WO2018133402A1 - 业务的传输方法、网络设备及网络系统 - Google Patents

业务的传输方法、网络设备及网络系统 Download PDF

Info

Publication number
WO2018133402A1
WO2018133402A1 PCT/CN2017/097547 CN2017097547W WO2018133402A1 WO 2018133402 A1 WO2018133402 A1 WO 2018133402A1 CN 2017097547 W CN2017097547 W CN 2017097547W WO 2018133402 A1 WO2018133402 A1 WO 2018133402A1
Authority
WO
WIPO (PCT)
Prior art keywords
clock information
network device
time slot
code block
client service
Prior art date
Application number
PCT/CN2017/097547
Other languages
English (en)
French (fr)
Inventor
周蕙瑜
向俊凌
董立民
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17893046.7A priority Critical patent/EP3565163B1/en
Publication of WO2018133402A1 publication Critical patent/WO2018133402A1/zh
Priority to US16/517,696 priority patent/US11223438B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • H04J3/1658Optical Transport Network [OTN] carrying packets or ATM cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/062Synchronisation of signals having the same nominal but fluctuating bit rates, e.g. using buffers
    • H04J3/0632Synchronisation of packets and cells, e.g. transmission of voice via a packet network, circuit emulation service [CES]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0679Clock or time synchronisation in a network by determining clock distribution path in a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0076Allocation utility-based
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0073Services, e.g. multimedia, GOS, QOS
    • H04J2203/0082Interaction of SDH with non-ATM protocols
    • H04J2203/0085Support of Ethernet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • H04L45/245Link aggregation, e.g. trunking

