WO2018134454A1 - Photovoltaic pumping system hydraulically hybridised with the electrical grid or with diesel groups for irrigation uses - Google Patents

Photovoltaic pumping system hydraulically hybridised with the electrical grid or with diesel groups for irrigation uses Download PDF

Info

Publication number
WO2018134454A1
WO2018134454A1 PCT/ES2017/070857 ES2017070857W WO2018134454A1 WO 2018134454 A1 WO2018134454 A1 WO 2018134454A1 ES 2017070857 W ES2017070857 W ES 2017070857W WO 2018134454 A1 WO2018134454 A1 WO 2018134454A1
Authority
WO
WIPO (PCT)
Prior art keywords
subgroup
water pumps
photovoltaic
frequency inverters
control unit
Prior art date
Application number
PCT/ES2017/070857
Other languages
Spanish (es)
French (fr)
Inventor
José Fernández Ramos
Luis NARVARTE FERNÁNDEZ
Rita HOGAN TEVES DE ALMEIDA
Isaac BARATA CARRELO
Luis Miguel CARRASCO MORENO
Eduardo Lorenzo Pigueiras
Original Assignee
Universidad Politécnica de Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politécnica de Madrid filed Critical Universidad Politécnica de Madrid
Publication of WO2018134454A1 publication Critical patent/WO2018134454A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/006Solar operated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/12Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Definitions

  • the invention falls within the technical field of photovoltaic technologies and in the technical sector of agriculture, and in particular in the sector of photovoltaic irrigation techniques for different agricultural crops.
  • the object of the present invention is to provide a hydraulically hybridized photovoltaic pumping system with the power grid or with diesel groups for irrigation applications capable of offering maximum utilization and greater penetration of photovoltaic solar energy, both in pressure irrigation and constant flow as at variable pressure and flow.
  • This type of systems limits the penetration of photovoltaic solar energy and forces a greater consumption of electricity from the electricity grid or from diesel groups.
  • the pumping system for irrigation applications of the invention comprises at least one solar and temperature irradiance sensor, a plurality of water pumps, a plurality of frequency inverters, a plurality of photovoltaic generators, a plurality of connections to the mains or diesel groups, and a plurality of contactors that allow the pumps to be connected to the frequency inverters. All the pumps pour into the same water pipe, so that the hybridization of the system is carried out in the hydraulic part.
  • a first subgroup of water pumps are exclusively connected to a first subgroup of frequency inverters powered by photovoltaic generators
  • a second subgroup of water pumps are exclusively connected to a second subgroup of frequency inverters powered by the electrical network or by diesel groups
  • a third subgroup of water pumps are connected, through contactors, to a third subgroup of frequency inverters powered by photovoltaic generators and to a fourth subgroup of frequency inverters powered by the electrical network or by diesel groups
  • the pumping system comprises a control unit configured to receive the flow demand necessary for irrigation; determine the number of water pumps that need to be fed to meet the flow demand; evaluate the photovoltaic power available from the irradiance and temperature sensor; determine the number of water pumps that can be fed from the available photovoltaic power; and establish a mode of operation of the pumping system, from the number of water pumps that need to be fed and that it is possible to feed with the available photovoltaic power, and where the established mode of operation is selected from: photovoltaic mode, hybrid mode, and network / diesel mode.
  • the control unit configured to set:
  • the photovoltaic mode if the number of water pumps that can be fed with the available photovoltaic power is greater than or equal to the number of water pumps that need to be fed to meet the flow demand;
  • the hybrid mode if the number of water pumps that can be fed with the available photovoltaic power is greater than the number of pumps in the first subgroup but less than the number of water pumps that need to be fed to meet the flow demand;
  • control unit sets the network / diesel mode if the number of water pumps that can be fed with the available photovoltaic power is less than the number of pumps in the first subgroup. If the control unit sets the photovoltaic mode, said control unit is also configured to:
  • control unit sets the hybrid mode, said control unit is also configured to:
  • control unit sets the network / diesel mode, said control unit is also configured to:
  • the pumping system of the invention allows three modes of operation: the photovoltaic mode (photovoltaic only), the hybrid mode, and the network / diesel mode (network / diesel only) that maximize the use of photovoltaic solar energy and minimize consumption from the power grid or diesel groups, both in raft pumping with variable pressure and flow, and in direct irrigation at constant pressure and flow.
  • the invention allows maximum photovoltaic utilization at all possible irradiance levels.
  • control unit is configured to establish a first mode of operation (F1) with variable pressure and flow pumping, and a second mode of operation (F2) with constant pressure and flow pumping, and incorporate an algorithm of monitoring the maximum power point of the photovoltaic generator. If the control unit establishes the first mode of operation (F1), said control unit is further configured to:
  • control unit If the control unit establishes the second mode of operation (F2), said control unit is further configured to:
  • the second and fourth subgroups of frequency inverters prepared to work at nominal power can be replaced by soft starters.
  • Figure 1 shows a schematic view of a pumping system for irrigation applications, according to a preferred embodiment of the invention.
  • Figure 1 shows a pumping system (1) for constant pressure and flow irrigation consisting of three water pumps (2), four frequency inverters (3), a contactor (5), a pipe (8), a unit control (7), a photovoltaic generator (4a), connections to a diesel group (4b), and an irradiance and temperature sensor (6) connected to the control unit (7).
  • the pumping system (1) comprises a first subgroup of water pumps (2a) connected to a first subgroup of frequency inverters (3a) fed only by photovoltaic generators (4a), a second subgroup of water pumps (2b) connected to a second subgroup of frequency inverters (3b) powered only by diesel generators (4b), and a third subgroup of water pumps (2c) connected, via contactors (5), to a third subgroup of frequency inverters (3c) fed by photovoltaic generators (4a) and a fourth subgroup of frequency inverters (3d) fed by the diesel group (4b).
  • the first (2a), the second (2b) and the third subgroup of water pumps (2c) are each formed by a single water pump (2).
  • the first (2a) and the second subgroup of water pumps (2b) will be formed by a single water pump (2)
  • the third subgroup (2c) will be formed by a plurality of water pumps ( 2), the rest of the water pumps that integrate the pumping system (1) until the necessary demand is reached.
  • the pumping system (1) will require one more water pump (n + 1 water pumps) than the water pumps that would be required in the state of the art (n water pumps) to reach the pressure and the workflow required.
  • the system will require 2n frequency inverters (3).
  • the pumping system (1) comprises a single pipe (8) to which all water pumps (2) are connected. In this way, the hybridization of the pumping system (1) is carried out in the hydraulic part, and not in the electrical part.
  • the control unit (7) receives the required flow demand and determines that it is necessary to feed two water pumps (2) for meet that demand. Subsequently, the control unit (7) evaluates the signal it receives from the irradiance and temperature sensor (6) and determines that there is enough photovoltaic power to power two water pumps (2). Based on this, the control unit (7) establishes the photovoltaic mode.
  • the control unit (7) orders: stop the second (3b) and the fourth subgroup of frequency inverters (3d) (powered by diesel groups (4b)), to the contactor (5) that is connected with the third subgroup of frequency inverters (3c) (powered by the photovoltaic generator (4a)), and the two frequency inverters (3) powered by the photovoltaic generator (4a) (from the first and third subgroups of frequency inverters ) put into operation.
  • the frequency converter of the first subgroup (3a) will work at the maximum power point by means of a algorithm for monitoring the maximum power point of the photovoltaic generator (4a) of the control unit (7), and the frequency inverter (3) of the third subgroup (3c) will be pressure controlled.
  • the two water pumps (2) of the first (2a) and the third subgroup (2c) will operate.
  • the control unit (7) receives the required flow demand and determines that it is necessary to feed two water pumps (2) for meet that demand. Subsequently, the control unit (7) evaluates the signal it receives from the irradiance and temperature sensor (6), and determines that there is not enough photovoltaic power to power two water pumps (2). Based on this, the control unit (7) establishes the hybrid mode. Under this hybrid mode, the control unit (7) commands: stop the frequency inverters (3) of the third (3c) and the fourth subgroup (3d), start the diesel group (4b), and start the frequency inverters ( 3) of the first (3a) and the second subgroup (3b).
  • the frequency converter of the first subgroup (3a) will work at the maximum power point by means of a tracking algorithm of the maximum power point of the photovoltaic generator (4a) of the control unit (7), and the variator of the second subgroup (3b ) will be controlled by pressure.
  • the two water pumps (2) of the first (2a) and the second subgroup (2b) will operate.
  • control unit (7) receives the required flow demand and determines that it is necessary to feed two water pumps (2) for meet that demand. Subsequently, the control unit (7) evaluates the signal it receives from the irradiance and temperature sensor (6), and determines that there is not enough photovoltaic power to power even a water pump (2). Based on this, the control unit (2) establishes the network / diesel mode.
  • the control unit (7) commands: stop the frequency inverters (3) of the first (3a) and the third subgroup (3c), start the diesel group (4b), order the contactor (5 ) connect to the frequency inverter (3) of the fourth subgroup (3d) and start it, and start the frequency inverter (3) of the second subgroup (3b).
  • the frequency converter of the second subgroup (3b) will work under pressure control and the inverter of the fourth subgroup (3d) will work at its nominal power.
  • the two water pumps (2) of the second (2b) and the third subgroup (2c) will operate.
  • the frequency inverters (3) fed by diesel groups (4b) that always work at nominal power (second (3b) and fourth subgroup of frequency inverters (3d)) will be soft starters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental Sciences (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Electromagnetic Pumps, Or The Like (AREA)

