WO2018133223A1 - 悬置带状线带阻滤波器及其通信腔体器件 - Google Patents
悬置带状线带阻滤波器及其通信腔体器件 Download PDFInfo
- Publication number
- WO2018133223A1 WO2018133223A1 PCT/CN2017/080795 CN2017080795W WO2018133223A1 WO 2018133223 A1 WO2018133223 A1 WO 2018133223A1 CN 2017080795 W CN2017080795 W CN 2017080795W WO 2018133223 A1 WO2018133223 A1 WO 2018133223A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resonant
- cavity
- dielectric substrate
- column
- disk
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/207—Hollow waveguide filters
- H01P1/208—Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
Definitions
- the present invention relates to the field of communication radio frequency technology, and in particular to a suspension strip line rejection filter and a communication cavity device thereof.
- a band-stop filter is a filter that passes most of the frequency, but attenuates certain ranges of frequency components to very low levels.
- the band-stop filter has the characteristics of wide bandwidth, high suppression and low loss. It is widely used in communication and broadband services and is the core component of communication systems.
- the existing band-stop filter such as a suspended strip-line strip-resistance filter, has a large insertion loss; while the microstrip circuit board band-stop filter has a large volume and weight, and cannot achieve insertion loss and volume. compatible.
- the present invention provides the following technical solutions:
- a suspension strip line strip resistance filter comprising a cavity and a cover plate covered with the cavity; the cavity body is provided with a longitudinal cavity, and a connection is formed at each of the longitudinal ends of the cavity a port, a transmission line guide belt for electrically connecting the two connection ports is provided in the cavity;
- the longitudinal cavity is provided with at least two resonant cavities arranged in the longitudinal direction, each resonant cavity is provided with a resonant column, and the resonant cavity and the cover plate are disposed between a dielectric substrate electrically connected to the resonant column;
- the transmission line guide tape is disposed on a side of the dielectric substrate adjacent to the resonant cavity, and a resonant disk opposite to the transmission line conduction band is disposed above the dielectric substrate to achieve capacitive coupling, the resonant disk and the resonance Electrical contact of the column;
- a tuning screw is suspended on the cover plate corresponding to each of the resonant columns, and the tuning screw is non-contactly connected to the resonant column.
- the resonant disk is in electrical contact with the resonant column through a metallized hole on the dielectric substrate.
- the metallized hole is fixedly connected to the resonant disk.
- the resonant column is a linear resonant column.
- a metal separator is disposed between the resonant cavity and the resonant cavity.
- the resonant cavity is a coaxial resonant cavity.
- the resonant disk is a metal layer etched on the dielectric substrate.
- the resonant disk is any one or any of a disc shape, a bow shape, and a radial line.
- the resonant column is electrically connected to the bottom of the cavity.
- the present invention also provides a communication cavity device.
- the communication cavity device includes the above-described suspended strip line rejection filter.
- the suspended strip-shaped strip-resistance filter is provided with a dielectric substrate electrically connected to the resonant column between the resonant cavity and the cover plate, and the dielectric substrate is coupled to replace the air flat plate.
- Coupling achieving a larger coupling capacitance, is beneficial to the reduction of the filter volume and the increase in the stopband bandwidth.
- the dielectric plate coupling is more consistent and more conducive to processing and production.
- the resonant column used in the cavity of the suspended strip line rejection filter is a linear resonant column, which can significantly improve the Q value of the suspended strip line rejection filter, and improve the The suspension stripline band rejection filter suppresses the filter with a wider stopband bandwidth.
- the linear resonant column is small in size, light in weight, and low in production cost.
- the resonant cavity is a coaxial resonant cavity, which can significantly improve the Q value of the suspended stripline strip rejection filter, so that the stopband bandwidth is wider, and the implementation manner is more flexible.
- FIG. 1 is a perspective structural view of an embodiment of a suspended strip line resistance filter according to the present invention.
- Figure 2 is a schematic structural view of the longitudinal section of Figure 1;
- FIG. 3 is a schematic structural view of the lateral interface of FIG. 1;
- FIG. 4 is a perspective structural view of a dielectric substrate in the present invention.
- Figure 5 is a schematic rear view of Figure 4.