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a service transmission method, a network device, and a network system.
  • Flexible Ethernet combines the technical features of Ethernet and transport networks (for example, Optical Transport Network (OTN), Synchronous Digital Hierarchy (SDH), etc.)
  • OTN Optical Transport Network
  • SDH Synchronous Digital Hierarchy
  • the Ethernet physical interface presents the characteristics of virtualization.
  • Multiple Ethernet physical interfaces can be cascaded to support several virtual logical ports. For example, four 100 Gigabit Ethernet (100 Gigabit Ethernet) physical interfaces are cascaded into a 400 Gigabit (400 Gigabit, 400 G) flexible Ethernet physical interface group that can support several logical ports.
  • the Ethernet physical interface is an asynchronous communication interface that allows a clock frequency difference of plus or minus 100 ppm (one ten thousandth).
  • a clock frequency difference of plus or minus 100 ppm (one ten thousandth).
  • 10GE two physical interfaces with a nominal bandwidth of 10G, one of which may be one ten thousandth larger than the nominal value, and the other one is one ten thousandth smaller than the nominal value, ie 10G* (1+0.0001 respectively).
  • 10G* (1-0.0001
  • the clock frequency of the logical port inherits the clock frequency characteristics of the physical interface, and there is also a deviation of 100 ppm.
  • a logical port with a nominal bandwidth of 25G on two different physical interfaces or physical interface groups removes the overhead of flexible Ethernet partitioning slots and managing time slots.
  • FIG. 1 is a schematic diagram of service transmission of a flexible Ethernet in the prior art.
  • the client device Ca needs to send one service to the client device Cb, and the service can be transmitted between the Ca and the Cb through a bearer network.
  • a flexible Ethernet consisting of multiple FlexE clients (eg, Pa, Pb, and Pc) acts as a bearer network.
  • Client devices can be devices such as routers and switches.
  • the addition and deletion of the idle code block may result in the loss of the clock information (including the clock frequency and the time phase information) of the service itself, that is, the clock information of the service cannot be transparently transmitted.
  • the embodiments of the present invention provide a method for transmitting a service, a network device, and a network system, which can implement transparent transmission of service clock information in a flexible Ethernet.
  • an embodiment of the present invention provides a method for transmitting a service, where the method includes: acquiring, by a first network device, a client service of a FlexE, and acquiring clock information corresponding to the client service. Thereafter, the first network device maps the customer traffic and clock information into time slots of the FlexE frame, wherein the customer traffic and clock information occupy the same and/or different time slots. Thereafter, the first network device sends a FlexE frame to the second network device.
  • the first network device obtains clock information of the client service, and maps the client service and the clock information of the client service to the FlexE frame respectively. Therefore, after receiving the FlexE frame, the second network device may obtain the FlexE frame.
  • the clock information corresponding to the customer service and the customer service is obtained in the frame, and then the recovery clock is adjusted according to the clock information, so that the recovery clock approaches the original clock of the customer service, and then the client service is taken from the FlexE frame.
  • the clock is adapted to the original clock of the customer service, so that the customer service is efficiently carried in the FlexE frame, and the clock information is transparently transmitted.
  • the customer service and the clock information occupy the same time slot, including: the first code block occupied by the customer service slot, the clock information occupying the second code block of the time slot, the first code block and the second code block
  • the code block is indicated by the code block indication information.
  • the first network device may randomly select the second code block to transmit the clock information of the customer service, and notify the location of the second code block by the code block indication information to the second network device, so that the second network device The second code block can be found and the clock information of the customer service can be obtained therefrom.
  • the code block indication information can be carried in the overhead code block of the FlexE frame.
  • the customer service and clock information occupy the same time slot, including: the customer service and the clock information occupy the same code block in the same time slot; the customer service and the clock information occupy the same time slot in the same time slot.
  • the code block includes: a first bit in the code block occupied by the client service, the clock information occupies a second bit in the code block, and the first bit and the second bit are indicated by the bit indication information.
  • the client service and the clock information of the client service may be carried in the same code block, occupying different bits, and the first network device notifies the bit occupied by the client service and the bit occupied by the clock information by using the bit indication information.
  • the second network device enables the second network device to obtain clock information of the customer service.
  • the bit indication information can be carried in the overhead code block of the FlexE frame.
  • the customer service and the clock information occupy different time slots, including: the customer service occupies the first time slot, the clock information occupies the second time slot, and the first time slot and the second time slot indicate through the time slot.
  • Information indication In the embodiment of the present invention, the first network device may randomly select the second time slot to transmit the clock information of the customer service, and notify the location of the second time slot to the second network device by using the code block indication information, so that the second network device The second time slot can be found and the clock information of the customer service can be obtained therefrom.
  • the slot indication information can be carried in the overhead code block of the FlexE frame.
  • the clock information corresponding to the customer service is obtained, including: obtaining a coding block of the clock information, and the coding block includes any one of 64B/66B coding, 8B/10B coding, and 254B/256B coding.
  • the period of obtaining the clock information corresponding to the customer service is the same as the period of the time slot mapping the clock information to the FlexE frame.
  • the embodiment of the present invention provides a method for transmitting a service, where the method includes: receiving, by a second network device, a FlexE frame sent by the first network device, where the time slot of the FlexE frame includes a client service of the FlexE and a corresponding service of the client Clock information, customer service and clock information occupy the same and/or different time slots; the second network device obtains customer service and clock information from the FlexE frame; the second network device adjusts the recovery clock according to the clock information, and adapts the customer service Assigned to the recovery clock.
  • the first network device obtains clock information of the client service, and maps the client service and the clock information of the client service to the FlexE frame respectively. Therefore, after receiving the FlexE frame, the second network device may obtain the FlexE frame. Obtaining the clock information corresponding to the customer service and the customer service in the frame, and then adjusting the recovery clock according to the clock information, so that the recovery clock approaches the original clock of the customer service, and then the customer service is adapted from the clock of the FlexE frame. On the original clock of the customer service, the customer service is efficiently carried in the FlexE frame, and the clock information is transparently transmitted.
  • the customer service and clock information occupy the same time slot;
  • the second network device is from FlexE Obtaining the customer service and the clock information in the frame
  • the second network device according to the code block indication information, is configured to obtain the customer service from the first code block in the time slot and obtain the clock information from the second code block in the time slot.
  • the first network device may randomly select the second code block to transmit the clock information of the customer service, and notify the location of the second code block by the code block indication information to the second network device, so that the second network device The second code block can be found and the clock information of the customer service can be obtained therefrom.
  • the code block indication information can be carried in the overhead code block of the FlexE frame.
  • the customer service and the clock information occupy the same code block in the same time slot; the second network device obtains the customer service and the clock information from the FlexE frame, including: the second network device indicates according to the bit indication information
  • the client information is obtained from the first bit in the code block and the clock information is obtained from the second bit in the code block.
  • the client service and the clock information of the client service may be carried in the same code block, occupying different bits, and the first network device notifies the bit occupied by the client service and the bit occupied by the clock information by using the bit indication information.
  • the second network device enables the second network device to obtain clock information of the customer service.
  • the bit indication information can be carried in the overhead code block of the FlexE frame.
  • the customer service and the clock information occupy different time slots; the second network device obtains the customer service and the clock information from the FlexE frame, including: the second network device according to the time slot indication information from the FlexE frame The client service is acquired in the first time slot and the clock information is obtained from the second time slot in the FlexE frame.
  • the first network device may randomly select the second time slot to transmit the clock information of the customer service, and notify the location of the second time slot to the second network device by using the code block indication information, so that the second network device The second time slot can be found and the clock information of the customer service can be obtained therefrom.
  • the slot indication information can be carried in the overhead code block of the FlexE frame.
  • the period of the recovered clock is adjusted in accordance with the clock information to be the same as the period in which the clock information is mapped to the time slot of the FlexE frame.
  • an embodiment of the present invention provides a network device, where the network device has a function of implementing behavior of a first network device side or a second network device side in the foregoing method example.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the structure of the network device includes a processor and a communication interface, the processor being configured to support the network device to perform corresponding functions in the above methods.
  • the communication interface is used to support communication between a network device and other network devices.
  • the network device can also include a memory for coupling with the processor that holds program instructions and data necessary for the network device.
  • an embodiment of the present invention provides a network system, where the system includes the first network device and the second network device.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for the first network device and/or the second network device, which includes a program designed to perform the above aspects.
  • the first network device obtains clock information of the client service, and maps the client service and the clock information of the client service to the FlexE frame respectively. Therefore, after receiving the FlexE frame, the second network device may The clock information corresponding to the customer service and the customer service is obtained in the FlexE frame, and then the recovery clock is adjusted according to the clock information, so that the recovery clock approaches the original clock of the client service, and then the clock of the client service is adjusted from the FlexE frame. Equipped with the original clock of the customer service, so that the customer service is efficiently carried in the FlexE frame, realizing Transparent transmission of clock information.
  • FIG. 1 is a schematic diagram of service transmission of a flexible Ethernet in the prior art
  • FIG. 2 is a schematic diagram of a FlexE architecture according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of data processing of a first network device according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of data processing of a second network device according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for transmitting a service according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic circuit diagram of a clock for restoring a customer service according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a FlexE frame according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a principle of recovering clock information of a client service by a second network device according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a method for mapping clock information according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of another manner of mapping clock information according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of another manner of mapping clock information according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 12B is a schematic structural diagram of another network device according to an embodiment of the present invention.
  • the technical solution provided by the embodiment of the present invention can be applied to a flexible Ethernet, and can also be applied to other types of networks, such as an Ethernet, an optical transport network (OTN) network, and a synchronous digital system. Synchronous Digital Hierarchy, SDH) Network, etc.
  • the embodiment of the present invention mainly uses flexible Ethernet as an example for description.
  • the technical solution provided by the embodiment of the present invention can be applied to the network architecture of a FlexE shown in FIG. 2.
  • the network architecture includes a first network device 21 and a second network device 22.
  • the network device (eg, the first network device 21, the second network device 22, etc.) may be a device having a data transceiving function, such as a router, a switch, or the like.
  • Network devices can be called FlexE clients in the FlexE network architecture (English: FlexE Client).
  • the first network device 21 and the second network device 22 have at least one FlexE group (English: FlexE Group), and each FlexE link group includes a plurality of links that are logically bundled.
  • the so-called logical bundling can be free of physical connections, so multiple links in the FlexE Group can be physically independent.
  • the link involved in the embodiment of the present invention may be an Ethernet physical link, such as an optical fiber. In the embodiment of the present invention, the bandwidth provided by each link is not limited.
  • the FlexE Group includes 1 to n Ethernet physical layer devices (PHYs).
  • the FlexE Client corresponds to the Ethernet Media Access Control (MAC) layer and supports 10G, 40G, and 100G MAC rates, as well as MAC rates not mentioned in the FlexE standard.
  • MAC Ethernet Media Access Control
  • the first network device 21 can map the multi-path FlexE client service to the bound FlexE Group. Accordingly, the second network device 22 can de-map the multi-path FlexE client service from the FlexE Group.
  • a 100G PHY in FlexE can be divided into 20 5G granular time slots (English: slot), and correspondingly, each FlexE The frame includes a FlexE overhead and 1023*20 slots (that is, 1023 repetitions of 20 slots in a FlexE frame). Of course, there are other granularities.
  • there is one FlexE group between the two network devices but the embodiment of the present invention does not limit that there may be multiple FlexE groups between the two network devices.
  • One link can be used to carry at least one customer service, and one customer service can be transmitted on at least one link.
  • FIG. 3 is a schematic flowchart of data processing of a first network device according to an embodiment of the present invention.
  • the first network device receives the original customer service data stream (step S301), performs physical coding sublayer (PCS) processing according to the type of the data stream according to the Ethernet standard, and performs code processing.
  • Block synchronization (step S302), that is, recovering N 8B/10B code blocks (the customer service is GE signal or 2.5GE signal) or N 64B/66B code blocks from the client service by code block synchronization technology (The customer service is 10GE, 40GE, 25GE, 100GE signal, etc.), where N is an integer greater than or equal to 1.
  • the N 8B/10B code blocks need to be transcoded into N. 66B code blocks.
  • the 8B/10B code block is transcoded to 64B/66B, and the transcoding process may first decode the 10B code block to the 8Bit Gbps Media Independent Inteface (GMII) interface, and the GMII interface.
  • the 8Bit data stream is converted into a 64-bit data stream of a 100G Media Independent Inteface (CGMII) interface, and the 64B code block is obtained by 64B/66B encoding the 64-bit data stream of the CGMII interface.
  • CGMII Media Independent Inteface
  • the Idle code block adjustment is then performed (step S303), i.e., the FlexE service data rate is adapted to the FlexE rate by adding and deleting Idle code blocks.
  • the FlexE service signal is based on the MAC data rate and may not be consistent with the PHY layer rate. FlexE service signals entering the FlexE Shim layer require rate adaptation.
  • FlexE technical standard since FlexE mainly carries Ethernet services, and the rate of Ethernet services changes, sometimes data is transmitted, and rate adaptation is implemented by adding and deleting Idle code blocks. Among them, the addition and deletion of Idle code blocks so that the rate adaptation can be seen in the prior art.
  • the first network device maps the coded block of the client service into the time slot of the FlexE frame (step S304), adds the FlexE overhead, and performs the PCS transmission process (scrambling code, channel lane assignment, insertion alignment word),
  • the FlexE physical port (or interface group) is sent to the second network device through the FlexE physical interface (or interface group) (step S305).
  • FIG. 4 is a schematic flowchart of data processing of a second network device according to an embodiment of the present invention.
  • the second network device receives the FlexE frame sent by the first network device through the FlexE physical interface (step S401), first performs PCS receiving processing (align word synchronization, lane alignment, descrambling) to find 66B. Code block. Then, the FlexE time slot demapping is performed (step S402), that is, the FlexE frame header is searched, and after the FlexE frame header is found, the bandwidth indication information (Calendar) is extracted, and the time slot in which the customer service is located is found according to the Calendar, thereby obtaining the FlexE frame.
  • PCS receiving processing align word synchronization, lane alignment, descrambling
  • the FlexE time slot demapping is performed (step S402), that is, the FlexE frame header is searched, and after the FlexE frame header is found, the bandwidth indication information (Calendar) is extracted, and the time slot in which the customer service is located is found according
  • the customer service is adapted from the FlexE clock to the recovered customer clock.
  • a corresponding PCS transmission process for example, insert alignment word processing for 100G client service
  • the client service is sent out through the FlexE physical port (step S405), and then sent to other Customer equipment.
  • FIG. 5 is a flowchart of a method for transmitting a service according to Embodiment 1 of the present invention. As shown in FIG. 5, the method in this embodiment may include:
  • the first network device acquires a client service, and obtains clock information corresponding to the client service.
  • the first network device acquires a client service to be transmitted, where the client service includes N coded blocks, and N is an integer greater than or equal to 1.
  • the clock information recovery (English: Clock Data Recovery, CDR) is performed, and the first network device needs to perform the clock of the customer service every other counting period.
  • Counting the clock information corresponding to the customer service wherein the clock information includes clock frequency and time phase information of the customer service, and the counting period may be a FlexE system period, or other phase-detecting period that satisfies the system clock jitter requirement.
  • the acquiring, by the first network device, the clock information corresponding to the customer service is: acquiring a coding block of the clock information, where the coding block includes any one of 64B/66B coding, 8B/10B coding, and 254B/256B coding.
  • FIG. 6 is a circuit diagram of a clock for restoring customer services.
  • the purpose of the clock recovery circuit is to extract a clock signal synchronized with the customer service data stream from the incoming customer service data stream.
  • the clock signal cannot be generated out of thin air, so the circuit itself must have a clock signal generation mechanism.
  • the clock recovery circuit mainly includes the following modules: a phase locked loop device 601, a lead lag phase detector 602, an UP-DOWN counter module 603, and a clock generation adjustment module 604.
  • the phase-locked loop device 601 can generate system clock signals of different phases, such as the system clock signal 1, the system clock signal 2, or the system clock signal 3 in FIG.
  • the system clock signal 1 may be a phase locked loop device 601 to phase shift the system clock signal by 0 degrees
  • the system clock signal 2 may be a phase locked loop device 601 to phase shift the system clock signal by 60 degrees
  • the system clock signal 3 may be The phase locked loop device 601 phase shifts the system clock signal by 120 degrees.
  • the lead lag phase detector 602 can recognize that the input customer service signal is connected to 0 and 1.
  • phase judgment signal 2 (up-down) is high level; if the clock of the customer service signal is delayed, the up-down is low level; when the customer service signal is connected to 0 or even 1 It is judged that the signal 1 (valid) is low, and the up-down is invalid at this time.
  • This phase detector has only two states of lead or lag. If its output is directly used as the adjustment of the control clock phase, the clock switching will be too frequent, and the glitch in the input signal will cause an erroneous operation. Therefore, the output signal is sent to the UP-DOWN counter module 603, and after a period of accumulation, a signal for controlling the clock phase adjustment is generated.
  • the function of the UP-DOWN counter module 603 is to count under the control of the up-down signal sent by the lead lag phase detector 602 to generate a phase-adjusted control signal (ie, the phase control signal 1 and the phase control signal 2 in FIG. 6). .
  • the initial value of the UP-DOWN counter module 603 is M, and when the input signal valid is high, the up-down signal is determined. If the signal is 1, the counter is incremented, otherwise it is counted down.
  • the phase control signal 2 (early) generates a high level pulse; when it is 0, the phase control signal 1 (later) generates a high level pulse.
  • the main function of the clock adjustment module 604 is to generate a clock signal having the same frequency as the input client service signal, and according to the phase adjustment control signal sent by the UP-DOWN counter module 603 (ie, the phase control signal 1 and phase control in FIG. 6) Signal 2) constantly adjusts the phase of the output clock signal such that the rising edge of the output clock signal is maintained in the middle of the incoming customer traffic signal.
  • the clock adjustment module 604 When the clock adjustment module 604 detects that the early signal is high, it jumps to a state one phase ahead of the current clock signal (if the phase leads, then continues to advance), and when the clock adjustment module 604 detects the later signal High When the level changes, it jumps to a state that is one phase behind the current clock signal (the phase lag continues to lag), and then selects the corresponding system clock signal according to the current state, which is the current working clock, that is, the output clock signal, and the output clock.
  • the signal can be used by the lead lag phase detector 601 to phase synchronize the clock signal based on the incoming customer service signal, ultimately causing the output clock signal to be synchronized with the incoming customer service signal.
  • the output clock signal can also be used as a periodic signal of the above processing process by the UP-DOWN counter module 603 and the clock adjustment module 604.
  • the first network device maps the clock information of the client service and the client service into a time slot of the FlexE frame.
  • the first network device maps the N coding blocks of the client service into the time slots of the FlexE frame. Specifically, the first network device flexibly allocates time slots to carry the customer service according to the rate of the customer service, and adopts the addition and deletion of the Idle code block to adapt the client service rate of the customer service. At the same time, the first network device also maps the clock information of the client service into the time slot of the FlexE frame.
  • the first network device periodically inserts clock information corresponding to the customer service into a specific code block of the FlexE according to the foregoing counting period, and during the transmission process, The position of a particular code block does not change.
  • the specific code block may be a fixed code block defined in the FlexE standard specifically for transmitting clock information.
  • the specific code block may also be a code block randomly selected by the first network device.
  • the first network device further needs to carry the location of the selected code block for transmitting the clock information in the FlexE frame to notify the first The second network device, where the location of the selected code block for transmitting the clock information can be carried in the 66B overhead code block of the FlexE frame for transmission to the second network device.
  • customer traffic and clock information can occupy different code blocks in the same time slot.
  • the client service occupies the first code block of the time slot
  • the clock information occupies the second code block of the time slot