Abstract

The invention relates to a photovoltaic pumping system (1) hydraulically hybridised with the electrical grid or with diesel groups for irrigation uses, which comprises at least one irradiance and temperature sensor (6), a plurality of water pumps (2), a plurality of variable-frequency drives (3), a plurality of photovoltaic generators (4a), a plurality of connections (4b) to the electrical grid or to diesel groups, and a plurality of contacts (5) for selecting the type of power supply of the water pumps (2). All the water pumps (2) empty into the same (8), producing hybridisation in the hydraulic part. The system also comprises a control unit (7) configured to establish, based on the number of photovoltaic water pumps (2) that can be powered, a mode for operating the pump system (1), which is selected from photovoltaic mode, hybrid mode and electrical grid/diesel mode.

Description

DESCRIPCIÓN  DESCRIPTION
SISTEMA DE BOMBEO FOTOVOLTAICO Hl BRIDADO HIDRÁULICAMENTE CON LA RED ELÉCTRICA O CON GRUPOS DIESEL PARA APLICACIONES DE RIEGO PHOTOVOLTAIC PUMP SYSTEM Hl HYDRAULIC BRIDATE WITH THE ELECTRICAL NETWORK OR DIESEL GROUPS FOR IRRIGATION APPLICATIONS
Sector técnico Technical sector
La invención se encuadra en el campo técnico de tecnologías fotovoltaicas y en el sector técnico de la agricultura, y en particular en el sector de las técnicas de riego fotovoltaico para los diferentes cultivos agrícolas.  The invention falls within the technical field of photovoltaic technologies and in the technical sector of agriculture, and in particular in the sector of photovoltaic irrigation techniques for different agricultural crops.
El objeto de la presente invención consiste en proporcionar un sistema de bombeo fotovoltaico hibridado hidráulicamente con la red eléctrica o con grupos diésel para aplicaciones de riego capaz de ofrecer un aprovechamiento máximo y una mayor penetración de la energía solar fotovoltaica, tanto en riegos a presión y caudal constantes como a presión y caudal variables. The object of the present invention is to provide a hydraulically hybridized photovoltaic pumping system with the power grid or with diesel groups for irrigation applications capable of offering maximum utilization and greater penetration of photovoltaic solar energy, both in pressure irrigation and constant flow as at variable pressure and flow.
Antecedentes de la invención Background of the invention
Hoy en día las hibridaciones hidráulicas de sistemas de bombeo fotovoltaicos con red eléctrica o grupos diésel consisten en alimentar con fotovoltaico solo una cantidad limitada de bombas en una estación de bombeo.  Nowadays, the hydraulic hybridizations of photovoltaic pumping systems with power grid or diesel groups consist of feeding only a limited quantity of pumps in a pumping station with photovoltaic.
Este número de bombas alimentadas con energía solar fotovoltaica es aún más reducido en riegos a presión y caudal constantes, en los que el control de presión se confía a bombas conectadas a la red eléctrica o a grupos diésel. This number of pumps fed with photovoltaic solar energy is even more reduced in constant pressure and flow irrigation, in which the pressure control is entrusted to pumps connected to the electricity grid or diesel groups.
Este tipo de sistemas limitan la penetración de la energía solar fotovoltaica y obligan a un mayor consumo de electricidad desde la red eléctrica o desde grupos diésel. This type of systems limits the penetration of photovoltaic solar energy and forces a greater consumption of electricity from the electricity grid or from diesel groups.
Se hace por tanto necesario en este sector técnico disponer de un sistema de bombeo fotovoltaico hibridado hidráulicamente con la red eléctrica o con grupos diésel capaz de maximizar el aprovechamiento y la penetración de la energía solar fotovoltaica. It is therefore necessary in this technical sector to have a photovoltaic pumping system hydraulically hybridized with the power grid or with diesel groups capable of maximizing the use and penetration of photovoltaic solar energy.
Descripción de la invención Description of the invention
De esta forma, el sistema de bombeo fotovoltaico hibridado hidráulicamente con la red eléctrica o con grupos diésel para aplicaciones de riego que la presente invención propone, se presenta como una mejora frente a lo conocido en el estado de la técnica puesto que consigue alcanzar satisfactoriamente los objetivos anteriormente señalados como idóneos para la técnica. El sistema de bombeo para aplicaciones de riego de la invención, comprende al menos un sensor de irradiancia solar y de temperatura, una pluralidad de bombas de agua, una pluralidad de variadores de frecuencia, una pluralidad de generadores fotovoltaicos, una pluralidad de conexiones a la red eléctrica o a grupos diésel, y una pluralidad de contactores que permiten conectar las bombas con los variadores de frecuencia. Todas las bombas vierten a una misma tubería de agua, con lo que la hibridación del sistema se realiza en la parte hidráulica. In this way, the photovoltaic pumping system hydraulically hybridized with the power grid or with diesel groups for irrigation applications that the present invention proposed, it is presented as an improvement compared to what is known in the state of the art since it manages to satisfactorily achieve the aforementioned objectives as suitable for the technique. The pumping system for irrigation applications of the invention comprises at least one solar and temperature irradiance sensor, a plurality of water pumps, a plurality of frequency inverters, a plurality of photovoltaic generators, a plurality of connections to the mains or diesel groups, and a plurality of contactors that allow the pumps to be connected to the frequency inverters. All the pumps pour into the same water pipe, so that the hybridization of the system is carried out in the hydraulic part.
De acuerdo con la invención, un primer subgrupo de bombas de agua están conectadas exclusivamente a un primer subgrupo de variadores de frecuencia alimentados por generadores fotovoltaicos, un segundo subgrupo de bombas de agua están conectadas exclusivamente a un segundo subgrupo de variadores de frecuencia alimentados por la red eléctrica o por grupos diésel, y un tercer subgrupo de bombas de agua están conectadas, a través de contactores, a un tercer subgrupo de variadores de frecuencia alimentados por generadores fotovoltaicos y a un cuarto subgrupo de variadores de frecuencia alimentados por la red eléctrica o por grupos diésel. Estos contactores están adaptados para permitir la conexión de las bombas de agua del tercer subgrupo con el tercer o el cuarto subgrupo de variadores de frecuencia. According to the invention, a first subgroup of water pumps are exclusively connected to a first subgroup of frequency inverters powered by photovoltaic generators, a second subgroup of water pumps are exclusively connected to a second subgroup of frequency inverters powered by the electrical network or by diesel groups, and a third subgroup of water pumps are connected, through contactors, to a third subgroup of frequency inverters powered by photovoltaic generators and to a fourth subgroup of frequency inverters powered by the electrical network or by diesel groups These contactors are adapted to allow the connection of the water pumps of the third subgroup with the third or fourth subgroup of frequency inverters.
La suma del número de bombas de agua del primer y del tercer subgrupo de bombas de agua, y la suma del número de bombas del segundo y del tercer subgrupo de bombas de agua, satisfacen la demanda de caudal necesaria para el riego. The sum of the number of water pumps of the first and third subgroups of water pumps, and the sum of the number of pumps of the second and third subgroups of water pumps, satisfy the demand for the necessary flow for irrigation.