- FIG. 6 is a perspective structural view of another dielectric substrate according to the present invention, which mainly shows resonant disks of different shapes provided on a dielectric substrate.
- the present invention provides a suspended stripline strip stop filter 100.
- the suspension strip line rejection filter 100 can take into account the performance indexes such as insertion loss and volume, and has the characteristics of small volume, light weight, etc., and can realize small insertion loss, large power capacity, high Q value, pass band and stop band. Good performance with wide bandwidth.
- the suspended strip line rejection filter 100 has a simple structure and is advantageous for mass production.
- the suspension strip line rejection filter 100 includes a cavity 2 and a cover plate 1 attached to the cavity 2; the cavity 2 is provided with a longitudinal cavity 21 A connecting port 11 is formed at each of the two ends of the cavity 21 in the longitudinal direction, and a transmission line guide belt 6 for electrically connecting the two connecting ports 11 is disposed in the cavity 21.
- the cover plate 1 is fixedly connected to the cavity 2 by screws 7 to form a sealed space for signal transmission.
- the longitudinal cavity 21 is provided with at least two resonant cavities 3 arranged in the longitudinal direction.
- a metal partition 9 is disposed between the resonant cavity 3 and the resonant cavity 3, and the resonant cavity 3 is defined by a plurality of metal separators 9 disposed in parallel with the bottom plate and the side plates of the cavity 2.
- the metal separator 9 is a part of the resonant cavity 3 and divides between the resonant cavity 3 and the resonant cavity 3, thereby weakening the coupling of the adjacent resonant cavity 3 and improving the electrical performance of the filter.
- the resonant cavity 3 is a square cavity having the same length and the bottom side, so as to facilitate the discharge of the cavity, improve the space utilization, and optimize the spatial layout.
- the resonant cavity 3 is further preferably a coaxial resonant cavity, which constitutes a coaxial cavity resonator different from a conventional quarter-wave resonator, and has a higher Q value, a wider passband and a stopband bandwidth.
- the wide, implementation-oriented approach is more flexible and facilitates the design and layout of space utilization.
- a resonant column 4 is disposed in each of the resonant cavities 3.
- the resonant column 4 is a linear resonant column, which can significantly increase the Q value of the resonant cavity, thereby improving the suppression of the suspended stripline filter 100.
- the linear resonant column is small in size, light in weight, and low in production cost.
- the resonant columns 4 are the same size, facilitating the spatial layout within the phase shifter.
- the cover plate 1 is provided with a mounting hole (not labeled, audible) for accommodating the tuning screw 10, the mounting hole is opened corresponding to each of the resonant columns 4, and the tuning screw 10 passes through Mounting holes on the cover plate 1 are correspondingly suspended on each of the resonant columns 4, and the tuning screw 10 and the resonant column 4 are always in a non-contact connection.
- the tuning screw 10 By adjusting the tuning screw 10, adjustment of the resonant frequency of the resonator formed by the resonant cavity 3 and the resonant column 4 can be achieved, thereby controlling the resonant frequency of the resonator within the stopband band.
- a dielectric substrate 5 electrically connected to the resonant column 4 is disposed between the resonant cavity 3 and the cover plate 1 .
- the dielectric substrate 5 is fixedly suspended above the resonant cavity 3, and replaces the traditional air plate to achieve capacitive coupling, which can realize a larger coupling capacitance and a wider stopband bandwidth, thereby reducing the volume of the filter.
- the dielectric substrate 5 has better coupling consistency and is advantageous for production processing.
- the cavity 2 may be provided with a limiting structure (not shown, the same below) for controlling the dielectric substrate 5 to be suspended above the resonant cavity 3.
- the dielectric substrate 5 is provided with a threaded hole (not shown, the same below).
- the screw 7 passes through the mounting hole on the cover plate 1. Screwing into the threaded hole, screwing with the receiving hole (not shown, the same below) on the cavity 2, fixing the cover plate 1 to the cavity 2, and fixing the dielectric substrate 5 at the same time
- the cavity 2 is on the limiting structure.
- the resonant cavity 3 and the resonant column 4 constitute a resonator.
