WO2018133435A1 - 一种浅埋近距煤层开采过程中采空区漏风控制的综合方法 - Google Patents

一种浅埋近距煤层开采过程中采空区漏风控制的综合方法 Download PDF

Info

Publication number
WO2018133435A1
WO2018133435A1 PCT/CN2017/102397 CN2017102397W WO2018133435A1 WO 2018133435 A1 WO2018133435 A1 WO 2018133435A1 CN 2017102397 W CN2017102397 W CN 2017102397W WO 2018133435 A1 WO2018133435 A1 WO 2018133435A1
Authority
WO
WIPO (PCT)
Prior art keywords
goaf
air
air leakage
leakage
crack
Prior art date
Application number
PCT/CN2017/102397
Other languages
English (en)
French (fr)
Inventor
秦波涛
卓辉
史全林
马东
宋爽
王俊
高原
侯晋
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2018133435A1 publication Critical patent/WO2018133435A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F15/00Methods or devices for placing filling-up materials in underground workings
    • E21F15/005Methods or devices for placing filling-up materials in underground workings characterised by the kind or composition of the backfilling material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/14Control of fluid pressure with auxiliary non-electric power
    • G05D16/16Control of fluid pressure with auxiliary non-electric power derived from the controlled fluid

Definitions

  • the invention relates to a method for controlling air leakage in a goaf during coal seam mining, in particular to a method for controlling air leakage in a goaf during shallow coal seam mining. It belongs to the field of coal mine plugging and anti-fire extinguishing technology. It is a comprehensive control method for air leakage in goaf combined with surface plugging technology and underground plugging technology.
  • the coal left in the goaf is prone to spontaneous combustion under the conditions of continuous supply of oxygen to the working face and the overlying coal rock mass.
  • a large amount of harmful gases such as CO and C 2 H 6 will be generated, resulting in the concentration of harmful gas in the underground exceeding the standard, which will affect the normal production of the coal mine.
  • the heat generated by the natural heating of the coal is easy to cause the underground gas explosion after the gas explosion point, which is a serious threat to the life safety of the miners.
  • the spontaneous combustion of the residual coal should be suppressed by changing the spontaneous combustion conditions before spontaneous combustion.
  • Reducing oxygen supply by reducing air leakage in goaf is an important means to suppress spontaneous combustion of residual coal.
  • the air leakage control in the goaf mainly includes partial pressure equalization ventilation of the pressure equalizing fan and sealing of the goaf.
  • the method of suppressing spontaneous combustion of coal by controlling air leakage is not ideal. The problem of spontaneous combustion of residual coal in the goaf still occurs from time to time.
  • the technical problem to be solved by the invention lies in overcoming the defects of the prior art, and proposes a wind leakage control method in the goaf during the shallow buried near coal seam mining process, which is used for the air leakage in the goaf during the shallow buried near coal seam mining process.
  • Step 1 Measure the width of the ground mining fissure and calculate the air leakage speed of the fissure, block the crack with the width and the wind speed exceeding the standard, and adopt the artificially fallen roadway for the inlet and return air passages where the roof is difficult to fall. The method causes it to fall and reduce air leakage into the goaf.
  • Step 2 using a beam tube monitor system measuring the concentration of O 2 gob area, according to whether the size of the O 2 concentration is determined Gob, cracks and leakage for closure.
  • Step 3 Using the tracer gas method to detect the air leakage passages of the underground coal pillars and the inlet and return air passages, and plugging the air leakage passages; while the leakage is being blocked, the wind turbine-wind window combined pressure regulation method is used to balance the goafs. Wind pressure with the working face, reduce air leakage in the goaf, and prevent spontaneous combustion of coal in the goaf.
  • the criterion for judging the crack width and the wind leakage wind speed exceeds the standard the longitudinal crack and the transverse crack with a width greater than 10 cm are determined to be the crack width exceeding the standard; the longitudinal crack and the transverse crack having the width below 10 cm, and the crack gas velocity is calculated by the tracer gas method,
  • the crack with a wind leakage speed greater than 0.05 m/s is considered to be the air leakage wind speed exceeding the standard, which is regarded as the main air leakage crack.
  • the crack is blocked for the width and the wind speed exceeding the standard.
  • the sealing method is that the width exceeds the standard crack, and the inorganic solid foam fluid is first sealed and solidified, and then the loess is plugged; the wind speed exceeds the standard crack, and the landfill is buried. The loess is plugged.
  • the method for artificially smashing the roadway when the hydraulic support is moved, withdraws the anchor cable in the two roadways in advance to cause the roof to fall down in time, and the roadway that cannot be fallen after the anchor cable is retracted adopts a small cannon to make it fall.
  • the size of O 2 concentration in the goaf it is judged whether there is air leakage in the goaf.
  • the O 2 concentration is greater than 8%, and it is recognized as the air leakage in the goaf.
  • the gas detects the downhole air passage and blocks the air leakage crack.
  • the area of the O 2 concentration in the goaf is greater than 8%, the area of the area is greater than 100 m, then the method of injecting nitrogen into the goaf in the return air passage is required to dilute the goaf and reduce the range of the spontaneous combustion zone in the goaf.
  • the method for detecting a downhole air passage by using a tracer gas method comprises: arranging a release point at a distance of 200 meters from the working face of the air inlet roadway, and arranging a sampling point at a distance of 150 meters from the working surface of the return airway, and setting every 50 m between the two points A sampling point.
