic solution is discharged by crossing the flange 45, the electrolytic solution discharged without being reacted is reduced. Therefore, the amount of current of the RF battery 1 increases, and as a result, the internal resistance of the RF battery 1 can be reduced.
  • the shape of the flow path 42 is a mesh type, a known non-mesh type opposed comb tooth shape, a stripe shape in which the plurality of flow paths 42 are formed by vertical grooves along the longitudinal direction of the frame body 5, a grid shape, It can be an intermittent shape, a series of serpentine shapes, and the like.
  • the thickness of the exposed region (excluding the flow path 42) exposed from both the inner peripheral edge 50 i of the frame 5 and the electrode 7 is such that the outer peripheral edge 40 i overlapping the inner peripheral edge 50 i and the electrode 7 It is thicker than the thickness of the inner region of the fitting groove 41 (FIGS. 5 and 6).
  • the exposed region includes a horizontal flange portion 45x between the fitting horizontal groove portion 41x and the introduction horizontal groove portion 43x, a horizontal flange portion 45x between the fitting horizontal groove portion 41x and the discharge horizontal groove portion 44x, and the outer peripheral edge portion 40.
  • the specific thickness of the exposed region is substantially the same as the surface of the inner peripheral edge 50i on the electrode pressing plate 6 side (FIGS. 5 and 6).
  • the exposed area is preferably in contact with the electrode pressing plate 6. If it does so, the distribution
  • the thickness of the region between the fitting vertical groove portion 41y and the introducing vertical groove portion 43y is smaller than the thickness of the exposed region, but thicker than the thickness of the bottom of the fitting groove portion 41.
  • a seal groove 48 is formed on the outer peripheral edge portion 40 of the bipolar plate 4 over the entire circumference (FIGS. 5 and 6), and a seal member 81 (for example, an O-ring) is disposed in the seal groove 48. Yes.
  • the seal member 81 suppresses the flow of the electrolyte solution between the one surface side and the other surface side of the bipolar plate 4, and also suppresses the leakage of the electrolyte solution to the outside of the laminate.
  • the seal groove 48 in the outer peripheral edge portion 40 of the bipolar plate 4 and the seal member between the frame 5 and the bipolar plate 4 are used. There is no need for 81.
  • the thickness Bt of the bipolar plate 4 is preferably “(thickness Ft of the frame 5) ⁇ 2 mm” or more (FIGS. 5 and 6). This is because as the bipolar plate 4 becomes thicker, the electrode 7 can be made thinner, and an increase in internal resistance is easily suppressed.
  • the upper limit of the thickness Bt of the bipolar plate 4 is preferably “(thickness Ft of the frame 5) ⁇ 0.4 mm” or less. This is because if the electrode 7 becomes too thin, the electrode 7 is likely to be displaced during assembly of the laminate.
  • the thickness Bt of the bipolar plate 4 refers to the thickness of the outer peripheral edge portion 40 of the bipolar plate 4.
  • the material of the bipolar plate 4 can be a material that allows current to pass but not electrolyte.
  • a material having acid resistance and moderate rigidity is preferable.
  • An example of such a material is a conductive material containing carbon.
  • Specific examples include conductive plastics formed from graphite and polyolefin-based organic compounds or chlorinated organic compounds. Further, a conductive plastic in which a part of graphite is substituted with at least one of carbon black and diamond-like carbon may be used.
  • the polyolefin organic compound include polyethylene, polypropylene, polybutene and the like.
  • the chlorinated organic compound include vinyl chloride, chlorinated polyethylene, and chlorinated paraffin.
  • the bipolar plate 4 can be manufactured by molding the above-mentioned material by a known method such as injection molding, press molding, or vacuum molding.
  • the fitting groove 41, the flow path 42, and the seal groove 48 may be formed simultaneously with this molding. Then, the manufacturing efficiency of the bipolar plate 4 is excellent.
  • the electrode pressing plate 6 prevents the displacement of the electrode 7 (FIGS. 4 to 6). As described above, the displacement of the electrode 7 is prevented by sandwiching the outer peripheral edge portion 70 of the electrode 7 between the electrode pressing plate 6 and the fitting groove portion 41 of the bipolar plate 4.
  • the electrode pressing plate 6 has a function of protecting the diaphragm 101 (FIG. 3). Specifically, the electrode pressing plate 6 covers the slits 51 s and 52 s (FIG. 3), prevents the diaphragm 101 from coming into direct contact with the slits 51 s and 52 s, and the diaphragm 101 is formed by the unevenness of the slits 51 s and 52 s. Suppresses damage.
  • a frame body facing surface 61 that faces the inner peripheral edge portion 50 i of the frame body 5 and an electrode facing surface 62 that faces the outer peripheral edge portion 70 of the electrode 7 (see FIGS. 5 and 5). 6). That is, the electrode pressing plate 6 is disposed so as to straddle the frame 5 and the electrode 7. The frame facing surface 61 and the electrode facing surface 62 are flush with each other.
  • a diaphragm 101 (FIG. 3) is disposed on the other surface side of the electrode pressing plate 6.
  • the shape of the electrode pressing plate 6 may be a shape along the shape of the electrode 7.
  • it is a rectangular frame shape (FIGS. 3 and 4) continuous along the entire circumference of the outer peripheral edge portion 70 (FIGS. 5 and 6) of the electrode 7, but is not limited to the frame shape, and the outside of the electrode 7
  • positioned intermittently along the circumferential direction of the peripheral part 70 may be sufficient.
  • the shape of the plate materials is not particularly limited and can be selected as appropriate.
  • the wrap margin Wr of the electrode pressing plate 6 to the electrode 7 can be appropriately selected mainly depending on the type of the electrode 7 described later (FIGS. 5 and 6).
  • the lapping margin Wr refers to the overlapping length of the electrode pressing plate 6 with the electrode 7. The longer the wrapping margin Wr, the wider the contact area between the electrode pressing plate 6 and the electrode 7 and the easier it is to prevent displacement of the electrode 7.
  • the wrap margin Wr corresponding to the type of the electrode 7 will be described later, but is preferably about 5 mm or more, and particularly preferably 8 mm or more.
  • the upper limit of the lapping allowance Wr is 20 mm or less. If so, the cell frame 3 is unlikely to become excessively large. This is because if the area of the region exposed from the electrode pressing plate 6 in the electrode 7 is constant, the cell frame 3 becomes larger as the lapping margin Wr becomes longer.
  • the thickness Pt of the electrode pressing plate 6 is preferably 0.1 mm or greater and 1.0 mm or less. If the thickness Pt of the electrode pressing plate 6 is 0.1 mm or more, the rigidity of the electrode pressing plate 6 can be easily increased. Therefore, it is easy to press the electrode 7 with the electrode pressing plate 6 and to prevent displacement of the electrode 7. If the thickness Pt of the electrode pressing plate 6 is 1.0 mm or less, the gap between the adjacent cell frames 3 is not excessively widened. Therefore, the laminate (cell stack 2) is increased in size, and thus the RF battery 1 Easy to suppress enlargement.
  • the thickness Pt of the electrode pressing plate 6 is more preferably 0.3 mm or more and 0.5 mm or less. In addition, the front and back surfaces of the thickest portion of the outer peripheral edge 50o of the frame 5 and the surface of each electrode pressing plate 6 are flush with each other.
  • the material of the electrode pressing plate 6 includes a material having resistance to the electrolytic solution.
  • Examples of the material of the electrode pressing plate 6 include a plastic material such as vinyl chloride resin, polypropylene, polyethylene, fluorine resin, and epoxy resin, and rubber.
  • the electrode 7 performs a battery reaction as the electrolyte flows.
  • the electrode 7 is disposed inside the recess 30 of the cell frame 3.
  • the shape of the electrode 7 is a rectangular shape along the shape of the recess 30 of the cell frame 3.
  • the size of the electrode 7 is such that the electrode 7 is disposed between the lateral groove portions 43x and 44x of the flow path 42, more specifically, the outer peripheral edge portion 70 is the horizontal flange portion 45y of the flow path 42.
  • the size overlaps with The outer peripheral edge portion 70 of the electrode 7 is sandwiched between the fitting groove portion 41 of the bipolar plate 4 and the electrode facing surface 62 of the electrode pressing plate 6. That is, the size of the electrode 7 is slightly smaller than the outer shape of the fitting groove 41.
  • the repulsive force of the electrode 7 between the electrode pressing plate 6 and the fitting groove 41 is preferably 0.1 MPa or more and 1.0 MPa or less. If the repulsive force of the electrode 7 is 0.1 MPa or more, the bipolar plate 4 and the electrode pressing plate 6 and the electrode 7 can be easily brought into close contact with each other, and the electrode 7 can be prevented from being displaced by being sandwiched between the bipolar plate 4 and the electrode pressing plate 6. It is effective. If the repulsive force of the electrode 7 is 1.0 MPa or less, it is easy to smoothly distribute the electrolytic solution that permeates the electrode 7.
  • the repulsive force of the electrode 7 was compressed from its initial thickness (no load) to a predetermined thickness using a precision universal testing machine Autograph AG-Xplus (AG-10kNX-plus) manufactured by Shimadzu Corporation. It is the surface pressure when.
  • the predetermined thickness is the thickness Et of the outer peripheral edge portion 70 of the electrode 7.
  • the thickness Et of the outer peripheral edge portion 70 of the electrode 7 depends on the type of the electrode 7 and the thickness of the electrode 7 in an uncompressed state before the assembly of the laminate, but is 0.3 mm to 3.0 mm, for example. Especially, 1.0 mm or less is mentioned.
  • the thickness Et of the outer peripheral edge 70 of the electrode 7 here is the thickness of the electrode 7 between the bipolar plate 4 and the electrode pressing plate 6, and means the thickness in the state in which the laminate is assembled. .
  • the thickness of the uncompressed state of the electrode 7 before assembly of the laminate depends on the type and basis weight of the electrode 7, when the electrode 7 is a non-woven fabric, for example, 0.5 mm or more and 5.0 mm or less may be mentioned.
  • the basis weight is 200 g / m 2 or more and 300 g / m 2 or less and the area is “(1000 cm 2 to 3000 cm 2 ) + the area of the wrap allowance Wr”, 1.5 mm or more and 2.0 mm or less can be mentioned.
  • the electrode 7 is a woven fabric, the thickness of the electrode 7 is 0.3 mm or more and 1.0 mm or less, for example.
  • the electrode 7 is paper, the thickness of the electrode 7 is 0.3 mm or more and 1.0 mm or less, for example.
  • Examples of the constituent material of the electrode 7 include non-woven fabric (carbon felt) and woven fabric (carbon cloth) made of carbon fiber, and paper (carbon paper).
  • Examples of the type of the electrode 7 include non-woven fabric, woven fabric, and paper as described above.
  • the depth of the fitting groove 41 of the bipolar plate 4 and the wrap margin of the electrode pressing plate 6 are mainly determined according to the type of the electrode 7. Wr can be selected as appropriate.
  • the electrode 7 is a nonwoven fabric, the depth is preferably, for example, 0.3 mm or more and 2.5 mm or less, and the wrap margin Wr is preferably, for example, 5 mm or more.
  • the basis weight is 200 g / m 2 or more and 300 g / m 2 or less, and the area is “(1000 cm 2 to 3000 cm 2 ) + the area of the lapping allowance Wr”, the depth is 0.00. 3 mm or more and 1.0 mm or less are preferable, and the lapping margin Wr is preferably 8 mm or more.
  • the depth is preferably 0.1 mm or more and 0.5 mm or less, and the wrap margin Wr is preferably 8 mm or more, for example.
  • the electrode 7 is paper, the depth is preferably, for example, 0.3 mm or more and 0.5 mm or less, and the wrap margin Wr is, for example, preferably 5 mm or more.
  • the RF battery 1 according to Embodiment 1 can provide the following effects.
  • the battery cell 100 and the cell stack 2 can be assembled by arranging the electrode 7 in the recess 30 of the cell frame 3 and bringing the cell frame 3 and the electrode 7 together. Therefore, the assembly workability of the RF battery 1 is excellent. Moreover, if the cell frame 3 and the electrode 7 which were put together are supported with the frame body 5 with the electrode pressing plate 6, the battery cell 100 and the cell stack 200 can also be assembled so that the electrode 7 may become down.

Abstract

This bipolar plate, having a surface on which an electrode is arranged, has a fitting groove which is formed in the aforementioned surface and in which an outer peripheral edge of the electrode is fitted.

