WO2018133173A1 - 数据传输方法及装置 - Google Patents

数据传输方法及装置 Download PDF

Info

Publication number
WO2018133173A1
WO2018133173A1 PCT/CN2017/075046 CN2017075046W WO2018133173A1 WO 2018133173 A1 WO2018133173 A1 WO 2018133173A1 CN 2017075046 W CN2017075046 W CN 2017075046W WO 2018133173 A1 WO2018133173 A1 WO 2018133173A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
transmission
resource set
particles
data
Prior art date
Application number
PCT/CN2017/075046
Other languages
English (en)
French (fr)
Inventor
孙彦良
刘斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to AU2017394052A priority Critical patent/AU2017394052B2/en
Priority to EP17892119.3A priority patent/EP3565155B1/en
Priority to CN201780009971.4A priority patent/CN108604950B/zh
Priority to CA3051144A priority patent/CA3051144C/en
Priority to US16/480,170 priority patent/US11223453B2/en
Publication of WO2018133173A1 publication Critical patent/WO2018133173A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0606Space-frequency coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0643Properties of the code block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0668Orthogonal systems, e.g. using Alamouti codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a data transmission method and apparatus.
  • LTE Long Term Evolution
  • R14 defines an open-loop full-dimension multi-antenna (open-loop-FD-MIMO) scheme for high-speed motion scenarios.
  • SFBC spatial frequency block coding
  • PRB physical resource block
  • a reference signal can be used.
  • DMRS downlink demodulation reference signal
  • CSI-RS channel state information reference signal
  • RE resource element
  • the LTE R10 is for isolated resource particles brought by the 2-port CSI-RS, and the terminal first determines whether the current orthogonal frequency division multiplexing (OFDM) symbol in the physical resource block is used, and is in the physical resource.
  • OFDM orthogonal frequency division multiplexing
  • the scheduled PRB includes CSI-RS and DMRS, so there are coexistence of two kinds of RSs.
  • the SFBC pairing rule is unchanged, the location of the isolated resource particles is more complicated, the number and frequency of occurrence are also significantly increased, and the possibility of discarding the entire OFDM symbol is greater.
  • the embodiment of the present application provides a data transmission method and apparatus, which solves the problem that the OFDM symbol including the isolated resource particles is discarded in the LTE R14, causing waste of resources.
  • the first aspect of the present application provides a data transmission method, which is applicable to a first device and a second device based on an LTE standard in a communication system, where the first device may be a base station or a terminal, and correspondingly, the second device is optional.
  • the method includes:
  • the first device Determining, by the first device, a first resource set and a second resource set in the first transmission subframe, where the first resource set is that all resource particles used for data transmission in the first transmission subframe are paired according to a first pairing rule a remaining set of resource particles, the second set of resources being based on all resource particles used for data transmission in the first transmission subframe
  • the first pairing rule completes the paired resource particle set
  • the first device sends data to the second device by using the first transmission subframe or receives data sent by the second device on the first transmission subframe according to the determined data transmission manner.
  • the first device can determine the locations of the first resource set and the second resource set on the first transmission subframe, and determine data transmission manners on different resource sets, respectively, to ensure that the SFBC transmission is in the hybrid reference.
  • the physical layer resources on the first transmission subframe can be utilized to the greatest extent, thereby avoiding waste of resources.
  • the transmission mode on the second resource set is a transmit diversity transmission of a space frequency block code
  • the first device determines that the transmission mode on the first resource set is no transmission data or space time block code transmission.
  • different data transmission modes are respectively determined on different resource combinations, and the physical layer resources can be utilized to the maximum extent under the premise of satisfying the SFBC mapping rule, thereby avoiding resource waste.
  • the first pairing rule includes: two paired resource particles belong to the same time domain unit, the same frequency domain unit, and a maximum of three subcarriers;
  • the frequency domain unit includes: a frequency domain width of one or more physical resource blocks, where the time domain unit includes: one or more OFDM symbols.
  • the determining, by the first device, the first resource set and the second resource set in the first transmission subframe include:
  • the first device determines the kth sub The carrier and the resource particles for mapping the data channel on the k+nth subcarrier belong to the second resource set, wherein the n is a positive integer less than 3, and the k is used for mapping the data channel. a sequence number of a subcarrier corresponding to the resource particle, where k is a positive integer greater than or equal to 1;
  • the technical solution can accurately divide all resource particles in the first transmission subframe into a first resource set and a second resource set, which lays a foundation for accurate transmission of subsequent data.
  • the method further includes:
  • the first device After the determining, by the first device, all the resource particles in all the time domain units in the preset frequency domain unit in the first transmission subframe, the first device performs each of the preset frequency domain units.
  • the determination result of the resource particle is copied to other frequency domain units in the first transmission subframe;
  • the frequency domain unit in the first transmission subframe satisfies the following two conditions: the configuration of the demodulation reference signal and the channel state information reference signal in each frequency domain unit is the same, and the precoding matrix of the demodulation reference signal is the same.
  • the method can greatly reduce the judgment complexity of the first device, improve the determination speed, and has high efficiency.
  • the determining, by the first device, the first resource set and the second resource set in the first transmission subframe include:
  • the resource ensemble includes multiple resource subsets, each resource subset includes one or more resource particles, and each resource The particle has a unique identification number;
  • the first device configures one or more resource subsets included in the first configuration instruction as the first resource set, and all resource particles used for data transmission in the first transmission subframe A set of all resource particles except the first resource set is configured as the second resource set.
  • the first device of the technical solution can determine the first resource set and the second resource set in the first transmission subframe, which lays a foundation for subsequently determining the data transmission method and realizing accurate data transmission.
  • the determining, by the first device, the first resource set and the second resource set in the first transmission subframe include:
  • the first device configures one or more resource subsets included in the first configuration instruction as the first resource set, and all resource particles used for data transmission in the first transmission subframe A set of all resource particles except the first resource set is configured as the second resource set.
  • the first device can also accurately determine the first resource set and the second resource set in the first transmission subframe, which lays a foundation for determining the data transmission method and realizing accurate data transmission.
  • the first device determines that the transmission mode on the second resource set is a transmit diversity transmission of a space frequency block code, including:
  • the first device maps the transmission symbols encoded by the space frequency block code on each of the plurality of antenna ports to the physical resources, the first device sequentially maps to all the resource particles in the second resource set.
  • the first device determines that the transmission mode on the first resource set is non-transmission data or space-time block code transmission, including:
  • the first device Determining, by the first device, that all resource particles on the first resource set do not perform mapping of any transmission symbols or the first device sequentially transmits a space-time block code encoded on each of the plurality of antenna ports The symbol is mapped to all resource particles in the first set of resources.
  • a second aspect of the embodiments of the present application provides a data transmission apparatus, which is integrated in a first device, where the apparatus includes:
  • a processing module configured to determine a first resource set and a second resource set in the first transmission subframe, where the first resource set is based on the first pairing of all resource particles used for data transmission in the first transmission subframe a resource resource set remaining after the rule pairing, where the second resource set is a resource particle set that is completed by the resource particles for data transmission in the first transmission subframe based on the first pairing rule;
  • the processing module is further configured to determine a data transmission side on the first resource set and the second resource set formula
  • transceiver module configured to send data to the second device by using the first transmission subframe or receive data sent by the second device on the first transmission subframe according to the determined data transmission manner.
  • the determining, by the processing module, determining that the transmission mode on the second resource set is a space frequency block code Transmit diversity transmission determining that the transmission mode on the first resource set is no transmission data or space time block code transmission.
  • the first pairing rule includes: two paired resource particles belong to the same time domain unit, the same frequency domain unit, and a maximum of three subcarriers;
  • the frequency domain unit includes: a frequency domain width of one or more physical resource blocks, where the time domain unit includes: one or more OFDM symbols.
  • the processing module when the determining, by the processing module, the first resource set and the second resource set in the first transmission subframe, specifically determining, in a preset order, all the data transmissions in the first transmission subframe Whether the resource particles satisfy the first pairing rule, and the resource particles for mapping the data channel on the kth subcarrier and the resource particles for mapping the data channel on the k+n subcarriers satisfy the first pairing rule Determining, that the resource particles for mapping the data channel on the kth subcarrier and the k+n subcarriers belong to the second resource set, and determining that all data in the first transmission subframe is used for data transmission
  • the set of all resource particles except the second resource set in the resource particle is the first resource set;
  • n is a positive integer less than 3
  • the k is a sequence number of a subcarrier corresponding to a resource particle used for mapping a data channel
  • the k is a positive integer greater than or equal to 1.
  • the processing module is further configured to: in the preset frequency domain unit, complete all in the first transmission subframe After determining the resource particles in the time domain unit, copying the determination result of each resource particle in the preset frequency domain unit to other frequency domain units in the first transmission subframe;
  • the frequency domain unit in the first transmission subframe satisfies the following two conditions: the configuration of the demodulation reference signal and the channel state information reference signal in each frequency domain unit is the same, and the precoding matrix of the demodulation reference signal is the same.
  • each resource subset includes one or more resource particles, and each resource particle has a unique identification sequence number
  • receives the first configuration signaling sent by the second device The first configuration signaling includes an identifier number of one or more resource subsets, and configures one or more resource subsets included in the first configuration instruction as the first resource set, where the first A set of all resource particles except for the first resource set among all resource particles for data transmission in a transmission subframe is configured as the second resource set.
  • the processing module when the determining, by the processing module, the first resource set and the second resource set in the first transmission subframe, the processing module is configured to receive the second configuration signaling sent by the second device, where the second configuration The instruction is used to indicate a corpus of resources, and according to the second configuration instruction, a resource ensemble is determined in the first transmission subframe, where the resource ensemble includes multiple resource subsets, and each resource subset includes 1 One or more resource particles, each resource particle having a unique identification sequence number, and receiving the first configuration signaling sent by the second device, where the first configuration signaling includes one or more resource subsets
  • the identification sequence number, the one or more resource subsets included in the first configuration instruction are configured as the first resource set, and all resource particles used for data transmission in the first transmission subframe are excluded.
  • the first capital A collection of all resource particles other than the source set is configured as the second resource set.
  • the processing module when determining that the transmission mode on the second resource set is a transmit diversity transmission of a space frequency block code, is configured to pass a space frequency block code on each antenna port of the multiple antenna ports.
  • the encoded transmission symbols are mapped to physical resources, they are sequentially mapped to all resource particles in the second resource set.
  • the processing module when the determining, by the processing module, that the transmission mode on the first resource set is not transmitting data or space-time block code transmission, specifically determining that all resource particles on the first resource set do not perform any Mapping of the transmitted symbols or the first device sequentially maps the transmitted symbols encoded by the space time block code on each of the plurality of antenna ports onto all of the resource particles in the first set of resources.
  • a third aspect of the embodiments of the present application provides a data transmission apparatus, where the apparatus includes a processor and a memory, the memory is used to store a program, and the processor calls a program stored in the memory to execute the method provided by the first aspect of the embodiment of the present application.
  • a fourth aspect of embodiments of the present application provides a data transmission apparatus comprising at least one processing element (or chip) for performing the method provided by the above first aspect.
  • a fifth aspect of the embodiments of the present application provides a communication system, where the system includes a first device and a second device, where the first device is integrated in the data transmission device of the foregoing aspect, the first device and the second device Data transfer between devices.
  • a sixth aspect of the embodiments of the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • a seventh aspect of the embodiments of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the above aspects.
  • the first device determines a first resource set and a second resource set in the first transmission subframe, where the first resource set is based on all the resource particles used for data transmission in the first transmission subframe. a set of resource particles remaining after the pairing rule is paired.
  • the second resource set is a resource particle set for all resource fragments for data transmission in the first transmission subframe based on the first pairing rule, and the first device determines the first resource set and a data transmission manner on the second resource set, and transmitting data to the second device by using the first transmission subframe or receiving data sent by the second device on the first transmission subframe according to the determined data transmission manner, so that the In the SFBC transmission, when the hybrid reference signal configuration is adopted, the physical layer resources on the first transmission subframe can be utilized to the greatest extent, and resource waste is avoided.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram showing the location of isolated resource particles that appear when only DMRS is configured in the PRB;
  • FIG. 3 is an RE pairing rule of SFBC in LTE R10;
  • Figure 4 is a schematic diagram showing the distribution of ambiguity in isolated resource particles
  • FIG. 5 is a schematic flowchart diagram of Embodiment 1 of a data transmission method according to the present application.
  • FIG. 6 is a schematic flowchart of Embodiment 2 of a data transmission method provided by the present application.
  • FIG. 7 is a schematic flowchart of a first device confirming a first resource set and a second resource set
  • FIG. 8 is a schematic diagram of a determination result of an isolated RE included in the first resource set in FIG. 7;
  • FIG. 9 is a schematic flowchart diagram of Embodiment 3 of a data transmission method according to the present application.
  • Figure 10 is a first resource set and a second resource set determined by the method of the embodiment shown in Figure 9;
  • FIG. 11 is a schematic flowchart diagram of Embodiment 4 of a data transmission method according to the present application.
  • Figure 12 is a first resource set and a second resource set determined by the method of the embodiment shown in Figure 11;
  • FIG. 13 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of still another data transmission apparatus according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • the communication system provided in this embodiment includes: a network device 11 and a terminal device 12.
  • the communication system may be an LTE communication system, or may be other communication systems in the future, and is not limited herein.
  • the data transmission method provided by the embodiment of the present application is applied to data transmission between the network device 11 and the terminal device 12 in the communication system shown in FIG. 1, and it should be understood that it may be the downlink of the network device 11 transmitting data to the terminal device 12.
  • the network device 11 can also receive the uplink transmission of the data information sent by the terminal device 12, and the specific form is determined according to actual needs, which is not limited herein.
  • the communications system may also include other network entities, such as a network controller, a mobility management entity, and the like.
  • network entities such as a network controller, a mobility management entity, and the like.
  • the embodiment of the present application is not limited thereto.
  • the communication system used in the embodiments of the present application may be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, or a wideband code division multiple access (wideband code division multiple access).
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • OFDM orthogonal frequency division multiplexing
  • the network device 11 involved in the embodiment of the present application can be used to provide the terminal device 12 with a wireless communication function.
  • the network device 11 may include various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points, and the like.
  • the network device 11 may be a base transceiver station (BTS) in GSM or CDMA, or may be a base station (nodeB, NB) in WCDMA, or may be an evolved base station (eNB or LTE) in LTE. e-NodeB), and may be the corresponding device gNB in the 5G network.
  • BTS base transceiver station
  • NB base station
  • eNB evolved base station
  • e-NodeB evolved base station
  • the foregoing apparatus for providing a wireless communication function for a terminal device is collectively referred to as a network device.
  • the terminal device 12 may also be referred to as a user equipment (UE), a mobile station (MS), a mobile terminal, a terminal, etc., and the terminal The device 12 can communicate with one or more core networks via a radio access network (RAN), for example, the terminal device 12 can be a mobile phone (or "cellular" phone), a computer with a mobile terminal, etc.
  • RAN radio access network
  • the terminal device 12 can also be portable, pocket-sized, handheld, built-in or on-board.
  • Mobile devices that exchange language and/or data with a wireless access network. The embodiment of the present application does not specifically limit it.
  • the terminal device 12 and the network device 11 communicate via a physical channel.
  • the network device 11 transmits a reference signal on the physical channel for the terminal device 12 to perform channel estimation.
  • the network device 11 transmits a data signal on a physical channel, and the terminal device 12 receives the data signal and performs demodulation.
  • the data signal and the reference signal appear in the same scheduling bandwidth, and the reference signal and the data signal are time-division-frequency division multiplexed transmission in units of time-frequency resource particles.
  • the reference signal may include specific categories for a variety of different uses, for example, may include CSI-RS for acquiring channel state information and DMRS for demodulation, and the like. Any of the above reference signals having a specific purpose has a certain time-frequency resource pattern.
  • the network device 11 and the terminal device 12 will widely use multi-antenna technology.
  • beamforming techniques will be employed for the transmission of reference signals and the transmission of data signals.
  • the semi-open loop multi-antenna transmission discussed in 3GPP R14 refers to a data transmission technique of performing RE-level open-loop precoding on the data channel based on the closed-loop pre-coded DMRS.
  • the precoding matrix P 1 of the DMRS can be determined based on the channel feedback information of the terminal device, and thus the precoding matrix P 2 (j) on the jth RE on the data channel is equal to the precoding matrix P 1 of the DMRS in the resource block multiplied by Open-loop precoding matrix P which is Open loop precoding matrix on each RE It is inconsistent.
  • a plurality means two or more.
  • "and/or” describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • LTE As a long-term evolution standard, LTE enables the research and commercialization of new technologies for terrestrial mobile communication networks to be carried out smoothly.
  • LTE R13 full-dimension multi-antenna (FD-MIMO) technology is introduced, that is, horizontal and vertical dimension beamforming is performed simultaneously on the network device side by means of a 2-dimensional antenna array.
  • FD-MIMO full-dimension multi-antenna
  • This performs corresponding precoding codebook enhancements, feedback flow enhancements, and the like, and these enhancements significantly increase cell capacity.
  • the 2D beamforming makes the LTE R13 precoded codebook significantly larger than that of LTE R12, and the feedback process is more complicated. Therefore, the precoding feedback period of LTE R13 is long, and it can only work in relatively static mode.
  • the open-loop-3D-MIMO scheme has become an important issue for LTE R14.