Además, el sistema de bombeo comprende una unidad de control configurada para recibir la demanda de caudal necesaria para el riego; determinar el número de bombas de agua que es necesario alimentar para satisfacer la demanda de caudal; evaluar la potencia fotovoltaica disponible a partir del sensor de irradiancia y temperatura; determinar el número de bombas de agua que es posible alimentar a partir de la potencia fotovoltaica disponible; y establecer un modo de funcionamiento del sistema de bombeo, a partir del número de bombas de agua que es necesario alimentar y que es posible alimentar con la potencia fotovoltaica disponible, y donde el modo de funcionamiento establecido está seleccionado entre: modo fotovoltaico, modo híbrido, y modo red/diésel. In addition, the pumping system comprises a control unit configured to receive the flow demand necessary for irrigation; determine the number of water pumps that need to be fed to meet the flow demand; evaluate the photovoltaic power available from the irradiance and temperature sensor; determine the number of water pumps that can be fed from the available photovoltaic power; and establish a mode of operation of the pumping system, from the number of water pumps that need to be fed and that it is possible to feed with the available photovoltaic power, and where the established mode of operation is selected from: photovoltaic mode, hybrid mode, and network / diesel mode.
La unidad de control configurada para establecer: The control unit configured to set:
- el modo fotovoltaico si el número de bombas de agua que es posible alimentar con la potencia fotovoltaica disponible es mayor o igual al número de bombas de agua que es necesario alimentar para satisfacer la demanda de caudal;  - the photovoltaic mode if the number of water pumps that can be fed with the available photovoltaic power is greater than or equal to the number of water pumps that need to be fed to meet the flow demand;
- el modo híbrido si el número de bombas de agua que es posible alimentar con la potencia fotovoltaica disponible es mayor al número de bombas del primer subgrupo pero menor al número de bombas de agua que es necesario alimentar para satisfacer la demanda de caudal;  - the hybrid mode if the number of water pumps that can be fed with the available photovoltaic power is greater than the number of pumps in the first subgroup but less than the number of water pumps that need to be fed to meet the flow demand;
- y, la unidad de control establece el modo red/diésel si el número de bombas de agua que es posible alimentar con la potencia fotovoltaica disponible es menor al número de bombas del primer subgrupo. Si la unidad de control establece el modo fotovoltaico, dicha unidad de control está además configurada para:  - and, the control unit sets the network / diesel mode if the number of water pumps that can be fed with the available photovoltaic power is less than the number of pumps in the first subgroup. If the control unit sets the photovoltaic mode, said control unit is also configured to:
- parar el segundo y el cuarto subgrupo de variadores de frecuencia,  - stop the second and fourth subgroups of frequency inverters,
- ordenar a los contactores su conexión con el tercer subgrupo de variadores de frecuencia,  - order the contactors to connect to the third subgroup of frequency inverters,
- arrancar el primer subgrupo de variadores de frecuencia y un número de variadores de frecuencia del tercer subgrupo, donde la suma de variadores de frecuencia arrancados coincide con el número de bombas de agua que es necesario alimentar para satisfacer la demanda de caudal. Si la unidad de control establece el modo híbrido, dicha unidad de control está además configurada para:  - start the first subgroup of frequency inverters and a number of frequency inverters of the third subgroup, where the sum of started frequency inverters coincides with the number of water pumps that need to be fed to meet the flow demand. If the control unit sets the hybrid mode, said control unit is also configured to:
- habilitar la conexión a la red eléctrica o arrancar el generador de diésel,  - enable connection to the mains or start the diesel generator,
- ordenar a los contactores su conexión con un número de variadores de frecuencia del tercer subgrupo, donde dicho número de variadores coincide con el número de bombas de agua del tercer subgrupo que es posible alimentar con la potencia fotovoltaica disponible, y arrancar dicho número de variadores de frecuencia,  - order the contactors to connect with a number of frequency inverters of the third subgroup, where said number of inverters coincides with the number of water pumps of the third subgroup that can be fed with the available photovoltaic power, and start said number of inverters of frequency,
- ordenar a los contactores su conexión con un número de variadores de frecuencia del cuarto subgrupo, donde dicho número de variadores coincide con el número de bombas de agua que es necesario alimentar para satisfacer la demanda de caudal menos el número de bombas de agua del tercer subgrupo que es posible alimentar con la potencia fotovoltaica disponible y menos el número de bombas de agua del primer y segundo subgrupo, y arrancar dicho número de variadores de frecuencia, - arrancar los variadores de frecuencia del primer y del segundo subgrupo. - order the contactors to connect with a number of frequency inverters of the fourth subgroup, where said number of inverters coincides with the number of water pumps that need to be fed to meet the flow demand minus the number of water pumps of the third subgroup that is possible to feed with the available photovoltaic power and less the number of water pumps of the first and second subgroups, and starting said number of frequency inverters, - starting the frequency inverters of the first and second subgroups.
Si la unidad de control establece el modo red/diésel, dicha unidad de control está además configurada para: If the control unit sets the network / diesel mode, said control unit is also configured to:
- parar el primer y el tercer subgrupo de variadores de frecuencia,  - stop the first and third subgroups of frequency inverters,
- habilitar la conexión a la red eléctrica o arrancar el generador de diésel,  - enable connection to the mains or start the diesel generator,
- ordenar a todos los contactores su conexión con el cuarto subgrupo de variadores de frecuencia,  - order all contactors to connect to the fourth sub-group of frequency inverters,
- arrancar el segundo subgrupo de variadores de frecuencia y un número de variadores de frecuencia del cuarto subgrupo, donde la suma de variadores de frecuencia arrancados coincide con el número de bombas de agua que es necesario alimentar para satisfacer la demanda de caudal.  - start the second subgroup of frequency inverters and a number of frequency inverters of the fourth subgroup, where the sum of started frequency inverters coincides with the number of water pumps that need to be fed to meet the flow demand.
De esta forma, el sistema de bombeo de la invención permite tres modos de funcionamiento: el modo fotovoltaico (sólo fotovoltaico), el modo híbrido, y el modo red/diésel (sólo red/diésel) que maximizan el uso de la energía solar fotovoltaica y minimizan el consumo desde la red eléctrica o los grupos diésel, tanto en bombeo a balsa con presión y caudal variables, como en riego directo a presión y caudal constantes. Así, la invención permite el máximo aprovechamiento fotovoltaico a todos los niveles de irradiancia posibles. Thus, the pumping system of the invention allows three modes of operation: the photovoltaic mode (photovoltaic only), the hybrid mode, and the network / diesel mode (network / diesel only) that maximize the use of photovoltaic solar energy and minimize consumption from the power grid or diesel groups, both in raft pumping with variable pressure and flow, and in direct irrigation at constant pressure and flow. Thus, the invention allows maximum photovoltaic utilization at all possible irradiance levels.