  • the first code block and the second code block may be indicated by the code block indication information.
  • the first network device can randomly select the second code block to transmit the clock information of the customer service, and notify the second network device by the location of the second code block by using the code block indication information, so that the second network device can Find the second code block and obtain the clock information of the customer service from it.
  • the code block indication information may be carried in the overhead code block of the FlexE frame and transmitted to the second network device.
  • a schematic structural diagram of a FlexE frame includes a FlexE overhead code block and 1023*20 FlexE code blocks following the overhead code block.
  • the 1023*20 FlexE code blocks are transmitted through 1023 repetitions of 20 time slots.
  • the 20 time slots of the 1023 repetitions may be referred to as 20 time slots, and one time slot corresponds to 1023 FlexE code blocks.
  • slot 1 corresponds to 1023 code blocks identified as 1 in the figure.
  • the 20 time slots of the 1023 repetitions may also be referred to as 1023*20 time slots, and one time slot corresponds to one FlexE code block.
  • the reserved time slots for mapping customer services are preset in the 20 time slots of the 1023 repetitions, wherein the location of the reserved time slots is indicated by Calendar in the FlexE overhead.
  • a certain 66B code block in the client signal time slot may be pre-defined to transmit clock information.
  • the length of the clock information is 64 bits, and the clock information may be any other length.
  • the customer signal time slot refers to the time slot allocated for each customer service indicated in Calendar. If the customer service to be transmitted by the first network device is 2.5GE customer service, 0.5 5G time slots are required to be carried, and it is assumed that the first network device selects the first time slot of the 20 time slots to transmit the 2.5GE.
  • the first network device selects the first to 512th code blocks in the first time slot to transmit the 2.5GE client service, and selects the 513th code block in the first time slot to transmit the 2.5GE customer service clock information, then the first network device needs to occupy the 2.5GE customer service code
  • the location of the code block occupied by the block and the clock information of the 2.5GE client service is sent to the second network device, for example, the code block occupied by the first network device for the 2.5GE client service and the 2.5GE client service
  • the location information of the code block occupied by the clock information is carried in the overhead code block of the FlexE frame and transmitted to the second network device.
  • the first network device selects the first time slot of the 20 time slots to transmit the 2.5GE customer service, and the first network device selects the first to the 512th code blocks in the first time slot.
  • the first network device needs to occupy the 2.5GE client service.
  • the location of the code block occupied by the code block and the clock information of the 2.5GE client service informs the second network device, for example, the code block occupied by the first network device for the 2.5GE client service and the 2.5GE client service
  • the location information of the code block occupied by the clock information is carried in the overhead code block of the FlexE frame and transmitted to the second network device.
  • the customer traffic and clock information may occupy the same code block in the same time slot.
  • the client service occupies the first bit in the code block
  • the clock information occupies the second bit in the code block, the first bit and the second bit being indicated by the bit indication information.
  • the customer service and the clock information of the customer service can be carried in the same code block, occupying different bits
  • the first network device informs the bit occupied by the bit occupied by the client service and the bit occupied by the clock information by the bit indication information.
  • the second network device enables the second network device to obtain clock information of the customer service.
  • the bit indication information may be carried in an overhead code block of the FlexE frame.
  • the first network device selects the first time slot of the 20 time slots to transmit the customer service, and the first network device selects the first 32 bits of the first 66B code block in the first time slot to transmit the client service, and selects The last 32 bits of the first 66B code block in the first time slot transmit the clock information of the client service, and select the first 32 bits of the second 66B code block in the first time slot to transmit the client service, and select the first time.
  • the last 32 bits of the second 66B code block in the slot transmits the clock information of the client service, and the first network device needs to inform the second network device of the bit occupied by the client service and the bit occupied by the clock information of the client service.
  • the first network device carries the bit occupied by the client service and the bit information occupied by the clock information of the client service in an overhead code block of the FlexE frame and transmits the information to the second network device.
  • customer traffic and clock information can occupy different time slots.
  • the client service occupies the first time slot in the FlexE frame
  • the clock information occupies the second time slot in the FlexE frame
  • the first time slot and the second time slot are indicated by the time slot indication information.
  • the first network device can randomly select a time slot from the FlexE frame to transmit clock information of the customer service, and notify the location of the time slot by the code block indication information to the second network device, so that the second network The device can find the second time slot and obtain clock information of the customer service therefrom.
  • the time slot indication information may be carried in an overhead code block of the FlexE frame.
  • the first network device selects the first time slot of the 20 time slots to transmit the customer service, and the first network device selects the second time slot to transmit the clock information of the customer service
  • the first network device needs to The time slot occupied by the time slot occupied by the customer service and the time slot occupied by the clock information of the customer service informs the second network device, for example, the first network device occupies the time slot occupied by the customer service and the clock information of the customer service.
  • the slot information is carried in the overhead code block of the FlexE frame and transmitted to the second network device.
  • the customer service and clock information may occupy part of the same time slot and partially occupy different time slots.
  • the first network device may select the first to 512th codes of the first one of the 20 time slots.
  • the block transmits the client service, and selects the last 32 bits of the 513th code block in the 1st time slot and the last 32 bits of the 2nd code block of the 2nd time slot to transmit the clock information corresponding to the client service.
  • the first network device sends the FlexE frame to the second network device.
  • the first network device sends a FlexE frame to the second device, and correspondingly, the second network device receives the FlexE frame sent by the first network device.
  • the second network device receives the FlexE frame sent by the first network device, adjusts a recovery clock according to the clock information corresponding to the customer service, and adapts the client service to the recovery clock.
  • the second network device obtains the N coding blocks corresponding to the customer service from the FlexE frame, and obtains the customer service from the obtained N coding blocks, and the second network device obtains the obtained from the FlexE frame.
  • the second network device adjusts the recovery clock according to the clock information.
  • the Demultiplexing (demux) module 801 of the second network device extracts clock information from the FlexE frame to obtain original clock information corresponding to the client service, and the demux module 801 obtains the original corresponding to the client service.
  • the clock information is sent to the phase discrimination module 802.
  • the phase discrimination module 802 compares the original clock information received by the received demux module 801 with the recovered clock information sent by the counter module 803 in the same counting period as the first network device to obtain a difference.
  • the Direct Digital Synthesis (DDS) module 804 controls the frequency of the recovered clock by using the phase-detection result sent by the phase-detecting module 802, thereby recovering the clock information of the client service, and the DDN module 804 will restore the clock.
  • the information is sent to a counter module 803.
  • the counter module 803 counts the number of recovered clocks in the counting period, obtains recovered clock information, and transmits the recovered clock information to the phase detecting module 802.
  • a counting period in which the first network device counts the clock of the customer service that is, a period in which the first network device acquires clock information of the customer service
  • the first network device Inserting the clock information of the customer service into the period of the FlexE frame and the period in which the second network device counts the recovered clock (ie, the second network device adjusts the period of the recovered clock according to the clock information carried in the FlexE frame) It is consistent because the clock information calculated during the same time period of the first network device and the second network device is comparable.
  • the period in which the clock information of the client service is inserted into the FlexE frame is also consistent with the counting period.
  • the second network device recovers the clock
  • the clock information of the first network device needs to be phased out, but the first network is used.
  • the clock information sent by the device through the FlexE frame may not arrive.
  • the second network device is there, which will make the DDS adjust the clock frequency later. This may make the recovered clock drift farther and farther (because waiting, not adjusting in time) Recovery clock), and finally the recovery clock can not meet the jitter indicator.
  • the second network device extracts clock information corresponding to the customer service from the specific code block that transmits the clock information in the FlexE frame, and the second network device restores the client in the same counting period as the first network device.
  • the clock of the service is counted to obtain the recovered clock information, and compared with the clock information extracted from the FlexE frame, and then the clock recovery speed is adjusted according to the phase detection result, thereby recovering the clock frequency and phase information of the client signal.
  • the second network device uses the recovered clock as a read clock for the cached customer service random access memory (RAM), and adapts the client service to the recovery clock by adding and deleting Idle type code blocks.
  • the second network device sends the 66B Ethernet code block into a data stream according to the client service type according to the standard transmission processing flow. If it is a GE or 2.5GE service type, you need to first transcode the 64B/66B code block to 8B/10B. After the code block, the transmission process is performed.
  • the first network device obtains clock information of the client service, and maps the client service and the clock information of the client service to the FlexE frame respectively. Therefore, after receiving the FlexE frame, the second network device can obtain the FlexE frame. Obtaining the clock information corresponding to the customer service and the customer service, and adjusting the recovery clock according to the clock information, so that the recovery clock approaches the original clock of the customer service, thereby adapting the customer service from the clock of the FlexE frame to The original clock of the customer service, so that the customer service is efficiently carried in the FlexE frame, and the transparent transmission of the clock information is realized.
  • the present embodiment based on the first embodiment of the present invention, how the first network device maps the clock information of the client service to the FlexE frame.
  • the first network device may map clock information corresponding to the client service to a specific code block of a time slot used for transmitting the client service.
  • one of the 20 time slots of the FlexE can transmit the customer service and the clock information corresponding to the customer service by multiplexing, that is, some specific code blocks in a certain time slot. It can be used exclusively to transmit customer service data. Other specific code blocks of this time slot can be used to transmit the clock information corresponding to the customer service.
  • the second network device acquires clock information corresponding to the customer service from a specific code block in the FlexE frame for transmitting clock information.
  • FIG. 9 is a schematic diagram of a method for mapping clock information according to an embodiment of the present invention.
  • one FlexE frame period includes one FlexE overhead code block and 1023*20 FlexE code blocks following the overhead code block.
  • the 1023*20 FlexE code blocks are transmitted through 1023 repetitions of 20 time slots.
  • the 20 time slots of the 1023 repetitions may be referred to as 20 time slots, and one time slot corresponds to 1023 FlexE code blocks.
  • slot 1 corresponds to 1023 code blocks identified as 1 in the figure.
  • the 20 time slots of the 1023 repetitions may also be referred to as 1023*20 time slots, and one time slot corresponds to one FlexE code block.
  • the reserved time slots for mapping customer services are preset in the 20 time slots of the 1023 repetitions, wherein the location of the reserved time slots is indicated by Calendar in the FlexE overhead.
  • a certain 66B code block in the client signal slot can be pre-defined to transmit clock information.
  • the length of the clock information is 64 bits as an example.
  • the client signal slot is in the Calendar. Indicates the time slot assigned to each customer service.
  • the first network device needs to transmit 10GE customer services, then two 5G time slots are required to be carried, then the two 5G time slots are client signal time slots, or if the first network device The customer service to be transmitted is GE's customer service, so one fifth of the 5G time slot is required to carry, and then one fifth of the 5G time slot is the customer signal time slot. It is assumed that the first and second 5G slots in 20 slots are used to transmit 10GE client traffic in Calendar, and the first 66B code block in the client signal slot is used to transmit the clock in the FlexE standard.
  • the first network device can carry the clock information corresponding to the 10GE client service in the first 66B code block in the first 5G time slot, and the data corresponding to the 10GE client service is carried in the first 5G.
  • the code block position specifically carrying the customer service may be indicated by Calendar.
  • the second network device After receiving the FlexE frame sent by the first network device, the second network device obtains clock information corresponding to the 10GE client service from the first 66B code block in the first 5G time slot according to the FlexE standard.
  • the first network device may also carry the clock information corresponding to the 10GE client service in other code blocks in the first 5G time slot or carry the clock information corresponding to the 10GE client service in the second 5G time slot.
  • the last 66B code block or other code block is not limited in the embodiment of the present invention.
  • the first network device can carry the clock information corresponding to the 2.5GE client service in the first 66B code block in the first 5G time slot, and the 2.5GE client service corresponds to the 66G code block.
  • the data is carried in the code block other than the first code block in the first 5G time slot, and the code block position that specifically carries the customer service can be indicated by Calendar.
  • the second network device After receiving the FlexE frame sent by the first network device, the second network device obtains clock information corresponding to the 2.5GE client service from the first 66B code block in the first 5G time slot according to the FlexE standard.
  • the first network device may also carry the clock information corresponding to the 2.5GE client service in the last 66B code block or other code blocks in the first 5G time slot, which is not specifically limited in the embodiment of the present invention.
  • the present embodiment based on the first embodiment of the present invention, how the first network device maps the clock information of the client service to the FlexE frame.
  • the first network device may map clock information corresponding to the client service to a specific code block of a time slot used for transmitting the client service.
  • the client service and the clock information corresponding to the customer service may be transmitted by multiplexing some code blocks of one of the 20 slots of the FlexE, that is, in a certain time slot.
  • Certain specific code blocks can be used to transmit both customer service data and clock information corresponding to the customer service.
  • the second network device acquires clock information corresponding to the customer service from a specific code block in the FlexE frame for transmitting clock information.
  • FIG. 10 is a schematic diagram of another manner of mapping clock information according to an embodiment of the present invention.
  • some 66B code blocks in the client signal time slot may be pre-defined to transmit customer service data and clock information corresponding to the customer service.
  • the first and second 5G slots in 20 slots are used to transmit a 10GE client service in Calendar, and the last 32 bits of the first 66B code block in the client signal slot are indicated in the FlexE standard.
  • the last 32 bits of the second 66B code block are used to transmit the customer service data and the clock information corresponding to the customer service, and the first network device can carry the clock information corresponding to the 10GE client service in the first 5G time slot.
  • the last 32 bits of one 66B code block and the last 32 bits of the second 66B code block in the first 5G time slot In addition to the first and second, the first 32 bits of the first 66B code block in the first 5G time slot and the first 32 bits and the first 5G time slot of the first 66B code block in the second 5G time slot.
  • the other code blocks other than the 66B code block and the 1023 66B code blocks in the second 5G time slot can be used for transmission to the customer service data.
  • the second network device After receiving the FlexE frame sent by the first network device, the second network device obtains the last 32 bits of the first 66B code block and the second 66B code block from the first 5G time slot according to the FlexE standard.
  • the clock information corresponding to the 10GE client service is obtained in the last 32 bits.
  • the first network device may further carry the clock information corresponding to the 10GE client service in the last 32 bits of the first 66B code block in the second 5G time slot and the last 32 bits of the second to last 66B code block or
  • the other embodiments of the present invention are not specifically limited.
  • the present embodiment based on the first embodiment of the present invention, how the first network device maps the clock information of the client service to the FlexE frame.
  • the first network device can map the clock information corresponding to the customer service to a preset time slot, where the preset time slot is used to specifically transmit clock information, and the customer service data is carried in another In the time slot.
  • one of the 20 time slots of the FlexE can be used to transmit clock information corresponding to the customer service, that is, the time slot for transmitting the customer service data and the clock information corresponding to the customer service.
  • the time slots are different.
  • the second network device acquires clock information corresponding to the customer service from a time slot block in the FlexE frame for transmitting clock information.
  • FIG. 11 is a schematic diagram of another manner of mapping clock information according to an embodiment of the present invention.
  • one of the 20 time slots can be pre-defined to transmit clock information corresponding to the customer service, and other time slots can be used to transmit customer service data.
  • the first and second 5G slots in 20 slots are used to transmit a 10GE client service in Calendar, and the first 66B code block in the 20th slot is indicated in the FlexE standard.
  • the clock information corresponding to the customer service, the first network device can carry the clock information corresponding to the 10GE client service in the first 66B code block in the 20th 5G time slot, and carry the 10GE client service in the first And the second 5G time slot.
  • the second network device After receiving the FlexE frame sent by the first network device, the second network device obtains the clock information corresponding to the 10GE client service from the first 66B code block of the 20th 5G time slot according to the FlexE standard.
  • the first network device may also carry the clock information corresponding to the 10GE client service in the second 5G time slot or other time slots, which is not specifically limited in the embodiment of the present invention.
  • the present embodiment based on the first embodiment of the present invention, how the first network device maps the clock information of the client service to the FlexE frame.
  • the first network device may map the clock information corresponding to the customer service to a randomly selected first code block, and notify the second network device by the code block indication information by the location of the first code block. .
  • the first network device maps the clock information corresponding to the 10GE client service to the first code block in the second 5G time slot of the 20 time slots, and then needs to notify the second network device by using the code block indication information.
  • the clock information corresponding to the 10GE client service is carried in the first code block of the two 5G time slots. Therefore, after receiving the FlexE frame, the second network device can determine the second 5G according to the code block indication information.
  • the clock information corresponding to the 10GE client service is obtained in the first code block in the slot.
  • the solution provided by the embodiment of the present invention is mainly introduced from the perspective of interaction between the first network device and the second network device.
  • the network device for example, the first network device, the second network device
  • the network device includes corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the embodiments of the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the technical solutions of the embodiments of the present invention.
  • the embodiments of the present invention may perform functional unit division on a network device (for example, a first network device and a second network device) according to the foregoing method.
  • a network device for example, a first network device and a second network device
  • each functional unit may be divided according to each function, or two or more functions may be used.
  • the functions are integrated in one processing unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit. It should be noted that the division of the unit in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 12A shows a possible structural diagram of the network device involved in the above embodiment.
  • the network device 1200 includes a processing unit 1202 and a communication unit 1203.
  • the processing unit 1202 is configured to control and manage the actions of the network device 1200.
  • the processing unit 1202 is configured to support the network device 1200 to perform steps 501, 502, and 504 in FIG. 5, and/or to perform the techniques described herein.
  • the communication unit 1203 is configured to support communication between the network device 1200 and other network devices, for example, the communication unit 1203 is used to support the network.
  • Network device 1200 performs step 503 in FIG. 5, and/or other steps for performing the techniques described herein.
  • the network device 1200 may further include a storage unit 1201 for storing program codes and data of the network device 1200.
  • the processing unit 1202 may be a processor or a controller, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application specific integrated circuit. (English: Application-Specific Integrated Circuit, ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 1203 may be a communication interface, a transceiver, a transceiver circuit, etc., wherein the communication interface is a collective name and may include one or more interfaces, such as an interface between the first network device and the second network device.
  • the storage unit 1201 may be a memory.
  • the network device may be the network device shown in FIG. 12B.
  • the network device 1210 includes a processor 1212, a communication interface 1213, and a memory 1211.
  • network device 1210 may also include a bus 1214.
  • the communication interface 1213, the processor 1212, and the memory 1211 may be connected to each other through a bus 1214;
  • the bus 1214 may be a Peripheral Component Interconnect (PCI) bus or an extended industry standard structure (English: Extended Industry) Standard Architecture (EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus 1214 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 12B, but it does not mean that there is only one bus or one type of bus.
  • the network device shown in FIG. 12A or 12B above may be the first network device or the second network device.
  • the steps of the method or algorithm described in connection with the disclosure of the embodiments of the present invention may be implemented in a hardware manner, or may be implemented by a processor executing software instructions.
  • the software instructions can be composed of corresponding software modules, which can be stored in random access memory (English: Random Access Memory, RAM), flash memory, read only memory (English: Read Only Memory, ROM), erasable and programmable. Read only memory (English: Erasable Programmable ROM, EPROM), electrically erasable programmable read only memory (English: Electrically EPROM, EEPROM), registers, hard disk, mobile hard disk, compact disk (CD-ROM) or well known in the art Any other form of storage medium.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a network device. Of course, the processor and the storage medium can also exist as discrete components in the network device.
  • the functions described in the embodiments of the present invention may be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Computer Hardware Design (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Small-Scale Networks (AREA)