  • the SF 6 tracer gas was continuously and quantitatively released at the release point at a rate of 20 ml/min, and then the gas sample was collected at each sampling point. By analyzing the concentration change of the SF 6 collected at each sampling point, it was determined whether the adjacent two sampling points were between There is a leak path.
  • the method for plugging the air leakage passage is to prevent the broken coal pillar from leaking air into the goaf, and the crushing coal pillar is reinforced by spraying the inorganic solidified foam during the mining process, that is, the crushing coal pillar on the side goaf of the roadway Injecting inorganic curing foam by drilling, the drilling hole depth is 2m, the spacing is 3m, and the amount of inorganic curing foam injected per hole is not less than 2m 3 ; in order to prevent the working surface from entering, the return air angle is leaking to the goaf, and the working surface is advanced.
  • a meteorite bag windshield wall is installed at the entrance and return air corners to prevent leakage; in order to prevent cracks in the top of the roadway and the local area, and to leak in the high-rise area, cracks in the local location such as the top of the roadway and the gangway And high-rise area spray cement mortar plugging.
  • the specific measures of adjusting the pressure by the fan-wind window combined pressure regulation method are: according to the actual required air volume of the working face, in order to reduce the pressure difference between the working face and the goaf, a pressure regulating fan is arranged in the air inlet roadway, and the return airway is arranged in the air return roadway.
  • Set the adjusting wind window arrange the differential pressure meter in the vicinity of the wind window in the pressure regulating section to measure the pressure difference between the overlying goaf and the return air passage, and observe the differential pressure gauge to determine the area of the adjusting wind screen over the air outlet and adjust the pressure regulating
  • the pressure difference between the interval and the goaf can achieve the purpose of reducing air leakage in the goaf and preventing spontaneous combustion of coal in the goaf.
  • the method of the invention determines whether the air leakage of the crack exceeds the standard according to the surface crack width and the air leakage wind speed, and the air leakage exceeds the standard crack Take the corresponding plugging scheme.
  • the oxygen concentration in the goaf it is judged whether there is a leak passage in the well, and the position of the downhole air passage is determined by the tracer gas method.
  • the air leakage channel is sealed by the inorganic solidification foam, and the specific implementation steps and parameters of the measures are given. Blocking shallow and buried coal seam working face during the process of propulsion, the upper and lower air leakage cracks ensure the safe and efficient mining of shallow buried near coal seam working face.
  • the invention has the advantages of simple operation, strong practicability and high reliability, and has broad application prospects for mining and mining in shallow buried near coal seams.
  • Figure 2 shows the distribution of wind-induced fissures on the surface of 22305 working face of a coal mine.
  • A is 22304 transport slot
  • B is 22305 return air duct
  • C is 22305 working plane
  • D is 22305 transport slot
  • E is 22306 return air duct.
  • FIG. 1 is a flow chart showing the implementation of a comprehensive air leakage control method for a goaf in a shallow buried near coal seam mining process according to the present invention. The present invention will be further described below with reference to examples.
  • the 22305 working face began to pick up on June 16th, and after the advancement of 4.3m, it was forced to put the top in the middle of the 17th. After the working face is recovered, the falling cracks of the roof and the overlying goaf are turned on, and the upper and lower goafs are connected to form a composite goaf. The goaf is seriously leaked, and there is the possibility of spontaneous combustion, which poses a threat to the safe production of the working face. .
  • the air leakage channel sealing scheme is given by the method of the invention, and the specific steps are as follows:
  • the fracture with a crack width greater than 10 cm and a wind leakage wind speed greater than 0.05 m/s is counted, as shown in Fig. 2.
  • the crack is the crack that needs to be blocked at present.
  • the inorganic solidified foam is injected first, and after the inorganic solidified foam and the broken rock body are consolidated to form a hard base for sealing the crack, Cover the sand to block the leakage; the crack with a crack width less than 10cm is directly blocked with sand.
  • the oxygen concentration in the goaf is 10% from the working surface, and there is a leak path in the well.
  • the downhole gas channel is then detected using a tracer gas method.
  • the release point is arranged 200 meters away from the working face in the inlet tunnel, and the SF 6 tracer gas is continuously and quantitatively released at a speed of 20 ml/min, and then a sampling point is set every 50 m in the direction of the working face at the point until the return air lane The last sampling point was set at 150 meters.
  • the crushed coal pillars are reinforced by spraying inorganic solidification foam during the mining process, that is, the crushed coal pillars in the goaf of the roadway are injected with inorganic curing foam through drilling, and the hole depth is drilled. 2m, spacing 3m, the amount of inorganic curing foam per hole is not less than 2m 3 .
  • the actual air volume of the 22305 working face is 1800m 3 /min.
  • the local ventilator with power of 2 ⁇ 30kw is used for pressure regulation in the air inlet roadway, and the windshield is set in the return airway for fan-wind.
  • the window is combined with pressure regulation.
  • the differential pressure gauge is 94pa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Power Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Automation & Control Theory (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