Description

双極板、セルフレーム、セルスタック、及びレドックスフロー電池Bipolar plate, cell frame, cell stack, and redox flow battery
 本発明は、双極板、セルフレーム、セルスタック、及びレドックスフロー電池に関する。 The present invention relates to a bipolar plate, a cell frame, a cell stack, and a redox flow battery.
 太陽光発電や風力発電といった自然エネルギー由来の電力を蓄電する大容量の蓄電池の一つにレドックスフロー電池(RF電池)がある。RF電池は、正極電解液が供給される正極電極と、負極電解液が供給される負極電極と、両極の電極間に介在される隔膜とを備える電池セルを主な構成要素とし、各極の電極に各極の電解液を供給して充放電を行う。上記電池セルは、代表的には、表裏面に各極の電極が配置される双極板と、双極板の外周縁部に設けられる樹脂製の枠体とを備えるセルフレームを用いて形成される。 A redox flow battery (RF battery) is one of large-capacity storage batteries that store electric power derived from natural energy such as solar power generation and wind power generation. An RF battery mainly includes a battery cell including a positive electrode to which a positive electrode electrolyte is supplied, a negative electrode to which a negative electrode electrolyte is supplied, and a diaphragm interposed between both electrodes. Charging / discharging is performed by supplying an electrolytic solution of each electrode to the electrode. The battery cell is typically formed using a cell frame including a bipolar plate in which electrodes of each electrode are arranged on the front and back surfaces, and a resin frame provided on the outer peripheral edge of the bipolar plate. .
 特許文献1のRF電池では、セルフレーム、正極電極、隔膜、及び負極電極を、この順番で積層することで形成される積層体を備えるセルスタックが用いられている。セルフレームは、矩形状の双極板とその外周縁部を囲む矩形枠状の枠体とを備える。双極板が設けられた枠体の内側には、双極板の表面及び枠体の内周面に凹部が形成されている。この凹部には、電極(正極電極又は負極電極)が配置され、凹部と隔膜とで囲まれる空間がセル(正極セル又は負極セル)を構成する。 In the RF battery of Patent Document 1, a cell stack including a laminate formed by laminating a cell frame, a positive electrode, a diaphragm, and a negative electrode in this order is used. The cell frame includes a rectangular bipolar plate and a rectangular frame-shaped frame surrounding the outer peripheral edge thereof. On the inner side of the frame provided with the bipolar plate, recesses are formed on the surface of the bipolar plate and the inner peripheral surface of the frame. An electrode (positive electrode or negative electrode) is disposed in the recess, and a space surrounded by the recess and the diaphragm forms a cell (positive cell or negative cell).
特開2012-99368号公報JP 2012-99368 A
 本開示の双極板は、
 電極が配置される表面を有する双極板であって、
 前記表面に形成されて前記電極の外周縁部が嵌め込まれる嵌め込み溝部を有する。
The bipolar plate of the present disclosure is
A bipolar plate having a surface on which electrodes are disposed,
A fitting groove is formed on the surface and into which the outer peripheral edge of the electrode is fitted.
 本開示のセルフレームは、
 本開示の双極板と、
 前記双極板の外周縁部を囲む枠体とを有する。
The cell frame of the present disclosure is
A bipolar plate of the present disclosure;
A frame surrounding an outer peripheral edge of the bipolar plate.
 本開示のセルスタックは、
 本開示のセルフレームと、
 前記双極板の前記嵌め込み溝部に嵌め込まれる外周縁部を有する電極と、
 前記電極の外周縁部に対向する電極押え板とを備える。
The cell stack of the present disclosure is
A cell frame of the present disclosure;
An electrode having an outer peripheral edge fitted in the fitting groove of the bipolar plate;
An electrode pressing plate facing the outer peripheral edge of the electrode.
 本開示のレドックスフロー電池は、本開示のセルスタックを備える。 The redox flow battery of the present disclosure includes the cell stack of the present disclosure.
実施形態に係るレドックスフロー電池の動作原理図である。It is an operation principle figure of the redox flow battery concerning an embodiment. 実施形態に係るレドックスフロー電池の概略構成図である。It is a schematic block diagram of the redox flow battery which concerns on embodiment. 実施形態に係るレドックスフロー電池に備わるセルスタックの概略構成図である。It is a schematic block diagram of the cell stack with which the redox flow battery which concerns on embodiment is equipped. 実施形態1に係るレドックスフロー電池に備わるセルフレームを示す概略平面図である。3 is a schematic plan view showing a cell frame provided in the redox flow battery according to Embodiment 1. FIG. 図4に示すセルフレームの(V)-(V)切断線で切断した状態を示す部分断面図である。FIG. 5 is a partial cross-sectional view showing a state in which the cell frame shown in FIG. 4 is cut along a (V)-(V) cutting line. 図4に示すセルフレームの(VI)-(VI)切断線で切断した状態を示す部分断面図である。FIG. 5 is a partial cross-sectional view showing a state in which the cell frame shown in FIG. 4 is cut along a (VI)-(VI) cutting line.
 [本開示が解決しようとする課題]
 更なる組立作業性の改善が望まれている。セルスタックの上記積層体の組み立ては、通常、セルフレーム、正極電極、隔膜、及び負極電極を、この順番で平積みして行う。電極は、セルフレームの凹部内で双極板に対して位置決めされることなく配置されているだけなので、組み立ての際に電極の位置ずれが生じ易い。特に、電極の大きさが上記凹部よりも相当程度小さい場合には電極の位置ずれが顕著になり易い。
[Problems to be solved by the present disclosure]
Further improvement in assembly workability is desired. The cell stack, the positive electrode, the diaphragm, and the negative electrode are normally stacked in this order to assemble the laminate of the cell stack. Since the electrodes are merely arranged in the recesses of the cell frame without being positioned with respect to the bipolar plate, the electrodes are liable to be displaced during assembly. In particular, when the size of the electrode is considerably smaller than the recess, the positional deviation of the electrode tends to be remarkable.
 そこで、組立時における電極の位置ずれを防止できて、レドックスフロー電池の組立作業性を高められる双極板、セルフレーム、及びセルスタックを提供することを目的の一つとする。また、組立作業性に優れるレドックスフロー電池を提供することを目的の一つとする。 Therefore, it is an object of the present invention to provide a bipolar plate, a cell frame, and a cell stack that can prevent positional displacement of electrodes during assembly and improve the assembly workability of a redox flow battery. Another object of the present invention is to provide a redox flow battery excellent in assembly workability.
 [本開示の効果]
 本開示によれば、組立時における電極の位置ずれを防止できて、レドックスフロー電池の組立作業性を高められる双極板、セルフレーム、及びセルスタックを提供できる。また、本開示によれば、組立作業性に優れるレドックスフロー電池を提供できる。
[Effects of the present disclosure]
According to the present disclosure, it is possible to provide a bipolar plate, a cell frame, and a cell stack that can prevent positional displacement of electrodes during assembly and improve the assembly workability of a redox flow battery. Moreover, according to this indication, the redox flow battery excellent in assembly workability | operativity can be provided.
 《本発明の実施形態の説明》
 最初に本発明の実施態様を列記して説明する。
<< Description of Embodiments of the Present Invention >>
First, embodiments of the present invention will be listed and described.
 (1)本発明の一態様に係る双極板は、
 電極が配置される表面を有する双極板であって、
 前記表面に形成されて前記電極の外周縁部が嵌め込まれる嵌め込み溝部を有する。
(1) The bipolar plate according to one aspect of the present invention is:
A bipolar plate having a surface on which electrodes are disposed,
A fitting groove is formed on the surface and into which the outer peripheral edge of the electrode is fitted.
 上記の構成によれば、双極板に対する電極の位置ずれを抑制し易い。レドックスフロー電池の製造時、上述したように双極板を備えるセルフレーム、正極電極、隔膜、及び負極電極をこの順番で平積みするため、電極がその上に重なる部材に押圧されてその外周縁部が双極板の嵌め込み溝部に嵌め込まれるからである。従って、双極板に対する電極の位置決めが容易であり、レドックスフロー電池の組立作業性を高められる。 According to the above configuration, it is easy to suppress displacement of the electrode relative to the bipolar plate. When manufacturing the redox flow battery, the cell frame, the positive electrode, the diaphragm, and the negative electrode having the bipolar plate as described above are stacked in this order, so that the electrode is pressed by the member overlying the outer peripheral edge portion. This is because it is fitted in the fitting groove of the bipolar plate. Therefore, positioning of the electrode with respect to the bipolar plate is easy, and the assembly workability of the redox flow battery can be improved.
 (2)上記双極板の一形態として、前記嵌め込み溝部は、前記電極の外周縁部の全周に沿って環状に形成されていることが挙げられる。 (2) As an embodiment of the bipolar plate, the fitting groove may be formed in an annular shape along the entire outer peripheral edge of the electrode.
 上記の構成によれば、電極の外周縁部をその全周に亘って嵌め込み溝部に嵌められることで電極の広範囲に亘って位置ずれを抑制し易いため、双極板に対する電極の位置決めがより一層容易であり、レドックスフロー電池の組立作業性をより一層高められる。 According to the above configuration, since the outer peripheral edge portion of the electrode is fitted over the entire circumference and is fitted into the groove portion, it is easy to suppress positional displacement over a wide range of the electrode, so that the electrode can be positioned more easily with respect to the bipolar plate. Thus, the assembly workability of the redox flow battery can be further enhanced.
 (3)本発明の一態様に係るセルフレームは、上記(1)又は上記(2)の双極板と、前記双極板の外周縁部を囲む枠体とを有する。 (3) A cell frame according to an aspect of the present invention includes the bipolar plate according to (1) or (2) above and a frame that surrounds an outer peripheral edge of the bipolar plate.
 上記の構成によれば、電極の位置ずれを抑制し易い双極板を備えることで、レドックスフロー電池の組合作業性を高められる。 According to the above configuration, the combination workability of the redox flow battery can be improved by providing the bipolar plate that easily suppresses the displacement of the electrode.
 (4)本発明の一態様に係るセルスタックは、
 上記(3)のセルフレームと、
 前記双極板の前記嵌め込み溝部に嵌め込まれる外周縁部を有する電極と、
 前記電極の外周縁部に対向する電極押え板とを備える。
(4) A cell stack according to an aspect of the present invention includes:
The cell frame of (3) above;
An electrode having an outer peripheral edge fitted in the fitting groove of the bipolar plate;
An electrode pressing plate facing the outer peripheral edge of the electrode.
 上記の構成によれば、上記セルフレームを備えることで、レドックスフロー電池の組立作業性を高められる。 According to the above configuration, the assembly workability of the redox flow battery can be improved by providing the cell frame.
 また、上記の構成によれば、電極押え板を備えることで、組立時の電極の位置ずれを抑制し易くて、双極板に電極を配置してセルフレームと電極とを一纏めにして電池セルやセルスタックを組み立てられるため、レドックスフロー電池の組立作業性を高め易い。また、セルフレームと電極とを電極が上になるように平積みして電極押え板で一纏めにし、その後、電極が下となるようにひっくり返して電池セルやセルスタックを組み立てることもできる。その場合、電極の位置ずれを抑制し易い上に、電極押え板で電極を支持できるため、セルフレームと電極押え板との間から電極が脱落することを抑制し易い。 In addition, according to the above configuration, by providing the electrode pressing plate, it is easy to suppress the positional deviation of the electrode during assembly, and the electrode is arranged on the bipolar plate so that the cell frame and the electrode are integrated into a battery cell or Since the cell stack can be assembled, it is easy to improve the assembly workability of the redox flow battery. It is also possible to assemble the battery cell and the cell stack by stacking the cell frame and the electrodes so that the electrodes are on top and putting them together with an electrode pressing plate, and then turning them over so that the electrodes are on the bottom. In this case, it is easy to suppress the displacement of the electrode and the electrode can be supported by the electrode pressing plate. Therefore, it is easy to suppress the electrode from dropping between the cell frame and the electrode pressing plate.