  • LTE R8 Although some open-loop transmission modes for high-speed motion scenarios have been defined, such as transmission mode 2 transmit diversity and transmission mode, 3 large cyclic delay transmissions. Since the channel estimation depends on the reference signal at the cell level, in the above two transmission modes, only the signal transmission of only 4 antennas is allowed at the maximum, and the vertical dimension beamforming cannot be effectively performed to improve the cell capacity. Therefore, in LTE R14, a vertical dimension beamforming scheme similar to LTE R13, that is, an open-loop-FD-MIMO scheme, needs to be defined for a high-speed motion scenario.
  • SFBC transmission requires two pairs of two REs with a frequency domain span of no more than three subcarriers in the same OFDM symbol and the same PRB.
  • the SFBC transmission discussed in LTE R14 uses DMRS as the reference signal. Considering the time-frequency resources occupied by the DMRS, during the RE pairing process of the SFBC, there may be resource particles that cannot be paired, that is, isolated resource particles.
  • FIG. 2 is a schematic diagram showing the location of isolated resource particles that appear when only DMRS is configured in the PRB.
  • one row represents one subcarrier
  • one column represents one OFDM symbol
  • the twelve subcarriers constitute one physical resource block PRB.
  • isolated resource particles (isolated RE) appear at positions corresponding to the 12th subcarrier, 6, 7, 13, and 14 OFDM symbols.
  • the location and frequency of the isolated resource particles change according to the RE pairing rule in the SFBC defined above, even for a reference signal configuration. There are many possibilities for the location of isolated resource particles.
  • the isolated resource particle may be brought by the 2-port CSI-RS.
  • the processing flow in the existing LTE R10 is specifically as follows: In the SFBC transmission in the LTE R10, the terminal device first determines whether the current OFDM symbol is used, and if the current OFDM symbol is used, in the resource mapping, the entire mapping is performed. OFDM symbol, otherwise the OFDM symbol is directly discarded, and the entire OFDM symbol is not mapped at the time of resource mapping.
  • Figure 3 shows the RE pairing rules for SFBC in LTE R10. In LTE R10, referring to FIG. 3, based on SFBC-based RE pairing, the following rules are defined:
  • the two REs participating in the SFBC pairing must be from the same OFDM symbol
  • the two REs participating in the SFBC pairing must be within the same physical resource block PRB;
  • the two REs participating in the SFBC pairing must span a maximum of 3 subcarriers, that is, there are at most 1 subcarrier between the two paired REs.
  • the two data signals RE in (a) of FIG. 3 and (b) of FIG. 3 can implement SFBC pairing, and (c) in FIG. 3 and FIG.
  • the two data signals RE in (d) cannot complete the SFBC pairing.
  • some data signals RE cannot find their own SFBC pair, and these data signals RE are isolated REs.
  • Step 1 Determine whether the resource particles used for the CSI-RS are removed from one PRB within the current OFDM symbol and within the scheduling bandwidth, and whether the number of remaining resource particles is an even number. If yes, the second step is performed. Otherwise, it indicates that there is an isolated RE in the current OFDM symbol, and therefore, the resource mapping in the current OFDM symbol is suspended.
  • Step 2 When the CSI-RS crosses more than two consecutive subcarriers, it is judged whether the resource particles cannot be paired under the SFBC. If so, the resource mapping in the current OFDM symbol is suspended, and if not, the resource particle pairing and the SFBC resource mapping are performed.
  • the terminal device may determine, by using the foregoing determining criterion, whether the current OFDM symbol satisfies the condition of resource mapping. When it is satisfied, resource mapping and decoding are performed, thereby reducing the implementation complexity of the terminal device.
  • the above solution has the following drawbacks: First, in the R14, when the PDSCH adopts transmit diversity transmission, the scheduled PRB includes not only the CSI-RS but also Includes DMRS. Under the coexistence of two kinds of reference signals RS, if the pairing rule of SFBC is unchanged, the isolated RE is more complicated. At this time, the above search and processing of isolated resource particles cannot be used to confirm whether the current OFDM symbol is used for resource mapping. Matches the rate. Second, in R14, the DMRS also brings an isolated RE, and the DMRS may exist in each subframe. In this case, if the entire OFDM symbol that does not satisfy the mapping condition in R10 is directly discarded, the resource will be wasted.
  • LTE R14 since a new aperiodic CSI-RS and a part of the aperiodic CSI-RS are dynamically activated, and the number of periodic CSI-RSs is also significantly increased, compared to LTE R10, CSI -RS and The problem of isolated REs brought about by DMRS may be more complicated, and there may be cases where the location of the isolated RE is ambiguous.
  • Figure 4 is a schematic diagram of the distribution of ambiguous resource particles.
  • resource particles on the fourth subcarrier and resource particles on the eighth subcarrier can perform SFBC pairing with resource particles on the seventh subcarrier. Therefore, in (a) of FIG. 4, the isolated RE may be the sixth and seventh OFDM symbols, the resource particles on the fourth subcarrier, or the sixth and seventh OFDM symbols, and the eighth sub The resource particles on the carrier, that is, the location of the isolated RE may be disambiguated.
  • the resource particles on the sixth and seventh OFDM symbols there is a possibility of pairing resource particles on the sixth and seventh OFDM symbols: the first possibility, the resource particles on the second subcarrier and the third subcarrier The resource particles implement SFBC pairing, and the resource particles on the seventh subcarrier and the resource particles on the eighth subcarrier implement SFBC pairing, when the resource particles on the ninth subcarrier become isolated REs; the second possibility, the second subcarrier The upper resource particles need to implement SFBC pairing with the resource particles on the third subcarrier, and the resource particles on the ninth subcarrier and the resource particles on the eighth subcarrier implement SFBC pairing, and the resource particles on the seventh subcarrier become An isolated RE; a third possibility, the resource particles on the ninth subcarrier and the resource particles on the eighth subcarrier implement SFBC pairing, and the resource particles on the seventh subcarrier and the resource particles on the fifth subcarrier implement SFBC pairing, At this time, the resource particles on the second subcarrier become isolated REs.
  • the isolated RE may be a resource particle on the second subcarrier, or may be a resource particle on the seventh subcarrier, or may be a resource particle on the ninth subcarrier.
  • isolated REs defined as polysemy.
  • the embodiment of the present application provides a data transmission method and apparatus, for determining a hybrid configuration problem of any reference signal configured in a transmission subframe, by determining the location of the isolated resource particle and the isolated resource particle in the current reference signal configuration in the SFBC transmission.
  • Data transmission scheme to achieve resource mapping and rate matching in SFBC transmission, avoiding waste of resources.
  • FIG. 5 is a schematic flowchart diagram of Embodiment 1 of a data transmission method provided by the present application.
  • the embodiments of the present application are applicable to all terminals and base stations based on the LTE standard, and the LTE baseband transceiver module of the terminal and the base station will adopt the technical solution of the embodiment of the present application. Therefore, in this embodiment, the first device may be a terminal, or may be a base station, which may actually need to be determined, which is not limited in this embodiment.
  • the data transmission method may include the following steps:
  • Step 51 The first device determines a first resource set and a second resource set in the first transmission subframe.
  • the first resource set is a resource particle set remaining after all the resource particles used for data transmission in the first transmission subframe are paired according to the first pairing rule, and the second resource set is used in all the first transmission subframes.
  • the resource particles of the data transfer complete the paired resource particle set based on the first pairing rule.
  • the first pairing rule includes: the paired resource particles belong to the same time domain unit, the same frequency domain unit, and a maximum of three subcarriers.
  • the frequency domain unit includes: a frequency domain width of one or more physical resource blocks, and the time domain unit includes: one or more OFDM symbols.
  • the frequency domain unit includes, but is not limited to, a frequency domain width of one or more physical resource blocks.
  • the frequency domain unit may be a subband with the same DMRS precoding matrix P1.
  • the time domain unit includes, but is not limited to, one or more OFDM symbols. The definition and range of the frequency domain unit and the time domain unit can be determined according to actual conditions, and are not limited in this embodiment.
  • the base station and the terminal in the communication system can respectively learn the location of the isolated RE set by using the first pairing rule.
  • the set of isolated REs is defined as a first resource set
  • a set of resource particles after removing the first resource set among all resource particles for data transmission in the first transmission subframe is defined as a second resource set.
  • the resource particle RE on the kth subcarrier on a certain OFDM symbol is used for transmitting diversity PDSCH transmission, it needs to be able to find the PD+ transmission on the k+nth subcarrier in the same OFDM symbol.
  • the resource particles are paired and transmitted, n ⁇ 3. If the kth subcarrier cannot find the resource particles for pairing, it is considered that the resource particles on the kth subcarrier cannot be paired and marked as isolated REs.
  • k is a sequence number of a subcarrier corresponding to a resource particle for mapping a data channel, and k is a positive integer greater than or equal to 1.
  • the first device may also implement configuration of the first resource set and the second resource set by receiving configuration instructions.
  • the first resource set may pass RRC or MAC layer control element (MAC CE) or downlink control information ( Downlink control information, DCI) is activated.
  • RRC radio resource management
  • MAC CE MAC layer control element
  • DCI downlink control information
  • the subset can be activated by transmitting the corresponding number, that is, the ensemble is divided into the first resource set and the second resource set.
  • the subset is semi-statically activated by RRC, and when the CSI-RS and the subset are simultaneously activated on some REs, the subset is covered by the CSI-RS, ie, the subset is removed activation.
  • Step 52 The first device determines a data transmission manner on the first resource set and the second resource set.
  • the first device can be configured according to the following rules: First, it can be left blank on the isolated RE, and no data is sent. At this time, the isolated RE is not considered in the rate matching; second, isolated RE When resource mapping is performed by using spatial time block coding (STBC), it is first mapped to normal OFDM symbols and then mapped to STBC-encoded OFDM symbols. Third, SFBC pairing is not performed on isolated REs. Use a single port for transmission.
  • STBC spatial time block coding
  • the first device determines, according to the characteristics of the transmission mode, the data transmission manners on the first resource set and the second resource set, respectively. That is, the first device determines that the transmission mode on the second resource set is a transmit diversity transmission of the space frequency block code, and determines that the transmission mode on the first resource set is no transmission data or space time block code transmission.
  • the first device determines that the transmission mode on the second resource set is a transmit diversity transmission of the space frequency block code, and includes: in the transmit diversity transmission of the SFBC, the first device passes each antenna port of the multiple antenna ports.
  • the transport symbols encoded by the space-frequency block code are mapped to the physical resources, they are sequentially mapped to all the resource particles in the second resource set, thereby ensuring that the resource mapping satisfies the SFBC mapping rule.
  • the first device determines that the transmission mode on the first resource set is a space time block code transmission, including: the first device sequentially or multiple times before or after the resource mapping of the transmission symbol corresponding to the space frequency block code encoding The transmission symbols encoded by the space time block code on each of the antenna ports are mapped onto all resource particles in the first resource set.
  • the first device determines that the transmission mode on the first resource set is not transmitting data, and the first device determines that all resource particles on the first resource set do not perform mapping of any transmission symbols.
  • Step 53 The first device transmits the first transmission subframe to the second device according to the determined data transmission manner. The data or the data transmitted by the second device on the first transmission subframe.
  • the first device determines the transmission mode of all the resource particles used for data transmission in the first transmission subframe, it notifies the second device to the determined data transmission manner, so that the first device and the first device
  • the second device can implement data transmission by using a determined data transmission manner, that is, the first device sends data to the second device by using the first transmission subframe or receives the second device according to the determined data transmission manner. Transmit data sent on a sub-frame.
  • the second device cannot receive the data information from the first resource set in the first transmission subframe.
  • the first device sends the data to the second device by using the transmission mode of the space-time block code on the first resource set or the transmission mode of the space-frequency block code on the second resource set, correspondingly, the second device follows The transmission mode of the first device receives data from the first resource set and the second resource set in the first transmission subframe, respectively.
  • the first device separately Receiving, according to a data transmission manner of the second device, data sent by the second device on the first resource set and the second resource set in the first transmission subframe.
  • the first device determines a first resource set and a second resource set in the first transmission subframe, where the first resource set is all resources used for data transmission in the first transmission subframe.
  • the particle is based on the remaining resource particle set after the first pairing rule is paired, and the second resource set is a resource particle set for all the resource particles used for data transmission in the first transmission subframe to be paired according to the first pairing rule, and the first device determines a data transmission manner on a resource set and a second resource set, and transmitting data to the second device by using the first transmission subframe or receiving data sent by the second device on the first transmission subframe according to the determined data transmission manner.
  • the first device can determine the locations of the first resource set and the second resource set, and determine the data transmission manners on the different resource sets respectively, thereby ensuring that the SFBC transmission can be utilized to the maximum extent under the mixed reference signal configuration.
  • the physical layer resources on the first transmission subframe avoid resource waste.
  • the foregoing step 51 (the first device determines the first resource set and the second resource set in the first transmission subframe) may be implemented in the following possible manner, such as Figure 6 shows.
  • FIG. 6 is a schematic flowchart diagram of Embodiment 2 of a data transmission method provided by the present application. As shown in FIG. 6, in the embodiment of the present application, the foregoing step 51 may include the following steps:
  • Step 61 The first device sequentially determines, in a preset order, whether all resource particles used for data transmission in the first transmission subframe satisfy the first pairing rule.
  • one frequency domain unit and one time domain unit may be first determined, so that the frequency domain unit and the time domain are All the resource particles in the unit start from the first subcarrier number corresponding to the resource particles used to map the data channel, and confirm whether each resource particle satisfies the first pairing rule one by one, that is, each resource particle belongs to one by one.
  • the first resource collection is also the second resource collection.
  • Step 62 When the resource particles for mapping the data channel on the kth subcarrier and the resource particles for mapping the data channel on the k+n subcarrier satisfy the first pairing rule, the first device determines the kth subcarrier and The resource particles for mapping the data channel on the k+n subcarriers all belong to the second resource set.
  • n is a positive integer less than 3
  • k is a sequence number of a subcarrier corresponding to a resource particle for mapping a data channel
  • k is a positive integer greater than or equal to 1.
  • the two may perform SFBC pairing, indicating that the resource segment
  • the resource particles for mapping the data channel on the k subcarriers and the resource particles for mapping the data channel on the k+n subcarriers do not become isolated REs, that is, the first device determines the kth subcarrier and the k+n
  • the resource particles used to map the data channel on each subcarrier belong to the second resource set.
  • the first device completes the judgment of the set of resource particles used to map the data channel on the kth subcarrier, set k to the subcarrier number corresponding to the resource particle used for mapping the data channel, and repeat The above judging process until the resource particle determination for mapping the data channel on the last subcarrier in the first transmission subframe ends.
  • Step 63 The first device determines that all the resource particles except the second resource set in the resource particles for data transmission in the first transmission subframe are the first resource set.
  • the resource particles that can implement the SFBC pairing are classified into the second resource set, and then the first transmission subframe is All the resource particles in the resource particles used for data transmission that cannot implement SFBC pairing are classified into the first resource set.
  • the first resource set is the resource particle used for data transmission in the first transmission subframe. A collection of all resource particles outside of the two resource collections.
  • the second device that is to be in data communication with the first device also determines the first resource set on the first transmission subframe according to the determining step of steps 61 to 63. And the second resource set, so that the first device and the second device can implement data communication in the same data transmission manner.
  • the method may further include the following step 62a.
  • Step 62a After the first device completes the determination of all resource particles in all the time domain units in the preset frequency domain unit in the first transmission subframe, the first device determines the determination result of each resource particle in the preset frequency domain unit. Copies to other frequency domain units in the first transmission subframe.
  • the frequency domain unit in the first transmission subframe satisfies the following two conditions: the configuration of the demodulation reference signal and the channel state information reference signal in each frequency domain unit is the same, and the precoding matrix of the demodulation reference signal is the same.
  • the first device may determine, by dividing the resource particles on the first transmission subframe into multiple frequency domain units and multiple time domain units. For example, after the first device completes the determination of all resource particles in the preset time domain unit on the first transmission subframe, it may switch to the next time domain unit, and repeat the above determination process until all time domain units in the first transmission subframe. The determination of all resource particles within is ended.
  • the resources in the preset frequency domain unit may be The result of determining whether the particle belongs to the first resource set is copied to other frequency domain units.
  • the frequency domain unit capable of adopting the method described in step 62a must satisfy the following two conditions: that is, the configuration of the reference signals in each frequency domain unit is completely consistent (ie, demodulation reference signal and channel state information reference signal).
  • the configuration positions are the same, and the precoding matrix of the demodulation reference signal is the same.
  • each frequency domain unit is a subband having the same DMRS precoding matrix.
  • step 62a By using the method described in step 62a, the determination complexity of the first device can be greatly reduced, the determination speed is improved, and the efficiency is high.
  • the first device determines a first resource set in the first transmission subframe and When the second resource is set, the first device may sequentially determine, according to a preset sequence, whether all resource particles used for data transmission in the first transmission subframe satisfy the first pairing rule, and the resource used for mapping the data channel on the kth subcarrier.
  • the resource particles for mapping the data channel on the k+n subcarriers satisfy the first pairing rule, determining that resource particles for mapping the data channel on the kth subcarrier and the k+n subcarrier belong to the second resource
  • the technical solution can accurately divide all resource particles in the first transmission subframe into a first resource set and a second resource set, which lays a foundation for accurate transmission of subsequent data.
  • FIG. 7 is a schematic flowchart of a first device confirming a first resource set and a second resource set.
  • FIG. 8 is a schematic diagram of the determination result of the isolated RE included in the first resource set in FIG. 7.
  • This embodiment describes the first device as a terminal.
  • the physical resource block includes 12 subcarriers, and each subcarrier is considered to be one RE, that is, the physical resource block includes 12 REs.
  • Step 701 Determine whether the kth RE is the reference signal RE. If yes, step 702 and step 711 are performed in sequence, and if no, step 703 is performed.
  • the kth RE is the reference signal RE, it means that it can neither perform SFBC pairing nor mark it as an isolated RE, so k+1 is assigned to k, and the physical is not exceeded in the k+1th RE.
  • the k+1th RE is judged. If the kth RE is not the reference signal RE, then go to step 703 for further judgment.
  • Step 703 Determine whether the k+1th RE exceeds the boundary of the physical resource block. If yes, go to step 707. If no, go to step 704.
  • the k+1th RE exceeds the boundary of the physical resource block, it means that the kth RE is already the last RE, and there is no possibility that the RE is paired with it, so it is determined that the kth RE is an isolated RE, and the determination ends. If the k+1th RE does not exceed the boundary of the physical resource block, the determination is continued.
  • Step 704 Determine whether the k+1th RE is the reference signal RE. If yes, go to step 705. If no, go to step 706 and step 711 in sequence.