一种浅埋近距煤层开采过程中采空区漏风控制方法。该方法主要包括地表漏风裂隙封堵、井下漏风通道检测与封堵等技术,即先测量地表采动裂隙的宽度并计算裂隙漏风速度,对宽度与漏风风速超标的裂隙进行封堵,并对采空区内顶板难以垮落的进、回风巷道采用人工方式使其垮落,减少向采空区内漏风;其次利用束管监测系统监测采空区内O 2浓度,根据O 2浓度的大小判断采空区是否存在漏风;然后利用示踪气体法检测井下煤柱及进、回风巷等地方的漏风通道,并采取相应的堵漏措施;在堵漏的同时,采用风机-风窗联合调压法平衡采空区与工作面(C)风压,减少采空区漏风,防止采空区煤自燃。

Description

一种浅埋近距煤层开采过程中采空区漏风控制的综合方法 技术领域
本发明涉及一种煤层开采过程中采空区漏风控制方法,具体说是一种浅埋近距煤层开采过程中采空区漏风控制方法。属于煤矿堵漏防灭火技术领域,是将地表堵漏技术与井下堵漏技术相结合的一种采空区漏风综合控制方法。
技术背景
矿井开采后采空区内遗留的煤炭在工作面及上覆煤岩体裂隙持续供氧的条件下极易发生自燃。自燃的煤炭不完全燃烧时会产生大量CO、C2H6等有害气体,导致井下有害气体浓度超标,影响煤矿的的正常生产。此外,在一些高瓦斯矿井,遗煤自然升温产生的热量达到瓦斯爆炸点后还容易引发井下瓦斯爆炸,更是严重威胁了矿工的生命安全。
控制采空区遗煤自燃事故的发生,除在事故发生时采用黄泥灌浆、三相泡沫、注氮等灭火降温措施外,还应在自燃前通过改变自燃条件抑制遗煤自燃事故的发生。通过减少采空区漏风减少氧气供应是抑制遗煤自燃的重要手段。传统上采空区漏风控制主要有均压风机局部均压通风,采空区密闭等方法。但在实施这些方法时因为缺乏一套合理规范的步骤措施,导致通过控制漏风来抑制煤自燃的方法并不理想,采空区遗煤自燃问题仍时有发生。
随着国家煤炭战略向西部转移,西部煤炭开采过程中遇到的问题也更加突出。针对西部浅埋煤层,由于煤层厚度大,地质条件好,一般采用综采大采高一次采全高的开采方式,这就导致了采空区遗煤厚度较大,为采空区遗煤自燃提供了条件。此外,由于西部矿区煤层埋藏浅(30m~250m)、间距近(20m~50m)、易自燃、基岩薄,沙土地质特征,煤层开采后采动裂隙往往会发育到地表,形成地表漏风裂隙通道,加剧了采空区遗煤自燃。因此,控制浅埋煤层开采过程中采空区漏风显得尤为重要。
发明内容
本发明所要解决的技术问题在于,克服现有技术存在的缺陷,提出了一种浅埋近距煤层开采过程中采空区漏风控制方法,用于浅埋近距煤层开采过程中采空区漏风综合控制。
本发明为实现发明目的所提出的技术方案,一种浅埋近距煤层开采过程中采空区漏风控制方法,其步骤是:
步骤1,测量地表采动裂隙的宽度并计算裂隙漏风速度,对宽度与漏风风速超标的裂隙进行封堵,并对采空区内顶板难以跨落的进、回风巷道采用人工垮落巷道的方法使其垮落,减少向采空区内漏风。
步骤2,利用束管监测系统监测采空区内O2浓度,根据O2浓度的大小判断采空区是否存在漏风,并对漏风裂隙进行封堵。
步骤3,利用示踪气体法检测井下煤柱及进、回风巷道等地方的漏风通道,并对漏风通道堵漏;在堵漏的同时,采用风机-风窗联合调压法平衡采空区与工作面风压,减少采空区漏风,防止采空区煤自燃。