- the resonant column 4 forms a capacitance between the cover plate 1 and the dielectric substrate 5, and the capacitance is an equivalent capacitance of the resonator; and the electrical connection with the bottom of the cavity 2 is
- the resonant column 4 forms an inductance which is the equivalent inductance of the resonator.
- the transmission line guide tape 6 is laid on the dielectric substrate 5 near the resonant cavity. 3 sides.
- the transmission line conduction band 6 is a suspended microstrip line having a characteristic impedance of 50 ohms or more, which helps the suspension strip line rejection filter 100 to achieve good insertion loss and larger power capacity. performance.
- a resonant disk 8 is disposed above the dielectric substrate 5 opposite to the transmission line conduction band 6 to achieve capacitive coupling, and the resonant disk 8 is in electrical contact with the resonant column 4 .
- the facing area between the resonant disk 8 and the transmission line conduction band 6 can be selected according to the size of the coupling capacitance.
- the resonant disk 8 is electrically contacted with the resonant column 4 through a metallized hole 51 on the dielectric substrate 5, and the metallized hole 51 is fixedly connected to the resonant disk 8 and can be fixed by soldering or screwing. The way to make a fixed connection.
- the resonant disk 8 is a metal layer etched on the dielectric substrate 5.
- the region where the resonant disk 8 is fixed to the dielectric substrate 5 is flexibly changed by the metal layer etched on the dielectric substrate 5, and the stop band bandwidth of the suspended stripline resistance filter 100 is more easily widened.
- the resonant column 4 can be in electrical contact with the resonant disk 8 at the bottom of the dielectric substrate 5, that is, the resonant column 4 is fixed to the dielectric substrate 5 by soldering or screwing.
- the resonant disk 8 is any one or any of a disc shape, a bow shape, and a radial line. It can be understood that the resonant disk 8 employed in the suspended strip-line rejection filter 100 is not limited to a fixed shape, and it is possible to simultaneously use the resonant disk 8 of various shapes. The resonant disk 8 is not limited to any shape, and the selection of the shape of the resonant disk 8 is preferably selected in accordance with the resonant frequency of time, the coupling capacitance, and the stop band bandwidth of the suspended strip line rejection filter 100.