Abstract

本发明公开了一种业务的传输方法、网络设备及网络系统,其中,该方法包括:第一网络设备获取FlexE的客户业务,并获取所述客户业务对应的时钟信息;所述第一网络设备将所述客户业务和所述时钟信息映射到FlexE帧的时隙中,所述客户业务和所述时钟信息占用相同和/或不同的时隙;所述第一网络设备向第二网络设备发送所述FlexE帧。采用本发明的方法,可以实现灵活以太网中业务时钟信息的透传。

Description

业务的传输方法、网络设备及网络系统 技术领域
本发明涉及通信技术领域,尤其涉及一种业务的传输方法、网络设备及网络系统。
背景技术
灵活以太网(FlexE)结合了以太网和传送网(例如,光传送网(英文:Optical Transport Network,OTN)、同步数字体系(英文:Synchronous Digital Hierarchy,SDH)等)的一些技术特性,是对以太网技术演进的一个重要里程碑。灵活以太网技术的出现,以太网物理接口呈现了虚拟化的特性。多个以太网物理接口可以进行级联,以支持若干个虚拟的逻辑端口。例如,4个100吉比特以太网(100Gigabit Ethernet,100GE)的物理接口级联成的一个400吉比特(400Gigabit,400G)灵活以太网物理接口组,可以支持若干个逻辑端口。
以太网物理接口为异步通信接口,允许正负100ppm(万分之一)的时钟频率差异。例如,10GE中,两个标称带宽为10G的物理接口,其中一个可能比标称值大万分之一,另一个比标称值小万分之一,即分别为10G*(1+0.0001)和10G*(1-0.0001)。逻辑端口的时钟频率继承了物理接口的时钟频率特性,也存在100ppm的偏差。例如,两个不同的物理接口或物理接口组上标称带宽为25G的逻辑端口,除去灵活以太网划分时隙和管理时隙的开销,实际带宽可能大约分别为25G*(20460/20461)*(1+0.0001)与25G*(20460/20461)*(1-0.0001)。当灵活以太网承载业务时,需要逐跳地进行空闲码块(Idle)的增删,以使业务的速率适配物理接口或逻辑端口之间带宽速率的偏差。图1为现有技术中灵活以太网的业务传输示意图。如图1所示,客户设备Ca需要发送一路业务到客户设备Cb,Ca和Cb之间可以通过一个承载网络进行业务传输。例如,由多个FlexE客户端(例如Pa、Pb和Pc)构成的灵活以太网作为承载网络。客户设备可以为路由器,交换机等设备。客户设备Ca和Cb之间的业务通过FlexE客户端Pa、Pb、Pc承载时,需要在Pa、Pb、Pc上执行空闲码块增删。
但是,空闲码块的增删会导致业务本身的时钟信息(包括时钟频率和时间相位信息)丢失,即,业务的时钟信息无法实现透传。
发明内容
本发明实施例提供了一种业务的传输方法、网络设备及网络系统,可以实现灵活以太网中业务时钟信息的透传。
第一方面,本发明的实施例提供一种业务的传输方法,该方法包括:第一网络设备获取FlexE的客户业务,并获取客户业务对应的时钟信息。之后,第一网络设备将客户业务和时钟信息映射到FlexE帧的时隙中,其中,客户业务和时钟信息占用相同和/或不同的时隙。之后,第一网络设备向第二网络设备发送FlexE帧。
本发明实施例中,第一网络设备获取客户业务的时钟信息,并将客户业务以及该客户业务的时钟信息分别映射到FlexE帧中,因此,第二网络设备接收到FlexE帧后,可以从FlexE帧中获取到该客户业务以及该客户业务对应的时钟信息,进而根据该时钟信息来调整恢复时钟,使得恢复时钟趋近于该客户业务的原始时钟,进而将客户业务从FlexE帧的时 钟适配到客户业务的原始时钟上,从而实现客户业务在FlexE帧中高效承载,实现了时钟信息的透传。
在一种可能的设计中,客户业务和时钟信息占用相同的时隙,包括:客户业务占用时隙的第一码块,时钟信息占用时隙的第二码块,第一码块和第二码块通过码块指示信息指示。本发明实施例中,第一网络设备可以随机选取第二码块来传送该客户业务的时钟信息,并将第二码块的位置通过码块指示信息告知第二网络设备,使得第二网络设备可以找到第二码块并从中获取该客户业务的时钟信息。
在一种可能的设计中,码块指示信息可以携带在FlexE帧的开销码块中。
在一种可能的设计中,客户业务和时钟信息占用相同的时隙,包括:客户业务和时钟信息占用相同的时隙中的相同码块;客户业务和时钟信息占用相同的时隙中的相同码块,包括:客户业务占用码块中的第一比特,时钟信息占用码块中的第二比特,第一比特和第二比特通过比特指示信息指示。本发明实施例中,客户业务和该客户业务的时钟信息可以携带在同一个码块中,占用不同的比特,第一网络设备将客户业务占用的比特和时钟信息占用的比特通过比特指示信息告知第二网络设备,使得第二网络设备可以获取该客户业务的时钟信息。
在一种可能的设计中,比特指示信息可以携带在FlexE帧的开销码块中。
在一种可能的设计中,客户业务和时钟信息占用不同的时隙,包括:客户业务占用第一时隙,时钟信息占用第二时隙,第一时隙和第二时隙通过时隙指示信息指示。本发明实施例中,第一网络设备可以随机选取第二时隙来传送该客户业务的时钟信息,并将第二时隙的位置通过码块指示信息告知第二网络设备,使得第二网络设备可以找到第二时隙并从中获取该客户业务的时钟信息。
在一种可能的设计中,时隙指示信息可以携带在FlexE帧的开销码块中。
在一种可能的设计中,获取客户业务对应的时钟信息,包括:获取时钟信息的编码块,编码块包括64B/66B编码、8B/10B编码、254B/256B编码中的任意一种。
在一种可能的设计中,获取客户业务对应的时钟信息的周期与将时钟信息映射到FlexE帧的时隙的周期相同。
第二方面,本发明实施例提供了一种业务的传输方法,该方法包括:第二网络设备接收第一网络设备发送的FlexE帧,FlexE帧的时隙中包括FlexE的客户业务以及客户业务对应的时钟信息,客户业务和时钟信息占用相同和/或不同的时隙;第二网络设备从FlexE帧中获取客户业务和时钟信息;第二网络设备按照时钟信息调整恢复时钟,并把客户业务适配到恢复时钟上。
本发明实施例中,第一网络设备获取客户业务的时钟信息,并将客户业务以及该客户业务的时钟信息分别映射到FlexE帧中,因此,第二网络设备接收到FlexE帧后,可以从FlexE帧中获取到该客户业务以及该客户业务对应的时钟信息,进而根据该时钟信息来调整恢复时钟,使得恢复时钟趋近于该客户业务的原始时钟,进而将客户业务从FlexE帧的时钟适配到客户业务的原始时钟上,从而实现客户业务在FlexE帧中高效承载,实现了时钟信息的透传。
在一种可能的设计中,客户业务和时钟信息占用相同的时隙;第二网络设备从FlexE 帧中获取客户业务和时钟信息,包括:第二网络设备根据码块指示信息指示从时隙中的第一码块中获取客户业务以及从时隙中的第二码块中获取时钟信息。本发明实施例中,第一网络设备可以随机选取第二码块来传送该客户业务的时钟信息,并将第二码块的位置通过码块指示信息告知第二网络设备,使得第二网络设备可以找到第二码块并从中获取该客户业务的时钟信息。
在一种可能的设计中,码块指示信息可以携带在FlexE帧的开销码块中。
在一种可能的设计中,客户业务和时钟信息占用相同的时隙中的相同码块;第二网络设备从FlexE帧中获取客户业务和时钟信息,包括:第二网络设备根据比特指示信息指示从码块中的第一比特中获取客户业务以及从码块中的第二比特中获取时钟信息。本发明实施例中,客户业务和该客户业务的时钟信息可以携带在同一个码块中,占用不同的比特,第一网络设备将客户业务占用的比特和时钟信息占用的比特通过比特指示信息告知第二网络设备,使得第二网络设备可以获取该客户业务的时钟信息。
在一种可能的设计中,比特指示信息可以携带在FlexE帧的开销码块中。
在一种可能的设计中,客户业务和时钟信息占用不同的时隙;第二网络设备从FlexE帧中获取客户业务和时钟信息,包括:第二网络设备根据时隙指示信息从FlexE帧中的第一时隙中获取客户业务以及从FlexE帧中的第二时隙中获取时钟信息。本发明实施例中,第一网络设备可以随机选取第二时隙来传送该客户业务的时钟信息,并将第二时隙的位置通过码块指示信息告知第二网络设备,使得第二网络设备可以找到第二时隙并从中获取该客户业务的时钟信息。
在一种可能的设计中,时隙指示信息可以携带在FlexE帧的开销码块中。
在一种可能的设计中,按照时钟信息调整恢复时钟的周期与将时钟信息映射到FlexE帧的时隙的周期相同。
第三方面,本发明实施例提供一种网络设备,该网络设备具有实现上述方法示例中第一网络设备侧或第二网络设备侧行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的设计中,网络设备的结构中包括处理器和通信接口,所述处理器被配置为支持网络设备执行上述方法中相应的功能。所述通信接口用于支持网络设备与其他网络设备之间的通信。进一步的,网络设备还可以包括存储器,所述存储器用于与处理器耦合,其保存网络设备必要的程序指令和数据。
第四方面,本发明实施例提供一种网络系统,该系统包括上述方面所述的第一网络设备和第二网络设备。
第五方面,本发明实施例提供一种计算机存储介质,用于储存为上述第一网络设备和/或第二网络设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
通过实施本发明实施例,第一网络设备获取客户业务的时钟信息,并将客户业务以及该客户业务的时钟信息分别映射到FlexE帧中,因此,第二网络设备接收到FlexE帧后,可以从FlexE帧中获取到该客户业务以及该客户业务对应的时钟信息,进而根据该时钟信息来调整恢复时钟,使得恢复时钟趋近于该客户业务的原始时钟,进而将客户业务从FlexE帧的时钟适配到客户业务的原始时钟上,从而实现客户业务在FlexE帧中高效承载,实现 了时钟信息的透传。
本发明的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为现有技术中灵活以太网的业务传输示意图;
图2为本发明实施例提供的FlexE架构的一种示意图;
图3为本发明实施例提供的第一网络设备的数据处理流程示意图;
图4为本发明实施例提供的第二网络设备的数据处理流程示意图;
图5为本发明实施例一提供的业务的传输方法的流程图;
图6为本发明实施例提供的恢复客户业务的时钟的电路示意图;
图7为本发明实施例提供的一种FlexE帧的结构示意图;
图8为本发明实施例提供的第二网络设备恢复客户业务的时钟信息的原理示意图;
图9为本发明实施例提供的一种时钟信息的映射方式示意图;
图10为本发明实施例提供的另一种时钟信息的映射方式示意图;
图11为本发明实施例提供的另一种时钟信息的映射方式示意图;
图12A为本发明实施例提供的一种网络设备的结构示意图;
图12B为本发明实施例提供的另一种网络设备的结构示意图。
具体实施方式
本发明实施例提供的技术方案可以应用于灵活以太网中,还可以应用于其他类型的网络中,例如以太网、光传送网(英文:Optical Transport Network,OTN)网络、同步数字体系(英文:Synchronous Digital Hierarchy,SDH)网络等。本发明实施例主要以灵活以太网为例进行说明。
本发明实施例提供的技术方案可适用于图2所示的一种FlexE的网络架构中。该网络架构包括:第一网络设备21和第二网络设备22。
网络设备(例如第一网络设备21、第二网络设备22等)可以是具备数据收发功能的设备,例如路由器、交换机等。网络设备在FlexE的网络架构中可以称为FlexE客户端(英文:FlexE Client)。
第一网络设备21和第二网络设备22之间具有至少一个FlexE组(英文:FlexE Group),每一个FlexE链路组包括逻辑上捆绑的多条链路。所谓的逻辑上捆绑,可以不存在物理连接关系,因此,FlexE Group中的多条链路在物理上可以是独立的。本发明实施例中涉及的链路可以是以太网物理链路,例如光纤。在本发明实施例中,对每一条链路提供的带宽不作限定,其中,FlexE Group包含1~n个以太网物理层装置(英文:Physical Layer Device,PHY)。FlexE Client对应以太网介质访问控制(英文:Media Access Control,MAC)层,支持10G、40G和100G MAC速率,以及FlexE标准中未提及的MAC速率。第一网络设备21可以将多路FlexE客户业务映射到绑定的FlexE Group上,相应的,第二网络设备22可以从FlexE Group上解映射出多路FlexE客户业务。以FlexE采用100G的PHY为例进行说明,一个100G的PHY可以划分为20个5G粒度的时隙(英文:slot),相应地,每个FlexE 帧包括一个FlexE开销和1023*20个时隙(也就是在一个FlexE帧中20个时隙重复1023次出现)。当然,还可以有其他的粒度。在通常情况下,两个网络设备之间具有一个FlexE组,但本发明实施例并不限定两个网络设备之间也可以具有多个FlexE组。一条链路可用于承载至少一个客户业务,一个客户业务可在至少一条链路上传输。
图3为本发明实施例提供的第一网络设备的数据处理流程示意图。如图3所示,第一网络设备接收原始的客户业务数据流(步骤S301),根据所述数据流的类型按照以太标准进行物理编码子层(英文:Physical Coding Sublayer,PCS)处理,进行码块同步(步骤S302),即,通过码块同步技术从所述客户业务中恢复出N个8B/10B码块(所述客户业务为GE信号或2.5GE信号)或N个64B/66B码块(所述客户业务为10GE,40GE,25GE,100GE信号等),这里,N为大于或等于1的整数。若所述客户业务为GE信号或2.5GE信号,第一网络设备在从所述客户业务中恢复出N个8B/10B码块之后,还需要将该N个8B/10B码块转码成N个66B码块。具体的,将8B/10B码块转码到64B/66B,转码过程可以是先将10B码块解码到8Bit的Gbps媒质不相关接口(英文:Gbps Media Independent Inteface,GMII)接口,将GMII接口上的8Bit数据流转换成100G以太网媒质不相关接口(英文:100Gbps Media Independent Inteface,CGMII)接口的64bit数据流,再对CGMII接口的64bit数据流进行64B/66B编码得到66B码块。然后进行Idle码块调整(步骤S303),即,通过增删Idle码块来将FlexE业务数据速率适配到FlexE速率上。需要说明的是,FlexE业务信号基于MAC数据速率,可能与PHY层速率不一致。FlexE业务信号进入FlexE Shim层需要进行速率适配。在FlexE技术标准中,由于目前FlexE主要承载以太网业务,而以太网业务的速率是变化,有时有数据要传输,通过采用增删Idle码块的方式来实现速率适配。其中,对Idle码块增删使得速率适配可以参见现有技术。然后,第一网络设备将所述客户业务的编码块映射到FlexE帧的时隙中(步骤S304),添加FlexE开销,并进行PCS发送处理后(扰码,通道lane分配,插入对齐字),发送到FlexE物理端口(或接口组),通过FlexE物理接口(或接口组)将所述FlexE帧发送给第二网络设备(步骤S305)。