所述判断裂隙宽度及漏风风速超标的准则,宽度大于10cm的纵向裂隙和横向裂隙,认定为裂隙宽度超标;宽度在10cm以下的纵向裂隙和横向裂隙,利用示踪气体法计算裂隙漏风风速,将漏风风速大于0.05m/s的裂隙认定为漏风风速超标,视为主要漏风裂隙。
所述对宽度与漏风风速超标的裂隙进行封堵,封堵方法是,宽度超标裂隙,对其先注无机固化泡沫流体封堵和固化,然后填埋黄土堵漏;漏风风速超标裂隙,填埋黄土堵漏。
所述示踪气体法计算漏风风速的方法,利用SF6示踪气体法在地表采动裂隙处将钢管插入裂隙内连续释放纯SF6气体(流量为20ml/min),记录释放的开始和结束时间,在释放SF6气体后在工作面回风隅角处采样点连续检测SF6气体,根据两点距离与初始接收到SF6气体时间,计算出漏风风速。
所述人工垮落巷道的方法,在移动液压支架时提前退出两巷道内的锚索使顶板及时垮落,对于锚索退后仍不能垮落的巷道采用放小炮的方式使其垮落。
所述根据采空区内O2浓度的大小判断采空区是否存在漏风的标准,采空区内距工作面大于80m时O2浓度大于8%,认定为采空区漏风,需利用示踪气体检测井下漏风通道,对漏风裂隙进行封堵。此外,如果采空区内O2浓度大于8%的区域范围大于100m,则需在回风巷道埋管对采空区实施注氮气的方法堕化采空区,缩小采空区自燃带范围。
所述利用示踪气体法检测井下漏风通道的方法,在进风巷道距工作面200米处布置释放点,在回风巷道距工作面150米处布置采样点,两点之间每隔50m设置一个采样点。以20ml/min的速度在释放点连续定量释放SF6示踪气体,然后在各采样点处采集气样,通过分析各采样点处采集到SF6的浓度变化,确定相邻两采样点间是否存在漏风通道。
所述对漏风通道堵漏,其方法是,为预防破碎煤柱向采空区漏风,开采过程中采用喷注无机固化泡沫对破碎煤柱进行加固处理,即对巷道采空区侧破碎煤柱通过钻孔注无机固化泡沫,钻孔孔深2m,间距3m,每孔注无机固化泡沫量不低于2m3;为预防工作面进、回风隅角向采空区漏风,在工作面推进时每隔10~20m在进、回风隅角处设置矸石袋挡风墙进行堵漏;为预防巷道顶、帮等局部地点的裂隙和高冒区漏风,对巷道顶、帮等局部地点裂隙和高冒区喷水泥砂浆堵漏。
所述采用风机-风窗联合调压法调压的具体措施,根据工作面实际所需风量,为减少工作面和采空区压差,在进风巷道内设置调压风机,回风巷道内设置调节风窗,在调压区间内风窗附近布置压差计测量上覆采空区和回风巷的压差,通过观测压差计示数来确定调节风窗过风口面积,调节调压区间与采空区压差,从而达到减小采空区内漏风,防止采空区煤自燃的目的。
本发明方法,根据地表裂隙宽度和漏风风速判别裂隙漏风是否超标,并对漏风超标裂隙 采取相应堵漏方案。根据采空区氧气浓度判断井下是否存在漏风通道,并采用示踪气体法确定井下漏风通道位置,使用无机固化泡沫封堵漏风通道,给出了措施的具体实施步骤及参数,该方法可有效封堵浅埋近距煤层工作面推进过程中井上、下漏风裂隙,保证浅埋近距煤层工作面的安全高效开采。本发明操作简单,实用性强,可靠性高,在浅埋近距煤层开采矿井具有广阔的推广应用前景。
附图说明
图1采空区漏风综合控制方法流程图
图2某煤矿22305工作面地表漏风裂隙分布图。其中,A是22304运输顺槽,B是22305回风顺槽,C是22305工作面,D是22305运输顺槽,E是22306回风顺槽。
具体实施方案