Según una realización preferente, la unidad de control está configurada para establecer un primer modo de funcionamiento (F1) con bombeo a presión y caudal variables, y un segundo modo de funcionamiento (F2) con bombeo a presión y caudal constantes, e incorporar un algoritmo de control de seguimiento del punto de máxima potencia del generador fotovoltaico. Si la unidad de control establece el primer modo de funcionamiento (F1), dicha unidad de control está además configurada para: According to a preferred embodiment, the control unit is configured to establish a first mode of operation (F1) with variable pressure and flow pumping, and a second mode of operation (F2) with constant pressure and flow pumping, and incorporate an algorithm of monitoring the maximum power point of the photovoltaic generator. If the control unit establishes the first mode of operation (F1), said control unit is further configured to:
- establecer como punto de trabajo del primer y del tercer subgrupo de variadores de frecuencia el seguimiento del punto de máxima potencia del generador fotovoltaico mediante el algoritmo de control de seguimiento de la unidad de control,  - establish as a working point of the first and third subgroups of frequency inverters the monitoring of the maximum power point of the photovoltaic generator by means of the tracking control algorithm of the control unit,
- y establecer como punto de trabajo del segundo y del cuarto subgrupo de variadores de frecuencia su potencia nominal. - and establish as the working point of the second and fourth subgroup of drives of frequency its nominal power.
Si la unidad de control establece el segundo modo de funcionamiento (F2), dicha unidad de control está además configurada para: If the control unit establishes the second mode of operation (F2), said control unit is further configured to:
- controlar por presión el segundo y el tercer subgrupo de variadores de frecuencia, - control by pressure the second and third subgroups of frequency inverters,
- establecer como punto de trabajo del primer subgrupo de variadores de frecuencia el seguimiento del punto de máxima potencia del generador fotovoltaico mediante el algoritmo de control de seguimiento de la unidad de control, - establish as a working point of the first subgroup of frequency inverters the monitoring of the maximum power point of the photovoltaic generator by means of the tracking control algorithm of the control unit,
- establecer como punto de trabajo del cuarto subgrupo de variadores de frecuencia su potencia nominal.  - establish the nominal power as the working point of the fourth sub-group of frequency inverters.
De forma preferente, el segundo y el cuarto subgrupo de variadores de frecuencia preparados para trabajar a potencia nominal, pueden ser sustitutidos por arrancadores suaves. Preferably, the second and fourth subgroups of frequency inverters prepared to work at nominal power can be replaced by soft starters.
Descripción de los dibujos Description of the drawings
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de realización práctica del mismo, se acompaña como parte integrante de dicha descripción, un dibujo en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:  To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, according to a preferred example of practical realization thereof, an drawing is attached as an integral part of said description, where Illustrative and not limiting, the following has been represented:
La figura 1.- Muestra una vista esquemática de un sistema de bombeo para aplicaciones de riego, según una realización preferente de la invención. Figure 1 shows a schematic view of a pumping system for irrigation applications, according to a preferred embodiment of the invention.
Realización preferente de la invención Preferred Embodiment of the Invention
La figura 1 muestra un sistema de bombeo (1) para riego a presión y caudal constantes integrado por tres bombas de agua (2), cuatro variadores de frecuencia (3), un contactor (5), una tubería (8), una unidad de control (7), un generador fotovoltaico (4a), conexiones a un grupo diésel (4b), y un sensor de irradiancia y temperatura (6) conectado a la unidad de control (7).  Figure 1 shows a pumping system (1) for constant pressure and flow irrigation consisting of three water pumps (2), four frequency inverters (3), a contactor (5), a pipe (8), a unit control (7), a photovoltaic generator (4a), connections to a diesel group (4b), and an irradiance and temperature sensor (6) connected to the control unit (7).
De acuerdo con la invención, el sistema de bombeo (1) comprende un primer subgrupo de bombas de agua (2a) conectadas a un primer subgrupo de variadores de frecuencia (3a) alimentados únicamente por generadores fotovoltaicos (4a), un segundo subgrupo de bombas de agua (2b) conectadas a un segundo subgrupo de variadores de frecuencia (3b) alimentados únicamente por generadores de diésel (4b), y un tercer subgrupo de bombas de agua (2c) conectadas, a través de contactores (5), a un tercer subgrupo de variadores de frecuencia (3c) alimentados por generadores fotovoltaicos (4a) y a un cuarto subgrupo de variadores de frecuencia (3d) alimentados por el grupo diésel (4b). According to the invention, the pumping system (1) comprises a first subgroup of water pumps (2a) connected to a first subgroup of frequency inverters (3a) fed only by photovoltaic generators (4a), a second subgroup of water pumps (2b) connected to a second subgroup of frequency inverters (3b) powered only by diesel generators (4b), and a third subgroup of water pumps (2c) connected, via contactors (5), to a third subgroup of frequency inverters (3c) fed by photovoltaic generators (4a) and a fourth subgroup of frequency inverters (3d) fed by the diesel group (4b).
En el sistema de la Figura 1 , el primer (2a), el segundo (2b) y el tercer subgrupo de bombas de agua (2c) están formados cada uno por una única bomba de agua (2). Según una realización preferente, el primer (2a) y el segundo subgrupo de bombas de agua (2b) estarán formados por una única bomba de agua (2), y el tercer subgrupo (2c) estará formado por una pluralidad de bombas de agua (2), el resto de bombas de agua que integra el sistema de bombeo (1) hasta alcanzar la demanda necesaria. En este caso, el sistema de bombeo (1) precisará una bomba de agua más (n+1 bombas de agua) de las bombas de agua que se precisaría en el estado de la técnica (n bombas de agua) para alcanzar la presión y el caudal de trabajo requeridos. Así mismo, el sistema precisará 2n variadores de frecuencia (3). In the system of Figure 1, the first (2a), the second (2b) and the third subgroup of water pumps (2c) are each formed by a single water pump (2). According to a preferred embodiment, the first (2a) and the second subgroup of water pumps (2b) will be formed by a single water pump (2), and the third subgroup (2c) will be formed by a plurality of water pumps ( 2), the rest of the water pumps that integrate the pumping system (1) until the necessary demand is reached. In this case, the pumping system (1) will require one more water pump (n + 1 water pumps) than the water pumps that would be required in the state of the art (n water pumps) to reach the pressure and the workflow required. Likewise, the system will require 2n frequency inverters (3).
Como se observa en la Figura 1 , el sistema de bombeo (1) comprende una única tubería (8) a la que todas las bombas de agua (2) están conectadas. De esta forma, la hibridación del sistema de bombeo (1) se realiza en la parte hidráulica, y no en la parte eléctrica. As seen in Figure 1, the pumping system (1) comprises a single pipe (8) to which all water pumps (2) are connected. In this way, the hybridization of the pumping system (1) is carried out in the hydraulic part, and not in the electrical part.