图4为本发明实施例提供的第二网络设备的数据处理流程示意图。如图4所示,第二网络设备通过FlexE物理接口接收到第一网络设备发送的FlexE帧(步骤S401),先进行PCS接收处理(对齐字同步,通道(lane)对齐,解扰)找到66B码块。然后,进行FlexE时隙解映射(步骤S402),即搜索FlexE帧头,找到FlexE帧头后,提取到带宽指示信息(Calendar),根据该Calendar找到客户业务所在的时隙,从而从FlexE帧的码块中获取客户业务,针对该客户业务进行解码(例如64B/66B解码),然后进行Idle码块调整(步骤S403),即,基于解码后的客户业务数据流进行Idle码块的增删从而将客户业务从FlexE时钟适配到恢复出来的客户时钟。之后根据客户业务速率进行相应的PCS发送处理(例如,针对100G客户业务进行插入对齐字处理)(步骤S404),然后通过FlexE物理端口将所述客户业务发送出去(步骤S405),从而发送给其他客户设备。
但是,Idle码块的增删会导致客户业务本身的时钟信息(包括时钟频率和时间相位信息)丢失,即,客户业务的时钟频率和时间相位信息无法实现透传,导致客户业务的源、宿网络设备无法保持时钟频率和时间相位的同步。有鉴于此,本发明实施例中,第一网络设备将客户业务的时钟信息通过FlexE帧进行传送,从而可以实现FlexE中客户业务时钟 信息的透传,保障客户业务的源、宿网络设备保持时钟频率和时间相位同步。下面结合图5介绍本发明实施例中所描述的时钟信息的传递方法。图5为本发明实施例一提供的业务的传输方法的流程图,如图5所示,本实施例的方法可以包括:
S501、第一网络设备获取客户业务,并获取所述客户业务对应的时钟信息。
本发明实施例中,第一网络设备获取待传输出的客户业务,该客户业务包括N个编码块,N为大于或等于1的整数。
具体的,第一网络设备获取待传输出的客户业务之后,进行时钟信息恢复(英文:Clock Data Recovery,CDR),第一网络设备在每隔一个计数周期就需要对所述客户业务的时钟进行计数得到该客户业务对应的时钟信息,其中,时钟信息包括该客户业务的时钟频率和时间相位信息,所述计数周期可以为FlexE系统周期,也可以是其他满足系统时钟抖动要求的鉴相周期。第一网络设备获取所述客户业务对应的时钟信息具体为:获取所述时钟信息的编码块,该编码块包括64B/66B编码、8B/10B编码、254B/256B编码中的任意一种。
请参见图6,是恢复客户业务的时钟的电路示意图。时钟恢复电路的目的是从输入的客户业务数据流中,提取出与该客户业务数据流同步的时钟信号。时钟信号不可能凭空产生,因此该电路本身必须有一个时钟信号产生机制,除此之外还必须有一个判断控制机制一能够判断并且调整该时钟信号与输入的太业务数据流之间的相位关系,使其同步。该时钟恢复电路主要包括以下几个模块:锁相环装置601、超前滞后鉴相器602、UP-DOWN计数器模块603以及时钟产生调整模块604。其中,锁相环装置601可以产生不同相位的系统时钟信号,例如图6中的系统时钟信号1、系统时钟信号2或者系统时钟信号3。其中,系统时钟信号1可以是锁相环装置601将系统时钟信号进行移相0度,系统时钟信号2可以是锁相环装置601将系统时钟信号进行移相60度,系统时钟信号3可以是锁相环装置601将系统时钟信号进行移相120度。超前滞后鉴相器602可以识别出输入的客户业务信号连0和连1。若客户业务信号的时钟超前,相位判断信号2(up-down)为高电平;若客户业务信号的时钟滞后,up-down为低电平;当客户业务信号连0或连1时,相位判断信号1(valid)为低电平,此时up-down无效。这种鉴相器只有超前或滞后两种状态,如果直接将其输出用作控制时钟相位的调整,则时钟切换会过于频繁,而且输入信号中的毛刺会引起误操作。所以将其输出信号送给UP-DOWN计数器模块603,进行一段时间的积累后,再产生用于控制时钟相位调整的信号。UP-DOWN计数器模块603的功能是在超前滞后鉴相器602送来的up-down信号控制下进行计数,产生相位调整的控制信号(即图6中的相位控制信号1和相位控制信号2)。UP-DOWN计数器模块603的初始值为M,当输入信号valid为高电平时,判断up-down信号。如果该信号为1,则计数器加计数,否则减计数。当UP-DOWN计数器模块603的值为2M时,相位控制信号2(early)产生高电平脉冲;当为0时,相位控制信号1(later)产生高电平脉冲。时钟调整模块604的主要功能是产生和输入的客户业务信号频率相同的时钟信号,并根据UP-DOWN计数器模块603发送过来的相位调整的控制信号(即图6中的相位控制信号1和相位控制信号2),不断地调整输出的时钟信号相位,使得输出的时钟信号的上升沿维持在输入的客户业务信号的中间位置。当时钟调整模块604检测到early信号为高电平时,就跳变到比当前时钟信号相位提前1个相位的状态上(若相位超前则再继续超前),而当时钟调整模块604检测到later信号为高 电平时就跳变到比当前时钟信号滞后1个相位的状态上去(相位滞后则继续滞后),然后再根据当前的状态选择相应的系统时钟信号,作为当前工作时钟即输出时钟信号,输出的时钟信号可用于超前滞后鉴相器601根据输入的客户业务信号对该时钟信号进行相位同步,最终使得输出的时钟信号与输入的客户业务信号同步。此外,输出的时钟信号还可以作为UP-DOWN计数器模块603和时钟调整模块604进行上述处理过程的周期信号。
S502、第一网络设备将所述客户业务和所述客户业务的时钟信息映射到所述FlexE帧的时隙中。
本发明实施例中,第一网络设备将该客户业务的N个编码块映射到FlexE帧的时隙中。具体的,第一网络设备根据该客户业务的速率大小,灵活分配时隙来承载客户业务,采用增删Idle码块来适配客户业务的客户速率。同时,第一网络设备还将该客户业务的时钟信息映射到FlexE帧的时隙中。
具体的,为保证所述客户业务的时钟不丢失,第一网络设备要按照上述计数周期周期性的将所述客户业务对应的时钟信息插入到FlexE的特定码块中,且在传输过程中这些特定码块的位置不变动。其中,该特定码块可以是FlexE标准中专门为传时钟信息定义的固定码块。该特定码块还可以是第一网络设备随机选择的码块,这种情况下,第一网络设备还需要将选定的用于传输时钟信息的码块的位置携带在FlexE帧中以告知第二网络设备,这里,选定的用于传输时钟信息的码块的位置可以携带在FlexE帧的66B开销码块中传输给第二网络设备。
作为一种可选的实现方式,客户业务和时钟信息可以占用相同的时隙中的不同码块。例如,客户业务占用时隙的第一码块,时钟信息占用该时隙的第二码块,第一码块和第二码块可以通过码块指示信息指示。采用这种方式,第一网络设备可以随机选取第二码块来传送该客户业务的时钟信息,并将第二码块的位置通过码块指示信息告知第二网络设备,使得第二网络设备可以找到第二码块并从中获取该客户业务的时钟信息。可选的,码块指示信息可以携带在FlexE帧的开销码块中传送给第二网络设备。
举例说明,如图7所示,为本发明实施例提供的一种FlexE帧的结构示意图,一个FlexE帧周期包括一个FlexE开销码块和跟随在开销码块之后的1023*20个FlexE码块。该1023*20个FlexE码块通过1023次重复的20个时隙进行传输。该1023次重复的20个时隙可以称为20个时隙,此时一个时隙对应了1023个FlexE码块。例如,时隙1对应图中标识为1的1023个码块。该1023次重复的20个时隙也可以称为1023*20个时隙,此时一个时隙对应了1个FlexE码块。该1023次重复的20个时隙中预先设定有用于映射客户业务的预留时隙,其中,预留时隙的位置是由FlexE开销中的Calendar来指示。FlexE标准中可以预先规定客户信号时隙中的某一个66B码块用来传输时钟信息(本发明实施例中以时钟信息的长度为64bit为例进行说明,时钟信息还可以为其他任意长度),其中客户信号时隙是指Calendar中指示的为每个客户业务分配的时隙。如果第一网络设备所需传输的客户业务为2.5GE的客户业务,那么需要0.5个5G时隙才能承载,假设第一网络设备选取20个时隙中的第1个时隙传输该2.5GE的客户业务,且第一网络设备选取第1个时隙中的第1个至第512个码块来传输该2.5GE的客户业务,选取第1个时隙中的第513个码块来传送该2.5GE的客户业务的时钟信息,那么第一网络设备需要将该2.5GE的客户业务所占用的码 块以及该2.5GE的客户业务的时钟信息所占用的码块的位置告知第二网络设备,例如,第一网络设备将该2.5GE的客户业务所占用的码块以及该2.5GE的客户业务的时钟信息所占用的码块的位置信息携带在FlexE帧的开销码块中传输给第二网络设备。
举例说明,假设第一网络设备选取20个时隙中的第1个时隙传输该2.5GE的客户业务,且第一网络设备选取第1个时隙中的第1个至第512个码块来传输该2.5GE的客户业务,选取第1个时隙中的第513个码块来传送该2.5GE的客户业务的时钟信息,那么第一网络设备需要将该2.5GE的客户业务所占用的码块以及该2.5GE的客户业务的时钟信息所占用的码块的位置告知第二网络设备,例如,第一网络设备将该2.5GE的客户业务所占用的码块以及该2.5GE的客户业务的时钟信息所占用的码块的位置信息携带在FlexE帧的开销码块中传输给第二网络设备。
作为另一种可选的实现方式,客户业务和时钟信息可以占用相同的时隙中的相同码块。例如,客户业务占用码块中的第一比特,时钟信息占用该码块中的第二比特,第一比特和第二比特通过比特指示信息指示。采用这种方式,客户业务和该客户业务的时钟信息可以携带在同一个码块中,占用不同的比特,第一网络设备将客户业务占用的比特和时钟信息占用的比特通过比特指示信息告知第二网络设备,使得第二网络设备可以获取该客户业务的时钟信息。可选的,比特指示信息可以携带在FlexE帧的开销码块中。
举例说明,假设第一网络设备选取20个时隙中的第1个时隙传输客户业务,且第一网络设备选取第1个时隙中第1个66B码块的前32bit传送客户业务,选取第1个时隙中的第1个66B码块的后32bit传送该客户业务的时钟信息,并且选取第1个时隙中第2个66B码块的前32bit传送客户业务,选取第1个时隙中的第2个66B码块的后32bit传送该客户业务的时钟信息,那么第一网络设备需要将该客户业务所占用的比特以及该客户业务的时钟信息所占用的比特告知第二网络设备,例如,第一网络设备将该客户业务所占用的比特以及该客户业务的时钟信息所占用的比特信息携带在FlexE帧的开销码块中传输给第二网络设备。
作为另一种可选的实现方式,客户业务和时钟信息可以占用不同的时隙。例如,客户业务占用FlexE帧中的第一时隙,时钟信息占用FlexE帧中的第二时隙,第一时隙和第二时隙通过时隙指示信息指示。采用这种方式,第一网络设备可以从FlexE帧中随机选取一个时隙来传送该客户业务的时钟信息,并将这个时隙的位置通过码块指示信息告知第二网络设备,使得第二网络设备可以找到第二时隙并从中获取该客户业务的时钟信息。可选的,时隙指示信息可以携带在FlexE帧的开销码块中。
举例说明,假设第一网络设备选取20个时隙中的第1个时隙传输客户业务,且第一网络设备选取第2个时隙传送该客户业务的时钟信息,那么第一网络设备需要将该客户业务所占用的时隙以及该客户业务的时钟信息所占用的时隙告知第二网络设备,例如,第一网络设备将该客户业务所占用的时隙以及该客户业务的时钟信息所占用的时隙信息携带在FlexE帧的开销码块中传输给第二网络设备。
作为另一种可选的实现方式,客户业务和时钟信息可以部分占用相同的时隙,部分占用不同的时隙。
举例说明,第一网络设备可以选取20个时隙中的第1个时隙中的第1个至第512个码 块传送客户业务,选取第1个时隙中的第513个码块中的后32bit以及第2个时隙中的第2个码块中的后32bit传送该客户业务对应的时钟信息。
S503、第一网络设备向第二网络设备发送所述FlexE帧。
本发明实施例中,第一网络设备向第二设备发送FlexE帧,相应地,第二网络设备接收第一网络设备发送的FlexE帧。
S504、第二网络设备接收第一网络设备发送的所述FlexE帧,根据所述客户业务对应的时钟信息,调整恢复时钟,并把所述客户业务适配到所述恢复时钟上。
本发明实施例中,第二网络设备从FlexE帧中获取该客户业务对应的N个编码块,再从获得的N个编码块中获取所述客户业务,并且第二网络设备从FlexE帧中获取该客户业务对应的时钟信息。第二网络设备根据该时钟信息来调整恢复时钟。
具体的,结合图8来说明第二网络设备如何恢复客户业务的时钟信息。第二网络设备的解复用(英文:Demultiplexing,demux)模块801从FlexE帧中提取出时钟信息,得到所述客户业务对应的原始时钟信息,demux模块801将得到的所述客户业务对应的原始时钟信息发送至鉴相模块802。鉴相模块802在和第一网络设备相同的计数周期内对收到demux模块801送来的原始时钟信息和计数器(Counter)模块803送来的恢复时钟信息进行比较得到差值。直接数字生成(英文:Direct Digital Synthesis,DDS)模块804用鉴相模块802发来的鉴相结果控制调整恢复时钟的频率,从而恢复出所述客户业务的时钟信息,DDN模块804将恢复的时钟信息发送至计数器(Counter)模块803。计数器模块803在所述计数周期内计数恢复时钟的个数,得到恢复时钟信息,并将恢复时钟信息发送至鉴相模块802。