- the present invention also provides a communication cavity device.
- the communication cavity device includes the above-described suspended strip line rejection filter 100.
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
本发明提供一种悬置带状线带阻滤波器。该悬置带状线带阻滤波包括腔体及与腔体相盖装的盖板;所述腔体内设有纵长型空腔,所述纵长型空腔内沿纵长方向设有至少两个依次排布的谐振腔,每个谐振腔均设置有谐振柱,所述谐振腔与所述盖板之间设有与所述谐振柱电性连接的介质基板;所述介质基板靠近所述谐振腔一侧铺设有传输线导带,所述介质基板上方设有与所述传输线导带重合相对以实现电容耦合的谐振盘,所述谐振盘与所述谐振柱电接触。所述悬置带状线带阻滤波器能实现阻带带宽宽、抑制度高、Q值高、插损小等良好性能,同时兼顾体积小、重量轻等特点。此外,本发明还提供了一种应用该悬置带状线带阻滤波器的通信腔体器件。
Description
本发明涉及通信射频技术领域,具体而言,本发明涉及一种悬置带状线带阻滤波器及其通信腔体器件。
带阻滤波器是指能通过大多数频率份量,但将某些范围的频率分量衰减到极低水平的滤波器。带阻滤波器具有带宽宽、抑制度高、损耗低的特点,广泛应用于通信和宽带业务领域中,是通信系统的核心部件。
现有的带阻滤波器,如悬置带状线带阻滤波器,插损比较大;而微带线路板带阻滤波器,则体积和重量比较大,无法实现插损与体积等指标的兼容。
因此,业内亟需一种能解决上述至少一个问题的技术方案。
发明内容
本发明的目的旨在提供一种悬置带状线带阻滤波器及其通信腔体器件。
为了实现上述目的,本发明提供以下技术方案:
一种悬置带状线带阻滤波器,包括腔体及与腔体相盖装的盖板;所述腔体内设有纵长型空腔,于空腔纵长方向两端分别形成有连接端口,空腔内设有用于实现两个连接端口的电性连接的传输线导带;
所述纵长型空腔内沿纵长方向设有至少两个依次排布的谐振腔,每个谐振腔均设置有谐振柱,所述谐振腔与所述盖板之间设有与所述谐振柱电性连接的介质基板;
所述传输线导带铺设于所述介质基板靠近所述谐振腔一侧,所述介质基板上方设有与所述传输线导带重合相对以实现电容耦合的谐振盘,所述谐振盘与所述谐振柱电接触;
所述盖板上对应每个谐振柱悬置有调谐螺杆,所述调谐螺杆与所述谐振柱非接触连接。
具体地,所述谐振盘通过介质基板上的金属化孔与所述谐振柱电接触。
具体地,所述金属化孔与所述谐振盘固定连接。
具体地,所述谐振柱为线状谐振柱。
具体地,所述谐振腔与谐振腔之间设有金属隔板。
具体地,所述谐振腔为同轴谐振腔。
具体地,所述谐振盘为刻蚀于介质基板上的金属层。
具体地,所述谐振盘为圆盘形、蝴蝶结形、放射状线中的任意一种或任意多种。
具体地,所述谐振柱与所述腔体底部电性连接。
同时,本发明还提供了一种通信腔体器件。该通信腔体器件包括上述悬置带状线带阻滤波器。
相比现有技术,本发明的方案具有以下优点:
1.本发明中,所述悬置带状线带阻滤波器在所述谐振腔与所述盖板之间设有与所述谐振柱电性连接的介质基板,用介质基板耦合代替空气平板耦合,实现更大的耦合电容,有利于滤波器体积的减少,阻带带宽增加。此外,介质平板耦合一致性更好,更利于加工生产。
2.本发明中,所述悬置带状线带阻滤波器的谐振腔所采用的谐振柱为线状谐振柱,可以明显提高悬置带状线带阻滤波器的Q值,改善所述悬置带状线带阻滤波器抑制度,使得滤波器的阻带带宽更宽。同时,所述线状谐振柱体积小、重量轻,生产成本低。
3.本发明中,所述谐振腔为同轴谐振腔,可以明显提高悬置带状线带阻滤波器的Q值使得阻带带宽更宽,实现方式更为灵活。
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明中一种悬置带状线带阻滤波器的一种实施例的立体结构图;
图2为图1的纵向截面的结构示意图;
图3为图1的横向界面的结构示意图;
图4为本发明中一种介质基板的立体结构图;
图5为图4的背面示意图;
图6为本发明中另一种介质基板的立体结构图,其主要示出了设于介质基板上的不同形状的谐振盘。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
如图1所示,本发明提供了一种悬置带状线带阻滤波器100。该悬置带状线带阻滤波器100能兼顾插损与体积等性能指标,具有体积小、重量轻等特点,同时能实现插损小、功率容量大、Q值高、通带和阻带带宽宽的良好性能。此外,该悬置带状线带阻滤波器100的结构简单,有利于批量生产。