图1所示的是本发明一种浅埋近距煤层开采过程中采空区综合漏风控制方法实施流程图,下面结合实例对本发明做出进一步的说明。
实施背景:某矿三盘区12煤煤层埋藏深度为96~233m,煤层厚度最小1.95m、最大8.03m、平均5.4m。三盘区12煤于1999年开始回采,至2007年回采结束,盘区内共布置6个综采工作面,切眼高度3.6m,顶煤遗留厚度2.9m,配套5m支架沿煤层底板进行回采,平均回采高度为4.6m,12煤层与22煤层间距平均在43m左右。
22305工作面于6月16日开始回采,推进4.3m后于17日中班强制放顶。工作面回采后,顶板垮落裂隙与上覆采空区导通,上下采空区贯通形成复合采空区,采空区内漏风严重,存在自燃发火的可能性,给工作面安全生产造成威胁。
为了控制采空区内漏风,保障矿井的安全生产,利用本发明方法给出漏风通道封堵方案,具体步骤如下:
1)利用罗盘、卷尺、GPS定位仪测量地表采动裂隙的隙宽、隙长、走向等产状,统计出裂隙宽度的分布情况,如表1所示。
表1不同宽度地表采动裂隙所占比例
裂隙宽度(cm) 条数 比例(%)
1-10 57 40.43
10-50(含10) 37 26.24
50-100含(50) 19 13.48
100以上(含100) 27 19.15
2)根据统计裂隙发育情况,计出裂隙宽度大于10cm和漏风风速大于0.05m/s的裂隙,如图2所示。图2中裂隙即是当前需要封堵的裂隙,对裂隙宽度大于10cm的裂隙先注无机固化泡沫,待无机固化泡沫和破碎的岩体固结在一起形成封堵裂隙的硬质基底后,再覆盖沙土堵漏;对裂隙宽度小于10cm的裂隙直接用沙土堵漏。
3)在移动液压支架时提前退出两巷道内的锚索使顶板及时垮落,对于退后仍不能垮落 的巷道采用放小炮的方式使其垮落。
4)利用束管监测系统监测采空区内氧气浓度,发现距工作面90米处,采空区氧气浓度为10%,井下存在漏风通道。随后利用示踪气体法检测井下漏风通道。在进风巷道距工作面200米处布置释放点,以20ml/min的速度连续定量释放SF6示踪气体,然后在该点往工作面方向上每隔50m设置一个采样点,直到回风巷150米处设置最后一个采样点,通过分析各采样点处SF6浓度变化,发现在工作面进、回风隅角和回风巷道煤柱处存在漏风。
5)回风巷道煤柱处堵漏。为预防破碎煤柱向采空区漏风,开采过程中采用喷注无机固化泡沫对破碎煤柱进行加固处理,即对巷道采空区侧破碎煤柱通过钻孔注无机固化泡沫,钻孔孔深2m,间距3m,每孔注无机固化泡沫量不低于2m3
6)工作面进、回风隅角及巷道顶、帮等局部地点的裂隙堵漏。为预防工作面进、回风隅角向采空区漏风,在工作面推进时每隔10~20m在进、回风隅角处设置矸石袋挡风墙进行堵漏;为预防巷道顶、帮等局部地点的裂隙和高冒区漏风,对巷道顶、帮等局部地区裂隙和高冒区喷水泥砂浆堵漏。
7)22305工作面实际风量为1800m3/min,根据实际风量确定在进风巷道内采用功率为2×30kw的局部通风机进行调压,同时在回风巷道内设置调节风窗进行风机-风窗联合调压,调压风机运转后,压差计示数为94pa。通过减小风窗过风口面积,增大调压区间压力,使压差计示数处于30~50pa之间,保证采空区与工作面压力平衡,从而达到减小采空区内漏风的目的。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