需要说明的是,在本发明实施例中,第一网络设备对所述客户业务的时钟进行计数的计数周期(即第一网络设备获取客户业务的时钟信息的周期)和所述第一网络设备将所述客户业务的时钟信息插入到FlexE帧的周期,以及第二网络设备对恢复的时钟进行计数的周期(即第二网络设备按照所述FlexE帧中携带的时钟信息调整恢复时钟的周期)是一致的,这是因为在第一网络设备和第二网络设备相同的时间内计算出来的时钟信息才有可比性。将所述客户业务的时钟信息插入到FlexE帧的周期也是和计数周期是一致的,如果不一致,第二网络设备恢复时钟时需要第一网络设备的时钟信息进行鉴相,但这时第一网络设备通过FlexE帧发送的时钟信息可能会没到,第二网络设备等在那,会使得DDS调整时钟频率就调晚了,这样可能使得恢复出来的时钟越漂越远(因为等待,没有及时调整恢复时钟),最后恢复时钟满足不了抖动指标。
本发明实施例中,第二网络设备从FlexE帧中传时钟信息的特定码块中提取出客户业务对应的时钟信息,第二网络设备在和第一网络设备相同的计数周期内对恢复的客户业务的时钟进行计数得到恢复时钟信息,并与从FlexE帧中提取出的时钟信息进行比较鉴相,进而根据鉴相结果调整恢复时钟的快慢,从而恢复出客户信号的时钟频率以及相位信息。第二网络设备用恢复的时钟作为缓存客户业务随机存取存储器(英文:Random-Access Memory,RAM)的读时钟,并通过增删Idle类型码块来把客户业务适配到恢复时钟上。
之后,第二网络设备根据客户业务类型,按照标准的发送处理流程,把66B以太码块转成数据流发送出去。如果是GE或2.5GE业务类型,则需先将64B/66B码块转码到8B/10B 码块后再进行发送处理。
综上所述,第一网络设备获取客户业务的时钟信息,并将客户业务以及该客户业务的时钟信息分别映射到FlexE帧中,因此,第二网络设备接收到FlexE帧后,可以从FlexE帧中获取到该客户业务以及该客户业务对应的时钟信息,进而根据该时钟信息来调整恢复时钟,使得恢复时钟趋近于该客户业务的原始时钟,进而将客户业务从FlexE帧的时钟适配到客户业务的原始时钟上,从而实现客户业务在FlexE帧中高效承载,实现了时钟信息的透传。
在本发明实施例二提供的客户业务的传输方法中,本实施例在本发明实施例一的基础上,对第一网络设备如何将所述客户业务的时钟信息映射到所述FlexE帧的时隙进行描述,第一网络设备可以将所述客户业务对应的时钟信息映射到传送所述客户业务所采用的时隙的特定码块中。具体的,可以把FlexE的20个时隙中某一个5G时隙通过复用的方式传送客户业务以及该客户业务对应的时钟信息,也即是说,某个时隙中的某些特定码块可以专门用来传送客户业务数据,这个时隙的另外一些特定码块可以专门用来传送该客户业务对应的时钟信息。相应地,S504的一种可行的实现方式中,第二网络设备从所述FlexE帧中的用于传送时钟信息的特定码块中获取所述客户业务对应的时钟信息。
图9为本发明实施例提供的一种时钟信息的映射方式示意图。如图9所示,在FlexE帧结构中,一个FlexE帧周期包括一个FlexE开销码块和跟随在开销码块之后的1023*20个FlexE码块。该1023*20个FlexE码块通过1023次重复的20个时隙进行传输。该1023次重复的20个时隙可以称为20个时隙,此时一个时隙对应了1023个FlexE码块。例如,时隙1对应图中标识为1的1023个码块。该1023次重复的20个时隙也可以称为1023*20个时隙,此时一个时隙对应了1个FlexE码块。该1023次重复的20个时隙中预先设定有用于映射客户业务的预留时隙,其中,预留时隙的位置是由FlexE开销中的Calendar来指示。FlexE标准中可以预先规定客户信号时隙中的某一个66B码块用来传输时钟信息(本发明实施例中以时钟信息的长度为64bit为例进行说明),其中客户信号时隙是指Calendar中指示的为每个客户业务分配的时隙。举例说明,如果第一网络设备所需传输的客户业务为10GE的客户业务,那么需要2个5G时隙才能承载,那么这两个5G时隙就是客户信号时隙,或者,如果第一网络设备所需传输的客户业务为GE的客户业务,那么需要五分之一个5G时隙才能承载,那么这五分之一个5G时隙就是客户信号时隙。假设Calendar中指示采用20个时隙中的第1个和第2个5G时隙来传送10GE的客户业务,并且FlexE标准中指示了采用客户信号时隙中的第1个66B码块来传送时钟信息,那么第一网络设备可以将该10GE客户业务对应的时钟信息承载在第1个5G时隙中的第1个66B码块中,将该10GE客户业务对应的数据承载在第1个5G时隙中除第1个码块以外的其他码块中以及承载在第2个5G时隙中的码块中,具体承载客户业务的码块位置可以通过Calendar来指示。第二网络设备在接收到第一网络设备发送的FlexE帧后,根据FlexE标准的规定,从第1个5G时隙中的第1个66B码块中获取该10GE客户业务对应的时钟信息。当然,第一网络设备还可以将该10GE客户业务对应的时钟信息承载在第1个5G时隙中的其他码块中或者将该10GE客户业务对应的时钟信息承载在第2个5G时隙中的最后一个66B码块或者其他码块中,本发明实施例不作具体限定。
或者,假设Calendar中指示采用20个中的第1个时隙的第1个至第512个66B码块来传送2.5GE的客户业务,并且FlexE标准中指示了采用客户信号时隙中的第1个66B码块来传送时钟信息,那么第一网络设备可以将该2.5GE客户业务对应的时钟信息承载在第1个5G时隙中的第1个66B码块中,将该2.5GE客户业务对应的数据承载在第1个5G时隙中除第1个码块以外的其他码块中,具体承载客户业务的码块位置可以通过Calendar来指示。第二网络设备在接收到第一网络设备发送的FlexE帧后,根据FlexE标准的规定,从第1个5G时隙中的第1个66B码块中获取该2.5GE客户业务对应的时钟信息。当然,第一网络设备还可以将该2.5GE客户业务对应的时钟信息承载在第1个5G时隙中的最后一个66B码块或者其他码块中,本发明实施例不作具体限定。
在本发明实施例三提供的客户业务的传输方法中,本实施例在本发明实施例一的基础上,对第一网络设备如何将所述客户业务的时钟信息映射到所述FlexE帧的时隙进行描述,第一网络设备可以将所述客户业务对应的时钟信息映射到传送所述客户业务所采用的时隙的特定码块中。具体的,可以把FlexE的20个时隙中某一个5G时隙的某几个码块通过复用的方式传送客户业务以及该客户业务对应的时钟信息,也即是说,某个时隙中的某些特定码块可以既用来传送客户业务数据,又用来传送该客户业务对应的时钟信息。相应地,S504的一种可行的实现方式中,第二网络设备从所述FlexE帧中的用于传送时钟信息的特定码块中获取所述客户业务对应的时钟信息。
图10为本发明实施例提供的另一种时钟信息的映射方式示意图。如图10所示,FlexE标准中可以预先规定客户信号时隙中的某几个66B码块用来传输客户业务数据以及该客户业务对应的时钟信息。假设Calendar中指示采用20个时隙中的第1个和第2个5G时隙来传送一个10GE客户业务,并且FlexE标准中指示了采用客户信号时隙中的第1个66B码块的后32bit和第2个66B码块的后32bit来传送客户业务数据以及该客户业务对应的时钟信息,那么第一网络设备可以将该10GE客户业务对应的时钟信息承载在第1个5G时隙中的第1个66B码块的后32bit中以及第1个5G时隙中的第2个66B码块的后32bit中。第1个5G时隙中的第1个66B码块的前32bit、第2个5G时隙中的第1个66B码块的前32bit、第一个5G时隙中除第1个和第2个66B码块以外的其他码块、第2个5G时隙中的1023个66B码块可以用来传送给客户业务数据。第二网络设备在接收到第一网络设备发送的FlexE帧后,根据FlexE标准的规定,从第1个5G时隙中的第1个66B码块的后32bit中以及第2个66B码块的后32bit中获取该10GE客户业务对应的时钟信息。当然,第一网络设备还可以将该10GE客户业务对应的时钟信息承载在第2个5G时隙中的倒数第1个66B码块的后32bit以及倒数第2个66B码块的后32bit中或者其他码块中,本发明实施例不作具体限定。
在本发明实施例四提供的客户业务的传输方法中,本实施例在本发明实施例一的基础上,对第一网络设备如何将所述客户业务的时钟信息映射到所述FlexE帧的时隙进行描述,第一网络设备可以将所述客户业务对应的时钟信息映射到某个预设的时隙中,该预设的时隙用于专门传送时钟信息,而客户业务数据则承载在另外的时隙中。具体的,可以把FlexE的20个时隙中某一个5G时隙专门用来传送客户业务对应的时钟信息,也即是说,传送客户业务数据的时隙与传送该客户业务对应的时钟信息的时隙是不同的。相应地,S504的一 种可行的实现方式中,第二网络设备从所述FlexE帧中的用于传送时钟信息的时隙块中获取所述客户业务对应的时钟信息。
图11为本发明实施例提供的另一种时钟信息的映射方式示意图。如图11所示,FlexE标准中可以预先规定20个时隙中的某1个时隙用来传输客户业务对应的时钟信息,其他时隙则可以用来传输客户业务数据。假设Calendar中指示采用20个时隙中的第1个和第2个5G时隙来传送一个10GE客户业务,并且FlexE标准中指示了采用第20个时隙中的第一个66B码块来传送该客户业务对应的时钟信息,那么第一网络设备可以将该10GE客户业务对应的时钟信息承载在第20个5G时隙中的第一个66B码块,并将该10GE客户业务承载在第1个和第2个5G时隙中。第二网络设备在接收到第一网络设备发送的FlexE帧后,根据FlexE标准的规定,从第20个5G时隙的第一个66B码块中获取该10GE客户业务对应的时钟信息。当然,第一网络设备还可以将该10GE客户业务对应的时钟信息承载在第2个5G时隙中或者其他时隙中,本发明实施例不作具体限定。
在本发明实施例五提供的客户业务的传输方法中,本实施例在本发明实施例一的基础上,对第一网络设备如何将所述客户业务的时钟信息映射到所述FlexE帧的时隙进行描述,第一网络设备可以将所述客户业务对应的时钟信息映射到某个随机选择的第一码块中,并将该第一码块的位置通过码块指示信息告知第二网络设备。例如,第一网络设备将10GE客户业务对应的时钟信息映射到20个时隙中的第2个5G时隙中的第1个码块中,那么需要通过码块指示信息告知第二网络设备第2个5G时隙中的第1个码块中承载了该10GE客户业务对应的时钟信息,因此,第二网络设备接收到FlexE帧后,根据码块指示信息即可确定从第2个5G时隙中的第1个码块中获取该10GE客户业务对应的时钟信息。
上述主要从第一网络设备和第二网络设备交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,网络设备(例如第一网络设备、第二网络设备)为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本发明中所公开的实施例描述的各示例的单元及算法步骤,本发明实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本发明实施例的技术方案的范围。
本发明实施例可以根据上述方法示例对网络设备(例如第一网络设备、第二网络设备)进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本发明实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图12A示出了上述实施例中所涉及的网络设备的一种可能的结构示意图。网络设备1200包括:处理单元1202和通信单元1203。处理单元1202用于对网络设备1200的动作进行控制管理,例如,处理单元1202用于支持网络设备1200执行图5中的步骤501、502和504,和/或用于执行本文所描述的技术的其它步骤。通信单元1203用于支持网络设备1200与其它网络设备的通信,例如,通信单元1203用于支持网 络设备1200执行图5中的步骤503,和/或用于执行本文所描述的技术的其它步骤。网络设备1200还可以包括存储单元1201,用于存储网络设备1200的程序代码和数据。
其中,处理单元1202可以是处理器或控制器,例如可以是中央处理器(英文:Central Processing Unit,CPU),通用处理器,数字信号处理器(英文:Digital Signal Processor,DSP),专用集成电路(英文:Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(英文:Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元1203可以是通信接口、收发器、收发电路等,其中,通信接口是统称,可以包括一个或多个接口,例如第一网络设备与第二网络设备之间的接口。存储单元1201可以是存储器。
当处理单元1202为处理器,通信单元1203为通信接口,存储单元1201为存储器时,本发明实施例所涉及的网络设备可以为图12B所示的网络设备。
参阅图12B所示,该网络设备1210包括:处理器1212、通信接口1213、存储器1211。可选地,网络设备1210还可以包括总线1214。其中,通信接口1213、处理器1212以及存储器1211可以通过总线1214相互连接;总线1214可以是外设部件互连标准(英文:Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(英文:Extended Industry Standard Architecture,简称EISA)总线等。所述总线1214可以分为地址总线、数据总线、控制总线等。为便于表示,图12B中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
上述图12A或图12B所示的网络设备可以是第一网络设备或第二网络设备。
结合本发明实施例公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(英文:Random Access Memory,RAM)、闪存、只读存储器(英文:Read Only Memory,ROM)、可擦除可编程只读存储器(英文:Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(英文:Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明实施例的目的、技术方案和有益效果进行了进一 步详细说明,所应理解的是,以上所述仅为本发明实施例的具体实施方式而已,并不用于限定本发明实施例的保护范围,凡在本发明实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明实施例的保护范围之内。

