WO2018133590A1 - 上行数据传输方法、装置及存储介质 - Google Patents

上行数据传输方法、装置及存储介质 Download PDF

Info

Publication number
WO2018133590A1
WO2018133590A1 PCT/CN2017/115953 CN2017115953W WO2018133590A1 WO 2018133590 A1 WO2018133590 A1 WO 2018133590A1 CN 2017115953 W CN2017115953 W CN 2017115953W WO 2018133590 A1 WO2018133590 A1 WO 2018133590A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink data
sent
resource
uplink
random access
Prior art date
Application number
PCT/CN2017/115953
Other languages
English (en)
French (fr)
Inventor
牛丽
吴昱民
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/479,887 priority Critical patent/US11337078B2/en
Publication of WO2018133590A1 publication Critical patent/WO2018133590A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1221Wireless traffic scheduling based on age of data to be sent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/362Aspects of the step size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/48TPC being performed in particular situations during retransmission after error or non-acknowledgment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range

Definitions

  • the present disclosure relates to the field of wireless communications, and in particular, to an uplink data transmission method, apparatus, and storage medium.
  • a schematic diagram of a structure of a Long Term Evolution (LTE) system is mainly composed of three devices: a user equipment (User Equipment, UE), a core network (Core Network, CN), and a base station. (Evolved Node B, eNB), where the Mobility Management Entity (MME) in the core network is mainly responsible for signaling transmission, and the Serving GetWay (SGW) is mainly responsible for data transmission.
  • MME Mobility Management Entity
  • SGW Serving GetWay
  • the interface between the UE and the eNB is Uu
  • the interface between the eNB and the core network is S1.
  • random access using authorized resources includes four steps, namely:
  • Step S1 The UE sends the preamble sequence to the eNB, specifically: the UE learns the available preamble sequence code for random access and the time-frequency location of the transmission preamble sequence through system information or Radio Resource Control (RRC) signaling. Then, within the available resources, the time-frequency locations of the preamble sequence and the transmission preamble sequence are randomly selected and sent to the eNB.
  • RRC Radio Resource Control
  • Step S2 The eNB sends a random access response to the UE, which specifically includes: estimating a Raccess Radio Network Temporary Identity (RA-RNTI) that may be adopted by the UE by using a time-frequency location adopted by the random access preamble sequence.
  • RA-RNTI Radio Network Temporary Identity
  • the RA-RNTI is used to decode the preamble sequence.
  • the UE responds with a random access response, and the response carries information such as uplink grant.
  • Step S3 Scheduling the transmission, including: the UE uses the uplink grant resource to send uplink data, and carries information such as the identifier of the UE.
  • Step S4 The uplink data decoding includes: the eNB parses the uplink data on the uplink grant resource, confirms the UE, resolves the conflict, and sends the contention resolution identifier to the UE.
  • the UE may send data to the eNB without authorization. As shown in Figure 3, there are two steps, namely:
  • Step S11 The UE sends a preamble sequence, and selects an unlicensed resource in the unlicensed resource to send uplink data.
  • Step S12 The eNB parses out the response or data after replying.
  • the resource for transmitting the uplink data uses a non-orthogonal technique. Unlike the traditional random access procedure, unlicensed uplink data may require multiple users to compete, and its power is higher than the existing Physical Uplink Shared Channel (PUSCH), and unauthorized uplinks. The data also has a problem of high transmission failure rate.
  • PUSCH Physical Uplink Shared Channel
  • embodiments of the present disclosure are directed to providing an uplink data transmission method, apparatus, and storage medium that at least partially solve the above problems.
  • An embodiment of the present disclosure provides an uplink data transmission method, which is applied to a terminal, and includes:
  • the uplink data After the uplink data fails to be transmitted by using the unlicensed resource, the uplink data is sent by using the authorized resource.
  • the uplink data is sent by using an unlicensed resource based on the target received power increasing manner, wherein the target received power of the n+1th uplink data is greater than the target received power of the nth uplink data; the n is not A positive integer less than one.
  • the sending by using the unlicensed resource, the uplink data according to the target receiving power incrementing manner, including:
  • the Received TargetPower is the current target received power
  • the initial target received power is the initial target received power for transmitting the uplink data for the first time
  • the TRANSMISSION_COUNTER is the number of times the uplink data is sent
  • the powerRampingStep is for receiving Power step size
  • the method further includes:
  • the system message or the RRC signaling or the dedicated message carries the initial target received power and/or the received power incremental step size
  • the RRC signaling includes RRC connection reconfiguration signaling, RRC connection release signaling, RRC connection setup signaling, or RRC connection re-establishment signaling.
  • the uplink data is sent by using the authorized resource, including:
  • the uplink data is transmitted by using the authorized resource.
  • the uplink data is sent by using the authorized resource, including:
  • the uplink data is sent by using the unlicensed resource, and the random access response sent by the base station carrying the uplink grant information is received, the uplink data is sent by using the authorized resource indicated by the uplink grant information.
  • the uplink data is sent by using the authorized resource
  • the method further includes:
  • the random access is re-initiated and the uplink data is sent on the authorized resource
  • the method further includes:
  • the RRC signaling includes an RRC connection reconfiguration signaling and an RRC connection release signal Let, RRC connection setup signaling or RRC connection re-establishment signaling.
  • the uplink data is sent by using the authorized resource
  • the method further includes:
  • the random access is re-initiated and the uplink data is sent on the authorized resource.
  • a second aspect of the embodiments of the present disclosure provides an uplink data transmission method, which is applied to a terminal, and includes:
  • the uplink data is retransmitted by using the authorization resource indicated by the uplink authorization information.
  • the method further includes:
  • the base station Not receiving the random access response or downlink notification sent by the base station within the preset time And re-initiating random access by using an unlicensed resource or an authorized resource, where the downlink notification is information that the base station successfully receives the preamble sequence and the uplink data transmission.
  • a third aspect of the embodiments of the present disclosure provides an uplink data transmission method, which is applied to a base station, and includes:
  • the random access response carrying the uplink grant information is sent to the terminal by using the authorized resource in a preset time, where the uplink grant information is used. And indicating an authorized resource scheduled to be sent to the terminal;
  • a fourth aspect of the embodiments of the present disclosure provides an uplink data transmission apparatus, which is disposed in a terminal, and includes:
  • a first sending unit configured to send uplink data by using an unlicensed resource
  • the second sending unit is configured to send the uplink data by using the authorized resource after the failure to send the uplink data by using the unlicensed resource.
  • the second sending unit is configured to send the uplink data by using an unlicensed resource according to the target receiving power increasing manner, where the target receiving power of the n+1th uplink data is greater than the target of the nth uplink data.
  • Receive power; the n is a positive integer not less than one.
  • the first sending unit includes:
  • a calculation module configured to determine a current target received power of the uplink transmission by using a formula
  • the Received TargetPower is the current target received power
  • the InitialReceivedTargetPower is the initial target received power for transmitting the uplink data for the first time
  • the TRANSMISSION_COUNTER is the number of times the uplink data is sent
  • the powerRampingStep is the received power increment step ;
  • a sending module configured to send the uplink data based on the current target received power.
  • the device further includes:
  • a first receiving unit configured to receive a system message or a radio resource control RRC signaling or a dedicated message
  • the system message or the RRC signaling or the dedicated message carries the initial target received power and/or the received power incremental step size
  • the RRC signaling includes RRC connection reconfiguration signaling, RRC connection release signaling, RRC connection setup signaling, or RRC connection re-establishment signaling.
  • the second sending unit is configured to send the uplink data by using the authorized resource when the sending status of the uplink data by using the unlicensed resource meets the preset condition.
  • the second sending unit is configured to use the authorized resource indicated by the uplink authorization information when the random access response that is sent by the base station and the uplink authorization information is received after the uplink data is sent by using the unlicensed resource. Send upstream data.
  • the second sending unit is configured to re-initiate random access and send uplink data on the authorized resource if the number of times the uplink data is sent by using an unlicensed resource reaches a preset number of times.
  • the device further includes:
  • a second receiving unit configured to receive a system message or an RRC signaling or a dedicated message sent by the base station, where the system message or the RRC signaling carries the preset number of times;
  • the RRC signaling includes an RRC connection reconfiguration Signaling, RRC Connection Release Signaling, RRC Connection Setup Signaling, or RRC Connection Re-establishment Signaling.
  • the second sending unit is configured to re-initiate random access and send uplink data on the authorized resource when the sending power of the uplink data that is sent by the unlicensed resource fails to reach the power threshold.
  • a fifth aspect of the embodiments of the present disclosure provides an uplink data transmission apparatus, which is disposed in a terminal, and includes:
  • a first random access unit configured to send a preamble sequence by using an unlicensed resource
  • the third sending unit is configured to send uplink data in a transmission time interval corresponding to the sending time of the preamble sequence
  • the first random access unit is further configured to: when receiving the random access response carrying the uplink authorization information, the re-send the uplink data by using the authorization resource indicated by the uplink authorization information.
  • the first random access unit is further configured to re-initiate randomization by using an unlicensed resource or an authorized resource when the random access response or the downlink notification sent by the base station is not received within the preset time.
  • Access wherein the downlink notification is information that the base station successfully receives the preamble sequence and the uplink data transmission.
  • a sixth aspect of the embodiments of the present disclosure provides an uplink data transmission apparatus, which is disposed in a base station, and includes:
  • a detecting unit configured to detect a preamble sequence sent by the terminal by using an unlicensed spectrum; and detecting uplink data sent by the terminal, where the uplink data is sent by the terminal within a transmission time interval corresponding to the sending time of the preamble sequence of;
  • a fourth sending unit configured to: when the preamble sequence is correctly decoded and the uplink data is not correctly decoded, use the authorized resource to send a random access response carrying the uplink grant information to the terminal within a preset time, where The uplink authorization information is used to indicate an authorized resource that is scheduled to be sent to the terminal;
  • a third receiving unit configured to receive on an authorized resource indicated by the uplink authorization information The uplink data sent by the terminal.
  • a seventh aspect of the embodiments of the present disclosure provides an uplink data transmission apparatus, including:
  • a memory configured to store an executable program
  • the processor configured to execute by executing an executable program stored in the memory:
  • the uplink data After the uplink data fails to be transmitted by using the unlicensed resource, the uplink data is sent by using the authorized resource.
  • An eighth aspect of the embodiments of the present disclosure provides an uplink data transmission apparatus, including:
  • a memory configured to store an executable program
  • the processor configured to execute by executing an executable program stored in the memory:
  • the uplink data is retransmitted by using the authorization resource indicated by the uplink authorization information.
  • a ninth aspect of the embodiments of the present disclosure provides an uplink data transmission apparatus, including:
  • a memory configured to store an executable program
  • the processor configured to execute by executing an executable program stored in the memory:
  • the random access response carrying the uplink grant information is sent to the terminal by using the authorized resource in a preset time, where the uplink grant information is used. And indicating an authorized resource scheduled to be sent to the terminal;
  • a tenth aspect of the embodiments of the present disclosure further provides a storage medium storing an executable program.
  • the executable program When executed by the processor, it implements:
  • the uplink data After the uplink data fails to be transmitted by using the unlicensed resource, the uplink data is sent by using the authorized resource.
  • An eleventh aspect of the embodiments of the present disclosure further provides a storage medium storing an executable program, when the executable program is executed by a processor, implementing:
  • the uplink data is retransmitted by using the authorization resource indicated by the uplink authorization information.
  • a twelfth aspect of the embodiments of the present disclosure further provides a storage medium storing an executable program, when the executable program is executed by the processor, implementing:
  • the random access response carrying the uplink grant information is sent to the terminal by using the authorized resource in a preset time, where the uplink grant information is used. And indicating an authorized resource scheduled to be sent to the terminal;
  • the uplink data transmission method, device, and storage medium provided by the embodiments of the present disclosure automatically switch to use the authorized resource to perform uplink data transmission when the uplink data fails to be transmitted by using the unlicensed resource, which is obviously transmitted with respect to repeated use of the unauthorized resource.
  • the problem of high transmission failure rate is raised, and the success rate of receiving uplink data is improved.
  • the uplink data transmission method, device, and storage medium provided by the embodiment of the present disclosure, when the base station successfully receives the preamble sequence transmitted by using the unlicensed resource, but fails to receive the uplink data successfully, The base station sends a random access response carrying the uplink grant information to the terminal. After receiving the random access response, the terminal uses the authorized resource to send the uplink data, which reduces the number of failed transmissions caused by repeatedly using the unlicensed resource to send the uplink resource, and can also improve the transmission success rate of the uplink data.
  • 1 is a schematic structural diagram of a wireless communication system
  • FIG. 3 is a schematic flowchart of another random access
  • FIG. 4 is a schematic flowchart diagram of a first uplink data transmission method according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of a second uplink data transmission method according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart diagram of a third uplink data transmission method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart diagram of a fourth uplink data transmission method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a first uplink data transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a second uplink data transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a third uplink data transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a fourth uplink data transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a fifth uplink data transmission apparatus according to an embodiment of the present disclosure.
  • this embodiment provides an uplink data transmission method, which is applied to a terminal, and includes:
  • Step S110 Send uplink data by using an unlicensed resource
  • Step S120 After the uplink data fails to be transmitted by using the unlicensed resource, the authorized resource is used to send Upstream data.
  • the terminal is also referred to as a UE, and the UE herein may be a human-equipped terminal such as a mobile phone, a tablet computer, or a wearable device, or may be an in-vehicle UE, or may be a variety of terminal devices in the Internet of Things.
  • the uplink data is transmitted using the unlicensed resource in step S110.
  • the unlicensed resource here is the transmission resource selected in the unauthorised resource pool.
  • the transmission resources may include transmission spectrum and/or transmission time slots and the like.
  • the sending the uplink data in step S110 may include: directly selecting an unlicensed resource for uplink data transmission, and further comprising: transmitting a preamble sequence by using an unlicensed resource, within a transmission time interval corresponding to a sending moment of transmitting the preamble sequence Sending the uplink data at least once.
  • one or more uplink data may be transmitted after the preamble sequence is transmitted.
  • the terminal in order to ensure the success of the uplink data transmission, when it is required to transmit the uplink data by using the unlicensed resource multiple times, the terminal automatically switches to the uplink data by using the authorized resource.
  • the terminal instead uses the authorized resource to send the uplink data to be transparent, and for the user, the transmission is successful, obviously reducing the probability of failure of the uplink data transmission failure, and the terminal automatically uses the authorized resource.
  • the transmission is performed, and the non-authorized resource is selected again for the terminal to transmit, which improves the transmission success rate.
  • the step S120 may include:
  • the n is a positive integer not less than 1 .
  • the unlicensed resource is transmitted multiple times, for example, the uplink data is N times.
  • the n is a positive integer smaller than the N; the N is a positive integer not less than 2.
  • the value of N is a minimum of 2, and may be a value of 3, 4, or 5, etc.
  • the value of N may be pre-negotiated between the terminal and the base station, or may be predefined in the terminal. Of course, the N may be randomly generated or may be based on the current
  • the line environment is dynamically determined.
  • the wireless environment here dynamically determines that the N can include:
  • the N is determined according to the listening result. For example, if the listening result indicates that the proportion of the S transmission slots or the transmission subframes that are occupied or occupied before the current time is a preset ratio, the N is the first preset value, if not occupied by the occupation N is the second preset value. The first preset value is not equal to the second preset value.
  • the N may be determined according to the interception result.
  • the target received power incrementing method is an uplink data transmitting method for performing transmission power adjustment for the purpose of improving the received power of the uplink data by the base station.
  • the terminal determines the target received power in the manner of increasing the received power during the two transmissions, and then obtains the current transmit power according to the correspondence between the target received power and the transmit power or the calculation function.