另结合图2、图3,该悬置带状线带阻滤波器100包括腔体2及与腔体2相盖装的盖板1;所述腔体2内设有纵长型空腔21,于空腔21纵长方向两端分别形成有连接端口11,空腔21内设有用于实现两个连接端口11的电性连接的传输线导带6。所述盖板1通过螺钉7与所述腔体2固定连接,以形成信号传输的密闭空间。
所述纵长型空腔21内沿纵长方向设有至少两个依次排布的谐振腔3。所述谐振腔3与谐振腔3之间设有金属隔板9,并且所述谐振腔3由多个平行设置的金属隔板9与腔体2底板和侧板连接限定而出。其中,所述金属隔板9作为谐振腔3的一部分并对所述谐振腔3与谐振腔3之间进行分割,尽量减弱了相邻谐振腔3的耦合,提高滤波器的电气性能。优选地,
所述谐振腔3为底面边长相等的方腔,以便于排腔,提高空间利用率,优化空间布局。此外,所述谐振腔3进一步优选为同轴谐振腔,其所构成的同轴腔体谐振器不同于传统的四分之一波长谐振器,其Q值更高、通带和阻带带宽更宽,实现的方式更为灵活,有利于空间利用的设计和布局。
此外,每个所述谐振腔3内设有谐振柱4。所述谐振柱4为线状谐振柱,可以明显提高谐振腔的Q值,从而提高悬置带状线滤波器100的抑制度。同时,所述线状谐振柱体积小、重量轻,生产成本低。优选地,所述谐振柱4的大小相同,有利于移相器内的空间布局。
对应地,所述盖板1上设有容置调谐螺杆10穿过的安装孔(未标示,瞎听),所述安装孔对应所述每个谐振柱4开设,所述调谐螺杆10穿过所述盖板1上的安装孔对应悬置在每个谐振柱4上,所述调谐螺杆10与所述谐振柱4始终保持非接触连接。通过调节所述调谐螺杆10,可实现对谐振腔3和谐振柱4所构成的谐振器的谐振频率的调节,从而将该谐振器的谐振频率控制在阻带频段内。
请继续结合图2、图3,所述谐振腔3与所述盖板1之间设有与所述谐振柱4电性连接的介质基板5。所述介质基板5固定悬置于所述谐振腔3的上方,其代替传统的空气平板实现容性耦合,能实现更大的耦合电容和更宽的阻带带宽,有利于减少滤波器的体积。此外,所述介质基板5耦合一致性更好,有利于生产加工。
所述腔体2上可设有限位结构(未标示,下同),用于控制介质基板5悬置于所述谐振腔3上方。同时,所述介质基板5上开有螺纹孔(未标示,下同),所述盖板1与所述腔体2通过螺钉进行固定连接时,所述螺钉7通过盖板1上的安装孔,旋入螺纹孔,与腔体2上的容置孔(未标示,下同)螺纹连接,将所述盖板1与所述腔体2固定连接的同时,将所述介质基板5固定在所述腔体2的限位结构上。如上所述,所述谐振腔3和谐振柱4构成谐振器。而所述谐振柱4与所述盖板1、所述介质基板5三者间形成电容,该电容为所述谐振器的等效电容;而与所述腔体2底部电性连接的所述谐振柱4形成电感,该电感为所述谐振器的等效电感。
更具体地,所述传输线导带6铺设于所述介质基板5靠近所述谐振腔
3一侧。所述传输线导带6为特征阻抗为大于或等于50欧姆的悬置微带线,其有助于使所述悬置带状线带阻滤波器100实现插损小、功率容量更大的良好性能。
请结合图4至图6,进一步地,所述介质基板5上方设有与所述传输线导带6重合相对以实现电容耦合的谐振盘8,所述谐振盘8与所述谐振柱4电接触。所述谐振盘8与所述传输线导带6之间的正对面积,可根据耦合电容的大小进行选择。优选地,所述谐振盘8通过介质基板5上的金属化孔51与所述谐振柱4电接触,此时所述金属化孔51与所述谐振盘8固定连接,可以使用焊接或螺钉固定的方式进行固定接连。
更进一步地,所述谐振盘8为刻蚀于介质基板5上的金属层。所述谐振盘8与介质基板5固定的区域通过刻蚀于介质基板5的金属层进行灵活改变,更易拓宽悬置带状线带阻滤波器100的阻带带宽。在这种情形下,所述谐振柱4可与介质基板5底部的谐振盘8进行电接触,亦即谐振柱4采用焊接或螺钉固定的方式固定于介质基板5上。
请继续结合图4和图6,所述谐振盘8为圆盘形、蝴蝶结形、放射状线中的任意一种或任意多种。可以理解的是,所述悬置带状线带阻滤波器100所采用的谐振盘8并不局限于一种固定的形状,其可以同时采用多种形状的谐振盘8。所述谐振盘8不局限于任何形状,所述谐振盘8的形状的选择根据时间的谐振频率、耦合电容和悬置带状线带阻滤波器100的阻带带宽择优选择。
同时,本发明还提供了一种通信腔体器件。该通信腔体器件包括上述悬置带状线带阻滤波器100。
以上所述仅是本发明的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (10)
- 一种悬置带状线带阻滤波器,包括腔体及与腔体相盖装的盖板;所述腔体内设有纵长型空腔,于空腔纵长方向两端分别形成有连接端口,空腔内设有用于实现两个连接端口的电性连接的传输线导带,其特征在于:所述纵长型空腔内沿纵长方向设有至少两个依次排布的谐振腔,每个谐振腔均设置有谐振柱,所述谐振腔与所述盖板之间设有与所述谐振柱电性连接的介质基板;所述传输线导带铺设于所述介质基板靠近所述谐振腔一侧,所述介质基板远离谐振腔一侧设有与所述传输线导带重合相对以实现电容耦合的谐振盘,所述谐振盘与所述谐振柱电接触;所述盖板上对应每个谐振柱悬置有调谐螺杆,所述调谐螺杆与所述谐振柱非接触连接。
- 根据权利要求1所述的悬置带状线带阻滤波器,其特征在于,所述谐振盘通过介质基板上的金属化孔与所述谐振柱电接触。
- 根据权利要求2所述的悬置带状线带阻滤波器,其特征在于,所述金属化孔与所述谐振盘固定连接。
- 根据权利要求1所述的悬置带状线带阻滤波器,其特征在于,所述谐振柱为线状谐振柱,其一端固定于谐振腔底部,另一端固定在介质基板上。