Claims (23)

  1. 一种业务的传输方法,其特征在于,包括:
    第一网络设备获取灵活以太网FlexE的客户业务,并获取所述客户业务对应的时钟信息;
    所述第一网络设备将所述客户业务和所述时钟信息映射到FlexE帧的时隙中,所述客户业务和所述时钟信息占用相同和/或不同的时隙;
    所述第一网络设备向第二网络设备发送所述FlexE帧。
  2. 根据权利要求1所述的方法,其特征在于,所述客户业务和所述时钟信息占用相同的时隙,包括:
    所述客户业务占用所述时隙的第一码块,所述时钟信息占用所述时隙的第二码块,所述第一码块和所述第二码块通过码块指示信息指示。
  3. 根据权利要求1所述的方法,其特征在于,所述客户业务和所述时钟信息占用相同的时隙,包括:
    所述客户业务和所述时钟信息占用相同的时隙中的相同码块;
    所述客户业务和所述时钟信息占用相同的时隙中的相同码块,包括:
    所述客户业务占用所述码块中的第一比特,所述时钟信息占用所述码块中的第二比特,所述第一比特和所述第二比特通过比特指示信息指示。
  4. 根据权利要求1所述的方法,其特征在于,所述客户业务和所述时钟信息占用不同的时隙,包括:
    所述客户业务占用第一时隙,所述时钟信息占用第二时隙,所述第一时隙和所述第二时隙通过时隙指示信息指示。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述获取所述客户业务对应的时钟信息,包括:
    获取所述时钟信息的编码块,所述编码块包括64B/66B编码。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,获取所述客户业务对应的时钟信息的周期与将所述时钟信息映射到所述FlexE帧的时隙的周期相同。
  7. 一种业务的传输方法,其特征在于,包括:
    第二网络设备接收第一网络设备发送的灵活以太网FlexE帧,所述FlexE帧的时隙中包括FlexE的客户业务以及所述客户业务对应的时钟信息,所述客户业务和所述时钟信息占用相同和/或不同的时隙;
    所述第二网络设备从所述FlexE帧中获取所述客户业务和所述时钟信息;
    所述第二网络设备按照所述时钟信息调整恢复时钟,并把所述客户业务适配到所述恢复时钟上。
  8. 根据权利要求7所述的方法,其特征在于,所述客户业务和所述时钟信息占用相同的时隙;所述第二网络设备从所述FlexE帧中获取所述客户业务和所述时钟信息,包括:
    所述第二网络设备根据码块指示信息指示从所述时隙中的第一码块中获取所述客户业务以及从所述时隙中的第二码块中获取所述时钟信息。
  9. 根据权利要求7所述的方法,其特征在于,所述客户业务和所述时钟信息占用相同的时隙中的相同码块;所述第二网络设备从所述FlexE帧中获取所述客户业务和所述时钟信息,包括:
    所述第二网络设备根据比特指示信息指示从所述码块中的第一比特中获取所述客户业务以及从所述码块中的第二比特中获取所述时钟信息。
  10. 根据权利要求7所述的方法,其特征在于,所述客户业务和所述时钟信息占用不同的时隙;所述第二网络设备从所述FlexE帧中获取所述客户业务和所述时钟信息,包括:
    所述第二网络设备根据时隙指示信息从所述FlexE帧中的第一时隙中获取所述客户业务以及从所述FlexE帧中的第二时隙中获取所述时钟信息。
  11. 根据权利要求7至10任一项所述的方法,其特征在于,按照所述时钟信息调整恢复时钟的周期与将所述时钟信息映射到所述FlexE帧的时隙的周期相同。
  12. 一种网络设备,其特征在于,所述网络设备为第一网络设备,所述第一网络设备包括:处理单元和通信单元;
    所述处理单元,用于获取灵活以太网FlexE的客户业务,并获取所述客户业务对应的时钟信息;
    所述处理单元,还用于将所述客户业务和所述时钟信息映射到FlexE帧的时隙中,所述客户业务和所述时钟信息占用相同和/或不同的时隙;
    所述通信单元,用于向第二网络设备发送所述FlexE帧。
  13. 根据权利要求12所述的网络设备,其特征在于,所述客户业务和所述时钟信息占用相同的时隙,包括:
    所述客户业务占用所述时隙的第一码块,所述时钟信息占用所述时隙的第二码块,所述第一码块和所述第二码块通过码块指示信息指示。
  14. 根据权利要求12所述的网络设备,其特征在于,所述客户业务和所述时钟信息占用相同的时隙,包括:
    所述客户业务和所述时钟信息占用相同的时隙中的相同码块;
    所述客户业务和所述时钟信息占用相同的时隙中的相同码块,包括:
    所述客户业务占用所述码块中的第一比特,所述时钟信息占用所述码块中的第二比特,所述第一比特和所述第二比特通过比特指示信息指示。
  15. 根据权利要求12所述的网络设备,其特征在于,所述客户业务和所述时钟信息占用不同的时隙,包括:
    所述客户业务占用第一时隙,所述时钟信息占用第二时隙,所述第一时隙和所述第二时隙通过时隙指示信息指示。
  16. 根据权利要求12至15任一项所述的网络设备,其特征在于,所述处理器,用于获取所述客户业务对应的时钟信息,包括:
    获取所述时钟信息的编码块,所述编码块包括64B/66B编码。
  17. 根据权利要求12至16任一项所述的网络设备,其特征在于,获取所述客户业务对应的时钟信息的周期与将所述时钟信息映射到所述FlexE帧的时隙的周期相同。
  18. 一种网络设备,其特征在于,所述网络设备为第二网络设备,所述第二网络设备包括:处理单元和通信单元;
    所述通信单元,用于接收第一网络设备发送的灵活以太网FlexE帧,所述FlexE帧的时隙中包括FlexE的客户业务以及所述客户业务对应的时钟信息,所述客户业务和所述时钟信息占用相同和/或不同的时隙;
    所述处理单元,用于从所述FlexE帧中获取所述客户业务和所述时钟信息;
    所述处理单元,还用于按照所述时钟信息调整恢复时钟,并把所述客户业务适配到所述恢复时钟上。
  19. 根据权利要求18所述的网络设备,其特征在于,所述客户业务和所述时钟信息占用相同的时隙;所述处理单元,用于从所述FlexE帧中获取所述客户业务和所述时钟信息,包括:
    根据码块指示信息指示从所述时隙中的第一码块中获取所述客户业务以及从所述时隙中的第二码块中获取所述时钟信息。
  20. 根据权利要求18所述的网络设备,其特征在于,所述客户业务和所述时钟信息占用相同的时隙中的相同码块;所述处理器,用于从所述FlexE帧中获取所述客户业务和所述时钟信息,包括:
    根据比特指示信息指示从所述码块中的第一比特中获取所述客户业务以及从所述码块中的第二比特中获取所述时钟信息。
  21. 根据权利要求18所述的网络设备,其特征在于,所述客户业务和所述时钟信息占 用不同的时隙;所述处理器,用于从所述FlexE帧中获取所述客户业务和所述时钟信息,包括:
    根据时隙指示信息从所述FlexE帧中的第一时隙中获取所述客户业务以及从所述FlexE帧中的第二时隙中获取所述时钟信息。
  22. 根据权利要求18至21任一项所述的网络设备,其特征在于,按照所述时钟信息调整恢复时钟的周期与将所述时钟信息映射到所述FlexE帧的时隙的周期相同。
  23. 一种网络系统,其特征在于,所述系统包括如权利要求12至17任一项所述的第一网络设备,以及如权利要求18至22任一项所述的第二网络设备。
PCT/CN2017/097547 2017-01-22 2017-08-15 业务的传输方法、网络设备及网络系统 WO2018133402A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17893046.7A EP3565163B1 (en) 2017-01-22 2017-08-15 Service transmission method, network device, and network system
US16/517,696 US11223438B2 (en) 2017-01-22 2019-07-22 Service transmission method, network device, and network system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710057027.8A CN108347317B (zh) 2017-01-22 2017-01-22 一种业务的传输方法、网络设备及网络系统
CN201710057027.8 2017-01-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/517,696 Continuation US11223438B2 (en) 2017-01-22 2019-07-22 Service transmission method, network device, and network system