 更に、上記の構成によれば、電極の厚みを薄くし易い。嵌め込み溝部を備えない場合、電極の厚みを薄くすると、双極板と電極押え板とで過度に電極を押圧して面圧が集中することで、双極板が割れたりする虞がある。しかし、嵌め込み溝部を備えることで、電極の厚みが薄くても双極板と電極押え板とで過度に電極を押圧することなく面圧の集中を抑制し易いため、面圧の集中に伴う双極板の割れを抑制できる。その上、電極の厚みが薄くても電極の位置ずれを抑制し易い。電極の厚みは薄いほど反発力が生じ難く、電極押え板による組立時の電極の位置ずれ防止効果が低減し易くなるが、嵌め込み溝部を形成する角部によって双極板と電極押え板とで電極を押圧し易いからである。電極の厚みは薄いほど、電池の内部抵抗の上昇を抑制し易くて好ましい。 Furthermore, according to the above configuration, it is easy to reduce the thickness of the electrode. When the fitting groove portion is not provided, if the electrode is thinned, the electrode is excessively pressed by the bipolar plate and the electrode pressing plate, and the surface pressure is concentrated, so that the bipolar plate may be broken. However, since the fitting groove is provided, it is easy to suppress the concentration of surface pressure without excessively pressing the electrode with the bipolar plate and the electrode holding plate even if the electrode is thin. Can be prevented from cracking. In addition, it is easy to suppress displacement of the electrode even if the electrode is thin. The thinner the electrode, the less likely it is to generate a repulsive force, and the effect of preventing the displacement of the electrode during assembly by the electrode retainer plate is likely to be reduced.However, the electrode is formed between the bipolar plate and the electrode retainer plate by the corners that form the fitting groove. It is because it is easy to press. The thinner the electrode, the more preferable it is to suppress the increase in the internal resistance of the battery.
 (5)本発明の一態様に係るレドックスフロー電池は、上記(4)のセルスタックを備える。 (5) A redox flow battery according to an aspect of the present invention includes the cell stack of (4) above.
 上記の構成によれば、組立作業性に優れるセルスタックを備えるため、組立作業性に優れる。 According to the above configuration, since the cell stack having excellent assembly workability is provided, the assembly workability is excellent.
 《本発明の実施形態の詳細》
 本発明の実施形態の詳細を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。まず、図1~図3を参照して、実施形態に係るレドックスフロー電池(RF電池)1の概要及び基本構成を説明し、その後、主として図4~図6を参照して、実施形態1に係るRF電池の各構成を詳細に説明する。
<< Details of Embodiment of the Present Invention >>
Details of embodiments of the present invention will be described below with reference to the drawings. In addition, this invention is not limited to these illustrations, is shown by the claim, and it is intended that all the changes within the meaning and range equivalent to a claim are included. First, the outline and basic configuration of the redox flow battery (RF battery) 1 according to the embodiment will be described with reference to FIGS. 1 to 3, and then the embodiment 1 will be mainly described with reference to FIGS. Each configuration of the RF battery will be described in detail.
 〔RF電池の概要〕
 RF電池1は、代表的には、図1に示すように、交流/直流変換器を介して発電部(例えば、太陽光発電装置や風力発電装置、その他一般の発電所など)と負荷(需要家など)との間に接続され、発電部で発電した電力を充電して蓄え、蓄えた電力を放電して負荷に供給する。この充放電は、酸化還元により価数が変化する金属イオンを活物質として含有する電解液を正極電解液と負極電解液とに使用し、正極電解液に含まれるイオンの酸化還元電位と負極電解液に含まれるイオンの酸化還元電位との差を利用して行う。図1では、各極電解液に含まれるイオンとしてバナジウムイオンを例示しており、実線矢印は充電、破線矢印は放電を意味する。RF電池1は、例えば、負荷平準化用途、瞬低補償や非常用電源などの用途、大量導入が進められている太陽光発電や風力発電などの自然エネルギーの出力平滑化用途などに利用される。
[Outline of RF battery]
As shown in FIG. 1, the RF battery 1 typically includes a power generation unit (for example, a solar power generation device, a wind power generation device, and other general power plants) and a load (demand) via an AC / DC converter. The power generated by the power generation unit is charged and stored, and the stored power is discharged and supplied to the load. This charging / discharging uses an electrolytic solution containing metal ions whose valence is changed by oxidation-reduction as an active material for the positive electrode electrolyte and the negative electrode electrolyte, and the redox potential of the ions contained in the positive electrode electrolyte and the negative electrode electrolysis. This is performed using the difference between the redox potential of ions contained in the liquid. In FIG. 1, vanadium ions are exemplified as ions contained in each electrode electrolyte, and solid arrows indicate charging and broken arrows indicate discharging. The RF battery 1 is used for, for example, load leveling applications, applications such as sag compensation and emergency power supplies, and output smoothing of natural energy such as solar power generation and wind power generation, which are being introduced in large quantities. .
 〔RF電池の基本構成〕
 RF電池1は、水素イオンを透過させる隔膜101で正極セル102と負極セル103とに分離された電池セル100を備える。正極セル102には、正極電極71が内蔵され、正極用循環機構100Pにより正極電解液が循環する。正極用循環機構100Pは、正極電解液を貯留する正極電解液タンク106と、正極セル102と正極電解液タンク106とを接続する供給導管108、排出導管110と、供給導管108の途中に設けられたポンプ112とを備える。同様に、負極セル103には、負極電極72が内蔵され、負極用循環機構100Nにより負極電解液が循環する。負極用循環機構100Nは、負極電解液を貯留する負極電解液タンク107と、負極セル103と負極電解液タンク107とを接続する供給導管109、排出導管111と、供給導管109の途中に設けられたポンプ113とを備える。充放電を行う運転時、ポンプ112,113により、各極電解液は、各極電解液タンク106,107から各供給導管108、109を流通して各極セル102、103に供給され、各極セル102、103から各排出導管110、111を流通して各極電解液タンク106、107に排出されることで各極セル102、103に循環される。充放電を行わない待機時、ポンプ112、113が停止され、各極電解液は循環されない。
[Basic configuration of RF battery]
The RF battery 1 includes a battery cell 100 separated into a positive electrode cell 102 and a negative electrode cell 103 by a diaphragm 101 that transmits hydrogen ions. A positive electrode 71 is built in the positive electrode cell 102, and the positive electrode electrolyte is circulated by the positive electrode circulation mechanism 100P. The positive electrode circulation mechanism 100P is provided in the middle of the positive electrode electrolyte tank 106 that stores the positive electrode electrolyte, the supply conduit 108 that connects the positive electrode cell 102 and the positive electrode electrolyte tank 106, the discharge conduit 110, and the supply conduit 108. And a pump 112. Similarly, a negative electrode 72 is built in the negative electrode cell 103, and the negative electrode electrolyte is circulated by the negative electrode circulation mechanism 100N. The negative electrode circulation mechanism 100N is provided in the middle of the negative electrode electrolyte tank 107 that stores the negative electrode electrolyte, the supply conduit 109 that connects the negative electrode cell 103 and the negative electrode electrolyte tank 107, and the supply conduit 109. The pump 113 is provided. During the operation of charging / discharging, each of the electrode electrolytes is supplied from the electrode electrolyte tanks 106 and 107 through the supply conduits 108 and 109 to the electrode cells 102 and 103 by the pumps 112 and 113. The cells 102 and 103 are circulated to the electrode cells 102 and 103 by flowing through the discharge conduits 110 and 111 and being discharged to the electrode electrolyte tanks 106 and 107. During standby when charging / discharging is not performed, the pumps 112 and 113 are stopped, and each electrode electrolyte is not circulated.
  [セルスタック]
 電池セル100は、通常、図2,図3下図に示すセルスタック2と呼ばれる構造体の内部に形成される。セルスタック2は、サブスタック200(図3下図)と呼ばれる積層体を、その両側から2枚のエンドプレート220で挟み込み、両エンドプレート220を締付機構230により締め付けることで構成されている。図3下図では、複数のサブスタック200を備える形態を例示している。サブスタック200は、図2,図3上図に示すように、セルフレーム3、正極電極71、隔膜101、及び負極電極72を、この順番で複数積層してなり、その積層体の両端に給排板210(図3の下図、図2では省略)が配置される。
[Cell stack]
The battery cell 100 is usually formed inside a structure called a cell stack 2 shown in the lower diagrams of FIGS. The cell stack 2 is configured by sandwiching a laminated body called a sub stack 200 (the lower diagram in FIG. 3) between two end plates 220 from both sides, and tightening both end plates 220 with a tightening mechanism 230. In the lower diagram of FIG. 3, a form including a plurality of substacks 200 is illustrated. 2 and 3, the sub-stack 200 is formed by laminating a plurality of cell frames 3, a positive electrode 71, a diaphragm 101, and a negative electrode 72 in this order, and supplying them to both ends of the laminated body. A drain plate 210 (the lower diagram in FIG. 3 and omitted in FIG. 2) is arranged.
  [セルフレーム]
 セルフレーム3は、双極板4とその外周縁部40を囲む枠体5とを備え、双極板4の表面と枠体5の内周面とで電極7を配置する凹部30を形成する。隣接するセルフレーム3の双極板4の間に一つの電池セル100が形成され、双極板4を挟んで表裏に、隣り合う電池セル100の正極電極71(正極セル102)と負極電極72(負極セル103)とが配置される。
[Cell frame]
The cell frame 3 includes a bipolar plate 4 and a frame 5 surrounding the outer peripheral edge portion 40, and a recess 30 in which the electrode 7 is disposed is formed by the surface of the bipolar plate 4 and the inner peripheral surface of the frame 5. One battery cell 100 is formed between the bipolar plates 4 of the adjacent cell frames 3, and the positive electrode 71 (positive electrode cell 102) and the negative electrode 72 (negative electrode) of the adjacent battery cell 100 are placed on both sides of the bipolar plate 4. Cell 103).
 セルフレーム3は、上記積層体の隣り合う電池セル100(図1~図3)の間に配置される中間セルフレームと、上記積層体の両端に配置される端部セルフレームとがある。中間セルフレームは、双極板4の表裏に一方の電池セル100の正極電極71及び他方の電池セル100の負極電極72が接し、端部セルフレームは、双極板4の一方の面に電池セル100の正負のいずれかの電極7と接して他方の面には電極が存在しない。セルフレーム3の表裏(正極側・負極側)面の構成は、中間セルフレーム及び端部セルフレームのいずれにおいても同様である。 The cell frame 3 includes an intermediate cell frame disposed between adjacent battery cells 100 (FIGS. 1 to 3) of the stacked body and end cell frames disposed at both ends of the stacked body. In the intermediate cell frame, the positive electrode 71 of one battery cell 100 and the negative electrode 72 of the other battery cell 100 are in contact with the front and back of the bipolar plate 4, and the end cell frame has the battery cell 100 on one surface of the bipolar plate 4. There is no electrode on the other surface in contact with any of the positive and negative electrodes 7. The configuration of the front and back (positive electrode side / negative electrode side) surfaces of the cell frame 3 is the same in both the intermediate cell frame and the end cell frame.
 枠体5は、双極板4を支持し、内側に電池セル100となる領域を形成する。枠体5の形状は、矩形枠状であり、凹部30の開口形状は、矩形状である。枠体5は、電池セル100の内部に電解液を供給する給液マニホールド51m及び給液スリット51sを有する給液側片51(図3紙面下側)と、給液側片51に対向し、電池セル100の外部に電解液を排出する排液マニホールド52m、及び排液スリット52sを有する排液側片52(図3紙面上側)とを備える。セルフレーム3を平面視した際、給液側片51と排液側片52とが互いに対向する方向を縦方向、縦方向に直交する方向を横方向とすると、給液側片51が上記縦方向下側、排液側片52が上記縦方向上側に位置している。即ち、電解液の流れは、枠体5の上記縦方向下側から上記縦方向上側に向かう方向である。 The frame 5 supports the bipolar plate 4 and forms a region to be the battery cell 100 on the inner side. The shape of the frame 5 is a rectangular frame shape, and the opening shape of the recessed part 30 is a rectangular shape. The frame 5 is opposed to the liquid supply side piece 51 (lower side in FIG. 3) having a liquid supply manifold 51m and a liquid supply slit 51s for supplying the electrolyte into the battery cell 100, and the liquid supply side piece 51. The battery cell 100 includes a drainage manifold 52m that drains the electrolyte and a drainage side piece 52 (upper side in FIG. 3) having a drainage slit 52s. When the cell frame 3 is viewed in plan, the direction in which the liquid supply side piece 51 and the drainage side piece 52 are opposed to each other is the vertical direction, and the direction orthogonal to the vertical direction is the horizontal direction, the liquid supply side piece 51 is The drain side piece 52 is located on the upper side in the vertical direction. That is, the flow of the electrolytic solution is a direction from the lower side in the vertical direction of the frame 5 toward the upper side in the vertical direction.