- 根据权利要求1所述的悬置带状线带阻滤波器,其特征在于,所述谐振腔与谐振腔之间设有金属隔板,所述谐振腔为同轴谐振腔。
- 根据权利要求1所述的悬置带状线带阻滤波器,其特征在于,所述谐振盘为刻蚀于介质基板上的金属层。
- 根据权利要求1所述的悬置带状线带阻滤波器,其特征在于,所述谐振盘为圆盘形、蝴蝶结形、放射状线中的任意一种或任意多种。
- 根据权利要求1所述的悬置带状线带阻滤波器,其特征在于,所述谐振柱与所述腔体底部电性连接。
- 根据权利要求1所述的悬置带状线带阻滤波器,其特征在于,所述 谐振盘与传输线导带的正对面积可根据耦合电容大小进行选择设置。
- 一种通信腔体器件,其特征在于,包括权利要求1至9中任意一项所述的悬置带状线带阻滤波器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710045995.7 | 2017-01-22 | ||
CN201710045995.7A CN107046157B (zh) | 2017-01-22 | 2017-01-22 | 悬置带状线带阻滤波器及其通信腔体器件 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018133223A1 true WO2018133223A1 (zh) | 2018-07-26 |
Family
ID=59543589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/080795 WO2018133223A1 (zh) | 2017-01-22 | 2017-04-17 | 悬置带状线带阻滤波器及其通信腔体器件 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107046157B (zh) |
WO (1) | WO2018133223A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102040689B1 (ko) * | 2018-03-09 | 2019-11-05 | 주식회사 이엠따블유 | 캐비티 필터 |
CN108336465B (zh) * | 2018-03-29 | 2020-06-16 | 中国电子科技集团公司第三十六研究所 | 一种微带结合带状线结构的定向耦合器及其组装方法 |
CN110011010B (zh) * | 2019-04-28 | 2024-05-10 | 重庆思睿创瓷电科技有限公司 | 用于低通滤波器的带状线结构、低通滤波器、通信装置及系统 |
WO2021081769A1 (zh) * | 2019-10-29 | 2021-05-06 | 华为技术有限公司 | 一种腔体滤波器及电磁波设备 |
CN113992176A (zh) * | 2020-07-09 | 2022-01-28 | 大富科技(安徽)股份有限公司 | 滤波器及通信设备 |
KR102320094B1 (ko) * | 2021-07-15 | 2021-11-02 | (주)웨이브텍 | 노치구조를 구비한 캐비티 타입 무선 주파수 필터 |
CN113782929B (zh) * | 2021-07-26 | 2022-08-05 | 深圳市数创众泰科技有限公司 | 一种带阻滤波器 |
CN114188684B (zh) * | 2021-12-27 | 2022-10-21 | 井冈山大学 | 一种宽阻带的小型介质加载滤波器 |
CN114284663A (zh) * | 2022-02-10 | 2022-04-05 | 深圳国人科技股份有限公司 | 一种5g带阻腔体滤波器 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012004818A1 (en) * | 2010-07-09 | 2012-01-12 | Politecnico Di Milano | Waveguide band-pass filter with pseudo-elliptic response |
CN104752797A (zh) * | 2015-03-31 | 2015-07-01 | 华为技术有限公司 | 一种微带线路板及带阻滤波器 |
CN105958164A (zh) * | 2016-06-24 | 2016-09-21 | 西安电子科技大学 | 悬置带线交叉耦合带通滤波器 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5373270A (en) * | 1993-12-06 | 1994-12-13 | Radio Frequency Systems, Inc. | Multi-cavity dielectric filter |
CN201134487Y (zh) * | 2007-12-27 | 2008-10-15 | 奥雷通光通讯设备(上海)有限公司 | 用于wimax通信系统的带阻滤波器 |
CN102354782B (zh) * | 2011-09-20 | 2014-05-21 | 电子科技大学 | 采用电容加载传输线的带阻滤波器 |