  • the obtained transmission power of the current transmission transmits the uplink data.
  • the path loss power of this transmission is involved in determining the current transmission power according to the target reception power.
  • the path loss power here can be measured by channel estimation or a predetermined path loss value.
  • the current transmission power may be the sum of the target received power and the path loss value.
  • the target received power of the next uplink data will be higher than the target received power of the previous uplink data.
  • the transmission power is increased, the probability that the base station (eNB) successfully receives the uplink data is increased, so that the transmission success rate of the uplink data can be improved.
  • the lower target received power is used, the interference of communication to other terminals or base stations due to excessive target received power can be reduced, and the overall wireless interference can be reduced.
  • the method in this embodiment further includes: obtaining a maximum target received power, when determining that When the previous target received power is greater than the maximum target received power, the uplink data is sent according to the maximum target received power; if the target received power of the previous transmission is already equal to the maximum target received power, the current stop is stopped.
  • the sending of the uplink data re-transmitting the preamble sequence by using an unlicensed resource or an authorized resource, and performing random access again.
  • the power transmitter of the terminal has a maximum value of its transmit power, and if the current transmit power currently determined based on the current target transmit power is greater than the maximum transmit power of the power transmitter, the maximum transmit power is utilized. Sending the uplink data, if the current transmission fails again, stopping the next uplink data transmission, re-performing the random access or re-transmitting the uplink data by using the authorized resource.
  • the base station if the base station successfully receives the uplink data and decodes the uplink data, the base station sends a downlink notification to the terminal, and if the terminal does not receive the downlink notification, the uplink may be repeatedly sent multiple times.
  • the data stops or suspends transmitting the uplink data by using the unlicensed resource until a preset condition is met.
  • the uplink data can be sent in a power-increasing manner. In this way, when the uplink data fails to be transmitted based on the smaller target power, the transmission success rate of the uplink data can be improved by increasing the target received power. It does not start transmission based on the maximum target received power, which can reduce the mutual interference of wireless signals. Obviously, the power generation method can improve the success rate of sending uplink data by using unlicensed resources.
  • the step S110 may include:
  • Step S111 determining, by using the following formula, a current target received power of the uplink transmission
  • the Received TargetPower is the current target received power
  • the initial target received power is the initial target received power for transmitting the uplink data for the first time
  • the TRANSMISSION_COUNTER is the time for sending the uplink data.
  • the powerRampingStep is a received power increment step
  • Step S112 Send the uplink data based on the current target received power.
  • the initial target received power is determined, where the initial target received power and the received power incremental step may be pre-stored in the terminal, or may be received by the terminal from the base station.
  • the initial target received power delivered by the base station through RRC signaling or system message or proprietary signaling, or the transmit power pre-negotiated by the base station and the terminal.
  • the system message or the RRC signaling or the dedicated message carries the initial target received power and/or the received power incremental step;
  • the RRC signaling includes RRC connection reconfiguration signaling, RRC connection Release signaling, RRC connection setup signaling, or RRC connection re-establishment signaling.
  • the maximum number of transmissions may be negotiated between the terminal and the base station, that is, the maximum value of the TRANSMISSION_COUNTER is negotiated.
  • the base station can control the maximum target receiving power of the uplink data sent by the terminal by using the unlicensed resource, so as to avoid the wireless interference caused by excessive filtering.
  • the TRANSMISSION_COUNTER here can also be received from system messages, RRC signaling or proprietary messages.
  • Step S112 herein may include:
  • the current transmission power is calculated according to the correspondence between the current target received power and the current transmission power or the conversion function, and the uplink data is transmitted by using the current transmission power.
  • the step S120 may include: sending uplink data by using an authorized resource when the sending status of the uplink data meets a preset condition.
  • the terminal monitors the transmission status of the uplink data. For example, when the base station receives the uplink data, it sends a downlink notification. If the downlink notification is not received, the terminal may determine that the data is not successfully transmitted temporarily or is not successfully decoded by the base station, and needs to continue to send the uplink data. Of course, the terminal can also monitor the uplink data. The number of transmissions. Certainly, the terminal may further determine, according to the current time, whether the current time and the sending time of sending the preamble sequence belong to the same transmission time interval, and determine whether to continue to use the non-authorization if the uplink data is not successfully sent.
  • the resource sends the uplink data or performs the next random access.
  • the random access here may be a random access using an authorized resource as shown in FIG. 2 or a random access using an unlicensed resource as shown in FIG. 3.
  • the step S120 may include:
  • the uplink data is sent by using the unlicensed resource, if the uplink notification or the random access response returned by the base station is not received within a predetermined time, the random access is initiated by using the authorized resource, and the authorized resource is obtained by using the random access. Send the uplink data.
  • the terminal may not receive any feedback from the base station to the preamble sequence or uplink data within a specified time range. Then, the terminal can determine that the preamble sequence and the uplink data are all failed to be sent, and then the authorized resource can be utilized to perform the next random access. In this embodiment, it is preferable to perform random access by using an authorized resource to reduce the failure of using the unlicensed resource to perform uplink data transmission again.
  • the step S120 may include:
  • the uplink data is sent by using the unlicensed resource, and the random access response sent by the base station carrying the uplink grant information is received, the uplink data is sent by using the authorized resource indicated by the uplink grant information.
  • the receiving base station uses the random access response returned by the authorized resource to perform random access by using the random access response.
  • the base station After receiving the preamble sequence sent by the terminal, but the base station does not successfully receive the uplink data corresponding to the preamble sequence, the base station sends a random response to the terminal; the terminal receives the random access response, where the random access response is the base station utilization authorization.
  • the resource is sent and carries the uplink authorization information.
  • the uplink authorization information may be the indication information indicating the authorization resource that the base station schedules to the terminal, and the terminal may use the authorization resource indicated by the uplink authorization information to complete the transmission of the random access and the uplink data by using the uplink resource. .
  • the step S120 may include:
  • the random access is re-initiated and the uplink data is sent on the authorized resource.
  • the maximum number of transmissions of the uplink data transmitted by the unlicensed spectrum corresponding to the transmission of the preamble sequence is set, so as to avoid the excessive power consumption of the terminal, and the power consumption is reduced, so as to reduce the power consumption of the terminal. Extend the standby time of the mobile terminal.
  • the method further includes:
  • the RRC signaling includes an RRC connection reconfiguration signaling and an RRC connection release signal Let, RRC connection setup signaling or RRC connection re-establishment signaling.
  • the system message here can be a broadcast message or a multicast message or a unicast message.
  • the RRC signaling or dedicated signaling may also be sent by means of broadcast, multicast or unicast.
  • the step S120 may include:
  • the transmission power of the uplink data using the unlicensed resource reaches the power
  • the threshold is exceeded, the random access is re-authenticated with the authorized resource and the uplink data is sent on the authorized resource.
  • the target received power of the uplink data has reached the power threshold, indicating that the target received power of the uplink data that failed to be transmitted last time is the maximum target received power, it is impossible to reuse the target receive power increment mode again.
  • the next random access is performed by using the authorized resource or the unauthorized resource.
  • the embodiment provides an uplink data transmission method, which is applied to a terminal, and includes:
  • Step S210 Send a preamble sequence by using an unlicensed resource
  • Step S220 Send uplink data in a transmission time interval corresponding to the sending time of the preamble sequence
  • step S230 when the random access response carrying the uplink grant information is received in the preset time, the uplink data is retransmitted by using the authorized resource indicated by the uplink grant information.
  • the uplink data transmission method provided in this embodiment is still a method applied to the UE.
  • the step S210 may include: first transmitting the preamble sequence by using an unlicensed resource.
  • the uplink data is sent after the preamble sequence is sent, and the transmission of the uplink data is usually within a transmission time interval from the transmission moment of the preamble sequence. Therefore, in step S220, the uplink data will be transmitted in the same transmission interval of the transmission preamble sequence.
  • the base station If the transmission of the preamble sequence is successful, and the uplink data transmission fails or the base station fails to decode the uplink data, the base station sends a random access response, and the random access response carries the uplink authorization information.
  • the uplink authorization information may be used to identify identification information of an authorized resource that schedules the terminal.
  • the terminal does not need to send the preamble sequence again, reducing the number of transmissions of the preamble sequence and reducing the power consumption required for the preamble sequence transmission.
  • the terminal may utilize the indication in step S240.
  • the method further includes:
  • Step S240 When the random access response or the downlink notification sent by the base station is not received within the preset time, the random access is re-initiated by using the unlicensed resource or the authorized resource, where the downlink notification is that the base station successfully receives the random access.
  • the preamble sequence and information sent by the uplink data is not received within the preset time.
  • the terminal still uses the unlicensed resource to send the preamble sequence, and in step S320, the uplink data is still sent.
  • the terminal After transmitting the preamble sequence and/or the uplink data, the terminal starts timing, and receives information sent by the base station in a preset time corresponding to the timing, where the information sent by the base station includes randomness for the preamble sequence. Access response or downstream notification,
  • the terminal after the terminal does not receive the downlink notification or the random access response within a predetermined time, the terminal re-initiates the random access by using the unlicensed resource or the authorized resource.
  • the authorized resource is preferably used. Perform random access.
  • the embodiment provides an uplink data transmission method, which is applied to a base station, and includes:
  • Step S310 detecting a preamble sequence sent by the terminal by using an unlicensed spectrum
  • Step S320 Detecting the uplink data sent by the terminal, where the uplink data is sent by the terminal within a transmission time interval corresponding to the sending time of the preamble sequence;
  • Step S330 When the preamble sequence is correctly decoded and the uplink data is not correctly decoded, the random access response carrying the uplink grant information is sent to the terminal by using the authorized resource within a preset time, where the uplink grant is performed.
  • the information is used to indicate an authorized resource scheduled to be sent to the terminal;
  • Step S340 Receive uplink data sent by the terminal on the authorized resource indicated by the uplink authorization information.
  • This embodiment is applied to a base station.
  • the base station detects the preamble sequence and/or the uplink data for the random access on the unlicensed resource, and detects the preamble sequence transmitted by using the unlicensed resource, but If the uplink data of the terminal is not received on the unlicensed resource, or the uplink data sent by the terminal by using the unlicensed resource is not successfully decoded, the random access response is sent to the terminal.
  • the random access response is sent by using the authorized resource, and carries the uplink grant information, and indicates to the terminal the authorized resource that is scheduled to resend the uplink data, which causes the terminal to use the authorized resource to send the uplink data, thereby improving the uplink.
  • the success rate of data transmission is sent by using the authorized resource, and carries the uplink grant information, and indicates to the terminal the authorized resource that is scheduled to resend the uplink data, which causes the terminal to use the authorized resource to send the uplink data, thereby improving the uplink. The success rate of data transmission.
  • the embodiment provides an uplink data transmission device, which is disposed in the terminal, and includes:
  • the first sending unit 110 is configured to send uplink data by using an unlicensed resource
  • the second sending unit 120 is configured to send the uplink data by using the authorized resource after the uplink data fails to be transmitted by using the unlicensed resource.
  • the transmission device provided in this embodiment is applied to various terminals.
  • the first sending unit 110 may correspond to a wireless communication interface and a processor or a processing circuit, and the processor may be configured to select to send an uplink data non-authorized resource from the unlicensed resource pool.
  • the wireless communication interface is coupled to the processor for transmitting the preamble sequence on an unlicensed resource.
  • the second sending unit 120 also corresponds to a wireless communication interface, where the wireless communication interface may be a transmitting antenna.
  • the transmitting antenna is further configured to send the uplink data, where the uplink data is also sent by using the unlicensed resource.
  • the first sending unit 110 is configured to send the uplink data by using an unlicensed resource, where the target received power of the n+1th uplink data is greater than the nth uplink data.
  • Target received power; the n is a positive integer not less than one.
  • the transmission device provided in this embodiment is applied to various terminals.
  • the first sending unit 110 may be configured to correspond to a processor and a wireless communication interface, and the processor may be configured to select an unlicensed resource that sends a preamble sequence from an unlicensed resource pool, and select a corresponding preamble sequence.
  • the wireless communication interface is coupled to the processor for transmitting the preamble sequence on an unlicensed resource.
  • the first sending unit 120 includes:
  • the calculation module may be corresponding to various calculators or processors or circuits having a computing function for determining the current target received power of the uplink transmission by using the following formula;
  • the Received TargetPower is the current target received power
  • the initial target received power is the initial target received power for transmitting the uplink data for the first time
  • the TRANSMISSION_COUNTER is the number of times the uplink data is sent
  • the powerRampingStep is for receiving Power step size
  • the sending module corresponding to the sending interface such as the transmitting antenna, may be configured to send the uplink data based on the current target receiving power.
  • the current target receiving power is calculated by using the power increasing method, where the current receiving power is the target receiving power corresponding to the uplink data, and the current target transmitting power is used to calculate the transmitting power, and then the computing power is calculated.
  • the transmit power of the uplink data is transmitted, and the probability of the base station successfully receiving the uplink data is improved by the increase of the target received power.
  • the above formula is a method for determining the current transmission power.
  • a target transmission power table may be set, and a plurality of different target transmission power table values are stored in the target transmission power table, and the target transmission power is determined.
  • the target transmission power table may be queried by using the current number of transmissions as an index to obtain the target transmission power of the current transmission, and the uplink data may be sent by using the target transmission power obtained by the lookup table.
  • the apparatus further includes:
  • a first receiving unit configured to receive a system message or a radio resource control RRC signaling or a dedicated message
  • the system message or the RRC signaling or the dedicated message carries the initial target received power and/or the received power incremental step size
  • the RRC signaling includes RRC connection reconfiguration signaling, RRC connection release signaling, and RRC. Connection establishment signaling or RRC connection re-establishment signaling.
  • the first receiving unit here may correspond to a receiving interface such as a receiving antenna in the terminal, and may receive at least one of an initial target receiving power and a received power increasing step size carried by the various messages from the base station.
  • the second sending unit 120 is configured to send uplink data by using an authorized resource when the sending status of the uplink data by using an unlicensed resource meets a preset condition.
  • the random access may be re-established, and the authorized resource is used to send the uplink data through the random access operation, or the previous data is sent before the uplink data is sent.
  • the authorized resource obtained by the preamble sequence sent by the unlicensed resource sends the uplink data; the specific implementation includes multiple types, which are respectively introduced below.
  • the first type the second sending unit 120 is configured to: when the uplink data is sent by using an unlicensed resource, when the random access response sent by the base station and carrying the uplink authorization information is received, the authorization indicated by the uplink authorization information is used.
  • the resource sends upstream data.
  • the second sending unit 120 is configured to re-initiate random access and send uplink data on the authorized resource if the number of times the uplink data is sent by using an unlicensed resource reaches a preset number of times.
  • the device further includes:
  • a second receiving unit configured to receive a system message or an RRC signaling or a dedicated message sent by the base station, where the system message or the RRC signaling carries the preset number of times;
  • the RRC signaling includes an RRC connection reconfiguration Signaling, RRC Connection Release Signaling, RRC Connection Setup Signaling, or RRC Connection Re-establishment Signaling.