 給液側片51には、その内縁に形成されて、給液スリット51sを流通する電解液をその内縁沿いに拡散する給液整流部(図示略)が形成されていてもよい。排液側片52には、その内縁に形成され、電極7を流通した電解液を集約して排液スリット52sに流通させる排液整流部(図示略)が形成されていてもよい。 The liquid supply side piece 51 may be formed with a liquid supply rectification portion (not shown) that is formed on the inner edge thereof and diffuses the electrolyte flowing through the liquid supply slit 51s along the inner edge. The drainage side piece 52 may be formed with a drainage rectification unit (not shown) that is formed on the inner edge of the drainage piece 52 and collects the electrolyte solution that has passed through the electrode 7 and flows it to the drainage slit 52s.
 セルフレーム3における各極電解液の流れは、次の通りである。正極電解液は、給液マニホールド51mから枠体5の一面側(紙面表側)の給液側片51に形成される給液スリット51sを流通して正極電極71に供給される。そして、正極電解液は、図3上図の矢印に示すように、正極電極71の下側から上側へ流通し、排液側片52に形成される排液スリット52sを流通して排液マニホールド52mに排出される。負極電解液の供給及び排出は、枠体5の他面側(紙面裏側)で行われる点を除き、正極電解液と同様である。 The flow of each electrolyte solution in the cell frame 3 is as follows. The positive electrode electrolyte is supplied from the supply manifold 51m to the positive electrode 71 through the supply slit 51s formed in the supply side piece 51 on the one surface side (the front side of the paper) of the frame 5. The positive electrolyte flows from the lower side to the upper side of the positive electrode 71 and flows through the drain slit 52s formed in the drain side piece 52 as shown by the arrow in the upper diagram of FIG. It is discharged at 52m. The supply and discharge of the negative electrode electrolyte are the same as those of the positive electrode electrolyte except that the negative electrode electrolyte is supplied and discharged on the other surface side (the back side of the paper).
 各枠体5間には、環状のシール溝にOリングや平パッキンなどの環状のシール部材80が配置され、電池セル100からの電解液の漏洩を抑制している。 Between each frame 5, an annular seal member 80 such as an O-ring or a flat packing is disposed in an annular seal groove to suppress leakage of the electrolyte from the battery cell 100.
 《実施形態1》
 図4~図6(適宜図1~図3)を参照して、実施形態1に係るRF電池1を説明する。実施形態1に係るRF電池1の特徴の一つは、双極板4がその表面に電極7の外周縁部70が嵌め込まれる嵌め込み溝部41を有する点にある。また、実施形態1に係るRF電池1の特徴の一つは、電極7の外周縁部70の両方に対向する対向面を有する電極押え板6を備え、その電極押え板6と双極板4の嵌め込み溝部41との間に電極7の外周縁部70を挟むことで、電極7の位置ずれを防止するずれ防止構造を備えることにある。説明の便宜上、図4では、電極押え板6を細二点鎖線、電極7を太二点鎖線で示し、図4~図6では、枠体5の各マニホールド及び各スリット、シール部材は省略して示している。図4では、紙面左右方向が横方向、紙面上下方向が縦方向である。
Embodiment 1
The RF battery 1 according to Embodiment 1 will be described with reference to FIGS. 4 to 6 (FIGS. 1 to 3 as appropriate). One of the features of the RF battery 1 according to the first embodiment is that the bipolar plate 4 has a fitting groove portion 41 into which the outer peripheral edge portion 70 of the electrode 7 is fitted. In addition, one of the features of the RF battery 1 according to the first embodiment includes an electrode pressing plate 6 having opposing surfaces facing both the outer peripheral edge portions 70 of the electrode 7, and the electrode pressing plate 6 and the bipolar plate 4 The object is to provide a displacement prevention structure that prevents the displacement of the electrode 7 by sandwiching the outer peripheral edge portion 70 of the electrode 7 between the fitting groove 41. For convenience of explanation, in FIG. 4, the electrode pressing plate 6 is indicated by a thin two-dot chain line, and the electrode 7 is indicated by a thick two-dot chain line. In FIGS. 4 to 6, each manifold, each slit, and the seal member of the frame 5 are omitted. It shows. In FIG. 4, the horizontal direction on the paper is the horizontal direction, and the vertical direction on the paper is the vertical direction.
  [セルフレーム]
   (枠体)
 枠体5は、断面形状が左右対称の2枚の枠状板材を張り合わせることで形成されている(図5,図6)。枠状板材の内周縁部50iは薄肉に形成されており、両枠状板材の外周縁部50o同士を張り合わせるときに、両枠状板材の内周縁部50i同士の間に双極板4の外周縁部40を収納する空間が形成されている。ここでは、枠体5は、双極板4とは一体にされていないが、例えば射出成形などにより双極板4と一体化されていてもよい。両枠状板材の外側面には、電極押え板6の収納凹部57が形成されている。
[Cell frame]
(Frame)
The frame 5 is formed by laminating two frame-shaped plate members whose cross-sectional shapes are symmetric (FIGS. 5 and 6). The inner peripheral edge portion 50i of the frame-shaped plate material is formed thin, and when the outer peripheral edge portions 50o of the two frame-shaped plate materials are bonded to each other, the outer periphery of the bipolar plate 4 is between the inner peripheral edge portions 50i of the two frame-shaped plate materials. A space for accommodating the peripheral edge portion 40 is formed. Here, the frame 5 is not integrated with the bipolar plate 4, but may be integrated with the bipolar plate 4 by injection molding, for example. A storage recess 57 for the electrode pressing plate 6 is formed on the outer side surfaces of both frame-shaped plate members.
 枠体5の厚みFtは、4mm以上とすることができる。枠体5の厚みFtが4mm以上であれば、上記積層体(セルスタック2)における強度を保持し易い。枠体5の厚みFtの上限は、例えば8mm以下とすることができる。枠体5の厚みFtは、厚いほど強度を保持できるが、過度に厚いと上記積層体が大型化する。枠体5の厚みFtは、4mm以上7mm以下とすることができる。 The thickness Ft of the frame 5 can be 4 mm or more. If the thickness Ft of the frame 5 is 4 mm or more, the strength of the laminate (cell stack 2) can be easily maintained. The upper limit of the thickness Ft of the frame 5 can be set to 8 mm or less, for example. As the thickness Ft of the frame 5 increases, the strength can be maintained. However, if the thickness Ft is excessively thick, the laminated body becomes larger. The thickness Ft of the frame 5 can be 4 mm or more and 7 mm or less.
 枠体5の材質は、耐酸性、電気絶縁性、機械的特性を満たす材料が挙げられる。例えば、ポリテトラフルオロエチレンなどの種々のフッ素系樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、塩化ビニル樹脂が挙げられる。 The material of the frame 5 includes a material satisfying acid resistance, electrical insulation, and mechanical properties. Examples thereof include various fluorine resins such as polytetrafluoroethylene, polypropylene resin, polyethylene resin, and vinyl chloride resin.
  (双極板)
 双極板4は、原則として隣接する電池セル100(図2、図3)を仕切る。中間セルフレームに備わる双極板4の一面側は、正極電極71に接触し、他面側は、負極電極72に接触する。端部セルフレームに備わる双極板4の一面側は、正極電極71又は負極電極72に接触し、他面側は、電極が接触しない。双極板4の形状は矩形状である(図4)。双極板4の外周縁部40は、枠体5の内周縁部50iに挟まれる領域で、枠体5に固定される(図5,図6)。双極板4の枠体5への固定は、双極板4の外周縁部40を枠体5を構成する2枚の枠状板材で挟むことで行われる。双極板4おける枠体5から露出する部分には、電極7の外周縁部70が嵌め込まれる嵌め込み溝部41が形成されている(図4~図6)。
(Bipolar plate)
In principle, the bipolar plate 4 partitions adjacent battery cells 100 (FIGS. 2 and 3). One surface side of the bipolar plate 4 provided in the intermediate cell frame is in contact with the positive electrode 71, and the other surface side is in contact with the negative electrode 72. One surface side of the bipolar plate 4 provided in the end cell frame is in contact with the positive electrode 71 or the negative electrode 72, and the other surface side is not in contact with the electrode. The bipolar plate 4 has a rectangular shape (FIG. 4). The outer peripheral edge 40 of the bipolar plate 4 is an area sandwiched between the inner peripheral edges 50i of the frame 5 and is fixed to the frame 5 (FIGS. 5 and 6). The bipolar plate 4 is fixed to the frame 5 by sandwiching the outer peripheral edge portion 40 of the bipolar plate 4 between the two frame-shaped plate members constituting the frame 5. A fitting groove 41 into which the outer peripheral edge 70 of the electrode 7 is fitted is formed in a portion of the bipolar plate 4 exposed from the frame 5 (FIGS. 4 to 6).
   〈嵌め込み溝部〉
 嵌め込み溝部41は、電極7の外周縁部70が嵌め込まれる。それにより、双極板4に対する電極7の位置ずれを抑制し易い。RF電池1の製造は、セルフレーム3、正極電極71、隔膜101、及び負極電極72をこの順番で平積みするため、電極7がその上に重なる部材に押圧されてその外周縁部70が双極板4の嵌め込み溝部41に嵌め込まれるからである。そのため、双極板4に対する電極7の位置決めが容易であり、RF電池1の組立作業性を高められる。
<Fitting groove>
In the fitting groove 41, the outer peripheral edge 70 of the electrode 7 is fitted. Thereby, it is easy to suppress the displacement of the electrode 7 with respect to the bipolar plate 4. In the manufacture of the RF battery 1, the cell frame 3, the positive electrode 71, the diaphragm 101, and the negative electrode 72 are stacked in this order, so that the electrode 7 is pressed by the member overlying the outer peripheral edge 70. This is because it is fitted into the fitting groove 41 of the plate 4. Therefore, the positioning of the electrode 7 with respect to the bipolar plate 4 is easy, and the assembly workability of the RF battery 1 can be improved.
 嵌め込み溝部41は、後述する電極押え板6との間に電極7の外周縁部70を挟むことで、双極板4に対する電極7の位置ずれを防止する。このとき、電極7の厚みが薄くても双極板4と電極押え板6とで過度に電極7を押圧することなく面圧の集中を抑制し易い。そのため、面圧の集中に伴う双極板4の割れを抑制できる。その上、電極7の厚みが薄くても電極7の位置ずれを抑制し易い。電極7の厚みは薄いほど反発力が生じ難く、電極押え板6による組立時の電極7の位置ずれ防止効果が低減し易くなるが、嵌め込み溝部41に形成される角部によって双極板4と電極押え板6とで電極7を押圧し易いからである。電極7の厚みは薄いほど、電池の内部抵抗の上昇を抑制し易くて好ましい。 The fitting groove 41 prevents the positional deviation of the electrode 7 with respect to the bipolar plate 4 by sandwiching the outer peripheral edge 70 of the electrode 7 between the electrode pressing plate 6 described later. At this time, even if the electrode 7 is thin, concentration of surface pressure can be easily suppressed without excessively pressing the electrode 7 with the bipolar plate 4 and the electrode pressing plate 6. Therefore, the crack of the bipolar plate 4 accompanying the concentration of the surface pressure can be suppressed. In addition, even if the electrode 7 is thin, it is easy to suppress the displacement of the electrode 7. As the thickness of the electrode 7 is thinner, a repulsive force is less likely to be generated, and the effect of preventing the displacement of the electrode 7 during assembly by the electrode pressing plate 6 can be easily reduced, but the bipolar plate 4 and the electrode are formed by the corners formed in the fitting groove 41. This is because it is easy to press the electrode 7 with the presser plate 6. The thinner the electrode 7 is, the easier it is to suppress the increase in the internal resistance of the battery, which is preferable.
 嵌め込み溝部41は、電極7の外周縁部70の周方向の一部を嵌め込むように、電極7の外周縁部70の周方向に沿って断続的に形成されていてもよいし、電極7の外周縁部70の周方向の全周を嵌め込むように、電極7の外周縁部70の周方向に沿って連続的に形成されていてもよい。嵌め込み溝部41の形成箇所は、電極7の配置位置、即ち電極7の外周縁部70の位置に応じて適宜選択できる。 The fitting groove portion 41 may be formed intermittently along the circumferential direction of the outer peripheral edge portion 70 of the electrode 7 so as to fit a part of the outer peripheral edge portion 70 of the electrode 7 in the circumferential direction. The outer circumferential edge 70 may be formed continuously along the circumferential direction of the outer circumferential edge 70 of the electrode 7 so as to fit the entire circumferential circumference. The place where the fitting groove portion 41 is formed can be appropriately selected according to the arrangement position of the electrode 7, that is, the position of the outer peripheral edge portion 70 of the electrode 7.