CN206532856U (zh) * | 2017-01-22 | 2017-09-29 | 京信通信系统(中国)有限公司 | 悬置带状线带阻滤波器及其通信腔体器件 |
-
2017
- 2017-01-22 CN CN201710045995.7A patent/CN107046157B/zh active Active
- 2017-04-17 WO PCT/CN2017/080795 patent/WO2018133223A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012004818A1 (en) * | 2010-07-09 | 2012-01-12 | Politecnico Di Milano | Waveguide band-pass filter with pseudo-elliptic response |
CN104752797A (zh) * | 2015-03-31 | 2015-07-01 | 华为技术有限公司 | 一种微带线路板及带阻滤波器 |
CN105958164A (zh) * | 2016-06-24 | 2016-09-21 | 西安电子科技大学 | 悬置带线交叉耦合带通滤波器 |
Also Published As
Publication number | Publication date |
---|---|
CN107046157B (zh) | 2019-09-06 |
CN107046157A (zh) | 2017-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018133223A1 (zh) | 悬置带状线带阻滤波器及其通信腔体器件 | |
US11158924B2 (en) | LTCC wide stopband filtering balun based on discriminating coupling | |
WO2014108934A1 (en) | Wideband transition between a planar transmission line and a waveguide | |
EP3367496B1 (en) | Filter unit and filter | |
WO2018107633A1 (zh) | 高性能带阻滤波器及其通信腔体器件 | |
WO2020173243A1 (zh) | 一种传输零点可控的基片集成波导滤波器 | |
CN110797614B (zh) | 一种具有高次模抑制的小型化基片集成波导滤波器 | |
US11223094B2 (en) | Filters having resonators with negative coupling | |
CN109273807A (zh) | 一种新型的高性能宽带四功分滤波器 | |
US10673111B2 (en) | Filtering unit and filter | |
CN207834540U (zh) | 一种结构型多阶谐振带通滤波器 | |
CN106532201A (zh) | 基于环形谐振器的小型化宽阻带双模平衡带通滤波器 | |
JP5550733B2 (ja) | 同軸共振器ならびにそれを用いた誘電体フィルタ,無線通信モジュールおよび無線通信機器 | |
CN206532856U (zh) | 悬置带状线带阻滤波器及其通信腔体器件 | |
CN113506962B (zh) | 陷波可调谐振结构及小型片式介质滤波器 | |
JPH0255402A (ja) | 誘電体フィルタ | |
CN113224488B (zh) | 一种宽阻带基片集成波导滤波功分器 | |
CN111478000B (zh) | 一种采用双层圆形贴片的多零点带通平衡滤波器 | |
US10944144B2 (en) | Low loss radio frequency transmission lines and devices including such transmission lines | |
CN206282952U (zh) | 高性能带阻滤波器及其通信腔体器件 | |
JP6080538B2 (ja) | フィルタ回路 | |
US11955682B2 (en) | CWG filter, and RU, AU or BS having the same | |
CN110190369B (zh) | 基于共面波导的宽阻带微波滤波器 | |
TWI433457B (zh) | Adjustable filter device | |
GB2530173A (en) | Resonator filter assembly and method of manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17892135 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 21.11.2019) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17892135 Country of ref document: EP Kind code of ref document: A1 |