En una realización de la invención con bombeo a presión y caudal constantes (segundo modo de funcionamiento (F2)), la unidad de control (7) recibe la demanda de caudal necesaria y determina que es necesario alimentar dos bombas de agua (2) para satisfacer dicha demanda. Posteriormente, la unidad de control (7) evalúa la señal que recibe del sensor de irradiancia y temperatura (6) y determina que hay suficiente potencia fotovoltaica para alimentar dos bombas de agua (2). En base a ello, la unidad de control (7) establece el modo fotovoltaico. Bajo este modo fotovoltaico, la unidad de control (7) ordena: parar el segundo (3b) y el cuarto subgrupo de variadores de frecuencia (3d) (alimentados por los grupos diésel (4b)), al contactor (5) que se conecte con el tercer subgrupo de variadores de frecuencia (3c) (alimentados por el generador fotovoltaico (4a)), y a los dos variadores de frecuencia (3) alimentados por el generador fotovoltaico (4a) (del primer y del tercer subgrupo de variadores de frecuencia) que se pongan en funcionamiento. El variador de frecuencia del primer subgrupo (3a) trabajará en el punto de máxima potencia mediante un algoritmo de seguimiento del punto de máxima potencia del generador fotovoltaico (4a) de la unidad de control (7), y el variador de frecuencia (3) del tercer subgrupo (3c) estará controlado por presión. En el ejemplo de la Figura 1 , bajo este modo fotovoltaico, funcionarán las dos bombas de agua (2) del primer (2a) y del tercer subgrupo (2c). In an embodiment of the invention with constant pressure and flow pumping (second mode of operation (F2)), the control unit (7) receives the required flow demand and determines that it is necessary to feed two water pumps (2) for meet that demand. Subsequently, the control unit (7) evaluates the signal it receives from the irradiance and temperature sensor (6) and determines that there is enough photovoltaic power to power two water pumps (2). Based on this, the control unit (7) establishes the photovoltaic mode. Under this photovoltaic mode, the control unit (7) orders: stop the second (3b) and the fourth subgroup of frequency inverters (3d) (powered by diesel groups (4b)), to the contactor (5) that is connected with the third subgroup of frequency inverters (3c) (powered by the photovoltaic generator (4a)), and the two frequency inverters (3) powered by the photovoltaic generator (4a) (from the first and third subgroups of frequency inverters ) put into operation. The frequency converter of the first subgroup (3a) will work at the maximum power point by means of a algorithm for monitoring the maximum power point of the photovoltaic generator (4a) of the control unit (7), and the frequency inverter (3) of the third subgroup (3c) will be pressure controlled. In the example of Figure 1, under this photovoltaic mode, the two water pumps (2) of the first (2a) and the third subgroup (2c) will operate.
En otra realización de la invención con bombeo a presión y caudal constantes (segundo modo de funcionamiento (F2)), la unidad de control (7) recibe la demanda de caudal necesaria y determina que es necesario alimentar dos bombas de agua (2) para satisfacer dicha demanda. Posteriormente, la unidad de control (7) evalúa la señal que recibe del sensor de irradiancia y temperatura (6), y determina que no hay suficiente potencia fotovoltaica para alimentar dos bombas de agua (2). En base a ello, la unidad de control (7) establece el modo híbrido. Bajo este modo híbrido, la unidad de control (7) ordena: parar los variadores de frecuencia (3) del tercer (3c) y del cuarto subgrupo (3d), arrancar el grupo diésel (4b), y arrancar los variadores de frecuencia (3) del primer (3a) y del segundo subgrupo (3b). El variador de frecuencia del primer subgrupo (3a) trabajará en el punto de máxima potencia mediante un algoritmo de seguimiento del punto de máxima potencia del generador fotovoltaico (4a) de la unidad de control (7), y el variador del segundo subgrupo (3b) estará controlado por presión. En el ejemplo de la Figura 1 , bajo este modo híbrido, funcionarán las dos bombas de agua (2) del primer (2a) y del segundo subgrupo (2b). In another embodiment of the invention with constant pressure and flow pumping (second mode of operation (F2)), the control unit (7) receives the required flow demand and determines that it is necessary to feed two water pumps (2) for meet that demand. Subsequently, the control unit (7) evaluates the signal it receives from the irradiance and temperature sensor (6), and determines that there is not enough photovoltaic power to power two water pumps (2). Based on this, the control unit (7) establishes the hybrid mode. Under this hybrid mode, the control unit (7) commands: stop the frequency inverters (3) of the third (3c) and the fourth subgroup (3d), start the diesel group (4b), and start the frequency inverters ( 3) of the first (3a) and the second subgroup (3b). The frequency converter of the first subgroup (3a) will work at the maximum power point by means of a tracking algorithm of the maximum power point of the photovoltaic generator (4a) of the control unit (7), and the variator of the second subgroup (3b ) will be controlled by pressure. In the example of Figure 1, under this hybrid mode, the two water pumps (2) of the first (2a) and the second subgroup (2b) will operate.
En otra realización de la invención con bombeo a presión y caudal constantes (segundo modo de funcionamiento (F2)), la unidad de control (7) recibe la demanda de caudal necesaria y determina que es necesario alimentar dos bombas de agua (2) para satisfacer dicha demanda. Posteriormente, la unidad de control (7) evalúa la señal que recibe del sensor de irradiancia y temperatura (6), y determina que no hay suficiente potencia fotovoltaica para alimentar ni siquiera una bomba de agua (2). En base a ello, la unidad de control (2) establece el modo red/diésel. Bajo este modo red/diésel, la unidad de control (7) ordena: parar los variadores de frecuencia (3) del primer (3a) y el tercer subgrupo (3c), arrancar el grupo diésel (4b), ordenar al contactor (5) que se conecte con el variador de frecuencia (3) del cuarto subgrupo (3d) y arrancarlo, y arrancar el variador de frecuencia (3) del segundo subgrupo (3b). El variador de frecuencia del segundo subgrupo (3b) trabajará controlado por presión y el variador del cuarto subgrupo (3d) trabajará a su potencia nominal. En el ejemplo de la Figura 1 , bajo este modo red/diésel, funcionarán las dos bombas de agua (2) del segundo (2b) y del tercer subgrupo (2c). De acuerdo a una realización preferentemente, los variadores de frecuencia (3) alimentados por grupos diésel (4b) que siempre trabajan a potencia nominal (segundo (3b) y cuarto subgrupo de variadores de frecuencia (3d)) serán arrancadores suaves. Finalmente, a la vista de esta descripción y figuras, el experto en la materia podrá entender que la invención ha sido descrita según algunas realizaciones preferentes de la misma, pero que múltiples variaciones pueden ser introducidas en dichas realizaciones preferentes, sin salir del objeto de la invención tal y como ha sido reivindicada. In another embodiment of the invention with constant pressure and flow pumping (second mode of operation (F2)), the control unit (7) receives the required flow demand and determines that it is necessary to feed two water pumps (2) for meet that demand. Subsequently, the control unit (7) evaluates the signal it receives from the irradiance and temperature sensor (6), and determines that there is not enough photovoltaic power to power even a water pump (2). Based on this, the control unit (2) establishes the network / diesel mode. Under this network / diesel mode, the control unit (7) commands: stop the frequency inverters (3) of the first (3a) and the third subgroup (3c), start the diesel group (4b), order the contactor (5 ) connect to the frequency inverter (3) of the fourth subgroup (3d) and start it, and start the frequency inverter (3) of the second subgroup (3b). The frequency converter of the second subgroup (3b) will work under pressure control and the inverter of the fourth subgroup (3d) will work at its nominal power. In the example of Figure 1, under this network / diesel mode, the two water pumps (2) of the second (2b) and the third subgroup (2c) will operate. According to a preferred embodiment, the frequency inverters (3) fed by diesel groups (4b) that always work at nominal power (second (3b) and fourth subgroup of frequency inverters (3d)) will be soft starters. Finally, in view of this description and figures, the person skilled in the art may understand that the invention has been described according to some preferred embodiments thereof, but that multiple variations can be introduced in said preferred embodiments, without departing from the object of the invention as claimed.