 ここでは、嵌め込み溝部41は、電極7の外周縁部70の周方向の全周を嵌め込むように、その全周に沿って連続する環状に形成されている(図4)。そのため、電極7の外周縁部70の全周に亘って面圧の集中を抑制できる。双極板4を平面視したときの嵌め込み溝部41の形状は、電極7の外形に沿った形状、ここでは矩形枠状としている。嵌め込み溝部41は、電極7の下側(給液側)及び上側(排液側)の外周縁部70を嵌め込む一対の嵌め込み横溝部41xと、電極7の左右両側の外周縁部70を嵌め込む一対の嵌め込み縦溝部41yとを備える。一対の嵌め込み横溝部41xは、互いに平行に形成されていて、一対の嵌め込み縦溝部41yは、両嵌め込み横溝部41xに対して直交すると共に互いに対向する。両嵌め込み横溝部41xと両嵌め込み縦溝部41yとは連続している。 Here, the fitting groove portion 41 is formed in an annular shape continuous along the entire circumference so as to fit the entire circumference of the outer peripheral edge portion 70 of the electrode 7 (FIG. 4). Therefore, the concentration of the surface pressure can be suppressed over the entire circumference of the outer peripheral edge portion 70 of the electrode 7. The shape of the fitting groove portion 41 when the bipolar plate 4 is viewed in plan is a shape along the outer shape of the electrode 7, in this case, a rectangular frame shape. The fitting groove 41 fits a pair of fitting lateral groove portions 41x into which the outer peripheral edge portions 70 on the lower side (liquid supply side) and upper side (drainage side) of the electrode 7 are fitted, and the outer peripheral edge portions 70 on both the left and right sides of the electrode 7. And a pair of fitting vertical groove portions 41y. The pair of fitting horizontal groove portions 41x are formed in parallel to each other, and the pair of fitting vertical groove portions 41y are orthogonal to the both fitting horizontal groove portions 41x and face each other. Both fitting horizontal groove portions 41x and both fitting vertical groove portions 41y are continuous.
 この嵌め込み溝部41の形成箇所は、後述の流路42に重複する位置としている。具体的には、後述の導入横溝部43xと排出横溝部44xとの間としている。より具体的には、下側の嵌め込み横溝部41xは、導入横溝部43xと排出縦溝部44yの導入側端部(下端部)との間で、導入縦溝部43y及び横畝部45xを横切るように形成される。上側の嵌め込み横溝部41xは、排出横溝部44xと導入縦溝部43yの排出側端部(上端側)との間で、排出縦溝部44y及び横畝部45xを横切るように形成されている。即ち、各嵌め込み横溝部41xの一部は、各縦溝部43y,44yの一部を構成している。一対の嵌め込み縦溝部41yは、双極板4の表面における左右両端の導入縦溝部43yの外側に形成されている。嵌め込み溝部41の横断面形状は、幅が開口部から底部に向かって一様な四角形状である。即ち、嵌め込み溝部41の深さDd及び幅Wdは、その長手方向に一様である。 The place where the fitting groove 41 is formed is a position overlapping with a flow path 42 described later. Specifically, it is between an introduction lateral groove 43x and a discharge lateral groove 44x, which will be described later. More specifically, the lower fitting horizontal groove portion 41x crosses the introduction vertical groove portion 43y and the horizontal flange portion 45x between the introduction horizontal groove portion 43x and the introduction side end portion (lower end portion) of the discharge vertical groove portion 44y. Formed. The upper fitting horizontal groove portion 41x is formed so as to cross the discharge vertical groove portion 44y and the horizontal flange portion 45x between the discharge horizontal groove portion 44x and the discharge side end portion (upper end side) of the introduction vertical groove portion 43y. That is, a part of each fitting horizontal groove part 41x constitutes a part of each vertical groove part 43y, 44y. The pair of fitting vertical groove portions 41 y are formed outside the introduction vertical groove portions 43 y at the left and right ends on the surface of the bipolar plate 4. The cross-sectional shape of the fitting groove 41 is a quadrangular shape whose width is uniform from the opening to the bottom. That is, the depth Dd and the width Wd of the fitting groove 41 are uniform in the longitudinal direction.
 嵌め込み溝部41の深さDdは、主として後述する電極7の種類に応じて適宜選択できる(図5,図6)。電極7の種類に応じた深さDdは、後述するが、凡そ0.1mm以上2.5mm以下が好ましい。深さDdが0.1mm以上であれば、双極板4と電極押え板6とで過度に電極7を押圧することなく電極7の位置ずれを防止し易い。深さDdが2.5mm以下であれば、双極板4と電極押え板6とで電極7を十分に挟むことができ、双極板4と電極押え板6との間から電極7がずれ難い。深さDdは、0.3mm以上1.0mm以下がより好ましく、0.7mm以下が更に好ましく、0.5mm以下が特に好ましい。嵌め込み溝部41の深さDdは、流路42の深さよりも小さい。 The depth Dd of the fitting groove 41 can be appropriately selected mainly depending on the type of the electrode 7 described later (FIGS. 5 and 6). As will be described later, the depth Dd corresponding to the type of the electrode 7 is preferably about 0.1 mm to 2.5 mm. If the depth Dd is 0.1 mm or more, it is easy to prevent displacement of the electrode 7 without excessively pressing the electrode 7 with the bipolar plate 4 and the electrode pressing plate 6. If the depth Dd is 2.5 mm or less, the electrode 7 can be sufficiently sandwiched between the bipolar plate 4 and the electrode pressing plate 6, and the electrode 7 is not easily displaced from between the bipolar plate 4 and the electrode pressing plate 6. The depth Dd is more preferably 0.3 mm or greater and 1.0 mm or less, still more preferably 0.7 mm or less, and particularly preferably 0.5 mm or less. The depth Dd of the fitting groove 41 is smaller than the depth of the flow path 42.
 嵌め込み溝部41の幅Wdは、主として後述する電極押え板6のラップ代Wrに応じて適宜選択できる。嵌め込み溝部41の幅Wdは、ラップ代Wrよりも大きいことが挙げられ、凡そ10mm以上が好ましい。嵌め込み溝部41の幅Wdが10mm以上であれば、電極7の外周縁部70を広範囲に亘って嵌め込み溝部41へ嵌め込むことができ、電極7の位置ずれを防止し易い。嵌め込み溝部41の幅Wdの上限は、例えば25mm以下が挙げられる。嵌め込み溝部41の幅Wdは、嵌め込み溝部41の長手方向に直交する方向に沿った長さを言う。特に、嵌め込み溝部41を構成する角部と、電極押え板6の内周縁部の角部との直線距離Dは、電極7の外周縁部70の厚みEt(後述)と同等程度であることが好ましい。そうすれば、上記積層体の組立時に電極7の位置ずれを抑制し易い上に、上記積層体の組立後に両角部による電極7への過度な負荷をより一層抑制し易い。 The width Wd of the fitting groove portion 41 can be appropriately selected mainly in accordance with a lapping margin Wr of the electrode pressing plate 6 described later. The width Wd of the fitting groove portion 41 is larger than the wrapping margin Wr, and is preferably about 10 mm or more. If the width Wd of the fitting groove portion 41 is 10 mm or more, the outer peripheral edge portion 70 of the electrode 7 can be fitted into the fitting groove portion 41 over a wide range, and the positional deviation of the electrode 7 can be easily prevented. The upper limit of the width Wd of the fitting groove 41 is, for example, 25 mm or less. The width Wd of the fitting groove 41 refers to the length along the direction orthogonal to the longitudinal direction of the fitting groove 41. In particular, the linear distance D between the corner portion constituting the fitting groove portion 41 and the corner portion of the inner peripheral edge portion of the electrode pressing plate 6 may be approximately equal to the thickness Et (described later) of the outer peripheral edge portion 70 of the electrode 7. preferable. If it does so, it will be easy to suppress the position shift of the electrode 7 at the time of the assembly of the said laminated body, and it will be easier to further suppress the excessive load to the electrode 7 by both corners after the said laminated body is assembled.
 嵌め込み溝部41は、電極7の外周縁部70の周方向に沿って断続的に形成される複数の溝部で構成されていてもよい。嵌め込み溝部41を複数の溝部で構成する場合、溝部の形状や形成箇所は特に限定されず、適宜選択できる。嵌め込み溝部41は、例えば、一対の嵌め込み横溝部41xと一対の嵌め込み縦溝部41yの一方を備えず、他方のみを備える形態とすることができる。なお、電極7の大きさが導入横溝部43xや排出横溝部44xを覆うほど大きい場合、嵌め込み溝部41は、その電極7の外周縁部70を嵌め込む位置に形成するとよい。 The fitting groove 41 may be composed of a plurality of grooves formed intermittently along the circumferential direction of the outer peripheral edge 70 of the electrode 7. When the fitting groove portion 41 is constituted by a plurality of groove portions, the shape and formation location of the groove portions are not particularly limited and can be selected as appropriate. For example, the fitting groove portion 41 can be configured to include only one of the pair of fitting horizontal groove portions 41x and the pair of fitting vertical groove portions 41y, but not the other. When the size of the electrode 7 is large enough to cover the introduction lateral groove 43x and the discharge lateral groove 44x, the fitting groove 41 may be formed at a position where the outer peripheral edge 70 of the electrode 7 is fitted.
   〈流路〉
 流路42は、双極板4上での電解液の流れを調整する(図4)。電解液の流れは、流路42の形状や寸法などによって調整できる。流路42は、電解液を電極7に導入する導入路43と、電解液を電極7から排出する排出路44とを備える。導入路43は、給液スリット51s(図3)に繋がっており、排出路44は、排液スリット52s(図3)に繋がっている。導入路43と排出路44とは連通していてもよいが独立していることが好ましい。
<Flow path>
The flow path 42 adjusts the flow of the electrolyte solution on the bipolar plate 4 (FIG. 4). The flow of the electrolyte can be adjusted by the shape and size of the flow path 42. The flow path 42 includes an introduction path 43 for introducing the electrolytic solution into the electrode 7 and a discharge path 44 for discharging the electrolytic solution from the electrode 7. The introduction path 43 is connected to the liquid supply slit 51s (FIG. 3), and the discharge path 44 is connected to the liquid discharge slit 52s (FIG. 3). The introduction path 43 and the discharge path 44 may communicate with each other, but are preferably independent.
 流路42の形状は、本例では、導入路43と排出路44とがそれぞれ櫛歯形状の領域を備え、それぞれの櫛歯が互いに噛み合って対向するように配置される噛合型の対向櫛歯形状である。導入路43は、電解液を給液スリット51sから導入路43内に導く導入口43iと、左右に延びて、電解液を導入口43iから左右に拡散する一本の導入横溝部43xと、この横溝部から上方向に延びる複数本の導入縦溝部43yとを備える。一方、排出路44は、導入縦溝部43y同士の各間に配置される複数本の排出縦溝部44yと、左右に延びて排出縦溝部44yに連通し、電解液を排出縦溝部44yから集約する一本の排出横溝部44xと、電解液を排出横溝部44xから排液スリット52sに排出する排出口44oとを備える。即ち、導入路43と排出路44の縦溝部同士は、交互に噛み合うように並列している。 In this example, the shape of the flow path 42 is a mesh-type opposed comb tooth in which the introduction path 43 and the discharge path 44 each have a comb-shaped region and are arranged so that the respective comb teeth mesh with each other and face each other. Shape. The introduction path 43 includes an introduction port 43i that guides the electrolyte from the liquid supply slit 51s into the introduction path 43, a single introduction lateral groove 43x that extends in the left and right directions and diffuses the electrolyte from the introduction port 43i to the left and right. And a plurality of introduction longitudinal groove portions 43y extending upward from the lateral groove portions. On the other hand, the discharge path 44 extends to the left and right and communicates with the plurality of discharge vertical groove portions 44y disposed between the introduction vertical groove portions 43y, and collects the electrolyte from the discharge vertical groove portions 44y. One discharge horizontal groove 44x and a discharge port 44o for discharging the electrolyte from the discharge horizontal groove 44x to the drain slit 52s are provided. That is, the longitudinal groove portions of the introduction path 43 and the discharge path 44 are arranged in parallel so as to alternately mesh with each other.