  1. 一种浅埋近距煤层开采过程中采空区漏风控制方法,其步骤是:
    步骤1,测量地表采动裂隙的宽度并计算裂隙漏风速度,对宽度与漏风风速超标的裂隙进行封堵,并对采空区内顶板难以跨落的进、回风巷道采用人工垮落巷道的方法使其垮落,减少向采空区内漏风;
    步骤2,利用束管监测系统监测采空区内O2浓度,根据O2浓度的大小判断采空区是否存在漏风,并对漏风裂隙进行封堵;
    步骤3,利用示踪气体法检测井下煤柱及进、回风巷道等地方的漏风通道,并对漏风通道堵漏;在堵漏的同时,采用风机-风窗联合调压法平衡采空区与工作面风压,减少采空区漏风,防止采空区煤自燃。
  2. 根据权利要求1所述一种浅埋近距煤层开采过程中采空区漏风控制方法,其特征是:所述判断裂隙宽度及漏风风速超标的准则,宽度大于10cm的纵向裂隙和横向裂隙,认定为裂隙宽度超标;宽度在10cm以下的纵向裂隙和横向裂隙,利用示踪气体法计算裂隙漏风风速,将漏风风速大于0.05m/s的裂隙认定为漏风风速超标,视为主要漏风裂隙。
  3. 根据权利要求1所述一种浅埋近距煤层开采过程中采空区漏风控制方法,其特征是:所述对宽度与漏风风速超标的裂隙进行封堵,封堵方法是,宽度超标裂隙,对其先注无机固化泡沫流体封堵和固化,然后填埋黄土堵漏;漏风风速超标裂隙,填埋黄土堵漏。
  4. 根据权利要求1所述一种浅埋近距煤层开采过程中采空区漏风控制方法,其特征是:所述示踪气体法计算漏风风速的方法,利用SF6示踪气体法在地表采动裂隙处将钢管插入裂隙内连续释放纯SF6气体,流量为20ml/min,记录释放的开始和结束时间,在释放SF6气体后在工作面回风隅角处采样点连续检测SF6气体,根据两点距离与初始接收到SF6气体时间,计算出漏风风速。
  5. 根据权利要求1所述一种浅埋近距煤层开采过程中采空区漏风控制方法,其特征是:所述人工垮落巷道的方法,在移动液压支架时提前退出两巷道内的锚索使顶板垮落,对于锚索退后仍不能垮落的巷道采用放小炮的方式使其垮落。
  6. 根据权利要求1所述一种浅埋近距煤层开采过程中采空区漏风控制方法,其特征是:所述根据采空区内O2浓度的大小判断采空区是否存在漏风的标准,采空区内距工作面大于80m时O2浓度大于8%,认定为采空区漏风;此外,如果采空区内O2浓度大于8%的区域范围大于100m,则需在回风巷道埋管对采空区实施注氮气的方法堕化采空区,缩小采空区自燃带范围。
  7. 根据权利要求1所述一种浅埋近距煤层开采过程中采空区漏风控制方法,其特征是:所述利用示踪气体法检测井下漏风通道的方法,在进风巷道距工作面200米处布置释放点, 在回风巷道距工作面150米处布置采样点,两点之间每隔50m设置一个采样点;以20ml/min的速度在释放点连续定量释放SF6示踪气体,然后在各采样点处采集气样,通过分析各采样点处采集到SF6的浓度变化,确定相邻两采样点间是否存在漏风通道。
  8. 根据权利要求1所述一种浅埋近距煤层开采过程中采空区漏风控制方法,其特征是:所述对漏风通道堵漏,其方法是,开采过程中采用喷注无机固化泡沫对破碎煤柱进行加固处理,即:对巷道采空区侧破碎煤柱通过钻孔注无机固化泡沫,钻孔孔深2m,间距3m,每孔注无机固化泡沫量不低于2m3;在工作面推进时,每隔10~20m在进、回风隅角处设置矸石袋挡风墙进行堵漏;对巷道顶、帮等局部地点裂隙和高冒区喷水泥砂浆堵漏。
  9. 根据权利要求1所述一种浅埋近距煤层开采过程中采空区漏风控制方法,其特征是:所述采用风机-风窗联合调压法调压的具体措施,根据工作面实际所需风量,为减少工作面和采空区压差,在进风巷道内设置调压风机,回风巷道内设置调节风窗,在调压区间内风窗附近布置压差计测量上覆采空区和回风巷的压差,通过观测压差计示数来确定调节风窗过风口面积,调节调压区间与采空区压差。
PCT/CN2017/102397 2017-01-23 2017-09-20 一种浅埋近距煤层开采过程中采空区漏风控制的综合方法 WO2018133435A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710049272.4A CN106593523B (zh) 2017-01-23 2017-01-23 一种浅埋近距煤层开采过程中采空区漏风控制方法
CN201710049272.4 2017-01-23