Claims

REIVINDICACIONES
1.- Sistema de bombeo (1) fotovoltaico hibridado hidráulicamente con la red eléctrica o con grupos diésel para aplicaciones de riego, que comprende al menos un sensor de irradiancia y temperatura (6), una pluralidad de bombas de agua (2), una pluralidad de variadores de frecuencia (3), una pluralidad de generadores fotovoltaicos (4a), una pluralidad de puntos de conexión a la red eléctrica o a grupos diésel (4b), donde cada bomba de agua (2) está conectada a un variador de frecuencia (3), y donde cada variador de frecuencia (3) está alimentado por un generador (4a) o por la red eléctrica o grupos diésel (4b), 1.- Photovoltaic pumping system (1) hydraulically hybridized with the power grid or with diesel groups for irrigation applications, comprising at least one irradiance and temperature sensor (6), a plurality of water pumps (2), a plurality of frequency inverters (3), a plurality of photovoltaic generators (4a), a plurality of connection points to the power grid or diesel groups (4b), where each water pump (2) is connected to a frequency inverter (3), and where each frequency inverter (3) is powered by a generator (4a) or by the power grid or diesel groups (4b),
caracterizado por que characterized by that
- un primer subgrupo de bombas de agua (2a) están conectadas a un primer subgrupo de variadores de frecuencia (3a) alimentados por generadores fotovoltaicos (4a),  - a first subgroup of water pumps (2a) are connected to a first subgroup of frequency inverters (3a) powered by photovoltaic generators (4a),
- un segundo subgrupo de bombas de agua (2b) están conectadas a un segundo subgrupo de variadores de frecuencia (3b) alimentados por la red eléctrica o por grupos diésel (4b), - a second subgroup of water pumps (2b) are connected to a second subgroup of frequency inverters (3b) powered by the power grid or by diesel groups (4b),
- y, un tercer subgrupo de bombas de agua (2c) están conectadas, a través de contactores- and, a third subgroup of water pumps (2c) are connected, through contactors
(5) , a un tercer subgrupo de variadores de frecuencia (3c) alimentados por generadores fotovoltaicos (4a) y a un cuarto subgrupo de variadores de frecuencia (3d) alimentados por la red eléctrica o por grupos diésel (4b), donde dichos contactores (5) están adaptados para permitir la conexión de las bombas de agua (2) del tercer subgrupo (2c) con el tercer (3c) o el cuarto subgrupo de variadores de frecuencia (3d), (5), to a third subgroup of frequency inverters (3c) powered by photovoltaic generators (4a) and to a fourth subgroup of frequency inverters (3d) powered by the power grid or by diesel groups (4b), where said contactors ( 5) are adapted to allow the connection of the water pumps (2) of the third subgroup (2c) with the third (3c) or the fourth subgroup of frequency inverters (3d),
- y donde tanto la suma del número de bombas de agua (2) del primer (2a) y del tercer subgrupo de bombas de agua (2c), como la suma del número de bombas del segundo (2b) y del tercer subgrupo de bombas de agua (2c), satisfacen la demanda de caudal necesaria para el riego,  - and where both the sum of the number of water pumps (2) of the first (2a) and the third subgroup of water pumps (2c), and the sum of the number of pumps of the second (2b) and the third subgroup of pumps of water (2c), they satisfy the demand of necessary flow for the irrigation,
y por que además comprende una unidad de control (7) configurada para: and because it also includes a control unit (7) configured to:
- recibir la demanda de caudal necesaria para el riego,  - receive the demand for the necessary flow for irrigation,
- determinar el número de bombas de agua (2) que es necesario alimentar para satisfacer la demanda de caudal,  - determine the number of water pumps (2) that need to be fed to meet the flow demand,
- obtener la potencia fotovoltaica disponible a partir del sensor de irradiancia y temperatura- obtain the available photovoltaic power from the irradiance and temperature sensor
(6) , (6),
- determinar el número de bombas de agua (2) que es posible alimentar a partir de la potencia fotovoltaica disponible,  - determine the number of water pumps (2) that can be fed from the available photovoltaic power,
- y, establecer un modo de funcionamiento del sistema de bombeo (1), a partir del número de bombas de agua (2) que es necesario alimentar y que es posible alimentar con la potencia fotovoltaica disponible, donde el modo de funcionamiento establecido está seleccionado entre: modo fotovoltaico, modo híbrido, y modo red/diésel, y donde, - and, establish a mode of operation of the pumping system (1), based on the number of water pumps (2) that need to be fed and that can be fed with the available photovoltaic power, where the established operating mode is selected from: photovoltaic mode, hybrid mode, and network / diesel mode, and where,
- la unidad de control (7) establece el modo fotovoltaico si el número de bombas de agua (2) que es posible alimentar con la potencia fotovoltaica disponible es mayor o igual al número de bombas de agua (2) que es necesario alimentar para satisfacer la demanda de caudal,  - the control unit (7) establishes the photovoltaic mode if the number of water pumps (2) that can be fed with the available photovoltaic power is greater than or equal to the number of water pumps (2) that need to be supplied to satisfy the demand for flow,
- la unidad de control (7) establece el modo híbrido si el número de bombas de agua (2) que es posible alimentar con la potencia fotovoltaica disponible es mayor al número de bombas del primer subgrupo (2a) pero menor al número de bombas de agua (2) que es necesario alimentar para satisfacer la demanda de caudal,  - the control unit (7) establishes the hybrid mode if the number of water pumps (2) that can be fed with the available photovoltaic power is greater than the number of pumps of the first subgroup (2a) but less than the number of pumps water (2) that is necessary to feed to meet the flow demand,
- y, la unidad de control (7) establece el modo red/diésel si el número de bombas de agua (2) que es posible alimentar con la potencia fotovoltaica disponible es menor al número de bombas del primer subgrupo (2a),  - and, the control unit (7) establishes the network / diesel mode if the number of water pumps (2) that can be fed with the available photovoltaic power is less than the number of pumps of the first subgroup (2a),
- y donde, si la unidad de control (7) establece el modo fotovoltaico, dicha unidad de control (7) está además configurada para:  - and where, if the control unit (7) sets the photovoltaic mode, said control unit (7) is further configured to:
parar el segundo (3b) y el cuarto subgrupo de variadores de frecuencia (3d), stop the second (3b) and the fourth subgroup of frequency inverters (3d),
ordenar a los contactores (5) su conexión con el tercer subgrupo de variadores de frecuencia (3c), order the contactors (5) to connect to the third subgroup of frequency inverters (3c),
arrancar el primer subgrupo de variadores de frecuencia (3a) y un número de variadores de frecuencia (3) del tercer subgrupo (3c), donde la suma de variadores de frecuencia (3) arrancados coincide con el número de bombas de agua (2) que es necesario alimentar para satisfacer la demanda de caudal, start the first subgroup of frequency inverters (3a) and a number of frequency inverters (3) of the third subgroup (3c), where the sum of frequency inverters (3) started matches the number of water pumps (2 ) that it is necessary to feed to meet the flow demand,