 溝部同士の間には、畝部45が形成されている。畝部45には、説明の便宜上、ハッチングを付している。畝部45は、隣り合う導入縦溝部43yと排出縦溝部44yとの間に形成される縦畝部45yと、導入横溝部43xと排出縦溝部44yとの間と導入縦溝部43yと排出横溝部44xとの間とに形成される横畝部45xとを備える。横畝部45xのうち、導入縦溝部43y同士の間や排出縦溝部44y同士の間の畝部45は隣り合う縦畝部45yの一端同士を連結する。 Between the groove portions, a flange portion 45 is formed. The collar portion 45 is hatched for convenience of explanation. The flange portion 45 includes a vertical flange portion 45y formed between the adjacent introduction vertical groove portion 43y and the discharge vertical groove portion 44y, between the introduction horizontal groove portion 43x and the discharge vertical groove portion 44y, and between the introduction vertical groove portion 43y and the discharge horizontal groove portion. 44x is formed between and 44x. Of the horizontal flange portions 45x, the flange portions 45 between the introduction vertical groove portions 43y and between the discharge vertical groove portions 44y connect one ends of the adjacent vertical flange portions 45y.
 溝部の幅や深さ、隣り合う溝部同士の間隔(畝部45の幅)は、特に限定されず、双極板4のサイズや厚さなどに応じて適宜選択できる。溝部の幅は、その長手方向に一様であってもよいし、例えば、流入口と流出口の一方から他方に向かって幅が小さくなるようにその長手方向で異なっていてもよい。流路42の幅は、その深さ方向に一様であってもよいし、例えば、開口部から底部に向かって幅が狭くなる蟻溝などのようにその深さ方向で異なっていてもよい。ここでは、流路42の幅及び深さは、その長手方向に一様である。即ち、流路42の横断面形状は、幅が開口部から底部に向かって一様な四角形状である。 The width and depth of the groove and the interval between adjacent grooves (width of the flange 45) are not particularly limited, and can be appropriately selected according to the size and thickness of the bipolar plate 4. The width of the groove portion may be uniform in the longitudinal direction, or may be different in the longitudinal direction so that the width decreases from one of the inflow port and the outflow port to the other, for example. The width of the flow path 42 may be uniform in the depth direction, or may be different in the depth direction, such as a dovetail that narrows from the opening toward the bottom. . Here, the width and depth of the flow path 42 are uniform in the longitudinal direction. That is, the cross-sectional shape of the flow path 42 is a quadrangular shape whose width is uniform from the opening to the bottom.
 電解液の流れは、流路42に沿った流れ(横向き及び縦向き細矢印で示す)と、畝部45を渡るような流れ(斜め向き細矢印)とを形成する。つまり、導入路43から導入された電解液は、電極7を経て排出路44へ流通する際に、畝部45で電解液が電極7において電池反応を行う。導入された電解液が畝部45を渡ることで排出されるため、未反応のまま排出される電解液が減少する。よって、RF電池1の電流量が増加し、ひいてはRF電池1の内部抵抗を低減することができる。 The flow of the electrolytic solution forms a flow along the flow path 42 (indicated by horizontal and vertical thin arrows) and a flow that crosses the flange 45 (obliquely inclined thin arrows). That is, when the electrolytic solution introduced from the introduction passage 43 flows through the electrode 7 to the discharge passage 44, the electrolytic solution performs a battery reaction in the electrode 7 at the flange portion 45. Since the introduced electrolytic solution is discharged by crossing the flange 45, the electrolytic solution discharged without being reacted is reduced. Therefore, the amount of current of the RF battery 1 increases, and as a result, the internal resistance of the RF battery 1 can be reduced.
 流路42の形状は、噛合型の他、公知の非噛合型の対向櫛歯形状、複数の流路42が枠体5の縦方向に沿った縦溝で構成されるストライプ形状、グリッド形状、断続形状、一連の蛇行形状などとすることができる。 The shape of the flow path 42 is a mesh type, a known non-mesh type opposed comb tooth shape, a stripe shape in which the plurality of flow paths 42 are formed by vertical grooves along the longitudinal direction of the frame body 5, a grid shape, It can be an intermittent shape, a series of serpentine shapes, and the like.
 双極板4において、枠体5の内周縁部50iと電極7の両方から露出する露出領域(流路42を除く)の厚さは、内周縁部50iや電極7に重複する外周縁部40や嵌め込み溝部41の内側領域の厚さに比べて、厚くしている(図5,図6)。上記露出領域は、具体的には、嵌め込み横溝部41xと導入横溝部43xとの間の横畝部45x、嵌め込み横溝部41xと排出横溝部44xとの間の横畝部45x、外周縁部40と導入横溝部43xとの間の領域、外周縁部40と排出横溝部44xとの間の領域、外周縁部40と嵌め込み縦溝部41yとの間の領域が挙げられる(図4~図6)。具体的な上記露出領域の厚さは、内周縁部50iの電極押え板6側の面と略面一となる厚さとしている(図5,図6)。上記露出領域は、電極押え板6と接していることが好ましい。そうすれば、双極板4の一面側と他面側との間の電解液の流通を抑制し、電解液の積層体外部への漏洩を抑制し易い。双極板4の電極7に覆われる領域のうち、嵌め込み横溝部41xと導入縦溝部43yとの間の横畝部45xと、嵌め込み横溝部41xと排出縦溝部44yとの間の横畝部45xと、嵌め込み縦溝部41yと導入縦溝部43yとの間の領域の厚さは、上記露出領域の厚さよりも薄いが、嵌め込み溝部41の底の厚さよりも厚い。それにより、電極7の外周縁部70を電極押え板6で押えた際、外周縁部70を嵌め込み溝部41の角部に引っ掛け易くて、電極7の位置ずれを防止し易い。 In the bipolar plate 4, the thickness of the exposed region (excluding the flow path 42) exposed from both the inner peripheral edge 50 i of the frame 5 and the electrode 7 is such that the outer peripheral edge 40 i overlapping the inner peripheral edge 50 i and the electrode 7 It is thicker than the thickness of the inner region of the fitting groove 41 (FIGS. 5 and 6). Specifically, the exposed region includes a horizontal flange portion 45x between the fitting horizontal groove portion 41x and the introduction horizontal groove portion 43x, a horizontal flange portion 45x between the fitting horizontal groove portion 41x and the discharge horizontal groove portion 44x, and the outer peripheral edge portion 40. A region between the outer peripheral edge portion 40 and the discharge horizontal groove portion 44x, and a region between the outer peripheral edge portion 40 and the fitting vertical groove portion 41y (FIGS. 4 to 6). . The specific thickness of the exposed region is substantially the same as the surface of the inner peripheral edge 50i on the electrode pressing plate 6 side (FIGS. 5 and 6). The exposed area is preferably in contact with the electrode pressing plate 6. If it does so, the distribution | circulation of the electrolyte solution between the one surface side of the bipolar plate 4 and the other surface side will be suppressed, and it will be easy to suppress the leakage to the exterior of a laminated body of electrolyte solution. Of the region covered by the electrode 7 of the bipolar plate 4, a horizontal flange portion 45x between the fitting horizontal groove portion 41x and the introduction vertical groove portion 43y, and a horizontal flange portion 45x between the fitting horizontal groove portion 41x and the discharge vertical groove portion 44y, The thickness of the region between the fitting vertical groove portion 41y and the introducing vertical groove portion 43y is smaller than the thickness of the exposed region, but thicker than the thickness of the bottom of the fitting groove portion 41. Thus, when the outer peripheral edge portion 70 of the electrode 7 is pressed by the electrode pressing plate 6, the outer peripheral edge portion 70 can be easily hooked on the corner portion of the groove portion 41, and displacement of the electrode 7 can be easily prevented.
 双極板4の外周縁部40にはその全周に亘ってシール溝48が形成されており(図5,図6)、そのシール溝48にはシール部材81(例えばOリング)が配置されている。このシール部材81によって、双極板4の一面側と他面側との間の電解液の流通を抑制し、電解液の積層体外部への漏洩も抑制している。なお、上述のように射出成形などにより枠体5と双極板4とを一体化する場合、双極板4の外周縁部40のシール溝48及び枠体5と双極板4との間のシール部材81はなくてよい。 A seal groove 48 is formed on the outer peripheral edge portion 40 of the bipolar plate 4 over the entire circumference (FIGS. 5 and 6), and a seal member 81 (for example, an O-ring) is disposed in the seal groove 48. Yes. The seal member 81 suppresses the flow of the electrolyte solution between the one surface side and the other surface side of the bipolar plate 4, and also suppresses the leakage of the electrolyte solution to the outside of the laminate. When the frame 5 and the bipolar plate 4 are integrated by injection molding or the like as described above, the seal groove 48 in the outer peripheral edge portion 40 of the bipolar plate 4 and the seal member between the frame 5 and the bipolar plate 4 are used. There is no need for 81.
 双極板4の厚みBtは、「(枠体5の厚みFt)-2mm」以上が好ましい(図5,図6)。双極板4が厚くなるほど、電極7を薄くでき、内部抵抗の上昇を抑制し易いからである。双極板4の厚みBtの上限は、「(枠体5の厚みFt)-0.4mm」以下が好ましい。電極7が薄くなりすぎると、上記積層体の組立時に電極7の位置ずれが生じ易くなるからである。双極板4の厚みBtとは、双極板4の外周縁部40の厚みを言う。 The thickness Bt of the bipolar plate 4 is preferably “(thickness Ft of the frame 5) −2 mm” or more (FIGS. 5 and 6). This is because as the bipolar plate 4 becomes thicker, the electrode 7 can be made thinner, and an increase in internal resistance is easily suppressed. The upper limit of the thickness Bt of the bipolar plate 4 is preferably “(thickness Ft of the frame 5) −0.4 mm” or less. This is because if the electrode 7 becomes too thin, the electrode 7 is likely to be displaced during assembly of the laminate. The thickness Bt of the bipolar plate 4 refers to the thickness of the outer peripheral edge portion 40 of the bipolar plate 4.
 双極板4の材質には、電流は通すが電解液は通さない材料を用いることができる。加えて、耐酸性および適度な剛性を有する材料であることが好ましい。このような材料としては、例えば、炭素を含有する導電性材料が挙げられる。具体的には、黒鉛およびポリオレフィン系有機化合物または塩素化有機化合物から形成される導電性プラスチックが挙げられる。また、黒鉛の一部をカーボンブラックおよびダイヤモンドライクカーボンの少なくとも一方に置換した導電性プラスチックでもよい。ポリオレフィン系有機化合物としては、ポリエチレン、ポリプロピレン、ポリブテンなどが挙げられる。塩素化有機化合物としては、塩化ビニル、塩素化ポリエチレン、塩素化パラフィンなどが挙げられる。双極板4がこのような材料から形成されることで、双極板4の電気抵抗を小さくすることができる上に、耐酸性に優れる。 The material of the bipolar plate 4 can be a material that allows current to pass but not electrolyte. In addition, a material having acid resistance and moderate rigidity is preferable. An example of such a material is a conductive material containing carbon. Specific examples include conductive plastics formed from graphite and polyolefin-based organic compounds or chlorinated organic compounds. Further, a conductive plastic in which a part of graphite is substituted with at least one of carbon black and diamond-like carbon may be used. Examples of the polyolefin organic compound include polyethylene, polypropylene, polybutene and the like. Examples of the chlorinated organic compound include vinyl chloride, chlorinated polyethylene, and chlorinated paraffin. By forming the bipolar plate 4 from such a material, the electric resistance of the bipolar plate 4 can be reduced and the acid resistance is excellent.
 双極板4の製造は、上記の材料を射出成形、プレス成形、および真空成形等の公知の方法により成形することで行える。この成形と同時に嵌め込み溝部41、流路42、及びシール溝48を形成するとよい。そうすれば、双極板4の製造効率に優れる。 The bipolar plate 4 can be manufactured by molding the above-mentioned material by a known method such as injection molding, press molding, or vacuum molding. The fitting groove 41, the flow path 42, and the seal groove 48 may be formed simultaneously with this molding. Then, the manufacturing efficiency of the bipolar plate 4 is excellent.