  • the second receiving unit here can also correspond to the receiving antenna of the terminal, and obtain the preset number of times and the like carried by the system message, the RRC signaling or the receiving of the proprietary message. These messages can be sent in the form of broadcast, multicast or unicast.
  • the second sending unit 120 is configured to use the non-delivery when the last transmission fails.
  • the right resource re-initiates the random access and sends the uplink data on the authorized resource.
  • the embodiment provides an uplink data transmission device, which is disposed in the terminal, and includes:
  • the first random access unit 210 is configured to send the preamble sequence by using an unlicensed resource
  • the third sending unit 220 is configured to send uplink data in a transmission time interval corresponding to the sending time of the preamble sequence
  • the first random access unit 210 is further configured to resend the uplink data by using the authorization resource indicated by the uplink authorization information when receiving the random access response carrying the uplink authorization information in a preset time.
  • the hardware structure corresponding to the first random access unit 210 in this embodiment is similar to the structure of the first random access unit 110 mentioned in the foregoing embodiment, and may also correspond to the processor and the wireless communication interface. This includes selecting an unlicensed resource and transmitting the selected preamble sequence by selecting an unlicensed resource.
  • the third transmitting unit 220 is similar in hardware structure to the foregoing second sending unit 120, and can also send the uplink data corresponding to the wireless communication interface.
  • the first random access unit 210 is further configured to retransmit the uplink data by using an authorization resource scheduled by the base station to receive the success rate of the uplink data when the random access response is received within the preset time.
  • the first random access unit 210 is further configured to re-initiate with an unauthorized resource or an authorized resource when the random access response or the downlink notification sent by the base station is not received within the preset time. Random access, where the downlink notification is information that the base station successfully receives the preamble sequence and the uplink data transmission.
  • the random access is re-initiated, and the re-initiated random access may be utilized. Random access by authorized resources may also be random access initiated by using unauthorized resources.
  • the authorized resource used to send the preamble sequence is an authorized random access resource.
  • the embodiment provides an uplink data transmission device, which is disposed in a base station, and includes:
  • the detecting unit 310 is configured to detect a preamble sequence sent by the terminal by using an unlicensed spectrum, and detect uplink data sent by the terminal, where the uplink data is within a transmission time interval corresponding to the terminal sending time of the preamble sequence Sent
  • the fourth sending unit 320 is configured to: when the preamble sequence is correctly decoded and the uplink data is not correctly decoded, use the authorized resource to send a random access response carrying the uplink grant information to the terminal within a preset time,
  • the uplink authorization information is used to indicate an authorized resource that is scheduled to be sent to the terminal.
  • the third receiving unit 330 is configured to receive the uplink data sent by the terminal on the authorized resource indicated by the uplink authorization information.
  • the uplink data transmission apparatus described in this embodiment is applied to a transmission apparatus in a base station.
  • the base station here may be an evolved base station eNB or a next generation base station gNB.
  • the detecting unit 310 may correspond to a wireless communication interface and a decoder; the wireless communication interface is configured to receive a wireless signal; and the decoder is configured to decode the received wireless signal to obtain a preamble sequence and/or uplink data sent by the terminal.
  • the fourth sending unit 320 may correspond to an air interface of the base station, and may be configured to send a random access response to the terminal.
  • the third receiving unit 330 may be configured to receive uplink data sent by using an authorized resource, corresponding to an air interface of the base station.
  • the power control method using power increase is adopted.
  • the uplink data is transmitted according to the initial target received power (corresponding to the initial target received power). If the first time is unsuccessful, the UE needs to increase the transmit power when it uses the unlicensed resource to send the uplink data again. And so on. Each time the transmission is unsuccessful, the transmission power is increased.
  • the initial target receiving power is InitialReceivedTargetPower
  • the incremental received power compensation is powerRampingStep.
  • the initial target received power and the incremental power may be broadcast by system information, or may be configured by RRC signaling, including RRCConnectionReconfiguration signaling, RRCConnectionRelease signaling, and wireless connection control establishment. RRCConnectionSetup) signaling, RRC Connection Reestablishment signaling, or newly defined message, etc.
  • the base station may successfully monitor the preamble sequence but cannot monitor the uplink data. However, the base station can respond to the random access response for the preamble sequence, and then the unlicensed uplink transmission process can be converted into a traditional random access procedure.
  • the UE When the UE fails to transmit unauthorized uplink data, the UE then initiates a traditional random access procedure. As shown in Figure 11, it includes:
  • Step S21 The UE sends a preamble sequence, and selects a resource in an unlicensed resource to send uplink data.
  • Step S22 The eNB parses the preamble sequence, but does not monitor the unauthorized uplink data, and replies Random access response and carry uplink authorization;
  • Step S23 The UE retransmits the uplink data on the uplink authorized resource, and carries information such as the identifier of the UE.
  • Step S24 The eNB receives and parses the uplink data on the uplink grant resource, confirms the UE, resolves the conflict, and sends the contention resolution identifier to the UE.
  • the uplink grant resource here may be uplink data retransmitted by the PUSCH as shown in FIG.
  • the foregoing random access response can be received by multiple UEs that use the same preamble sequence for random access. If the UE carries the identifier of the UE in step S23, the base station receives multiple UEs to send on the authorized resource in step S24. When the uplink data is used, the uplink data of which UE is finally decoded may be determined according to the identifier of the extracted UE, thereby achieving the purpose of confirming the sending UE and the conflict resolution.
  • the transmit power is insufficient, which may cause the base station to fail to monitor the unauthorized uplink data.
  • the base station may not successfully monitor the preamble sequence, and the base station cannot respond to the random access response. Then, the unlicensed uplink transmission process may be converted into a traditional random access procedure.
  • n times is system information broadcast or RRC signaling configuration
  • the UE then initiates a traditional random access procedure.
  • the UE still fails after transmitting the unlicensed uplink data to reach the maximum transmission power, and the UE then initiates a traditional random access procedure.
  • the flow chart is shown in Figure 12 and includes:
  • Step S31 The UE sends the preamble sequence, and selects resources in the unlicensed resource to send the uplink data. If the eNB fails to decode, the preamble sequence is not decoded, and the unlicensed uplink data is not detected, and the response is not returned.
  • Step S32 The UE waits for the random access response to fail, and then initiates a traditional random access procedure.
  • the UE selects the preamble sequence again and sends it to the eNB;
  • Step S33 The eNB monitors the preamble sequence, restores the response message, and carries information such as an uplink grant.
  • Step S34 The UE sends the uplink data on the uplink authorized resource, and carries the information such as the identifier of the UE; the uplink grant resource here may be the uplink data retransmitted by the PUSCH as shown in FIG. 11;
  • Step S35 The eNB parses the uplink data on the uplink authorized resource, confirms the UE, resolves the conflict, and sends the contention resolution identifier to the UE.
  • UE acknowledgment and conflict resolution can be seen in the foregoing example.
  • the embodiment of the present disclosure further provides an uplink data processing apparatus, which is disposed in the terminal, and includes:
  • a memory configured to store an executable program
  • the processor configured to execute by executing an executable program stored in the memory:
  • the uplink data After the uplink data fails to be transmitted by using the unlicensed resource, the uplink data is sent by using the authorized resource.
  • the uplink data is sent by using an unlicensed resource, where the target received power of the n+1th uplink data is greater than the target received power of the nth uplink data; the n is not less than 1 A positive integer.
  • the received target power is the current target received power; the initial target received power, the initialReceivedTargetPower is the initial target received power of the first uplink data, and the TRANSMISSION_COUNTER is the number of times the uplink data is sent; the powerRampingStep Incremental step size for receiving power;
  • the processor when the processor is used to run the computer program, the processor further executes:
  • the system message or the RRC signaling or the dedicated message carries the initial target received power and/or the received power incremental step size
  • the RRC signaling includes RRC connection reconfiguration signaling, RRC connection release signaling, RRC connection setup signaling, or RRC connection re-establishment signaling.
  • the processor when the processor is used to run the computer program, the processor further executes:
  • the uplink data is sent by using the unlicensed resource, and the random access response that is sent by the base station and carrying the uplink authorization information is received, the uplink data is sent by using the authorized resource indicated by the uplink authorization information;
  • the random access is re-initiated and the uplink data is sent on the authorized resource.
  • the processor when the processor is used to run the computer program, the processor further executes:
  • the RRC signaling includes an RRC connection reconfiguration signaling and an RRC connection release signal Let, RRC connection setup signaling or RRC connection re-establishment signaling.
  • the processor when the processor is used to run the computer program, the processor further executes:
  • the random access is re-initiated and the uplink data is sent on the authorized resource.
  • the embodiment of the present disclosure further provides an uplink data processing apparatus, which is disposed in the terminal, and includes:
  • a memory configured to store an executable program
  • the processor configured to execute by executing an executable program stored in the memory:
  • the uplink data is retransmitted by using the authorization resource indicated by the uplink authorization information.
  • the processor when the processor is used to run the computer program, the processor further executes:
  • the random access response or the downlink notification sent by the base station is not received within the preset time, the random access is re-initiated by using the unlicensed resource or the authorized resource, where the downlink notification is that the base station successfully receives the The preamble sequence and the information sent by the uplink data.
  • the embodiment of the present disclosure further provides an uplink data processing apparatus, which is disposed in a base station, and includes:
  • a memory configured to store an executable program
  • the processor configured to execute by executing an executable program stored in the memory:
  • the random access response carrying the uplink grant information is sent to the terminal by using the authorized resource in a preset time, where the uplink grant information is used. And indicating an authorized resource scheduled to be sent to the terminal;
  • the memory can be either volatile memory or non-volatile memory, and can include both volatile and nonvolatile memory.
  • the non-volatile memory may be a Read Only Memory (ROM), a Programmable Read-Only Memory (PROM), or an Erasable Programmable Read (EPROM). Only Memory), Electrically Erasable Programmable Read-Only Memory (EEPROM), Ferromagnetic Random Access Memory (FRAM), Flash Memory, Magnetic Surface Memory , CD, or CD-ROM (CD-ROM, Compact Disc) Read-Only Memory); the magnetic surface memory can be a disk storage or a tape storage.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM Static Random Access Memory
  • SSRAM Synchronous Static Random Access Memory
  • SSRAM Dynamic Random Access
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM enhancement Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Dynamic Random Access Memory
  • DRRAM Direct Memory Bus Random Access Memory
  • the memory in the embodiments of the present invention is used to store various types of data to support the operation of the upstream data processing apparatus.
  • Examples of such data include any computer program for operating on a data processing device, such as an operating system and an application.
  • the operating system includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • An application can contain a variety of applications for implementing various application services.
  • a program implementing the method of the embodiment of the present invention may be included in an application.
  • the method disclosed in the foregoing embodiments of the present invention may be applied to a processor or implemented by a processor.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general purpose processor, a digital signal processor (DSP), or other programmable logic device, discrete gate or transistor logic. Edit devices, discrete hardware components, and more.
  • DSP digital signal processor
  • the processor may implement or perform the methods, steps, and logic blocks disclosed in the embodiments of the present invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiment of the present invention may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a storage medium, the storage medium being located in the memory, the processor reading the information in the memory, and completing the steps of the foregoing methods in combination with the hardware thereof.
  • the data network information processing device or terminal may be configured by one or more Application Specific Integrated Circuits (ASICs), DSPs, Programmable Logic Devices (PLDs), and Complex Programmable Logics.
  • ASICs Application Specific Integrated Circuits
  • DSPs Programmable Logic Devices
  • PLDs Programmable Logic Devices
  • Complex Programmable Logics Device
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • general-purpose processor controller
  • controller microcontroller (Micro Controller Unit) (MCU), microprocessor (Microprocessor), Or other electronic components are implemented to perform the aforementioned methods.
  • Embodiments of the present disclosure also provide a storage medium storing an executable program, when the executable program is executed by a processor, implementing:
  • the uplink data After the uplink data fails to be transmitted by using the unlicensed resource, the uplink data is sent by using the authorized resource.
  • the implementation when the executable program is executed by the processor, the implementation is:
  • the uplink data is sent by using an unlicensed resource, where the target received power of the n+1th uplink data is greater than the target received power of the nth uplink data; the n is not less than 1 A positive integer.
  • the implementation when the executable program is executed by the processor, the implementation is:
  • the received target power is the current target received power; the initial target received power, the initialReceivedTargetPower is the initial target received power of the first uplink data, and the TRANSMISSION_COUNTER is the number of times the uplink data is sent; the powerRampingStep Incremental step size for receiving power;
  • the implementation when the executable program is executed by the processor, the implementation is:
  • the system message or the RRC signaling or the dedicated message carries the initial target received power and/or the received power incremental step size
  • the RRC signaling includes RRC connection reconfiguration signaling, RRC connection release signaling, RRC connection setup signaling, or RRC connection re-establishment signaling.
  • the implementation when the executable program is executed by the processor, the implementation is:
  • the uplink data is sent by using the unlicensed resource, and the random access response that is sent by the base station and carrying the uplink authorization information is received, the uplink data is sent by using the authorized resource indicated by the uplink authorization information;
  • the random access is re-initiated and the uplink data is sent on the authorized resource.
  • the implementation when the executable program is executed by the processor, the implementation is:
  • the RRC signaling includes an RRC connection reconfiguration signaling and an RRC connection release signal Let, RRC connection setup signaling or RRC connection re-establishment signaling.
  • the implementation when the executable program is executed by the processor, the implementation is:
  • the random access is re-initiated and the uplink data is sent on the authorized resource.
  • Embodiments of the present disclosure also provide a storage medium storing an executable program, when the executable program is executed by a processor, implementing:
  • the uplink data is retransmitted by using the authorization resource indicated by the uplink authorization information.
  • the implementation when the executable program is executed by the processor, the implementation is:
  • the random access response or the downlink notification sent by the base station is not received within the preset time, the random access is re-initiated by using the unlicensed resource or the authorized resource, where the downlink notification is that the base station successfully receives the The preamble sequence and the information sent by the uplink data.
  • Embodiments of the present disclosure also provide a storage medium storing an executable program, when the executable program is executed by a processor, implementing:
  • the random access response carrying the uplink grant information is sent to the terminal by using the authorized resource in a preset time, where the uplink grant information is used. And indicating an authorized resource scheduled to be sent to the terminal;
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the components shown or discussed are mutually
  • the coupling, or direct coupling, or communication connection may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing module, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a removable storage device, a ROM, a RAM, a magnetic disk, or an optical disk, and the like, which can store program codes.
  • the terminal sends the uplink data by using the unlicensed resource; after the failure to send the uplink data by using the unlicensed resource, the uplink data is sent by using the authorized resource. And transmitting, by the terminal, the preamble sequence by using the unlicensed resource; sending the uplink data in the transmission time interval corresponding to the sending time of the preamble sequence; and receiving the random access response carrying the uplink grant information in the preset time, Authorizing the resource indicated by the uplink grant information, and resending the uplink data.
  • Base station detects terminal utilization Authorizing the preamble sequence of the spectrum transmission, and the uplink data sent by the terminal; when the preamble sequence is correctly decoded and the uplink data is not correctly decoded, the authorization resource is used to send the uplink authorization information to the terminal within a preset time. Random access response. In this way, the success rate of reception of uplink data can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种上行数据传输方法、装置及存储介质,所述方法包括:终端利用非授权资源发送上行数据;利用非授权资源发送上行数据失败后,利用授权资源发送上行数据。以及终端利用非授权资源发送前导序列;在所述前导序列发送时刻对应的传输时间间隔内,发送上行数据;当预设时间内接收到携带有上行授权信息的随机接入响应时,采用所述上行授权信息指示的授权资源,重新发送所述上行数据。基站检测终端利用非授权频谱发送的前导序列,及终端发送的上行数据;在当所述前导序列正确解码而所述上行数据未正确解码时,在预设时间内利用授权资源向所述终端发送携带有上行授权信息的随机接入响应。