Publications (1)

Publication Number Publication Date
WO2018133402A1 true WO2018133402A1 (zh) 2018-07-26

Family

ID=62907732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097547 WO2018133402A1 (zh) 2017-01-22 2017-08-15 业务的传输方法、网络设备及网络系统

Country Status (4)

Country Link
US (1) US11223438B2 (zh)
EP (1) EP3565163B1 (zh)
CN (1) CN108347317B (zh)
WO (1) WO2018133402A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220247505A1 (en) * 2019-12-23 2022-08-04 Zte Corporation Method and apparatus for configuring synchronisation information, network device, and storage medium
EP3876443A4 (en) * 2018-11-02 2022-09-07 ZTE Corporation SERVICE TRANSMITTING METHOD AND APPARATUS, SERVICE RECEIVING METHOD AND APPARATUS, AND STORAGE SYSTEM AND MEDIUM
US12040981B2 (en) 2018-11-02 2024-07-16 Xi'an Zhongxing New Software Co., Ltd. Service receiving methods, device, system and storage medium

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586864B (zh) * 2017-09-28 2021-01-15 华为技术有限公司 数据传输方法、装置及系统
WO2019119388A1 (en) 2017-12-22 2019-06-27 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for configuring a flex ethernet node
CN110858790B (zh) * 2018-08-22 2022-08-02 中兴通讯股份有限公司 一种数据包的传输方法、装置、存储介质及电子装置
CN110932999A (zh) * 2018-09-20 2020-03-27 中国移动通信有限公司研究院 业务处理方法和设备
CN111294226B (zh) 2018-12-10 2023-05-09 华为技术有限公司 通信方法和装置
CN111314404B (zh) * 2018-12-12 2022-08-02 深圳市中兴微电子技术有限公司 一种基于FlexE的数据处理的方法及装置、设备及存储介质
CN111585778B (zh) 2019-02-19 2022-02-25 华为技术有限公司 一种灵活以太网通信方法及网络设备
CN111585779B (zh) * 2019-02-19 2021-10-15 华为技术有限公司 一种灵活以太网通信方法及网络设备
CN110266511B (zh) * 2019-04-11 2021-10-15 中国联合网络通信集团有限公司 带宽配置方法和装置
CN112532522B (zh) * 2019-09-19 2023-09-05 中兴通讯股份有限公司 一种业务路径的建立方法、装置、电子设备
CN113784437B (zh) * 2020-06-10 2023-09-26 烽火通信科技股份有限公司 一种FlexE承载小颗粒业务的实现方法和装置
CN114615142B (zh) * 2020-12-03 2023-06-09 烽火通信科技股份有限公司 一种业务处理的方法和装置
CN115243123A (zh) * 2021-04-23 2022-10-25 华为技术有限公司 确定时钟的方法、装置及存储介质
CN115883689A (zh) * 2021-09-23 2023-03-31 苏州盛科通信股份有限公司 码块传输方法、装置和存储介质
CN115622655B (zh) * 2022-12-14 2023-04-21 中国科学技术大学 一种频率自适应的时钟分发与同步方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102196321A (zh) * 2010-03-05 2011-09-21 华为技术有限公司 100ge数据在光传送网中的传送方法和数据发送装置
CN103533464A (zh) * 2013-09-13 2014-01-22 华为技术有限公司 迁移数据的方法和通信节点
CN103688499A (zh) * 2013-03-15 2014-03-26 华为技术有限公司 一种光通道数据单元odu业务传送装置和方法
CN103825668A (zh) * 2009-12-24 2014-05-28 华为技术有限公司 通用映射规程gmp映射方法、解映射方法及装置
US20170005949A1 (en) * 2015-06-30 2017-01-05 Ciena Corporation Flexible ethernet client multi-service and timing transparency systems and methods

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9100133B2 (en) * 2006-12-26 2015-08-04 Ciena Corporation Methods and systems for carrying synchronization over ethernet and optical transport network
CN101489157B (zh) * 2009-02-13 2011-06-08 华为技术有限公司 将业务复用映射到光通道传送单元的方法和装置
JP5461222B2 (ja) * 2010-02-18 2014-04-02 日本電信電話株式会社 クライアントクロック再生装置およびクライアントクロック再生方法
US9455795B2 (en) * 2013-04-11 2016-09-27 Nec Corporation Optical network switching using N:N transponder through time-domain multiplexing and burst mode access
CN105323053B (zh) * 2014-06-23 2019-11-05 中兴通讯股份有限公司 业务时钟透传的方法及装置
CN105871502B (zh) 2015-01-22 2020-01-03 华为技术有限公司 一种利用以太网信道传输业务信号的方法及通信设备
EP4060914A1 (en) * 2015-06-30 2022-09-21 Ciena Corporation Flexible ethernet systems and methods for time transfer
US10135760B2 (en) * 2015-06-30 2018-11-20 Ciena Corporation Flexible Ethernet chip-to-chip inteface systems and methods
US9853722B1 (en) * 2016-06-17 2017-12-26 Ciena Corporation Systems and methods for path protection switching due to client protection switching
US10200248B1 (en) * 2016-06-30 2019-02-05 Juniper Networks, Inc. Translating high-level configuration instructions to low-level device configuration
US9882634B1 (en) * 2016-09-20 2018-01-30 Ciena Corporation Coordinated connection validation systems and methods among mated transceivers for verifying optical and data plane connectivity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825668A (zh) * 2009-12-24 2014-05-28 华为技术有限公司 通用映射规程gmp映射方法、解映射方法及装置
CN102196321A (zh) * 2010-03-05 2011-09-21 华为技术有限公司 100ge数据在光传送网中的传送方法和数据发送装置
CN103688499A (zh) * 2013-03-15 2014-03-26 华为技术有限公司 一种光通道数据单元odu业务传送装置和方法
CN103533464A (zh) * 2013-09-13 2014-01-22 华为技术有限公司 迁移数据的方法和通信节点
US20170005949A1 (en) * 2015-06-30 2017-01-05 Ciena Corporation Flexible ethernet client multi-service and timing transparency systems and methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3565163A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3876443A4 (en) * 2018-11-02 2022-09-07 ZTE Corporation SERVICE TRANSMITTING METHOD AND APPARATUS, SERVICE RECEIVING METHOD AND APPARATUS, AND STORAGE SYSTEM AND MEDIUM
US12040981B2 (en) 2018-11-02 2024-07-16 Xi'an Zhongxing New Software Co., Ltd. Service receiving methods, device, system and storage medium
US20220247505A1 (en) * 2019-12-23 2022-08-04 Zte Corporation Method and apparatus for configuring synchronisation information, network device, and storage medium

Also Published As

Publication number Publication date
US20190342022A1 (en) 2019-11-07
EP3565163A1 (en) 2019-11-06
CN108347317B (zh) 2020-11-10
CN108347317A (zh) 2018-07-31
EP3565163A4 (en) 2019-12-11
US11223438B2 (en) 2022-01-11
EP3565163B1 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
WO2018133402A1 (zh) 业务的传输方法、网络设备及网络系统
KR100940959B1 (ko) 광 전송 시스템 내에 내장된 파이버 채널 거리 연장을 위한장치 및 방법
US7649910B1 (en) Clock synchronization and distribution over a legacy optical Ethernet network
CN107438028B (zh) 一种客户业务处理的方法和设备
US11552721B2 (en) Clock synchronization method and apparatus
US9025467B2 (en) Hitless protection for traffic received from 1+1 protecting line cards in high-speed switching systems
US11271668B2 (en) Data transmission methods, apparatuses, devices, and system
US7660330B1 (en) Clock synchronization and distribution over an optical Ethernet network
US20040202205A1 (en) Apparatus and method for aggregation and transportation of gigabit ethernet and other packet based data formats
WO2018228420A1 (zh) 一种传输网络系统、数据交换和传输方法、装置及设备
WO2021169289A1 (zh) 灵活以太网组的绑定方法、设备及计算机可读存储介质
US8166183B2 (en) Method and system for fast virtual concatenation setup in a communication network
EP2784957B1 (en) Data transport system, receiver and transmitter
JP2002514835A (ja) ジッタ転送のないハブポート
US10404375B2 (en) Method and apparatus for processing traffic in optical transport network
US7489710B2 (en) Stall need detection and associated stall mechanism for delay compensation in virtual concatenation applications
US7583599B1 (en) Transporting stream client signals via packet interface using GFP mapping
US20120140776A1 (en) Communication device and communication method
US11272270B1 (en) Networking switching devices and methods thereof
CN118055076A (zh) 一种报文处理方法、信息处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017893046

Country of ref document: EP

Effective date: 20190729