Publications (1)

Publication Number Publication Date
WO2018133435A1 true WO2018133435A1 (zh) 2018-07-26

Family

ID=58586313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102397 WO2018133435A1 (zh) 2017-01-23 2017-09-20 一种浅埋近距煤层开采过程中采空区漏风控制的综合方法

Country Status (2)

Country Link
CN (1) CN106593523B (zh)
WO (1) WO2018133435A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111504563A (zh) * 2020-04-28 2020-08-07 安徽理工大学 一种抽出式通风浅埋煤层矿井的地表漏风检测方法
CN112685926A (zh) * 2020-12-02 2021-04-20 西安科技大学 一种浅埋煤层防治漏风工程的施工周期判别方法
CN113216967A (zh) * 2021-05-28 2021-08-06 西安科技大学 浅埋近距房柱式采空区下相邻工作面相向安全开采方法
CN113218616A (zh) * 2021-06-07 2021-08-06 太原理工大学 一种用于模拟煤矿采空区注浆隔断漏风的物理实验平台

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106593523B (zh) * 2017-01-23 2018-08-17 中国矿业大学 一种浅埋近距煤层开采过程中采空区漏风控制方法
CN107620605A (zh) * 2017-08-10 2018-01-23 长春黄金研究院 一种地下矿山采空区大面积漏风治理方法
CN107476818B (zh) * 2017-09-05 2019-10-01 淮南矿业(集团)有限责任公司 一种矿井工作面防火方法及防火系统
CN108801583B (zh) * 2018-06-05 2023-11-17 华北科技学院 一种采空区流场相似模拟实验装置
CN110259511B (zh) * 2019-06-19 2021-06-08 淄博祥龙测控技术有限公司 采空区微震堵漏、塌陷治理方法
CN110529150B (zh) * 2019-08-23 2020-12-18 山东科技大学 一种基于示踪技术的煤矿断层破碎带注浆加固方法
CN110566276B (zh) * 2019-09-05 2020-09-25 西安科技大学 一种利用采空区漏风判别煤自燃危险区域的方法
CN110985094A (zh) * 2019-12-16 2020-04-10 神华包头能源有限责任公司 采空区综合防灭火方法
CN112696226B (zh) * 2020-12-29 2022-07-19 安徽理工大学 一种治理沿空留巷采空区遗煤自燃的方法
CN112880941B (zh) * 2021-01-13 2022-06-17 中国矿业大学 一种井下采空区快速漏风检测方法
CN113323710B (zh) * 2021-07-20 2021-12-21 中国矿业大学(北京) 一种采空区注氮均压防漏风结构、系统及方法
CN113567061B (zh) * 2021-07-23 2024-01-12 安徽理工大学 一种近距离煤层开采采空区群漏风检测方法
CN113863984B (zh) * 2021-10-29 2024-03-22 安徽理工大学 一种极近距离煤层群开采漏风防治方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3413602A1 (de) * 1984-04-11 1985-10-24 Bergwerksverband Gmbh, 4300 Essen Verfahren zum nachversetzen der hohlraeume des bruchhaufwerks
CN102828767A (zh) * 2012-07-19 2012-12-19 大同煤矿集团有限责任公司 采空区自然发火防治方法
CN104514577A (zh) * 2014-12-12 2015-04-15 中国矿业大学 一种高效治理浅埋藏煤层大面积采空区遗煤自燃的方法
CN105134281A (zh) * 2015-09-08 2015-12-09 山东科技大学 一种用于煤矿的多面邻空孤岛综放面采掘期间防灭火方法
CN106593523A (zh) * 2017-01-23 2017-04-26 中国矿业大学 一种浅埋近距煤层开采过程中采空区漏风控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1105659A1 (ru) * 1983-01-13 1984-07-30 Восточный научно-исследовательский институт по безопасности работ в горной промышленности Состав дл профилактики эндогенных пожаров
SU1221356A1 (ru) * 1984-09-04 1986-03-30 Shtele Vladimir Способ разработки мощных пологопадающих залежей
CN103396075B (zh) * 2013-07-17 2015-03-18 中国矿业大学 一种用于煤矿井下堵漏风的阻燃膏体材料及制备方法
CN103396154B (zh) * 2013-07-17 2014-12-31 中国矿业大学 浅埋煤层矿区地表堵漏的无机固化泡沫材料
CN104296944B (zh) * 2014-10-15 2017-02-15 中国神华能源股份有限公司 一种浅埋煤层煤矿地表向矿井下采空区漏风测试方法
CN104462654B (zh) * 2014-11-11 2017-06-13 中国矿业大学 浅埋藏煤层开采地表贯通裂隙分布和漏风特征判定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3413602A1 (de) * 1984-04-11 1985-10-24 Bergwerksverband Gmbh, 4300 Essen Verfahren zum nachversetzen der hohlraeume des bruchhaufwerks
CN102828767A (zh) * 2012-07-19 2012-12-19 大同煤矿集团有限责任公司 采空区自然发火防治方法
CN104514577A (zh) * 2014-12-12 2015-04-15 中国矿业大学 一种高效治理浅埋藏煤层大面积采空区遗煤自燃的方法
CN105134281A (zh) * 2015-09-08 2015-12-09 山东科技大学 一种用于煤矿的多面邻空孤岛综放面采掘期间防灭火方法
CN106593523A (zh) * 2017-01-23 2017-04-26 中国矿业大学 一种浅埋近距煤层开采过程中采空区漏风控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHENG, ZHONGYA ET AL.: "Determination Technology of Spontaneous Combustion Danger Region in Goaf of Fully Mechanized Mining Face in Shallow Coal Seam", SAFETY IN COAL MINES, vol. 46, no. 1, 20 January 2015 (2015-01-20), ISSN: 1003-496X *
ZHOU, YONG: "Multipoint Control Technology for Dynamic Balance of Gas Flow Field", SAFETY IN COAL MINES, vol. 47, no. 9, 20 September 2016 (2016-09-20), ISSN: 1003-496X *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111504563A (zh) * 2020-04-28 2020-08-07 安徽理工大学 一种抽出式通风浅埋煤层矿井的地表漏风检测方法
CN111504563B (zh) * 2020-04-28 2021-11-09 安徽理工大学 一种抽出式通风浅埋煤层矿井的地表漏风检测方法
CN112685926A (zh) * 2020-12-02 2021-04-20 西安科技大学 一种浅埋煤层防治漏风工程的施工周期判别方法
CN112685926B (zh) * 2020-12-02 2023-12-26 西安科技大学 一种浅埋煤层防治漏风工程的施工周期判别方法
CN113216967A (zh) * 2021-05-28 2021-08-06 西安科技大学 浅埋近距房柱式采空区下相邻工作面相向安全开采方法
CN113216967B (zh) * 2021-05-28 2024-01-26 西安科技大学 浅埋近距房柱式采空区下相邻工作面相向安全开采方法
CN113218616A (zh) * 2021-06-07 2021-08-06 太原理工大学 一种用于模拟煤矿采空区注浆隔断漏风的物理实验平台