- y donde, si la unidad de control (7) establece el modo híbrido, dicha unidad de control (7) está además configurada para: - and where, if the control unit (7) establishes the hybrid mode, said control unit (7) is further configured to:
■ habilitar la conexión a la red eléctrica o arrancar el generador de diésel (4b), ■ enable connection to the mains or start the diesel generator (4b),
ordenar a los contactores (5) su conexión con un número de variadores de frecuencia del tercer subgrupo (3c), donde dicho número de variadores coincide con el número de bombas de agua (2) del tercer subgrupo (2c) que es posible alimentar con la potencia fotovoltaica disponible, y arrancar dicho número de variadores de frecuencia (3c), order the contactors (5) to connect with a number of frequency inverters of the third subgroup (3c), where said number of inverters matches the number of water pumps (2) of the third subgroup (2c) that can be fed with the available photovoltaic power, and starting said number of frequency inverters (3c),
ordenar a los contactores (5) su conexión con un número de variadores de frecuencia del cuarto subgrupo (3d), donde dicho número de variadores coincide con el número de bombas de agua (2) que es necesario alimentar para satisfacer la demanda de caudal menos el número de bombas de agua (2) del tercer subgrupo (2c) que es posible alimentar con la potencia fotovoltaica disponible y menos el número de bombas de agua (2) del primer (2a) y segundo subgrupo (2b), y arrancar dicho número de variadores de frecuencia (3d), order the contactors (5) to connect with a number of frequency inverters of the fourth subgroup (3d), where said number of inverters coincides with the number of water pumps (2) that need to be fed to meet the flow demand minus the number of water pumps (2) of the third subgroup (2c) that can be fed with the photovoltaic power available and less the number of water pumps (2) of the first (2a) and second subgroup (2b), and starting said number of frequency inverters (3d),
arrancar los variadores de frecuencia del primer (3a) y del segundo subgrupo start the frequency inverters of the first (3a) and the second subgroup
(3b), (3b),
- y donde, si la unidad de control (7) establece el modo red/diésel, dicha unidad de control (7) está además configurada para:  - and where, if the control unit (7) sets the network / diesel mode, said control unit (7) is further configured to:
parar el primer (3a) y el tercer subgrupo de variadores de frecuencia (3c), stop the first (3a) and the third subgroup of frequency inverters (3c),
habilitar la conexión a la red eléctrica o arrancar el generador de diésel (4b), enable connection to the mains or start the diesel generator (4b),
ordenar a todos los contactores (5) su conexión con el cuarto subgrupo de variadores de frecuencia (3d), order all contactors (5) to connect to the fourth sub-group of frequency inverters (3d),
arrancar el segundo subgrupo de variadores de frecuencia (3b) y un número de variadores de frecuencia (3) del cuarto subgrupo (3d), donde la suma de variadores de frecuencia (3) arrancados coincide con el número de bombas de agua (2) que es necesario alimentar para satisfacer la demanda de caudal, y por que además comprende una tubería (8) conectada a todas las bombas de agua (2) del sistema de bombeo (1). start the second subgroup of frequency inverters (3b) and a number of frequency inverters (3) of the fourth subgroup (3d), where the sum of frequency inverters (3) started matches the number of water pumps (2 ) that it is necessary to feed to meet the flow demand, and also that it comprises a pipe (8) connected to all the water pumps (2) of the pumping system (1).
2.- Sistema de bombeo (1) fotovoltaico hibridado hidráulicamente con la red eléctrica o con grupos diésel para aplicaciones de riego, según la reivindicación 1 , caracterizado por que la unidad de control (7) está configurada para: 2.- Photovoltaic pumping system (1) hydraulically hybridized with the power grid or with diesel groups for irrigation applications, according to claim 1, characterized in that the control unit (7) is configured to:
- establecer un primer modo de funcionamiento (F1) con bombeo a presión y caudal variables, y un segundo modo de funcionamiento (F2) con bombeo a presión y caudal constantes,  - establish a first mode of operation (F1) with variable pressure and flow pumping, and a second mode of operation (F2) with constant pressure and flow pumping,
- e, incorporar un algoritmo de control de seguimiento del punto de máxima potencia del generador fotovoltaico (4a), - e, incorporate a control algorithm for monitoring the maximum power point of the photovoltaic generator (4a),
- donde, si la unidad de control (7) establece el primer modo de funcionamiento (F1), dicha unidad de control (7) está además configurada para:  - where, if the control unit (7) establishes the first mode of operation (F1), said control unit (7) is further configured to:
establecer como punto de trabajo del primer (3a) y del tercer subgrupo de variadores de frecuencia (3c) el seguimiento del punto de máxima potencia del generador fotovoltaico (4a) mediante el algoritmo de control de seguimiento de la unidad de control (7), establish as a working point of the first (3a) and the third subgroup of frequency inverters (3c) the monitoring of the maximum power point of the photovoltaic generator (4a) by means of the tracking control algorithm of the control unit (7) ,
establecer como punto de trabajo del segundo (3b) y del cuarto subgrupo de variadores de frecuencia (3d) su potencia nominal, establish the nominal power as the working point of the second (3b) and the fourth subgroup of frequency inverters (3d),
- y donde, si la unidad de control (7) establece el segundo modo de funcionamiento (F2), dicha unidad de control (7) está además configurada para: - and where, if the control unit (7) establishes the second mode of operation (F2), said control unit (7) is further configured to:
controlar por presión el segundo (3b) y el tercer subgrupo de variadores de frecuencia (3c), pressure control the second (3b) and the third subgroup of frequency inverters (3c),
establecer como punto de trabajo del primer subgrupo de variadores de frecuencia (3a) el seguimiento del punto de máxima potencia del generador fotovoltaico (4a) mediante el algoritmo de control de seguimiento de la unidad de control (7), establish as a working point of the first subgroup of frequency inverters (3a) the monitoring of the maximum power point of the photovoltaic generator (4a) using the tracking control algorithm of the control unit (7),
establecer como punto de trabajo del cuarto subgrupo de variadores de frecuencia (3d) su potencia nominal. establish the nominal power of the fourth subgroup of frequency inverters (3d).
PCT/ES2017/070857 2017-01-19 2017-12-28 Photovoltaic pumping system hydraulically hybridised with the electrical grid or with diesel groups for irrigation uses WO2018134454A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201730059A ES2608527B2 (en) 2017-01-19 2017-01-19 Hydraulically hybridized photovoltaic pumping system with the power grid or with diesel groups for irrigation applications
ESP201730059 2017-01-19