  • the next step of determining is performed. If the k+1th RE is not the reference signal RE, it indicates that the kth RE and the k+1th RE can complete the SFBC pairing. Assign k+2 to k and determine if the k+2 RE exceeds the boundary of the physical resource block.
  • Step 705 Determine whether the k+2th RE exceeds the boundary of the physical resource block. If yes, go to step 707. If no, go to step 708.
  • the k+2 REs exceed the boundary of the physical resource block, meaning that the kth RE is already the last RE, it is impossible to have the RE and the pairing thereof, so it is determined that the kth RE is an isolated RE, and it is determined. End. If the k+1th RE does not exceed the boundary of the physical resource block, the determination is continued.
  • Step 707 Determine that the kth RE is an isolated RE.
  • Step 708 Determine whether the k+2th RE is the reference signal RE. If yes, step 709 and step 710 are performed in sequence, and if not, step 710 is directly executed.
  • the k+2th RE is the reference signal RE
  • the kth RE can no longer be compared with the RE with a distance less than 3 subcarriers.
  • the pairing is completed, so the kth RE is marked as an isolated RE. If the k+2th RE is not the reference signal RE, the kth RE and the k+2th RE may complete pairing. Further, after the above steps, k+3 is assigned to k, and it is determined whether the k+3th RE exceeds the boundary of the physical resource block.
  • Step 709 Mark the kth RE as an isolated RE.
  • Step 711 Determine whether k at this time has exceeded the boundary of the physical resource block. If yes, the process ends. If no, the process proceeds to step 701 to re-execute the above-described determination process.
  • the position of the isolated RE is determined as shown in (a) of FIG. 8, and correspondingly, in (b) of the above FIG.
  • the position of the RE is determined as shown in (b) of FIG.
  • the foregoing step 51 (the first device determines the first resource set and the second resource set in the first transmission subframe) may also be implemented in the following possible manner. Specifically, as shown in Figure 9.
  • FIG. 9 is a schematic flowchart diagram of Embodiment 3 of a data transmission method provided by the present application.
  • FIG. 10 is a first resource set and a second resource set determined by the method of the embodiment shown in FIG. 9.
  • the foregoing step 51 may include the following steps:
  • Step 91 The first device determines a complete resource set in the first transmission subframe.
  • the resource ensemble includes a plurality of resource subsets, each resource subset includes one or more resource particles, and each resource particle has a unique identification sequence number.
  • the first device first determines, according to the configured position of the reference signal, that the reference signal may affect several symbols of the SFBC pairing. Referring to Figure 10, the reference signal may affect only four symbols (5, 6, 12, 13). Second, the first device numbers all subsets of physical resource blocks.
  • the first device numbers all the subsets of the physical resource blocks
  • the following two methods may be used.
  • the first mode is that the first device numbers all the physical resource pairs of the data channel according to the symbols that the reference signal may affect.
  • the second mode is that the first device numbers all the physical resource pairs according to the symbols that the reference signal may affect.
  • the resource complete set of the first transmission subframe determined by the first device includes 9 resource subsets, and the schematic diagram of the resource complete set is specifically shown in FIG. 10( a ), and the numbers are as follows: :
  • the resource collection of the first transmission subframe determined by the first device includes 12 A subset of resources, the schematic diagram of the complete set of resources at this time is specifically shown in Figure (c), the numbers are as follows:
  • Step 92 The first device receives the first configuration signaling sent by the second device, where the first configuration signaling includes an identification sequence number of one or more resource subsets.
  • the first configuration command sent by the second device is received, and the first device may be configured according to one or more resources included in the first configuration signaling.
  • the identification number of the set determines the first resource set and the second resource set.
  • the configuration of the base station is stronger than that of the terminal.
  • the first device may be a terminal
  • the second device may be a base station.
  • the first configuration signaling may be semi-static configuration signaling.
  • the semi-static configuration signaling may include, but is not limited to, radio resource management signaling defined in an LTE system.
  • the semi-static configuration signaling may further include a period of the first resource set and a subframe offset condition.
  • the semi-static configuration signaling may further include a period and a subframe offset condition of each resource subset in the first resource set.
  • a dynamically configured reference signal may appear in the first resource set configured according to the semi-static configuration signaling. At this time, resource particles that have been configured as reference signals should be excluded from the first resource set.
  • the first configuration signaling may also be dynamic configuration signaling.
  • the dynamic configuration command includes, but is not limited to, an access control layer control cell, physical layer downlink control information, and the like defined in an LTE system.
  • Step 93 The first device configures one or more resource subsets included in the first configuration instruction as the first resource set, and divides all the resource particles used for data transmission in the first transmission subframe except the first resource set.
  • the collection of all resource particles except the one is configured as the second resource collection.
  • the first device may activate the one or more resource subsets in the resource set according to one or more resource subsets included in the first configuration instruction, and configure the first device or the resource subset For the first resource set, correspondingly, all the resource particles except for the first resource set among the resource particles for data transmission in the first transmission subframe are configured as the second resource set.
  • the method for numbering the resource ensemble in the first manner is used. If the identifier number of the resource subset included in the first configuration command is 9, as shown in (b) of FIG. 10, A device may activate a subset of resources "9: ⁇ (11,5), (11,6), (11,12), (11,13) ⁇ " in the full set of resources, that is, the identification number is 9 The subset of resources is configured as the first set of resources. Similarly, in the method of numbering the resource ensemble in the second manner, if the identifier number of the resource subset included in the first configuration command is 1, as shown in (d) of FIG. 10, the first device may complete the resource collection. The resource subset "1: ⁇ (1,5),(1,6),(1,12),(1,13) ⁇ ”) is activated, that is, the resource subset whose identification number is 1 is configured as the first resource. set.
  • the first device when the first device determines the first resource set and the second resource set in the first transmission subframe, the first device first determines a complete resource set in the first transmission subframe.
  • the resource ensemble includes a plurality of resource subsets, each resource subset includes one or more resource particles, and each resource particle has a unique identification sequence number, and secondly receives the first configuration signaling sent by the second device.
  • the first configuration signaling includes an identifier number of one or more resource subsets, and finally configures one or more resource subsets included in the first configuration instruction as a first resource set, and the first transmission subframe
  • a set of all resource particles except for the first resource set among all resource particles for data transmission is configured as a second resource set.
  • the first device of the technical solution can determine the first resource set and the second resource set in the first transmission subframe, which lays a foundation for subsequently determining the data transmission method and realizing accurate data transmission.
  • the foregoing step 51 (the first device determines the first resource set and the second resource set in the first transmission subframe) may also be implemented in the following possible manner. Specifically, as shown in FIG.
  • FIG. 11 is a schematic flowchart diagram of Embodiment 4 of a data transmission method according to the present application.
  • FIG. 12 is a first resource set and a second resource set determined by the method of the embodiment shown in FIG.
  • the foregoing step 51 may include the following steps:
  • Step 111 The first device receives the second configuration signaling sent by the second device, where the second configuration command is used to indicate a complete set of resources.
  • the first device receives a second configuration signaling from the second device, where the second configuration signaling indicates a complete set of resources, and the content that is specifically indicated by the second configuration command includes:
  • the entire resource set includes N resource subsets, and N is a positive integer greater than one;
  • Each resource subset corresponds to a unique identification sequence number
  • the second configuration signaling is similar to the first configuration instruction, where the second configuration signaling is semi-static configuration signaling.
  • the semi-static configuration signaling may include, but is not limited to, the radio resource defined in the LTE system. Management signaling.
  • the semi-static configuration signaling may further include a period and a subframe offset of the resource ensemble.
  • the semi-static configuration signaling may further include a period and a subframe offset of each candidate resource subset in the resource ensemble.
  • the second configuration signaling may also be dynamic configuration signaling.
  • the dynamic configuration command includes, but is not limited to, an access control layer control cell, physical layer downlink control information, and the like defined in an LTE system.
  • Step 112 The first device determines, according to the second configuration instruction, a resource ensemble in the first transmission subframe.
  • the resource ensemble includes a plurality of resource subsets, each resource subset includes one or more resource particles, and each resource particle has a unique identification sequence number;
  • the first device first determines, according to the received second configuration instruction, a set of isolated resource particles that may appear, that is, a complete set of resources.
  • the resource ensemble indicated by the second configuration instruction includes four resource subsets, and the numbers are as follows:
  • the resource ensemble indicated by the second configuration instruction also includes four resource subsets, and the numbers are as follows:
  • Step 113 The first device receives the first configuration signaling sent by the second device, where the first configuration signaling includes an identification sequence number of one or more resource subsets.
  • the first device receives the first configuration command sent by the second device.
  • the specific manifestation of the first configuration instruction is consistent with that in the embodiment shown in FIG.
  • the present embodiment is similar to the embodiment shown in FIG. 9. Generally, since the configuration capability of the base station is stronger than the terminal, in this embodiment, the first configuration command and the second configuration command are sent.
  • the second device may be a base station, and correspondingly, the first device that receives the first configuration command and the second configuration command may be a terminal.
  • Step 114 The first device configures one or more resource subsets included in the first configuration instruction as the first resource set, and divides all the resource particles used for data transmission in the first transmission subframe by the first resource set. The collection of all resource particles except the one is configured as the second resource collection.
  • the first device may allocate the resource as shown in (b) of FIG.
  • the subset of resources in the ensemble "3: ⁇ (11,5),(11,6) ⁇ ” and “4: ⁇ (11,12),(11,13) ⁇ ” is activated, that is, the identification number is
  • the resource subsets of 3 and 4 are configured as a first resource set.
  • the first device may use the resource as shown in (b) of FIG.
  • the subset of resources in the ensemble "1: ⁇ (1,5),(1,6) ⁇ ” and “4: ⁇ (11,12),(11,13) ⁇ ” are activated, and the identification numbers are 1 and 4
  • the subset of resources is configured as the first set of resources.
  • the first device when the first device determines the first resource set and the second resource set in the first transmission subframe, the first device receives the second configuration signaling sent by the second device, according to the first a configuration instruction, in the first transmission subframe, determining a resource ensemble, the resource ensemble comprising a plurality of resource subsets, each resource subset
  • the first device further receives the first configuration signaling sent by the second device, where the first configuration signaling includes one or more resources, including one or more resource particles, and each resource particle has a unique identification sequence number.
  • the identification sequence number of the subset such that the first device configures one or more resource subsets included in the first configuration instruction as the first resource set, and removes all resource particles used for data transmission in the first transmission subframe.
  • a collection of all resource particles other than the first resource set is configured as a second resource set.
  • the first device can also accurately determine the first resource set and the second resource set in the first transmission subframe, which lays a foundation for determining the data transmission method and realizing accurate data transmission.
  • FIG. 13 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present application.
  • the data transmission device is integrated in the first device.
  • the data transmission apparatus of this embodiment may include: a processing module 1301 and a transceiver module 1302.
  • the processing module 1301 is configured to determine a first resource set and a second resource set in the first transmission subframe.
  • the first resource set is a resource particle set remaining after the resource particles for data transmission in the first transmission subframe are paired according to the first pairing rule, and the second resource set is the first transporter. All resource particles for data transmission within the frame complete the paired resource particle set based on the first pairing rule.
  • the processing module 1301 is further configured to determine a data transmission manner on the first resource set and the second resource set.
  • the transceiver module 1302 is configured to send data to the second device by using the first transmission subframe or receive data sent by the second device on the first transmission subframe according to the determined data transmission manner.
  • the first pairing rule includes: the paired resource particles belong to the same time domain unit, the same frequency domain unit, and a maximum of three subcarriers.
  • the frequency domain unit includes: a frequency domain width of one or more physical resource blocks, where the time domain unit includes: one or more OFDM symbols.
  • the processing module 1301 when the processing module 1301 determines the first resource set and the second resource set in the first transmission subframe, the processing module 1301 is specifically configured to sequentially determine the first transmission subframe according to a preset sequence. Whether all of the resource particles for data transmission satisfy the first pairing rule, and the resource particles for mapping the data channel on the kth subcarrier and the resource particles for mapping the data channel on the k+n subcarriers satisfy Determining, by the first pairing rule, that resource particles for mapping the data channel on the kth subcarrier and the k+n subcarriers belong to the second resource set, and determining the first transmission subframe All of the resource particles in the resource for data transmission except the second resource set are the first resource set;
  • n is a positive integer less than 3
  • the k is a sequence number of a subcarrier corresponding to a resource particle used for mapping a data channel
  • the k is a positive integer greater than or equal to 1.
  • the processing module 1301 is further configured to complete all the time in the preset frequency domain unit in the first transmission subframe. After determining the resource particles in the domain unit, the determination result of each resource particle in the preset frequency domain unit is copied to other frequency domain units in the first transmission subframe.
  • the frequency domain unit in the first transmission subframe satisfies the following two conditions: the configuration of the demodulation reference signal and the channel state information reference signal in each frequency domain unit is consistent, and the precoding of the demodulation reference signal is performed.
  • the matrix is the same.
  • the processing module 1301 when the determining, by the processing module 1301, the first resource set and the second resource set in the first transmission subframe, the processing module 1301 is specifically configured to determine one in the first transmission subframe.
  • the resource ensemble includes a plurality of resource subsets, each resource subset includes one or more resource particles, and each resource particle has a unique identification sequence number, and receives the first a configuration signaling, the first configuration signaling includes an identification sequence number of one or more resource subsets, and configuring one or more resource subsets included in the first configuration instruction as the first And a set of resources, wherein all the resource particles except for the first resource set in the resource particles for data transmission in the first transmission subframe are configured as the second resource set.
  • the processing module 1301 when the processing module 1301 determines the first resource set and the second resource set in the first transmission subframe, the processing module 1301 is specifically configured to receive the second configuration information sent by the second device.
  • the second configuration instruction is used to indicate a resource ensemble, and according to the second configuration instruction, a resource ensemble is determined in the first transmission subframe, where the resource ensemble includes multiple resource subsets.
  • Each resource subset includes one or more resource particles, and each resource particle has a unique identification sequence number, and receives the first configuration signaling sent by the second device, where the first configuration signaling includes 1
  • One or more resource subsets included in the first configuration instruction are configured as the first resource set, and all of the first transmission subframes are used for A set of all resource particles other than the first resource set in the resource particles of the data transmission is configured as the second resource set.
  • the processing module 1301 when the determining, by the processing module 1301, that the transmission mode on the second resource set is a transmit diversity transmission of a space frequency block code, the processing module 1301 is configured to be used on each of the multiple antenna ports.
  • the transmission symbols encoded by the space frequency block code are mapped to the physical resources, they are sequentially mapped to all the resource particles in the second resource set.
  • the processing module 1301 when the determining, by the processing module 1301, that the transmission mode on the first resource set is not transmitting data or space-time block code transmission, specifically, determining, on the first resource set, All resource particles do not map any transmission symbols or the first device sequentially maps the transmission symbols encoded by the space time block code on each of the plurality of antenna ports onto all resource particles in the first resource set.
  • each module of the above device is only a division of a logical function, and the actual implementation may be integrated into one physical entity in whole or in part, or may be physically separated.
  • these modules can all be implemented by software in the form of processing component calls; or all of them can be implemented in hardware form; some modules can be realized by processing component calling software, and some modules are realized by hardware.
  • the determining module may be a separately set processing element, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of the above device in the form of program code, by a processing element of the above device. Call and execute the functions of the above determination module.
  • the implementation of other modules is similar.
  • all or part of these modules can be integrated or implemented independently.
  • the processing elements described herein can be an integrated circuit with signal processing capabilities. In the implementation process, each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as: one or more application specific integrated circuits (ASICs), or one or more numbers A digital singal processor (DSP), or one or more field programmable gate arrays (FPGAs).
  • ASICs application specific integrated circuits
  • DSP digital singal processor
  • FPGAs field programmable gate arrays
  • the processing component can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke the program code.
  • these modules can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium, (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • FIG. 14 is a schematic structural diagram of still another data transmission apparatus according to an embodiment of the present application.
  • the data transmission device is integrated in the first device.
  • the data transmission apparatus of this embodiment may include a processor 1401 and a transceiver 1402.
  • the data transmission device may further include a memory for storing execution instructions of the processor 1401.
  • the transceiver 1402 may be implemented by an independent function transmitter and a receiver, and may be implemented by using an antenna or the like, which is not limited by the embodiment of the present application.
  • the processor 1401 and the transceiver 1402 are configured to execute a computer to execute instructions to cause the data transmission device to perform the various steps of the above data transmission method.
  • the processing module 1301 corresponds to the processor 1401
  • the transceiver module 1302 corresponds to the transceiver 1402 and the like.
  • the data transmission method and device provided by the embodiments of the present application are applicable to a base station and a terminal based on the LTE standard in a communication system.
  • the PDSCH uses SFBC transmission at the RE level
  • the PRB of the scheduling bandwidth has DMRS and/or CSI-RS
  • the base station and the terminal have a common understanding of the locations of the isolated resource particles in the PRB, and respectively determine the
  • the data transmission mode on the first resource set and the second resource set in a transmission subframe enables the base station and the terminal to implement rate matching when performing resource mapping, so that physical layer resources can be utilized to the maximum extent, and resource waste is avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请实施例提供一种数据传输方法及装置,其中,该方法包括:第一设备确定第一传输子帧内的第一资源集合和第二资源集合,确定第一资源集合和第二资源集合上的数据传输方式,并根据确定的数据传输方式利用第一传输子帧与第二设备实现数据传输,该第一资源集合为第一传输子帧内所有用于数据传输的资源粒子基于第一配对规则配对后剩余的资源粒子集合,第二资源集合为第一传输子帧内基于第一配对规则完成配对的资源粒子集合,该技术方案最大限度的利用了物理层资源,避免了资源浪费。

Description

数据传输方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法及装置。
背景技术
长期演进(long term evolution,LTE)的第14个版本(R14)针对高速运动场景,定义了一套开环的全维度多天线(开环-FD-MIMO)方案。在该开环-FD-MIMO方案中,采用一对波束上的空频块编码(spatial frequency block coding,SFBC)传输,且在一个物理资源块(physical resource block,PRB)中,参考信号可采用下行解调参考信号(demodulation reference signal,DMRS)或信道状态信息参考信号(channel state information reference signal,CSI-RS)的混合配置,这使得SFBC的资源粒子(resource element,RE)在配对过程中,可能会出现无法配对资源粒子(即,孤立资源粒子),且孤立资源粒子的出现位置、频次都具有多种可能性。因此,针对任意的参考信号混合配置,如何确定SFBC传输中当前参考信号配置下孤立资源粒子的位置以及孤立资源粒子上的数据传输方案,是LTE R14中需要解决的关键问题。
目前,LTE R10针对2端口的CSI-RS带来的孤立资源粒子,终端首先判断物理资源块中当前的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号是否被使用,并在物理资源块中当前的OFDM符号未被使用时,在资源映射时,不映射整个OFDM符号,将其直接丢弃,这样可较快的确定出满足资源映射条件的OFDM符号,并利用其进行解码,相对降低了终端的实现复杂度。然而,在LTE R14中,物理下行信道(physical downlink shared channel,PDSCH)采用发射分集传输时,被调度的PRB内包括CSI-RS和DMRS,因此存在两种RS的共存。此时,在SFBC配对规则不变的情况下,孤立资源粒子的位置更加复杂,数量和出现频次也会显著增加,将整个OFDM符号丢弃的可能性更大。
综上所述,在LTE R14中,在OFDM符号内存在孤立资源粒子时直接将整个OFDM符号丢弃,造成了资源浪费。
发明内容
本申请实施例提供一种数据传输方法及装置,以解决LTE R14中将包含孤立资源粒子的OFDM符号丢弃致使资源浪费的问题。
本申请实施例第一方面提供一种数据传输方法,适用于通信系统中基于LTE标准的第一设备和第二设备,该第一设备可选为基站或终端,相应的,第二设备可选为终端或基站,所述方法包括:
第一设备确定第一传输子帧内的第一资源集合和第二资源集合,所述第一资源集合为所述第一传输子帧内所有用于数据传输的资源粒子基于第一配对规则配对后剩余的资源粒子集合,所述第二资源集合为所述第一传输子帧内所有用于数据传输的资源粒子基于所 述第一配对规则完成配对的资源粒子集合;
所述第一设备确定所述第一资源集合和所述第二资源集合上的数据传输方式;
所述第一设备根据确定的所述数据传输方式利用所述第一传输子帧向第二设备发送数据或者接收第二设备在所述第一传输子帧上发送的数据。
在本申请实施例中,第一设备能够确定出第一传输子帧上第一资源集合和第二资源集合的位置,并分别确定不同资源集合上的数据传输方式,保证了SFBC传输在混合参考信号配置下能够最大程度的利用第一传输子帧上的物理层资源,避免了资源浪费。
可选的,在第一方面的一实施例中,所述第一设备确定所述第一资源集合和所述第二资源集合上的数据传输方式,包括:
所述第一设备确定所述第二资源集合上的传输方式为空频分组码的发射分集传输;
所述第一设备确定所述第一资源集合上的传输方式为不传输数据或空时分组码传输。
在本实施例中,在不同的资源组合上分别确定不同的数据传输方式,能够在满足SFBC映射规则的前提下,最大限度利用物理层资源,避免了资源浪费。
可选的,所述第一配对规则,包括:配对的两个资源粒子属于同一个时域单位、同一个频域单位、最多跨越3个子载波;
所述频域单位,包括:1个或多个物理资源块的频域宽度,所述时域单位包括:1个或多个OFDM符号。
可选的,在第一方面的另一实施例中,所述第一设备确定第一传输子帧内的第一资源集合和第二资源集合,包括:
所述第一设备按照预设顺序依次判定所述第一传输子帧内所有用于数据传输的资源粒子是否满足所述第一配对规则;
在第k个子载波上用于映射数据信道的资源粒子与第k+n个子载波上用于映射数据信道的资源粒子满足所述第一配对规则时,所述第一设备确定所述第k个子载波和所述第k+n个子载波上用于映射数据信道的资源粒子均属于所述第二资源集合,其中,所述n为小于3的正整数,所述k为用于映射数据信道的资源粒子对应的子载波的序号,所述k为大于或等于1的正整数;
所述第一设备确定所述第一传输子帧内所有用于数据传输的资源粒子中除所述第二资源集合之外的所有资源粒子的集合为所述第一资源集合。
该技术方案能够准确将第一传输子帧中的所有资源粒子划分为第一资源集合和第二资源集合,为后续数据的准确传输奠定了基础。
可选的,在第一方面的上述实施例中,所述方法还包括:
在所述第一设备完成所述第一传输子帧中预设频域单位内、所有时域单位内的所有资源粒子的判定后,所述第一设备将所述预设频域单位上各个资源粒子的判定结果复制到所述第一传输子帧中的其他频域单位上;
所述第一传输子帧中的频域单位满足如下两个条件:每个频域单位内解调参考信号和信道状态信息参考信号的配置一致、解调参考信号的预编码矩阵相同。
该方法能够大大降低第一设备的判定复杂度,提高了判定速度,效率高。
可选的,在第一方面的再一实施例中,所述第一设备确定第一传输子帧内的第一资源集合和第二资源集合,包括:
所述第一设备在所述第一传输子帧内确定出一个资源全集,所述资源全集中包括多个资源子集,每个资源子集包括1个或多个资源粒子,且每个资源粒子具有一个唯一的标识序号;
所述第一设备接收所述第二设备发送的第一配置信令,所述第一配置信令包含1个或多个资源子集的标识序号;
所述第一设备将所述第一配置指令中包含的1个或多个资源子集配置为所述第一资源集合,将所述第一传输子帧内所有用于数据传输的资源粒子中除所述第一资源集合之外的所有资源粒子的集合配置为所述第二资源集合。
该技术方案第一设备能够确定出第一传输子帧中的第一资源集合和第二资源集合,为后续确定数据传输方法以及实现数据的准确传输奠定了基础。
可选的,在第一方面的又一实施例中,所述第一设备确定第一传输子帧内的第一资源集合和第二资源集合,包括:
所述第一设备接收所述第二设备发送的第二配置信令,所述第二配置指令用于指示一个资源全集;
所述第一设备根据所述第二配置指令,在所述第一传输子帧内确定出一个资源全集,所述资源全集中包括多个资源子集,每个资源子集包括1个或多个资源粒子,且每个资源粒子具有一个唯一的标识序号;
所述第一设备接收所述第二设备发送的第一配置信令,所述第一配置信令包含1个或多个资源子集的标识序号;
所述第一设备将所述第一配置指令中包含的1个或多个资源子集配置为所述第一资源集合,将所述第一传输子帧内所有用于数据传输的资源粒子中除所述第一资源集合之外的所有资源粒子的集合配置为所述第二资源集合。
在该技术方案中,第一设备同样能够准确确定出第一传输子帧中的第一资源集合和第二资源集合,为后续确定数据传输方法以及实现数据的准确传输奠定了基础。
可选的,在第一方面的又一实施例中,所述第一设备确定所述第二资源集合上的传输方式为空频分组码的发射分集传输,包括:
所述第一设备将多个天线端口中每个天线端口上经过空频分组码编码的传输符号映射到物理资源时,依次映射到所述第二资源集合中的所有资源粒子上。
可选的,在第一方面的又一实施例中,所述第一设备确定所述第一资源集合上的传输方式为不传输数据或空时分组码传输,包括:
所述第一设备确定所述第一资源集合上的所有资源粒子不进行任何传输符号的映射或所述第一设备依次将多个天线端口中每个天线端口上经过空时分组码编码的传输符号映射到第一资源集合中的所有资源粒子上。
本申请实施例第二方面提供一种数据传输装置,集成在第一设备中,所述装置包括:
处理模块,用于确定第一传输子帧内的第一资源集合和第二资源集合,所述第一资源集合为所述第一传输子帧内所有用于数据传输的资源粒子基于第一配对规则配对后剩余的资源粒子集合,所述第二资源集合为所述第一传输子帧内所有用于数据传输的资源粒子基于所述第一配对规则完成配对的资源粒子集合;
所述处理模块,还用于确定所述第一资源集合和所述第二资源集合上的数据传输方 式;
收发模块,用于根据确定的所述数据传输方式利用所述第一传输子帧向第二设备发送数据或者接收第二设备在所述第一传输子帧上发送的数据。
可选的,所述处理模块在确定所述第一资源集合和所述第二资源集合上的数据传输方式时,具体用于确定所述第二资源集合上的传输方式为空频分组码的发射分集传输,确定所述第一资源集合上的传输方式为不传输数据或空时分组码传输。
可选的,所述第一配对规则,包括:配对的两个资源粒子属于同一个时域单位、同一个频域单位、最多跨越3个子载波;
所述频域单位,包括:1个或多个物理资源块的频域宽度,所述时域单位包括:1个或多个OFDM符号。
可选的,所述处理模块在确定第一传输子帧内的第一资源集合和第二资源集合时,具体用于按照预设顺序依次判定所述第一传输子帧内所有用于数据传输的资源粒子是否满足所述第一配对规则,并在第k个子载波上用于映射数据信道的资源粒子与第k+n个子载波上用于映射数据信道的资源粒子满足所述第一配对规则时,确定所述第k个子载波和所述第k+n个子载波上用于映射数据信道的资源粒子均属于所述第二资源集合,确定所述第一传输子帧内所有用于数据传输的资源粒子中除所述第二资源集合之外的所有资源粒子的集合为所述第一资源集合;
其中,所述n为小于3的正整数,所述k为用于映射数据信道的资源粒子对应的子载波的序号,所述k为大于或等于1的正整数。
可选的,所述处理模块在确定第一传输子帧内的第一资源集合和第二资源集合时,还具体用于在完成所述第一传输子帧中预设频域单位内、所有时域单位内的所有资源粒子的判定后,将所述预设频域单位上各个资源粒子的判定结果复制到所述第一传输子帧中的其他频域单位上;
所述第一传输子帧中的频域单位满足如下两个条件:每个频域单位内解调参考信号和信道状态信息参考信号的配置一致、解调参考信号的预编码矩阵相同。
可选的,所述处理模块在确定第一传输子帧内的第一资源集合和第二资源集合时,具体用于在所述第一传输子帧内确定出一个资源全集,所述资源全集中包括多个资源子集,每个资源子集包括1个或多个资源粒子,且每个资源粒子具有一个唯一的标识序号,接收所述第二设备发送的第一配置信令,所述第一配置信令包含1个或多个资源子集的标识序号,并将所述第一配置指令中包含的1个或多个资源子集配置为所述第一资源集合,将所述第一传输子帧内所有用于数据传输的资源粒子中除所述第一资源集合之外的所有资源粒子的集合配置为所述第二资源集合。
可选的,所述处理模块在确定第一传输子帧内的第一资源集合和第二资源集合时,具体用于接收所述第二设备发送的第二配置信令,所述第二配置指令用于指示一个资源全集,根据所述第二配置指令,在所述第一传输子帧内确定出一个资源全集,所述资源全集中包括多个资源子集,每个资源子集包括1个或多个资源粒子,且每个资源粒子具有一个唯一的标识序号,以及接收所述第二设备发送的第一配置信令,所述第一配置信令包含1个或多个资源子集的标识序号,将所述第一配置指令中包含的1个或多个资源子集配置为所述第一资源集合,将所述第一传输子帧内所有用于数据传输的资源粒子中除所述第一资 源集合之外的所有资源粒子的集合配置为所述第二资源集合。
可选的,所述处理模块在确定所述第二资源集合上的传输方式为空频分组码的发射分集传输时,具有用于将多个天线端口中每个天线端口上经过空频分组码编码的传输符号映射到物理资源时,依次映射到所述第二资源集合中的所有资源粒子上。
可选的,所述处理模块在确定所述第一资源集合上的传输方式为不传输数据或空时分组码传输时,具体用于确定所述第一资源集合上的所有资源粒子不进行任何传输符号的映射或所述第一设备依次将多个天线端口中每个天线端口上经过空时分组码编码的传输符号映射到第一资源集合中的所有资源粒子上。
本申请实施例第三方面提供一种数据传输装置,所述装置包括处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行本申请实施例第一方面提供的方法。
本申请实施例第四方面提供一种数据传输装置,包括用于执行以上第一方面提供的方法的至少一个处理元件(或芯片)。
本申请实施例第五方面提供了一种通信系统,该系统包括第一设备和第二设备,第一设备集成在上述方面所述的数据传输装置中,所述第一设备和所述第二设备之间进行数据传输。
本申请实施例第六方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请实施例第七方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
在以上各个方面中,第一设备确定第一传输子帧内的第一资源集合和第二资源集合,该第一资源集合为第一传输子帧内所有用于数据传输的资源粒子基于第一配对规则配对后剩余的资源粒子集合,第二资源集合为第一传输子帧内所有用于数据传输的资源粒子基于第一配对规则完成配对的资源粒子集合,第一设备确定第一资源集合和第二资源集合上的数据传输方式,并根据确定的数据传输方式利用第一传输子帧向第二设备发送数据或者接收第二设备在该第一传输子帧上发送的数据,这样能够保证在SFBC传输下,当采用混合参考信号配置时,能够最大程度的利用第一传输子帧上的物理层资源,避免了资源浪费。
附图说明
图1为本申请实施例提供的一种通信系统的结构示意图;
图2为PRB内仅配置DMRS时出现的孤立资源粒子的位置示意图;
图3为LTE R10中SFBC的RE配对规则;
图4为孤立资源粒子可能出现歧义的分布示意图;
图5为本申请提供的一种数据传输方法实施例一的流程示意图;
图6为本申请提供的一种数据传输方法实施例二的流程示意图;
图7为第一设备确认第一资源集合和第二资源集合的流程示意图;
图8为图7中第一资源集合包含的孤立RE的判定结果示意图;
图9为本申请提供的一种数据传输方法实施例三的流程示意图;
图10为采用图9所示实施例的方法确定的第一资源集合和第二资源集合;
图11为本申请提供的一种数据传输方法实施例四的流程示意图;
图12为采用图11所示实施例的方法确定的第一资源集合和第二资源集合;
图13为本申请实施例提供的一种数据传输装置的结构示意图;
图14为本申请实施例提供的又一种数据传输装置的结构示意图。
具体实施方式
本申请下述各实施例提供的数据传输方法,可适用于通信系统中。图1为本申请实施例提供的一种通信系统的结构示意图。如图1所示,本实施例提供的通信系统包括:网络设备11和终端设备12。该通信系统可以是LTE通信系统,也可以是未来其他通信系统,在此不作限制。
本申请实施例提供的数据传输方法,应用于图1所示通信系统中网络设备11和终端设备12之间的数据传输,应理解,其既可以是网络设备11向终端设备12发送数据的下行传输,也可以网络设备11接收终端设备12发送的数据信息的上行传输,具体形式根据实际需要进行确定,此处不作限定。
可选地,该通信系统还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例不限于此。
本申请实施例所应用的通信系统可以为全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS),及其他应用正交频分复用(orthogonal frequency division multiplexing,OFDM)技术的无线通信系统等。本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在本申请实施例中所涉及的网络设备11可用于为终端设备12提供无线通信功能。所述网络设备11可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。所述网络设备11可以是GSM或CDMA中的基站(base transceiver station,BTS),也可以是WCDMA中的基站(nodeB,NB),还可以是LTE中的演进型基站(evolutional node B,eNB或e-NodeB),以及可以是5G网络中对应的设备gNB。为方便描述,本申请所有实施例中,上述为终端设备提供无线通信功能的装置统称为网络设备。
在本申请实施例中,所述终端设备12也可称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal)、终端(terminal)等,该终端设备12可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,例如,终端设备12可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,例如,终端设备12还可以是便携式、袖珍式、手持式、计算机内置的或者车载的 移动装置,它们与无线接入网交换语言和/或数据。本申请实施例中不做具体限定。
作为一种示例,如图1所示,终端设备12和网络设备11之间通过物理信道进行通信。网络设备11在物理信道上发送参考信号,供终端设备12进行信道估计。网络设备11在物理信道上发送数据信号,终端设备12接收数据信号并进行解调。对于某一特定终端设备,数据信号和参考信号出现在同一调度带宽内,参考信号和数据信号以时频资源粒子为单位进行时分频分复用传输。参考信号可以包括多种不同用途的具体类别,例如,可以包括用于获取信道状态信息的CSI-RS和用于解调的DMRS等。上述任意一种具有特定用途的参考信号,都具有一定的时频资源图案。
在未来移动通信系统中,网络设备11和终端设备12将会广泛使用多天线技术。为了进一步提高移动通信系统的覆盖和容量性能,对参考信号的发送和数据信号的发送,都将采用波束赋形技术。在3GPP R14中讨论的半开环多天线传输指的就是在闭环预编码的DMRS基础上,进一步在数据信道上进行RE级的开环预编码的数据传输技术。假设DMRS的预编码矩阵P1可基于终端设备的信道反馈信息确定,因而数据信道上第j个RE上的预编码矩阵P2(j)等于该资源块内DMRS的预编码矩阵P1乘以开环预编码矩阵P
Figure PCTCN2017075046-appb-000001
Figure PCTCN2017075046-appb-000002
而每个RE上,开环预编码矩阵
Figure PCTCN2017075046-appb-000003
是不一致的。
本申请实施例中,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
下面首先针对本申请实施例适用场景进行简要说明。
LTE作为一项长期演进的标准,使得陆地移动通信网络的新技术研究与商用能够平滑的进行。在LTE的第13个版本(LTE R13)中,引入了全维度多天线(FD-MIMO)技术,即在网络设备侧借助2维天线阵列,同时进行水平维度和垂直维度波束赋型,并据此进行相应的预编码码本增强、反馈流程增强等等,且这些增强显著地提升了小区容量。但2维波束赋型,造成LTE R13预编码的码本较LTE R12而言显著增大,反馈流程也更加复杂,因此,LTE R13的预编码反馈周期较长,往往也只能工作在相对静态的环境内。对于高速运动场景,定义一套类似的全维度波束赋型方案,即开环-3D-MIMO方案,成为了LTE R14的一个重要议题。
在LTE R8中,虽然定义过一些针对于高速运动场景的开环传输模式,如传输模式2发射分集和传输模式3大循环延迟传输。由于信道估计依赖于小区级的参考信号,故在上述两种传输模式中,最大只允许4个天线的信号发射,无法有效地进行垂直维度波束赋型来提升小区容量。因此,在LTE R14中,需要针对高速运动场景,定义一套类似于LTE R13的垂直维度波束赋型方案,即开环-FD-MIMO方案。
实际上,在该开环-FD-MIMO方案中,已经确定采用一对波束上的SFBC传输。SFBC传输要求在同一个OFDM符号、同一个PRB内,频域跨度不超过3个子载波的两个RE进行俩俩配对。然而与先前版本不同的是,在LTE R14中讨论的SFBC传输,参考信号采用DMRS。考虑到DMRS所占用的时频资源,在SFBC的RE配对过程中,可能会出现无法配对的资源粒子,即孤立资源粒子。
图2为PRB内仅配置DMRS时出现的孤立资源粒子的位置示意图。在图2中,1行代表1个子载波,1列代表1个OFDM符号,该12个子载波便构成一个物理资源块PRB。 如图2所示,在第12个子载波、第6、7、13、14个OFDM符号对应的位置上出现了孤立资源粒子(孤立RE)。
进一步的,当配置有DMRS的PRB内还配置有CSI-RS时,按照上述定义的SFBC中RE配对规则,孤立资源粒子出现的位置、频次等都会发生变化,甚至针对一种参考信号配置,存在孤立资源粒子出现位置的多种可能。
可选的,在LTE R10中,如果在下行某个终端设备的调度带宽内存在CSI-RS,此时,可能因为2端口的CSI-RS带来孤立资源粒子。针对这种情况,现有LTE R10中的处理流程具体如下:在LTE R10中的SFBC传输下,终端设备首先判定当前OFDM符号是否被使用,若当前OFDM符号被使用,在资源映射时,映射整个OFDM符号,否则直接将该OFDM符号丢弃,在资源映射时,不映射整个OFDM符号。图3为LTE R10中SFBC的RE配对规则。在LTE R10中,参照图3所示,基于SFBC的RE配对,定义了如下规则:
第一、参与SFBC配对的两个RE,必须来自同一个OFDM符号;
第二、参与SFBC配对的两个RE,必须在同一个物理资源块PRB之内;
第三、参与SFBC配对的两个RE,必须最多跨越3个子载波,即,2个配对RE之间最多只有1个子载波。
如图3所示,按照上述规则,图3中的(a)和图3中的(b)中的两个数据信号RE可以实现SFBC配对,而图3中的(c)和图3中的(d)中的两个数据信号RE无法完成SFBC配对。这样在传输带宽内既存在数据信号RE,又存在参考信号的RE时,基于上述配对规则的限制,使得一些数据信号RE无法找到自身的SFBC配对,这些数据信号RE就是孤立RE。
基于LTE R10中定义的准则,SFBC下搜索并处理孤立RE的流程一般如下:
第一步:判定当前OFDM符号内、调度带宽内的一个PRB内,除去用于CSI-RS的资源粒子,剩余的资源粒子的数目是否为偶数。若是,执行第二步,否则,表明当前OFDM符号内存在孤立RE,因此,中止当前OFDM符号内的资源映射。
第二步:在CSI-RS跨越超过连续两个子载波的情况出现时,判断是否可能出现SFBC下资源粒子无法配对的情况。若是,中止当前OFDM符号内的资源映射,若否,进行资源粒子的配对和SFBC的资源映射。
可选的,由于LTE R10定义的CSI-RS中,跨越超过连续两个子载波的情况并不多,因此,终端设备可以通过上述判定准则,较快的确定当前OFDM符号是否满足资源映射的条件,当其满足时再进行资源映射和解码,从而相对降低了终端设备的实现复杂度。
然而,当将上述LTE R10的判定规则直接应用于LTE R14时,上述方案存在如下缺陷:第一,在R14中,PDSCH采用发射分集传输时,被调度的PRB内不仅仅包括CSI-RS,还包括DMRS。在两种参考信号RS的共存下,若SFBC的配对规则不变,造成的孤立RE更加复杂,此时已无法使用上述搜索并处理孤立资源粒子的流程,来确认当前OFDM符号是否用于资源映射和速率匹配。第二,在R14中,DMRS也会带来孤立RE,且DMRS可能存在于每个子帧内,此时若直接按照R10里将不满足映射条件的整个OFDM符号丢弃将会致使资源浪费。
进一步的,在LTE R14中,由于定义了新的非周期CSI-RS和部分非周期CSI-RS可以被动态激活,且周期CSI-RS的数量也显著增多,因此,相较于LTE R10,CSI-RS和 DMRS共同带来的孤立RE问题可能更复杂,有可能存在孤立RE位置歧义的情况。
例如,图4为孤立资源粒子可能出现歧义的分布示意图。如图4中的(a)所示,在第6、7个OFDM符号上,第4个子载波上的资源粒子、第8个子载波上资源粒子均可以与第7个子载波上资源粒子实现SFBC配对,所以,在图4中的(a)中,孤立RE可能是第6、7个OFDM符号上,第4个子载波上的资源粒子,也可能是第6、7个OFDM符号上,第8个子载波上的资源粒子,也即,孤立RE的位置可能出现二歧义。
如图4中的(b)所示,对于第6、7个OFDM符号上的资源粒子的配对存在如下可能性:第一种可能,第2个子载波上的资源粒子与第3个子载波上的资源粒子实现SFBC配对,第7个子载波上的资源粒子与第8个子载波上的资源粒子实现SFBC配对,这时第9个子载波上的资源粒子成为孤立RE;第二种可能,第2个子载波上的资源粒子需要与第3个子载波上的资源粒子实现SFBC配对,第9个子载波上的资源粒子与第8个子载波上的资源粒子实现SFBC配对,这时第7个子载波上的资源粒子成为孤立RE;第三种可能,第9个子载波上的资源粒子与第8个子载波上的资源粒子实现SFBC配对,第7个子载波上的资源粒子与第5个子载波上的资源粒子实现SFBC配对,这时第2个子载波上的资源粒子成为孤立RE。所以,在图4中的(b)中,孤立RE可能是第2个子载波上的资源粒子,也可能是第7个子载波上的资源粒子,还可能是第9个子载波上的资源粒子,这时,孤立RE的位置存在多种可能性,定义为多歧义。
本申请实施例提供了一种数据传输方法及装置,针对一个传输子帧中配置的任意参考信号混合配置问题,通过确定SFBC传输中当前参考信号配置下的孤立资源粒子的位置和孤立资源粒子上的数据传输方案,来实现SFBC传输中的资源映射和速率匹配,避免了资源浪费。
图5为本申请提供的一种数据传输方法实施例一的流程示意图。本申请实施例可适用于一切基于LTE标准的终端和基站,终端和基站的LTE基带收发模块都将采用本申请实施例的技术方案。故在本实施例中,第一设备既可以是终端,还可以是基站,其可实际需要进行确定,本实施例并不对其进行限定。具体的,如图5所示,该数据传输方法可包括如下步骤:
步骤51:第一设备确定第一传输子帧内的第一资源集合和第二资源集合。
其中,该第一资源集合为第一传输子帧内所有用于数据传输的资源粒子基于第一配对规则配对后剩余的资源粒子集合,该第二资源集合为第一传输子帧内所有用于数据传输的资源粒子基于第一配对规则完成配对的资源粒子集合。
在本实施例中,该第一配对规则,包括:配对的两个资源粒子属于同一个时域单位、同一个频域单位、最多跨越3个子载波。其中,该频域单位,包括:1个或多个物理资源块的频域宽度,时域单位包括:1个或多个OFDM符号。
值得说明的是,该频域单位,包括但不限于1个或多个物理资源块的频域宽度,可选的,该频域单位可以是一个具有相同的DMRS预编码矩阵P1的子带,该时域单位,包括但不限于1个或多个OFDM符号。关于频域单位和时域单位的定义和范围可根据实际情况进行确定,本实施例并不对其进行限定。
具体的,在本实施例中,通信系统中的基站和终端可以分别通过第一配对规则获知孤立RE集合的位置。可选的,在本实施例中,将孤立RE的集合定义为第一资源集合,将 第一传输子帧内所有用于数据传输的资源粒子中除去第一资源集合后的资源粒子的集合定义为第二资源集合。
在实际应用中,若某个OFDM符号上、第k个子载波上的资源粒子RE用于发射分集的PDSCH传输,则其需要能够找到相同OFDM符号内、第k+n个子载波上用于PDSCH传输的资源粒子进行配对传输,n<3,若第k个子载波无法找到资源粒子进行配对,则认为第k个子载波上的该资源粒子无法配对,将其标记成孤立RE。这里,k为用于映射数据信道的资源粒子对应的子载波的序号,k为大于或等于1的正整数。
作为一种示例,第一设备还可通过接收配置指令实现第一资源集合和第二资源集合的配置。可选的,在全集静态或通过无线资源管理(Radio Resource Control,RRC)半静态配置时,第一资源集合可通过RRC或MAC层控制信元(MAC control element,MAC CE)或下行控制信息(Downlink control information,DCI)激活。值得说明的是,一般情况下,基站的配置能力强于终端,因此,在该实施例中,第一设备可选是终端,也即,终端通过接收基站的配置指令实现第一资源集合和第二资源集合的配置。
可选的,若全集是通过预定义RE配对集合,或通过RRC配置RE配对集合形成的,无论采用哪种方法,都将对RE配对进行编号。因此,可通过发送相应编号的方式将子集激活,也即,将全集划分第一资源集合和第二资源集合。
可选的,如果子集通过RRC被半静态激活,且当CSI-RS和该子集在某些RE上同时被激活时,则该子集被CSI-RS覆盖,即,该子集被去激活。
步骤52:第一设备确定第一资源集合和第二资源集合上的数据传输方式。
针对孤立RE上的数据传输,第一设备可根据下述规则进行配置:第一,可以在孤立RE上留空,不发送数据,此时速率匹配时不考虑该孤立RE;第二,孤立RE上采用空时分组码(spatial time block coding,STBC)进行资源映射时,先映射到普通OFDM符号上,后映射到STBC编码的OFDM符号上;第三,在孤立RE上不进行SFBC配对,而采用单端口进行传输。
可选的,当第一设备确定出第一传输子帧内所有孤立RE的集合后,第一设备根据传输方式的特点,分别确定第一资源集合和第二资源集合上的数据传输方式,也即,第一设备确定第二资源集合上的传输方式为空频分组码的发射分集传输,确定第一资源集合上的传输方式为不传输数据或空时分组码传输。
具体的,第一设备确定第二资源集合上的传输方式为空频分组码的发射分集传输,包括:在SFBC的发射分集传输中,第一设备将多个天线端口中每个天线端口上经过空频分组码编码的传输符号映射到物理资源时,依次映射到第二资源集合中的所有资源粒子上,从而保证资源映射满足SFBC映射规则。
作为一种示例,第一设备确定第一资源集合上的传输方式为空时分组码传输,包括:第一设备在空频分组码编码对应的传输符号的资源映射之前或之后,依次将多个天线端口中每个天线端口上经过空时分组码编码的传输符号映射到第一资源集合中的所有资源粒子上。
作为另一种示例,第一设备确定第一资源集合上的传输方式为不传输数据,包括:第一设备确定第一资源集合上的所有资源粒子不进行任何传输符号的映射。
步骤53:第一设备根据确定的上述数据传输方式利用第一传输子帧向第二设备发射 数据或者接收第二设备在该第一传输子帧上发送的数据。
在本实施例中,当第一设备确定出第一传输子帧内所有用于数据传输的资源粒子的传输方式后,其会将确定的数据传输方式通知给第二设备,这样第一设备和第二设备之间便可以通过确定的数据传输方式实现数据传输,也即,第一设备根据确定的数据传输方式利用第一传输子帧向第二设备发送数据或者接收第二设备在该第一传输子帧上发送的数据。
具体的,在第一设备在第一传输子帧中第一资源集合上不传输数据时,第二设备无法从第一传输子帧中第一资源集合上接收数据信息。当第一设备在该第一资源集合上采用空时分组码的传输方式或在第二资源集合上采用空频分组码的传输方式向第二设备发送数据时,相应的,该第二设备按照第一设备的传输方式分别从第一传输子帧中第一资源集合和第二资源集合上接收数据。同理,当第二设备在该第一资源集合上采用空时分组码的传输方式或在第二资源集合上采用空频分组码的传输方式向第一设备发送数据时,该第一设备分别根据第二设备的数据传输方式接收第二设备在第一传输子帧中第一资源集合和第二资源集合上发送的数据。
本申请实施例提供的数据传输方法,第一设备确定第一传输子帧内的第一资源集合和第二资源集合,该第一资源集合为第一传输子帧内所有用于数据传输的资源粒子基于第一配对规则配对后剩余的资源粒子集合,第二资源集合为第一传输子帧内所有用于数据传输的资源粒子基于第一配对规则完成配对的资源粒子集合,第一设备确定第一资源集合和第二资源集合上的数据传输方式,并根据确定的数据传输方式利用第一传输子帧向第二设备发送数据或者接收第二设备在该第一传输子帧上发送的数据。该技术方案中,第一设备能够确定出第一资源集合和第二资源集合的位置,并分别确定不同资源集合上的数据传输方式,保证了SFBC传输在混合参考信号配置下能够最大程度的利用第一传输子帧上的物理层资源,避免了资源浪费。
作为一种示例,在图5所示实施例的基础上,上述步骤51(第一设备确定第一传输子帧内的第一资源集合和第二资源集合)可采用如下可能方式实现,具体如图6所示。
图6为本申请提供的一种数据传输方法实施例二的流程示意图。如图6所示,在本申请实施例中,上述步骤51,可包括如下步骤:
步骤61:第一设备按照预设顺序依次判定第一传输子帧内所有用于数据传输的资源粒子是否满足第一配对规则。
可选的,在第一传输子帧内所有用于数据传输的物理资源块内的资源粒子中,可首先确定出一个频域单位和一个时域单位,这样针对该频域单位和该时域单位内的所有资源粒子,从第1个用于映射数据信道的资源粒子对应的子载波序号开始,逐一确认每个资源粒子是否满足第一配对规则,也就是说,逐一判定每个资源粒子属于第一资源集合,还是第二资源集合。
步骤62:在第k个子载波上用于映射数据信道的资源粒子与第k+n个子载波上用于映射数据信道的资源粒子满足第一配对规则时,第一设备确定该第k个子载波和第k+n个子载波上用于映射数据信道的资源粒子均属于第二资源集合。
其中,n为小于3的正整数,k为用于映射数据信道的资源粒子对应的子载波的序号,k为大于或等于1的正整数。
具体的,当第k个子载波上用于映射数据信道的资源粒子与第k+n个子载波上用于映射数据信道的资源粒子满足第一配对规则时,两者可以进行SFBC配对,则表明第k个子载波上用于映射数据信道的资源粒子与第k+n个子载波上用于映射数据信道的资源粒子均不会成为孤立RE,即第一设备确定该第k个子载波和第k+n个子载波上用于映射数据信道的资源粒子均属于第二资源集合。
可选的,在第一设备完成对第k个子载波上用于映射数据信道的资源粒子所属集合的判断后,将k置为下一个用于映射数据信道的资源粒子对应的子载波序号,重复上述判断过程,直到第一传输子帧中最后一个子载波上用于映射数据信道的资源粒子判定结束。
步骤63:第一设备确定第一传输子帧内所有用于数据传输的资源粒子中除第二资源集合之外的所有资源粒子的集合为第一资源集合。
可选的,第一传输子帧内所有用于数据传输的资源粒子按照上述第一配对规则判定后,将能够实现SFBC配对的资源粒子归为第二资源集合,那么将第一传输子帧内所有用于数据传输的资源粒子中不能实现SFBC配对的资源粒子归为第一资源集合,实际上,该第一资源集合即是第一传输子帧内所有用于数据传输的资源粒子中除第二资源集合之外的所有资源粒子的集合。
值得说明的是,在某一通信系统中,类似的,要与第一设备实现数据通信的第二设备也按照步骤61至步骤63的确定步骤确定出第一传输子帧上的第一资源集合和第二资源集合,这样第一设备和第二设备便能够按照相同的数据传输方式实现数据通信。
可选的,在图6所示的数据传输方法中,如图6所示,在步骤63之前,该方法还可包括如下步骤62a。
步骤62a:在第一设备完成第一传输子帧中预设频域单位内、所有时域单位内的所有资源粒子的判定后,第一设备将预设频域单位上各个资源粒子的判定结果复制到第一传输子帧中的其他频域单位上。
其中,该第一传输子帧中的频域单位满足如下两个条件:每个频域单位内解调参考信号和信道状态信息参考信号的配置一致、解调参考信号的预编码矩阵相同。
可选的,第一设备可将第一传输子帧上的资源粒子划分为多个频域单位和多个时域单位进行判定。比如,当第一设备完成第一传输子帧上预设时域单位内所有资源粒子的判定后,可切换到下一时域单位,重复上述判定过程,直到第一传输子帧中所有时域单位内的所有资源粒子的判定结束。
可选的,当第一设备完成了第一传输子帧中预设频域单位内、所有时域单位内的所有资源粒子的判定后,此时可将该预设频域单位上的各个资源粒子是否属于第一资源集合的判定结果复制到其它频域单位上。
值得说明的是,能够采用步骤62a所述方法的频域单位必须满足以下两个条件:即每个频域单位内参考信号的配置完全一致(即,解调参考信号和信道状态信息参考信号)的配置位置相同、解调参考信号的预编码矩阵相同。比如,在基站向终端发送数据时,每个频域单位是一个具有相同DMRS预编码矩阵的子带。
利用步骤62a所述的方法能够大大降低第一设备的判定复杂度,提高了判定速度,效率高。
本申请实施例提供的数据传输方法,第一设备确定第一传输子帧内的第一资源集合和 第二资源集合时,第一设备可按照预设顺序依次判定第一传输子帧内所有用于数据传输的资源粒子是否满足第一配对规则,在第k个子载波上用于映射数据信道的资源粒子与第k+n个子载波上用于映射数据信道的资源粒子满足第一配对规则时,确定第k个子载波和第k+n个子载波上用于映射数据信道的资源粒子均属于第二资源集合,确定第一传输子帧内所有用于数据传输的资源粒子中除第二资源集合之外的所有资源粒子的集合为第一资源集合。该技术方案能够准确将第一传输子帧中的所有资源粒子划分为第一资源集合和第二资源集合,为后续数据的准确传输奠定了基础。
下面结合图7和图8,对图6所述的方法进行详细说明。图7为第一设备确认第一资源集合和第二资源集合的流程示意图。图8为图7中第一资源集合包含的孤立RE的判定结果示意图。本实施例以第一设备为终端进行说明。如图8所示,该物理资源块内包含12个子载波,每个子载波认为是一个RE,即该物理资源块内包含12个RE。该终端从k=0个RE开始进行判断,具体如下:
步骤701:判断第k个RE是否为参考信号RE。若是,依次执行步骤702和步骤711,若否,执行步骤703。
若第k个RE为参考信号RE,则意味着其既无法进行SFBC配对,也无法将其标志为孤立RE,故将k+1赋给k,并在第k+1个RE未超出该物理资源块的边界时,对第k+1个RE进行判断。若第k个RE不是参考信号RE,那么转到步骤703,进行进一步判断。
步骤702:k=k+1。
步骤703:判断第k+1个RE是否超出物理资源块的边界。若是,执行步骤707,若否,执行步骤704。
若第k+1个RE超出物理资源块的边界,则意味着第k个RE已经是最后一个RE,不可能有RE和它进行配对,故确定该第k个RE为孤立RE,判定结束。若第k+1个RE未超出物理资源块的边界,则继续进行判断。
步骤704:判断第k+1个RE是否为参考信号RE。若是,执行步骤705,若否,依次执行步骤706和步骤711。
若第k+1个RE为参考信号RE,执行下一步判断,若第k+1个RE不是参考信号RE,则表明第k个RE和第k+1个RE可以完成SFBC配对,此时,将k+2赋给k,并判断第k+2个RE是否超出该物理资源块的边界。
步骤705:判断第k+2个RE是否超出该物理资源块的边界。若是,执行步骤707,若否,执行步骤708。
同理,若第k+2个RE超出物理资源块的边界,意味着第k个RE已经是最后一个RE,不可能有RE和它进行配对,故确定该第k个RE为孤立RE,判定结束。若第k+1个RE未超出物理资源块的边界,则继续进行判断。
步骤706:k=k+2。
步骤707:确定第k个RE为孤立RE。
步骤708:判断第k+2个RE是否为参考信号RE。若是,依次执行步骤709和步骤710,若否,直接执行步骤710。
若第k+2个RE是参考信号RE,则第k个RE已经无法和距离小于3个子载波的RE 完成配对,故将第k个RE标记为孤立RE。若第k+2个RE不是参考信号RE,则第k个RE和第k+2个RE可以完成配对。进一步的,在上述步骤后,将k+3赋给k,并判断第k+3个RE是否超出该物理资源块的边界。
步骤709:将第k个RE标记为孤立RE。
步骤710:k=k+3。
由于已经经历了3个RE的判断过程,故k跳到3个RE以后,继续判断
步骤711:判断此时k是否已经超出该物理资源块的边界。若是,则结束,若否,调到步骤701,重新执行上述判断流程。
基于图7所示的判断流程,上述图4中的(a)中,孤立RE的位置确定为如图8中的(a)所示,相应的,上述图4中的(b)中,孤立RE的位置确定为如图8中的(b)所示。
本实施例中各步骤的详细操作流程参见上述实施例中的记载,此处不再赘述。
作为另一种示例,在图5所示实施例的基础上,上述步骤51(第一设备确定第一传输子帧内的第一资源集合和第二资源集合)还可采用如下可能方式实现,具体如图9所示。
图9为本申请提供的一种数据传输方法实施例三的流程示意图。图10为采用图9所示实施例的方法确定的第一资源集合和第二资源集合。结合图10所示的物理资源块,如图9所示,在本申请实施例中,上述步骤51,可包括如下步骤:
步骤91:第一设备在第一传输子帧内确定出一个资源全集。
其中,该资源全集中包括多个资源子集,每个资源子集包括1个或多个资源粒子,且每个资源粒子具有一个唯一的标识序号。
在本实施例中,第一设备根据参考信号的配置位置,首先确定出参考信号可能影响SFBC配对的几个符号。参照图10所示,参考信号可能影响的只有(5,6,12,13)四个符号。其次,第一设备对物理资源块的所有子集进行编号。
可选的,第一设备对物理资源块的所有子集进行编号时,可采用如下两种方式。第一种方式为第一设备根据参考信号可能影响的符号对数据信道的所有物理资源对进行编号,第二种方式为第一设备根据参考信号可能影响的符号对所有物理资源对进行编号。
参照图10所示,采用第一种方式,第一设备确定的第一传输子帧的资源全集包含9个资源子集,资源全集的示意图具体如图10的(a)所示,编号分别如下:
Figure PCTCN2017075046-appb-000004
参照图10所示,采用第二种方式,第一设备确定的第一传输子帧的资源全集包含12 个资源子集,此时资源全集的示意图具体如图10的(c)所示,编号分别如下:
Figure PCTCN2017075046-appb-000005
步骤92:第一设备接收第二设备发送的第一配置信令,该第一配置信令包含1个或多个资源子集的标识序号。
可选的,第一设备确定出一个资源全集后,会接收到第二设备发送的第一配置指令,该第一设备则可根据该第一配置信令中包含的1个或多个资源子集的标识序号来确定第一资源集合和第二资源集合。
可选的,由于基站的配置能力强于终端,那么在本实施例中,第一设备可选为终端,该第二设备可选为基站。
可选的,该第一配置信令可以是半静态配置信令。例如,该半静态配置信令可以包括但不限于LTE系统中定义的无线资源管理信令。
在一实施例中,当该第一配置信令是半静态配置信令时,该半静态配置信令还可以包括第一资源集合的周期和子帧偏移情况。
在另一实施例中,当该第一配置信令是半静态配置信令时,该半静态配置信令还可以包括第一资源集合中每一个资源子集的周期和子帧偏移情况。
在再一实施例中,当该第一配置信令是半静态配置信令时,按照该半静态配置信令配置的第一资源集合中,可能会出现动态配置的参考信号。此时,第一资源集合中应排除掉已被配置成参考信号的资源粒子。
可选的,该第一配置信令还可以是动态配置信令。例如,该动态配置指令包括但不限于LTE系统中定义的接入控制层控制信元、物理层下行控制信息等。
步骤93:第一设备将第一配置指令中包含的1个或多个资源子集配置为第一资源集合,将第一传输子帧内所有用于数据传输的资源粒子中除第一资源集合之外的所有资源粒子的集合配置为第二资源集合。
当第一设备接收到第一配置指令后,其可根据第一配置指令中包含的1个或多个资源子集,将资源全集中的该1个或多个资源子集激活,将其配置为第一资源集合,相应的,将第一传输子帧内所有用于数据传输的资源粒子中除第一资源集合之外的所有资源粒子的集合配置为第二资源集合。
基于图9所示的确定方法,采用第一种方式对资源全集编号的方法,若第一配置指令中包含资源子集的标识序号为9,则如图10中的(b)所示,第一设备可将资源全集中的资源子集“9:{(11,5),(11,6),(11,12),(11,13)}”激活,也即,该标识序号为9的资源子集配置为第一资源集合。同理,采用第二种方式对资源全集编号的方法,若第一配置指令中包含资源子集的标识序号为1,则如图10中的(d)所示,第一设备可将资源全集中的资源子集“1:{(1,5),(1,6),(1,12),(1,13)}”激活,即将标识序号为1的资源子集配置为第一资源集合。
本实施例提供的数据传输方法,在第一设备确定第一传输子帧内的第一资源集合和第二资源集合时,第一设备首先在所述第一传输子帧内确定出一个资源全集,该资源全集中包括多个资源子集,每个资源子集包括1个或多个资源粒子,且每个资源粒子具有一个唯一的标识序号,其次接收第二设备发送的第一配置信令,该第一配置信令包含1个或多个资源子集的标识序号,最后将第一配置指令中包含的1个或多个资源子集配置为第一资源集合,将第一传输子帧内所有用于数据传输的资源粒子中除第一资源集合之外的所有资源粒子的集合配置为第二资源集合。该技术方案第一设备能够确定出第一传输子帧中的第一资源集合和第二资源集合,为后续确定数据传输方法以及实现数据的准确传输奠定了基础。
作为再一种示例,在图5所示实施例的基础上,上述步骤51(第一设备确定第一传输子帧内的第一资源集合和第二资源集合)还可采用如下可能方式实现,具体如图11所示。
图11为本申请提供的一种数据传输方法实施例四的流程示意图。图12为采用图11所示实施例的方法确定的第一资源集合和第二资源集合。结合图12所示的物理资源块,如图11所示,在本申请实施例中,上述步骤51,可包括如下步骤:
步骤111:第一设备接收第二设备发送的第二配置信令,该第二配置指令用于指示一个资源全集。
在本实施例中,第一设备从第二设备接收一个第二配置信令,该第二配置信令指示一个资源全集,该第二配置指令具体指示的内容包括:
(1)资源全集中包括N个资源子集,N为大于1的正整数;
(2)每个资源子集对应唯一的标识序号;
(3)每个资源子集所包含的1个或多个资源粒子的位置信息,例如,第k个子载波和第l个时域符号上的资源粒子。
可选的,第二配置信令与第一配置指令类似,该第二配置信令是半静态的配置信令,例如,该半静态配置信令可以包括但不限于LTE系统中定义的无线资源管理信令。
在一实施例中,当该第二配置信令是半静态配置信令时,该半静态配置信令还可以包括资源全集的周期和子帧偏移情况。
在另一实施例中,当该第二配置信令是半静态配置信令时,该半静态配置信令还可以包括资源全集中每一个候选资源子集的周期和子帧偏移情况。
可选的,该第二配置信令还可以是动态配置信令。例如,该动态配置指令包括但不限于LTE系统中定义的接入控制层控制信元、物理层下行控制信息等。
步骤112:第一设备根据该第二配置指令,在第一传输子帧内确定出一个资源全集。
该资源全集中包括多个资源子集,每个资源子集包括1个或多个资源粒子,且每个资源粒子具有一个唯一的标识序号;
在本实施例中,第一设备根据接收到的第二配置指令,首先确定出可能出现的孤立资源粒子的集合,即资源全集。可选的,在一实施例中,参照图12中的(a)所示,第二配置指令指示的资源全集中包含四个资源子集,编号如下:
Figure PCTCN2017075046-appb-000006
同理,在另一实施例中,参照图12中的(c)所示,第二配置指令指示的资源全集中也包含四个资源子集,编号如下:
Figure PCTCN2017075046-appb-000007
步骤113:第一设备接收第二设备发送的第一配置信令,该第一配置信令包含1个或多个资源子集的标识序号。
可选的,第一设备确定出一个资源全集后,会接收到第二设备发送的第一配置指令。该第一配置指令的具体表现形式与图9所示实施例中的一致。关于第一配置指令的具体表现形式参见图9所示实施例中步骤92中的记载,此处不再赘述。
值得说明的是,本实施例与图9所示实施例中类似,一般情况下,由于基站的配置能力强于终端,因此,在该实施例中,发送第一配置指令和第二配置指令的第二设备可选为基站,相应的,接收第一配置指令和第二配置指令的第一设备可选为终端。
步骤114:第一设备将第一配置指令中包含的1个或多个资源子集配置为第一资源集合,将第一传输子帧内所有用于数据传输的资源粒子中除第一资源集合之外的所有资源粒子的集合配置为第二资源集合。
该步骤的具体实现与上述步骤93中的类似,此处不再赘述。
对于图12中的(a)所示的资源全集,若第一配置指令中包含资源子集的标识序号为3和4,则如图12中的(b)所示,第一设备可将资源全集中的资源子集“3:{(11,5),(11,6)}”和“4:{(11,12),(11,13)}”激活,也即,将标识序号为3和4的资源子集配置为第一资源集合。对于图12中的(b)所示的资源全集,若第一配置指令中包含资源子集的标识序号为1和4,则如图12中的(b)所示,第一设备可将资源全集中的资源子集“1:{(1,5),(1,6)}”和“4:{(11,12),(11,13)}”激活,即将标识序号为1和4的资源子集配置为第一资源集合。
本实施例提供的数据传输方法,在第一设备确定第一传输子帧内的第一资源集合和第二资源集合时,第一设备接收第二设备发送的第二配置信令,根据该第二配置指令,在所述第一传输子帧内确定出一个资源全集,该资源全集中包括多个资源子集,每个资源子集 包括1个或多个资源粒子,且每个资源粒子具有一个唯一的标识序号,第一设备还接收第二设备发送的第一配置信令,该第一配置信令包含1个或多个资源子集的标识序号,这样第一设备将第一配置指令中包含的1个或多个资源子集配置为第一资源集合,将第一传输子帧内所有用于数据传输的资源粒子中除第一资源集合之外的所有资源粒子的集合配置为第二资源集合。在该技术方案中,第一设备同样能够准确确定出第一传输子帧中的第一资源集合和第二资源集合,为后续确定数据传输方法以及实现数据的准确传输奠定了基础。
图13为本申请实施例提供的一种数据传输装置的结构示意图。该数据传输装置集成在第一设备中。如图13所示,本实施例的数据传输装置可以包括:处理模块1301和收发模块1302。
该处理模块1301,用于确定第一传输子帧内的第一资源集合和第二资源集合。
其中,该第一资源集合为所述第一传输子帧内所有用于数据传输的资源粒子基于第一配对规则配对后剩余的资源粒子集合,所述第二资源集合为所述第一传输子帧内所有用于数据传输的资源粒子基于所述第一配对规则完成配对的资源粒子集合。
该处理模块1301,还用于确定所述第一资源集合和所述第二资源集合上的数据传输方式。
该收发模块1302,用于根据确定的所述数据传输方式利用所述第一传输子帧向第二设备发送数据或者接收第二设备在所述第一传输子帧上发送的数据。
可选的,该处理模块1301在确定所述第一资源集合和所述第二资源集合上的数据传输方式时,具体用于确定所述第二资源集合上的传输方式为空频分组码的发射分集传输,确定所述第一资源集合上的传输方式为不传输数据或空时分组码传输。
其中,所述第一配对规则,包括:配对的两个资源粒子属于同一个时域单位、同一个频域单位、最多跨越3个子载波。
所述频域单位,包括:1个或多个物理资源块的频域宽度,所述时域单位包括:1个或多个OFDM符号。
可选的,在一实施例中,上述处理模块1301在确定第一传输子帧内的第一资源集合和第二资源集合时,具体用于按照预设顺序依次判定所述第一传输子帧内所有用于数据传输的资源粒子是否满足所述第一配对规则,并在第k个子载波上用于映射数据信道的资源粒子与第k+n个子载波上用于映射数据信道的资源粒子满足所述第一配对规则时,确定所述第k个子载波和所述第k+n个子载波上用于映射数据信道的资源粒子均属于所述第二资源集合,确定所述第一传输子帧内所有用于数据传输的资源粒子中除所述第二资源集合之外的所有资源粒子的集合为所述第一资源集合;
其中,所述n为小于3的正整数,所述k为用于映射数据信道的资源粒子对应的子载波的序号,所述k为大于或等于1的正整数。
进一步的,上述处理模块1301在确定第一传输子帧内的第一资源集合和第二资源集合时,还具体用于在完成所述第一传输子帧中预设频域单位内、所有时域单位内的所有资源粒子的判定后,将所述预设频域单位上各个资源粒子的判定结果复制到所述第一传输子帧中的其他频域单位上。
值得说明的是,所述第一传输子帧中的频域单位满足如下两个条件:每个频域单位内解调参考信号和信道状态信息参考信号的配置一致、解调参考信号的预编码矩阵相同。
可选的,在另一实施例中,上述处理模块1301在确定第一传输子帧内的第一资源集合和第二资源集合时,具体用于在所述第一传输子帧内确定出一个资源全集,所述资源全集中包括多个资源子集,每个资源子集包括1个或多个资源粒子,且每个资源粒子具有一个唯一的标识序号,接收所述第二设备发送的第一配置信令,所述第一配置信令包含1个或多个资源子集的标识序号,并将所述第一配置指令中包含的1个或多个资源子集配置为所述第一资源集合,将所述第一传输子帧内所有用于数据传输的资源粒子中除所述第一资源集合之外的所有资源粒子的集合配置为所述第二资源集合。
可选的,在再一实施例中,上述处理模块1301在确定第一传输子帧内的第一资源集合和第二资源集合时,具体用于接收所述第二设备发送的第二配置信令,所述第二配置指令用于指示一个资源全集,根据所述第二配置指令,在所述第一传输子帧内确定出一个资源全集,所述资源全集中包括多个资源子集,每个资源子集包括1个或多个资源粒子,且每个资源粒子具有一个唯一的标识序号,以及接收所述第二设备发送的第一配置信令,所述第一配置信令包含1个或多个资源子集的标识序号,将所述第一配置指令中包含的1个或多个资源子集配置为所述第一资源集合,将所述第一传输子帧内所有用于数据传输的资源粒子中除所述第一资源集合之外的所有资源粒子的集合配置为所述第二资源集合。
可选的,作为一种示例,上述处理模块1301在确定所述第二资源集合上的传输方式为空频分组码的发射分集传输时,具有用于将多个天线端口中每个天线端口上经过空频分组码编码的传输符号映射到物理资源时,依次映射到所述第二资源集合中的所有资源粒子上。
可选的,作为另一种示例,上述处理模块1301在确定所述第一资源集合上的传输方式为不传输数据或空时分组码传输时,具体用于确定所述第一资源集合上的所有资源粒子不进行任何传输符号的映射或所述第一设备依次将多个天线端口中每个天线端口上经过空时分组码编码的传输符号映射到第一资源集合中的所有资源粒子上。
该数据传输装置的实现原理和技术效果与前述图1~图12所示的方法实施例类似,在此不再赘述。
需要说明的是,应理解以上装置的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个数 字信号处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质、(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。
图14为本申请实施例提供的又一种数据传输装置的结构示意图。该数据传输装置集成在第一设备中。如图14所示,本实施例的数据传输装置可以包括:处理器1401和收发器1402。可选的,该数据传输装置还可以包括存储器,该存储器用于存储处理器1401的执行指令。可选的,该收发器1402可以是由独立功能的发送器和接收器实现,两者均可以通过天线等形式实现,本申请实施例并不对其限定。处理器1401和收发器1402用于运行计算机执行指令,使数据传输装置执行如上数据传输方法的各个步骤。
具体的,在上述图13中,处理模块1301对应处理器1401,收发模块1302对应收发器1402等。
本申请实施例提供的数据传输方法及装置,适用于通信系统中基于LTE标准的基站和终端,当PDSCH在RE级别采用SFBC传输时,如果调度带宽的PRB内存在DMRS和/或CSI-RS,通过将第一传输子帧中所有用于数据传输的资源粒子分为第一资源集合和第二资源集合,使得基站和终端对PRB内孤立资源粒子的位置有一个共同认识,通过分别确定出第一传输子帧中第一资源集合和第二资源集合上的数据传输方式,使得基站和终端在进行资源映射时,能够实现速率匹配,这样能够最大限度利用物理层资源,避免了资源浪费。

Claims (18)

  1. 一种数据传输方法,其特征在于,包括:
    第一设备确定第一传输子帧内的第一资源集合和第二资源集合,所述第一资源集合为所述第一传输子帧内所有用于数据传输的资源粒子基于第一配对规则配对后剩余的资源粒子集合,所述第二资源集合为所述第一传输子帧内所有用于数据传输的资源粒子基于所述第一配对规则完成配对的资源粒子集合;
    所述第一设备确定所述第一资源集合和所述第二资源集合上的数据传输方式;
    所述第一设备根据确定的所述数据传输方式利用所述第一传输子帧向第二设备发送数据或者接收第二设备在所述第一传输子帧上发送的数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一设备确定所述第一资源集合和所述第二资源集合上的数据传输方式,包括:
    所述第一设备确定所述第二资源集合上的传输方式为空频分组码的发射分集传输;
    所述第一设备确定所述第一资源集合上的传输方式为不传输数据或空时分组码传输。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一配对规则,包括:配对的两个资源粒子属于同一个时域单位、同一个频域单位、最多跨越3个子载波;
    所述频域单位,包括:1个或多个物理资源块的频域宽度,所述时域单位包括:1个或多个OFDM符号。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述第一设备确定第一传输子帧内的第一资源集合和第二资源集合,包括:
    所述第一设备按照预设顺序依次判定所述第一传输子帧内所有用于数据传输的资源粒子是否满足所述第一配对规则;
    在第k个子载波上用于映射数据信道的资源粒子与第k+n个子载波上用于映射数据信道的资源粒子满足所述第一配对规则时,所述第一设备确定所述第k个子载波和所述第k+n个子载波上用于映射数据信道的资源粒子均属于所述第二资源集合,其中,所述n为小于3的正整数,所述k为用于映射数据信道的资源粒子对应的子载波的序号,所述k为大于或等于1的正整数;
    所述第一设备确定所述第一传输子帧内所有用于数据传输的资源粒子中除所述第二资源集合之外的所有资源粒子的集合为所述第一资源集合。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    在所述第一设备完成所述第一传输子帧中预设频域单位内、所有时域单位内的所有资源粒子的判定后,所述第一设备将所述预设频域单位上各个资源粒子的判定结果复制到所述第一传输子帧中的其他频域单位上;
    所述第一传输子帧中的频域单位满足如下两个条件:每个频域单位内解调参考信号和信道状态信息参考信号的配置一致、解调参考信号的预编码矩阵相同。
  6. 根据权利要求1~3任一项所述的方法,其特征在于,所述第一设备确定第一传输子帧内的第一资源集合和第二资源集合,包括:
    所述第一设备在所述第一传输子帧内确定出一个资源全集,所述资源全集中包括多个资源子集,每个资源子集包括1个或多个资源粒子,且每个资源粒子具有一个唯一的标识 序号;
    所述第一设备接收所述第二设备发送的第一配置信令,所述第一配置信令包含1个或多个资源子集的标识序号;
    所述第一设备将所述第一配置指令中包含的1个或多个资源子集配置为所述第一资源集合,将所述第一传输子帧内所有用于数据传输的资源粒子中除所述第一资源集合之外的所有资源粒子的集合配置为所述第二资源集合。
  7. 根据权利要求1~3任一项所述的方法,其特征在于,所述第一设备确定第一传输子帧内的第一资源集合和第二资源集合,包括:
    所述第一设备接收所述第二设备发送的第二配置信令,所述第二配置指令用于指示一个资源全集;
    所述第一设备根据所述第二配置指令,在所述第一传输子帧内确定出一个资源全集,所述资源全集中包括多个资源子集,每个资源子集包括1个或多个资源粒子,且每个资源粒子具有一个唯一的标识序号;
    所述第一设备接收所述第二设备发送的第一配置信令,所述第一配置信令包含1个或多个资源子集的标识序号;
    所述第一设备将所述第一配置指令中包含的1个或多个资源子集配置为所述第一资源集合,将所述第一传输子帧内所有用于数据传输的资源粒子中除所述第一资源集合之外的所有资源粒子的集合配置为所述第二资源集合。
  8. 根据权利要求2~7任一项所述的方法,其特征在于,所述第一设备确定所述第二资源集合上的传输方式为空频分组码的发射分集传输,包括:
    所述第一设备将多个天线端口中每个天线端口上经过空频分组码编码的传输符号映射到物理资源时,依次映射到所述第二资源集合中的所有资源粒子上。
  9. 根据权利要求2~7任一项所述的方法,其特征在于,所述第一设备确定所述第一资源集合上的传输方式为不传输数据或空时分组码传输,包括:
    所述第一设备确定所述第一资源集合上的所有资源粒子不进行任何传输符号的映射或所述第一设备依次将多个天线端口中每个天线端口上经过空时分组码编码的传输符号映射到第一资源集合中的所有资源粒子上。
  10. 一种数据传输装置,集成在第一设备中,其特征在于,所述装置包括:
    处理模块,用于确定第一传输子帧内的第一资源集合和第二资源集合,所述第一资源集合为所述第一传输子帧内所有用于数据传输的资源粒子基于第一配对规则配对后剩余的资源粒子集合,所述第二资源集合为所述第一传输子帧内所有用于数据传输的资源粒子基于所述第一配对规则完成配对的资源粒子集合;
    所述处理模块,还用于确定所述第一资源集合和所述第二资源集合上的数据传输方式;
    收发模块,用于根据确定的所述数据传输方式利用所述第一传输子帧向第二设备发送数据或者接收第二设备在所述第一传输子帧上发送的数据。
  11. 根据权利要求10所述的装置,其特征在于,所述处理模块在确定所述第一资源集合和所述第二资源集合上的数据传输方式时,具体用于确定所述第二资源集合上的传输 方式为空频分组码的发射分集传输,确定所述第一资源集合上的传输方式为不传输数据或空时分组码传输。
  12. 根据权利要求10或11所述的装置,其特征在于,所述第一配对规则,包括:配对的两个资源粒子属于同一个时域单位、同一个频域单位、最多跨越3个子载波;
    所述频域单位,包括:1个或多个物理资源块的频域宽度,所述时域单位包括:1个或多个OFDM符号。
  13. 根据权利要求10~12任一项所述的装置,其特征在于,所述处理模块在确定第一传输子帧内的第一资源集合和第二资源集合时,具体用于按照预设顺序依次判定所述第一传输子帧内所有用于数据传输的资源粒子是否满足所述第一配对规则,并在第k个子载波上用于映射数据信道的资源粒子与第k+n个子载波上用于映射数据信道的资源粒子满足所述第一配对规则时,确定所述第k个子载波和所述第k+n个子载波上用于映射数据信道的资源粒子均属于所述第二资源集合,确定所述第一传输子帧内所有用于数据传输的资源粒子中除所述第二资源集合之外的所有资源粒子的集合为所述第一资源集合;
    其中,所述n为小于3的正整数,所述k为用于映射数据信道的资源粒子对应的子载波的序号,所述k为大于或等于1的正整数。
  14. 根据权利要求13所述的装置,其特征在于,所述处理模块在确定第一传输子帧内的第一资源集合和第二资源集合时,还具体用于在完成所述第一传输子帧中预设频域单位内、所有时域单位内的所有资源粒子的判定后,将所述预设频域单位上各个资源粒子的判定结果复制到所述第一传输子帧中的其他频域单位上;
    所述第一传输子帧中的频域单位满足如下两个条件:每个频域单位内解调参考信号和信道状态信息参考信号的配置一致、解调参考信号的预编码矩阵相同。
  15. 根据权利要求10~12任一项所述的装置,其特征在于,所述处理模块在确定第一传输子帧内的第一资源集合和第二资源集合时,具体用于在所述第一传输子帧内确定出一个资源全集,所述资源全集中包括多个资源子集,每个资源子集包括1个或多个资源粒子,且每个资源粒子具有一个唯一的标识序号,接收所述第二设备发送的第一配置信令,所述第一配置信令包含1个或多个资源子集的标识序号,并将所述第一配置指令中包含的1个或多个资源子集配置为所述第一资源集合,将所述第一传输子帧内所有用于数据传输的资源粒子中除所述第一资源集合之外的所有资源粒子的集合配置为所述第二资源集合。
  16. 根据权利要求10~12任一项所述的装置,其特征在于,所述处理模块在确定第一传输子帧内的第一资源集合和第二资源集合时,具体用于接收所述第二设备发送的第二配置信令,所述第二配置指令用于指示一个资源全集,根据所述第二配置指令,在所述第一传输子帧内确定出一个资源全集,所述资源全集中包括多个资源子集,每个资源子集包括1个或多个资源粒子,且每个资源粒子具有一个唯一的标识序号,以及接收所述第二设备发送的第一配置信令,所述第一配置信令包含1个或多个资源子集的标识序号,将所述第一配置指令中包含的1个或多个资源子集配置为所述第一资源集合,将所述第一传输子帧内所有用于数据传输的资源粒子中除所述第一资源集合之外的所有资源粒子的集合配置为所述第二资源集合。
  17. 根据权利要求11~16任一项所述的装置,其特征在于,所述处理模块在确定所述第二资源集合上的传输方式为空频分组码的发射分集传输时,具有用于将多个天线端口中 每个天线端口上经过空频分组码编码的传输符号映射到物理资源时,依次映射到所述第二资源集合中的所有资源粒子上。
  18. 根据权利要求11~16任一项所述的装置,其特征在于,所述处理模块在确定所述第一资源集合上的传输方式为不传输数据或空时分组码传输时,具体用于确定所述第一资源集合上的所有资源粒子不进行任何传输符号的映射或所述第一设备依次将多个天线端口中每个天线端口上经过空时分组码编码的传输符号映射到第一资源集合中的所有资源粒子上。
PCT/CN2017/075046 2017-01-23 2017-02-27 数据传输方法及装置 WO2018133173A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2017394052A AU2017394052B2 (en) 2017-01-23 2017-02-27 Data transmission method and apparatus
EP17892119.3A EP3565155B1 (en) 2017-01-23 2017-02-27 Data transmission method and apparatus
CN201780009971.4A CN108604950B (zh) 2017-01-23 2017-02-27 数据传输方法及装置
CA3051144A CA3051144C (en) 2017-01-23 2017-02-27 Data transmission method and apparatus
US16/480,170 US11223453B2 (en) 2017-01-23 2017-02-27 Data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710058649.2 2017-01-23
CN201710058649 2017-01-23

Publications (1)

Publication Number Publication Date
WO2018133173A1 true WO2018133173A1 (zh) 2018-07-26

Family

ID=62907653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075046 WO2018133173A1 (zh) 2017-01-23 2017-02-27 数据传输方法及装置

Country Status (6)

Country Link
US (1) US11223453B2 (zh)
EP (1) EP3565155B1 (zh)
CN (1) CN108604950B (zh)
AU (1) AU2017394052B2 (zh)
CA (1) CA3051144C (zh)
WO (1) WO2018133173A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10721756B2 (en) * 2017-02-13 2020-07-21 Qualcomm Incorporated Repetition-based uplink for low latency communications in a new radio wireless communication system
EP3681079B1 (en) * 2017-09-08 2022-12-07 Wilus Institute of Standards and Technology Inc. Data transmission method and reception method for wireless communication system and device using same
CN111756471B (zh) * 2019-03-27 2021-10-22 华为技术有限公司 一种数据传输的方法及装置
CN113839754B (zh) * 2020-06-23 2023-05-26 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US20230231743A1 (en) * 2020-06-09 2023-07-20 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for channel estimation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052220A1 (ja) * 2009-10-30 2011-05-05 パナソニック株式会社 無線送信装置及び参照信号送信方法
CN102845011A (zh) * 2010-02-23 2012-12-26 高通股份有限公司 信道状态信息参考信号
CN104272639A (zh) * 2012-05-11 2015-01-07 华为技术有限公司 用于传输控制信道信号的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2667535A1 (en) 2012-05-21 2013-11-27 Panasonic Corporation Common mapping of resource elements to enhanced resource element groups
CN103580801B (zh) 2012-08-06 2017-12-22 中国移动通信集团公司 一种增强控制信道单元e‑cce资源映射方法及设备
EP2966890B1 (en) 2013-04-02 2020-06-10 Huawei Technologies Co., Ltd. Method and device for data transmission and user equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052220A1 (ja) * 2009-10-30 2011-05-05 パナソニック株式会社 無線送信装置及び参照信号送信方法
CN102845011A (zh) * 2010-02-23 2012-12-26 高通股份有限公司 信道状态信息参考信号
CN104272639A (zh) * 2012-05-11 2015-01-07 华为技术有限公司 用于传输控制信道信号的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3565155A4 *

Also Published As

Publication number Publication date
EP3565155B1 (en) 2022-04-06
CA3051144C (en) 2023-01-03
CN108604950B (zh) 2020-11-17
CN108604950A (zh) 2018-09-28
AU2017394052A1 (en) 2019-08-22
US11223453B2 (en) 2022-01-11
CA3051144A1 (en) 2018-07-26
EP3565155A4 (en) 2020-01-01
US20190372728A1 (en) 2019-12-05
EP3565155A1 (en) 2019-11-06
AU2017394052B2 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
KR101496964B1 (ko) 레퍼런스 신호들의 송신
US11871385B2 (en) Method and device used in UE and base station for wireless communication
WO2018133173A1 (zh) 数据传输方法及装置
WO2019136723A1 (zh) 上行数据传输方法及相关设备
US12021795B2 (en) Communication method and network device
US10419181B2 (en) System and method for demodulation reference signal overhead reduction
US20230179339A1 (en) Flexible semi-static harq-ack codebook overhead
WO2022206489A1 (zh) 传输配置指示tci状态的确定方法、装置及终端设备
CN115428515A (zh) 用于多波束通信的控制消息传送
US20220264630A1 (en) Communication methods and apparatuses
WO2018171683A1 (zh) 信道状态信息导频的传输方法、设备、处理器及存储介质
WO2022033876A1 (en) Demodulation reference signal allocation for uplink shared channel for wireless communication
CN110536340B (zh) 信息传输方法、装置及存储介质
CN116405081A (zh) 无线通信中的波束状态更新
JP7540852B2 (ja) マルチ・セル・スケジューリングを処理するためのデバイス及び方法
WO2024032721A1 (zh) Dmrs端口确定方法、装置及存储介质
WO2023151012A1 (en) User equipment capability information for enhanced channel state information reporting
WO2018201345A1 (zh) 下行控制信息传输方法、终端设备和网络设备
JP2024537788A (ja) 動的アップリンク制御チャネルキャリア切り替え
KR20240047476A (ko) 동적 업링크 제어 채널 캐리어 스위칭
JP2023536571A (ja) 単一dciベースのマルチtrpおよびパネル送信のためのマルチtbスケジューリング

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892119

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3051144

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017892119

Country of ref document: EP

Effective date: 20190731

ENP Entry into the national phase

Ref document number: 2017394052

Country of ref document: AU

Date of ref document: 20170227

Kind code of ref document: A