Also Published As

Publication number Publication date
CN106593523B (zh) 2018-08-17
CN106593523A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
WO2018133435A1 (zh) 一种浅埋近距煤层开采过程中采空区漏风控制的综合方法
CN104514577B (zh) 一种高效治理浅埋藏煤层大面积采空区遗煤自燃的方法
CN109236350B (zh) 大倾角特厚煤层火灾治理方法
CN110700883B (zh) 一种大倾角煤层复合灾害小煤柱沿空掘巷防控方法
CN108678798B (zh) 用于综放工作面回撤期间采空区遗煤自燃的防治方法
CN111425245B (zh) 一种基于采空区漏风场优化的煤与瓦斯共生灾害防治方法
CN110735660A (zh) 一种用于煤矿防止采空区自燃的装置及其使用方法
CN112546487B (zh) 一种煤矿陷落柱周边煤层火区治理工艺
CN107816365A (zh) 一种煤层钻爆抽注一体化防突方法
CN113283998A (zh) 一种急倾斜煤层开采采空区煤炭自燃防控方法
CN112012782B (zh) 综放工作面进回风巷超前封闭区瓦斯防治技术
CN109162751A (zh) 近距离煤层群火灾治理方法
CN112228142A (zh) 缓倾斜煤层巷道设计及邻近层和采空区瓦斯抽采方法
CN110985094A (zh) 采空区综合防灭火方法
CN108303158B (zh) 一种浅埋煤层工作面采空区地表漏风量的计算方法
CN113756857B (zh) 地面高效抽采多层位老空区煤层气的防灭火抽采方法
CN111794750A (zh) 一种煤与油页岩联合开采安全回撤方法
CN111677543B (zh) 水淹易自燃采煤工作面恢复期间综合防火方法
CN114483163A (zh) 一种瓦斯抽采方法
CN114607449A (zh) 一种综放工作面过断层瓦斯与煤自燃协同治理方法
Yang et al. Study on the gas migration laws of non-pillar mining with gob-side entry retaining in high gas outburst coal seam
CN116464445B (zh) 一种极薄煤层保护层开采灾害治理方法
CN115234282B (zh) 厚煤层分层开采扰动侧向漏风精准帷幕封堵与防灭火方法
CN103850707B (zh) 一种惰性气体煤矿巷道管道预埋方法及防护系统
Guo et al. A new method for layout layer optimization of long horizontal boreholes for gas extraction in overlying strata: A case study in Guhanshan coal mine, China

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893154

Country of ref document: EP

Kind code of ref document: A1