Description

上行数据传输方法、装置及存储介质
相关申请的交叉引用
本申请基于申请号为201710051704.5、申请日为2017年01月20日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及无线通信领域,尤其涉及一种上行数据传输方法、装置及存储介质。
背景技术
现有技术中长期演进系统(Long Term Evolution,LTE)的结构示意图,如图1所示,主要由三个设备组成:用户设备(User Equipment,UE)、核心网(Core Network,CN)和基站(Evolved Node B,eNB),其中,核心网中的移动管理实体(Mobility Management Entity,MME)主要负责信令的传输,服务网关(Serving GetWay,SGW)主要负责数据的传输。UE和eNB的接口为Uu,eNB与核心网的接口为S1。
按照现在的协议规定,UE要与eNB通信,首先要接入该eNB,也就是发起随机接入过程。如图2所示,利用授权资源进行随机接入包括四个步骤,分别是:
步骤S1:UE向eNB发送前导序列,具体包括:UE通过系统信息或者无线资源控制(Radio Resource Control,RRC)信令获知用于随机接入的可用的前导序列码以及发送前导序列的时频位置,然后,在可用的资源内,随机选择前导序列和发送前导序列的时频位置,并发送给eNB。
步骤S2:eNB向UE发送随机接入响应,具体包括:通过随机接入前导序列采用的时频位置,推断UE可能采用的接入无线网络临时标志(Raccess Radio Network Temporary Identity,RA-RNTI),并用RA-RNTI解码前导序列,当eNB成功解码出前导序列后,给UE回复随机接入响应,响应中携带上行授权等信息。
步骤S3:调度传输,包括:UE利用上行授权资源上发送上行数据,并携带UE的标识等信息。
步骤S4:上行数据解码,具体包括:eNB在上行授权资源上解析上行数据,确认UE,解决冲突,并发送竞争决议标识给UE。
但是,这个过程需要四个步骤,延时较长,而且非正交技术已经得到了各个公司的认可,所以,随机接入过程也得到了技术上的更新,简化为2个步骤。UE可在非授权的情况下,将数据发送给eNB。如图3,存在两个步骤,分别是:
步骤S11:UE发送前导序列,并在非授权资源内,选择非授权资源,发送上行数据;
步骤S12:eNB解析出来后回复响应或者数据。
这里,发送上行数据的资源采用的是非正交技术。与传统的随机接入过程不同,非授权的上行数据可能要多个用户进行竞争,其功率也要比现有的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)高,而且,非授权的上行数据还存在着发送失败率高的问题。
发明内容
有鉴于此,本公开实施例期望提供一种上行数据传输方法、装置及存储介质,至少部分解决上述问题。
为达到上述目的,本公开的技术方案是这样实现的:
本公开实施例提供一种上行数据传输方法,应用于终端中,包括:
利用非授权资源发送上行数据;
利用非授权资源发送上行数据失败后,利用授权资源发送上行数据。
基于上述方案,在基于目标接收功率递增方式利用非授权资源发送所述上行数据,其中,第n+1次上行数据的目标接收功率大于第n次上行数据的目标接收功率;所述n为不小于1的正整数。
基于上述方案,所述基于目标接收功率递增方式利用非授权资源发送所述上行数据,包括:
利用如下公式,确定所述上行发送的当前目标接收功率;
ReceivedTargetPower=
InitialReceivedTargetPower+(TRANSMISSION_COUNTER–1)*powerRampingStep;
其中,所述ReceivedTargetPower为当前目标接收功率;初始目标接收功率所述InitialReceivedTargetPower为第一次发送所述上行数据的初始目标接收功率;所述TRANSMISSION_COUNTER为发送所述上行数据的次数;所述powerRampingStep为接收功率递增步长;
基于所述当前目标接收功率发送所述上行数据。
基于上述方案,所述方法还包括:
接收系统消息或无线资源控制RRC信令或专用消息;
其中,所述系统消息或所述RRC信令或所述专用消息,携带有所述初始目标接收功率和/或所述接收功率递增步长;
所述RRC信令包括RRC连接重配置信令、RRC连接释放信令、RRC连接建立信令或RRC连接重建立信令。
基于上述方案,所述利用非授权资源发送上行数据失败后,利用授权资源发送上行数据,包括:
当利用非授权资源发送所述上行数据的发送状况满足预设条件时,利用授权资源发送上行数据。
基于上述方案,所述当利用非授权资源发送所述上行数据的发送状况满足预设条件时,利用授权资源发送上行数据,包括:
若利用非授权资源发送所述上行数据后,收到了基站发送的携带有上行授权信息的随机接入响应时,利用上行授权信息指示的授权资源发送上行数据。
基于上述方案,所述当利用非授权资源发送所述上行数据的发送状况满足预设条件时,利用授权资源发送上行数据,还包括:
若利用非授权资源发送所述上行数据的发送次数达到预设次数,重新发起随机接入并在所述授权资源上发送上行数据;
基于上述方案,所述方法还包括:
接收基站发送的系统消息或RRC信令或专用消息,其中,所述系统消息或RRC信令中携带有所述预设次数;所述RRC信令包括RRC连接重配置信令、RRC连接释放信令、RRC连接建立信令或RRC连接重建立信令。
基于上述方案,所述当利用非授权资源发送所述上行数据的发送状况满足预设条件时,利用授权资源发送上行数据,还包括:
当上一次发送失败的利用非授权资源发送所述上行数据的发送功率达到功率阈值时,重新发起随机接入,在授权资源上发送上行数据。
本公开实施例第二方面提供一种上行数据传输方法,应用于终端中,包括:
利用非授权资源发送前导序列;
在所述前导序列发送时刻对应的传输时间间隔内,发送上行数据;
当预设时间内接收到携带有上行授权信息的随机接入响应时,采用所述上行授权信息指示的授权资源,重新发送所述上行数据。
基于上述方案,所述方法,还包括;
当在所述预设时间内未接收基站发送的所述随机接入响应或下行通知 时,利用非授权资源或授权资源重新发起随机接入,其中,所述下行通知为基站在成功接收到所述前导序列和所述上行数据发送的信息。
本公开实施例第三方面提供一种上行数据传输方法,应用于基站中,包括:
检测终端利用非授权频谱发送的前导序列;
检测所述终端发送的上行数据,其中,所述上行数据,是所述终端在所述前导序列发送时刻对应的传输时间间隔内发送的;
在当所述前导序列正确解码而所述上行数据未正确解码时,在预设时间内利用授权资源向所述终端发送携带有上行授权信息的随机接入响应,其中,所述上行授权信息用于指示调度给所述终端的授权资源;
在所述上行授权信息指示的授权资源上,接收所述终端发送的上行数据。
本公开实施例第四方面提供一种上行数据传输装置,设置于终端中,包括:
第一发送单元,配置为利用非授权资源发送上行数据;
第二发送单元,配置为利用非授权资源发送上行数据失败后,利用授权资源发送上行数据。
基于上述方案,所述第二发送单元,配置为基于目标接收功率递增方式利用非授权资源发送所述上行数据,其中,第n+1次上行数据的目标接收功率大于第n次上行数据的目标接收功率;所述n为不小于1的正整数。
基于上述方案,所述第一发送单元,包括:
计算模块,配置为利用如下公式,确定所述上行发送的当前目标接收功率;
ReceivedTargetPower=
InitialReceivedTargetPower+(TRANSMISSION_COUNTER–1)*powerRampingStep;
其中,所述ReceivedTargetPower为当前目标接收功率;所述InitialReceivedTargetPower为第一次发送所述上行数据的初始目标接收功率;所述TRANSMISSION_COUNTER为发送所述上行数据的次数;所述powerRampingStep为接收功率递增步长;
发送模块,配置为基于所述当前目标接收功率发送所述上行数据。
基于上述方案,所述装置还包括:
第一接收单元,配置为接收系统消息或无线资源控制RRC信令或专用消息;
其中,所述系统消息或所述RRC信令或所述专用消息,携带有所述初始目标接收功率和/或所述接收功率递增步长;
所述RRC信令包括RRC连接重配置信令、RRC连接释放信令、RRC连接建立信令或RRC连接重建立信令。
基于上述方案,所述第二发送单元,配置为当利用非授权资源发送所述上行数据的发送状况满足预设条件时,利用授权资源发送上行数据。
基于上述方案,所述第二发送单元,配置为若利用非授权资源发送所述上行数据后,收到了基站发送的携带有上行授权信息的随机接入响应时,利用上行授权信息指示的授权资源发送上行数据。
基于上述方案,所述第二发送单元,配置为若利用非授权资源发送所述上行数据的发送次数达到预设次数,重新发起随机接入并在所述授权资源上发送上行数据。
基于上述方案,所述装置还包括:
第二接收单元,配置为接收基站发送的系统消息或RRC信令或专用消息,其中,所述系统消息或RRC信令中携带有所述预设次数;所述RRC信令包括RRC连接重配置信令、RRC连接释放信令、RRC连接建立信令或RRC连接重建立信令。
基于上述方案,第二发送单元,配置为当上一次发送失败的利用非授权资源发送所述上行数据的发送功率达到功率阈值时,重新发起随机接入,在授权资源上发送上行数据。
本公开实施例第五方面提供一种上行数据传输装置,设置于终端中,包括:
第一随机接入单元,配置为利用非授权资源发送前导序列;
第三发送单元,配置为在所述前导序列发送时刻对应的传输时间间隔内,发送上行数据;
所述第一随机接入单元,还配置为当预设时间内接收到携带有上行授权信息的随机接入响应时,采用所述上行授权信息指示的授权资源,重新发送所述上行数据。
基于上述方案,所述第一随机接入单元,还配置为当在所述预设时间内未接收基站发送的所述随机接入响应或下行通知时,利用非授权资源或授权资源重新发起随机接入,其中,所述下行通知为基站在成功接收到所述前导序列和所述上行数据发送的信息。
本公开实施例第六方面提供一种上行数据传输装置,设置于基站中,包括:
检测单元,配置为检测终端利用非授权频谱发送的前导序列;检测所述终端发送的上行数据,其中,所述上行数据,是所述终端在所述前导序列发送时刻对应的传输时间间隔内发送的;
第四发送单元,配置为在当所述前导序列正确解码而所述上行数据未正确解码时,在预设时间内利用授权资源向所述终端发送携带有上行授权信息的随机接入响应,其中,所述上行授权信息用于指示调度给所述终端的授权资源;
第三接收单元,配置为在所述上行授权信息指示的授权资源上,接收 所述终端发送的上行数据。
本公开实施例第七方面提供一种上行数据传输装置,包括:
存储器,配置为存储可执行程序;
处理器,配置为通过运行所述存储器中存储的可执行程序时,执行:
利用非授权资源发送上行数据;
利用非授权资源发送上行数据失败后,利用授权资源发送上行数据。
本公开实施例第八方面提供一种上行数据传输装置,包括:
存储器,配置为存储可执行程序;
处理器,配置为通过运行所述存储器中存储的可执行程序时,执行:
利用非授权资源发送前导序列;
在所述前导序列发送时刻对应的传输时间间隔内,发送上行数据;
当预设时间内接收到携带有上行授权信息的随机接入响应时,采用所述上行授权信息指示的授权资源,重新发送所述上行数据。
本公开实施例第九方面提供一种上行数据传输装置,包括:
存储器,配置为存储可执行程序;
处理器,配置为通过运行所述存储器中存储的可执行程序时,执行:
检测终端利用非授权频谱发送的前导序列;
检测所述终端发送的上行数据,其中,所述上行数据,是所述终端在所述前导序列发送时刻对应的传输时间间隔内发送的;
在当所述前导序列正确解码而所述上行数据未正确解码时,在预设时间内利用授权资源向所述终端发送携带有上行授权信息的随机接入响应,其中,所述上行授权信息用于指示调度给所述终端的授权资源;
在所述上行授权信息指示的授权资源上,接收所述终端发送的上行数据。
本公开实施例第十方面还提供一种存储介质,存储有可执行程序,所 述可执行程序被处理器执行时,实现:
利用非授权资源发送上行数据;
利用非授权资源发送上行数据失败后,利用授权资源发送上行数据。
本公开实施例第十一方面还提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现:
利用非授权资源发送前导序列;