  [電極押え板]
 電極押え板6は、電極7の位置ずれを防止する(図4~図6)。電極7の位置ずれ防止は、上述したように、電極押え板6と双極板4の嵌め込み溝部41との間に電極7の外周縁部70を挟むことで行う。この電極押え板6は、隔膜101(図3)を保護する機能を有する。具体的には、電極押え板6は、各スリット51s,52s(図3)を覆い、各スリット51s,52sに隔膜101が直接接することを防止して各スリット51s,52sの凹凸によって隔膜101が損傷することを抑制する。
[Electrode holding plate]
The electrode pressing plate 6 prevents the displacement of the electrode 7 (FIGS. 4 to 6). As described above, the displacement of the electrode 7 is prevented by sandwiching the outer peripheral edge portion 70 of the electrode 7 between the electrode pressing plate 6 and the fitting groove portion 41 of the bipolar plate 4. The electrode pressing plate 6 has a function of protecting the diaphragm 101 (FIG. 3). Specifically, the electrode pressing plate 6 covers the slits 51 s and 52 s (FIG. 3), prevents the diaphragm 101 from coming into direct contact with the slits 51 s and 52 s, and the diaphragm 101 is formed by the unevenness of the slits 51 s and 52 s. Suppresses damage.
 電極押え板6の一面側には、枠体5の内周縁部50iに対向する枠体対向面61と、電極7の外周縁部70に対向する電極対向面62とを有する(図5,図6)。即ち、電極押え板6は、枠体5と電極7とに跨がるように配置されている。この枠体対向面61と電極対向面62とは面一である。一方、電極押え板6の他面側には、隔膜101(図3)が配置される。 On one surface side of the electrode pressing plate 6, a frame body facing surface 61 that faces the inner peripheral edge portion 50 i of the frame body 5 and an electrode facing surface 62 that faces the outer peripheral edge portion 70 of the electrode 7 (see FIGS. 5 and 5). 6). That is, the electrode pressing plate 6 is disposed so as to straddle the frame 5 and the electrode 7. The frame facing surface 61 and the electrode facing surface 62 are flush with each other. On the other hand, a diaphragm 101 (FIG. 3) is disposed on the other surface side of the electrode pressing plate 6.
 電極押え板6の形状は、電極7の形状に沿った形状が挙げられる。ここでは、電極7の外周縁部70(図5,図6)の全周に沿って連続する矩形枠状(図3,図4)であるが、枠状に限定されず、電極7の外周縁部70の周方向に沿って断続的に配置される複数の板材であってもよい。例えば電極押え板6を複数の板材で構成する場合、その板材の形状は特に限定されず、適宜選択できる。 The shape of the electrode pressing plate 6 may be a shape along the shape of the electrode 7. Here, it is a rectangular frame shape (FIGS. 3 and 4) continuous along the entire circumference of the outer peripheral edge portion 70 (FIGS. 5 and 6) of the electrode 7, but is not limited to the frame shape, and the outside of the electrode 7 The some board | plate material arrange | positioned intermittently along the circumferential direction of the peripheral part 70 may be sufficient. For example, when the electrode pressing plate 6 is composed of a plurality of plate materials, the shape of the plate materials is not particularly limited and can be selected as appropriate.
 電極押え板6の電極7へのラップ代Wrは、主として後述する電極7の種類に応じて適宜選択できる(図5,図6)。ラップ代Wrとは、電極押え板6の電極7との重複長さを言う。ラップ代Wrは、長いほど電極押え板6と電極7との接触領域を広くできて電極7の位置ずれを防止し易い。電極7の種類に応じたラップ代Wrは、後述するが、凡そ5mm以上が好ましく、8mm以上が特に好ましい。ラップ代Wrの上限は、20mm以下が挙げられる。そうすれば、セルフレーム3が過度に大きくなり難い。電極7における電極押え板6から露出する領域の面積を一定とすると、ラップ代Wrが長くなるほどセルフレーム3が大きくなるからである。 The wrap margin Wr of the electrode pressing plate 6 to the electrode 7 can be appropriately selected mainly depending on the type of the electrode 7 described later (FIGS. 5 and 6). The lapping margin Wr refers to the overlapping length of the electrode pressing plate 6 with the electrode 7. The longer the wrapping margin Wr, the wider the contact area between the electrode pressing plate 6 and the electrode 7 and the easier it is to prevent displacement of the electrode 7. The wrap margin Wr corresponding to the type of the electrode 7 will be described later, but is preferably about 5 mm or more, and particularly preferably 8 mm or more. The upper limit of the lapping allowance Wr is 20 mm or less. If so, the cell frame 3 is unlikely to become excessively large. This is because if the area of the region exposed from the electrode pressing plate 6 in the electrode 7 is constant, the cell frame 3 becomes larger as the lapping margin Wr becomes longer.
 電極押え板6の厚みPtは、0.1mm以上1.0mm以下が好ましい。電極押え板6の厚みPtが0.1mm以上であれば、電極押え板6の剛性を高め易いため、電極押え板6で電極7を押圧し易く電極7の位置ずれを防止し易い。電極押え板6の厚みPtが1.0mm以下であれば、隣り合うセルフレーム3との間が過度に広くなりすぎないため、上記積層体(セルスタック2)の大型化、ひいてはRF電池1の大型化を抑制し易い。電極押え板6の厚みPtは、0.3mm以上0.5mm以下がより好ましい。また、枠体5の外周縁部50oにおける最も厚い部分の表裏面と各電極押え板6の表面は面一である。 The thickness Pt of the electrode pressing plate 6 is preferably 0.1 mm or greater and 1.0 mm or less. If the thickness Pt of the electrode pressing plate 6 is 0.1 mm or more, the rigidity of the electrode pressing plate 6 can be easily increased. Therefore, it is easy to press the electrode 7 with the electrode pressing plate 6 and to prevent displacement of the electrode 7. If the thickness Pt of the electrode pressing plate 6 is 1.0 mm or less, the gap between the adjacent cell frames 3 is not excessively widened. Therefore, the laminate (cell stack 2) is increased in size, and thus the RF battery 1 Easy to suppress enlargement. The thickness Pt of the electrode pressing plate 6 is more preferably 0.3 mm or more and 0.5 mm or less. In addition, the front and back surfaces of the thickest portion of the outer peripheral edge 50o of the frame 5 and the surface of each electrode pressing plate 6 are flush with each other.
 電極押え板6の材質は、電解液に対する耐性を有する材料が挙げられる。電極押え板6の材質は、例えば、塩化ビニル樹脂、ポリプロピレン、ポリエチレン、フッ素樹脂、エポキシ樹脂などのプラスチックやゴムで形成することが挙げられる。 The material of the electrode pressing plate 6 includes a material having resistance to the electrolytic solution. Examples of the material of the electrode pressing plate 6 include a plastic material such as vinyl chloride resin, polypropylene, polyethylene, fluorine resin, and epoxy resin, and rubber.
  [電極]
 電極7は、電解液が流通することで電池反応を行う。電極7は、セルフレーム3の凹部30の内側に配置されている。電極7の形状は、セルフレーム3の凹部30の形状に沿った矩形状である。電極7の大きさは、ここでは流路42の両横溝部43x,44x同士の間に配置される程度の大きさ、より具体的にはその外周縁部70が流路42の横畝部45yに重なる大きさとしている。この電極7の外周縁部70は、双極板4の嵌め込み溝部41と電極押え板6の電極対向面62とで挟まれている。即ち、電極7の大きさは、嵌め込み溝部41の外形よりも少し小さい。
[electrode]
The electrode 7 performs a battery reaction as the electrolyte flows. The electrode 7 is disposed inside the recess 30 of the cell frame 3. The shape of the electrode 7 is a rectangular shape along the shape of the recess 30 of the cell frame 3. Here, the size of the electrode 7 is such that the electrode 7 is disposed between the lateral groove portions 43x and 44x of the flow path 42, more specifically, the outer peripheral edge portion 70 is the horizontal flange portion 45y of the flow path 42. The size overlaps with The outer peripheral edge portion 70 of the electrode 7 is sandwiched between the fitting groove portion 41 of the bipolar plate 4 and the electrode facing surface 62 of the electrode pressing plate 6. That is, the size of the electrode 7 is slightly smaller than the outer shape of the fitting groove 41.
 電極押え板6と嵌め込み溝部41との間における電極7の反発力は、0.1MPa以上1.0MPa以下が好ましい。電極7の反発力を0.1MPa以上とすれば、双極板4及び電極押え板6と電極7とを密着させ易く、双極板4と電極押え板6とで挟むことによる電極7の位置ずれ防止に効果的である。電極7の反発力を1.0MPa以下とすれば、電極7に浸透させる電解液を円滑に流通させ易い。電極7の反発力は、株式会社島津製作所製の精密万能試験機オートグラフAG-Xplus(AG-10kNX-plus)を用いて電極7をその初期厚み(無負荷時)から所定の厚みに圧縮したときの面圧である。所定の厚みとは、電極7の外周縁部70の厚みEtである。 The repulsive force of the electrode 7 between the electrode pressing plate 6 and the fitting groove 41 is preferably 0.1 MPa or more and 1.0 MPa or less. If the repulsive force of the electrode 7 is 0.1 MPa or more, the bipolar plate 4 and the electrode pressing plate 6 and the electrode 7 can be easily brought into close contact with each other, and the electrode 7 can be prevented from being displaced by being sandwiched between the bipolar plate 4 and the electrode pressing plate 6. It is effective. If the repulsive force of the electrode 7 is 1.0 MPa or less, it is easy to smoothly distribute the electrolytic solution that permeates the electrode 7. The repulsive force of the electrode 7 was compressed from its initial thickness (no load) to a predetermined thickness using a precision universal testing machine Autograph AG-Xplus (AG-10kNX-plus) manufactured by Shimadzu Corporation. It is the surface pressure when. The predetermined thickness is the thickness Et of the outer peripheral edge portion 70 of the electrode 7.
 電極7の外周縁部70の厚みEtは、電極7の種類や上記積層体の組立前の電極7の非圧縮状態の厚みなどにもよるが、例えば0.3mm以上3.0mm以下が挙げられ、特に1.0mm以下が挙げられる。ここでいう電極7の外周縁部70の厚みEtとは、電極7のうち双極板4と電極押え板6とで挟まれる箇所の厚みであり、上記積層体を組み立てた状態での厚みをいう。上記積層体の組立前の電極7の非圧縮状態の厚みは、電極7の種類や目付などにもよるが、電極7が不織布の場合、例えば0.5mm以上5.0mm以下が挙げられ、その目付が200g/m以上300g/m以下で、かつ面積が「(1000cm~3000cm)+ラップ代Wrの面積」の場合、1.5mm以上2.0mm以下が挙げられる。電極7が織布の場合、電極7の厚みは、例えば0.3mm以上1.0mm以下が挙げられる。電極7がペーパの場合、電極7の厚みは、例えば0.3mm以上1.0mm以下が挙げられる。 The thickness Et of the outer peripheral edge portion 70 of the electrode 7 depends on the type of the electrode 7 and the thickness of the electrode 7 in an uncompressed state before the assembly of the laminate, but is 0.3 mm to 3.0 mm, for example. Especially, 1.0 mm or less is mentioned. The thickness Et of the outer peripheral edge 70 of the electrode 7 here is the thickness of the electrode 7 between the bipolar plate 4 and the electrode pressing plate 6, and means the thickness in the state in which the laminate is assembled. . Although the thickness of the uncompressed state of the electrode 7 before assembly of the laminate depends on the type and basis weight of the electrode 7, when the electrode 7 is a non-woven fabric, for example, 0.5 mm or more and 5.0 mm or less may be mentioned. When the basis weight is 200 g / m 2 or more and 300 g / m 2 or less and the area is “(1000 cm 2 to 3000 cm 2 ) + the area of the wrap allowance Wr”, 1.5 mm or more and 2.0 mm or less can be mentioned. When the electrode 7 is a woven fabric, the thickness of the electrode 7 is 0.3 mm or more and 1.0 mm or less, for example. When the electrode 7 is paper, the thickness of the electrode 7 is 0.3 mm or more and 1.0 mm or less, for example.
 電極7の構成材料は、例えば、炭素繊維からなる不織布(カーボンフェルト)や織布(カーボンクロス)などの他、ペーパ(カーボンペーパ)などが挙げられる。 Examples of the constituent material of the electrode 7 include non-woven fabric (carbon felt) and woven fabric (carbon cloth) made of carbon fiber, and paper (carbon paper).