Publications (1)

Publication Number Publication Date
WO2018134454A1 true WO2018134454A1 (en) 2018-07-26

Family

ID=58464736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/070857 WO2018134454A1 (en) 2017-01-19 2017-12-28 Photovoltaic pumping system hydraulically hybridised with the electrical grid or with diesel groups for irrigation uses

Country Status (3)

Country Link
AR (1) AR110712A1 (en)
ES (1) ES2608527B2 (en)
WO (1) WO2018134454A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI714375B (en) * 2019-12-02 2020-12-21 浤倡國際能源有限公司 System and method for providing dynamic force

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2046109A2 (en) * 1992-04-09 1994-01-16 Casado Casado Digital irrigation programmer.
ES1074806U (en) * 2011-01-12 2011-06-13 Alfredo Antonio De Castro Direct solar pumping for irrigation methods with constant pressure and flow (Machine-translation by Google Translate, not legally binding)
EP2420323A1 (en) * 2010-08-17 2012-02-22 Ubbink Garden B.V. Fountain
CN203884338U (en) * 2014-06-03 2014-10-22 王星 High-efficiency photovoltaic pump system
US20140322049A1 (en) * 2013-03-18 2014-10-30 Kavan Graybill Solar Drive Control System for Oil Pump Jacks
CN104756833A (en) * 2015-03-27 2015-07-08 江苏大学 Distributed gravity irrigation photovoltaic system for layer water lifting and energy storage
CN204551587U (en) * 2015-01-21 2015-08-12 内蒙古山路光伏应用技术研究有限公司 Distributed photovoltaic automatic rain water collection device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2046109A2 (en) * 1992-04-09 1994-01-16 Casado Casado Digital irrigation programmer.
EP2420323A1 (en) * 2010-08-17 2012-02-22 Ubbink Garden B.V. Fountain
ES1074806U (en) * 2011-01-12 2011-06-13 Alfredo Antonio De Castro Direct solar pumping for irrigation methods with constant pressure and flow (Machine-translation by Google Translate, not legally binding)
US20140322049A1 (en) * 2013-03-18 2014-10-30 Kavan Graybill Solar Drive Control System for Oil Pump Jacks
CN203884338U (en) * 2014-06-03 2014-10-22 王星 High-efficiency photovoltaic pump system
CN204551587U (en) * 2015-01-21 2015-08-12 内蒙古山路光伏应用技术研究有限公司 Distributed photovoltaic automatic rain water collection device
CN104756833A (en) * 2015-03-27 2015-07-08 江苏大学 Distributed gravity irrigation photovoltaic system for layer water lifting and energy storage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C. GOPAL ET AL., RENEWABLE ENERGY SOURCE WATER PUMPING SYSTEMS -A LITERATURE REVIEW, 30 May 2013 (2013-05-30), XP055505488, Retrieved from the Internet <URL:http://www.sciencedirect.com/science/article/pii/S1364032113002633> [retrieved on 20170309] *

Also Published As

Publication number Publication date
AR110712A1 (en) 2019-04-24
ES2608527B2 (en) 2017-07-24
ES2608527A1 (en) 2017-04-11

Similar Documents

Publication Publication Date Title
Dursun et al. Application of solar powered automatic water pumping in Turkey
EP3206276A1 (en) Energy storage system and management method thereof
EP3063815B1 (en) Power generation system
CN101976852A (en) Photovoltaic power supply system structure and method thereof
RU2016115053A (en) METHOD FOR MANAGING THE CONSUMPTION OF POWER OF A GROUP OF SEVERAL WIND-POWER INSTALLATIONS
WO2014147420A3 (en) Electrical energy storage device and system
RU2016121870A (en) METHOD FOR OPERATING A WIND POWER INSTALLATION
CN104682832A (en) Energy source supplying system for field camp
WO2018134454A1 (en) Photovoltaic pumping system hydraulically hybridised with the electrical grid or with diesel groups for irrigation uses
Khattab et al. Economic analysis of stand-alone hybrid wind/PV/diesel water pumping system: a case study in Egypt
CN203193545U (en) Photovoltaic water pump power supply system and photovoltaic water pump power supply apparatus
EP3334979A1 (en) The remote control of networks of heat-pump systems for the purpose of demand side management
CN201450951U (en) Solar energy shed
CN208387501U (en) A kind of solar water pump that water storage water is completely protected irrigates by lifting water to a higher level with a water pump, etc. control system
JP5858356B2 (en) Solar power generation system
CN207638346U (en) A kind of micro-grid system and agricultural complex systems of scene water complementation
CN202143382U (en) Planting system capable of preparing water automatically
CN103673461A (en) Field storage device
JP2016105683A (en) System for water supply using sunlight
JP2010193693A (en) Power-generation system
CN103441536B (en) Local power supply double-network distributed control system
US11174785B2 (en) Method for storing energy and for dispensing energy into an energy supply grid, pressurized gas storage power plant and computer program
CN203674733U (en) Local electric power supply dual-network distributed control system
CN217232040U (en) Distributed pumped storage system combined with urban water supply system
CN102812888A (en) Solar and wind energy auto-irrigation system for roof garden

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892431

Country of ref document: EP

Kind code of ref document: A1