在所述前导序列发送时刻对应的传输时间间隔内,发送上行数据;
当预设时间内接收到携带有上行授权信息的随机接入响应时,采用所述上行授权信息指示的授权资源,重新发送所述上行数据。
本公开实施例第十二方面还提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现:
检测终端利用非授权频谱发送的前导序列;
检测所述终端发送的上行数据,其中,所述上行数据,是所述终端在所述前导序列发送时刻对应的传输时间间隔内发送的;
在当所述前导序列正确解码而所述上行数据未正确解码时,在预设时间内利用授权资源向所述终端发送携带有上行授权信息的随机接入响应,其中,所述上行授权信息用于指示调度给所述终端的授权资源;
在所述上行授权信息指示的授权资源上,接收所述终端发送的上行数据。
本公开实施例提供的上行数据传输方法、装置及存储介质,在利用非授权资源发送上行数据失败时,自动转换到利用授权资源进行上行数据的发送,显然相对于一再的利用非授权资源进行发送导致的传输失败率高的问题,提升了上行数据的接收成功率。
本公开实施例提供的上行数据传输方法、装置及存储介质,当基站成功接收到利用非授权资源发送的前导序列,但是未成功接收到上行数据时, 基站向终端发送携带有上行授权信息的随机接入响应。终端在接收到该随机接入响应之后,会利用授权资源发送上行数据,减少反复利用非授权资源发送上行资源导致的失败发送次数多的现象,同样可以提升上行数据的发送成功率。
附图说明
图1为一种无线通信系统的结构示意图;
图2为一种随机接入的流程示意图;
图3为另一种随机接入的流程示意图;
图4为本公开实施例提供的第一种上行数据传输方法的流程示意图;
图5为本公开实施例提供的第二种上行数据传输方法的流程示意图;
图6为本公开实施例提供的第三种上行数据传输方法的流程示意图;
图7为本公开实施例提供的第四种上行数据传输方法的流程示意图;
图8为本公开实施例提供的第一种上行数据传输装置的结构示意图;
图9为本公开实施例提供的第二种上行数据传输装置的结构示意图;
图10为本公开实施例提供的第三种上行数据传输装置的结构示意图;
图11为本公开实施例提供的第四种上行数据传输装置的结构示意图;
图12为本公开实施例提供的第五种上行数据传输装置的结构示意图。
具体实施方式
以下结合说明书附图及具体实施例对本公开的技术方案做进一步的详细阐述。
如图4所示,本实施例提供一种上行数据传输方法,应用于终端中,包括:
步骤S110:利用非授权资源发送上行数据;
步骤S120:利用非授权资源发送上行数据失败后,利用授权资源发送 上行数据。
在本实施例中所述终端又称为UE,这里的UE可为手机、平板电脑或可穿戴式设备等人载终端,也可以为车载UE,还可以是物联网中的各种终端设备。
在步骤S110中利用非授权资源发送上行数据。这里的非授权资源为非授权的资源池内选择的传输资源。所述传输资源可包括传输频谱和/或传输时隙等。通常,在步骤S110中发送所述上行数据可包括:直接选择非授权资源进行上行数据发送,还可包括:利用非授权资源发送前导序列,在发送完前导序列的发送时刻对应的传输时间间隔内发送至少一次所述上行数据。
在步骤S120中会在发送完所述前导序列之后,可以发送一次或多次上行数据。在本实施例中为了确保上行数据的发送成功,当需要发送多次利用非授权资源发送上行数据失败时,终端会自动转而利用授权资源重新发送所述上行数据。对于用户而言,终端转而利用授权资源发送所述上行数据是透明的,而对于用户而言相对于是发送成功了,显然减少了上行数据发送失败的失败提醒概率,终端自动转而利用授权资源进行发送,也相对于终端再次选择非授权资源进行发送,提升了发送成功率。
具体的如,所述步骤S120可包括:
基于目标接收功率递增方式利用非授权资发送所述上行数据,其中,第n+1次上行数据的目标接收功率大于第n次上行数据的目标接收功率;所述n为不小于1的正整数。例如,基于目标接收功率递增方式,利用非授权资源发送多次,例如,N次所述上行数据。所述n为小于所述N的正整数;所述N为不小于2的正整数。所述N的取值最小2,具体可为3、4或5等取值。这里的N的取值可为终端和基站预先协商的,也可以预先定义在终端中,当然,所述N也可以是随机生成的,也可以是根据当前的无 线环境动态决定的。这里的无线环境动态决定所述N可包括:
动态侦听所述非授权资源的使用状况,获得侦听结果;
根据所述侦听结果,确定所述N。例如,当所述侦听结果表明当前时刻以前S个传输时隙或传输子帧都被占用或被占用的比例为预设比例,则所述N为第一预设值,若未本占用所述N为第二预设值。所述第一预设值不等于所述第二预设值,这里仅是简单举例,具体实现还有很多种方式,总之,可以根据侦听结果确定所述N。
在本实施例中,会采用目标接收功率递增方式进行多次上行数据发送。这里的目标接收功率递增方式,为以提升基站接收到所述上行数据的接收功率为目的进行发送功率调整的上行数据发送方法。例如,终端会在前后两次的发送过程中,以接收功率递增的方式确定目标接收功率,然后根据目标接收功率与发送功率之间的对应关系或计算函数,得出本次的发送功率,利用得到的本次发送功率发送所述上行数据。根据目标接收功率确定本次的发送功率的过程中,涉及到本次发送的路损功率。这里的路损功率可为通过信道估计测量的,也可以是预先给定的一个路损值。本次的发送功率可为目标接收功率与所述路损值之和。当然,在具体实现时,还可能引入修正因子,在目标接收功率与所述路损值之和的基础上,通过修正因子,再次校正所述发送功率,从而获得更加精确的发送功率,同时确保基站的目标接收功率是逐次递增的。
这样的话,后一次上行数据的目标接收功率将高于前一次上行数据的目标接收功率。发送功率提升了,则基站(eNB)成功接收所述上行数据的概率就增加了,从而就能够提升所述上行数据的发送成功率。且由于开始采用较低的目标接收功率,则可以减少因为过高的目标接收功率,对其他终端或基站的通信的干扰,降低总体的无线干扰。
在本实施例中所述方法还包括:获取最大目标接收功率,当确定出当 前目标接收功率大于所述最大目标接收功率时,基于所述最大目标接收功率发送本次发送所述上行数据;若前一次发送的目标接收功率已经等于所述最大目标接收功率,则停止本次所述上行数据的发送,利用非授权资源或授权资源重新发送前导序列,重新进行随机接入。
在一些实施例中所述终端的功率发射器都有其发射功率的最大值,若当前基于当前目标发送功率确定出的当前发送功率大于功率发射器的最大发送功率时,利用所述最大发送功率发送所述上行数据,若本次发送再次失败,则停止下一次的上行数据发送,重新进行随机接入或转而利用所述授权资源重发所述上行数据。
在一般情况下,若基站成功接收了所述上行数据并解码了所述上行数据,则基站会向终端发送下行通知,若终端未接收到所述下行通知,则可以多次重复发送所述上行数据,直至满足预设条件则停止或暂停利用所述非授权资源发送所述上行数据。
显然,可以功率递增的方式发送上行数据,这种方式,一方面首先基于较小的目标功率发送上行数据失败时,通过目标接收功率的增大,可以提升上行数据的发送成功率;另一方面,没有一开始就基于最大的目标接收功率发送,可以减少无线信号的相互干扰问题。显然,通过功率递增的方式,可以提升利用非授权资源发送上行数据的成功率。
具体地如,如图5所示,所述步骤S110可包括:
步骤S111:利用如下公式,确定所述上行发送的当前目标接收功率;
ReceivedTargetPower=
InitialReceivedTargetPower+(TRANSMISSION_COUNTER–1)*powerRampingStep;
其中,所述ReceivedTargetPower为当前目标接收功率;初始目标接收功率所述InitialReceivedTargetPower为第一次发送所述上行数据的初始目标接收功率;所述TRANSMISSION_COUNTER为发送所述上行数据的次 数;所述powerRampingStep为接收功率递增步长;
步骤S112:基于所述当前目标接收功率发送所述上行数据。
在本实施例中确定了所述初始目标接收功率,这里的初始目标接收功率和所述接收功率递增步长可预先存储终端中,也可以是所述终端从所述基站接收的。例如,基站通过RRC信令或系统消息或专有信令下发的所述初始目标接收功率,或,基站和终端预先协商的发送功率。所述系统消息或所述RRC信令或所述专用消息,携带有所述初始目标接收功率和/或所述接收功率递增步长;所述RRC信令包括RRC连接重配置信令、RRC连接释放信令、RRC连接建立信令或RRC连接重建立信令。
在一些实施例中,所述终端和基站之间还可协商最大发送次数,即协商所述TRANSMISSION_COUNTER的最大值。这样的话,基站就可以控制终端利用非授权资源发送上行数据的最大目标接收功率,以免过滤过大导致的无线干扰。当然,所述终端和基站之间可以直接预定义或协商最大目标接收功率,达到发送功率限制的方法。这里的TRANSMISSION_COUNTER也可以从系统消息、RRC信令或专有消息中接收。
这里的步骤S112可包括:
根据当前目标接收功率与当前发送功率的对应关系或转换函数,计算出当前的发送功率,利用当前的发送功率发送所述上行数据。
在一些实施例中,所述步骤S120可包括:当所述上行数据的发送状况满足预设条件时,利用授权资源发送上行数据。
为了确保成功发送所述上行数据,所述终端会监控所述上行数据的发送状况。例如,基站接收到上行数据时,就会发送下行通知,若未接收到下行通知,则终端可以确定上述数据暂时未发送成功或未被基站成功解码,需要继续发送所述上行数据。当然,所述终端还可以监控所述上行数据的 发送次数。当然,所述终端还可以根据当前时间,确定当前时间与发送所述前导序列的发送时间是否属于同一个传输时间间隔内,在未成功发送所述上行数据的情况下,确定是否继续利用非授权资源发送所述上行数据,或进行下一次的随机接入。这里的随机接入可以为如图2所示的利用授权资源的随机接入,或如图3所示的利用非授权资源的随机接入。
满足所述预设条件的方式有多种,以下提供几种可选方式:
可选方式一:
所述步骤S120可包括:
当利用非授权资源发送所述上行数据后,在预定时间内未接收到基站返回的上行通知或随机接入响应,则利用授权资源发起随机接入,并利用随机接入获得所述授权资源重新发送所述上行数据。
例如,当第m次前导序列和对应于所述第m次前导序列的所述上行数据均发送失败时,利用授权资源进行第m+1次随机接入并通过随机接入获取的收钱资源发送所述上行数据,其中,所述m为不小于1的正整数。在本实施例中若第m次前导序列和第m次前导序列对应的上行数据发送均失败,则所述终端在指定时间范围内会接收不到基站对于所述前导序列或上行数据的任何反馈,则终端可以确定出前导序列及上行数据均发送失败,则此时可以利用授权资源,进行下一次的随机接入。在本实施例中优选可为利用授权资源进行随机接入,以减少利用非授权资源进行再次上行数据发送的失败。
可选方式二:
所述步骤S120可包括:
若利用非授权资源发送所述上行数据后,收到了基站发送的携带有上行授权信息的随机接入响应时,利用上行授权信息指示的授权资源发送上行数据。
当在第m次前导序列对应的传输时间间隔内一次或多次所述上行数据均发送失败时,接收基站利用授权资源返回的随机接入响应,利用所述随机接入响应进行随机接入。
基站接收到终端发送的前导序列,但是没有成功接收前导序列对应的上行数据,则基站会向终端发送随机响应;则终端会接收到随机接入响应,此处的随机接入响应是基站利用授权资源发送的,并携带上行授权信息。这里的上行授权信息可为指示基站调度给终端的授权资源的指示信息,进而所述终端可以利用所述上行授权信息指示的授权资源,利用所述上行资源,完成随机接入和上行数据的传输。
可选方式三:
所述步骤S120可包括:
若利用非授权资源发送所述上行数据的发送次数达到预设次数,重新发起随机接入并在所述授权资源上发送上行数据。在本实施例中相当于设置了一次前导序列发送对应的利用非授权频谱发送上行数据的最大发送次数,以免终端过多次数发送依然不成功,导致的电能的消耗,以减少终端的功耗,延长移动终端的待机时长。
作为本实施例的进一步改进,所述方法还包括:
接收基站发送的系统消息或RRC信令或专用消息,其中,所述系统消息或RRC信令中携带有所述预设次数;所述RRC信令包括RRC连接重配置信令、RRC连接释放信令、RRC连接建立信令或RRC连接重建立信令。
这里的系统消息可为广播消息或组播消息或单播消息。所述RRC信令或专用信令,也可以为采用广播、组播或单播的方式发送的。
可选方式四:
所述步骤S120可包括:
当上一次发送失败利用非授权资源的所述上行数据的发送功率达到功 率阈值时,利用授权资源重新进行随机接入并在所述授权资源上发送上行数据。在本实施例中若上行数据的目标接收功率已经达到功率阈值,表明上一次发送失败的上行数据的目标接收功率是允许的最大目标接收功率时,此时没有可能再利用目标接收功率递增方式再次提升上行数据发送的目标接收功率,为了减少无效率的发送,在本实施例中会利用授权资源或非授权资源进行下一次随机接入。
如图6所示,本实施例提供一种上行数据传输方法,应用于终端中,包括:
步骤S210:利用非授权资源发送前导序列;
步骤S220:在所述前导序列发送时刻对应的传输时间间隔内,发送上行数据;
步骤S230:当预设时间内接收到携带有上行授权信息的随机接入响应时,采用所述上行授权信息指示的授权资源,重新发送所述上行数据。
本实施例提供的上行数据传输方法,依然是应用于UE中的方法。
在步骤S210可包括:首先利用非授权资源发送前导序列。在发送完所述前导序列之后就发送上行数据,通常所述上行数据的发送是与所述前导序列的发送时刻位于一个传输时间间隔内。故在步骤S220中将在发送前导序列的同一个传输间隔内,发送所述上行数据。
若前导序列发送成功,而所述上行数据发送失败或基站解码所述上行数据失败,则所述基站会发送随机接入响应,且此时随机接入响应中携带有上行授权信息。该上行授权信息可用于标识调度该终端的授权资源的标识信息。
这样的话,终端就不用再次发送前导序列,减少前导序列的发送次数,减少前导序列发送所需的功耗。
为了确保上行数据的发送成功,在步骤S240中所述终端会利用指示的 授权资源重新发送所述上行数据,以确保基站成功接收所述上行数据。
进一步地,所述方法还包括:
步骤S240:当在预设时间内未接收基站发送的所述随机接入响应或下行通知时,利用非授权资源或授权资源重新发起随机接入,其中,所述下行通知为基站在成功接收到所述前导序列和所述上行数据发送的信息。
在本实施例中所述终端依然利用非授权资源发送前导序列,在步骤S320依然是发送上行数据。在发送完所述前导序列和/或所述上行数据之后,终端开始计时,并在计时对应的预设时间内接收基站发送的信息,这里的基站发送的信息包括针对于所述前导序列的随机接入响应或下行通知,
在本实施例中所述终端在预定时间内未接收到所述下行通知或随机接入响应之后,将利用非授权资源或授权资源,重新发起随机接入,在本实施例中优选采用授权资源进行随机接入。
如图7所示,本实施例提供一种上行数据传输方法,应用于基站中,包括:
步骤S310:检测终端利用非授权频谱发送的前导序列;
步骤S320:检测所述终端发送的上行数据,其中,所述上行数据,是所述终端在所述前导序列发送时刻对应的传输时间间隔内发送的;
步骤S330:当所述前导序列正确解码而所述上行数据未正确解码时,在预设时间内利用授权资源向所述终端发送携带有上行授权信息的随机接入响应,其中,所述上行授权信息用于指示调度给所述终端的授权资源;
步骤S340:在所述上行授权信息指示的授权资源上,接收所述终端发送的上行数据。
本实施例是应用于基站中。基站会在非授权资源上检测用于随机接入的前导序列和/或上行数据,若检测到利用非授权资源发送的前导序列,但 是没有在非授权资源上接收到该终端的上行数据,或未成功解码该终端利用非授权资源发送的上行数据,则向终端发送随机接入响应。这里的随机接入响应是利用授权资源发送的,且携带有上行授权信息,向终端指示调度给其重新发送上行数据的授权资源,这样会促使终端转而利用授权资源发送上行数据,从而提升上行数据的发送成功率。
如图8所示,本实施例提供一种上行数据传输装置,设置于终端中,包括:
第一发送单元110,配置为利用非授权资源发送上行数据;
第二发送单元120,配置为利用非授权资源发送上行数据失败后,利用授权资源发送上行数据。
本实施例提供的传输装置,应用于各种终端中。所述第一发送单元110,可对应于无线通信接口及处理器或处理电路,所述处理器可用于从非授权资源池中选择发送上行数据非授权资源。所述无线通信接口与所述处理器连接,用于在非授权资源上发送所述前导序列。
在本实施例中所述第二发送单元120,同样对应于无线通信接口,这里的无线通信接口可为发送天线。在本实施例中所述发送天线,还用于发送所述上行数据,这里的上行数据同样是利用所述非授权资源发送的。
可选地,所述第一发送单元110,配置为基于目标接收功率递增方式利用非授权资源发送所述上行数据,其中,第n+1次上行数据的目标接收功率大于第n次上行数据的目标接收功率;所述n为不小于1的正整数。
本实施例提供的传输装置,应用于各种终端中。所述第一发送单元110,可对应于处理器和无线通信接口,所述处理器可用于从非授权资源池中选择发送前导序列的非授权资源,选择对应的前导序列。所述无线通信接口与所述处理器连接,用于在非授权资源上发送所述前导序列。
在一些实施例中,所第一发送单元120,包括:
计算模块,可对应于各种计算器或具有计算功能的处理器或电路,用于利用如下公式,确定所述上行发送的当前目标接收功率;
ReceivedTargetPower=
InitialReceivedTargetPower+(TRANSMISSION_COUNTER–1)*powerRampingStep;
其中,所述ReceivedTargetPower为当前目标接收功率;初始目标接收功率所述InitialReceivedTargetPower为第一次发送所述上行数据的初始目标接收功率;所述TRANSMISSION_COUNTER为发送所述上行数据的次数;所述powerRampingStep为接收功率递增步长;
发送模块,对应于发送天线等发送接口,可配置为基于所述当前目标接收功率发送所述上行数据。
在本实施例中采用功率递增的方式,计算出当前目标接收功率,这里的当前接收功率为本次发送上行数据对应的目标接收功率,再利用当前目标发送功率计算出发送功率,再利用计算出的发送功率发送上行数据,通过目标接收功率的增加可以提升基站成功接收所述上行数据的概率。
上述公式为确定本次的发送功率的一种方法,在具体实现时,还可以设置有目标发送功率表,在目标发送功率表中存储多个不同的目标发送功率表值,在确定目标发送功率时,可以以当前发送次数为索引查询所述目标发送功率表,获得本次发送的目标发送功率,再利用查表得到的目标发送功率发送所述上行数据。
在一些实施例中,所述装置还包括:
第一接收单元,配置为接收系统消息或无线资源控制RRC信令或专用消息;
其中,所述系统消息或所述RRC信令或所述专用消息,携带有所述初始目标接收功率和/或所述接收功率递增步长;
所述RRC信令包括RRC连接重配置信令、RRC连接释放信令、RRC 连接建立信令或RRC连接重建立信令。
这里的第一接收单元可对应于终端中的接收天线等接收接口,可以从基站接收通过各种消息携带的初始目标接收功率及所述接收功率递增步长的至少一个。
所述第二发送单元120,配置为当利用非授权资源发送所述上行数据的发送状况满足预设条件时,利用授权资源发送上行数据。
在本实施例中若上行数据的发送状况,满足预定的预设条件,则可能需要重新进行随机接入,通过随机接入操作获得授权资源发送上行数据,或利用被本次上行数据发送之前的非授权资源发送的前导序列获取的授权资源发送所述上行数据;具体的实现包括多种,以下分别进行介绍。
第一种:所述第二发送单元120,配置为若利用非授权资源发送所述上行数据后,收到了基站发送的携带有上行授权信息的随机接入响应时,利用上行授权信息指示的授权资源发送上行数据。
第二种:所述第二发送单元120,配置为若利用非授权资源发送所述上行数据的发送次数达到预设次数,重新发起随机接入并在所述授权资源上发送上行数据。
进一步地,所述装置还包括:
第二接收单元,配置为接收基站发送的系统消息或RRC信令或专用消息,其中,所述系统消息或RRC信令中携带有所述预设次数;所述RRC信令包括RRC连接重配置信令、RRC连接释放信令、RRC连接建立信令或RRC连接重建立信令。
这里的第二接收单元可同样对应于终端的接收天线,通过系统消息、RRC信令或专有消息的接收,获得其携带的预设次数等。这些消息的发送方式可为广播、组播或单播等。
第三种,所述第二发送单元120,配置为当上一次发送失败的利用非授 权资源发送所述上行数据的发送功率达到功率阈值时,重新发起随机接入,在授权资源上发送上行数据。
如图9所示,本实施例提供一种上行数据传输装置,设置于终端中,包括:
第一随机接入单元210,配置为利用非授权资源发送前导序列;
第三发送单元220,配置为在所述前导序列发送时刻对应的传输时间间隔内,发送上行数据;
所述第一随机接入单元210,还配置为当预设时间内接收到携带有上行授权信息的随机接入响应时,采用所述上行授权信息指示的授权资源,重新发送所述上行数据。
本实施例中所述第一随机接入单元210对应的硬件结构,与前述实施例中提到的第一随机接入单元110的结构类似,同样可对应于处理器及无线通信接口,同样可包括选择非授权资源,利用选择非授权资源发送选择的前导序列。
第三发送单元220与前述的第二发送单元120对应的硬件结构类似,同样可对应于无线通信接口,发送所述上行数据。
第一随机接入单元210,还复用为在预设时间内接收到随机接入响应时,利用基站调度的授权资源重新发送所述上行数据,以确保上行数据的发送成功率。
可选地,所述第一随机接入单元210,还配置为当在所述预设时间内未接收基站发送的所述随机接入响应或下行通知时,利用非授权资源或授权资源重新发起随机接入,其中,所述下行通知为基站在成功接收到所述前导序列和所述上行数据发送的信息。
在本实施例中若在预设时间内既未接收到随机接入响应,也未接收到下行通知时,则重新发起随机接入,这里重新发起的随机接入,可为利用 授权资源进行的随机接入,也可以为利用非授权资源发起的随机接入。
在本公开实施例中,用于发送前导序列的授权资源,即为授权的随机接入资源。
如图10所示,本实施例提供一种上行数据传输装置,设置于基站中,包括:
检测单元310,配置为检测终端利用非授权频谱发送的前导序列;检测所述终端发送的上行数据,其中,所述上行数据,是所述终端在所述前导序列发送时刻对应的传输时间间隔内发送的;
第四发送单元320,配置为在当所述前导序列正确解码而所述上行数据未正确解码时,在预设时间内利用授权资源向所述终端发送携带有上行授权信息的随机接入响应,其中,所述上行授权信息用于指示调度给所述终端的授权资源;
第三接收单元330,配置为在所述上行授权信息指示的授权资源上,接收所述终端发送的上行数据。
本实施例所述的上行数据传输装置,为应用于基站中的传输装置。这里的基站可为演进型基站eNB或下一代基站gNB。
检测单元310可对应于无线通信接口及解码器;所述无线通信接口,配置为接收无线信号;所述解码器配置为解码接收的无线信号,得到终端发送的前导序列和/或上行数据。
所述第四发送单元320可对应于基站的空口,可以配置为向终端发送随机接入响应。
所述第三接收单元330,可对应于基站的空口,可配置为接收利用授权资源发送的上行数据。
以下结合上述任意实施例提供几个具体示例:
示例1
UE发送利用非授权资源发送上行数据时,采用功率递增的功率控制方法。
当UE第一次利用非授权资源发送的上行数据时,按照初始目标接收功率(对应于初始目标接收功率)发送上行数据。如果第一次不成功,那么UE再次利用非授权资源发送上行数据时,需要再增加发射功率。以此类推。每次发送不成功,就增加发射功率。
例如,初始目标接收功率为InitialReceivedTargetPower,每次递增的接收功率补偿为powerRampingStep,那么,发送TRANSMISSION_COUNTER次非授权的上行数据时,目标接收功率ReceivedTargetPower为:ReceivedTargetPower=InitialReceivedTargetPower+(TRANSMISSION_COUNTER–1)*powerRampingStep。
其中,初始目标接收功率、递增功率可以由系统信息广播,也可以由RRC信令配置,包括无线连接控制重配置(RRCConnectionReconfiguration)信令、无线连接控制释放(RRCConnectionRelease)信令、无线连接控制建立(RRCConnectionSetup)信令、无线连接控制重建立(RRCConnectionReestablishment)信令,或者新定义的消息等。
示例二:
如果UE利用非授权资源发送上行数据时,发射功率不够,会导致基站无法监测到非授权的上行数据。这种情况下,基站可能会成功监测出前导序列,但是无法监测出上行数据来。但是,基站可以针对前导序列回复随机接入响应,那么,非授权的上行发送过程可以转为传统的随机接入过程。
当UE发送非授权的上行数据失败,UE随后发起传统的随机接入过程。如图11所示,包括:
步骤S21:UE发送前导序列,并在非授权的资源内,选择资源,发送上行数据;
步骤S22:eNB解析前导序列,但是没有监测出非授权上行数据,回复 随机接入响应,并携带上行授权;
步骤S23:UE在上行授权资源上重新传输上行数据,并携带UE的标识等信息;
步骤S24:eNB在上行授权资源上接收并解析上行数据,确认UE,解决冲突,并发送竞争决议标识给UE。这里的上行授权资源可如图11中所示的PUSCH重新发送的上行数据。
上述随机接入响应,能被多个利用同一个前导序列进行随机接入的UE接收到,若步骤S23中UE携带UE的标识,则在步骤S24中基站在授权资源上接收到多个UE发送的上行数据时,可以根据提取的UE的标识,确定最终解码哪一个UE的上行数据,从而达到确认发送UE及冲突解决的目的。
示例三:
如果UE利用非授权资源发送上行数据时,发射功率不够,会导致基站无法监测到非授权的上行数据。这种情况下,基站可能也没有成功监测出前导序列,基站无法回复随机接入响应,那么,非授权的上行发送过程可以转为传统的随机接入过程。
当UE发送非授权的上行数据失败达到n次,其中n次为系统信息广播或者RRC信令配置,UE随后发起传统的随机接入过程。
或者UE发送非授权的上行数据达到最大发送功率后仍然失败,UE随后发起传统的随机接入过程。
流程图如图12所示,包括:
步骤S31:UE发送前导序列,并在非授权的资源内,选择资源,发送上行数据;eNB解码失败,不仅没有解码出前导序列,而且也没有监测出非授权上行数据,不回复响应;
步骤S32:UE等待随机接入响应失败,随后发起传统的随机接入过程。UE再次选择前导序列,并发送给eNB;
步骤S33:eNB监测出前导序列,恢复响应消息,并携带上行授权等信息;
步骤S34:UE在上行授权的资源上发送上行数据,并携带UE的标识等信息;这里的上行授权资源可如图11中所示的PUSCH重新发送的上行数据;
步骤S35:eNB在上行授权的资源上解析上行数据,确认UE,解决冲突,并发送竞争决议标识给UE。这里的UE确认和冲突解决,可以参见前述示例。
本公开实施例还提供一种上行数据处理装置,设置于终端中,包括:
存储器,配置为存储可执行程序;
处理器,配置为通过运行所述存储器中存储的可执行程序时,执行:
利用非授权资源发送上行数据;
利用非授权资源发送上行数据失败后,利用授权资源发送上行数据。
本公开实施例中,所述处理器用于运行所述计算机程序时,执行:
在基于目标接收功率递增方式,利用非授权资源发送所述上行数据,其中,第n+1次上行数据的目标接收功率大于第n次上行数据的目标接收功率;所述n为不小于1的正整数。
本公开实施例中,所述处理器用于运行所述计算机程序时,执行:
利用如下公式,确定所述上行发送的当前目标接收功率;
ReceivedTargetPower=
InitialReceivedTargetPower+(TRANSMISSION_COUNTER–1)*powerRampingStep;
其中,所述ReceivedTargetPower为所述当前目标接收功率;初始目标接收功率所述InitialReceivedTargetPower为第一次发送所述上行数据的初始目标接收功率;所述TRANSMISSION_COUNTER为发送所述上行数据的次数;所述powerRampingStep为接收功率递增步长;
基于所述当前目标接收功率发送所述上行数据。
本公开实施例中,所述处理器用于运行所述计算机程序时,还执行:
接收系统消息或所述RRC信令或专用消息;
其中,所述系统消息或所述RRC信令或所述专用消息,携带有所述初始目标接收功率和/或所述接收功率递增步长;
所述RRC信令包括RRC连接重配置信令、RRC连接释放信令、RRC连接建立信令或RRC连接重建立信令。
本公开实施例中,所述处理器用于运行所述计算机程序时,还执行:
若利用非授权资源发送所述上行数据后,收到了基站发送的携带有上行授权信息的随机接入响应时,利用上行授权信息指示的授权资源发送上行数据;或,
若利用非授权资源发送所述上行数据的发送次数达到预设次数,重新发起随机接入并在所述授权资源上发送上行数据。
本公开实施例中,所述处理器用于运行所述计算机程序时,还执行:
接收基站发送的系统消息或RRC信令或专用消息,其中,所述系统消息或RRC信令中携带有所述预设次数;所述RRC信令包括RRC连接重配置信令、RRC连接释放信令、RRC连接建立信令或RRC连接重建立信令。
本公开实施例中,所述处理器用于运行所述计算机程序时,还执行:
当上一次发送失败的利用非授权资源发送所述上行数据的发送功率达到功率阈值时,重新发起随机接入并在所述授权资源上发送上行数据。
本公开实施例还提供一种上行数据处理装置,设置于终端中,包括:
存储器,配置为存储可执行程序;
处理器,配置为通过运行所述存储器中存储的可执行程序时,执行:
利用非授权资源发送前导序列;
在所述前导序列发送时刻对应的传输时间间隔内,发送上行数据;
当预设时间内接收到携带有上行授权信息的随机接入响应时,采用所述上行授权信息指示的授权资源,重新发送所述上行数据。
本公开实施例中,所述处理器用于运行所述计算机程序时,还执行:
当在所述预设时间内未接收基站发送的所述随机接入响应或下行通知时,利用非授权资源或授权资源重新发起随机接入,其中,所述下行通知为基站在成功接收到所述前导序列和所述上行数据发送的信息。
本公开实施例还提供一种上行数据处理装置,设置于基站中,包括:
存储器,配置为存储可执行程序;
处理器,配置为通过运行所述存储器中存储的可执行程序时,执行:
检测终端利用非授权频谱发送的前导序列;
检测所述终端发送的上行数据,其中,所述上行数据,是所述终端在所述前导序列发送时刻对应的传输时间间隔内发送的;
在当所述前导序列正确解码而所述上行数据未正确解码时,在预设时间内利用授权资源向所述终端发送携带有上行授权信息的随机接入响应,其中,所述上行授权信息用于指示调度给所述终端的授权资源;
在所述上行授权信息指示的授权资源上,接收所述终端发送的上行数据。
可以理解,存储器可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(ROM,Read Only Memory)、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc  Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本发明实施例描述的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
本发明实施例中的存储器用于存储各种类型的数据以支持上行数据处理装置的操作。这些数据的示例包括:用于在数据处理装置上操作的任何计算机程序,如操作系统和应用程序。其中,操作系统包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序可以包含各种应用程序,用于实现各种应用业务。实现本发明实施例方法的程序可以包含在应用程序中。
上述本发明实施例揭示的方法可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻 辑器件、分立硬件组件等。处理器可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中数据网络信息处理装或终端可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
本公开实施例还提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现:
利用非授权资源发送上行数据;
利用非授权资源发送上行数据失败后,利用授权资源发送上行数据。
本公开实施例中,所述可执行程序被处理器执行时,实现:
在基于目标接收功率递增方式,利用非授权资源发送所述上行数据,其中,第n+1次上行数据的目标接收功率大于第n次上行数据的目标接收功率;所述n为不小于1的正整数。
本公开实施例中,所述可执行程序被处理器执行时,实现:
利用如下公式,确定所述上行发送的当前目标接收功率;
ReceivedTargetPower=
InitialReceivedTargetPower+(TRANSMISSION_COUNTER–1)*powerRampingStep;
其中,所述ReceivedTargetPower为所述当前目标接收功率;初始目标接收功率所述InitialReceivedTargetPower为第一次发送所述上行数据的初始目标接收功率;所述TRANSMISSION_COUNTER为发送所述上行数据的次数;所述powerRampingStep为接收功率递增步长;
基于所述当前目标接收功率发送所述上行数据。
本公开实施例中,所述可执行程序被处理器执行时,实现:
接收系统消息或所述RRC信令或专用消息;
其中,所述系统消息或所述RRC信令或所述专用消息,携带有所述初始目标接收功率和/或所述接收功率递增步长;
所述RRC信令包括RRC连接重配置信令、RRC连接释放信令、RRC连接建立信令或RRC连接重建立信令。
本公开实施例中,所述可执行程序被处理器执行时,实现:
若利用非授权资源发送所述上行数据后,收到了基站发送的携带有上行授权信息的随机接入响应时,利用上行授权信息指示的授权资源发送上行数据;或,
若利用非授权资源发送所述上行数据的发送次数达到预设次数,重新发起随机接入并在所述授权资源上发送上行数据。
本公开实施例中,所述可执行程序被处理器执行时,实现:
接收基站发送的系统消息或RRC信令或专用消息,其中,所述系统消息或RRC信令中携带有所述预设次数;所述RRC信令包括RRC连接重配置信令、RRC连接释放信令、RRC连接建立信令或RRC连接重建立信令。
本公开实施例中,所述可执行程序被处理器执行时,实现:
当上一次发送失败的利用非授权资源发送所述上行数据的发送功率达到功率阈值时,重新发起随机接入并在所述授权资源上发送上行数据。
本公开实施例还提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现:
利用非授权资源发送前导序列;
在所述前导序列发送时刻对应的传输时间间隔内,发送上行数据;
当预设时间内接收到携带有上行授权信息的随机接入响应时,采用所述上行授权信息指示的授权资源,重新发送所述上行数据。
本公开实施例中,所述可执行程序被处理器执行时,实现:
当在所述预设时间内未接收基站发送的所述随机接入响应或下行通知时,利用非授权资源或授权资源重新发起随机接入,其中,所述下行通知为基站在成功接收到所述前导序列和所述上行数据发送的信息。
本公开实施例还提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现:
检测终端利用非授权频谱发送的前导序列;
检测所述终端发送的上行数据,其中,所述上行数据,是所述终端在所述前导序列发送时刻对应的传输时间间隔内发送的;
在当所述前导序列正确解码而所述上行数据未正确解码时,在预设时间内利用授权资源向所述终端发送携带有上行授权信息的随机接入响应,其中,所述上行授权信息用于指示调度给所述终端的授权资源;
在所述上行授权信息指示的授权资源上,接收所述终端发送的上行数据。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互 之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本公开各实施例中的各功能单元可以全部集成在一个处理模块中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。
工业实用性
终端利用非授权资源发送上行数据;利用非授权资源发送上行数据失败后,利用授权资源发送上行数据。以及终端利用非授权资源发送前导序列;在所述前导序列发送时刻对应的传输时间间隔内,发送上行数据;当预设时间内接收到携带有上行授权信息的随机接入响应时,采用所述上行授权信息指示的授权资源,重新发送所述上行数据。基站检测终端利用非 授权频谱发送的前导序列,及终端发送的上行数据;在当所述前导序列正确解码而所述上行数据未正确解码时,在预设时间内利用授权资源向所述终端发送携带有上行授权信息的随机接入响应。如此,能够提升上行数据的接收成功率。

Claims (26)

  1. 一种上行数据传输方法,应用于终端中,包括:
    利用非授权资源发送上行数据;
    利用非授权资源发送上行数据失败后,利用授权资源发送上行数据。
  2. 根据权利要求1所述的方法,其中,所述利用非授权资源发送上行数据,包括:
    在基于目标接收功率递增方式,利用非授权资源发送所述上行数据,其中,第n+1次上行数据的目标接收功率大于第n次上行数据的目标接收功率;所述n为不小于1的正整数。
  3. 根据权利要求2所述的方法,其中,所述基于目标接收功率递增方式利用非授权资源发送所述上行数据,包括:
    利用如下公式,确定所述上行发送的当前目标接收功率;
    ReceivedTargetPower=
    InitialReceivedTargetPower+(TRANSMISSION_COUNTER–1)*powerRampingStep;
    其中,所述ReceivedTargetPower为所述当前目标接收功率;初始目标接收功率所述InitialReceivedTargetPower为第一次发送所述上行数据的初始目标接收功率;所述TRANSMISSION_COUNTER为发送所述上行数据的次数;所述powerRampingStep为接收功率递增步长;
    基于所述当前目标接收功率发送所述上行数据。
  4. 根据权利要求3所述的方法,其中,所述方法还包括:
    接收系统消息或无线资源控制RRC信令或专用消息;
    其中,所述系统消息或所述RRC信令或所述专用消息,携带有所述初始目标接收功率和/或所述接收功率递增步长;
    所述RRC信令包括RRC连接重配置信令、RRC连接释放信令、RRC连接建立信令或RRC连接重建立信令。
  5. 根据权利要求1所述的方法,其中,所述利用非授权资源发送上行数据失败后,利用授权资源发送上行数据,包括:
    若利用非授权资源发送所述上行数据后,收到了基站发送的携带有上行授权信息的随机接入响应时,利用上行授权信息指示的授权资源发送上行数据;或,
    若利用非授权资源发送所述上行数据的发送次数达到预设次数,重新发起随机接入并在所述授权资源上发送上行数据。
  6. 根据权利要求5所述的方法,其中,所述方法还包括:
    接收基站发送的系统消息或RRC信令或专用消息,其中,所述系统消息或RRC信令中携带有所述预设次数;所述RRC信令包括RRC连接重配置信令、RRC连接释放信令、RRC连接建立信令或RRC连接重建立信令。
  7. 根据权利要求5所述的方法,其中,所述当利用非授权资源发送所述上行数据的发送状况满足预设条件时,利用授权资源发送上行数据,还包括:
    当上一次发送失败的利用非授权资源发送所述上行数据的发送功率达到功率阈值时,重新发起随机接入并在所述授权资源上发送上行数据。
  8. 一种上行数据传输方法,应用于终端中,包括:
    利用非授权资源发送前导序列;
    在所述前导序列发送时刻对应的传输时间间隔内,发送上行数据;
    当预设时间内接收到携带有上行授权信息的随机接入响应时,采用所述上行授权信息指示的授权资源,重新发送所述上行数据。
  9. 根据权利要求8所述的方法,其中,所述方法还包括:
    当在所述预设时间内未接收基站发送的所述随机接入响应或下行通知 时,利用非授权资源或授权资源重新发起随机接入,其中,所述下行通知为基站在成功接收到所述前导序列和所述上行数据发送的信息。
  10. 一种上行数据传输方法,应用于基站中,包括:
    检测终端利用非授权频谱发送的前导序列;
    检测所述终端发送的上行数据,其中,所述上行数据,是所述终端在所述前导序列发送时刻对应的传输时间间隔内发送的;
    在当所述前导序列正确解码而所述上行数据未正确解码时,在预设时间内利用授权资源向所述终端发送携带有上行授权信息的随机接入响应,其中,所述上行授权信息用于指示调度给所述终端的授权资源;
    在所述上行授权信息指示的授权资源上,接收所述终端发送的上行数据。
  11. 一种上行数据传输装置,设置于终端中,包括:
    第一发送单元,配置为利用非授权资源发送上行数据;
    第二发送单元,配置为利用非授权资源发送上行数据失败后,利用授权资源发送上行数据。
  12. 根据权利要求11所述的装置,其中,
    所述第一发送单元,配置为基于目标接收功率递增方式,利用非授权资源发送所述上行数据,其中,第n+1次上行数据的目标接收功率大于第n次上行数据的目标接收功率;所述n为不小于1的正整数。
  13. 根据权利要求12所述的装置,其中,
    所述第一发送单元,包括:
    计算模块,配置为利用如下公式,确定所述上行发送的当前目标接收功率;
    ReceivedTargetPower=
    InitialReceivedTargetPower+(TRANSMISSION_COUNTER–1)*powerRampingStep;
    其中,所述ReceivedTargetPower为当前目标接收功率;所述InitialReceivedTargetPower为第一次发送所述上行数据的初始目标接收功率;所述TRANSMISSION_COUNTER为发送所述上行数据的次数;所述powerRampingStep为接收功率递增步长;
    发送模块,配置为基于所述当前目标接收功率发送所述上行数据。
  14. 根据权利要求13所述的装置,其中,所述装置还包括:
    第一接收单元,配置为接收系统消息或无线资源控制RRC信令或专用消息;
    其中,所述系统消息或所述RRC信令或所述专用消息,携带有所述初始目标接收功率和/或所述接收功率递增步长;
    所述RRC信令包括RRC连接重配置信令、RRC连接释放信令、RRC连接建立信令或RRC连接重建立信令。
  15. 根据权利要求11所述的装置,其中,
    所述第二发送单元,配置为若利用非授权资源发送所述上行数据后,收到了基站发送的携带有上行授权信息的随机接入响应时,利用上行授权信息指示的授权资源发送上行数据;或,
    若利用非授权资源发送所述上行数据的发送次数达到预设次数,重新发起随机接入并在所述授权资源上发送上行数据。
  16. 根据权利要求15所述的装置,其中,所述装置还包括:
    第二接收单元,配置为接收基站发送的系统消息或RRC信令或专用消息,其中,所述系统消息或RRC信令中携带有所述预设次数;所述RRC信令包括RRC连接重配置信令、RRC连接释放信令、RRC连接建立信令或RRC连接重建立信令。
  17. 根据权利要求15所述的装置,其中,所述第二发送单元,配置为当上一次发送失败的利用非授权资源发送所述上行数据的发送功率达到功 率阈值时,重新发起随机接入,在授权资源上发送上行数据。
  18. 一种上行数据传输装置,设置于终端中,包括:
    第一随机接入单元,配置为利用非授权资源发送前导序列;
    第三发送单元,配置为在所述前导序列发送时刻对应的传输时间间隔内,发送上行数据;
    所述第一随机接入单元,还配置为当预设时间内接收到携带有上行授权信息的随机接入响应时,采用所述上行授权信息指示的授权资源,重新发送所述上行数据。
  19. 根据权利要求18所述的装置,其中,
    所述第一随机接入单元,还配置为当在所述预设时间内未接收基站发送的所述随机接入响应或下行通知时,利用非授权资源或授权资源重新发起随机接入;
    其中,所述下行通知为基站在成功接收到所述前导序列和所述上行数据发送的信息。
  20. 一种上行数据传输装置,设置于基站中,包括:
    检测单元,配置为检测终端利用非授权频谱发送的前导序列;检测所述终端发送的上行数据;其中,所述上行数据是所述终端在所述前导序列发送时刻对应的传输时间间隔内发送的;
    第四发送单元,配置为在当所述前导序列正确解码而所述上行数据未正确解码时,在预设时间内利用授权资源向所述终端发送携带有上行授权信息的随机接入响应;其中,所述上行授权信息用于指示调度给所述终端的授权资源;
    第三接收单元,配置为在所述上行授权信息指示的授权资源上,接收所述终端发送的上行数据。
  21. 一种上行数据处理装置,包括:
    存储器,配置为存储可执行程序;
    处理器,配置为通过执行所述存储器中存储的可执行程序时,实现权利要求1至7任一项所述的上行数据处理方法。
  22. 一种上行数据处理装置,包括:
    存储器,配置为存储可执行程序;
    处理器,配置为通过执行所述存储器中存储的可执行程序时,实现权利要求8或9所述的上行数据处理方法。
  23. 一种上行数据处理装置,包括:
    存储器,配置为存储可执行程序;
    处理器,配置为通过执行所述存储器中存储的可执行程序时,实现权利要求10所述的上行数据处理方法。
  24. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求1至7任一项所述的上行数据处理方法。
  25. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求8或9所述的上行数据处理方法。
  26. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求10所述的上行数据处理方法。
PCT/CN2017/115953 2017-01-20 2017-12-13 上行数据传输方法、装置及存储介质 WO2018133590A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/479,887 US11337078B2 (en) 2017-01-20 2017-12-13 Uplink data transmission method and apparatus and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710051704.5 2017-01-20
CN201710051704.5A CN108617001B (zh) 2017-01-20 2017-01-20 上行数据传输方法及装置

Publications (1)

Publication Number Publication Date
WO2018133590A1 true WO2018133590A1 (zh) 2018-07-26

Family

ID=62908312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115953 WO2018133590A1 (zh) 2017-01-20 2017-12-13 上行数据传输方法、装置及存储介质

Country Status (3)

Country Link
US (1) US11337078B2 (zh)
CN (1) CN108617001B (zh)
WO (1) WO2018133590A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112929923A (zh) * 2019-12-05 2021-06-08 深圳市万普拉斯科技有限公司 上行资源获取方法、装置、移动终端及可读存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019174056A1 (zh) * 2018-03-16 2019-09-19 Oppo广东移动通信有限公司 通信方法和设备
CN113519195A (zh) * 2019-03-26 2021-10-19 Oppo广东移动通信有限公司 用于随机机接入的方法和设备
CN112673704B (zh) * 2019-04-09 2023-07-25 Oppo广东移动通信有限公司 信息传输方法及相关设备
EP3981193A1 (en) * 2019-06-04 2022-04-13 Telefonaktiebolaget LM Ericsson (publ) Transmitting a communication on a first channel or a second channel
CN111800237B (zh) * 2019-07-05 2021-10-12 维沃移动通信有限公司 数据发送的方法、数据接收的方法和设备
CN113330811A (zh) 2019-07-19 2021-08-31 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
CN114071682B (zh) * 2021-11-04 2023-05-16 中国联合网络通信集团有限公司 一种分布式网络架构的功率选择方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102438305A (zh) * 2010-09-29 2012-05-02 中兴通讯股份有限公司 功率控制方法及终端
CN103582073A (zh) * 2012-07-31 2014-02-12 中兴通讯股份有限公司 一种mtc ue接入lte系统的方法、演进的基站
CN104540230A (zh) * 2015-01-30 2015-04-22 深圳酷派技术有限公司 一种上行调度方法及装置
CN105722096A (zh) * 2014-12-02 2016-06-29 电信科学技术研究院 一种业务数据传输方法及设备
CN106162904A (zh) * 2015-03-23 2016-11-23 联想(北京)有限公司 信息处理方法、用户设备及基站

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101980576B (zh) * 2010-10-19 2013-08-28 华为技术有限公司 随机接入处理方法和用户设备
EP3496498A1 (en) * 2014-09-26 2019-06-12 Huawei Technologies Co., Ltd. Uplink signal transmission method and related device
TWI600331B (zh) * 2015-04-08 2017-09-21 財團法人資訊工業策進會 基地台、使用者裝置、用於基地台之傳輸控制方法及用於使用者裝置之資料傳輸方法
EP3295746A4 (en) * 2015-05-11 2018-04-18 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for discontinuous reception

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102438305A (zh) * 2010-09-29 2012-05-02 中兴通讯股份有限公司 功率控制方法及终端
CN103582073A (zh) * 2012-07-31 2014-02-12 中兴通讯股份有限公司 一种mtc ue接入lte系统的方法、演进的基站
CN105722096A (zh) * 2014-12-02 2016-06-29 电信科学技术研究院 一种业务数据传输方法及设备
CN104540230A (zh) * 2015-01-30 2015-04-22 深圳酷派技术有限公司 一种上行调度方法及装置
CN106162904A (zh) * 2015-03-23 2016-11-23 联想(北京)有限公司 信息处理方法、用户设备及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification (Release 14)", 3GPP TS 36.321 V14.0.0, 30 September 2016 (2016-09-30), XP055507146 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112929923A (zh) * 2019-12-05 2021-06-08 深圳市万普拉斯科技有限公司 上行资源获取方法、装置、移动终端及可读存储介质
CN112929923B (zh) * 2019-12-05 2023-01-10 深圳市万普拉斯科技有限公司 上行资源获取方法、装置、移动终端及可读存储介质

Also Published As

Publication number Publication date
CN108617001A (zh) 2018-10-02
US11337078B2 (en) 2022-05-17
CN108617001B (zh) 2022-11-18
US20190380042A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
WO2018133590A1 (zh) 上行数据传输方法、装置及存储介质
JP7313347B2 (ja) 通信方法および装置
US12016055B2 (en) Random access method and device, and computer readable storage medium
TWI611713B (zh) 處理隨機存取程序之通訊裝置及無線通訊系統
WO2018127228A1 (zh) 一种随机接入反馈、处理方法、基站及终端
CN105122858B (zh) 在无线网络中处理下行链路半持续调度重传
JP6384878B2 (ja) ランダムアクセス方法、ランダムアクセス装置、およびユーザ機器
CN109756302B (zh) 用于传输源标识的系统和方法
CN106533633B (zh) 信息处理方法、用户设备及基站
WO2018228362A1 (zh) 系统信息传输方法、终端及网络设备
CN110089060B (zh) 无线装置及其中的方法、网络节点及其中的方法以及介质
WO2019140663A1 (zh) 基于定时器切换带宽部分的方法、终端设备和网络设备
WO2015081561A1 (zh) D2d发现信号的发送方法、装置以及通信系统
KR20090002779A (ko) 이동통신 시스템에서 프리앰블 전송 전력 제어 방법 및장치
US11792840B2 (en) Reliable low latency communication over shared resources
US20200137723A1 (en) Method and device for determining time-frequency resource preemption, user equipment and base station
US11381343B2 (en) Uplink data transmission confirmation apparatus, device, and method
US10143035B2 (en) Device and method of handling communication with communication device
WO2019127465A1 (zh) 管理定时器、传输信息的方法、终端设备和网络设备
JP6911120B2 (ja) ランダムアクセスのための方法及びデバイス
US11646833B2 (en) Reliable communication over shared resources
KR20230049040A (ko) 채널 점유 시간 공유를 위한 방법 및 장치
WO2020169049A1 (zh) 数据传输方法和终端设备
WO2020221248A1 (zh) 上行传输方法和通信装置
US10045370B2 (en) Device to device communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892648

Country of ref document: EP

Kind code of ref document: A1