 [双極板の嵌め込み溝部の深さ・電極押え板のラップ代]
 電極7の種類としては上述のように不織布、織布、ペーパなどが挙げられ、主に電極7の種類に応じて、双極板4の嵌め込み溝部41の深さ、及び電極押え板6のラップ代Wrを適宜選択できる。電極7が不織布の場合、深さは、例えば0.3mm以上2.5mm以下が好ましく、ラップ代Wrは、例えば5mm以上が好ましい。特に、電極7が不織布であり、その目付が200g/m以上300g/m以下で、かつ面積が「(1000cm~3000cm)+ラップ代Wrの面積」の場合、深さは0.3mm以上1.0mm以下が好ましく、ラップ代Wrは8mm以上が好ましい。電極7が織布の場合、深さは、例えば0.1mm以上0.5mm以下が好ましく、ラップ代Wrは、例えば8mm以上が好ましい。電極7がペーパの場合、深さは、例えば0.3mm以上0.5mm以下が好ましく、ラップ代Wrは、例えば5mm以上が好ましい。
[Dipole groove fitting depth, electrode holding plate wrap allowance]
Examples of the type of the electrode 7 include non-woven fabric, woven fabric, and paper as described above. The depth of the fitting groove 41 of the bipolar plate 4 and the wrap margin of the electrode pressing plate 6 are mainly determined according to the type of the electrode 7. Wr can be selected as appropriate. When the electrode 7 is a nonwoven fabric, the depth is preferably, for example, 0.3 mm or more and 2.5 mm or less, and the wrap margin Wr is preferably, for example, 5 mm or more. In particular, when the electrode 7 is a non-woven fabric, the basis weight is 200 g / m 2 or more and 300 g / m 2 or less, and the area is “(1000 cm 2 to 3000 cm 2 ) + the area of the lapping allowance Wr”, the depth is 0.00. 3 mm or more and 1.0 mm or less are preferable, and the lapping margin Wr is preferably 8 mm or more. When the electrode 7 is a woven fabric, the depth is preferably 0.1 mm or more and 0.5 mm or less, and the wrap margin Wr is preferably 8 mm or more, for example. When the electrode 7 is paper, the depth is preferably, for example, 0.3 mm or more and 0.5 mm or less, and the wrap margin Wr is, for example, preferably 5 mm or more.
 〔作用効果〕
 実施形態1に係るRF電池1によれば、以下の効果を奏することができる。
[Function and effect]
The RF battery 1 according to Embodiment 1 can provide the following effects.
 (1)双極板4の嵌め込み溝部41と電極押え板6との間に電極7の外周縁部70を挟むことで、双極板4に対する電極7の位置ずれを抑制し易く、双極板4に対する電極7の位置決めが容易である。電極7が位置ずれし難いことで、セルフレーム3の凹部30に電極7を配置してセルフレーム3と電極7とを一纏めにして電池セル100やセルスタック2を組み立てられる。そのため、RF電池1の組立作業性に優れる。また、一纏めにしたセルフレーム3と電極7とを電極押え板6ごと枠体5を支持すれば、電極7が下となるようにして電池セル100やセルスタック200を組み立てることもできる。 (1) By sandwiching the outer peripheral edge portion 70 of the electrode 7 between the fitting groove portion 41 of the bipolar plate 4 and the electrode pressing plate 6, the positional deviation of the electrode 7 with respect to the bipolar plate 4 can be easily suppressed, and the electrode with respect to the bipolar plate 4 7 is easy to position. Since the electrode 7 is difficult to be displaced, the battery cell 100 and the cell stack 2 can be assembled by arranging the electrode 7 in the recess 30 of the cell frame 3 and bringing the cell frame 3 and the electrode 7 together. Therefore, the assembly workability of the RF battery 1 is excellent. Moreover, if the cell frame 3 and the electrode 7 which were put together are supported with the frame body 5 with the electrode pressing plate 6, the battery cell 100 and the cell stack 200 can also be assembled so that the electrode 7 may become down.
 (2)嵌め込み溝部41を備えることで、電極7の厚みが薄くても双極板4と電極押え板6とで過度に電極7を押圧することなく面圧の集中を抑制し易い。そのため、面圧の集中に伴う双極板4の割れを抑制できる。その上、電極7の厚みが薄くても電極7の位置ずれを抑制し易い。電極7の厚みは薄いほど反発力が生じ難く、電極押え板6による組立時の電極7の位置ずれ防止効果が低減し易くなるが、嵌め込み溝部41に形成される角部によって双極板4と電極押え板6とで電極7を押圧し易いからである。 (2) By providing the fitting groove portion 41, it is easy to suppress the concentration of the surface pressure without excessively pressing the electrode 7 with the bipolar plate 4 and the electrode pressing plate 6 even if the thickness of the electrode 7 is thin. Therefore, the crack of the bipolar plate 4 accompanying the concentration of the surface pressure can be suppressed. In addition, even if the electrode 7 is thin, it is easy to suppress the displacement of the electrode 7. As the thickness of the electrode 7 is thinner, a repulsive force is less likely to be generated, and the effect of preventing the displacement of the electrode 7 during assembly by the electrode pressing plate 6 can be easily reduced, but the bipolar plate 4 and the electrode are formed by the corners formed in the fitting groove 41. This is because it is easy to press the electrode 7 with the presser plate 6.
 1 レドックスフロー電池(RF電池)
 2 セルスタック
 3 セルフレーム 30 凹部
 4 双極板 40 外周縁部
  41 嵌め込み溝部
   41x 嵌め込み横溝部 41y 嵌め込み縦溝部
  42 流路
   43 導入路
    43i 導入口 43x 導入横溝部 43y 導入縦溝部
   44 排出路
    44o 排出口 44x 排出横溝部 44y 排出縦溝部
   45 畝部
    45x 横畝部 45y 縦畝部
  48 シール溝
 5 枠体 50i 内周縁部 50o 外周縁部
  51 給液側片 51m 給液マニホールド 51s 給液スリット
  52 排液側片 52m 排液マニホールド 52s 排液スリット
  57 収納凹部
 6 電極押え板
  61 枠体対向面 62 電極対向面
 7 電極 70 外周縁部
  71 正極電極 72 負極電極
 80,81 シール部材
 100 電池セル 101 隔膜 102 正極セル 103 負極セル
 100P 正極用循環機構 100N 負極用循環機構
 106 正極電解液タンク 107 負極電解液タンク
 108,109 供給導管 110,111 排出導管
 112,113 ポンプ
 200 サブスタック 210 給排板 220 エンドプレート
 230 締付機構
1 Redox flow battery (RF battery)
2 cell stack 3 cell frame 30 recess 4 bipolar plate 40 outer peripheral edge 41 fitting groove 41x fitting horizontal groove 41y fitting vertical groove 42 flow path 43 introduction path 43i introduction port 43x introduction horizontal groove part 43y introduction vertical groove part 44 discharge path 44x discharge port 44x Discharge horizontal groove portion 44y Discharge vertical groove portion 45 Hook portion 45x Horizontal hook portion 45y Vertical hook portion 48 Seal groove 5 Frame body 50i Inner peripheral edge portion 50o Outer peripheral edge portion 51 Liquid supply side piece 51m Supply liquid manifold 51s Supply liquid slit 52 Drain side piece 52 m Drainage manifold 52 s Drainage slit 57 Storage recess 6 Electrode holding plate 61 Frame body facing surface 62 Electrode facing surface 7 Electrode 70 Outer peripheral edge portion 71 Positive electrode 72 Negative electrode 80, 81 Seal member 100 Battery cell 101 Diaphragm 102 Positive electrode cell 103 Negative electrode cell 100P Positive electrode circulation Ring mechanism 100N Negative electrode circulation mechanism 106 Positive electrode electrolyte tank 107 Negative electrode electrolyte tank 108, 109 Supply conduit 110, 111 Discharge conduit 112, 113 Pump 200 Sub-stack 210 Supply / discharge plate 220 End plate 230 Tightening mechanism

Claims (5)

  1.  電極が配置される表面を有する双極板であって、
     前記表面に形成されて前記電極の外周縁部が嵌め込まれる嵌め込み溝部を有する双極板。
    A bipolar plate having a surface on which electrodes are disposed,
    A bipolar plate having a fitting groove formed on the surface and into which an outer peripheral edge of the electrode is fitted.
  2.  前記嵌め込み溝部は、前記電極の外周縁部の全周に沿って環状に形成されている請求項1に記載の双極板。 The bipolar plate according to claim 1, wherein the fitting groove is formed in an annular shape along the entire circumference of the outer peripheral edge of the electrode.
  3.  請求項1又は請求項2に記載の双極板と、
     前記双極板の外周縁部を囲む枠体とを有するセルフレーム。
    The bipolar plate according to claim 1 or 2,
    A cell frame having a frame surrounding an outer peripheral edge of the bipolar plate.
  4.  請求項3に記載のセルフレームと、
     前記双極板の前記嵌め込み溝部に嵌め込まれる外周縁部を有する電極と、
     前記電極の外周縁部に対向する電極押え板とを備えるセルスタック。
    A cell frame according to claim 3;
    An electrode having an outer peripheral edge fitted in the fitting groove of the bipolar plate;
    A cell stack comprising an electrode pressing plate facing the outer peripheral edge of the electrode.
  5.  請求項4に記載のセルスタックを備えるレドックスフロー電池。 A redox flow battery comprising the cell stack according to claim 4.
PCT/JP2017/001825 2017-01-19 2017-01-19 Bipolar plate, cell frame, cell stack and redox flow battery WO2018134955A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/001825 WO2018134955A1 (en) 2017-01-19 2017-01-19 Bipolar plate, cell frame, cell stack and redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/001825 WO2018134955A1 (en) 2017-01-19 2017-01-19 Bipolar plate, cell frame, cell stack and redox flow battery

Publications (1)

Publication Number Publication Date
WO2018134955A1 true WO2018134955A1 (en) 2018-07-26

Family

ID=62909048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001825 WO2018134955A1 (en) 2017-01-19 2017-01-19 Bipolar plate, cell frame, cell stack and redox flow battery

Country Status (1)

Country Link
WO (1) WO2018134955A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546178A (en) * 2018-11-27 2019-03-29 杭州电子科技大学温州研究院有限公司 A kind of intestines shape flow-field plate and the fuel cell including the flow-field plate
CN113348572A (en) * 2019-02-14 2021-09-03 住友电气工业株式会社 Bipolar plate, battery frame, battery pack and redox flow battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367659A (en) * 2001-06-12 2002-12-20 Sumitomo Electric Ind Ltd Cell frame for redox flow cell, and redox cell
JP2006351423A (en) * 2005-06-17 2006-12-28 Toyota Motor Corp Fuel cell
WO2016159348A1 (en) * 2015-04-01 2016-10-06 昭和電工株式会社 Electrode material, electrode of redox flow battery, and redox flow battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367659A (en) * 2001-06-12 2002-12-20 Sumitomo Electric Ind Ltd Cell frame for redox flow cell, and redox cell
JP2006351423A (en) * 2005-06-17 2006-12-28 Toyota Motor Corp Fuel cell
WO2016159348A1 (en) * 2015-04-01 2016-10-06 昭和電工株式会社 Electrode material, electrode of redox flow battery, and redox flow battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546178A (en) * 2018-11-27 2019-03-29 杭州电子科技大学温州研究院有限公司 A kind of intestines shape flow-field plate and the fuel cell including the flow-field plate
CN113348572A (en) * 2019-02-14 2021-09-03 住友电气工业株式会社 Bipolar plate, battery frame, battery pack and redox flow battery

Similar Documents

Publication Publication Date Title
KR102272748B1 (en) Bipolar plates, cell frames, cell stacks, and redox flow batteries
US10593964B2 (en) Bipolar plate, cell frame, cell stack and redox-flow battery
JP6099005B2 (en) Battery cell and redox flow battery
WO2016072254A1 (en) Electrolyte-circulating battery
JP6738052B2 (en) Cell frame, cell stack, and redox flow battery
JP2017027663A (en) Redox flow cell
WO2018134955A1 (en) Bipolar plate, cell frame, cell stack and redox flow battery
JP6699674B2 (en) Redox flow battery
AU2017261462B2 (en) Bipolar plate, cell frame, cell stack, and redox flow battery
AU2016432005B2 (en) Frame body, cell frame, cell stack, and redox flow battery
JP6908031B2 (en) Redox flow battery cells, redox flow battery cell stacks, and redox flow batteries
US11769886B2 (en) Battery cell, cell stack, and redox flow battery
WO2018092216A1 (en) Cell frame, cell stack, and redox flow battery
US11811105B2 (en) Battery cell, cell stack, and redox flow battery
JP2020129502A (en) Battery cell, cell stack and redox flow battery
WO2019234867A1 (en) Bipolar plate, cell frame, cell stack, and redox flow battery
JP2020173892A (en) Bipolar plate, battery cell, cell stack, and redox flow battery
WO2018134927A1 (en) Bipolar plate, cell frame, cell stack, and redox flow cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP