WO2018131980A1 - Offshore power generation system - Google Patents

Offshore power generation system Download PDF

Info

Publication number
WO2018131980A1
WO2018131980A1 PCT/KR2018/000714 KR2018000714W WO2018131980A1 WO 2018131980 A1 WO2018131980 A1 WO 2018131980A1 KR 2018000714 W KR2018000714 W KR 2018000714W WO 2018131980 A1 WO2018131980 A1 WO 2018131980A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
floating
eyepiece
facility
regasification
Prior art date
Application number
PCT/KR2018/000714
Other languages
French (fr)
Korean (ko)
Inventor
오석우
윤종근
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170082736A external-priority patent/KR102077888B1/en
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Priority to BR112019014535-4A priority Critical patent/BR112019014535A2/en
Publication of WO2018131980A1 publication Critical patent/WO2018131980A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/30Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures
    • B63B27/34Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures using pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K15/00Adaptations of plants for special use
    • F01K15/02Adaptations of plants for special use for driving vehicles, e.g. locomotives
    • F01K15/04Adaptations of plants for special use for driving vehicles, e.g. locomotives the vehicles being waterborne vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type

Definitions

  • the present invention relates to an offshore power generation system for producing electricity at sea.
  • the present invention has been made to solve the problems described above, and to provide an offshore power generation system that can supply electricity to the land by producing electricity at sea.
  • the present invention may include the following configuration.
  • the marine power generation system includes a floating regasification facility for performing a regasification process for regasifying liquefied natural gas (LNG) in a floating state at sea; An eyepiece installed to be fixed to the sea floor so that the floating regasification facility is docked; And a floating power generation equipment which is docked to the eyepiece equipment in a floating state at sea, and receives the natural gas regasified by the floating regasification equipment through the eyepiece equipment to produce electricity.
  • LNG liquefied natural gas
  • the floating power generation equipment supplies the natural gas regasified by the floating regasification equipment through the eyepiece including the eyepiece to which the floating regasification equipment including a regasification unit and the regasification unit main body is docked.
  • the power generation system generates electricity using a dual fuel engine that generates power by burning at least one of the natural gas and diesel fuel, and a power generated by the heterogeneous fuel engine connected to the heterogeneous fuel engine. It may include a first power generation mechanism including a first generator.
  • the floating power generation equipment supplies the natural gas regasified by the floating regasification equipment through the eyepiece including the eyepiece to which the floating regasification equipment including a regasification unit and the regasification unit main body is docked.
  • the power generation system includes a gas turbine configured to generate power by burning the natural gas, a second generator connected to the gas turbine to generate electricity by using the power generated by the gas turbine, and exhaust gas discharged from the gas turbine.
  • a heat recovery boiler for recovering waste heat to generate steam, a steam turbine supplied with steam from the heat recovery boiler to generate power, and a power generator connected to the steam turbine to generate electricity by using the power generated by the steam turbine. It may include a second power generation mechanism including a third generator.
  • the present invention is required for the operation of the floating power generation facilities by interlocking the eyepiece facility used as an offshore LNG Terminal docking facility, a floating regasification facility for regasifying LNG, and a floating power generation facility for producing electricity at sea.
  • the facility and fuel can be supplied through berthing and floating regasification facilities. Therefore, the present invention not only can reduce the overall size and weight, shorten the construction period, and reduce the construction cost by jointly operating the facilities required for the production of electricity, but also improve the efficiency of power generation operation by producing electricity and supplying it to the land. You can.
  • the present invention is implemented to be able to produce electricity at sea to supply to the land use, there is no need to install a separate power generation facility onshore. Therefore, since the present invention does not need to secure a site for installing a power generation facility on land, the construction cost for electricity production can be reduced, and a construction time for installing a power generation facility on land does not require an area where electricity is needed. The electricity can be supplied quickly.
  • the present invention can be implemented by interlocking the floating regasification facility, the eyepiece facility, and the floating power generation facility to each other, it is possible to distribute and install the facilities required for electricity production. Therefore, the present invention can reduce the size and weight of each of the floating regasification facility, the eyepiece facility, and the floating power generation facility, thereby reducing the construction cost.
  • the floating regasification facility, the eyepiece facility, and the floating power generation facility are interlocked with each other, so that the fuel required for the floating power generation facility to generate electricity can be supplied from the floating regasification facility through the eyepiece. Therefore, the present invention does not need to install a fuel storage tank for storing fuel in the floating power generation equipment, it can be easily installed on the coast with a low depth by reducing the size and weight of the floating power generation equipment.
  • FIG. 1 is a block diagram of an offshore power generation system according to a first embodiment of the present invention
  • FIGS. 2 to 7 are block diagrams of an offshore power generation system according to a first embodiment of the present invention.
  • FIG. 8 is a configuration diagram of an offshore power generation system according to a second embodiment of the present invention.
  • 9 to 12 are block diagrams of an offshore power generation system according to a second embodiment of the present invention.
  • the marine power generation system 11 according to the first embodiment of the present invention is for producing electricity by receiving natural gas in a floating state on the sea.
  • the offshore power generation system 11 according to the first embodiment of the present invention includes a floating regasification facility 12, an eyepiece facility 13, and a floating power generation facility 14.
  • the floating regasification facility 12, the eyepiece facility 13, and the floating power generation facility 14 are each installed to be located at sea.
  • the sea may include both the surface of the deep sea far from the land and the surface of the shore close to the land.
  • the offshore power generation system 11 according to the first embodiment of the present invention may be installed to float on the offshore coast to produce electricity using natural gas, and supply the produced electricity to land (not shown).
  • the natural gas may be in a liquid state, a gaseous state, and any state that changes in phase, such as a mixed state in which a liquid and a gas are mixed.
  • the offshore power generation system 11 according to the first embodiment of the present invention may produce electricity using not only natural gas but also other fuel such as diesel.
  • the offshore power generation system 11 is a floating regasification facility 12 and movable to the eyepiece 13 fixedly installed on the sea floor SB in a floating state at sea.
  • Each of the possible floating power generation facilities 14 may be coupled to each other by a mooring device or the like to produce electricity by floating on the sea at a fixed position without floating in an ocean current such as an algae.
  • the marine power generation system 11 according to the first embodiment of the present invention may be connected to a place of use on the land through a cable such as an electric wire, thereby supplying the produced electricity to the place of use of the land.
  • the floating regasification facility 12 is for regasifying liquefied natural gas (LNG).
  • the floating regasification facility 12 may perform a regasification process of regasifying liquefied natural gas (LNG) to natural gas (NG) in a floating state at sea.
  • the floating regasification facility 12 may be implemented as a Floating, Storage, Re-Gasification Unit (FSRU).
  • the floating regasification facility 12 may be docked with the eyepiece 13. Accordingly, the floating regasification facility 12 may be integrated with the eyepiece 13.
  • the floating regasification facility 12 may supply natural gas NG obtained by regasifying liquefied natural gas (LNG) to the eyepiece 13.
  • the floating regasification facility 12 may include a regasification unit body 120, an LNG storage tank 121, a regasification unit 122, and a residence 123.
  • the regasification unit body 120 may be floating on the sea.
  • the regasification unit body 120 may be a hull of the FSRU.
  • the LNG storage tank 121, the regasification unit 122 and the inlet 123 may be installed in the regasification unit body 120.
  • the regasification unit body 120 is the LNG storage tank 121, the regasification unit (120) so that the LNG storage tank 121, the regasification unit 122 and the inlet 123 is floating on the sea 122) and the inlet 123 may be supported.
  • the regasification unit body 120 may be provided with a propulsion device including an engine, a propeller, and the like.
  • the regasification unit main body 120 may move to the destination to go by the propulsion device in a floating state at sea.
  • the regasification unit body 120 may move to receive the liquefied natural gas (LNG) or to supply the liquefied natural gas (LNG).
  • the regasification unit main body 120 may be connected to the eyepiece body 130 of the eyepiece (13) to be described later when the floating regasification facility 12 is docked to the eyepiece (13).
  • the regasification unit main body 120 may be located at a position spaced apart from the eyepiece body 130 by a predetermined distance.
  • the propulsion device may not be installed in the regasification unit body 120.
  • the regasification unit body 120 may be moved by a barge and connected to the eyepiece body 130.
  • the regasification unit body 120 may supply natural gas regasified to the eyepiece body 130 by regasifying liquefied natural gas (LNG) in a state connected to the eyepiece body 130.
  • LNG liquefied natural gas
  • the LNG storage tank 121 is for storing liquefied natural gas (LNG).
  • the LNG storage tank 121 may store liquefied natural gas (LNG) supplied from a carrier such as an LNG carrier.
  • the LNG storage tank 121 may store the natural gas (NG) in a liquefied state to increase the storage capacity.
  • the LNG storage tank 121 may store liquefied natural gas (LNG) of about minus 165 °C.
  • the LNG storage tank 121 may include a heat insulating material to prevent the liquefied natural gas (LNG) is vaporized.
  • the LNG storage tank 121 may further include a separate device for maintaining the current state or the pressure inside the liquid cooled.
  • the LNG storage tank 121 may further include a reliquefaction apparatus for reliquefying a gas off phase changed into gas into a liquid state.
  • the LNG storage tank 121 may be installed to be located inside the floating regasification facility 12, but is not limited thereto and may be installed to be located outside.
  • the regasification unit 122 is for regasifying the liquefied natural gas (LNG) supplied from the LNG storage tank 121.
  • the regasification unit 122 may be connected to the LNG storage tank 121 through a natural gas pipeline such as a pipe or a pipe. Accordingly, the regasification unit 122 may receive the liquefied natural gas (LNG) from the LNG storage tank 121.
  • the regasification unit 122 may be connected to seawater located outside through a seawater pipe such as a pipe or a pipe.
  • the seawater pipe may be provided with a pump providing a transfer force for moving the seawater. Accordingly, the regasification unit 122 may be supplied with seawater.
  • the regasification unit 122 may regasify the liquefied natural gas (LNG) by heat-exchanging the liquefied natural gas (LNG) and sea water supplied from the LNG storage tank 121.
  • the temperature of the liquefied natural gas (LNG) stored in the LNG storage tank 121 is minus 165 °C
  • liquefied natural gas (LNG) is easily converted to natural gas (NG) by sea water having a temperature exceeding 165 °C Can be regasified. Therefore, the seawater may be a heating medium for regasifying the liquefied natural gas (LNG).
  • the regasification unit 122 may use seawater as the heating medium. However, the regasification unit 122 is not limited thereto.
  • the regasification unit 122 may regasify the liquefied natural gas (LNG) by receiving the fluid discharged from the floating power generation facility 14.
  • the fluid discharged from the floating power generation facility 14 may have a temperature exceeding minus 165 °C.
  • the natural gas NG regasified by the regasification unit 122 may be supplied to the eyepiece 13 through a pipeline.
  • the regasification unit 122 is a seawater direct heat exchange method for directly heat-exchanging the seawater and the liquefied natural gas (LNG), and the seawater and the liquefied natural gas (LNG) through an intermediate heat exchange medium such as glycol, billing, propane, etc.
  • the liquefied natural gas (LNG) may be vaporized using at least one of the seawater indirect heat exchange method.
  • the seawater direct heat exchange method directly vaporizes liquefied natural gas (LNG) using seawater, which has the advantage of low operating cost, but has a disadvantage in that it is sensitive to seawater temperature.
  • the seawater indirect heat exchange method indirectly vaporizes liquefied natural gas (LNG) using an intermediate heat exchange medium, so that it is less sensitive to changes in seawater temperature and does not need to remove salts contained in seawater.
  • LNG liquefied natural gas
  • the seawater indirect heat exchange method since the seawater indirect heat exchange method has a smaller amount of seawater required to vaporize liquefied natural gas (LNG) than the seawater direct heat exchange method, it is possible to reduce the size of the seawater pipe as well as the seawater pipe compared to the seawater direct heat exchange method. Less corrosive to the pipeline. Therefore, the seawater indirect heat exchange method has an advantage of low construction cost compared to the seawater direct heat exchange method.
  • the residence 123 is a facility for workers to perform a regasification process for regasifying liquefied natural gas (LNG). For example, workers can stay for months to years in the residence.
  • the inlet 123 may be installed in at least one of the inside and the outside of the floating regasification facility (12).
  • the floating regasification facility 12 is connected to the floating power generation facility 14 through the eyepiece 13, at least one of the eyepiece 13 and the floating power generation facility 14. Workers working can be housed in the residence 123 of the floating regasification facility (12). That is, the worker working in the eyepiece (13) and the floating power generation facility 14 can share the inlet 123 ( ⁇ ).
  • the marine power generation system 11 can achieve the following effects.
  • the floating regasification facility 12 includes a large LNG storage tank 121, storing the LNG (LNG) in the eyepiece (13) and the floating power generation facility (14). There is no need to install a separate storage facility.
  • the floating regasification facility 12 regasses the liquefied natural gas (LNG) into natural gas (NG), a separate regasification device for the eyepiece (13) and the floating power generation facility (14). There is no need to install it. Accordingly, the eyepiece 13 and the floating power generation facility 14 is reduced in size and weight, so that the sinking depth from the water surface is reduced. Accordingly, the marine power generation system 11 according to the first embodiment of the present invention can easily install the eyepiece 13 and the floating power generation 14 even in a coastal shallow water, and the eyepiece 13 And the construction cost for the floating power generation facility 14 can be reduced.
  • the marine power generation system 11 according to the first embodiment of the present invention does not need to provide a separate residence port in the eyepiece 13 and the floating power generation 14, the eyepiece 13 ) And the size and construction cost of the floating power generation facility 14 can be reduced.
  • the marine power generation system 11 according to the first embodiment of the present invention can supply the power supplied to the eyepiece 13 and the floating power generation facility 14 to the destination, the amount of power supplied to the destination You can increase it.
  • the eyepiece 13 is for docking at least one of the floating regasification facility 12 and the floating power generation facility 14.
  • the floating regasification facility 12 may be docked on one side of the eyepiece 13.
  • the other side of the eyepiece (13) can be docked with the floating power generation facility (14).
  • One side and the other side of the eyepiece (13) may be opposite to each other based on the eyepiece (13).
  • the eyepiece 13 may be embodied as Jetty.
  • the eyepiece 13 may be connected to the floating regasification facility 12 and the floating power generation facility 14 through a pipeline such as a pipe or a pipe, respectively. Accordingly, the eyepiece 13 may transfer the natural gas NG supplied from the floating regasification facility 12 to the floating power generation facility 14.
  • the eyepiece 13 may include the eyepiece body 130, the connection mechanism 131, the loading arm 132 and the power transmission mechanism 133.
  • the eyepiece body 130 may be fixed to the sea.
  • the eyepiece body 130 may be installed to be fixed to the sea floor (SB) in a fixed state at sea.
  • the eyepiece body 130 may be positioned at a fixed position on the sea without floating in the sea current by contacting the concrete pile or steel pipe pile to the sea floor (SB).
  • the eyepiece body 130 may be installed on the sea at a fixed position by fixing a frame or the like to the sea floor (SB).
  • the eyepiece body 130 may be located at a fixed position on the sea by being connected to the land through a rope or the like in the state installed on the sea.
  • the eyepiece body 130 may be formed in a rectangular plate as a whole.
  • connection body 131, the loading arm 132, and the power transmission mechanism 133 may be installed at the eyepiece body 130. Accordingly, the eyepiece body 130 is connected to the connecting mechanism 131, the loading arm 132 and the power transmission mechanism 133 is installed on the sea 131, the loading arm 132 and the The power transmission mechanism 133 can be supported.
  • the coupling mechanism 131 may include the floating regasification facility 12 and the floating unit so that at least one of the floating regasification facility 12 and the floating power generation facility 14 is docked with the eyepiece facility 13. It is for connecting the type generator 14.
  • the connection mechanism 131 may be a mooring device.
  • the connection mechanism 131 may include a fixing member 1311 and a connection member 1312 to connect at least one of the floating regasification facility 12 and the floating power generation facility 14.
  • the fixing member 1311 may be installed to be fixed to a plurality of the eyepiece body 130.
  • the fixing member 1311 may be coupled to the bottom of the eyepiece body 130 by various coupling methods such as bolt coupling, welding coupling.
  • the fixing members 1311 may be coupled to the eyepiece body 130 and spaced apart from each other. For example, some of the fixing members 1311 may be installed in the eyepiece body 130 so that the floating regasification facility 12 is located on the eyepiece side. The rest of the fixing members 1311 may be installed on the eyepiece body 130 so that the floating power generation equipment 14 is located on the eyepiece side. Accordingly, the fixing members 1311 may be connected to the floating regasification facility 12 and the floating power generation facility 14 through the connection member 1312, respectively.
  • the fixing member 1311 may be divided into a head part and a body part.
  • the head portion is located on the upper side of the body portion, it may be formed to have a larger diameter than the body portion. Accordingly, when the connecting member 1312 is tied to the body portion of the fixing member 1311, the connecting member 1312 may not be separated from the fixing member 1311 through the head side without being released. .
  • connection member 1312 may be coupled to the fixing member 1311, and the other side thereof may be coupled to at least one of the floating regasification facility 12 and the floating power generation facility 14.
  • the connection member 1312 is fixed to one side is tied to the body portion of the fixing member 1311, the other side is fixed to the floating regasification facility 12 and the floating power generation facility (14) (Not shown).
  • the connection member 1312 may connect the fixing member 1311 and the floating regasification facility 12, and the fixing member 1311 and the floating power generation facility 14, respectively.
  • the connection member 1312 may be at least one of a rope and a chain.
  • the eyepiece 13 may further include a support mechanism for supporting the sea water line of the floating regasification facility 12 and the floating power generation facility 14.
  • the seawater pipe supplies sea water of a high heat source discharged from the floating power generation facility 14 to the floating regasification facility 12, and is cooled through the floating regasification facility 12.
  • Low-temperature sea water (Sea Water) is to supply to the floating power generation facility (14).
  • the seawater pipe may be formed of a hose or a pipe.
  • the seawater pipe may be formed by combining a hose and a pipe.
  • the support mechanism may be formed in at least one of an 'Angle' shape, a 'Channel' shape, and an 'H-beam' shape. As the support mechanism supports the seawater pipe, the seawater pipe may remain connected to the floating regasification facility 12 and the floating power generation facility 14 without being floated by currents such as algae.
  • the marine power generation system 11 can achieve the following effects.
  • the marine power generation system 11 connects the floating regasification facility 12 and the floating power generation facility 14 to the eyepiece facility 13, such as a tidal current. It is possible to prevent the floating regasification facility 12 and the floating power generation facility 14 from being moved by the current.
  • the marine power generation system 11 uses the coupling mechanism 131 of the eyepiece facility 13 to provide the floating regasification facility 12 and the floating generation facility 14. ) May be connected to the eyepiece (13). Accordingly, the offshore power generation system 11 according to the first embodiment of the present invention removes the offshore anchoring equipment respectively installed in the floating regasification facility 12 and the floating power generation facility 14 or minimizes the quantity. can do.
  • the offshore power generation system 11 allows the floating regasification facility 12 and the floating power generation facility 14 to be docked with the eyepiece 13, thereby preventing fire and fire.
  • the eyepiece 13 can be used for emergency escape.
  • the loading arm 132 receives the regasified natural gas (NG) from the floating regasification facility 12 and supplies it to the floating power generation facility 14.
  • the loading arm 132 may be installed in the eyepiece 13, a plurality of spaced apart from each other. For example, some of the loading arms 132 may be installed on one side of the eyepiece body 130 to receive natural gas NG from the floating regasification facility 12. The rest of the loading arms 132 may be installed to be located at the other side of the eyepiece body 130 to supply the natural gas supplied from the floating regasification facility 12 to the floating power generation facility 14. Can be. The one side and the other side may be opposite to each other based on the eyepiece body 130.
  • the loading arm 132 may include a first loading mechanism 1321 and a second loading mechanism 1322.
  • the first loading mechanism 1321 may be installed at one side of the eyepiece body 130.
  • One side of the eyepiece body 130 may be a side in which the floating regasification facility 12 is docked to the eyepiece (13).
  • the first loading mechanism 1321 may be installed to allow height adjustment and redirection in order to receive regasified natural gas NG from the floating regasification facility 12.
  • the first loading mechanism 1321 includes a first base frame 13211, a first turning frame 1322, a first lifting frame 1321, a first arm frame 1314, and a first pipe line 1315. can do.
  • the first base frame 13211 may be coupled to the eyepiece body 130.
  • the first base frame 13211 may be coupled to the eyepiece body 130 to be positioned in a direction perpendicular to the bottom surface of the eyepiece body 130.
  • the first base frame 13211 may be coupled to the bottom surface of the eyepiece body 130 by at least one of bolting and welding.
  • the first pivot frame 13212, the first elevating frame 13213, and the first female frame 1314 may be coupled to the first base frame 13211. Accordingly, the first base frame 13211 is fixed to the bottom surface of the eyepiece body 130 so that the first pivot frame 1322, the first lifting frame 1321, and the first arm frame 1314 ) Can be supported.
  • the first base frame 13321 may support the first pipe line 1315.
  • the first pivot frame 13212 may be rotatably coupled to the first base frame 13211.
  • the first elevating frame 1321 and the first female frame 1314 may be sequentially coupled to an upper side of the first pivot frame 1322. Accordingly, the first elevating frame 1321 and the first arm frame 1314 may rotate together as the first pivot frame 13212 rotates.
  • a first driving device for rotating the first pivot frame 13212 includes the first base frame 13211, the first pivot frame 13212, the first lift frame 13213, and the first female frame. It may be installed in at least one of the (13214).
  • the first elevating frame 13213 may be formed of a plurality of frames, and may be coupled to the first pivot frame 13212 to adjust the length thereof.
  • the first elevating frame 1321 may be formed of a first lower frame and a first upper frame.
  • the first lower frame may be coupled to the first pivot frame 13212, and the first upper frame may be coupled to the first lower frame to be movable in the vertical direction.
  • the first elevating frame 13213 may be formed to be capable of length adjustment in the up and down direction based on the first pivot frame 1322. When the length in which the first upper frame overlaps with respect to the first lower frame increases, the length of the first lifting frame 1321 may be reduced.
  • a first elevating device for elevating the first upper frame in the vertical direction may be installed in the first lower frame.
  • the first lifting device is a cylinder method using a hydraulic cylinder or a pneumatic cylinder, a ball screw method using a motor and a ball screw, a gear method using a motor, a rack gear and a pinion gear, a belt method using a motor, a pulley and a belt,
  • the first upper frame may be elevated in the vertical direction by using a linear motor using a coil, a permanent magnet, or the like.
  • the first female frame 1314 may be rotatably coupled to the first lifting frame 1321.
  • the first female frame 1314 may be rotatably coupled to the first upper frame.
  • the first female frame 1314 may be coupled to the first upper frame to be positioned in a horizontal direction with respect to the bottom surface of the eyepiece body 130.
  • the first female frame 1314 may be formed of multiple joints. The articulated joints may be rotatably coupled in the same direction or in different directions. Accordingly, the first arm frame 1314 may extend or contract based on the first elevating frame 1321.
  • the first arm frame 1314 may be extended to be located close to the floating regasification facility 12 to receive natural gas from the floating regasification facility 12.
  • the first arm frame 1314 may be extended to be connected to the floating regasification facility 12.
  • the first arm frame 1314 may be shrunk away from the floating regasification facility 12 when all natural gas is supplied from the floating regasification facility 12. That is, the first arm frame 1314 may be shrunk to be spaced apart from the floating regasification facility 12.
  • the first arm frame 1314 may be installed to be located on the uppermost side of the first loading mechanism 1321.
  • the first pipeline 1315 may be coupled to the first female frame 1314. This is because the first arm frame 1314 may be located closest to the floating regasification facility 12.
  • the first pipeline 1315 is for moving the natural gas NG supplied from the floating regasification facility 12 to the floating power generation facility 14.
  • the first pipeline 1315 may be a flexible hose or a pipe having a predetermined shape.
  • the first pipeline 1321 may have a form in which a hose and a pipe are combined.
  • the first pipe line 1315 may be positioned toward the floating regasification facility 12 when the first arm frame 1314 is extended. In this case, an operator located in the floating regasification facility 12 may couple the first pipe line 1315 to a natural gas supply pipe installed in the floating regasification facility 12.
  • the first pipeline 1321 may receive the regasified natural gas NG from the floating regasification facility 12.
  • the natural gas NG supplied from the floating regasification facility 12 to the first pipeline 1321 may be moved to the second loading mechanism 1322.
  • the first pipeline 1321 may be provided with a conveying device such as an impeller, a compressor, etc. for supplying the natural gas NG supplied from the floating regasification facility 12 to the second loading mechanism 1322. have.
  • the second loading mechanism 1322 may be installed on the other side of the eyepiece body 130.
  • the other side of the eyepiece body 130 may be a side in which the floating power generation equipment 14 is docked to the eyepiece (13).
  • the second loading mechanism 1322 may be installed to allow height adjustment and direction change to supply regasified natural gas NG to the floating power generation facility 14.
  • the second loading mechanism 1322 includes a second base frame 1321, a second pivot frame 1322, a second lifting frame 13223, a second arm frame 1322, and a second pipe line 1325. can do.
  • the second base frame 1321 may be coupled to the eyepiece body 130.
  • the second base frame 1321 may be coupled to the eyepiece body 130 to be positioned in a direction perpendicular to the bottom surface of the eyepiece body 130. In this case, the second base frame 1321 may be located at a position spaced apart from the first base frame 1321.
  • the second base frame 13321 may be coupled to the bottom surface of the eyepiece body 130 by at least one of bolting and welding.
  • the second pivot frame 1322, the second lifting frame 13223, and the second arm frame 1324 may be coupled to the second base frame 1321.
  • the second base frame 1321 is fixed to the bottom surface of the eyepiece body 130 so that the second pivot frame 1322, the second lifting frame 13223, and the second arm frame 1322 ) Can be supported.
  • the second base frame 1321 may also support the second pipe line 1325.
  • the second pivot frame 1322 may be rotatably coupled to the second base frame 1321.
  • the second elevating frame 13223 and the second female frame 1324 may be sequentially coupled to an upper side of the second pivot frame 1322. Accordingly, the second lifting frame 13223 and the second arm frame 1322 may rotate together as the second pivot frame 1322 rotates.
  • the second driving device for rotating the second pivot frame 1322 may include the second base frame 1321, the second pivot frame 1322 2, the second lift frame 13223, and the second arm frame. It may be installed in at least one of (13224).
  • the second elevating frame 13223 may be formed of a plurality of frames and may be coupled to the second pivot frame 1322 to adjust the length thereof.
  • the second lifting frame 13223 may be formed of a second lower frame and a second upper frame.
  • the second lower frame may be coupled to the second pivot frame 1322, and the second upper frame may be coupled to the second lower frame to be movable in the vertical direction.
  • the second elevating frame 13223 may be formed to allow length adjustment in the up and down direction based on the second pivot frame 1322. When the length in which the second upper frame overlaps with respect to the second lower frame increases, the length of the second lifting frame 13223 may be reduced.
  • a second elevating device for elevating the second upper frame in the vertical direction may be installed in the second lower frame.
  • the second lifting device is a cylinder method using a hydraulic cylinder or a pneumatic cylinder, a ball screw method using a motor and a ball screw, a gear method using a motor, a rack gear and a pinion gear, a belt method using a motor, a pulley and a belt,
  • the second upper frame may be elevated in the vertical direction by using a linear motor using a coil, a permanent magnet, or the like.
  • the second female frame 1324 may be rotatably coupled to the second lifting frame 13223.
  • the second arm frame 1324 may be rotatably coupled to the second upper frame.
  • the second arm frame 1324 may be coupled to the second upper frame to be positioned in a horizontal direction with respect to the bottom surface of the eyepiece body 130.
  • the second female frame 1324 may be formed of multiple joints. The articulated joints may be rotatably coupled in the same direction or in different directions.
  • the second arm frame 1322 may be extended or contracted based on the second elevating frame 13223.
  • the second arm frame 1324 may be extended to be located close to the floating power generation unit 14 to supply natural gas to the floating power generation unit 14. That is, the second arm frame 1324 may be extended to be connected to the floating power generation facility 14.
  • the second arm frame 1324 may be shrunk away from the floating power generation unit 14 when all of the natural gas is supplied to the floating power generation unit 14. That is, the second arm frame 1324 may be shrunk to be spaced apart from the floating power generation facility 14. The second arm frame 1324 may be installed to be located at the uppermost side of the second loading mechanism 1322.
  • the second pipeline 113225 may be coupled to the second female frame 1324. This is because the second arm frame 1324 may be located closest to the floating power generation facility 14.
  • the second pipe line 1325 is for moving the natural gas NG supplied from the first pipe line 1315 to the floating power generation facility 14. Accordingly, the second pipe line 1325 may be installed to be connected to the first pipe line 1315.
  • the second pipeline 113225 may be a flexible hose or a pipe having a predetermined shape.
  • the second pipeline 113225 may have a form in which a hose and a pipe are combined.
  • the second pipe line 1325 may be positioned toward the floating power generation unit 14 when the second arm frame 1324 is extended.
  • an operator located in the floating power generation facility 14 may couple the second pipe line 1325 to a natural gas supply pipe installed in the floating power generation facility 14. Accordingly, the second pipeline 113225 may supply natural gas NG to the floating power generation facility 14.
  • the second pipeline 113225 may be provided with a transfer device such as an impeller, a compressor, etc. for supplying the natural gas NG supplied from the first pipeline 1321 to the floating power generation facility 14. .
  • the marine power generation system 11 can achieve the following effects.
  • the offshore power generation system 11 is natural gas (NG) regasified in the floating regasification facility (12) through a loading arm (132) installed in the eyepiece (13). ) Can be easily moved to the floating power generation facility (14). Accordingly, the marine power generation system 11 according to the first embodiment of the present invention can be quickly used even if the floating regasification facility 12 or the floating power generation facility 14 which is docked with the eyepiece 13 is changed to another one. Natural gas can be moved from the floating regasification plant to the floating power plant, thereby reducing the time required to produce electricity.
  • NG natural gas
  • the offshore power generation system 11 constructs a loading arm 132 in the eyepiece facility 13, thereby allowing the floating regasification facility 12 and the floating power generation facility ( There is no need to install a separate transfer device for moving natural gas. Therefore, the offshore power generation system 11 according to the first embodiment of the present invention can reduce the overall size, weight, and construction cost of the floating regasification facility 12 and the floating power generation facility 14. .
  • the offshore power generation system 11 according to the first embodiment of the present invention is installed so that the height of the loading arm 132 can be adjusted and changed, respectively, floating regasification equipment and floating power generation equipment of different sizes. Can be connected quickly. Therefore, the offshore power generation system 11 according to the first embodiment of the present invention can increase the versatility for the floating regasification facilities and the floating power generation facilities having various sizes in transferring natural gas.
  • the power transmission mechanism 133 is for supplying electricity generated by the floating power generation facility 14 to transmit power to the land.
  • the power transmission mechanism 133 may be a storage battery or a transformer.
  • the power transmission mechanism 133 may be connected to the floating power generation facility 14 through a cable such as an electric wire.
  • the power transmission mechanism 133 may be connected to a place of use located on land through a cable CA.
  • the cable CA may have one side connected to the power transmission mechanism 133 and the other side connected to the place of use.
  • the cable CA may connect the power transmission mechanism 133 and the place of use in a floating state on the sea, but is not limited thereto.
  • the cable CA may also connect the power transmission mechanism 133 and the place of use in a state submerged on the sea floor. .
  • the power transmission mechanism 133 may supply electricity produced by the floating power generation facility 14 to the land.
  • the marine power generation system 11 according to the first embodiment of the present invention can supply electricity to the land through the power transmission mechanism 133 installed in the eyepiece facility 13, and thus to the floating power generation facility 14. There is no need to install a separate power transmission device to supply electricity to the land. Accordingly, since the offshore power generation system 11 according to the first embodiment of the present invention can reduce the weight of the floating power generation facility 14, the floating power on the coast where the depth is shallower than when the power transmission device is installed. The electric power generation facility 14 can be provided.
  • the floating power generation facility 14 is for producing electricity.
  • the floating power generation facility 14 may produce electricity in a floating state at sea.
  • the floating power generation facility 14 may be docked to the eyepiece facility 13 through the connection mechanism 131.
  • the floating regasification facility 12 When the floating regasification facility 12 is docked in the eyepiece facility 13, the floating power generation facility 14 is connected to the floating pipeline through the second pipeline 1325 coupled to a natural gas supply pipe.
  • the regasification facility 12 may be supplied with natural gas NG regasified to produce electricity.
  • the natural gas supply pipe is a pipe installed in the floating power generation facility 14 for receiving and transporting natural gas.
  • the floating power generation unit 14 may be a barge mounted power plant (BMPP).
  • BMPP barge mounted power plant
  • the floating power generation facility 14 may include a power transmission facility for delivering the generated electricity to a place of use located on land. Accordingly, the marine power generation system 11 according to the first embodiment of the present invention directly supplies electricity from the floating power generation facility 14 to the place of use of the land or the power transmission mechanism 133 of the eyepiece 13. Indirect electricity can be supplied to land use.
  • the power transmission facility may be installed in the eyepiece facility 13 to reduce the load of the floating power generation facility 14. In this case, the eyepiece 13 may include both the power transmission mechanism 133 and the power transmission equipment. Therefore, the marine power generation system 11 according to the first embodiment of the present invention may supply electricity to a place of use on land by using the other one when one of the power transmission mechanism 133 and the power transmission equipment is damaged or damaged. .
  • the electricity produced in the floating power generation facility 14 can be used not only to use a utility installed therein, but also the floating regasification facility 12 and the eyepiece facility 13. It may be supplied to and used to use the utility (Utility) necessary for the operation of the floating regasification facility 12 and the eyepiece (13).
  • the floating power generation facility 14 may include a power generation unit body 140 and a power generation system 141.
  • the power generation unit body 140 may be floating on the sea.
  • the power generation unit body 140 may be a hull of a barge.
  • the power generation unit body 140 may be mounted with the power generation system 141. Accordingly, the power generation unit body 140 may support the power generation system 141 so that the power generation system 141 floats on the sea. Since the power generation unit main body 140 does not have a propulsion device including an engine, a propeller, etc., it may be moved at sea through a separate ship.
  • the power generation unit body 140 may be moved to the eyepiece (13) through a ship having power.
  • the power generation unit main body 140 moved to the eyepiece 13 may be connected to the eyepiece body 130 through the connection mechanism 131 of the eyepiece 13. Accordingly, the floating power generation facility 14 may be docked in the eyepiece (13). In this case, the power generation unit body 140 may be located at a position spaced apart from the eyepiece body 130 by a predetermined distance.
  • the power generation system 141 may generate electricity in various ways using natural gas supplied through the eyepiece 13.
  • the power generation system 141 may include at least one of the first power generation mechanism 1411 and the second power generation mechanism 1412.
  • the first power generation unit 1411 may include a dual fuel engine 14111 and a first generator 14112.
  • the heterogeneous fuel engine 14111 may generate power by burning at least one of natural gas (NG) and diesel fuel supplied through the eyepiece 13.
  • the heterogeneous fuel engine 14111 may be a four-stroke engine, but is not limited thereto and may be another engine if power can be generated.
  • the heterogeneous fuel engine 14111 may be one, but is not limited thereto and may be a plurality.
  • the heterogeneous fuel engine 14111 may be connected to the natural gas supply pipe of the floating power generation facility 14 through a pipeline to receive natural gas NG supplied through the eyepiece facility 13.
  • the natural gas supply pipe means a pipeline for receiving natural gas.
  • the heterogeneous fuel engine 14111 may be supplied with diesel fuel from a diesel fuel storage tank (not shown) installed in the floating power generation facility 14.
  • the diesel fuel storage tank is for storing diesel fuel.
  • the diesel fuel storage tank may be formed smaller in size than the LNG storage tank 121.
  • the diesel fuel is intended to temporarily generate power when the supply of natural gas (NG) is stopped, and thus it is not necessary to store a large capacity.
  • the hetero fuel engine 14111 may generate power by burning at least one of natural gas (NG) and diesel fuel.
  • the first generator 14112 may generate electricity by using power generated by the heterogeneous fuel engine 14111.
  • the rotation shaft of the first generator 14112 may be connected to a crank shaft of the heterogeneous fuel engine 14111 through a gear or the like.
  • the rotation shaft of the first generator 14112 may rotate together as the crank shaft of the heterogeneous fuel engine 14111 rotates with the explosive force caused by fuel combustion.
  • the first generator 14112 may produce electricity.
  • the first generator 14112 may be connected to the power transmission mechanism 133 of the eyepiece 13 through a cable such as an electric wire. Accordingly, the first generator 14112 may supply the generated electricity to the power transmission mechanism 133.
  • the second power generation mechanism 1412 may include a gas turbine 14121, a second generator 14122, a heat recovery steam generator 14123, a steam turbine 14124, and a third generator 14125. Can be.
  • the gas turbine 14121 may generate power by burning natural gas NG supplied through the eyepiece 13.
  • the gas turbine 14121 may be one, but is not limited thereto and may be a plurality of gas turbines 14121.
  • the offshore power generation system 11 uses the remaining gas turbines 14121 even if some of the gas turbines 14121 are damaged or broken. Can produce electricity
  • the gas turbine 14121 may be connected to the natural gas supply pipe of the floating power generation facility 14 through a pipe line, thereby receiving natural gas NG supplied through the eyepiece facility 13.
  • the second generator 14122 may generate electricity by using the power generated by the gas turbine 14121.
  • the rotation shaft of the second generator 14122 may be connected to a crank shaft of the gas turbine 14121 through a gear or the like. Accordingly, the rotation shaft of the second generator 14122 may rotate together as the crank shaft of the gas turbine 14121 rotates with the explosive force caused by fuel combustion. Thus, the second generator 14122 may produce electricity.
  • the second generator 14122 may be connected to the power transmission mechanism 133 of the eyepiece 13 through a cable such as an electric wire. Accordingly, the second generator 14122 may supply the generated electricity to the power transmission mechanism 133.
  • the heat recovery boiler 14123 may generate steam by recovering waste heat of the exhaust gas discharged by burning natural gas in the gas turbine 14121.
  • the heat recovery boiler 14123 may be connected to an exhaust pipe through which exhaust gas is discharged from the gas turbine 14121, and a water supply unit for supplying water. Accordingly, the heat recovery boiler 14123 may change the water into steam by heating the water supplied from the water supply unit using the waste heat of the exhaust gas discharged from the gas turbine 14121 as a heat source. Steam generated by the heat recovery boiler 14123 may be supplied to the steam turbine 14124.
  • the steam turbine 14124 may be implemented with a diaphragm, a rotor, a bucket, and the like.
  • the diaphragm is provided with a fixed blade
  • the bucket is provided with a rotary blade.
  • the fixed blades change the direction of the steam supplied from the heat recovery boiler 14123 to guide the rotary blades, and the rotary blades generate a rotational force by steam induced from the fixed blades to rotate the rotor.
  • the rotor is installed to be connected to the third generator 14125.
  • the third generator 14125 may generate electricity as the rotor rotates.
  • the third generator 14125 may be connected to the power transmission mechanism 133 of the eyepiece 13 through a cable such as an electric wire. Accordingly, the third generator 14125 may supply the generated electricity to the power transmission mechanism 133.
  • the offshore power generation system 11 may have various embodiments depending on which of the first power generation mechanism 1411 and the second power generation mechanism 1412 is included in the power generation system 141. It may include. Looking at these embodiments in detail, as follows.
  • the marine power generation system 11 may be implemented such that the power generation system 141 includes the first power generation mechanism 1411.
  • the first power generation mechanism 1411 may include the heterogeneous fuel engine 14111 and the first generator 14112. Accordingly, the first power generation unit 1411 may generate electricity using at least one of natural gas (NG) and diesel fuel.
  • the natural gas (NG) is obtained by regasifying liquefied natural gas (LNG) in the floating regasification facility (12), the natural gas supply pipe of the floating regasification facility (12), the eyepiece (13) )
  • LNG liquefied natural gas
  • the natural gas supply pipe of the floating regasification facility 14 may be supplied to the heterogeneous fuel engine (14111) of the floating power generation facility (14).
  • the marine power generation system 11 supplies the electricity generated through the first generator 14112 to the power transmission mechanism 133 of the eyepiece 13, Can be supplied to the point of use.
  • the natural gas supply pipe means a pipe for supplying natural gas.
  • the natural gas supply pipe means a pipeline for receiving natural gas.
  • the offshore power generation system 11 according to the first embodiment of the present invention may generate electricity by using diesel fuel stored in a diesel fuel storage tank when natural gas supply through the eyepiece 13 is stopped. Accordingly, the marine power generation system 11 according to the first embodiment of the present invention can prevent the generation of electricity for supply to the land use.
  • the first power generation mechanism 1411 may include a plurality of heterogeneous fuel engines 14111. In this case, the marine power generation system 11 according to the first embodiment of the present invention may produce electricity using the remaining heterogeneous fuel engine 14111 even if some of the heterogeneous fuel engines 14111 are damaged or damaged.
  • the marine power generation system 11 may be implemented such that the power generation system 141 includes the second power generation mechanism 1412.
  • the second power generation mechanism 1412 may include the gas turbine 14121, the second generator 14122, the heat recovery boiler 14123, the steam turbine 14124, and the third generator 14125. have.
  • the second power generation unit 1412 may generate electricity using natural gas (NG).
  • NG natural gas
  • the natural gas (NG) is obtained by regasifying liquefied natural gas (LNG) in the floating regasification facility (12), the natural gas supply pipe of the floating regasification facility (12), the eyepiece (13) )
  • LNG liquefied natural gas
  • the natural gas supply pipe of the floating power generation facility 14 may be supplied to the gas turbine 14121 of the floating power generation facility (14).
  • the marine power generation system 11 transmits electricity generated through the second generator 14122 and the third generator 14125 to the power transmission mechanism of the eyepiece 13. 133), it can be supplied to land use. Since the offshore power generation system 11 according to the first embodiment of the present invention generates electricity using the second generator 14122 and the third generator 14125, the marine power generation system 11 uses only the first generator 14112 to generate electricity. Compared to the embodiment to produce the electricity can be increased.
  • the second power generation mechanism 1412 may include a plurality of gas turbines 14121.
  • the marine power generation system 11 includes the power generation system 141 including both the first power generation mechanism 1411 and the second power generation mechanism 1412. Can be implemented.
  • the marine power generation system 11 may generate electricity using at least one of the first power generation mechanism 1411 and the second power generation mechanism 1412.
  • the natural gas NG supplied to the natural gas supply pipe of the floating power generation facility 14 may be branched and supplied to the heterogeneous fuel engine 14111 and the gas turbine 14121, respectively.
  • the marine power generation system 11 docks the electricity produced through the first generator 14112, the second generator 14122, and the third generator 14125. By supplying to the power transmission mechanism 133 of the installation 13, it can supply to the land use place.
  • the offshore power generation system 11 according to the first embodiment of the present invention may include a plurality of the heterogeneous fuel engines 14111 and the gas turbines 14121, respectively.
  • the marine power generation system 11 can achieve the following effects.
  • the marine power generation system 11 generates electricity using a plurality of generators, such as the first generator 14112, the second generator 14122, the third generator 14125, and the like. Can produce. Accordingly, the offshore power generation system 11 according to the first embodiment of the present invention can not only increase the amount of electricity produced but also produce electricity quickly in an emergency such as a power failure.
  • the marine power generation system 11 according to the first embodiment of the present invention includes both the first power generation mechanism 1411 and the second power generation mechanism 1412, the first power generation mechanism 1411 and the Even if one of the second power generation mechanisms 1412 is damaged or damaged, electricity can be continuously produced. Accordingly, the marine power generation system 11 according to the first embodiment of the present invention can prevent the generation of electricity for supply to the land use.
  • the offshore power generation system 11 installs a valve at a portion where the natural gas NG branches to the heterogeneous fuel engine 14111 and the gas turbine 14121, The amount of the natural gas NG supplied to the heterogeneous fuel engine 14111 and the gas turbine 14121 may be adjusted. Accordingly, the marine power generation system 11 according to the first embodiment of the present invention measures the amount of electricity produced by the first generator 14112, the second generator 14122, and the third generator 14125, respectively. I can regulate it.
  • the offshore power generation system 21 is a cooling medium for cooling a power generation device used to produce electricity, such as an engine and a gas turbine, and vaporizes liquefied natural gas (LNG) and cools the discharged seawater.
  • LNG liquefied natural gas
  • the offshore power generation system 21 includes a floating regasification facility 22, an eyepiece 23, and a floating power generation facility 24.
  • the floating regasification facility 22, the eyepiece 23, and the floating power generation facility 24 are each in the offshore power generation system 11 according to the first embodiment of the present invention described above. Since it corresponds to the regasification facility 12, the said eyepiece facility 13, and the said floating power generation facility 14, it demonstrates focusing on the difference part.
  • the floating regasification facility 22 is for regasifying liquefied natural gas (LNG).
  • the floating regasification facility 22 may include a regasification unit body 220, an intake unit 221, and a regasification unit 222.
  • the floating regasification facility 22 may further include an LNG storage tank and a residence.
  • the LNG storage tank and the inlet port are substantially the same as the LNG storage tank 121 and the inlet port 123 in the offshore power generation system 11 according to the first embodiment of the present invention. do.
  • the regasification unit body 220 may be floating on the sea.
  • the regasification unit body 220 may be a hull of the FSRU.
  • the regasification unit body 220 may be provided with the water intake unit 221, the regasification unit 222, the LNG storage tank and the inlet.
  • the water intake unit 221 is for intake of sea water.
  • the water intake unit 221 may be installed in the regasification unit body 220 to suck the sea water located outside.
  • the water intake part 221 may be installed so that one side may communicate with the outside, and the other side may be connected through a seawater pipe such as a pipe or a pipe so as to communicate with the regasification unit 222.
  • the seawater pipe may be provided with a conveying device such as a pump, an impeller for generating a conveying force for transporting seawater. Accordingly, the water intake unit 221 may be supplied to the regasification unit 222 by sucking the sea water from the outside by a transfer device.
  • the intake unit 221 may be a sea chest.
  • Only one water intake unit 221 is installed on the regasification unit body 220 to suck seawater located on one side of the regasification unit body 220, but is not limited thereto.
  • a plurality of 220 may be installed to be spaced apart from each other to suck the sea water located on the other side. This is because the temperature of the seawater located on one side of the regasification unit body 220 and the seawater located on the other side may be different.
  • the marine power generation system 21 according to the second embodiment of the present invention may take in seawater having a lower temperature or a higher temperature depending on the situation through the intake unit 221.
  • the regasification unit 222 is for regasifying the liquefied natural gas (LNG) supplied from the LNG storage tank.
  • the regasification unit 222 may be connected to the water intake unit 221 through the seawater pipe. Accordingly, the regasification unit 222 may receive the seawater taken by the water intake unit 221.
  • the regasification unit 222 may regasify the liquefied natural gas (LNG) by heat-exchanging the liquefied natural gas (LNG) supplied from the LNG storage tank and the seawater supplied from the intake unit (221).
  • the regasification unit 222 regasifies the liquefied natural gas (LNG) and cooled sea water may be supplied to the eyepiece (23) through the first transfer line 25 to be described later.
  • the high temperature seawater discharged from the floating power generation facility 24 may be supplied to the regasification unit 222 via the eyepiece 23 through the second transfer line 26 to be described later.
  • the offshore power generation system 21 according to the second embodiment of the present invention may regasify the liquefied natural gas (LNG) using sea water, and thus separate heating for regasifying the liquefied natural gas (LNG). It is not necessary to install the device in the floating regasification plant 22. Accordingly, the offshore power generation system 21 according to the second embodiment of the present invention can not only reduce the construction cost for the floating regasification plant 22, but also provide overall control of the floating regasification plant 22. Since the size and weight can be reduced, the floating regasification facility 22 can be easily installed even at a low coast.
  • the eyepiece 23 is for docking at least one of the floating regasification facility 22 and the floating power generation facility 24.
  • the eyepiece 23 may further include a connection mechanism, a loading arm and a power transmission mechanism.
  • the connecting mechanism, the loading arm and the power transmission mechanism are the connection mechanism 131, the loading arm 132 and the power transmission mechanism 133 in the marine power generation system 11 according to the first embodiment of the present invention described above. ), And focus on the differences.
  • the eyepiece 23 may include an eyepiece body 230, a first support mechanism 231, and a second support mechanism 232.
  • the eyepiece 230 may be fixed to the sea.
  • the first support mechanism 231 and the second support mechanism 232 may be installed in the eyepiece body 230.
  • the eyepiece body 230 may be further provided with the connection mechanism, the loading arm and the power transmission mechanism.
  • the first support mechanism 231 is installed on one side of the eyepiece body 230 to support the first transfer line 25.
  • the second support mechanism 232 is installed on the other side of the eyepiece body 230 and is for supporting the second transfer line 26. A detailed description of the first support mechanism 231 and the second support mechanism 232 will be described with reference to the first transfer line 25 and the second transfer line 26 which will be described later.
  • the loading arm includes a first loading mechanism for receiving natural gas NG from the floating regasification facility 22, and a natural gas NG supplied by the first loading mechanism for the floating power generation facility 24. It may include a second loading mechanism for supplying).
  • the first loading mechanism may include a first pipeline for transferring natural gas
  • the second loading mechanism may include a second pipeline connected to the first pipeline.
  • the first pipe line may be connected to the floating regasification facility 22 through a first transfer line 25.
  • the second pipe line may be connected to the floating power generation facility 24 through the first transfer line 25.
  • the first loading mechanism and the second loading mechanism may be installed to enable height adjustment and direction change, respectively.
  • the floating power generation equipment 24 is for producing electricity.
  • the floating power generation facility 24 may include a power generation unit body 240, a power generation system 241, and a cooling system 242.
  • the power generation system 241 may include a first power generation mechanism 2411 and a second power generation mechanism 2412.
  • the cooling system 242 may include a first heat exchanger 2421, a second heat exchanger 2422, and a third heat exchanger 2423.
  • Detailed description of the power generation unit body 240, the power generation system 241 and the cooling system 242 will be described after the first transfer line 25 and the second transfer line 26.
  • the offshore power generation system 21 may include a first transfer line 25 and a second transfer line 26.
  • the first transfer line 25 vaporizes the liquefied natural gas (LNG) from the regasification unit 222 and discharges the cooled sea water to the first heat exchange unit 2421, the second heat exchange unit 2422, and the It is for supplying to any one of the 3rd heat exchange parts 2423.
  • FIG. The first transfer line 25 may connect the floating regasification facility 22 and the floating power generation facility 24 through the eyepiece 23.
  • the first transfer line 25 may include a first supply and demand transfer line 251 and a first supply transfer line 252.
  • the first supply and demand transfer line 251 is for receiving the seawater cooled and discharged from the regasification unit 222.
  • the first supply and demand feed line 251 may be formed of a hose or a pipe.
  • the first supply and demand transfer line 251 may be formed by combining a hose and a pipe.
  • One side of the first supply and demand transfer line 251 may be connected to a seawater discharge line through which seawater is cooled and discharged from the regasification unit 222. Accordingly, the first supply and demand feed line 251 may receive the cooled seawater from the regasification unit 222.
  • the first supply and demand feed line 251 may be coupled to the eyepiece body 230 so that the other side is in communication with the first supply and feed line 252.
  • the first supply and demand transfer line 251 may be coupled to the eyepiece body 230 through the first support mechanism 231. Accordingly, the seawater supplied to the first supply and demand feed line 251 may be supplied to the first supply and feed line 252.
  • the first support mechanism 231 may couple the first supply and demand line 251 to the eyepiece 230 so that the first supply and demand line 251 is supported by the eyepiece body 230.
  • the first support mechanism 231 may be formed in at least one of an 'Angle' shape, a 'Channel' shape, and an 'H-beam' shape. As the first support mechanism 231 supports the first supply and demand line 251, the first supply and demand line 251 is connected to the eyepiece 23 without being floated in an ocean current such as a tidal current.
  • the first support mechanism 231 may be installed on the eyepiece body 230 so that the floating regasification facility 22 is located on the eyepiece side. Accordingly, the first support mechanism 231 may allow the first supply and demand feed line 251 connected to the regasification unit 222 to be easily connected to the first supply and feed line 252.
  • the first support mechanism 231 may be installed in the eyepiece body 230 in a number corresponding to the number of the first supply and demand transfer line 251. Accordingly, the first support mechanism 231 may support the first supply and demand line 251 so that the first supply and demand line 251 is supported by the eyepiece body 230.
  • the first supply transfer line 252 is for supplying the seawater supplied from the first supply and demand transfer line 251 to the floating power generation facility 24.
  • the first supply transfer line 252 may be formed by a hose, a pipe, or a combination of a hose and a pipe.
  • the first supply transfer line 252 may be coupled to the eyepiece body 230 so that one side is in communication with the first supply and demand transfer line 251.
  • the first supply transfer line 252 may be coupled to the eyepiece body 230 through the first support mechanism 231. Accordingly, the first supply transfer line 252 may receive the cooled seawater from the first supply and demand transfer line 251.
  • the first supply transfer line 252 may be coupled to the floating power generation facility 24 so that the other side is in communication with the seawater supply pipe of the floating power generation facility 24.
  • the seawater supply pipe of the floating power generation facility 24 may be connected to the first heat exchanger 2421. Accordingly, seawater supplied to the first supply transfer line 252 may be supplied to the first heat exchanger 2421.
  • the first support mechanism 231 may couple the first supply transfer line 252 to the eyepiece 230 so that the first supply transfer line 252 is supported by the eyepiece body 230. As the first support mechanism 231 supports the first supply feed line 252, the first supply feed line 252 is connected to the eyepiece 23 without floating in currents such as tidal currents. Can be maintained.
  • the first support mechanism 231 may be installed on the eyepiece body 230 so that the floating power generation equipment 24 is located on the eyepiece side.
  • the first support mechanism 231 may allow the first supply transfer line 252 to be easily connected to the floating power generation facility 24.
  • the first support mechanism 231 may be positioned on the side where the floating regasification facility 22 and the floating power generation facility 24 are docked based on the eyepiece body 230.
  • the first support mechanism 231 may be installed in the eyepiece body 230 in a number corresponding to the number of the first supply transfer line 252. Accordingly, the first support mechanism 231 may support the first supply transfer line 252 so that the first supply transfer line 252 is supported by the eyepiece body 230.
  • the first supply transfer line 252 and the first supply and demand transfer line 251 may be formed as floating pipes that may float on the sea. Accordingly, the first supply transfer line 252 and the first supply and demand transfer line 251 reduce the contact area in contact with the seawater compared to the submerged pipe submerged in water, thereby reducing the degree of corrosion by the seawater The service life can be extended compared to underwater piping.
  • the second transfer line 26 is for cooling the first cooling fluid in the first heat exchange unit 2421 and supplying heated seawater discharged to the regasification unit 222.
  • the second transfer line 26 may connect the floating regasification facility 22 and the floating power generation facility 24 through the eyepiece 23.
  • the second transfer line 26 may include a second supply and demand transfer line 261 and a second supply transfer line 262.
  • the second supply and demand transfer line 261 is for receiving the seawater heated and discharged from the first heat exchange unit 2421.
  • the second supply and demand line 261 may be formed of a hose or a pipe.
  • the second supply and demand line 261 may be formed by combining a hose and a pipe.
  • the second supply and demand transfer line 261 may be connected to a seawater discharge pipe having one side connected to the first heat exchanger 2421.
  • the seawater discharge pipe may be installed in the floating power generation facility 24. Accordingly, the second supply and demand feed line 261 may receive the heated seawater from the first heat exchanger 2421.
  • the second supply and demand feed line 261 may be coupled to the eyepiece body 230 so that the other side is in communication with the second supply and feed line 262.
  • the second supply and demand transfer line 261 may be coupled to the eyepiece body 230 through the second support mechanism 232. Accordingly, the seawater supplied to the second supply and demand line 261 may be supplied to the second supply and delivery line 262.
  • the second support mechanism 232 may couple the second supply and demand line 261 to the eyepiece 230 so that the second supply and demand line 261 is supported by the eyepiece body 230.
  • the second support mechanism 232 may be formed in at least one of an 'Angle' shape, a 'Channel' shape, and an 'H-beam' shape. As the second support mechanism 232 supports the second supply and demand line 261, the second supply and demand line 261 is connected to the eyepiece 23 without being floated in an ocean current such as a tidal current.
  • the second support mechanism 232 may be installed in the eyepiece body 230 so that the floating power generation equipment 24 is located in the eyepiece. Accordingly, the second support mechanism 232 may allow the second supply and demand transfer line 261 to be easily connected to the first heat exchange part 2421.
  • the second support mechanism 232 may be installed on the eyepiece body 230 in a number corresponding to the number of the second supply and demand lines 261. Accordingly, the second support mechanism 232 may support the second supply and demand line 261 so that the second supply and demand line 261 is supported by the eyepiece body 230.
  • the second supply and demand feed line 261 and the first supply and feed line 252 may be bundled to be located inside one tube.
  • the marine power generation system 21 prevents the second supply and demand supply line 261 and the first supply and feed line 252 from directly contacting the seawater, It is possible to prevent the second supply and demand line 261 and the first supply and feed line 252 from being corroded by sea water.
  • the second supply transfer line 262 is for supplying the seawater supplied from the second supply and demand transfer line 261 to the floating regasification facility 22.
  • the second supply transfer line 262 may be formed by a hose, a pipe, or a combination of a hose and a pipe.
  • the second supply transfer line 262 may be coupled to the eyepiece body 230 so that one side thereof is in communication with the second supply and demand transfer line 261.
  • the second supply transfer line 262 may be coupled to the eyepiece body 230 through the second support mechanism 232. Accordingly, the second supply transfer line 262 may receive the heated seawater from the second supply and demand transfer line 261.
  • the second supply transfer line 262 may be coupled to the floating regasification facility 22 so that the other side is in communication with the seawater supply pipe of the floating regasification facility 22.
  • the seawater supply pipe of the floating regasification facility 22 may be connected to the regasification unit 222. Accordingly, the heated seawater supplied to the second supply transfer line 262 may be supplied to the regasification unit 222.
  • the second support mechanism 232 may couple the second supply transfer line 262 to the eyepiece 230 so that the second supply transfer line 262 is supported by the eyepiece body 230. As the second support mechanism 232 supports the second supply transfer line 262, the second supply transfer line 262 is connected to the eyepiece 23 without being floated in an ocean current such as an algae. Can be maintained.
  • the second support mechanism 232 may be installed on the eyepiece body 230 so that the floating regasification facility 22 is located on the eyepiece side. Accordingly, the second support mechanism 232 may allow the second supply transfer line 262 to be easily connected to the floating regasification facility 22.
  • the second support mechanism 232 may be positioned on the side where the floating regasification facility 22 and the floating power generation facility 24 are docked based on the eyepiece body 230.
  • the second support mechanism 232 may be installed in the eyepiece body 230 in a number corresponding to the number of the second supply transfer line 262. Accordingly, the second support mechanism 232 may support the second supply transfer line 262 so that the second supply transfer line 262 is supported by the eyepiece body 230.
  • the second supply transfer line 262 and the second supply and demand transfer line 261 may be formed as floating pipes that may float on the sea. Accordingly, the second supply transfer line 262 and the second supply and demand transfer line 261 reduce the contact area in contact with the seawater compared to the submerged pipe submerged in water, thereby reducing the degree of corrosion by the seawater. The service life can be extended compared to underwater piping.
  • the second supply transfer line 262 and the first supply and demand transfer line 251 may be bundled to be located inside one tube.
  • the marine power generation system 21 prevents the second supply transfer line 262 and the first supply and demand transfer line 251 from directly contacting the seawater,
  • the supply feed line 262 and the first supply and demand feed line 251 may be prevented from being corroded by sea water.
  • first transfer line 25 and the second transfer line 26 are connected to the first heat exchange unit 2421
  • the marine power generation system according to the second embodiment of the present invention 21 may be implemented such that the first transfer line 25 and the second transfer line 26 are connected to the second heat exchange unit 2422 or the third heat exchange unit 2423.
  • the floating power generation facility 24 may include the power generation unit body 240, the power generation system 241, and the cooling system 242.
  • the power generation unit body 240 may be floating on the sea.
  • the power generation unit main body 240 is substantially the same as the power generation unit main body 140 in the marine power generation system 11 according to the first embodiment of the present invention described above, a detailed description thereof will be omitted.
  • the power generation system 241 may produce electricity in various ways using natural gas supplied through the eyepiece 23.
  • the power generation system 241 may include at least one of the first power generation mechanism 2411 and the second power generation mechanism 2412.
  • the first power generation mechanism 2411 may include a heterogeneous fuel engine 24111 and a first generator 24112.
  • the heterogeneous fuel engine 24111 and the first generator 24112 are the heterogeneous fuel engine 14111 and the first generator 14112 in the marine power generation system 11 according to the first embodiment of the present invention described above. Since it substantially coincides with, specific description is omitted.
  • the first power generation mechanism 2411 may be provided with a first circulation pipe (FCL) through which the first cooling fluid for cooling the heterogeneous fuel engine 24111 circulates.
  • the first cooling fluid may be fresh water or glycol.
  • the first circulation pipe may be installed so that one side surrounds the heterogeneous fuel engine 24111.
  • the first circulation pipe may be installed so that the other side is connected to the first heat exchanger 2421.
  • the first cooling fluid may be cooled by cooled seawater supplied from the first heat exchange part 2421 through the first transfer line 25.
  • the first cooling fluid cooled by the first heat exchange unit 2421 may be supplied to the heterogeneous fuel engine 24111 along the first circulation pipe to cool the heterogeneous fuel engine 24111.
  • the first cooling fluid may be cooled and heated while circulating the first heat exchange unit 2421 and the heterogeneous fuel engine 24111 along the first circulation pipe.
  • the first circulation pipe may be installed so that one side surrounds the heterogeneous fuel engine 24111 and the other side is connected to seawater.
  • the first cooling fluid circulating the first circulation pipe may be sea water.
  • the seawater may directly cool the heterogeneous fuel engine 24111 while moving along the first circulation pipe.
  • the first circulation pipe may be provided with a pump for moving or suctioning and discharging sea water.
  • the second power generation mechanism 2412 may include a gas turbine 24121, a second generator 24122, a heat recovery boiler 24123, a steam turbine 24124, and a third generator 24125.
  • the gas turbine 24121, the second generator 24122, the heat recovery boiler 24123, the steam turbine 24124, and the third generator 24125 are marined according to the first embodiment of the present invention described above.
  • the gas turbine 14121, the second generator 14122, the heat recovery boiler 14123, the steam turbine 14124, and the third generator 14125 are substantially coincident with each other. Description is omitted.
  • the second power generation mechanism 2412 may be provided with a second circulation pipe (SCL) through which a second cooling fluid for cooling the gas turbine 24121 is circulated.
  • the second cooling fluid may be fresh water or glycol.
  • the second circulation pipe may be installed so that one side surrounds the gas turbine 24121.
  • the second circulation pipe may be installed so that the other side is connected to the second heat exchanger 2422.
  • the second cooling fluid may be cooled by cooled seawater supplied through the first transfer line 25 from the second heat exchange unit 2422.
  • the second cooling fluid cooled by the second heat exchanger 2422 may be supplied to the gas turbine 24121 along the second circulation pipe to cool the gas turbine 24121.
  • the second cooling fluid may be cooled and heated while circulating the second heat exchange part 2422 and the gas turbine 24121 along the second circulation pipe.
  • the second circulation pipe may be installed to surround one side of the gas turbine 24121 and the other side to be connected to seawater.
  • the second cooling fluid circulating in the second circulation pipe may be seawater.
  • the sea water may directly cool the gas turbine 24121 while moving along the second circulation pipe.
  • the second circulation pipe may be provided with a pump for moving or suctioning and discharging sea water.
  • the cooling system 242 may cool the power generation system 241 in various ways by using the cooled seawater supplied through the first transfer line 25.
  • the cooling system 242 may cool the power generation system 241 using the cooled sea water discharged by regasifying the liquefied natural gas (LNG) in the regasification unit 222.
  • the cooling system 242 may include a first heat exchanger 2421, a second heat exchanger 2422, and a third heat exchanger 2423.
  • the first heat exchanger 2421 heat-exchanges the cooled seawater discharged from the regasification unit 222 and the first cooling fluid.
  • the cooled seawater discharged from the regasification unit 222 is connected to the first heat exchange unit 2421 through the seawater supply pipe of the eyepiece facility 23, the first transfer line 25, and the floating power generation facility 24. Can be supplied.
  • the first heat exchanger 2421 may heat-exchange the cooled seawater and the first cooling fluid by installing the seawater supply pipe and the first circulation pipe FCL in close proximity. Accordingly, the first cooling fluid may be cooled by the cooled seawater discharged from the regasification unit 222.
  • the first sea water cooled by the first cooling fluid in the first heat exchanger 2421 and the heated sea water is supplied to the seawater supply pipe of the second transfer line 26, the eyepiece 23, and the floating regasification facility 22. It may be supplied to the regasification unit 222 through. Accordingly, the seawater supplied to the regasification unit 222 by the water intake unit 221 may be cooled in the regasification unit 222 and heated in the first heat exchange unit 2421. That is, the seawater withdrawn from the floating regasification unit 22 is used as a heating medium for heating the liquefied natural gas (LNG) in the regasification unit 222, the first cooling in the first heat exchange unit 2421 It can be used as a cooling medium for cooling the fluid.
  • LNG liquefied natural gas
  • the second heat exchange part 2422 heat-exchanges the cooled seawater discharged from the regasification part 222 and the second cooling fluid.
  • the cooled seawater discharged from the regasification unit 222 is connected to the second heat exchange unit 2422 through the seawater supply pipe of the eyepiece facility 23, the first transfer line 25, and the floating power generation facility 24. Can be supplied.
  • the second heat exchanger 2422 may heat exchange the cooled seawater and the second cooling fluid by installing the seawater supply pipe and the second circulation pipe SCL in close proximity. Accordingly, the second cooling fluid may be cooled by the cooled seawater discharged from the regasification unit 222.
  • the second water exchange unit 2422 cools the second cooling fluid and the heated sea water is supplied to the seawater supply pipe of the second transfer line 26, the eyepiece 23, and the floating regasification facility 22. It may be supplied to the regasification unit 222 through. Accordingly, the seawater supplied to the regasification unit 222 by the intake unit 221 may be cooled in the regasification unit 222 and heated in the second heat exchange unit 2422. That is, the seawater withdrawn from the floating regasification unit 22 is used as a heating medium for heating the liquefied natural gas (LNG) in the regasification unit 222, the second cooling in the second heat exchange unit (2422) It can be used as a cooling medium for cooling the fluid.
  • LNG liquefied natural gas
  • the third heat exchanger 2423 heat-exchanges the cooled seawater discharged from the regasification unit 222, the first cooling fluid, and the second cooling fluid.
  • the cooled seawater discharged from the regasification unit 222 is connected to the third heat exchange unit 2423 through the seawater supply pipe of the eyepiece facility 23, the first transfer line 25, and the floating power generation facility 24. Can be supplied.
  • the third heat exchange part 2423 is installed close to the seawater supply pipe, the first circulation pipe (FCL) and the second circulation pipe (SCL), the cooled seawater, the first cooling fluid, and the first 2 Cooling fluid can be heat exchanged. Accordingly, the first cooling fluid and the second cooling fluid may be cooled by the cooled seawater discharged from the regasification unit 222.
  • the first cooling fluid and the second cooling fluid are cooled in the third heat exchanger 2423 and the heated sea water is supplied to the second transfer line 26, the eyepiece 23, and the floating regasification facility 22. It may be supplied to the regasification unit 222 through the seawater supply pipe of the). Accordingly, the seawater supplied to the regasification unit 222 by the intake unit 221 may be cooled in the regasification unit 222 and heated in the second heat exchange unit 2422.
  • the seawater withdrawn from the floating regasification unit 22 is used as a heating medium for heating the liquefied natural gas (LNG) in the regasification unit 222, the first cooling in the third heat exchange unit (2423) It can be used as a cooling medium for cooling the fluid and the second cooling fluid.
  • LNG liquefied natural gas
  • the first cooling fluid and the second cooling fluid may be seawater.
  • the first cooling fluid moves along the first circulation pipe to directly cool the heterogeneous fuel engine 24111
  • the second cooling fluid moves along the second circulation pipe to move the gas turbine 24121.
  • the marine power generation system 21 according to the second embodiment of the present invention may have various embodiments depending on which of the first power generation mechanism 2411 and the second power generation mechanism 2412 is included in the power generation system 241. It may include. Looking at these embodiments in detail, as follows.
  • the power generation system 241 includes the first power generation mechanism 2411, and the cooling system 242 includes the first power generation mechanism. It may be implemented to include one heat exchanger 2421.
  • the first heat exchanger 2421 heat-exchanges the liquefied natural gas (LNG) in the regasification unit 222 and the seawater discharged by cooling, and a first cooling fluid for cooling the heterogeneous fuel engine 24111.
  • the first cooling fluid may be cooled by the cooled seawater supplied from the regasification unit 222.
  • the seawater supplied to the first heat exchange unit 2421 is a seawater discharge pipe of the floating regasification facility 22, and the seawater supply pipes of the first transfer line 25 and the floating power generation facility 24 are sequentially. By way of example, it may be supplied to the first heat exchanger 2421.
  • the seawater discharge pipe is a pipe for discharging seawater from the floating regasification facility 22.
  • the seawater supply pipe is a pipeline for receiving seawater. Sea water discharged by cooling and heating the first cooling fluid in the first heat exchange part 2421 may be supplied to the regasification part 222.
  • the seawater discharged from the first heat exchange unit 2421 sequentially includes the seawater discharge pipe of the floating power generation facility 24, the second transfer line 26, and the seawater supply pipe of the floating regasification facility 22. Can be supplied to the regasification unit 222 through.
  • Seawater supplied from the first heat exchange unit 2421 to the regasification unit 222 may be used as a heat source for regasifying liquefied natural gas (LNG).
  • the seawater supplied from the first heat exchange unit 2421 to the regasification unit 222 may be regasified after liquefied natural gas (LNG) after merging with the seawater supplied from the intake unit 221.
  • the marine power generation system 21 according to the second embodiment of the present invention can achieve the following effects.
  • the offshore power generation system 21 receives cooled seawater from the regasification unit 222 of the floating regasification facility 22, and heterogeneous of the floating power generation facility 24. Since the fuel engine 24111 can be cooled, the capacity of the first heat exchanger 2421 can be reduced as compared with the case where the seawater is directly taken in to cool the heterogeneous fuel engine 24111. Accordingly, the offshore power generation system 21 according to the second embodiment of the present invention can reduce the overall size and weight of the floating power generation equipment 24, and thus can be easily installed in a coastal region having a low water depth. . In addition, the offshore power generation system 21 according to the second embodiment of the present invention may react less sensitively to external seawater temperature, thereby not only cooling the heterogeneous fuel engine 24111 stably but also reducing the amount of electricity produced. Can be kept constant.
  • the offshore power generation system 21 according to the second embodiment of the present invention is the floating regasification facility 22 for the heated seawater discharged from the first heat exchange unit 2421 of the floating power generation facility 24.
  • LNG liquefied natural gas
  • the offshore power generation system 21 according to the second embodiment of the present invention compared to the case where the liquefied natural gas (LNG) is regasified using only the seawater collected by the intake unit 221, the liquefied natural gas (LNG).
  • the regasification efficiency for can be further improved. Therefore, the offshore power generation system 21 according to the second embodiment of the present invention can not only produce electricity quickly in an emergency situation such as a power failure, but also increase the amount of electricity production.
  • the power generation system 241 includes the second power generation mechanism 2412, and the cooling system 242 includes the first power generation system. It may include a two heat exchanger (2422).
  • the second heat exchanger 2422 heat-exchanges the liquefied natural gas (LNG) in the regasification unit 222 and cools the discharged sea water and a second cooling fluid for cooling the gas turbine 24121.
  • the second cooling fluid may be cooled by the cooled seawater supplied from the regasification unit 222.
  • the seawater supplied to the second heat exchange unit 2422 is a seawater discharge pipe of the floating regasification facility 22, and the seawater supply pipes of the first transfer line 25 and the floating power generation facility 24 are sequentially. By way of example, it may be supplied to the second heat exchanger 2422.
  • the seawater discharged by cooling the second cooling fluid in the second heat exchange part 2422 and heating it may be supplied to the regasification part 222.
  • the seawater discharged from the second heat exchange unit 2422 sequentially includes the seawater discharge pipe of the floating power generation facility 24, the second transfer line 26, and the seawater supply pipe of the floating regasification facility 22. Can be supplied to the regasification unit 222 through.
  • the seawater supplied from the second heat exchange unit 2422 to the regasification unit 222 may be used as a heat source for regasifying liquefied natural gas (LNG).
  • the seawater supplied from the second heat exchange unit 2422 to the regasification unit 222 may be regasified after liquefied natural gas (LNG) after merging with the seawater supplied from the intake unit 221.
  • the marine power generation system 21 according to the second embodiment of the present invention can achieve the following effects.
  • the marine power generation system 21 receives the cooled seawater from the regasification unit 222 of the floating regasification facility 22, and supplies the gas of the floating power generation facility 24. Since the turbine 24121 can be cooled, the capacity of the second heat exchanger 2422 can be reduced. Accordingly, the offshore power generation system 21 according to the second embodiment of the present invention can reduce the overall size and weight of the floating power generation equipment 24, and thus can be easily installed in a coastal region having a low water depth. . In addition, the offshore power generation system 21 according to the second embodiment of the present invention may react less sensitively to external seawater temperature, thereby not only cooling the gas turbine 24121 stably but also producing a constant amount of electricity. Can be maintained.
  • the offshore power generation system 21 according to the second embodiment of the present invention uses the floating regasification facility 22 to discharge the heated seawater discharged from the second heat exchange unit 2422 of the floating power generation facility 24.
  • the offshore power generation system 21 according to the second embodiment of the present invention can further improve the regasification efficiency for liquefied natural gas (LNG). Therefore, the offshore power generation system 21 according to the second embodiment of the present invention can not only produce electricity quickly in an emergency situation such as a power failure, but also increase the amount of electricity production.
  • the power generation system 241 includes the first power generation mechanism 2411 and the second power generation mechanism 2412.
  • the cooling system 242 may include the third heat exchanger 2423.
  • the marine power generation system 21 may generate electricity using at least one of the first power generation mechanism 2411 and the second power generation mechanism 2412.
  • the third heat exchanger 2423 regasifies the LNG by the regasification unit 222 and cools the discharged sea water, a first cooling fluid for cooling the heterogeneous fuel engine 24111, and the The second cooling fluid for cooling the gas turbine 24121 may be heat-exchanged.
  • the first cooling fluid and the second cooling fluid may be cooled by the cooled seawater supplied from the regasification unit 222.
  • the seawater supplied to the third heat exchange unit 2423 is a seawater discharge pipe of the floating regasification facility 22, and the seawater supply pipes of the first transfer line 25 and the floating power generation facility 24 are sequentially.
  • the seawater which is heated and discharged after cooling the first cooling fluid and the second cooling fluid in the third heat exchange part 2423, may be supplied to the regasification part 222.
  • the seawater discharged from the third heat exchange unit 2423 sequentially includes the seawater discharge pipe of the floating power generation facility 24, the second transfer line 26, and the seawater supply pipe of the floating regasification facility 22.
  • the seawater supplied from the third heat exchanger 2423 to the regasification unit 222 may be used as a heat source for regasifying liquefied natural gas (LNG).
  • the seawater supplied from the third heat exchange unit 2423 to the regasification unit 222 may be regasified after liquefied natural gas (LNG) after merging with the seawater supplied from the intake unit 221.
  • the marine power generation system 21 according to the second embodiment of the present invention can achieve the following effects.
  • the offshore power generation system 21 receives cooled seawater from the regasification unit 222 of the floating regasification facility 22, and heterogeneous of the floating power generation facility 24. Since at least one of the fuel engine 24111 and the gas turbine 24121 may be cooled, the capacity of the third heat exchanger 2423 may be reduced. Accordingly, the offshore power generation system 21 according to the second embodiment of the present invention can reduce the overall size and weight of the floating power generation equipment 24, and thus can be easily installed in a coastal region having a low water depth. .
  • the offshore power generation system 21 since the offshore power generation system 21 according to the second embodiment of the present invention reacts less sensitively to external seawater temperature, it is possible to stably cool the heterogeneous fuel engine 24111 and the gas turbine 24121. In addition, electricity production can be kept constant.
  • the offshore power generation system 21 according to the second embodiment of the present invention uses the floating seawater discharged from the third heat exchange unit 2423 of the floating power generation facility 24 to the floating regasification facility 22.
  • LNG liquefied natural gas
  • the offshore power generation system 21 according to the second embodiment of the present invention compared to the case where the liquefied natural gas (LNG) is regasified using only the seawater collected by the intake unit 221, the liquefied natural gas (LNG).
  • the regasification efficiency for can be further improved. Therefore, the offshore power generation system 21 according to the second embodiment of the present invention can not only produce electricity quickly in an emergency situation such as a power failure, but also increase the amount of electricity production.
  • the marine power generation system 21 according to the second embodiment of the present invention is implemented to produce electricity by using a plurality of generators, thereby not only increasing the amount of electricity produced but also in the above-described embodiments in case of an emergency such as a power failure. It can produce electricity faster than that.
  • the marine power generation system 21 according to the second embodiment of the present invention can prevent the generation of electricity for supply to the land use.
  • the offshore power generation system 21 by installing a valve at a portion where the natural gas NG branches to the heterogeneous fuel engine 24111 and the gas turbine 24121, The amount of natural gas NG supplied to the heterogeneous fuel engine 24111 and the gas turbine 24121 may be adjusted. Accordingly, the marine power generation system 21 according to the second embodiment of the present invention measures the amount of electricity produced by the first generator 24112, the second generator 24122, and the third generator 24125, respectively. I can regulate it.
  • the offshore power generation system 21 according to the second embodiment of the present invention when the marine power generation system 21 according to the second embodiment of the present invention is installed so that the first circulation pipe and the second circulation pipe are connected to sea water, the first heat exchange unit 2421 and the The second heat exchanger 2422 and the third heat exchanger 2423 may not be included. Therefore, the offshore power generation system 21 according to the second embodiment of the present invention can reduce the construction cost for cooling the power generation system 241.
  • the marine power generation system 21 includes a seawater valve installed in a seawater pipe connecting the intake unit 221 and the regasification unit 222, and a seawater flow rate control unit for controlling the seawater valve. And, it may further comprise a seawater flow rate sensor for measuring the seawater flow rate inside the seawater pipe.
  • the seawater valve is for adjusting the degree of opening of the seawater pipe to adjust the amount of seawater supplied to the regasification unit 222.
  • the seawater valve may be controlled by the seawater flow rate controller to adjust the degree of opening of the seawater pipe.
  • the seawater flow rate control unit may be connected to the seawater flow rate sensor by at least one of wireless communication and wired communication, so that the seawater flow rate sensor may receive information about the seawater flow rate inside the seawater pipe from the seawater flow rate sensor.
  • the seawater flow rate control unit may control the seawater valve so that the opening degree of the seawater pipe is reduced when the seawater flow rate measured by the seawater flow rate measurement sensor exceeds a preset reference seawater flow rate. In this case, the flow rate of seawater supplied from the intake unit 221 to the regasification unit 222 may be reduced.
  • the seawater flow rate control unit may control the seawater valve so that the opening degree of the seawater pipe is increased when the seawater flow rate measured by the seawater flow rate measurement sensor is less than a predetermined reference seawater flow rate.
  • the reference seawater flow rate refers to the minimum seawater flow rate required to regasify the liquefied natural gas (LNG), and may be preset by an operator.
  • the seawater flow rate control unit may block the seawater supplied to the regasification unit 222 by controlling the seawater valve to close the seawater pipe.
  • the cooling system 242 is sufficient to cool at least one of the heterogeneous fuel engine 2111 and the gas turbine 24121. Accordingly, since the marine system 21 according to the second embodiment of the present invention can reduce the amount of seawater taken from the outside, it is possible to prevent waste of resources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The present invention relates to an offshore power generation system comprising: floating regasification equipment for performing a regasification process for re-gasifying liquefied natural gas (LNG) while floating on the sea; docking equipment fixedly installed on the underwater ground so as to dock the floating regasification equipment therewith; and floating power generation equipment for generating electricity by being supplied with natural gas, which is re-gasified by the floating regasification equipment, through the docking equipment, the floating power generation equipment being docked with the docking equipment while floating on the sea.

Description

해상발전시스템Offshore power generation system
본 발명은 해상에서 전기를 생산하기 위한 해상발전시스템에 관한 것이다.The present invention relates to an offshore power generation system for producing electricity at sea.
오늘날, 환경에 대한 관심의 일환으로, 친환경적인 발전시스템에 대한 관심이 증대되고 있으며, 친환경적인 발전시스템의 일종으로 천연가스를 발전연료로 사용하는 발전시스템이 있다.Today, as part of environmental concern, interest in environmentally friendly power generation systems is increasing, and there is a power generation system that uses natural gas as a power generation fuel as a kind of environmentally friendly power generation system.
그런데, 육상에서 천연가스를 발전연료로 사용하는 발전시스템을 구축하기 위해서는 가스저장탱크, 가스공급장치 및 발전소 등과 같은 기반시설을 설치하기 위한 부지를 확보해야 될 뿐만 아니라 기반시설을 설치하는 시공기간이 소요되므로, 전기를 생산하기까지 오랜 시간이 걸리는 문제가 있다. 특히, 섬 등과 같은 도서지역 같은 경우에는 발전시스템을 구축하는데 막대한 비용이 소요될 뿐만 아니라 섬마다 발전시스템을 구축하지 못하는 문제가 있다. 따라서, 해상에서 전기를 생산하여 육상에 공급할 수 있는 해상발전시스템에 대한 기술의 개발이 절실히 필요하다.However, in order to build a power generation system that uses natural gas as power fuel on land, it is necessary to secure a site for installing infrastructure such as a gas storage tank, a gas supply device, and a power plant. Since it takes a long time to produce electricity, there is a problem. In particular, in case of islands such as islands, there is a problem in that not only a huge cost is required to build a power generation system, but also a power generation system cannot be built for each island. Therefore, there is an urgent need to develop a technology for an offshore power generation system that can produce electricity at sea and supply it to the land.
본 발명은 상술한 바와 같은 문제를 해결하고자 안출된 것으로, 해상에서 전기를 생산하여 육상에 공급할 수 있는 해상발전시스템을 제공하기 위한 것이다.The present invention has been made to solve the problems described above, and to provide an offshore power generation system that can supply electricity to the land by producing electricity at sea.
상술한 바와 같은 과제를 해결하기 위해, 본 발명은 하기와 같은 구성을 포함할 수 있다.In order to solve the problem as described above, the present invention may include the following configuration.
본 발명에 따른 해상발전시스템은 해상에 부유한 상태에서 액화천연가스(LNG)를 재기화시키는 재기화공정을 수행하기 위한 부유식 재기화설비; 상기 부유식 재기화설비가 접안되도록 해저 지면에 고정되게 설치되는 접안설비; 및 해상에 부유한 상태에서 상기 접안설비에 접안되고, 상기 접안설비를 통해 상기 부유식 재기화설비가 재기화한 천연가스를 공급받아 전기를 생산하기 위한 부유식 발전설비를 포함할 수 있다.The marine power generation system according to the present invention includes a floating regasification facility for performing a regasification process for regasifying liquefied natural gas (LNG) in a floating state at sea; An eyepiece installed to be fixed to the sea floor so that the floating regasification facility is docked; And a floating power generation equipment which is docked to the eyepiece equipment in a floating state at sea, and receives the natural gas regasified by the floating regasification equipment through the eyepiece equipment to produce electricity.
본 발명에 따른 부유식 발전설비는 재기화부 및 재기화부유본체를 포함하는 부유식 재기화설비가 접안되는 접안본체를 포함하는 접안설비를 통해 상기 부유식 재기화설비가 재기화한 천연가스를 공급받아 전기를 생산하기 위한 발전시스템; 및 상기 발전시스템이 설치되는 발전부유본체를 포함할 수 있다. 상기 발전시스템은 상기 천연가스 및 디젤연료 중 적어도 하나를 연소시켜 동력을 발생시키는 이종연료(Dual Fuel)엔진, 및 상기 이종연료엔진에 연결되고 상기 이종연료엔진이 발생시킨 동력을 이용하여 전기를 생산하는 제1발전기를 포함하는 제1발전기구를 포함할 수 있다.The floating power generation equipment according to the present invention supplies the natural gas regasified by the floating regasification equipment through the eyepiece including the eyepiece to which the floating regasification equipment including a regasification unit and the regasification unit main body is docked. Power generation system for receiving electricity; And it may include a power generation unit main body in which the power generation system is installed. The power generation system generates electricity using a dual fuel engine that generates power by burning at least one of the natural gas and diesel fuel, and a power generated by the heterogeneous fuel engine connected to the heterogeneous fuel engine. It may include a first power generation mechanism including a first generator.
본 발명에 따른 부유식 발전설비는 재기화부 및 재기화부유본체를 포함하는 부유식 재기화설비가 접안되는 접안본체를 포함하는 접안설비를 통해 상기 부유식 재기화설비가 재기화한 천연가스를 공급받아 전기를 생산하기 위한 발전시스템; 및 상기 발전시스템이 설치되는 발전부유본체를 포함할 수 있다. 상기 발전시스템은 상기 천연가스를 연소시켜 동력을 발생시키는 가스터빈, 상기 가스터빈에 연결되고 상기 가스터빈이 발생시킨 동력을 이용하여 전기를 생산하는 제2발전기, 상기 가스터빈에서 배출되는 배기가스의 폐열을 회수하여 스팀을 발생시키는 배열회수보일러, 상기 배열회수보일러로부터 스팀을 공급받아 동력을 발생시키는 스팀터빈, 및 상기 스팀터빈에 연결되고 상기 스팀터빈이 발생시킨 동력을 이용하여 전기를 생산하는 제3발전기를 포함하는 제2발전기구를 포함할 수 있다.The floating power generation equipment according to the present invention supplies the natural gas regasified by the floating regasification equipment through the eyepiece including the eyepiece to which the floating regasification equipment including a regasification unit and the regasification unit main body is docked. Power generation system for receiving electricity; And it may include a power generation unit main body in which the power generation system is installed. The power generation system includes a gas turbine configured to generate power by burning the natural gas, a second generator connected to the gas turbine to generate electricity by using the power generated by the gas turbine, and exhaust gas discharged from the gas turbine. A heat recovery boiler for recovering waste heat to generate steam, a steam turbine supplied with steam from the heat recovery boiler to generate power, and a power generator connected to the steam turbine to generate electricity by using the power generated by the steam turbine. It may include a second power generation mechanism including a third generator.
본 발명에 따르면, 다음과 같은 효과를 얻을 수 있다.According to the present invention, the following effects can be obtained.
본 발명은 해상 LNG Terminal 접안 시설로 사용되는 접안설비, LNG를 재기화시키기 위한 부유식 재기화설비, 및 해상에서 전기를 생산하기 위한 부유식 발전설비를 연동시킴으로써, 부유식 발전설비의 운용에 필요한 시설 및 연료를 접안설비 및 부유식 재기화설비를 통해 공급받을 수 있다. 따라서, 본 발명은 전기 생산에 필요한 설비들을 공동으로 운용하여 전체적인 크기 및 중량 감소, 시공기간 단축, 및 구축비용을 줄일 수 있을 뿐만 아니라 해상에서 전기를 생산하여 육상으로 공급하므로 발전 운용의 효율성을 향상시킬 수 있다.The present invention is required for the operation of the floating power generation facilities by interlocking the eyepiece facility used as an offshore LNG Terminal docking facility, a floating regasification facility for regasifying LNG, and a floating power generation facility for producing electricity at sea. The facility and fuel can be supplied through berthing and floating regasification facilities. Therefore, the present invention not only can reduce the overall size and weight, shorten the construction period, and reduce the construction cost by jointly operating the facilities required for the production of electricity, but also improve the efficiency of power generation operation by producing electricity and supplying it to the land. You can.
본 발명은 해상에서 전기를 생산하여 육상의 사용처에 공급할 수 있도록 구현됨으로써, 육상에 별도의 발전시설을 설치할 필요가 없다. 따라서, 본 발명은 육상에 발전시설을 설치하기 위한 부지를 확보할 필요가 없으므로 전기 생산에 대한 구축비용을 절감할 수 있고, 육상에 발전시설을 설치하기 위한 시공기간이 소요되지 않으므로 전기가 필요한 지역에 신속하게 전기를 공급할 수 있다.The present invention is implemented to be able to produce electricity at sea to supply to the land use, there is no need to install a separate power generation facility onshore. Therefore, since the present invention does not need to secure a site for installing a power generation facility on land, the construction cost for electricity production can be reduced, and a construction time for installing a power generation facility on land does not require an area where electricity is needed. The electricity can be supplied quickly.
본 발명은 부유식 재기화설비, 접안설비, 및 부유식 발전설비를 서로 연동시키도록 구현됨으로써, 전기 생산에 필요한 시설들을 서로 분배하여 설치할 수 있다. 따라서, 본 발명은 상기 부유식 재기화설비, 상기 접안설비, 및 상기 부유식 발전설비 각각의 크기 및 중량을 감소시킬 수 있으므로, 구축비용을 줄일 수 있다.The present invention can be implemented by interlocking the floating regasification facility, the eyepiece facility, and the floating power generation facility to each other, it is possible to distribute and install the facilities required for electricity production. Therefore, the present invention can reduce the size and weight of each of the floating regasification facility, the eyepiece facility, and the floating power generation facility, thereby reducing the construction cost.
본 발명은 부유식 재기화설비, 접안설비, 및 부유식 발전설비를 서로 연동시킴으로써, 부유식 발전설비가 전기를 생산하는데 필요한 연료를 접안설비를 통해 부유식 재기화설비로부터 공급받을 수 있다. 따라서, 본 발명은 부유식 발전설비에 연료를 저장하기 위한 연료저장탱크를 설치할 필요가 없으므로, 부유식 발전설비의 크기 및 중량을 감소시켜 수심이 낮은 연안에도 용이하게 설치될 수 있다.According to the present invention, the floating regasification facility, the eyepiece facility, and the floating power generation facility are interlocked with each other, so that the fuel required for the floating power generation facility to generate electricity can be supplied from the floating regasification facility through the eyepiece. Therefore, the present invention does not need to install a fuel storage tank for storing fuel in the floating power generation equipment, it can be easily installed on the coast with a low depth by reducing the size and weight of the floating power generation equipment.
도 1은 본 발명의 제1실시예에 따른 해상발전시스템의 구성도1 is a block diagram of an offshore power generation system according to a first embodiment of the present invention
도 2 내지 도 7은 본 발명의 제1실시예에 따른 해상발전시스템의 블록도2 to 7 are block diagrams of an offshore power generation system according to a first embodiment of the present invention.
도 8은 본 발명의 제2실시예에 따른 해상발전시스템의 구성도8 is a configuration diagram of an offshore power generation system according to a second embodiment of the present invention;
도 9 내지 도 12는 본 발명의 제2실시예에 따른 해상발전시스템의 블록도9 to 12 are block diagrams of an offshore power generation system according to a second embodiment of the present invention.
이하에서는 본 발명에 따른 해상발전시스템의 실시예를 첨부된 도면을 참조하여 상세히 설명한다. 본 발명에 따른 부유식 발전설비는 본 발명에 따른 해상발전시스템에 포함되므로, 본 발명에 따른 해상발전시스템의 실시예를 설명하면서 함께 설명한다.Hereinafter will be described in detail with reference to the accompanying drawings, an embodiment of an offshore power generation system according to the present invention. Since the floating power generation equipment according to the present invention is included in the marine power generation system according to the present invention, it will be described together with an embodiment of the marine power generation system according to the present invention.
제1실시예First embodiment
도 1 내지 도 7을 참고하면, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 해상(海上)에 부유한 상태에서 천연가스를 공급받아 전기를 생산하기 위한 것이다. 본 발명의 제1실시예에 따른 해상발전시스템(11)은 부유식 재기화설비(12), 접안설비(13), 및 부유식 발전설비(14)를 포함한다.1 to 7, the marine power generation system 11 according to the first embodiment of the present invention is for producing electricity by receiving natural gas in a floating state on the sea. The offshore power generation system 11 according to the first embodiment of the present invention includes a floating regasification facility 12, an eyepiece facility 13, and a floating power generation facility 14.
상기 부유식 재기화설비(12), 상기 접안설비(13), 및 상기 부유식 발전설비(14)는 각각 해상에 위치하도록 설치된다. 상기 해상(海上)은 육지로부터 멀리 떨어진 심해의 수면, 및 육지에 근접한 연안(Shore)의 수면을 모두 포함할 수 있다. 본 발명의 제1실시예에 따른 해상발전시스템(11)은 연안의 해상에 부유하도록 설치되어 천연가스를 이용하여 전기를 생산하고, 생산한 전기를 육상(미도시)으로 공급할 수 있다. 상기 천연가스는 액체상태, 기체상태, 및 액체와 기체가 혼합된 혼합상태 등 상변화되는 모든 상태일 수 있다. 본 발명의 제1실시예에 따른 해상발전시스템(11)은 천연가스뿐만 아니라 디젤 등 다른 연료를 이용하여 전기를 생산할 수도 있다. 본 발명의 제1실시예에 따른 해상발전시스템(11)은 해상에 부유한 상태에서 해저 지면(SB)에 고정되게 설치되는 접안설비(13)에 이동 가능한 부유식 재기화설비(12) 및 이동 가능한 부유식 발전설비(14)가 무어링장치 등을 통해 각각 결합됨으로써, 조류와 같은 해류에 떠내려가지 않고 고정된 위치에서 해상에 부유하여 전기를 생산할 수 있다. 본 발명의 제1실시예에 따른 해상발전시스템(11)은 육상에 위치한 사용처에 전선 등의 케이블을 통해 연결됨으로써, 생산한 전기를 육상의 사용처로 공급할 수 있다.The floating regasification facility 12, the eyepiece facility 13, and the floating power generation facility 14 are each installed to be located at sea. The sea may include both the surface of the deep sea far from the land and the surface of the shore close to the land. The offshore power generation system 11 according to the first embodiment of the present invention may be installed to float on the offshore coast to produce electricity using natural gas, and supply the produced electricity to land (not shown). The natural gas may be in a liquid state, a gaseous state, and any state that changes in phase, such as a mixed state in which a liquid and a gas are mixed. The offshore power generation system 11 according to the first embodiment of the present invention may produce electricity using not only natural gas but also other fuel such as diesel. The offshore power generation system 11 according to the first embodiment of the present invention is a floating regasification facility 12 and movable to the eyepiece 13 fixedly installed on the sea floor SB in a floating state at sea. Each of the possible floating power generation facilities 14 may be coupled to each other by a mooring device or the like to produce electricity by floating on the sea at a fixed position without floating in an ocean current such as an algae. The marine power generation system 11 according to the first embodiment of the present invention may be connected to a place of use on the land through a cable such as an electric wire, thereby supplying the produced electricity to the place of use of the land.
이하에서는 상기 부유식 재기화설비(12), 상기 접안설비(13), 및 상기 부유식 발전설비(14)에 관해 첨부된 도면을 참조하여 구체적으로 설명한다.Hereinafter, the floating regasification facility 12, the eyepiece facility 13, and the floating power generation facility 14 will be described in detail with reference to the accompanying drawings.
도 1 내지 도 7을 참고하면, 상기 부유식 재기화설비(12)는 액화천연가스(LNG, Liquefied Natural Gas)를 재기화시키기 위한 것이다. 상기 부유식 재기화설비(12)는 해상에 부유한 상태에서 액화천연가스(LNG)를 천연가스(NG)로 재기화시키는 재기화공정을 수행할 수 있다. 상기 부유식 재기화설비(12)는 FSRU(Floating, Storage, Re-Gasification Unit)로 구현될 수 있다. 상기 부유식 재기화설비(12)는 상기 접안설비(13)에 접안될 수 있다. 이에 따라, 상기 부유식 재기화설비(12)는 상기 접안설비(13)와 일체가 될 수 있다. 상기 부유식 재기화설비(12)는 액화천연가스(LNG)를 재기화시킨 천연가스(NG)를 상기 접안설비(13)로 공급할 수 있다. 상기 부유식 재기화설비(12)는 재기화부유본체(120), LNG저장탱크(121), 재기화부(122) 및 거주구(123)를 포함할 수 있다.1 to 7, the floating regasification facility 12 is for regasifying liquefied natural gas (LNG). The floating regasification facility 12 may perform a regasification process of regasifying liquefied natural gas (LNG) to natural gas (NG) in a floating state at sea. The floating regasification facility 12 may be implemented as a Floating, Storage, Re-Gasification Unit (FSRU). The floating regasification facility 12 may be docked with the eyepiece 13. Accordingly, the floating regasification facility 12 may be integrated with the eyepiece 13. The floating regasification facility 12 may supply natural gas NG obtained by regasifying liquefied natural gas (LNG) to the eyepiece 13. The floating regasification facility 12 may include a regasification unit body 120, an LNG storage tank 121, a regasification unit 122, and a residence 123.
상기 재기화부유본체(120)는 해상에 부유할 수 있다. 예컨대, 상기 재기화부유본체(120)는 FSRU의 선체일 수 있다. 상기 재기화부유본체(120)에는 상기 LNG저장탱크(121), 상기 재기화부(122) 및 상기 거주구(123)가 설치될 수 있다. 이에 따라, 상기 재기화부유본체(120)는 상기 LNG저장탱크(121), 상기 재기화부(122) 및 상기 거주구(123)가 해상에 부유하도록 상기 LNG저장탱크(121), 상기 재기화부(122) 및 상기 거주구(123)를 지지할 수 있다. 상기 재기화부유본체(120)에는 엔진, 프로펠러 등을 포함하는 추진장치가 설치될 수 있다. 이에 따라, 상기 재기화부유본체(120)는 해상에 부유한 상태에서 상기 추진장치에 의해 가고자 하는 목적지로 이동할 수 있다. 예컨대, 상기 재기화부유본체(120)는 액화천연가스(LNG)를 공급받거나 액화천연가스(LNG)를 공급하기 위해 이동할 수 있다. 상기 재기화부유본체(120)는 상기 부유식 재기화설비(12)가 상기 접안설비(13)에 접안될 경우, 후술할 접안설비(13)의 접안본체(130)에 연결될 수 있다. 이 경우, 상기 재기화부유본체(120)는 상기 접안본체(130)로부터 소정 거리 이격된 위치에 위치될 수 있다. 상기 재기화부유본체(120)에는 상기 추진장치가 설치되지 않을 수도 있다. 이 경우, 상기 재기화부유본체(120)는 바지선에 의해 이동되어 상기 접안본체(130)에 연결될 수 있다. 상기 재기화부유본체(120)는 상기 접안본체(130)에 연결된 상태에서 액화천연가스(LNG)를 재기화시켜 상기 접안본체(130)로 재기화시킨 천연가스를 공급할 수 있다.The regasification unit body 120 may be floating on the sea. For example, the regasification unit body 120 may be a hull of the FSRU. The LNG storage tank 121, the regasification unit 122 and the inlet 123 may be installed in the regasification unit body 120. Accordingly, the regasification unit body 120 is the LNG storage tank 121, the regasification unit (120) so that the LNG storage tank 121, the regasification unit 122 and the inlet 123 is floating on the sea 122) and the inlet 123 may be supported. The regasification unit body 120 may be provided with a propulsion device including an engine, a propeller, and the like. Accordingly, the regasification unit main body 120 may move to the destination to go by the propulsion device in a floating state at sea. For example, the regasification unit body 120 may move to receive the liquefied natural gas (LNG) or to supply the liquefied natural gas (LNG). The regasification unit main body 120 may be connected to the eyepiece body 130 of the eyepiece (13) to be described later when the floating regasification facility 12 is docked to the eyepiece (13). In this case, the regasification unit main body 120 may be located at a position spaced apart from the eyepiece body 130 by a predetermined distance. The propulsion device may not be installed in the regasification unit body 120. In this case, the regasification unit body 120 may be moved by a barge and connected to the eyepiece body 130. The regasification unit body 120 may supply natural gas regasified to the eyepiece body 130 by regasifying liquefied natural gas (LNG) in a state connected to the eyepiece body 130.
상기 LNG저장탱크(121)는 액화천연가스(LNG)를 저장하기 위한 것이다. 상기 LNG저장탱크(121)는 LNG선 등과 같은 운반선으로부터 공급되는 액화천연가스(LNG)를 저장할 수 있다. 상기 LNG저장탱크(121)는 저장 용량을 늘리기 위해 천연가스(NG)를 액화된 상태로 저장할 수 있다. 예컨대, 상기 LNG저장탱크(121)는 대략 영하 165 ℃의 액화천연가스(LNG)를 저장할 수 있다. 상기 LNG저장탱크(121)는 액화천연가스(LNG)가 기화되는 것을 방지하기 위해 단열재를 포함할 수 있다. 상기 LNG저장탱크(121)는 액체로 냉각된 현재상태를 유지하거나 내부의 압력을 유지하기 위한 별도의 장치를 더 포함할 수 있다. 상기 LNG저장탱크(121)는 기체로 상변화된 기화가스(Boil Off Gas)를 액체 상태로 재액화시키기 위한 재액화장치 등을 더 포함할 수도 있다. 상기 LNG저장탱크(121)는 상기 부유식 재기화설비(12)의 내부에 위치하도록 설치될 수 있으나, 이에 한정되지 않으며 외부에 위치하도록 설치될 수도 있다.The LNG storage tank 121 is for storing liquefied natural gas (LNG). The LNG storage tank 121 may store liquefied natural gas (LNG) supplied from a carrier such as an LNG carrier. The LNG storage tank 121 may store the natural gas (NG) in a liquefied state to increase the storage capacity. For example, the LNG storage tank 121 may store liquefied natural gas (LNG) of about minus 165 ℃. The LNG storage tank 121 may include a heat insulating material to prevent the liquefied natural gas (LNG) is vaporized. The LNG storage tank 121 may further include a separate device for maintaining the current state or the pressure inside the liquid cooled. The LNG storage tank 121 may further include a reliquefaction apparatus for reliquefying a gas off phase changed into gas into a liquid state. The LNG storage tank 121 may be installed to be located inside the floating regasification facility 12, but is not limited thereto and may be installed to be located outside.
상기 재기화부(122)는 상기 LNG저장탱크(121)로부터 공급되는 액화천연가스(LNG)를 재기화시키기 위한 것이다. 상기 재기화부(122)는 관 또는 파이프와 같은 천연가스관로를 통해 상기 LNG저장탱크(121)에 연결될 수 있다. 이에 따라, 상기 재기화부(122)는 상기 LNG저장탱크(121)로부터 액화천연가스(LNG)를 공급받을 수 있다. 상기 재기화부(122)는 관 또는 파이프와 같은 해수관로를 통해 외부에 위치하는 해수에 연결될 수 있다. 상기 해수관로에는 해수를 이동시키기 위한 이송력을 제공하는 펌프가 설치될 수 있다. 이에 따라, 상기 재기화부(122)는 해수를 공급받을 수 있다. 상기 재기화부(122)는 상기 LNG저장탱크(121)로부터 공급받은 액화천연가스(LNG) 및 해수를 열교환시킴으로써, 액화천연가스(LNG)를 재기화시킬 수 있다. 상기 LNG저장탱크(121)에 저장된 액화천연가스(LNG)의 온도는 영하 165 ℃이므로, 액화천연가스(LNG)는 영하 165 ℃를 초과하는 온도를 가진 해수에 의해 용이하게 천연가스(NG)로 재기화될 수 있다. 따라서, 상기 해수는 액화천연가스(LNG)를 재기화시키기 위한 가열매체가 될 수 있다. 상기 재기화부(122)는 상기 가열매체로 해수를 사용할 수 있으나, 이에 한정되지 않으며 상기 액화천연가스(LNG)를 재기화시킬 수 있으면 다른 유체를 가열매체로 사용할 수도 있다. 예컨대, 상기 재기화부(122)는 상기 부유식 발전설비(14)에서 배출되는 유체를 공급받아 액화천연가스(LNG)를 재기화시킬 수 있다. 이 경우, 상기 부유식 발전설비(14)에서 배출되는 유체는 영하 165 ℃를 초과하는 온도를 가질 수 있다. 상기 재기화부(122)에서 재기화된 천연가스(NG)는 관로를 통해 상기 접안설비(13)로 공급될 수 있다. 상기 재기화부(122)는 상기 해수와 상기 액화천연가스(LNG)를 직접 열교환시키는 해수직접열교환방식, 및 글리콜, 청구, 프로판 등의 중간열교환매체를 통해 상기 해수와 상기 액화천연가스(LNG)를 열교환시키는 해수간접열교환방식 중 적어도 하나를 이용하여 상기 액화천연가스(LNG)를 기화시킬 수도 있다. 상기 해수직접열교환방식은 해수를 이용하여 액화천연가스(LNG)를 직접 기화시키므로 운용비용이 저렴한 장점이 있으나, 해수 온도에 민감하게 반응하는 단점이 있다. 상기 해수간접열교환방식은 중간열교환매체를 이용하여 액화천연가스(LNG)를 간접 기화시키므로 해수의 온도 변화에 덜 민감하게 반응할 수 있을 뿐만 아니라, 해수에 포함된 염분을 제거할 필요가 없다. 또한, 상기 해수간접열교환방식은 상기 해수직접열교환방식에 비해 액화천연가스(LNG)를 기화시키는데 필요한 해수의 양이 적으므로, 상기 해수직접열교환방식에 비해 해수관로의 크기를 줄일 수 있을 뿐만 아니라 해수관로가 부식되는 정도가 덜하다. 따라서, 상기 해수간접열교환방식은 상기 해수직접열교환방식에 비해 구축비용이 저렴한 장점이 있다.The regasification unit 122 is for regasifying the liquefied natural gas (LNG) supplied from the LNG storage tank 121. The regasification unit 122 may be connected to the LNG storage tank 121 through a natural gas pipeline such as a pipe or a pipe. Accordingly, the regasification unit 122 may receive the liquefied natural gas (LNG) from the LNG storage tank 121. The regasification unit 122 may be connected to seawater located outside through a seawater pipe such as a pipe or a pipe. The seawater pipe may be provided with a pump providing a transfer force for moving the seawater. Accordingly, the regasification unit 122 may be supplied with seawater. The regasification unit 122 may regasify the liquefied natural gas (LNG) by heat-exchanging the liquefied natural gas (LNG) and sea water supplied from the LNG storage tank 121. The temperature of the liquefied natural gas (LNG) stored in the LNG storage tank 121 is minus 165 ℃, liquefied natural gas (LNG) is easily converted to natural gas (NG) by sea water having a temperature exceeding 165 ℃ Can be regasified. Therefore, the seawater may be a heating medium for regasifying the liquefied natural gas (LNG). The regasification unit 122 may use seawater as the heating medium. However, the regasification unit 122 is not limited thereto. If the liquefied natural gas (LNG) is regasified, another fluid may be used as the heating medium. For example, the regasification unit 122 may regasify the liquefied natural gas (LNG) by receiving the fluid discharged from the floating power generation facility 14. In this case, the fluid discharged from the floating power generation facility 14 may have a temperature exceeding minus 165 ℃. The natural gas NG regasified by the regasification unit 122 may be supplied to the eyepiece 13 through a pipeline. The regasification unit 122 is a seawater direct heat exchange method for directly heat-exchanging the seawater and the liquefied natural gas (LNG), and the seawater and the liquefied natural gas (LNG) through an intermediate heat exchange medium such as glycol, billing, propane, etc. The liquefied natural gas (LNG) may be vaporized using at least one of the seawater indirect heat exchange method. The seawater direct heat exchange method directly vaporizes liquefied natural gas (LNG) using seawater, which has the advantage of low operating cost, but has a disadvantage in that it is sensitive to seawater temperature. The seawater indirect heat exchange method indirectly vaporizes liquefied natural gas (LNG) using an intermediate heat exchange medium, so that it is less sensitive to changes in seawater temperature and does not need to remove salts contained in seawater. In addition, since the seawater indirect heat exchange method has a smaller amount of seawater required to vaporize liquefied natural gas (LNG) than the seawater direct heat exchange method, it is possible to reduce the size of the seawater pipe as well as the seawater pipe compared to the seawater direct heat exchange method. Less corrosive to the pipeline. Therefore, the seawater indirect heat exchange method has an advantage of low construction cost compared to the seawater direct heat exchange method.
상기 거주구(123)는 액화천연가스(LNG)를 재기화시키는 재기화공정을 수행하는 작업자들이 거주(居住)하기 위한 시설이다. 예컨대, 작업자들은 상기 거주구에서 수개월에서 수년간 숙식할 수 있다. 상기 거주구(123)는 상기 부유식 재기화설비(12)의 내부 및 외부 중 적어도 한 곳에 설치될 수 있다. 상기 부유식 재기화설비(12)가 상기 접안설비(13)를 통해 상기 부유식 발전설비(14)에 연결되면, 상기 접안설비(13) 및 상기 부유식 발전설비(14) 중 적어도 한 곳에서 작업하는 작업자들은 상기 부유식 재기화설비(12)의 거주구(123)에서 숙식할 수 있다. 즉, 상기 접안설비(13) 및 상기 부유식 발전설비(14)에서 작업하는 작업자는 상기 거주구(123)를 공용(共用)할 수 있다.The residence 123 is a facility for workers to perform a regasification process for regasifying liquefied natural gas (LNG). For example, workers can stay for months to years in the residence. The inlet 123 may be installed in at least one of the inside and the outside of the floating regasification facility (12). When the floating regasification facility 12 is connected to the floating power generation facility 14 through the eyepiece 13, at least one of the eyepiece 13 and the floating power generation facility 14. Workers working can be housed in the residence 123 of the floating regasification facility (12). That is, the worker working in the eyepiece (13) and the floating power generation facility 14 can share the inlet 123 (共用).
상술한 바와 같은 부유식 재기화 설비(12)를 구비함으로써, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 다음과 같은 작용 효과를 도모할 수 있다.By providing the floating regasification facility 12 as described above, the marine power generation system 11 according to the first embodiment of the present invention can achieve the following effects.
첫째, 상기 부유식 재기화설비(12)가 크기가 큰 LNG저장탱크(121)를 포함하므로, 상기 접안설비(13) 및 상기 부유식 발전설비(14)에 액화천연가스(LNG)를 저장하기 위한 별도의 저장시설을 설치할 필요가 없다. 또한, 상기 부유식 재기화설비(12)가 액화천연가스(LNG)를 천연가스(NG)로 재기화시키므로, 상기 접안설비(13) 및 상기 부유식 발전설비(14)에 별도의 재기화장치를 설치할 필요가 없다. 이에 따라, 상기 접안설비(13) 및 상기 부유식 발전설비(14)는 전체적인 크기 및 무게가 감소하므로 수면으로부터 가라앉는 깊이가 감소한다. 따라서, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 수심이 얕은 연안에도 상기 접안설비(13) 및 상기 부유식 발전설비(14)를 용이하게 설치할 수 있고, 상기 접안설비(13) 및 상기 부유식 발전설비(14)에 대한 구축비용을 절감할 수 있다.First, since the floating regasification facility 12 includes a large LNG storage tank 121, storing the LNG (LNG) in the eyepiece (13) and the floating power generation facility (14). There is no need to install a separate storage facility. In addition, since the floating regasification facility 12 regasses the liquefied natural gas (LNG) into natural gas (NG), a separate regasification device for the eyepiece (13) and the floating power generation facility (14). There is no need to install it. Accordingly, the eyepiece 13 and the floating power generation facility 14 is reduced in size and weight, so that the sinking depth from the water surface is reduced. Accordingly, the marine power generation system 11 according to the first embodiment of the present invention can easily install the eyepiece 13 and the floating power generation 14 even in a coastal shallow water, and the eyepiece 13 And the construction cost for the floating power generation facility 14 can be reduced.
둘째, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 접안설비(13) 및 상기 부유식 발전설비(14)에 별도의 거주구를 마련할 필요가 없으므로, 상기 접안설비(13) 및 상기 부유식 발전설비(14)의 크기 및 구축비용을 감소시킬 수 있다. 또한, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 접안설비(13) 및 상기 부유식 발전설비(14)에 공급하는 전력을 사용처로 공급할 수 있으므로, 사용처에 대한 전력 공급량을 증대시킬 수 있다.Second, since the marine power generation system 11 according to the first embodiment of the present invention does not need to provide a separate residence port in the eyepiece 13 and the floating power generation 14, the eyepiece 13 ) And the size and construction cost of the floating power generation facility 14 can be reduced. In addition, the marine power generation system 11 according to the first embodiment of the present invention can supply the power supplied to the eyepiece 13 and the floating power generation facility 14 to the destination, the amount of power supplied to the destination You can increase it.
상기 접안설비(13)는 상기 부유식 재기화설비(12) 및 상기 부유식 발전설비(14) 중 적어도 하나를 접안시키기 위한 것이다. 상기 접안설비(13)의 일측에는 상기 부유식 재기화설비(12)가 접안될 수 있다. 상기 접안설비(13)의 타측에는 상기 부유식 발전설비(14)가 접안될 수 있다. 상기 접안설비(13)의 일측과 타측은 상기 접안설비(13)를 기준으로 서로 반대되는 위치일 수 있다. 상기 접안설비(13)는 제티(Jetty)로 구현될 수 있다. 상기 접안설비(13)는 관 또는 파이프와 같은 관로를 통해 상기 부유식 재기화설비(12) 및 상기 부유식 발전설비(14)에 각각 연결될 수 있다. 이에 따라, 상기 접안설비(13)는 상기 부유식 재기화설비(12)로부터 공급받은 천연가스(NG)를 상기 부유식 발전설비(14)에 전달할 수 있다. 상기 접안설비(13)는 접안본체(130), 연결기구(131), 로딩암(132) 및 송전기구(133)를 포함할 수 있다.The eyepiece 13 is for docking at least one of the floating regasification facility 12 and the floating power generation facility 14. The floating regasification facility 12 may be docked on one side of the eyepiece 13. The other side of the eyepiece (13) can be docked with the floating power generation facility (14). One side and the other side of the eyepiece (13) may be opposite to each other based on the eyepiece (13). The eyepiece 13 may be embodied as Jetty. The eyepiece 13 may be connected to the floating regasification facility 12 and the floating power generation facility 14 through a pipeline such as a pipe or a pipe, respectively. Accordingly, the eyepiece 13 may transfer the natural gas NG supplied from the floating regasification facility 12 to the floating power generation facility 14. The eyepiece 13 may include the eyepiece body 130, the connection mechanism 131, the loading arm 132 and the power transmission mechanism 133.
상기 접안본체(130)는 해상에 고정될 수 있다. 상기 접안본체(130)는 해상에 고정된 상태에서 해저 지면(SB)에 고정되도록 설치될 수 있다. 예컨대, 상기 접안본체(130)는 콘크리트 파일 또는 강관 파일을 해저 지면(SB)에 접촉시킴으로써, 해류에 떠내려가지 않고 해상에서 고정된 위치에 위치될 수 있다. 상기 접안본체(130)는 해저 지면(SB)에 프레임 등을 박아 고정시킴으로써, 고정된 위치에서 해상에 설치될 수도 있다. 상기 접안본체(130)는 해상에 설치된 상태에서 로프 등을 통해 육상에 연결됨으로써, 해상에서 고정된 위치에 위치될 수도 있다. 상기 접안본체(130)는 전체적으로 사각판형으로 형성될 수 있다. 상기 접안본체(130)에는 상기 연결기구(131), 상기 로딩암(132) 및 상기 송전기구(133)가 설치될 수 있다. 이에 따라, 상기 접안본체(130)는 상기 연결기구(131), 상기 로딩암(132) 및 상기 송전기구(133)가 해상에 설치되도록 상기 연결기구(131), 상기 로딩암(132) 및 상기 송전기구(133)를 지지할 수 있다.The eyepiece body 130 may be fixed to the sea. The eyepiece body 130 may be installed to be fixed to the sea floor (SB) in a fixed state at sea. For example, the eyepiece body 130 may be positioned at a fixed position on the sea without floating in the sea current by contacting the concrete pile or steel pipe pile to the sea floor (SB). The eyepiece body 130 may be installed on the sea at a fixed position by fixing a frame or the like to the sea floor (SB). The eyepiece body 130 may be located at a fixed position on the sea by being connected to the land through a rope or the like in the state installed on the sea. The eyepiece body 130 may be formed in a rectangular plate as a whole. The connection body 131, the loading arm 132, and the power transmission mechanism 133 may be installed at the eyepiece body 130. Accordingly, the eyepiece body 130 is connected to the connecting mechanism 131, the loading arm 132 and the power transmission mechanism 133 is installed on the sea 131, the loading arm 132 and the The power transmission mechanism 133 can be supported.
상기 연결기구(131)는 상기 부유식 재기화설비(12) 및 상기 부유식 발전설비(14) 중 적어도 하나가 상기 접안설비(13)에 접안되도록 상기 부유식 재기화설비(12) 및 상기 부유식 발전설비(14)를 연결시키기 위한 것이다. 예컨대, 상기 연결기구(131)는 무어링(Mooring)장치일 수 있다. 상기 연결기구(131)는 상기 부유식 재기화설비(12) 및 상기 부유식 발전설비(14) 중 적어도 하나를 연결하기 위해 고정부재(1311) 및 연결부재(1312)를 포함할 수 있다.The coupling mechanism 131 may include the floating regasification facility 12 and the floating unit so that at least one of the floating regasification facility 12 and the floating power generation facility 14 is docked with the eyepiece facility 13. It is for connecting the type generator 14. For example, the connection mechanism 131 may be a mooring device. The connection mechanism 131 may include a fixing member 1311 and a connection member 1312 to connect at least one of the floating regasification facility 12 and the floating power generation facility 14.
상기 고정부재(1311)는 상기 접안본체(130)에 복수개가 고정되게 설치될 수 있다. 상기 고정부재(1311)들은 상기 접안본체(130)의 바닥에 볼트결합, 용접결합 등 다양한 결합방법으로 결합될 수 있다. 상기 고정부재(1311)들은 상기 접안본체(130)에 결합되되, 서로 이격되게 배치될 수 있다. 예컨대, 상기 고정부재(1311)들 중 일부는 상기 부유식 재기화설비(12)가 접안되는 쪽에 위치하도록 상기 접안본체(130)에 설치될 수 있다. 상기 고정부재(1311)들 중 나머지는 상기 부유식 발전설비(14)가 접안되는 쪽에 위치하도록 상기 접안본체(130)에 설치될 수 있다. 이에 따라, 상기 고정부재(1311)들은 상기 연결부재(1312)를 통해 각각 상기 부유식 재기화설비(12) 및 상기 부유식 발전설비(14)에 연결될 수 있다. 상기 고정부재(1311)는 머리부분과 몸통부분으로 구분될 수 있다. 상기 머리부분은 상기 몸통부분의 상측에 위치하고, 상기 몸통부분에 비해 더 큰 직경을 가지도록 형성될 수 있다. 이에 따라, 상기 연결부재(1312)가 상기 고정부재(1311)의 몸통부분에 묶이게 되면, 상기 연결부재(1312)는 풀리지 않고서는 상기 머리부분 쪽을 통해 상기 고정부재(1311)로부터 이격될 수 없다.The fixing member 1311 may be installed to be fixed to a plurality of the eyepiece body 130. The fixing member 1311 may be coupled to the bottom of the eyepiece body 130 by various coupling methods such as bolt coupling, welding coupling. The fixing members 1311 may be coupled to the eyepiece body 130 and spaced apart from each other. For example, some of the fixing members 1311 may be installed in the eyepiece body 130 so that the floating regasification facility 12 is located on the eyepiece side. The rest of the fixing members 1311 may be installed on the eyepiece body 130 so that the floating power generation equipment 14 is located on the eyepiece side. Accordingly, the fixing members 1311 may be connected to the floating regasification facility 12 and the floating power generation facility 14 through the connection member 1312, respectively. The fixing member 1311 may be divided into a head part and a body part. The head portion is located on the upper side of the body portion, it may be formed to have a larger diameter than the body portion. Accordingly, when the connecting member 1312 is tied to the body portion of the fixing member 1311, the connecting member 1312 may not be separated from the fixing member 1311 through the head side without being released. .
상기 연결부재(1312)는 일측이 상기 고정부재(1311)에 결합되고, 타측이 상기 부유식 재기화설비(12) 및 상기 부유식 발전설비(14) 중 적어도 하나에 결합될 수 있다. 예컨대, 상기 연결부재(1312)는 일측이 상기 고정부재(1311)의 몸통부분에 묶이게 되고, 타측이 상기 부유식 재기화설비(12) 및 상기 부유식 발전설비(14)에 고정 설치되는 고정장치(미도시)에 결합될 수 있다. 이에 따라, 상기 연결부재(1312)는 상기 고정부재(1311)와 상기 부유식 재기화설비(12), 및 상기 고정부재(1311)와 상기 부유식 발전설비(14)를 각각 연결시킬 수 있다. 상기 연결부재(1312)는 로프 및 체인 중 적어도 하나일 수 있다. 도시되지 않았지만, 상기 접안설비(13)는 상기 부유식 재기화설비(12)와 상기 부유식 발전설비(14)의 해수관(Sea Water Line)을 지지하기 하기 위한 지지기구를 더 포함할 수 있다. 상기 해수관은 상기 부유식 발전설비(14)에서 배출되는 높은 열원의 해수(Sea Water)를 상기 부유식 재기화설비(12)에 공급하고, 상기 부유식 재기화설비(12)를 거쳐 냉각된 저온의 해수(Sea Water)를 상기 부유식 발전설비(14)로 공급하기 위한 것이다. 상기 해수관은 호스(Hose) 또는 파이프(Pipe)로 형성될 수 있다. 상기 해수관은 호스 및 파이프가 복합되어 형성될 수도 있다. 상기 지지기구는 'Angle'형태, 'Channel'형태, 'H-beam'형태 중 적어도 하나로 형성될 수 있다. 상기 지지기구가 해수관을 지지함에 따라, 상기 해수관은 조류와 같은 해류에도 떠내려가지 않고 상기 부유식 재기화설비(12) 및 상기 부유식 발전설비(14)에 각각 연결된 상태를 유지할 수 있다.One side of the connection member 1312 may be coupled to the fixing member 1311, and the other side thereof may be coupled to at least one of the floating regasification facility 12 and the floating power generation facility 14. For example, the connection member 1312 is fixed to one side is tied to the body portion of the fixing member 1311, the other side is fixed to the floating regasification facility 12 and the floating power generation facility (14) (Not shown). Accordingly, the connection member 1312 may connect the fixing member 1311 and the floating regasification facility 12, and the fixing member 1311 and the floating power generation facility 14, respectively. The connection member 1312 may be at least one of a rope and a chain. Although not shown, the eyepiece 13 may further include a support mechanism for supporting the sea water line of the floating regasification facility 12 and the floating power generation facility 14. . The seawater pipe supplies sea water of a high heat source discharged from the floating power generation facility 14 to the floating regasification facility 12, and is cooled through the floating regasification facility 12. Low-temperature sea water (Sea Water) is to supply to the floating power generation facility (14). The seawater pipe may be formed of a hose or a pipe. The seawater pipe may be formed by combining a hose and a pipe. The support mechanism may be formed in at least one of an 'Angle' shape, a 'Channel' shape, and an 'H-beam' shape. As the support mechanism supports the seawater pipe, the seawater pipe may remain connected to the floating regasification facility 12 and the floating power generation facility 14 without being floated by currents such as algae.
상술한 바와 같은 접안설비(13)를 구비함으로써, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 다음과 같은 작용 효과를 도모할 수 있다.By providing the eyepiece facilities 13 as described above, the marine power generation system 11 according to the first embodiment of the present invention can achieve the following effects.
첫째, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 부유식 재기화설비(12) 및 상기 부유식 발전설비(14)를 상기 접안설비(13)에 연결시킴으로써, 조류와 같은 해류에 의해 상기 부유식 재기화설비(12) 및 상기 부유식 발전설비(14)가 이동되는 것을 방지할 수 있다.First, the marine power generation system 11 according to the first embodiment of the present invention connects the floating regasification facility 12 and the floating power generation facility 14 to the eyepiece facility 13, such as a tidal current. It is possible to prevent the floating regasification facility 12 and the floating power generation facility 14 from being moved by the current.
둘째, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 접안설비(13)의 연결기구(131)를 이용하여 상기 부유식 재기화설비(12) 및 상기 부유식 발전설비(14)를 상기 접안설비(13)에 연결시킬 수 있다. 이에 따라, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 부유식 재기화설비(12) 및 상기 부유식 발전설비(14)에 각각 설치되는 해상 투묘 장비를 제거하거나 수량을 최소화할 수 있다.Secondly, the marine power generation system 11 according to the first embodiment of the present invention uses the coupling mechanism 131 of the eyepiece facility 13 to provide the floating regasification facility 12 and the floating generation facility 14. ) May be connected to the eyepiece (13). Accordingly, the offshore power generation system 11 according to the first embodiment of the present invention removes the offshore anchoring equipment respectively installed in the floating regasification facility 12 and the floating power generation facility 14 or minimizes the quantity. can do.
셋째, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 부유식 재기화설비(12) 및 상기 부유식 발전설비(14)를 상기 접안설비(13)에 접안되도록 함으로써, 화재와 같은 비상 상황 시 상기 접안설비(13)를 비상 탈출 용도로 사용할 수 있다.Third, the offshore power generation system 11 according to the first embodiment of the present invention allows the floating regasification facility 12 and the floating power generation facility 14 to be docked with the eyepiece 13, thereby preventing fire and fire. In the same emergency situation, the eyepiece 13 can be used for emergency escape.
상기 로딩암(132)은 상기 부유식 재기화설비(12)로부터 재기화된 천연가스(NG)를 공급받아 상기 부유식 발전설비(14)에 공급하기 위한 것이다. 상기 로딩암(132)은 상기 접안설비(13)에 복수개가 서로 이격되게 설치될 수 있다. 예컨대, 상기 로딩암(132)들 중 일부는 상기 부유식 재기화설비(12)로부터 천연가스(NG)를 공급받기 위해 상기 접안본체(130)의 일측에 위치하도록 설치될 수 있다. 상기 로딩암(132)들 중 나머지는 상기 부유식 재기화설비(12)로부터 공급받은 천연가스를 상기 부유식 발전설비(14)로 공급하기 위해 상기 접안본체(130)의 타측에 위치하도록 설치될 수 있다. 상기 일측과 상기 타측은 상기 접안본체(130)를 기준으로 서로 반대되는 방향일 수 있다. 상기 로딩암(132)은 제1로딩기구(1321) 및 제2로딩기구(1322)를 포함할 수 있다.The loading arm 132 receives the regasified natural gas (NG) from the floating regasification facility 12 and supplies it to the floating power generation facility 14. The loading arm 132 may be installed in the eyepiece 13, a plurality of spaced apart from each other. For example, some of the loading arms 132 may be installed on one side of the eyepiece body 130 to receive natural gas NG from the floating regasification facility 12. The rest of the loading arms 132 may be installed to be located at the other side of the eyepiece body 130 to supply the natural gas supplied from the floating regasification facility 12 to the floating power generation facility 14. Can be. The one side and the other side may be opposite to each other based on the eyepiece body 130. The loading arm 132 may include a first loading mechanism 1321 and a second loading mechanism 1322.
상기 제1로딩기구(1321)는 상기 접안본체(130)의 일측에 설치될 수 있다. 상기 접안본체(130)의 일측은 상기 부유식 재기화설비(12)가 상기 접안설비(13)에 접안되는 쪽일 수 있다. 상기 제1로딩기구(1321)는 상기 부유식 재기화설비(12)로부터 재기화된 천연가스(NG)를 공급받기 위해 높이조절 및 방향전환이 가능하도록 설치될 수 있다. 상기 제1로딩기구(1321)는 제1베이스프레임(13211), 제1선회프레임(13212), 제1승강프레임(13213), 제1암프레임(13214) 및 제1파이프라인(13215)을 포함할 수 있다.The first loading mechanism 1321 may be installed at one side of the eyepiece body 130. One side of the eyepiece body 130 may be a side in which the floating regasification facility 12 is docked to the eyepiece (13). The first loading mechanism 1321 may be installed to allow height adjustment and redirection in order to receive regasified natural gas NG from the floating regasification facility 12. The first loading mechanism 1321 includes a first base frame 13211, a first turning frame 1322, a first lifting frame 1321, a first arm frame 1314, and a first pipe line 1315. can do.
상기 제1베이스프레임(13211)은 상기 접안본체(130)에 결합될 수 있다. 상기 제1베이스프레임(13211)은 상기 접안본체(130)의 바닥면에 대해 수직한 방향으로 위치하도록 상기 접안본체(130)에 결합될 수 있다. 상기 제1베이스프레임(13211)은 볼트결합 및 용접결합 중 적어도 하나의 방법으로 상기 접안본체(130)의 바닥면에 결합될 수 있다. 상기 제1베이스프레임(13211)에는 상기 제1선회프레임(13212), 상기 제1승강프레임(13213), 및 상기 제1암프레임(13214)이 결합될 수 있다. 이에 따라, 상기 제1베이스프레임(13211)은 상기 접안본체(130)의 바닥면에 고정되어 상기 제1선회프레임(13212), 상기 제1승강프레임(13213), 및 상기 제1암프레임(13214)을 지지할 수 있다. 상기 제1암프레임(13214)에 상기 제1파이프라인(13215)이 결합되면, 상기 제1베이스프레임(13211)은 상기 제1파이프라인(13215)을 지지할 수 있다.The first base frame 13211 may be coupled to the eyepiece body 130. The first base frame 13211 may be coupled to the eyepiece body 130 to be positioned in a direction perpendicular to the bottom surface of the eyepiece body 130. The first base frame 13211 may be coupled to the bottom surface of the eyepiece body 130 by at least one of bolting and welding. The first pivot frame 13212, the first elevating frame 13213, and the first female frame 1314 may be coupled to the first base frame 13211. Accordingly, the first base frame 13211 is fixed to the bottom surface of the eyepiece body 130 so that the first pivot frame 1322, the first lifting frame 1321, and the first arm frame 1314 ) Can be supported. When the first pipe line 1315 is coupled to the first female frame 1314, the first base frame 13321 may support the first pipe line 1315.
상기 제1선회프레임(13212)은 상기 제1베이스프레임(13211)에 회전 가능하게 결합될 수 있다. 상기 제1선회프레임(13212)의 상측에는 상기 제1승강프레임(13213), 상기 제1암프레임(13214)이 순차적으로 결합될 수 있다. 이에 따라, 상기 제1승강프레임(13213)과 상기 제1암프레임(13214)은 상기 제1선회프레임(13212)이 회전함에 따라 함께 회전할 수 있다. 상기 제1선회프레임(13212)을 회전시키기 위한 제1구동장치는 상기 제1베이스프레임(13211), 상기 제1선회프레임(13212), 상기 제1승강프레임(13213), 및 상기 제1암프레임(13214) 중 적어도 한 곳에 설치될 수 있다.The first pivot frame 13212 may be rotatably coupled to the first base frame 13211. The first elevating frame 1321 and the first female frame 1314 may be sequentially coupled to an upper side of the first pivot frame 1322. Accordingly, the first elevating frame 1321 and the first arm frame 1314 may rotate together as the first pivot frame 13212 rotates. A first driving device for rotating the first pivot frame 13212 includes the first base frame 13211, the first pivot frame 13212, the first lift frame 13213, and the first female frame. It may be installed in at least one of the (13214).
상기 제1승강프레임(13213)은 복수개의 프레임으로 형성되어 상기 제1선회프레임(13212)에 길이 조절이 가능하게 결합될 수 있다. 예컨대, 상기 제1승강프레임(13213)은 제1하부프레임 및 제1상부프레임으로 형성될 수 있다. 상기 제1하부프레임은 상기 제1선회프레임(13212)에 결합되고, 상기 제1상부프레임은 상기 제1하부프레임에 상하 방향으로 이동 가능하게 결합될 수 있다. 이에 따라, 상기 제1승강프레임(13213)은 상기 제1선회프레임(13212)을 기준으로 상하 방향으로 길이 조절이 가능하도록 형성될 수 있다. 상기 제1하부프레임에 대해 상기 제1상부프레임이 중첩되는 길이가 증가하면, 상기 제1승강프레임(13213)은 길이가 줄어들 수 있다. 상기 제1하부프레임에 대해 상기 제1상부프레임이 중첩되는 길이가 감소하면, 상기 제1승강프레임(13213)은 길이가 늘어날 수 있다. 상기 제1하부프레임에는 상기 제1상부프레임을 상하 방향으로 승강시키기 위한 제1승강장치가 설치될 수 있다. 상기 제1승강장치는 유압실린더 또는 공압실린더를 이용한 실린더방식, 모터와 볼스크류 등을 이용한 볼스크류방식, 모터와 랙기어와 피니언기어 등을 이용한 기어방식, 모터와 풀리와 벨트 등을 이용한 벨트방식, 코일과 영구자석 등을 이용한 리니어모터 등을 이용하여 상기 제1상부프레임을 상하 방향으로 승강시킬 수 있다.The first elevating frame 13213 may be formed of a plurality of frames, and may be coupled to the first pivot frame 13212 to adjust the length thereof. For example, the first elevating frame 1321 may be formed of a first lower frame and a first upper frame. The first lower frame may be coupled to the first pivot frame 13212, and the first upper frame may be coupled to the first lower frame to be movable in the vertical direction. Accordingly, the first elevating frame 13213 may be formed to be capable of length adjustment in the up and down direction based on the first pivot frame 1322. When the length in which the first upper frame overlaps with respect to the first lower frame increases, the length of the first lifting frame 1321 may be reduced. When the length in which the first upper frame overlaps with respect to the first lower frame decreases, the length of the first lifting frame 1321 may increase. A first elevating device for elevating the first upper frame in the vertical direction may be installed in the first lower frame. The first lifting device is a cylinder method using a hydraulic cylinder or a pneumatic cylinder, a ball screw method using a motor and a ball screw, a gear method using a motor, a rack gear and a pinion gear, a belt method using a motor, a pulley and a belt, The first upper frame may be elevated in the vertical direction by using a linear motor using a coil, a permanent magnet, or the like.
상기 제1암프레임(13214)은 상기 제1승강프레임(13213)에 회전 가능하게 결합될 수 있다. 예컨대, 상기 제1암프레임(13214)은 상기 제1상부프레임에 회전 가능하게 결합될 수 있다. 상기 제1암프레임(13214)는 상기 접안본체(130)의 바닥면에 대해 수평한 방향으로 위치하도록 상기 제1상부프레임에 결합될 수 있다. 상기 제1암프레임(13214)은 다관절로 이루어질 수 있다. 상기 다관절은 서로 같은 방향 또는 서로 다른 방향으로 회전 가능하게 결합될 수 있다. 이에 따라, 상기 제1암프레임(13214)은 상기 제1승강프레임(13213)을 기준으로 신장하거나 수축될 수 있다. 상기 제1암프레임(13214)은 상기 부유식 재기화설비(12)로부터 천연가스를 공급받기 위해 상기 부유식 재기화설비(12)에 가깝게 위치하도록 신장될 수 있다. 즉, 상기 제1암프레임(13214)은 상기 부유식 재기화설비(12)에 연결되기 위해 신장될 수 있다. 상기 제1암프레임(13214)은 상기 부유식 재기화설비(12)로부터 천연가스를 전부 공급받으면 상기 부유식 재기화설비(12)로부터 멀어지도록 수축될 수 있다. 즉, 상기 제1암프레임(13214)은 상기 부유식 재기화설비(12)로부터 이격되기 위해 수축될 수 있다. 상기 제1암프레임(13214)은 상기 제1로딩기구(1321)에서 가장 상측에 위치하도록 설치될 수 있다.The first female frame 1314 may be rotatably coupled to the first lifting frame 1321. For example, the first female frame 1314 may be rotatably coupled to the first upper frame. The first female frame 1314 may be coupled to the first upper frame to be positioned in a horizontal direction with respect to the bottom surface of the eyepiece body 130. The first female frame 1314 may be formed of multiple joints. The articulated joints may be rotatably coupled in the same direction or in different directions. Accordingly, the first arm frame 1314 may extend or contract based on the first elevating frame 1321. The first arm frame 1314 may be extended to be located close to the floating regasification facility 12 to receive natural gas from the floating regasification facility 12. That is, the first arm frame 1314 may be extended to be connected to the floating regasification facility 12. The first arm frame 1314 may be shrunk away from the floating regasification facility 12 when all natural gas is supplied from the floating regasification facility 12. That is, the first arm frame 1314 may be shrunk to be spaced apart from the floating regasification facility 12. The first arm frame 1314 may be installed to be located on the uppermost side of the first loading mechanism 1321.
상기 제1파이프라인(13215)은 상기 제1암프레임(13214)에 결합될 수 있다. 상기 제1암프레임(13214)이 상기 부유식 재기화설비(12)에 가장 가깝게 위치될 수 있기 때문이다. 상기 제1파이프라인(13215)은 상기 부유식 재기화설비(12)로부터 공급되는 천연가스(NG)를 상기 부유식 발전설비(14)로 이동시키기 위한 것이다. 예컨대, 상기 제1파이프라인(13215)은 유연성이 있는 호스 또는 형태가 정해져 있는 파이프일 수 있다. 상기 제1파이프라인(13215)은 호스와 파이프가 결합된 형태일 수도 있다. 상기 제1파이프라인(13215)은 상기 제1암프레임(13214)이 신장되면, 상기 부유식 재기화설비(12) 쪽으로 위치될 수 있다. 이 경우, 상기 부유식 재기화설비(12)에 위치한 작업자는 상기 제1파이프라인(13215)을 상기 부유식 재기화설비(12)에 설치된 천연가스 공급관에 결합시킬 수 있다. 이에 따라, 상기 제1파이프라인(13215)은 상기 부유식 재기화설비(12)로부터 재기화된 천연가스(NG)를 공급받을 수 있다. 상기 부유식 재기화설비(12)에서 상기 제1파이프라인(13215)으로 공급된 천연가스(NG)는 상기 제2로딩기구(1322)로 이동될 수 있다. 상기 제1파이프라인(13215)에는 상기 부유식 재기화설비(12)로부터 공급되는 천연가스(NG)를 상기 제2로딩기구(1322)로 공급하기 위한 임펠러, 압축기 등과 같은 이송장치가 설치될 수 있다.The first pipeline 1315 may be coupled to the first female frame 1314. This is because the first arm frame 1314 may be located closest to the floating regasification facility 12. The first pipeline 1315 is for moving the natural gas NG supplied from the floating regasification facility 12 to the floating power generation facility 14. For example, the first pipeline 1315 may be a flexible hose or a pipe having a predetermined shape. The first pipeline 1321 may have a form in which a hose and a pipe are combined. The first pipe line 1315 may be positioned toward the floating regasification facility 12 when the first arm frame 1314 is extended. In this case, an operator located in the floating regasification facility 12 may couple the first pipe line 1315 to a natural gas supply pipe installed in the floating regasification facility 12. Accordingly, the first pipeline 1321 may receive the regasified natural gas NG from the floating regasification facility 12. The natural gas NG supplied from the floating regasification facility 12 to the first pipeline 1321 may be moved to the second loading mechanism 1322. The first pipeline 1321 may be provided with a conveying device such as an impeller, a compressor, etc. for supplying the natural gas NG supplied from the floating regasification facility 12 to the second loading mechanism 1322. have.
상기 제2로딩기구(1322)는 상기 접안본체(130)의 타측에 설치될 수 있다. 상기 접안본체(130)의 타측은 상기 부유식 발전설비(14)가 상기 접안설비(13)에 접안되는 쪽일 수 있다. 상기 제2로딩기구(1322)는 상기 부유식 발전설비(14)에 재기화된 천연가스(NG)를 공급하기 위해 높이조절 및 방향전환이 가능하도록 설치될 수 있다. 상기 제2로딩기구(1322)는 제2베이스프레임(13221), 제2선회프레임(13222), 제2승강프레임(13223), 제2암프레임(13224) 및 제2파이프라인(13225)을 포함할 수 있다.The second loading mechanism 1322 may be installed on the other side of the eyepiece body 130. The other side of the eyepiece body 130 may be a side in which the floating power generation equipment 14 is docked to the eyepiece (13). The second loading mechanism 1322 may be installed to allow height adjustment and direction change to supply regasified natural gas NG to the floating power generation facility 14. The second loading mechanism 1322 includes a second base frame 1321, a second pivot frame 1322, a second lifting frame 13223, a second arm frame 1322, and a second pipe line 1325. can do.
상기 제2베이스프레임(13221)은 상기 접안본체(130)에 결합될 수 있다. 상기 제2베이스프레임(13221)은 상기 접안본체(130)의 바닥면에 대해 수직한 방향으로 위치하도록 상기 접안본체(130)에 결합될 수 있다. 이 경우, 상기 제2베이스프레임(13221)은 상기 제1베이스프레임(13211)로부터 이격된 위치에 위치될 수 있다. 상기 제2베이스프레임(13221)은 볼트결합 및 용접결합 중 적어도 하나의 방법으로 상기 접안본체(130)의 바닥면에 결합될 수 있다. 상기 제2베이스프레임(13221)에는 상기 제2선회프레임(13222), 상기 제2승강프레임(13223), 및 상기 제2암프레임(13224)이 결합될 수 있다. 이에 따라, 상기 제2베이스프레임(13221)은 상기 접안본체(130)의 바닥면에 고정되어 상기 제2선회프레임(13222), 상기 제2승강프레임(13223), 및 상기 제2암프레임(13224)을 지지할 수 있다. 상기 제2암프레임(13224)에 상기 제2파이프라인(13225)이 결합되면, 상기 제2베이스프레임(13221)은 상기 제2파이프라인(13225)도 지지할 수 있다.The second base frame 1321 may be coupled to the eyepiece body 130. The second base frame 1321 may be coupled to the eyepiece body 130 to be positioned in a direction perpendicular to the bottom surface of the eyepiece body 130. In this case, the second base frame 1321 may be located at a position spaced apart from the first base frame 1321. The second base frame 13321 may be coupled to the bottom surface of the eyepiece body 130 by at least one of bolting and welding. The second pivot frame 1322, the second lifting frame 13223, and the second arm frame 1324 may be coupled to the second base frame 1321. Accordingly, the second base frame 1321 is fixed to the bottom surface of the eyepiece body 130 so that the second pivot frame 1322, the second lifting frame 13223, and the second arm frame 1322 ) Can be supported. When the second pipe line 1325 is coupled to the second arm frame 1324, the second base frame 1321 may also support the second pipe line 1325.
상기 제2선회프레임(13222)은 상기 제2베이스프레임(13221)에 회전 가능하게 결합될 수 있다. 상기 제2선회프레임(13222)의 상측에는 상기 제2승강프레임(13223), 상기 제2암프레임(13224)이 순차적으로 결합될 수 있다. 이에 따라, 상기 제2승강프레임(13223)과 상기 제2암프레임(13224)은 상기 제2선회프레임(13222)이 회전함에 따라 함께 회전할 수 있다. 상기 제2선회프레임(13222)을 회전시키기 위한 제2구동장치는 상기 제2베이스프레임(13221), 상기 제2선회프레임(13222), 상기 제2승강프레임(13223), 및 상기 제2암프레임(13224) 중 적어도 한 곳에 설치될 수 있다.The second pivot frame 1322 may be rotatably coupled to the second base frame 1321. The second elevating frame 13223 and the second female frame 1324 may be sequentially coupled to an upper side of the second pivot frame 1322. Accordingly, the second lifting frame 13223 and the second arm frame 1322 may rotate together as the second pivot frame 1322 rotates. The second driving device for rotating the second pivot frame 1322 may include the second base frame 1321, the second pivot frame 1322 2, the second lift frame 13223, and the second arm frame. It may be installed in at least one of (13224).
상기 제2승강프레임(13223)은 복수개의 프레임으로 형성되어 상기 제2선회프레임(13222)에 길이 조절이 가능하게 결합될 수 있다. 예컨대, 상기 제2승강프레임(13223)은 제2하부프레임 및 제2상부프레임으로 형성될 수 있다. 상기 제2하부프레임은 상기 제2선회프레임(13222)에 결합되고, 상기 제2상부프레임은 상기 제2하부프레임에 상하 방향으로 이동 가능하게 결합될 수 있다. 이에 따라, 상기 제2승강프레임(13223)은 상기 제2선회프레임(13222)을 기준으로 상하 방향으로 길이 조절이 가능하도록 형성될 수 있다. 상기 제2하부프레임에 대해 상기 제2상부프레임이 중첩되는 길이가 증가하면, 상기 제2승강프레임(13223)은 길이가 줄어들 수 있다. 상기 제2하부프레임에 대해 상기 제2상부프레임이 중첩되는 길이가 감소하면, 상기 제2승강프레임(13223)은 길이가 늘어날 수 있다. 상기 제2하부프레임에는 상기 제2상부프레임을 상하 방향으로 승강시키기 위한 제2승강장치가 설치될 수 있다. 상기 제2승강장치는 유압실린더 또는 공압실린더를 이용한 실린더방식, 모터와 볼스크류 등을 이용한 볼스크류방식, 모터와 랙기어와 피니언기어 등을 이용한 기어방식, 모터와 풀리와 벨트 등을 이용한 벨트방식, 코일과 영구자석 등을 이용한 리니어모터 등을 이용하여 상기 제2상부프레임을 상하 방향으로 승강시킬 수 있다.The second elevating frame 13223 may be formed of a plurality of frames and may be coupled to the second pivot frame 1322 to adjust the length thereof. For example, the second lifting frame 13223 may be formed of a second lower frame and a second upper frame. The second lower frame may be coupled to the second pivot frame 1322, and the second upper frame may be coupled to the second lower frame to be movable in the vertical direction. Accordingly, the second elevating frame 13223 may be formed to allow length adjustment in the up and down direction based on the second pivot frame 1322. When the length in which the second upper frame overlaps with respect to the second lower frame increases, the length of the second lifting frame 13223 may be reduced. When the length in which the second upper frame overlaps with respect to the second lower frame decreases, the length of the second lifting frame 13223 may increase. A second elevating device for elevating the second upper frame in the vertical direction may be installed in the second lower frame. The second lifting device is a cylinder method using a hydraulic cylinder or a pneumatic cylinder, a ball screw method using a motor and a ball screw, a gear method using a motor, a rack gear and a pinion gear, a belt method using a motor, a pulley and a belt, The second upper frame may be elevated in the vertical direction by using a linear motor using a coil, a permanent magnet, or the like.
상기 제2암프레임(13224)은 상기 제2승강프레임(13223)에 회전 가능하게 결합될 수 있다. 예컨대, 상기 제2암프레임(13224)은 상기 제2상부프레임에 회전 가능하게 결합될 수 있다. 상기 제2암프레임(13224)는 상기 접안본체(130)의 바닥면에 대해 수평한 방향으로 위치하도록 상기 제2상부프레임에 결합될 수 있다. 상기 제2암프레임(13224)은 다관절로 이루어질 수 있다. 상기 다관절은 서로 같은 방향 또는 서로 다른 방향으로 회전 가능하게 결합될 수 있다. 이에 따라, 상기 제2암프레임(13224)은 상기 제2승강프레임(13223)을 기준으로 신장하거나 수축될 수 있다. 상기 제2암프레임(13224)은 상기 부유식 발전설비(14)로 천연가스를 공급하기 위해 상기 부유식 발전설비(14)에 가깝게 위치하도록 신장될 수 있다. 즉, 상기 제2암프레임(13224)은 상기 부유식 발전설비(14)에 연결되기 위해 신장될 수 있다. 상기 제2암프레임(13224)은 상기 부유식 발전설비(14)로 천연가스를 전부 공급하면 상기 부유식 발전설비(14)로부터 멀어지도록 수축될 수 있다. 즉, 상기 제2암프레임(13224)은 상기 부유식 발전설비(14)로부터 이격되기 위해 수축될 수 있다. 상기 제2암프레임(13224)은 상기 제2로딩기구(1322)에서 가장 상측에 위치하도록 설치될 수 있다.The second female frame 1324 may be rotatably coupled to the second lifting frame 13223. For example, the second arm frame 1324 may be rotatably coupled to the second upper frame. The second arm frame 1324 may be coupled to the second upper frame to be positioned in a horizontal direction with respect to the bottom surface of the eyepiece body 130. The second female frame 1324 may be formed of multiple joints. The articulated joints may be rotatably coupled in the same direction or in different directions. Accordingly, the second arm frame 1322 may be extended or contracted based on the second elevating frame 13223. The second arm frame 1324 may be extended to be located close to the floating power generation unit 14 to supply natural gas to the floating power generation unit 14. That is, the second arm frame 1324 may be extended to be connected to the floating power generation facility 14. The second arm frame 1324 may be shrunk away from the floating power generation unit 14 when all of the natural gas is supplied to the floating power generation unit 14. That is, the second arm frame 1324 may be shrunk to be spaced apart from the floating power generation facility 14. The second arm frame 1324 may be installed to be located at the uppermost side of the second loading mechanism 1322.
상기 제2파이프라인(13225)은 상기 제2암프레임(13224)에 결합될 수 있다. 상기 제2암프레임(13224)이 상기 부유식 발전설비(14)에 가장 가깝게 위치될 수 있기 때문이다. 상기 제2파이프라인(13225)은 상기 제1파이프라인(13215)로부터 공급되는 천연가스(NG)를 상기 부유식 발전설비(14)로 이동시키기 위한 것이다. 이에 따라, 상기 제2파이프라인(13225)은 상기 제1파이프라인(13215)과 연결되도록 설치될 수 있다. 상기 제2파이프라인(13225)은 유연성이 있는 호스 또는 형태가 정해져 있는 파이프일 수 있다. 상기 제2파이프라인(13225)은 호스와 파이프가 결합된 형태일 수도 있다. 상기 제2파이프라인(13225)은 상기 제2암프레임(13224)이 신장되면, 상기 부유식 발전설비(14) 쪽으로 위치될 수 있다. 이 경우, 상기 부유식 발전설비(14)에 위치한 작업자는 상기 제2파이프라인(13225)을 상기 부유식 발전설비(14)에 설치된 천연가스 수급관에 결합시킬 수 있다. 이에 따라, 상기 제2파이프라인(13225)은 상기 부유식 발전설비(14)에 천연가스(NG)를 공급할 수 있다. 상기 제2파이프라인(13225)에는 상기 제1파이프라인(13215)으로부터 공급되는 천연가스(NG)를 상기 부유식 발전설비(14)로 공급하기 위한 임펠러, 압축기 등과 같은 이송장치가 설치될 수 있다.The second pipeline 113225 may be coupled to the second female frame 1324. This is because the second arm frame 1324 may be located closest to the floating power generation facility 14. The second pipe line 1325 is for moving the natural gas NG supplied from the first pipe line 1315 to the floating power generation facility 14. Accordingly, the second pipe line 1325 may be installed to be connected to the first pipe line 1315. The second pipeline 113225 may be a flexible hose or a pipe having a predetermined shape. The second pipeline 113225 may have a form in which a hose and a pipe are combined. The second pipe line 1325 may be positioned toward the floating power generation unit 14 when the second arm frame 1324 is extended. In this case, an operator located in the floating power generation facility 14 may couple the second pipe line 1325 to a natural gas supply pipe installed in the floating power generation facility 14. Accordingly, the second pipeline 113225 may supply natural gas NG to the floating power generation facility 14. The second pipeline 113225 may be provided with a transfer device such as an impeller, a compressor, etc. for supplying the natural gas NG supplied from the first pipeline 1321 to the floating power generation facility 14. .
상술한 바와 같은 접안설비(13)를 구비함으로써, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 다음과 같은 작용 효과를 도모할 수 있다.By providing the eyepiece facilities 13 as described above, the marine power generation system 11 according to the first embodiment of the present invention can achieve the following effects.
첫째, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 접안설비(13)에 설치된 로딩암(132)을 통해 상기 부유식 재기화설비(12)에서 재기화시킨 천연가스(NG)를 상기 부유식 발전설비(14)로 용이하게 이동시킬 수 있다. 이에 따라, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 접안설비(13)에 접안되는 부유식 재기화설비(12) 또는 부유식 발전설비(14)가 다른 것으로 바뀌더라도 신속하게 천연가스를 부유식 재기화설비에서 부유식 발전설비로 이동시킬 수 있으므로, 전기 생산까지 걸리는 시간을 단축할 수 있다.First, the offshore power generation system 11 according to the first embodiment of the present invention is natural gas (NG) regasified in the floating regasification facility (12) through a loading arm (132) installed in the eyepiece (13). ) Can be easily moved to the floating power generation facility (14). Accordingly, the marine power generation system 11 according to the first embodiment of the present invention can be quickly used even if the floating regasification facility 12 or the floating power generation facility 14 which is docked with the eyepiece 13 is changed to another one. Natural gas can be moved from the floating regasification plant to the floating power plant, thereby reducing the time required to produce electricity.
둘째, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 접안설비(13)에 로딩암(132)을 구축함으로써, 상기 부유식 재기화설비(12) 및 상기 부유식 발전설비(14)에 천연가스를 이동시키기 위한 별도의 이송장치를 설치할 필요가 없다. 따라서, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 부유식 재기화설비(12) 및 상기 부유식 발전설비(14)의 전체적인 크기, 무게, 및 구축비용을 감소시킬 수 있다.Second, the offshore power generation system 11 according to the first embodiment of the present invention constructs a loading arm 132 in the eyepiece facility 13, thereby allowing the floating regasification facility 12 and the floating power generation facility ( There is no need to install a separate transfer device for moving natural gas. Therefore, the offshore power generation system 11 according to the first embodiment of the present invention can reduce the overall size, weight, and construction cost of the floating regasification facility 12 and the floating power generation facility 14. .
셋째, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 로딩암(132)들을 각각 높이조절 및 방향전환이 가능하도록 설치함으로써, 크기가 상이한 부유식 재기화설비 및 부유식 발전설비를 신속하게 연결할 수 있다. 따라서, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 천연가스를 이송시키는데 있어서, 다양한 크기를 갖는 부유식 재기화설비 및 부유식 발전설비에 대한 범용성을 높일 수 있다.Third, the offshore power generation system 11 according to the first embodiment of the present invention is installed so that the height of the loading arm 132 can be adjusted and changed, respectively, floating regasification equipment and floating power generation equipment of different sizes. Can be connected quickly. Therefore, the offshore power generation system 11 according to the first embodiment of the present invention can increase the versatility for the floating regasification facilities and the floating power generation facilities having various sizes in transferring natural gas.
상기 송전기구(133)는 상기 부유식 발전설비(14)가 생산한 전기를 공급받아 육상으로 송전하기 위한 것이다. 상기 송전기구(133)는 축전지 또는 변압기일 수 있다. 상기 송전기구(133)는 전선과 같은 케이블을 통해 상기 부유식 발전설비(14)에 연결될 수 있다. 상기 송전기구(133)는 케이블(CA)을 통해 육상에 위치한 사용처에 연결될 수 있다. 상기 케이블(CA)은 일측이 상기 송전기구(133)에 연결되고, 타측이 상기 사용처에 연결될 수 있다. 상기 케이블(CA)은 해상에 부유한 상태에서 상기 송전기구(133)와 상기 사용처를 연결할 수 있으나, 이에 한정되지 않으며 해저 지면에 가라앉은 상태에서 상기 송전기구(133)와 상기 사용처를 연결할 수도 있다. 이에 따라, 상기 송전기구(133)는 상기 부유식 발전설비(14)가 생산한 전기를 육상으로 공급할 수 있다. 따라서, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 접안설비(13)에 설치된 송전기구(133)를 통해 육상으로 전기를 공급할 수 있으므로, 상기 부유식 발전설비(14)에 육상으로 전기를 공급하기 위한 별도의 송전장치를 설치할 필요가 없다. 이에 따라, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 부유식 발전설비(14)의 무게를 감소시킬 수 있으므로, 송전장치가 설치되었을 경우보다 수심이 더 얕은 연안에 상기 부유식 발전설비(14)를 설치할 수 있다.The power transmission mechanism 133 is for supplying electricity generated by the floating power generation facility 14 to transmit power to the land. The power transmission mechanism 133 may be a storage battery or a transformer. The power transmission mechanism 133 may be connected to the floating power generation facility 14 through a cable such as an electric wire. The power transmission mechanism 133 may be connected to a place of use located on land through a cable CA. The cable CA may have one side connected to the power transmission mechanism 133 and the other side connected to the place of use. The cable CA may connect the power transmission mechanism 133 and the place of use in a floating state on the sea, but is not limited thereto. The cable CA may also connect the power transmission mechanism 133 and the place of use in a state submerged on the sea floor. . Accordingly, the power transmission mechanism 133 may supply electricity produced by the floating power generation facility 14 to the land. Accordingly, the marine power generation system 11 according to the first embodiment of the present invention can supply electricity to the land through the power transmission mechanism 133 installed in the eyepiece facility 13, and thus to the floating power generation facility 14. There is no need to install a separate power transmission device to supply electricity to the land. Accordingly, since the offshore power generation system 11 according to the first embodiment of the present invention can reduce the weight of the floating power generation facility 14, the floating power on the coast where the depth is shallower than when the power transmission device is installed. The electric power generation facility 14 can be provided.
상기 부유식 발전설비(14)는 전기를 생산하기 위한 것이다. 상기 부유식 발전설비(14)는 해상에 부유한 상태에서 전기를 생산할 수 있다. 상기 부유식 발전설비(14)는 상기 연결기구(131)를 통해 상기 접안설비(13)에 접안될 수 있다. 상기 접안설비(13)에 상기 부유식 재기화설비(12)가 접안될 경우, 상기 부유식 발전설비(14)는 천연가스 수급관에 결합되는 상기 제2파이프라인(13225)을 통해 상기 부유식 재기화설비(12)가 재기화시킨 천연가스(NG)를 공급받아 전기를 생산할 수 있다. 상기 천연가스 수급관은 상기 부유식 발전설비(14)에 설치된 관로로, 천연가스를 공급받아 이송시키기 위한 것이다. 상기 부유식 발전설비(14)는 BMPP(Barge Mounted Power Plant)일 수 있다.The floating power generation facility 14 is for producing electricity. The floating power generation facility 14 may produce electricity in a floating state at sea. The floating power generation facility 14 may be docked to the eyepiece facility 13 through the connection mechanism 131. When the floating regasification facility 12 is docked in the eyepiece facility 13, the floating power generation facility 14 is connected to the floating pipeline through the second pipeline 1325 coupled to a natural gas supply pipe. The regasification facility 12 may be supplied with natural gas NG regasified to produce electricity. The natural gas supply pipe is a pipe installed in the floating power generation facility 14 for receiving and transporting natural gas. The floating power generation unit 14 may be a barge mounted power plant (BMPP).
도시되지 않았지만, 상기 부유식 발전설비(14)는 생산한 전기를 육상에 위치한 사용처에 전달하기 위한 송전설비를 포함할 수 있다. 이에 따라, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 부유식 발전설비(14)에서 상기 육상의 사용처로 직접 전기를 공급하거나 상기 접안설비(13)의 송전기구(133)를 통해 육상의 사용처로 전기를 간접 공급할 수 있다. 상기 송전설비는 상기 부유식 발전설비(14)의 하중을 감소시키기 위해 상기 접안설비(13)에 설치될 수도 있다. 이 경우, 상기 접안설비(13)는 상기 송전기구(133)와 상기 송전설비를 모두 포함할 수 있다. 따라서, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 송전기구(133)와 상기 송전설비 중 어느 하나가 손상 내지 파손될 경우 나머지 하나를 이용하여 육상의 사용처로 전기를 공급할 수 있다. 도시되지 않았지만, 상기 부유식 발전설비(14)에서 생산된 전기는 내부에 설치된 유틸리티(Utility)를 사용하는데 이용될 수 있을 뿐만 아니라, 상기 부유식 재기화설비(12) 및 상기 접안설비(13)로 공급되어 상기 부유식 재기화설비(12) 및 상기 접안설비(13)의 운용에 필요한 유틸리티(Utility)를 사용하는데 이용될 수도 있다. Although not shown, the floating power generation facility 14 may include a power transmission facility for delivering the generated electricity to a place of use located on land. Accordingly, the marine power generation system 11 according to the first embodiment of the present invention directly supplies electricity from the floating power generation facility 14 to the place of use of the land or the power transmission mechanism 133 of the eyepiece 13. Indirect electricity can be supplied to land use. The power transmission facility may be installed in the eyepiece facility 13 to reduce the load of the floating power generation facility 14. In this case, the eyepiece 13 may include both the power transmission mechanism 133 and the power transmission equipment. Therefore, the marine power generation system 11 according to the first embodiment of the present invention may supply electricity to a place of use on land by using the other one when one of the power transmission mechanism 133 and the power transmission equipment is damaged or damaged. . Although not shown, the electricity produced in the floating power generation facility 14 can be used not only to use a utility installed therein, but also the floating regasification facility 12 and the eyepiece facility 13. It may be supplied to and used to use the utility (Utility) necessary for the operation of the floating regasification facility 12 and the eyepiece (13).
상기 부유식 발전설비(14)는 발전부유본체(140) 및 발전시스템(141)을 포함할 수 있다.The floating power generation facility 14 may include a power generation unit body 140 and a power generation system 141.
상기 발전부유본체(140)는 해상에 부유할 수 있다. 예컨대, 상기 발전부유본체(140)는 바지선(Barge)의 선체일 수 있다. 상기 발전부유본체(140)에는 상기 발전시스템(141)이 탑재될 수 있다. 이에 따라, 상기 발전부유본체(140)는 상기 발전시스템(141)이 해상에 부유하도록 상기 발전시스템(141)을 지지할 수 있다. 상기 발전부유본체(140)는 엔진, 프로펠러 등을 포함하는 추진장치가 없으므로, 별도의 선박을 통해 해상에서 이동될 수 있다. 예컨대, 상기 발전부유본체(140)는 동력을 가진 선박을 통해 상기 접안설비(13)로 이동될 수 있다. 상기 접안설비(13)로 이동되어진 상기 발전부유본체(140)는 상기 접안설비(13)의 연결기구(131)를 통해 상기 접안본체(130)에 연결될 수 있다. 이에 따라, 상기 부유식 발전설비(14)는 상기 접안설비(13)에 접안될 수 있다. 이 경우, 상기 발전부유본체(140)는 상기 접안본체(130)로부터 소정 거리 이격된 위치에 위치될 수 있다.The power generation unit body 140 may be floating on the sea. For example, the power generation unit body 140 may be a hull of a barge. The power generation unit body 140 may be mounted with the power generation system 141. Accordingly, the power generation unit body 140 may support the power generation system 141 so that the power generation system 141 floats on the sea. Since the power generation unit main body 140 does not have a propulsion device including an engine, a propeller, etc., it may be moved at sea through a separate ship. For example, the power generation unit body 140 may be moved to the eyepiece (13) through a ship having power. The power generation unit main body 140 moved to the eyepiece 13 may be connected to the eyepiece body 130 through the connection mechanism 131 of the eyepiece 13. Accordingly, the floating power generation facility 14 may be docked in the eyepiece (13). In this case, the power generation unit body 140 may be located at a position spaced apart from the eyepiece body 130 by a predetermined distance.
도 5 내지 도 7을 참고하면, 상기 발전시스템(141)은 상기 접안설비(13)를 통해 공급되는 천연가스를 이용하여 다양한 방법으로 전기를 생산할 수 있다. 상기 발전시스템(141)은 제1발전기구(1411) 및 제2발전기구(1412) 중 적어도 하나를 포함할 수 있다.5 to 7, the power generation system 141 may generate electricity in various ways using natural gas supplied through the eyepiece 13. The power generation system 141 may include at least one of the first power generation mechanism 1411 and the second power generation mechanism 1412.
상기 제1발전기구(1411)는 이종연료(Dual Fuel)엔진(14111) 및 제1발전기(14112)를 포함할 수 있다. 상기 이종연료엔진(14111)은 상기 접안설비(13)를 통해 공급되는 천연가스(NG) 및 디젤연료 중 적어도 하나를 연소시켜 동력을 발생시킬 수 있다. 상기 이종연료엔진(14111)은 4행정 엔진일 수 있으나, 이에 한정되지 않으며 동력을 발생시킬 수 있으면 다른 엔진일 수도 있다. 또한, 상기 이종연료엔진(14111)은 한 개일 수 있으나, 이에 한정되지 않으며 복수개일 수도 있다. 상기 이종연료엔진(14111)은 관로를 통해 상기 부유식 발전설비(14)의 천연가스 수급관에 연결됨으로써, 상기 접안설비(13)를 통해 공급되는 천연가스(NG)를 공급받을 수 있다. 상기 천연가스 수급관은 천연가스를 공급받는 관로를 의미한다. 상기 이종연료엔진(14111)은 상기 부유식 발전설비(14)에 설치된 디젤연료저장탱크(미도시)로부터 디젤연료를 공급받을 수도 있다. 상기 디젤연료저장탱크는 디젤연료를 저장하기 위한 것이다. 상기 디젤연료저장탱크는 상기 LNG저장탱크(121)에 비해 크기가 더 작게 형성될 수 있다. 상기 디젤연료는 천연가스(NG) 공급이 중단될 경우 임시로 발전하기 위한 용도이므로, 대용량을 저장할 필요가 없기 때문이다. 이에 따라, 상기 이종연료엔진(14111)은 천연가스(NG) 및 디젤연료 중 적어도 하나를 연소시킴으로써, 동력을 발생시킬 수 있다. 상기 제1발전기(14112)는 상기 이종연료엔진(14111)이 발생시킨 동력을 이용하여 전기를 생산할 수 있다. 예컨대, 상기 제1발전기(14112)의 회전축은 상기 이종연료엔진(14111)의 크랭크축에 기어 등을 통해 연결될 수 있다. 이에 따라, 상기 제1발전기(14112)의 회전축은 상기 이종연료엔진(14111)의 크랭크축이 연료 연소에 의한 폭발력으로 회전함에 따라 함께 회전할 수 있다. 따라서, 상기 제1발전기(14112)는 전기를 생산할 수 있다. 상기 제1발전기(14112)는 전선과 같은 케이블을 통해 상기 접안설비(13)의 송전기구(133)에 연결될 수 있다. 이에 따라, 상기 제1발전기(14112)는 생산한 전기를 상기 송전기구(133)에 공급할 수 있다.The first power generation unit 1411 may include a dual fuel engine 14111 and a first generator 14112. The heterogeneous fuel engine 14111 may generate power by burning at least one of natural gas (NG) and diesel fuel supplied through the eyepiece 13. The heterogeneous fuel engine 14111 may be a four-stroke engine, but is not limited thereto and may be another engine if power can be generated. In addition, the heterogeneous fuel engine 14111 may be one, but is not limited thereto and may be a plurality. The heterogeneous fuel engine 14111 may be connected to the natural gas supply pipe of the floating power generation facility 14 through a pipeline to receive natural gas NG supplied through the eyepiece facility 13. The natural gas supply pipe means a pipeline for receiving natural gas. The heterogeneous fuel engine 14111 may be supplied with diesel fuel from a diesel fuel storage tank (not shown) installed in the floating power generation facility 14. The diesel fuel storage tank is for storing diesel fuel. The diesel fuel storage tank may be formed smaller in size than the LNG storage tank 121. The diesel fuel is intended to temporarily generate power when the supply of natural gas (NG) is stopped, and thus it is not necessary to store a large capacity. Accordingly, the hetero fuel engine 14111 may generate power by burning at least one of natural gas (NG) and diesel fuel. The first generator 14112 may generate electricity by using power generated by the heterogeneous fuel engine 14111. For example, the rotation shaft of the first generator 14112 may be connected to a crank shaft of the heterogeneous fuel engine 14111 through a gear or the like. Accordingly, the rotation shaft of the first generator 14112 may rotate together as the crank shaft of the heterogeneous fuel engine 14111 rotates with the explosive force caused by fuel combustion. Thus, the first generator 14112 may produce electricity. The first generator 14112 may be connected to the power transmission mechanism 133 of the eyepiece 13 through a cable such as an electric wire. Accordingly, the first generator 14112 may supply the generated electricity to the power transmission mechanism 133.
상기 제2발전기구(1412)는 가스터빈(14121), 제2발전기(14122), 배열회수보일러(Heat Recovery Steam Generator)(14123), 스팀터빈(14124) 및 제3발전기(14125)를 포함할 수 있다. The second power generation mechanism 1412 may include a gas turbine 14121, a second generator 14122, a heat recovery steam generator 14123, a steam turbine 14124, and a third generator 14125. Can be.
상기 가스터빈(14121)은 상기 접안설비(13)를 통해 공급되는 천연가스(NG)를 연소시켜 동력을 발생시킬 수 있다. 상기 가스터빈(14121)은 한 개일 수 있으나, 이에 한정되지 않으며 복수개일 수도 있다. 상기 가스터빈(14121)이 복수개일 경우, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 가스터빈(14121)들 중 일부가 손상 내지 파손되어도 나머지 가스터빈(14121)을 이용하여 전기를 생산할 수 있다. 상기 가스터빈(14121)은 관로를 통해 상기 부유식 발전설비(14)의 천연가스 수급관에 연결됨으로써, 상기 접안설비(13)를 통해 공급되는 천연가스(NG)를 공급받을 수 있다.The gas turbine 14121 may generate power by burning natural gas NG supplied through the eyepiece 13. The gas turbine 14121 may be one, but is not limited thereto and may be a plurality of gas turbines 14121. When there are a plurality of gas turbines 14121, the offshore power generation system 11 according to the first embodiment of the present invention uses the remaining gas turbines 14121 even if some of the gas turbines 14121 are damaged or broken. Can produce electricity The gas turbine 14121 may be connected to the natural gas supply pipe of the floating power generation facility 14 through a pipe line, thereby receiving natural gas NG supplied through the eyepiece facility 13.
상기 제2발전기(14122)는 상기 가스터빈(14121)이 발생시킨 동력을 이용하여 전기를 생산할 수 있다. 예컨대, 상기 제2발전기(14122)의 회전축은 상기 가스터빈(14121)의 크랭크축에 기어 등을 통해 연결될 수 있다. 이에 따라, 상기 제2발전기(14122)의 회전축은 상기 가스터빈(14121)의 크랭크축이 연료 연소에 의한 폭발력으로 회전함에 따라 함께 회전할 수 있다. 따라서, 상기 제2발전기(14122)는 전기를 생산할 수 있다. 상기 제2발전기(14122)는 전선과 같은 케이블을 통해 상기 접안설비(13)의 송전기구(133)에 연결될 수 있다. 이에 따라, 상기 제2발전기(14122)는 생산한 전기를 상기 송전기구(133)에 공급할 수 있다. The second generator 14122 may generate electricity by using the power generated by the gas turbine 14121. For example, the rotation shaft of the second generator 14122 may be connected to a crank shaft of the gas turbine 14121 through a gear or the like. Accordingly, the rotation shaft of the second generator 14122 may rotate together as the crank shaft of the gas turbine 14121 rotates with the explosive force caused by fuel combustion. Thus, the second generator 14122 may produce electricity. The second generator 14122 may be connected to the power transmission mechanism 133 of the eyepiece 13 through a cable such as an electric wire. Accordingly, the second generator 14122 may supply the generated electricity to the power transmission mechanism 133.
상기 배열회수보일러(14123)는 상기 가스터빈(14121)에서 천연가스가 연소되어 배출되는 배기가스의 폐열을 회수하여 스팀(Steam)을 발생시킬 수 있다. 상기 배열회수보일러(14123)는 상기 가스터빈(14121)에서 배기가스가 배출되는 배기관, 및 물을 공급하기 위한 물공급부에 각각 연결될 수 있다. 이에 따라, 상기 배열회수보일러(14123)는 상기 가스터빈(14121)에서 배출되는 배기가스의 폐열을 열원으로 물공급부에서 공급되는 물을 가열시킴으로써, 물을 스팀(Steam)으로 상변화시킬 수 있다. 상기 배열회수보일러(14123)에서 생성된 스팀은 상기 스팀터빈(14124)으로 공급될 수 있다. The heat recovery boiler 14123 may generate steam by recovering waste heat of the exhaust gas discharged by burning natural gas in the gas turbine 14121. The heat recovery boiler 14123 may be connected to an exhaust pipe through which exhaust gas is discharged from the gas turbine 14121, and a water supply unit for supplying water. Accordingly, the heat recovery boiler 14123 may change the water into steam by heating the water supplied from the water supply unit using the waste heat of the exhaust gas discharged from the gas turbine 14121 as a heat source. Steam generated by the heat recovery boiler 14123 may be supplied to the steam turbine 14124.
상기 스팀터빈(14124)은 다이어프램, 로터, 버켓 등으로 구현될 수 있다. 상기 다이어프램에는 고정익이 구비되고, 상기 버켓에는 회전익이 구비된다. 상기 고정익은 상기 배열회수보일러(14123)에서 공급되는 스팀의 방향을 바꾸어 상기 회전익으로 유도하고, 상기 회전익은 상기 고정익으로부터 유도된 스팀에 의해 회전력을 발생시켜 로터를 회전시킨다. 상기 로터는 상기 제3발전기(14125)에 연결되게 설치된다.The steam turbine 14124 may be implemented with a diaphragm, a rotor, a bucket, and the like. The diaphragm is provided with a fixed blade, and the bucket is provided with a rotary blade. The fixed blades change the direction of the steam supplied from the heat recovery boiler 14123 to guide the rotary blades, and the rotary blades generate a rotational force by steam induced from the fixed blades to rotate the rotor. The rotor is installed to be connected to the third generator 14125.
상기 제3발전기(14125)는 로터가 회전함에 따라 전기를 생산할 수 있다. 상기 제3발전기(14125)는 전선과 같은 케이블을 통해 상기 접안설비(13)의 송전기구(133)에 연결될 수 있다. 이에 따라, 상기 제3발전기(14125)는 생산한 전기를 상기 송전기구(133)에 공급할 수 있다.The third generator 14125 may generate electricity as the rotor rotates. The third generator 14125 may be connected to the power transmission mechanism 133 of the eyepiece 13 through a cable such as an electric wire. Accordingly, the third generator 14125 may supply the generated electricity to the power transmission mechanism 133.
본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 발전시스템(141)이 상기 제1발전기구(1411) 및 상기 제2발전기구(1412) 중 어느 것을 포함하는지에 따라 다양한 실시예를 포함할 수 있다. 이러한 실시예들을 구체적으로 살펴보면, 다음과 같다.The offshore power generation system 11 according to the first embodiment of the present invention may have various embodiments depending on which of the first power generation mechanism 1411 and the second power generation mechanism 1412 is included in the power generation system 141. It may include. Looking at these embodiments in detail, as follows.
도 5를 참고하면, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 발전시스템(141)이 상기 제1발전기구(1411)를 포함하도록 구현될 수 있다. Referring to FIG. 5, the marine power generation system 11 according to the first embodiment of the present invention may be implemented such that the power generation system 141 includes the first power generation mechanism 1411.
상기 제1발전기구(1411)는 상기 이종연료엔진(14111) 및 상기 제1발전기(14112)를 포함할 수 있다. 이에 따라, 상기 제1발전기구(1411)는 천연가스(NG) 및 디젤연료 중 적어도 하나를 이용하여 전기를 생산할 수 있다. 여기서, 상기 천연가스(NG)는 상기 부유식 재기화설비(12)에서 액화천연가스(LNG)를 재기화시킨 것으로, 상기 부유식 재기화설비(12)의 천연가스 공급관, 상기 접안설비(13)의 로딩암(132), 및 상기 부유식 발전설비(14)의 천연가스 수급관을 순차적으로 거쳐 상기 부유식 발전설비(14)의 이종연료엔진(14111)으로 공급될 수 있다. 이에 따라, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 제1발전기(14112)를 통해 생산된 전기를 상기 접안설비(13)의 송전기구(133)로 공급함으로써, 육상의 사용처로 공급할 수 있다. 상기 천연가스 공급관은 천연가스를 공급하기 위한 관로를 의미한다. 상기 천연가스 수급관은 천연가스를 공급받는 관로를 의미한다. 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 접안설비(13)를 통한 천연가스 공급이 중단될 경우, 디젤연료저장탱크에 저장된 디젤연료를 이용하여 전기를 생산할 수 있다. 이에 따라, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 육상의 사용처로 공급하기 위한 전기 생산이 중단되는 것을 방지할 수 있다. 도시되지 않았지만, 상기 제1발전기구(1411)는 상기 이종연료엔진(14111)을 복수개 포함할 수 있다. 이 경우, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 이종연료엔진(14111)들 중 일부가 손상 내지 파손되어도 나머지 이종연료엔진(14111)을 이용하여 전기를 생산할 수 있다.The first power generation mechanism 1411 may include the heterogeneous fuel engine 14111 and the first generator 14112. Accordingly, the first power generation unit 1411 may generate electricity using at least one of natural gas (NG) and diesel fuel. Here, the natural gas (NG) is obtained by regasifying liquefied natural gas (LNG) in the floating regasification facility (12), the natural gas supply pipe of the floating regasification facility (12), the eyepiece (13) ) Through the loading arm 132, and the natural gas supply pipe of the floating power generation facility 14 may be supplied to the heterogeneous fuel engine (14111) of the floating power generation facility (14). Accordingly, the marine power generation system 11 according to the first embodiment of the present invention supplies the electricity generated through the first generator 14112 to the power transmission mechanism 133 of the eyepiece 13, Can be supplied to the point of use. The natural gas supply pipe means a pipe for supplying natural gas. The natural gas supply pipe means a pipeline for receiving natural gas. The offshore power generation system 11 according to the first embodiment of the present invention may generate electricity by using diesel fuel stored in a diesel fuel storage tank when natural gas supply through the eyepiece 13 is stopped. Accordingly, the marine power generation system 11 according to the first embodiment of the present invention can prevent the generation of electricity for supply to the land use. Although not shown, the first power generation mechanism 1411 may include a plurality of heterogeneous fuel engines 14111. In this case, the marine power generation system 11 according to the first embodiment of the present invention may produce electricity using the remaining heterogeneous fuel engine 14111 even if some of the heterogeneous fuel engines 14111 are damaged or damaged.
도 6을 참고하면, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 발전시스템(141)이 상기 제2발전기구(1412)를 포함하도록 구현될 수 있다.Referring to FIG. 6, the marine power generation system 11 according to the first embodiment of the present invention may be implemented such that the power generation system 141 includes the second power generation mechanism 1412.
상기 제2발전기구(1412)는 상기 가스터빈(14121), 상기 제2발전기(14122), 상기 배열회수보일러(14123), 상기 스팀터빈(14124) 및 상기 제3발전기(14125)를 포함할 수 있다. 상기 제2발전기구(1412)는 천연가스(NG)를 이용하여 전기를 생산할 수 있다. 여기서, 상기 천연가스(NG)는 상기 부유식 재기화설비(12)에서 액화천연가스(LNG)를 재기화시킨 것으로, 상기 부유식 재기화설비(12)의 천연가스 공급관, 상기 접안설비(13)의 로딩암(132), 및 상기 부유식 발전설비(14)의 천연가스 수급관을 순차적으로 거쳐 상기 부유식 발전설비(14)의 가스터빈(14121)으로 공급될 수 있다. 이에 따라, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 제2발전기(14122) 및 상기 제3발전기(14125)를 통해 생산된 전기를 상기 접안설비(13)의 송전기구(133)로 공급함으로써, 육상의 사용처로 공급할 수 있다. 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 제2발전기(14122) 및 상기 제3발전기(14125)를 이용하여 전기를 생산하므로, 상기 제1발전기(14112)만을 이용하여 전기를 생산하는 실시예에 비해 전기 생산량을 증대시킬 수 있다. 도시되지 않았지만, 상기 제2발전기구(1412)는 상기 가스터빈(14121)을 복수개 포함할 수도 있다.The second power generation mechanism 1412 may include the gas turbine 14121, the second generator 14122, the heat recovery boiler 14123, the steam turbine 14124, and the third generator 14125. have. The second power generation unit 1412 may generate electricity using natural gas (NG). Here, the natural gas (NG) is obtained by regasifying liquefied natural gas (LNG) in the floating regasification facility (12), the natural gas supply pipe of the floating regasification facility (12), the eyepiece (13) ) Through the loading arm 132, and the natural gas supply pipe of the floating power generation facility 14 may be supplied to the gas turbine 14121 of the floating power generation facility (14). Accordingly, the marine power generation system 11 according to the first embodiment of the present invention transmits electricity generated through the second generator 14122 and the third generator 14125 to the power transmission mechanism of the eyepiece 13. 133), it can be supplied to land use. Since the offshore power generation system 11 according to the first embodiment of the present invention generates electricity using the second generator 14122 and the third generator 14125, the marine power generation system 11 uses only the first generator 14112 to generate electricity. Compared to the embodiment to produce the electricity can be increased. Although not shown, the second power generation mechanism 1412 may include a plurality of gas turbines 14121.
도 7을 참고하면, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 발전시스템(141)이 상기 제1발전기구(1411) 및 상기 제2발전기구(1412)를 모두 포함하도록 구현될 수 있다.Referring to FIG. 7, the marine power generation system 11 according to the first embodiment of the present invention includes the power generation system 141 including both the first power generation mechanism 1411 and the second power generation mechanism 1412. Can be implemented.
이 경우, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 제1발전기구(1411) 및 상기 제2발전기구(1412) 중 적어도 하나를 이용하여 전기를 생산할 수 있다. 상기 제1발전기구(1411) 및 상기 제2발전기구(1412)에 각각 공급되는 천연가스(NG)는 상기 부유식 재기화설비(12)에서 액화천연가스(LNG)를 재기화시킨 것으로, 상기 접안설비(13)를 통해 공급될 수 있다. 상기 부유식 발전설비(14)의 천연가스 수급관으로 공급된 천연가스(NG)는 분기되어 상기 이종연료엔진(14111) 및 상기 가스터빈(14121)으로 각각 공급될 수 있다. 이에 따라, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 제1발전기(14112), 상기 제2발전기(14122) 및 상기 제3발전기(14125)를 통해 생산된 전기를 상기 접안설비(13)의 송전기구(133)로 공급함으로써, 육상의 사용처로 공급할 수 있다. 도시되지 않았지만, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 이종연료엔진(14111) 및 상기 가스터빈(14121)을 각각 복수개씩 포함할 수 있다.In this case, the marine power generation system 11 according to the first embodiment of the present invention may generate electricity using at least one of the first power generation mechanism 1411 and the second power generation mechanism 1412. Natural gas (NG) supplied to the first power generation mechanism (1411) and the second power generation mechanism (1412), respectively, is the regasification of the liquefied natural gas (LNG) in the floating regasification facility (12), Can be supplied through the eyepiece (13). The natural gas NG supplied to the natural gas supply pipe of the floating power generation facility 14 may be branched and supplied to the heterogeneous fuel engine 14111 and the gas turbine 14121, respectively. Accordingly, the marine power generation system 11 according to the first embodiment of the present invention docks the electricity produced through the first generator 14112, the second generator 14122, and the third generator 14125. By supplying to the power transmission mechanism 133 of the installation 13, it can supply to the land use place. Although not shown, the offshore power generation system 11 according to the first embodiment of the present invention may include a plurality of the heterogeneous fuel engines 14111 and the gas turbines 14121, respectively.
상술한 바와 같은 부유식 발전설비(14)를 구비함으로써, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 다음과 같은 작용 효과를 도모할 수 있다.By providing the floating power generation equipment 14 as described above, the marine power generation system 11 according to the first embodiment of the present invention can achieve the following effects.
첫째, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 제1발전기(14112), 상기 제2발전기(14122) 및 상기 제3발전기(14125) 등과 같이 복수개의 발전기를 이용하여 전기를 생산할 수 있다. 이에 따라, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 전기 생산량을 증대시킬 수 있을 뿐만 아니라 정전과 같은 비상 시 신속하게 전기를 생산할 수 있다.First, the marine power generation system 11 according to the first embodiment of the present invention generates electricity using a plurality of generators, such as the first generator 14112, the second generator 14122, the third generator 14125, and the like. Can produce. Accordingly, the offshore power generation system 11 according to the first embodiment of the present invention can not only increase the amount of electricity produced but also produce electricity quickly in an emergency such as a power failure.
둘째, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 제1발전기구(1411) 및 상기 제2발전기구(1412)를 모두 포함하므로, 상기 제1발전기구(1411) 및 상기 제2발전기구(1412) 중 하나가 손상 내지 파손되어도 계속하여 전기를 생산할 수 있다. 이에 따라, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 육상의 사용처로 공급하기 위한 전기 생산이 중단되는 것을 방지할 수 있다.Second, since the marine power generation system 11 according to the first embodiment of the present invention includes both the first power generation mechanism 1411 and the second power generation mechanism 1412, the first power generation mechanism 1411 and the Even if one of the second power generation mechanisms 1412 is damaged or damaged, electricity can be continuously produced. Accordingly, the marine power generation system 11 according to the first embodiment of the present invention can prevent the generation of electricity for supply to the land use.
셋째, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 천연가스(NG)가 상기 이종연료엔진(14111) 및 상기 가스터빈(14121)으로 분기되는 부분에 밸브를 설치함으로써, 상기 이종연료엔진(14111) 및 상기 가스터빈(14121)으로 공급되는 천연가스(NG)의 양을 조절할 수 있다. 이에 따라, 본 발명의 제1실시예에 따른 해상발전시스템(11)은 상기 제1발전기(14112), 상기 제2발전기(14122) 및 상기 제3발전기(14125)가 각각 생산하는 전기의 양을 조절할 수 있다.Third, the offshore power generation system 11 according to the first embodiment of the present invention installs a valve at a portion where the natural gas NG branches to the heterogeneous fuel engine 14111 and the gas turbine 14121, The amount of the natural gas NG supplied to the heterogeneous fuel engine 14111 and the gas turbine 14121 may be adjusted. Accordingly, the marine power generation system 11 according to the first embodiment of the present invention measures the amount of electricity produced by the first generator 14112, the second generator 14122, and the third generator 14125, respectively. I can regulate it.
제2실시예Second embodiment
도 8 내지 도 12를 참고하면, 본 발명의 제2실시예에 따른 해상발전시스템(21)을 설명함에 있어서 상술한 본 발명의 제1실시예에 따른 해상발전시스템(11)과 대비하여 차이점이 있는 부분을 위주로 하여 설명한다.8 to 12, in the description of the offshore power generation system 21 according to the second embodiment of the present invention, there is a difference in comparison with the offshore power generation system 11 according to the first embodiment of the present invention described above. The explanation focuses on the parts that are present.
본 발명의 제2실시예에 따른 해상발전시스템(21)은 엔진, 가스터빈 등과 같이 전기를 생산하는데 사용되는 발전장치를 냉각시키는 냉각매체로 액화천연가스(LNG)를 기화시키고 냉각되어 배출되는 해수를 이용함으로써, 발전장치의 냉각시스템에 대한 전체적인 크기를 줄일 수 있다.The offshore power generation system 21 according to the second embodiment of the present invention is a cooling medium for cooling a power generation device used to produce electricity, such as an engine and a gas turbine, and vaporizes liquefied natural gas (LNG) and cools the discharged seawater. By using, it is possible to reduce the overall size of the power generation device cooling system.
이를 위해, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 부유식 재기화설비(22), 접안설비(23), 및 부유식 발전설비(24)를 포함한다. 상기 부유식 재기화설비(22), 상기 접안설비(23), 및 상기 부유식 발전설비(24)는 각각 상술한 본 발명의 제1실시예에 따른 해상발전시스템(11)에 있어서 상기 부유식 재기화설비(12), 상기 접안설비(13), 및 상기 부유식 발전설비(14)에 대응되므로, 차이점이 있는 부분을 위주로 하여 설명한다.To this end, the offshore power generation system 21 according to the second embodiment of the present invention includes a floating regasification facility 22, an eyepiece 23, and a floating power generation facility 24. The floating regasification facility 22, the eyepiece 23, and the floating power generation facility 24 are each in the offshore power generation system 11 according to the first embodiment of the present invention described above. Since it corresponds to the regasification facility 12, the said eyepiece facility 13, and the said floating power generation facility 14, it demonstrates focusing on the difference part.
도 8 내지 도 12를 참고하면, 상기 부유식 재기화설비(22)는 액화천연가스(LNG)를 재기화시키기 위한 것이다. 상기 부유식 재기화설비(22)는 재기화부유본체(220), 취수부(221) 및 재기화부(222)를 포함할 수 있다. 상기 부유식 재기화설비(22)는 LNG저장탱크 및 거주구를 더 포함할 수 있다. 상기 LNG저장탱크 및 상기 거주구는 상술한 본 발명의 제1실시예에 따른 해상발전시스템(11)에 있어서 상기 LNG저장탱크(121) 및 상기 거주구(123)와 대략 일치하므로, 구체적인 설명은 생략한다.8 to 12, the floating regasification facility 22 is for regasifying liquefied natural gas (LNG). The floating regasification facility 22 may include a regasification unit body 220, an intake unit 221, and a regasification unit 222. The floating regasification facility 22 may further include an LNG storage tank and a residence. The LNG storage tank and the inlet port are substantially the same as the LNG storage tank 121 and the inlet port 123 in the offshore power generation system 11 according to the first embodiment of the present invention. do.
상기 재기화부유본체(220)는 해상에 부유할 수 있다. 예컨대, 상기 재기화부유본체(220)는 FSRU의 선체일 수 있다. 상기 재기화부유본체(220)에는 상기 취수부(221), 상기 재기화부(222), 상기 LNG저장탱크 및 상기 거주구가 설치될 수 있다.The regasification unit body 220 may be floating on the sea. For example, the regasification unit body 220 may be a hull of the FSRU. The regasification unit body 220 may be provided with the water intake unit 221, the regasification unit 222, the LNG storage tank and the inlet.
상기 취수부(221)는 해수(海水)를 취수하기 위한 것이다. 상기 취수부(221)는 외부에 위치하는 해수를 흡입할 수 있도록 상기 재기화부유본체(220)에 설치될 수 있다. 상기 취수부(221)는 일측이 상기 외부와 연통되도록 설치되고, 타측이 상기 재기화부(222)와 연통되도록 관 또는 파이프와 같은 해수관로를 통해 연결될 수 있다. 상기 해수관로에는 해수를 이송시키기 위한 이송력을 발생시키는 펌프, 임펠러와 같은 이송장치가 설치될 수 있다. 이에 따라, 상기 취수부(221)는 이송장치에 의해 외부에서 해수를 흡입하여 상기 재기화부(222)로 공급할 수 있다. 상기 취수부(221)는 씨체스트(Sea Chest)일 수 있다. 상기 취수부(221)는 상기 재기화부유본체(220)에 한 개만 설치되어 상기 재기화부유본체(220)의 일측 쪽에 위치된 해수를 흡입할 수 있으나, 이에 한정되지 않으며 상기 재기화부유본체(220)에 복수개가 서로 이격되게 설치되어 타측 쪽에 위치된 해수를 흡입할 수도 있다. 상기 재기화부유본체(220)의 일측 쪽에 위치된 해수와 타측 쪽에 위치된 해수의 온도가 다를 수 있기 때문이다. 본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 취수부(221)를 통해 상황에 따라 더 낮은 온도를 갖거나 더 높은 온도를 갖는 해수를 취수할 수 있다.The water intake unit 221 is for intake of sea water. The water intake unit 221 may be installed in the regasification unit body 220 to suck the sea water located outside. The water intake part 221 may be installed so that one side may communicate with the outside, and the other side may be connected through a seawater pipe such as a pipe or a pipe so as to communicate with the regasification unit 222. The seawater pipe may be provided with a conveying device such as a pump, an impeller for generating a conveying force for transporting seawater. Accordingly, the water intake unit 221 may be supplied to the regasification unit 222 by sucking the sea water from the outside by a transfer device. The intake unit 221 may be a sea chest. Only one water intake unit 221 is installed on the regasification unit body 220 to suck seawater located on one side of the regasification unit body 220, but is not limited thereto. A plurality of 220 may be installed to be spaced apart from each other to suck the sea water located on the other side. This is because the temperature of the seawater located on one side of the regasification unit body 220 and the seawater located on the other side may be different. The marine power generation system 21 according to the second embodiment of the present invention may take in seawater having a lower temperature or a higher temperature depending on the situation through the intake unit 221.
상기 재기화부(222)는 상기 LNG저장탱크로부터 공급되는 액화천연가스(LNG)를 재기화시키기 위한 것이다. 상기 재기화부(222)는 상기 해수관로를 통해 상기 취수부(221)에 연결될 수 있다. 이에 따라, 상기 재기화부(222)는 상기 취수부(221)가 취수한 해수를 공급받을 수 있다. 상기 재기화부(222)는 상기 LNG저장탱크로부터 공급받은 액화천연가스(LNG), 및 상기 취수부(221)로부터 공급받은 해수를 열교환시킴으로써, 액화천연가스(LNG)를 재기화시킬 수 있다. 상기 재기화부(222)에서 액화천연가스(LNG)를 재기화시키고 냉각된 해수는 후술할 제1이송라인(25)을 통해 상기 접안설비(23)로 공급될 수 있다. 상기 부유식 발전설비(24)에서 배출되는 고온의 해수는 후술할 제2이송라인(26)을 통해 상기 접안설비(23)를 거쳐 상기 재기화부(222)로 공급될 수 있다.The regasification unit 222 is for regasifying the liquefied natural gas (LNG) supplied from the LNG storage tank. The regasification unit 222 may be connected to the water intake unit 221 through the seawater pipe. Accordingly, the regasification unit 222 may receive the seawater taken by the water intake unit 221. The regasification unit 222 may regasify the liquefied natural gas (LNG) by heat-exchanging the liquefied natural gas (LNG) supplied from the LNG storage tank and the seawater supplied from the intake unit (221). The regasification unit 222 regasifies the liquefied natural gas (LNG) and cooled sea water may be supplied to the eyepiece (23) through the first transfer line 25 to be described later. The high temperature seawater discharged from the floating power generation facility 24 may be supplied to the regasification unit 222 via the eyepiece 23 through the second transfer line 26 to be described later.
이와 같이, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 해수를 이용하여 액화천연가스(LNG)를 재기화시킬 수 있으므로, 액화천연가스(LNG)를 재기화시키기 위한 별도의 가열장치를 상기 부유식 재기화설비(22)에 설치할 필요가 없다. 이에 따라, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 부유식 재기화설비(22)에 대한 구축비용을 줄일 수 있을 뿐만 아니라, 상기 부유식 재기화설비(22)의 전체적인 크기 및 무게를 감소시킬 수 있으므로 수심이 낮은 연안에도 상기 부유식 재기화설비(22)를 용이하게 설치할 수 있다.As such, the offshore power generation system 21 according to the second embodiment of the present invention may regasify the liquefied natural gas (LNG) using sea water, and thus separate heating for regasifying the liquefied natural gas (LNG). It is not necessary to install the device in the floating regasification plant 22. Accordingly, the offshore power generation system 21 according to the second embodiment of the present invention can not only reduce the construction cost for the floating regasification plant 22, but also provide overall control of the floating regasification plant 22. Since the size and weight can be reduced, the floating regasification facility 22 can be easily installed even at a low coast.
상기 접안설비(23)는 상기 부유식 재기화설비(22) 및 상기 부유식 발전설비(24) 중 적어도 하나를 접안시키기 위한 것이다. 상기 접안설비(23)는 연결기구, 로딩암 및 송전기구를 더 포함할 수 있다. 상기 연결기구, 상기 로딩암 및 상기 송전기구는 상술한 본 발명의 제1실시예에 따른 해상발전시스템(11)에 있어서 상기 연결기구(131), 상기 로딩암(132) 및 상기 송전기구(133)에 대응되므로, 차이점이 있는 부분을 위주로 하여 설명한다.The eyepiece 23 is for docking at least one of the floating regasification facility 22 and the floating power generation facility 24. The eyepiece 23 may further include a connection mechanism, a loading arm and a power transmission mechanism. The connecting mechanism, the loading arm and the power transmission mechanism are the connection mechanism 131, the loading arm 132 and the power transmission mechanism 133 in the marine power generation system 11 according to the first embodiment of the present invention described above. ), And focus on the differences.
상기 접안설비(23)는 접안본체(230), 제1지지기구(231) 및 제2지지기구(232)를 포함할 수 있다. The eyepiece 23 may include an eyepiece body 230, a first support mechanism 231, and a second support mechanism 232.
상기 접안본체(230)는 해상에 고정될 수 있다. 상기 접안본체(230)에는 상기 제1지지기구(231), 제2지지기구(232)가 설치될 수 있다. 상기 접안본체(230)에는 상기 연결기구, 상기 로딩암 및 상기 송전기구가 더 설치될 수도 있다.The eyepiece 230 may be fixed to the sea. The first support mechanism 231 and the second support mechanism 232 may be installed in the eyepiece body 230. The eyepiece body 230 may be further provided with the connection mechanism, the loading arm and the power transmission mechanism.
상기 제1지지기구(231)는 상기 접안본체(230)의 일측에 설치되고, 제1이송라인(25)을 지지하기 위한 것이다. 상기 제2지지기구(232)는 상기 접안본체(230)의 타측에 설치되고, 제2이송라인(26)을 지지하기 위한 것이다. 상기 제1지지기구(231)와 상기 제2지지기구(232)에 대한 구체적인 설명은 후술할 제1이송라인(25) 및 제2이송라인(26)을 설명할 때 함께 설명하기로 한다.The first support mechanism 231 is installed on one side of the eyepiece body 230 to support the first transfer line 25. The second support mechanism 232 is installed on the other side of the eyepiece body 230 and is for supporting the second transfer line 26. A detailed description of the first support mechanism 231 and the second support mechanism 232 will be described with reference to the first transfer line 25 and the second transfer line 26 which will be described later.
상기 로딩암은 상기 부유식 재기화설비(22)로부터 천연가스(NG)를 공급받기 위한 제1로딩기구, 및 상기 제1로딩기구가 공급받은 천연가스(NG)를 상기 부유식 발전설비(24)로 공급하기 위한 제2로딩기구를 포함할 수 있다.The loading arm includes a first loading mechanism for receiving natural gas NG from the floating regasification facility 22, and a natural gas NG supplied by the first loading mechanism for the floating power generation facility 24. It may include a second loading mechanism for supplying).
상기 제1로딩기구는 천연가스를 이송시키기 위한 제1파이프라인을 포함하고, 상기 제2로딩기구는 제1파이프라인에 연결되는 제2파이프라인을 포함할 수 있다. 상기 제1파이프라인은 제1이송라인(25)을 통해 상기 부유식 재기화설비(22)에 연결될 수 있다. 상기 제2파이프라인은 제1이송라인(25)을 통해 상기 부유식 발전설비(24)에 연결될 수 있다. 상기 제1로딩기구 및 상기 제2로딩기구는 각각 높이조절 및 방향전환이 가능하도록 설치될 수 있다.The first loading mechanism may include a first pipeline for transferring natural gas, and the second loading mechanism may include a second pipeline connected to the first pipeline. The first pipe line may be connected to the floating regasification facility 22 through a first transfer line 25. The second pipe line may be connected to the floating power generation facility 24 through the first transfer line 25. The first loading mechanism and the second loading mechanism may be installed to enable height adjustment and direction change, respectively.
상기 부유식 발전설비(24)는 전기를 생산하기 위한 것이다. 상기 부유식 발전설비(24)는 발전부유본체(240), 발전시스템(241) 및 냉각시스템(242)을 포함할 수 있다. 상기 발전시스템(241)은 제1발전기구(2411) 및 제2발전기구(2412)를 포함할 수 있다. 상기 냉각시스템(242)은 제1열교환부(2421), 제2열교환부(2422) 및 제3열교환부(2423)를 포함할 수 있다. 상기 발전부유본체(240), 상기 발전시스템(241) 및 상기 냉각시스템(242)에 대한 구체적인 설명은 제1이송라인(25) 및 제2이송라인(26)을 설명한 후에 설명하기로 한다.The floating power generation equipment 24 is for producing electricity. The floating power generation facility 24 may include a power generation unit body 240, a power generation system 241, and a cooling system 242. The power generation system 241 may include a first power generation mechanism 2411 and a second power generation mechanism 2412. The cooling system 242 may include a first heat exchanger 2421, a second heat exchanger 2422, and a third heat exchanger 2423. Detailed description of the power generation unit body 240, the power generation system 241 and the cooling system 242 will be described after the first transfer line 25 and the second transfer line 26.
본 발명의 제2실시예에 따른 해상발전시스템(21)은 제1이송라인(25) 및 제2이송라인(26)을 포함할 수 있다.The offshore power generation system 21 according to the second embodiment of the present invention may include a first transfer line 25 and a second transfer line 26.
상기 제1이송라인(25)은 상기 재기화부(222)에서 액화천연가스(LNG)를 기화시키고 배출되는 냉각된 해수를 상기 제1열교환부(2421), 상기 제2열교환부(2422) 및 상기 제3열교환부(2423) 중 어느 하나로 공급하기 위한 것이다. 상기 제1이송라인(25)은 상기 접안설비(23)를 통해 상기 부유식 재기화설비(22) 및 상기 부유식 발전설비(24)를 연결할 수 있다. 이하에서는 상기 제1이송라인(25) 및 상기 제2이송라인(26)이 상기 제1열교환부(2421)에 연결된 실시예를 첨부된 도면을 참조하여 구체적으로 설명한다. 상기 제1이송라인(25)은 제1수급이송라인(251) 및 제1공급이송라인(252)을 포함할 수 있다.The first transfer line 25 vaporizes the liquefied natural gas (LNG) from the regasification unit 222 and discharges the cooled sea water to the first heat exchange unit 2421, the second heat exchange unit 2422, and the It is for supplying to any one of the 3rd heat exchange parts 2423. FIG. The first transfer line 25 may connect the floating regasification facility 22 and the floating power generation facility 24 through the eyepiece 23. Hereinafter, an embodiment in which the first transfer line 25 and the second transfer line 26 are connected to the first heat exchange unit 2421 will be described in detail with reference to the accompanying drawings. The first transfer line 25 may include a first supply and demand transfer line 251 and a first supply transfer line 252.
상기 제1수급이송라인(251)은 상기 재기화부(222)에서 냉각되어 배출되는 해수를 공급받기 위한 것이다. 상기 제1수급이송라인(251)은 호스(Hose) 또는 파이프(Pipe)로 형성될 수 있다. 상기 제1수급이송라인(251)은 호스 및 파이프가 복합되어 형성될 수도 있다. 상기 제1수급이송라인(251)은 일측이 상기 재기화부(222)에서 해수가 냉각되어 배출되는 해수배출관로에 연결될 수 있다. 이에 따라, 상기 제1수급이송라인(251)은 상기 재기화부(222)로부터 냉각된 해수를 공급받을 수 있다. 상기 제1수급이송라인(251)은 타측이 상기 제1공급이송라인(252)에 연통되도록 상기 접안본체(230)에 결합될 수 있다. 상기 제1수급이송라인(251)은 상기 제1지지기구(231)를 통해 상기 접안본체(230)에 결합될 수 있다. 이에 따라, 상기 제1수급이송라인(251)으로 공급된 해수는 상기 제1공급이송라인(252)으로 공급될 수 있다. 상기 제1지지기구(231)는 상기 제1수급이송라인(251)이 상기 접안본체(230)에 지지되도록 상기 제1수급이송라인(251)을 상기 접안본체(230)에 결합시킬 수 있다. 상기 제1지지기구(231)는 'Angle'형태, 'Channel'형태, 'H-beam'형태 중 적어도 하나로 형성될 수 있다. 상기 제1지지기구(231)가 상기 제1수급이송라인(251)을 지지함에 따라, 상기 제1수급이송라인(251)은 조류와 같은 해류에 떠내려가지 않고 상기 접안설비(23)에 연결된 상태를 유지할 수 있다. 상기 제1지지기구(231)는 상기 부유식 재기화설비(22)가 접안되는 쪽에 위치하도록 상기 접안본체(230)에 설치될 수 있다. 이에 따라, 상기 제1지지기구(231)는 상기 재기화부(222)에 연결된 상기 제1수급이송라인(251)이 상기 제1공급이송라인(252)에 용이하게 연결되도록 할 수 있다. 상기 제1지지기구(231)는 상기 제1수급이송라인(251)의 개수에 대응되는 개수로 상기 접안본체(230)에 설치될 수 있다. 이에 따라, 상기 제1지지기구(231)는 상기 제1수급이송라인(251)이 상기 접안본체(230)에 지지되도록 상기 제1수급이송라인(251)을 지지할 수 있다.The first supply and demand transfer line 251 is for receiving the seawater cooled and discharged from the regasification unit 222. The first supply and demand feed line 251 may be formed of a hose or a pipe. The first supply and demand transfer line 251 may be formed by combining a hose and a pipe. One side of the first supply and demand transfer line 251 may be connected to a seawater discharge line through which seawater is cooled and discharged from the regasification unit 222. Accordingly, the first supply and demand feed line 251 may receive the cooled seawater from the regasification unit 222. The first supply and demand feed line 251 may be coupled to the eyepiece body 230 so that the other side is in communication with the first supply and feed line 252. The first supply and demand transfer line 251 may be coupled to the eyepiece body 230 through the first support mechanism 231. Accordingly, the seawater supplied to the first supply and demand feed line 251 may be supplied to the first supply and feed line 252. The first support mechanism 231 may couple the first supply and demand line 251 to the eyepiece 230 so that the first supply and demand line 251 is supported by the eyepiece body 230. The first support mechanism 231 may be formed in at least one of an 'Angle' shape, a 'Channel' shape, and an 'H-beam' shape. As the first support mechanism 231 supports the first supply and demand line 251, the first supply and demand line 251 is connected to the eyepiece 23 without being floated in an ocean current such as a tidal current. Can be maintained. The first support mechanism 231 may be installed on the eyepiece body 230 so that the floating regasification facility 22 is located on the eyepiece side. Accordingly, the first support mechanism 231 may allow the first supply and demand feed line 251 connected to the regasification unit 222 to be easily connected to the first supply and feed line 252. The first support mechanism 231 may be installed in the eyepiece body 230 in a number corresponding to the number of the first supply and demand transfer line 251. Accordingly, the first support mechanism 231 may support the first supply and demand line 251 so that the first supply and demand line 251 is supported by the eyepiece body 230.
상기 제1공급이송라인(252)은 상기 제1수급이송라인(251)으로부터 공급된 해수를 상기 부유식 발전설비(24)로 공급하기 위한 것이다. 상기 제1공급이송라인(252)은 호스(Hose), 파이프(Pipe), 또는 호스와 파이프가 복합되어 형성될 수 있다. 상기 제1공급이송라인(252)은 일측이 상기 제1수급이송라인(251)에 연통되도록 상기 접안본체(230)에 결합될 수 있다. 상기 제1공급이송라인(252)은 상기 제1지지기구(231)를 통해 상기 접안본체(230)에 결합될 수 있다. 이에 따라, 상기 제1공급이송라인(252)은 상기 제1수급이송라인(251)으로부터 냉각된 해수를 공급받을 수 있다. 상기 제1공급이송라인(252)은 타측이 상기 부유식 발전설비(24)의 해수수급관에 연통되도록 상기 부유식 발전설비(24)에 결합될 수 있다. 상기 부유식 발전설비(24)의 해수수급관은 상기 제1열교환부(2421)에 연결될 수 있다. 이에 따라, 상기 제1공급이송라인(252)으로 공급된 해수는 상기 제1열교환부(2421)로 공급될 수 있다. 상기 제1지지기구(231)는 상기 제1공급이송라인(252)이 상기 접안본체(230)에 지지되도록 상기 제1공급이송라인(252)을 상기 접안본체(230)에 결합시킬 수 있다. 상기 제1지지기구(231)가 상기 제1공급이송라인(252)을 지지함에 따라, 상기 제1공급이송라인(252)은 조류와 같은 해류에 떠내려가지 않고 상기 접안설비(23)에 연결된 상태를 유지할 수 있다. 상기 제1지지기구(231)는 상기 부유식 발전설비(24)가 접안되는 쪽에 위치하도록 상기 접안본체(230)에 설치될 수 있다. 이에 따라, 상기 제1지지기구(231)는 상기 제1공급이송라인(252)이 상기 부유식 발전설비(24)에 용이하게 연결되도록 할 수 있다. 상기 제1지지기구(231)는 상기 접안본체(230)를 기준으로 상기 부유식 재기화설비(22) 및 상기 부유식 발전설비(24)가 접안되는 쪽에 각각 위치될 수 있다. 상기 제1지지기구(231)는 상기 제1공급이송라인(252)의 개수에 대응되는 개수로 상기 접안본체(230)에 설치될 수 있다. 이에 따라, 상기 제1지지기구(231)는 상기 제1공급이송라인(252)이 상기 접안본체(230)에 지지되도록 상기 제1공급이송라인(252)을 지지할 수 있다.The first supply transfer line 252 is for supplying the seawater supplied from the first supply and demand transfer line 251 to the floating power generation facility 24. The first supply transfer line 252 may be formed by a hose, a pipe, or a combination of a hose and a pipe. The first supply transfer line 252 may be coupled to the eyepiece body 230 so that one side is in communication with the first supply and demand transfer line 251. The first supply transfer line 252 may be coupled to the eyepiece body 230 through the first support mechanism 231. Accordingly, the first supply transfer line 252 may receive the cooled seawater from the first supply and demand transfer line 251. The first supply transfer line 252 may be coupled to the floating power generation facility 24 so that the other side is in communication with the seawater supply pipe of the floating power generation facility 24. The seawater supply pipe of the floating power generation facility 24 may be connected to the first heat exchanger 2421. Accordingly, seawater supplied to the first supply transfer line 252 may be supplied to the first heat exchanger 2421. The first support mechanism 231 may couple the first supply transfer line 252 to the eyepiece 230 so that the first supply transfer line 252 is supported by the eyepiece body 230. As the first support mechanism 231 supports the first supply feed line 252, the first supply feed line 252 is connected to the eyepiece 23 without floating in currents such as tidal currents. Can be maintained. The first support mechanism 231 may be installed on the eyepiece body 230 so that the floating power generation equipment 24 is located on the eyepiece side. Accordingly, the first support mechanism 231 may allow the first supply transfer line 252 to be easily connected to the floating power generation facility 24. The first support mechanism 231 may be positioned on the side where the floating regasification facility 22 and the floating power generation facility 24 are docked based on the eyepiece body 230. The first support mechanism 231 may be installed in the eyepiece body 230 in a number corresponding to the number of the first supply transfer line 252. Accordingly, the first support mechanism 231 may support the first supply transfer line 252 so that the first supply transfer line 252 is supported by the eyepiece body 230.
상기 제1공급이송라인(252) 및 상기 제1수급이송라인(251)은 해상에서 부유할 수 있는 부유식 배관(Floating Pipe)으로 형성될 수 있다. 이에 따라, 상기 제1공급이송라인(252) 및 상기 제1수급이송라인(251)은 수중에 잠기는 수중배관에 비해 해수에 접촉되는 접촉면적을 감소시킴으로써, 해수에 의해 부식되는 정도를 감소시켜 상기 수중배관에 비해 사용 수명을 연장시킬 수 있다.The first supply transfer line 252 and the first supply and demand transfer line 251 may be formed as floating pipes that may float on the sea. Accordingly, the first supply transfer line 252 and the first supply and demand transfer line 251 reduce the contact area in contact with the seawater compared to the submerged pipe submerged in water, thereby reducing the degree of corrosion by the seawater The service life can be extended compared to underwater piping.
상기 제2이송라인(26)은 상기 제1열교환부(2421)에서 제1냉각유체를 냉각시키고 배출되는 가열된 해수를 상기 재기화부(222)로 공급하기 위한 것이다. 상기 제2이송라인(26)은 상기 접안설비(23)를 통해 상기 부유식 재기화설비(22) 및 상기 부유식 발전설비(24)를 연결할 수 있다. 상기 제2이송라인(26)은 제2수급이송라인(261) 및 제2공급이송라인(262)을 포함할 수 있다.The second transfer line 26 is for cooling the first cooling fluid in the first heat exchange unit 2421 and supplying heated seawater discharged to the regasification unit 222. The second transfer line 26 may connect the floating regasification facility 22 and the floating power generation facility 24 through the eyepiece 23. The second transfer line 26 may include a second supply and demand transfer line 261 and a second supply transfer line 262.
상기 제2수급이송라인(261)은 상기 제1열교환부(2421)에서 가열되어 배출되는 해수를 공급받기 위한 것이다. 상기 제2수급이송라인(261)은 호스(Hose) 또는 파이프(Pipe)로 형성될 수 있다. 상기 제2수급이송라인(261)은 호스 및 파이프가 복합되어 형성될 수도 있다. 상기 제2수급이송라인(261)은 일측이 상기 제1열교환부(2421)에 연결되게 설치되는 해수배출관에 연결될 수 있다. 상기 해수배출관은 상기 부유식 발전설비(24)에 설치될 수 있다. 이에 따라, 상기 제2수급이송라인(261)은 상기 제1열교환부(2421)로부터 가열된 해수를 공급받을 수 있다. 상기 제2수급이송라인(261)은 타측이 상기 제2공급이송라인(262)에 연통되도록 상기 접안본체(230)에 결합될 수 있다. 상기 제2수급이송라인(261)은 상기 제2지지기구(232)를 통해 상기 접안본체(230)에 결합될 수 있다. 이에 따라, 상기 제2수급이송라인(261)으로 공급된 해수는 상기 제2공급이송라인(262)으로 공급될 수 있다. 상기 제2지지기구(232)는 상기 제2수급이송라인(261)이 상기 접안본체(230)에 지지되도록 상기 제2수급이송라인(261)을 상기 접안본체(230)에 결합시킬 수 있다. 상기 제2지지기구(232)는 'Angle'형태, 'Channel'형태, 'H-beam'형태 중 적어도 하나로 형성될 수 있다. 상기 제2지지기구(232)가 상기 제2수급이송라인(261)을 지지함에 따라, 상기 제2수급이송라인(261)은 조류와 같은 해류에 떠내려가지 않고 상기 접안설비(23)에 연결된 상태를 유지할 수 있다. 상기 제2지지기구(232)는 상기 부유식 발전설비(24)가 접안되는 쪽에 위치하도록 상기 접안본체(230)에 설치될 수 있다. 이에 따라, 상기 제2지지기구(232)는 상기 제2수급이송라인(261)이 상기 제1열교환부(2421)에 용이하게 연결되도록 할 수 있다. 상기 제2지지기구(232)는 상기 제2수급이송라인(261)의 개수에 대응되는 개수로 상기 접안본체(230)에 설치될 수 있다. 이에 따라, 상기 제2지지기구(232)는 상기 제2수급이송라인(261)이 상기 접안본체(230)에 지지되도록 상기 제2수급이송라인(261)을 지지할 수 있다. 상기 제2수급이송라인(261)과 상기 제1공급이송라인(252)은 하나의 관 내부에 위치하도록 묶여질 수 있다. 이 경우, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 제2수급이송라인(261)과 상기 제1공급이송라인(252)이 해수에 직접 접촉되는 것을 방지함으로써, 상기 제2수급이송라인(261)과 상기 제1공급이송라인(252)이 해수에 의해 부식되는 것을 방지할 수 있다.The second supply and demand transfer line 261 is for receiving the seawater heated and discharged from the first heat exchange unit 2421. The second supply and demand line 261 may be formed of a hose or a pipe. The second supply and demand line 261 may be formed by combining a hose and a pipe. The second supply and demand transfer line 261 may be connected to a seawater discharge pipe having one side connected to the first heat exchanger 2421. The seawater discharge pipe may be installed in the floating power generation facility 24. Accordingly, the second supply and demand feed line 261 may receive the heated seawater from the first heat exchanger 2421. The second supply and demand feed line 261 may be coupled to the eyepiece body 230 so that the other side is in communication with the second supply and feed line 262. The second supply and demand transfer line 261 may be coupled to the eyepiece body 230 through the second support mechanism 232. Accordingly, the seawater supplied to the second supply and demand line 261 may be supplied to the second supply and delivery line 262. The second support mechanism 232 may couple the second supply and demand line 261 to the eyepiece 230 so that the second supply and demand line 261 is supported by the eyepiece body 230. The second support mechanism 232 may be formed in at least one of an 'Angle' shape, a 'Channel' shape, and an 'H-beam' shape. As the second support mechanism 232 supports the second supply and demand line 261, the second supply and demand line 261 is connected to the eyepiece 23 without being floated in an ocean current such as a tidal current. Can be maintained. The second support mechanism 232 may be installed in the eyepiece body 230 so that the floating power generation equipment 24 is located in the eyepiece. Accordingly, the second support mechanism 232 may allow the second supply and demand transfer line 261 to be easily connected to the first heat exchange part 2421. The second support mechanism 232 may be installed on the eyepiece body 230 in a number corresponding to the number of the second supply and demand lines 261. Accordingly, the second support mechanism 232 may support the second supply and demand line 261 so that the second supply and demand line 261 is supported by the eyepiece body 230. The second supply and demand feed line 261 and the first supply and feed line 252 may be bundled to be located inside one tube. In this case, the marine power generation system 21 according to the second embodiment of the present invention prevents the second supply and demand supply line 261 and the first supply and feed line 252 from directly contacting the seawater, It is possible to prevent the second supply and demand line 261 and the first supply and feed line 252 from being corroded by sea water.
상기 제2공급이송라인(262)은 상기 제2수급이송라인(261)으로부터 공급된 해수를 상기 부유식 재기화설비(22)로 공급하기 위한 것이다. 상기 제2공급이송라인(262)은 호스(Hose), 파이프(Pipe), 또는 호스와 파이프가 복합되어 형성될 수 있다. 상기 제2공급이송라인(262)은 일측이 상기 제2수급이송라인(261)에 연통되도록 상기 접안본체(230)에 결합될 수 있다. 상기 제2공급이송라인(262)은 상기 제2지지기구(232)를 통해 상기 접안본체(230)에 결합될 수 있다. 이에 따라, 상기 제2공급이송라인(262)은 상기 제2수급이송라인(261)으로부터 가열된 해수를 공급받을 수 있다. 상기 제2공급이송라인(262)은 타측이 상기 부유식 재기화설비(22)의 해수수급관에 연통되도록 상기 부유식 재기화설비(22)에 결합될 수 있다. 상기 부유식 재기화설비(22)의 해수수급관은 상기 재기화부(222)에 연결될 수 있다. 이에 따라, 상기 제2공급이송라인(262)으로 공급된 가열된 해수는 상기 재기화부(222)로 공급될 수 있다. 상기 제2지지기구(232)는 상기 제2공급이송라인(262)이 상기 접안본체(230)에 지지되도록 상기 제2공급이송라인(262)을 상기 접안본체(230)에 결합시킬 수 있다. 상기 제2지지기구(232)가 상기 제2공급이송라인(262)을 지지함에 따라, 상기 제2공급이송라인(262)은 조류와 같은 해류에 떠내려가지 않고 상기 접안설비(23)에 연결된 상태를 유지할 수 있다. 상기 제2지지기구(232)는 상기 부유식 재기화설비(22)가 접안되는 쪽에 위치하도록 상기 접안본체(230)에 설치될 수 있다. 이에 따라, 상기 제2지지기구(232)는 상기 제2공급이송라인(262)이 상기 부유식 재기화설비(22)에 용이하게 연결되도록 할 수 있다. 상기 제2지지기구(232)는 상기 접안본체(230)를 기준으로 상기 부유식 재기화설비(22) 및 상기 부유식 발전설비(24)가 접안되는 쪽에 각각 위치될 수 있다. 상기 제2지지기구(232)는 상기 제2공급이송라인(262)의 개수에 대응되는 개수로 상기 접안본체(230)에 설치될 수 있다. 이에 따라, 상기 제2지지기구(232)는 상기 제2공급이송라인(262)이 상기 접안본체(230)에 지지되도록 상기 제2공급이송라인(262)을 지지할 수 있다. The second supply transfer line 262 is for supplying the seawater supplied from the second supply and demand transfer line 261 to the floating regasification facility 22. The second supply transfer line 262 may be formed by a hose, a pipe, or a combination of a hose and a pipe. The second supply transfer line 262 may be coupled to the eyepiece body 230 so that one side thereof is in communication with the second supply and demand transfer line 261. The second supply transfer line 262 may be coupled to the eyepiece body 230 through the second support mechanism 232. Accordingly, the second supply transfer line 262 may receive the heated seawater from the second supply and demand transfer line 261. The second supply transfer line 262 may be coupled to the floating regasification facility 22 so that the other side is in communication with the seawater supply pipe of the floating regasification facility 22. The seawater supply pipe of the floating regasification facility 22 may be connected to the regasification unit 222. Accordingly, the heated seawater supplied to the second supply transfer line 262 may be supplied to the regasification unit 222. The second support mechanism 232 may couple the second supply transfer line 262 to the eyepiece 230 so that the second supply transfer line 262 is supported by the eyepiece body 230. As the second support mechanism 232 supports the second supply transfer line 262, the second supply transfer line 262 is connected to the eyepiece 23 without being floated in an ocean current such as an algae. Can be maintained. The second support mechanism 232 may be installed on the eyepiece body 230 so that the floating regasification facility 22 is located on the eyepiece side. Accordingly, the second support mechanism 232 may allow the second supply transfer line 262 to be easily connected to the floating regasification facility 22. The second support mechanism 232 may be positioned on the side where the floating regasification facility 22 and the floating power generation facility 24 are docked based on the eyepiece body 230. The second support mechanism 232 may be installed in the eyepiece body 230 in a number corresponding to the number of the second supply transfer line 262. Accordingly, the second support mechanism 232 may support the second supply transfer line 262 so that the second supply transfer line 262 is supported by the eyepiece body 230.
상기 제2공급이송라인(262) 및 상기 제2수급이송라인(261)은 해상에서 부유할 수 있는 부유식 배관(Floating Pipe)으로 형성될 수 있다. 이에 따라, 상기 제2공급이송라인(262) 및 상기 제2수급이송라인(261)은 수중에 잠기는 수중배관에 비해 해수에 접촉되는 접촉면적을 감소시킴으로써, 해수에 의해 부식되는 정도를 감소시켜 상기 수중배관에 비해 사용 수명을 연장시킬 수 있다. 상기 제2공급이송라인(262)과 상기 제1수급이송라인(251)은 하나의 관 내부에 위치하도록 묶여질 수 있다. 이 경우, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 제2공급이송라인(262)과 상기 제1수급이송라인(251)이 해수에 직접 접촉되는 것을 방지함으로써, 상기 제2공급이송라인(262)과 상기 제1수급이송라인(251)이 해수에 의해 부식되는 것을 방지할 수도 있다.The second supply transfer line 262 and the second supply and demand transfer line 261 may be formed as floating pipes that may float on the sea. Accordingly, the second supply transfer line 262 and the second supply and demand transfer line 261 reduce the contact area in contact with the seawater compared to the submerged pipe submerged in water, thereby reducing the degree of corrosion by the seawater. The service life can be extended compared to underwater piping. The second supply transfer line 262 and the first supply and demand transfer line 251 may be bundled to be located inside one tube. In this case, the marine power generation system 21 according to the second embodiment of the present invention prevents the second supply transfer line 262 and the first supply and demand transfer line 251 from directly contacting the seawater, The supply feed line 262 and the first supply and demand feed line 251 may be prevented from being corroded by sea water.
상기에서는 상기 제1이송라인(25) 및 상기 제2이송라인(26)이 상기 제1열교환부(2421)에 연결되는 실시예를 설명하였으나, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 제1이송라인(25) 및 상기 제2이송라인(26)이 상기 제2열교환부(2422) 또는 상기 제3열교환부(2423)에 연결되도록 구현될 수도 있다.In the above, an embodiment in which the first transfer line 25 and the second transfer line 26 are connected to the first heat exchange unit 2421 has been described, but the marine power generation system according to the second embodiment of the present invention ( 21 may be implemented such that the first transfer line 25 and the second transfer line 26 are connected to the second heat exchange unit 2422 or the third heat exchange unit 2423.
도 8 내지 도 12를 참고하면, 상기 부유식 발전설비(24)는 상기 발전부유본체(240), 상기 발전시스템(241) 및 상기 냉각시스템(242)을 포함할 수 있다.8 to 12, the floating power generation facility 24 may include the power generation unit body 240, the power generation system 241, and the cooling system 242.
상기 발전부유본체(240)는 해상에 부유할 수 있다. 상기 발전부유본체(240)는 상술한 본 발명의 제1실시예에 따른 해상발전시스템(11)에 있어서 상기 발전부유본체(140)와 대략 일치하므로, 구체적인 설명은 생략한다.The power generation unit body 240 may be floating on the sea. The power generation unit main body 240 is substantially the same as the power generation unit main body 140 in the marine power generation system 11 according to the first embodiment of the present invention described above, a detailed description thereof will be omitted.
상기 발전시스템(241)은 상기 접안설비(23)를 통해 공급되는 천연가스를 이용하여 다양한 방법으로 전기를 생산할 수 있다. 상기 발전시스템(241)은 제1발전기구(2411) 및 제2발전기구(2412) 중 적어도 하나를 포함할 수 있다. The power generation system 241 may produce electricity in various ways using natural gas supplied through the eyepiece 23. The power generation system 241 may include at least one of the first power generation mechanism 2411 and the second power generation mechanism 2412.
상기 제1발전기구(2411)는 이종연료엔진(24111) 및 제1발전기(24112)를 포함할 수 있다. 상기 이종연료엔진(24111) 및 상기 제1발전기(24112)는 상술한 본 발명의 제1실시예에 따른 해상발전시스템(11)에 있어서 상기 이종연료엔진(14111) 및 상기 제1발전기(14112)와 대략 일치하므로, 구체적인 설명은 생략한다.The first power generation mechanism 2411 may include a heterogeneous fuel engine 24111 and a first generator 24112. The heterogeneous fuel engine 24111 and the first generator 24112 are the heterogeneous fuel engine 14111 and the first generator 14112 in the marine power generation system 11 according to the first embodiment of the present invention described above. Since it substantially coincides with, specific description is omitted.
상기 제1발전기구(2411)에는 상기 이종연료엔진(24111)을 냉각시키기 위한 제1냉각유체가 순환하는 제1순환배관(FCL)이 설치될 수 있다. 상기 제1냉각유체는 청수 또는 글리콜일 수 있다. 상기 제1순환배관은 일측이 상기 이종연료엔진(24111)을 감싸도록 설치될 수 있다. 상기 제1순환배관은 타측이 상기 제1열교환부(2421)에 연결되도록 설치될 수 있다. 상기 제1냉각유체는 상기 제1열교환부(2421)에서 상기 제1이송라인(25)을 통해 공급되는 냉각된 해수에 의해 냉각될 수 있다. 상기 제1열교환부(2421)에서 냉각된 제1냉각유체는 상기 제1순환배관을 따라 상기 이종연료엔진(24111)으로 공급되어, 상기 이종연료엔진(24111)을 냉각시킬 수 있다. 상기 제1냉각유체는 상기 제1순환배관을 따라 상기 제1열교환부(2421) 및 상기 이종연료엔진(24111)을 순환 이동하면서 냉각 및 가열될 수 있다. 상기 제1순환배관은 일측이 상기 이종연료엔진(24111)을 감싸도록 설치되고, 타측이 해수에 연결되도록 설치될 수 있다. 이 경우, 상기 제1순환배관을 순환하는 제1냉각유체는 해수일 수 있다. 상기 해수는 상기 제1순환배관을 따라 이동하면서 상기 이종연료엔진(24111)을 직접 냉각시킬 수 있다. 상기 제1순환배관에는 해수를 이동시키거나 흡입 및 배출시키기 위한 펌프가 설치될 수 있다.The first power generation mechanism 2411 may be provided with a first circulation pipe (FCL) through which the first cooling fluid for cooling the heterogeneous fuel engine 24111 circulates. The first cooling fluid may be fresh water or glycol. The first circulation pipe may be installed so that one side surrounds the heterogeneous fuel engine 24111. The first circulation pipe may be installed so that the other side is connected to the first heat exchanger 2421. The first cooling fluid may be cooled by cooled seawater supplied from the first heat exchange part 2421 through the first transfer line 25. The first cooling fluid cooled by the first heat exchange unit 2421 may be supplied to the heterogeneous fuel engine 24111 along the first circulation pipe to cool the heterogeneous fuel engine 24111. The first cooling fluid may be cooled and heated while circulating the first heat exchange unit 2421 and the heterogeneous fuel engine 24111 along the first circulation pipe. The first circulation pipe may be installed so that one side surrounds the heterogeneous fuel engine 24111 and the other side is connected to seawater. In this case, the first cooling fluid circulating the first circulation pipe may be sea water. The seawater may directly cool the heterogeneous fuel engine 24111 while moving along the first circulation pipe. The first circulation pipe may be provided with a pump for moving or suctioning and discharging sea water.
상기 제2발전기구(2412)는 가스터빈(24121), 제2발전기(24122), 배열회수보일러(24123), 스팀터빈(24124) 및 제3발전기(24125)를 포함할 수 있다. 상기 가스터빈(24121), 상기 제2발전기(24122), 상기 배열회수보일러(24123), 상기 스팀터빈(24124) 및 상기 제3발전기(24125)는 상술한 본 발명의 제1실시예에 따른 해상발전시스템(11)에 있어서 상기 가스터빈(14121), 상기 제2발전기(14122), 상기 배열회수보일러(14123), 상기 스팀터빈(14124) 및 상기 제3발전기(14125)와 대략 일치하므로, 구체적인 설명은 생략한다.The second power generation mechanism 2412 may include a gas turbine 24121, a second generator 24122, a heat recovery boiler 24123, a steam turbine 24124, and a third generator 24125. The gas turbine 24121, the second generator 24122, the heat recovery boiler 24123, the steam turbine 24124, and the third generator 24125 are marined according to the first embodiment of the present invention described above. In the power generation system 11, the gas turbine 14121, the second generator 14122, the heat recovery boiler 14123, the steam turbine 14124, and the third generator 14125 are substantially coincident with each other. Description is omitted.
상기 제2발전기구(2412)에는 상기 가스터빈(24121)을 냉각시키기 위한 제2냉각유체가 순환하는 제2순환배관(SCL)이 설치될 수 있다. 상기 제2냉각유체는 청수 또는 글리콜일 수 있다. 상기 제2순환배관은 일측이 상기 가스터빈(24121)을 감싸도록 설치될 수 있다. 상기 제2순환배관은 타측이 상기 제2열교환부(2422)에 연결되도록 설치될 수 있다. 상기 제2냉각유체는 상기 제2열교환부(2422)에서 상기 제1이송라인(25)을 통해 공급되는 냉각된 해수에 의해 냉각될 수 있다. 상기 제2열교환부(2422)에서 냉각된 제2냉각유체는 상기 제2순환배관을 따라 상기 가스터빈(24121)으로 공급되어, 상기 가스터빈(24121)을 냉각시킬 수 있다. 상기 제2냉각유체는 상기 제2순환배관을 따라 상기 제2열교환부(2422) 및 상기 가스터빈(24121)을 순환 이동하면서 냉각 및 가열될 수 있다. 상기 제2순환배관은 일측이 상기 가스터빈(24121)을 감싸도록 설치되고, 타측이 해수에 연결되도록 설치될 수 있다. 이 경우, 상기 제2순환배관을 순환하는 제2냉각유체는 해수일 수 있다. 상기 해수는 상기 제2순환배관을 따라 이동하면서 상기 가스터빈(24121)을 직접 냉각시킬 수 있다. 상기 제2순환배관에는 해수를 이동시키거나 흡입 및 배출시키기 위한 펌프가 설치될 수 있다.The second power generation mechanism 2412 may be provided with a second circulation pipe (SCL) through which a second cooling fluid for cooling the gas turbine 24121 is circulated. The second cooling fluid may be fresh water or glycol. The second circulation pipe may be installed so that one side surrounds the gas turbine 24121. The second circulation pipe may be installed so that the other side is connected to the second heat exchanger 2422. The second cooling fluid may be cooled by cooled seawater supplied through the first transfer line 25 from the second heat exchange unit 2422. The second cooling fluid cooled by the second heat exchanger 2422 may be supplied to the gas turbine 24121 along the second circulation pipe to cool the gas turbine 24121. The second cooling fluid may be cooled and heated while circulating the second heat exchange part 2422 and the gas turbine 24121 along the second circulation pipe. The second circulation pipe may be installed to surround one side of the gas turbine 24121 and the other side to be connected to seawater. In this case, the second cooling fluid circulating in the second circulation pipe may be seawater. The sea water may directly cool the gas turbine 24121 while moving along the second circulation pipe. The second circulation pipe may be provided with a pump for moving or suctioning and discharging sea water.
도 10 내지 도 12를 참고하면, 상기 냉각시스템(242)은 상기 제1이송라인(25)을 통해 공급되는 냉각된 해수를 이용하여 다양한 방법으로 상기 발전시스템(241)을 냉각시킬 수 있다. 상기 냉각시스템(242)은 상기 재기화부(222)에서 액화천연가스(LNG)를 재기화시키고 배출되는 냉각된 해수를 이용하여 상기 발전시스템(241)을 냉각시킬 수 있다. 상기 냉각시스템(242)은 제1열교환부(2421), 제2열교환부(2422) 및 제3열교환부(2423)를 포함할 수 있다.10 to 12, the cooling system 242 may cool the power generation system 241 in various ways by using the cooled seawater supplied through the first transfer line 25. The cooling system 242 may cool the power generation system 241 using the cooled sea water discharged by regasifying the liquefied natural gas (LNG) in the regasification unit 222. The cooling system 242 may include a first heat exchanger 2421, a second heat exchanger 2422, and a third heat exchanger 2423.
상기 제1열교환부(2421)는 상기 재기화부(222)에서 배출되는 냉각된 해수, 및 상기 제1냉각유체를 열교환시킨다. 상기 재기화부(222)에서 배출되는 냉각된 해수는 상기 접안설비(23), 제1이송라인(25), 및 상기 부유식 발전설비(24)의 해수수급관을 통해 상기 제1열교환부(2421)로 공급될 수 있다. 상기 제1열교환부(2421)는 상기 해수수급관 및 상기 제1순환배관(FCL)을 근접 설치함으로써, 상기 냉각된 해수 및 상기 제1냉각유체를 열교환시킬 수 있다. 이에 따라, 상기 제1냉각유체는 상기 재기화부(222)에서 배출되는 냉각된 해수에 의해 냉각될 수 있다. 상기 제1열교환부(2421)에서 제1냉각유체를 냉각시키고 가열된 해수는 상기 제2이송라인(26), 상기 접안설비(23), 및 상기 부유식 재기화설비(22)의 해수수급관을 통해 상기 재기화부(222)로 공급될 수 있다. 이에 따라, 상기 취수부(221)에 의해 상기 재기화부(222)로 공급되는 해수는 상기 재기화부(222)에서 냉각되고, 상기 제1열교환부(2421)에서 가열될 수 있다. 즉, 상기 부유식 재기화설비(22)에서 취수된 해수는 상기 재기화부(222)에서 액화천연가스(LNG)를 가열시키기 위한 가열매체로 사용되고, 상기 제1열교환부(2421)에서 제1냉각유체를 냉각시키기 위한 냉각매체로 사용될 수 있다. The first heat exchanger 2421 heat-exchanges the cooled seawater discharged from the regasification unit 222 and the first cooling fluid. The cooled seawater discharged from the regasification unit 222 is connected to the first heat exchange unit 2421 through the seawater supply pipe of the eyepiece facility 23, the first transfer line 25, and the floating power generation facility 24. Can be supplied. The first heat exchanger 2421 may heat-exchange the cooled seawater and the first cooling fluid by installing the seawater supply pipe and the first circulation pipe FCL in close proximity. Accordingly, the first cooling fluid may be cooled by the cooled seawater discharged from the regasification unit 222. The first sea water cooled by the first cooling fluid in the first heat exchanger 2421 and the heated sea water is supplied to the seawater supply pipe of the second transfer line 26, the eyepiece 23, and the floating regasification facility 22. It may be supplied to the regasification unit 222 through. Accordingly, the seawater supplied to the regasification unit 222 by the water intake unit 221 may be cooled in the regasification unit 222 and heated in the first heat exchange unit 2421. That is, the seawater withdrawn from the floating regasification unit 22 is used as a heating medium for heating the liquefied natural gas (LNG) in the regasification unit 222, the first cooling in the first heat exchange unit 2421 It can be used as a cooling medium for cooling the fluid.
상기 제2열교환부(2422)는 상기 재기화부(222)에서 배출되는 냉각된 해수, 및 상기 제2냉각유체를 열교환시킨다. 상기 재기화부(222)에서 배출되는 냉각된 해수는 상기 접안설비(23), 제1이송라인(25), 및 상기 부유식 발전설비(24)의 해수수급관을 통해 상기 제2열교환부(2422)로 공급될 수 있다. 상기 제2열교환부(2422)는 상기 해수수급관 및 상기 제2순환배관(SCL)을 근접 설치함으로써, 상기 냉각된 해수 및 상기 제2냉각유체를 열교환시킬 수 있다. 이에 따라, 상기 제2냉각유체는 상기 재기화부(222)에서 배출되는 냉각된 해수에 의해 냉각될 수 있다. 상기 제2열교환부(2422)에서 제2냉각유체를 냉각시키고 가열된 해수는 상기 제2이송라인(26), 상기 접안설비(23), 및 상기 부유식 재기화설비(22)의 해수수급관을 통해 상기 재기화부(222)로 공급될 수 있다. 이에 따라, 상기 취수부(221)에 의해 상기 재기화부(222)로 공급되는 해수는 상기 재기화부(222)에서 냉각되고, 상기 제2열교환부(2422)에서 가열될 수 있다. 즉, 상기 부유식 재기화설비(22)에서 취수된 해수는 상기 재기화부(222)에서 액화천연가스(LNG)를 가열시키기 위한 가열매체로 사용되고, 상기 제2열교환부(2422)에서 제2냉각유체를 냉각시키기 위한 냉각매체로 사용될 수 있다.The second heat exchange part 2422 heat-exchanges the cooled seawater discharged from the regasification part 222 and the second cooling fluid. The cooled seawater discharged from the regasification unit 222 is connected to the second heat exchange unit 2422 through the seawater supply pipe of the eyepiece facility 23, the first transfer line 25, and the floating power generation facility 24. Can be supplied. The second heat exchanger 2422 may heat exchange the cooled seawater and the second cooling fluid by installing the seawater supply pipe and the second circulation pipe SCL in close proximity. Accordingly, the second cooling fluid may be cooled by the cooled seawater discharged from the regasification unit 222. The second water exchange unit 2422 cools the second cooling fluid and the heated sea water is supplied to the seawater supply pipe of the second transfer line 26, the eyepiece 23, and the floating regasification facility 22. It may be supplied to the regasification unit 222 through. Accordingly, the seawater supplied to the regasification unit 222 by the intake unit 221 may be cooled in the regasification unit 222 and heated in the second heat exchange unit 2422. That is, the seawater withdrawn from the floating regasification unit 22 is used as a heating medium for heating the liquefied natural gas (LNG) in the regasification unit 222, the second cooling in the second heat exchange unit (2422) It can be used as a cooling medium for cooling the fluid.
상기 제3열교환부(2423)는 상기 재기화부(222)에서 배출되는 냉각된 해수, 상기 제1냉각유체, 및 상기 제2냉각유체를 열교환시킨다. 상기 재기화부(222)에서 배출되는 냉각된 해수는 상기 접안설비(23), 제1이송라인(25), 및 상기 부유식 발전설비(24)의 해수수급관을 통해 상기 제3열교환부(2423)로 공급될 수 있다. 상기 제3열교환부(2423)는 상기 해수수급관, 상기 제1순환배관(FCL) 및 상기 제2순환배관(SCL)을 근접 설치함으로써, 상기 냉각된 해수, 상기 제1냉각유체, 및 상기 제2냉각유체를 열교환시킬 수 있다. 이에 따라, 상기 제1냉각유체 및 상기 제2냉각유체는 상기 재기화부(222)에서 배출되는 냉각된 해수에 의해 냉각될 수 있다. 상기 제3열교환부(2423)에서 제1냉각유체 및 제2냉각유체를 냉각시키고 가열된 해수는 상기 제2이송라인(26), 상기 접안설비(23), 및 상기 부유식 재기화설비(22)의 해수수급관을 통해 상기 재기화부(222)로 공급될 수 있다. 이에 따라, 상기 취수부(221)에 의해 상기 재기화부(222)로 공급되는 해수는 상기 재기화부(222)에서 냉각되고, 상기 제2열교환부(2422)에서 가열될 수 있다. 즉, 상기 부유식 재기화설비(22)에서 취수된 해수는 상기 재기화부(222)에서 액화천연가스(LNG)를 가열시키기 위한 가열매체로 사용되고, 상기 제3열교환부(2423)에서 제1냉각유체 및 제2냉각유체를 냉각시키기 위한 냉각매체로 사용될 수 있다.The third heat exchanger 2423 heat-exchanges the cooled seawater discharged from the regasification unit 222, the first cooling fluid, and the second cooling fluid. The cooled seawater discharged from the regasification unit 222 is connected to the third heat exchange unit 2423 through the seawater supply pipe of the eyepiece facility 23, the first transfer line 25, and the floating power generation facility 24. Can be supplied. The third heat exchange part 2423 is installed close to the seawater supply pipe, the first circulation pipe (FCL) and the second circulation pipe (SCL), the cooled seawater, the first cooling fluid, and the first 2 Cooling fluid can be heat exchanged. Accordingly, the first cooling fluid and the second cooling fluid may be cooled by the cooled seawater discharged from the regasification unit 222. The first cooling fluid and the second cooling fluid are cooled in the third heat exchanger 2423 and the heated sea water is supplied to the second transfer line 26, the eyepiece 23, and the floating regasification facility 22. It may be supplied to the regasification unit 222 through the seawater supply pipe of the). Accordingly, the seawater supplied to the regasification unit 222 by the intake unit 221 may be cooled in the regasification unit 222 and heated in the second heat exchange unit 2422. That is, the seawater withdrawn from the floating regasification unit 22 is used as a heating medium for heating the liquefied natural gas (LNG) in the regasification unit 222, the first cooling in the third heat exchange unit (2423) It can be used as a cooling medium for cooling the fluid and the second cooling fluid.
상기 제1순환배관 및 상기 제2순환배관이 상기 제3열교환부(2423)에 연결되지 않고 해수에 직접 연결될 경우, 상기 제1냉각유체 및 상기 제2냉각유체는 해수일 수 있다. 이 경우, 상기 제1냉각유체는 상기 제1순환배관을 따라 이동하여 상기 이종연료엔진(24111)을 직접 냉각시키고, 상기 제2냉각유체는 상기 제2순환배관을 따라 이동하여 상기 가스터빈(24121)을 직접 냉각시킬 수 있다.When the first circulation pipe and the second circulation pipe are directly connected to seawater without being connected to the third heat exchanger 2423, the first cooling fluid and the second cooling fluid may be seawater. In this case, the first cooling fluid moves along the first circulation pipe to directly cool the heterogeneous fuel engine 24111, and the second cooling fluid moves along the second circulation pipe to move the gas turbine 24121. ) Can be cooled directly.
본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 발전시스템(241)이 상기 제1발전기구(2411) 및 상기 제2발전기구(2412) 중 어느 것을 포함하는지에 따라 다양한 실시예를 포함할 수 있다. 이러한 실시예들을 구체적으로 살펴보면, 다음과 같다.The marine power generation system 21 according to the second embodiment of the present invention may have various embodiments depending on which of the first power generation mechanism 2411 and the second power generation mechanism 2412 is included in the power generation system 241. It may include. Looking at these embodiments in detail, as follows.
도 10을 참고하면, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 발전시스템(241)이 상기 제1발전기구(2411)를 포함하고, 상기 냉각시스템(242)이 상기 제1열교환부(2421)를 포함하도록 구현될 수 있다.Referring to FIG. 10, in the marine power generation system 21 according to the second embodiment of the present invention, the power generation system 241 includes the first power generation mechanism 2411, and the cooling system 242 includes the first power generation mechanism. It may be implemented to include one heat exchanger 2421.
상기 제1열교환부(2421)는 상기 재기화부(222)에서 액화천연가스(LNG)를 재기화시키고 냉각되어 배출되는 해수, 및 상기 이종연료엔진(24111)을 냉각시키기 위한 제1냉각유체를 열교환시킬 수 있다. 상기 제1냉각유체는 상기 재기화부(222)에서 공급되는 냉각된 해수에 의해 냉각될 수 있다. 상기 제1열교환부(2421)에 공급되는 해수는 상기 부유식 재기화설비(22)의 해수배출관로, 상기 제1이송라인(25), 상기 부유식 발전설비(24)의 해수수급관을 순차적으로 거쳐 상기 제1열교환부(2421)로 공급될 수 있다. 상기 해수배출관로는 상기 부유식 재기화설비(22)로부터 해수를 배출시키기 위한 관로이다. 상기 해수수급관은 해수를 공급받기 위한 관로이다. 상기 제1열교환부(2421)에서 상기 제1냉각유체를 냉각시키고 가열되어 배출되는 해수는 상기 재기화부(222)로 공급될 수 있다. 상기 제1열교환부(2421)에서 배출되는 해수는 상기 부유식 발전설비(24)의 해수배출관, 상기 제2이송라인(26), 상기 부유식 재기화설비(22)의 해수수급관을 순차적으로 거쳐 상기 재기화부(222)로 공급될 수 있다. 상기 제1열교환부(2421)에서 상기 재기화부(222)로 공급된 해수는 액화천연가스(LNG)를 재기화시키기 위한 열원으로 사용될 수 있다. 상기 제1열교환부(2421)에서 상기 재기화부(222)로 공급된 해수는 상기 취수부(221)에서 공급되는 해수와 병합된 후에 상기 액화천연가스(LNG)를 재기화시킬 수도 있다.The first heat exchanger 2421 heat-exchanges the liquefied natural gas (LNG) in the regasification unit 222 and the seawater discharged by cooling, and a first cooling fluid for cooling the heterogeneous fuel engine 24111. You can. The first cooling fluid may be cooled by the cooled seawater supplied from the regasification unit 222. The seawater supplied to the first heat exchange unit 2421 is a seawater discharge pipe of the floating regasification facility 22, and the seawater supply pipes of the first transfer line 25 and the floating power generation facility 24 are sequentially. By way of example, it may be supplied to the first heat exchanger 2421. The seawater discharge pipe is a pipe for discharging seawater from the floating regasification facility 22. The seawater supply pipe is a pipeline for receiving seawater. Sea water discharged by cooling and heating the first cooling fluid in the first heat exchange part 2421 may be supplied to the regasification part 222. The seawater discharged from the first heat exchange unit 2421 sequentially includes the seawater discharge pipe of the floating power generation facility 24, the second transfer line 26, and the seawater supply pipe of the floating regasification facility 22. Can be supplied to the regasification unit 222 through. Seawater supplied from the first heat exchange unit 2421 to the regasification unit 222 may be used as a heat source for regasifying liquefied natural gas (LNG). The seawater supplied from the first heat exchange unit 2421 to the regasification unit 222 may be regasified after liquefied natural gas (LNG) after merging with the seawater supplied from the intake unit 221.
따라서, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 다음과 같은 작용 효과를 도모할 수 있다.Therefore, the marine power generation system 21 according to the second embodiment of the present invention can achieve the following effects.
첫째, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 부유식 재기화설비(22)의 재기화부(222)로부터 냉각된 해수를 공급받아 상기 부유식 발전설비(24)의 이종연료엔진(24111)을 냉각시킬 수 있으므로, 해수를 직접 취수하여 상기 이종연료엔진(24111)을 냉각시키는 경우에 비해 상기 제1열교환부(2421)의 용량을 줄일 수 있다. 이에 따라, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 부유식 발전설비(24)의 전체적인 크기 및 중량을 감소시킬 수 있으므로, 수심이 낮은 연안 지역에 용이하게 설치될 수 있다. 또한, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 외부의 해수 온도에 덜 민감하게 반응할 수 있으므로, 상기 이종연료엔진(24111)을 안정적으로 냉각시킬 수 있을 뿐만 아니라 전기 생산량을 일정하게 유지시킬 수 있다.First, the offshore power generation system 21 according to the second embodiment of the present invention receives cooled seawater from the regasification unit 222 of the floating regasification facility 22, and heterogeneous of the floating power generation facility 24. Since the fuel engine 24111 can be cooled, the capacity of the first heat exchanger 2421 can be reduced as compared with the case where the seawater is directly taken in to cool the heterogeneous fuel engine 24111. Accordingly, the offshore power generation system 21 according to the second embodiment of the present invention can reduce the overall size and weight of the floating power generation equipment 24, and thus can be easily installed in a coastal region having a low water depth. . In addition, the offshore power generation system 21 according to the second embodiment of the present invention may react less sensitively to external seawater temperature, thereby not only cooling the heterogeneous fuel engine 24111 stably but also reducing the amount of electricity produced. Can be kept constant.
둘째, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 부유식 발전설비(24)의 제1열교환부(2421)에서 배출되는 가열된 해수를 상기 부유식 재기화설비(22)에서 액화천연가스(LNG)를 재기화시키는 열원으로 사용할 수 있다. 이에 따라, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 취수부(221)가 취수한 해수만을 이용하여 액화천연가스(LNG)를 재기화시키는 경우에 비해 액화천연가스(LNG)에 대한 재기화 효율을 더 향상시킬 수 있다. 따라서, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 정전과 같은 비상 상황 시 신속하게 전기를 생산할 수 있을 뿐만 아니라 전기 생산량을 더 증대시킬 수 있다.Second, the offshore power generation system 21 according to the second embodiment of the present invention is the floating regasification facility 22 for the heated seawater discharged from the first heat exchange unit 2421 of the floating power generation facility 24. Can be used as a heat source to regasify liquefied natural gas (LNG). Accordingly, in the offshore power generation system 21 according to the second embodiment of the present invention, compared to the case where the liquefied natural gas (LNG) is regasified using only the seawater collected by the intake unit 221, the liquefied natural gas (LNG). The regasification efficiency for can be further improved. Therefore, the offshore power generation system 21 according to the second embodiment of the present invention can not only produce electricity quickly in an emergency situation such as a power failure, but also increase the amount of electricity production.
도 11을 참고하면, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 발전시스템(241)이 상기 제2발전기구(2412)를 포함하고, 상기 냉각시스템(242)이 상기 제2열교환부(2422)를 포함할 수 있다. Referring to FIG. 11, in the marine power generation system 21 according to the second embodiment of the present invention, the power generation system 241 includes the second power generation mechanism 2412, and the cooling system 242 includes the first power generation system. It may include a two heat exchanger (2422).
상기 제2열교환부(2422)는 상기 재기화부(222)에서 액화천연가스(LNG)를 재기화시키고 냉각되어 배출되는 해수, 및 상기 가스터빈(24121)을 냉각시키기 위한 제2냉각유체를 열교환시킬 수 있다. 상기 제2냉각유체는 상기 재기화부(222)에서 공급되는 냉각된 해수에 의해 냉각될 수 있다. 상기 제2열교환부(2422)에 공급되는 해수는 상기 부유식 재기화설비(22)의 해수배출관로, 상기 제1이송라인(25), 상기 부유식 발전설비(24)의 해수수급관을 순차적으로 거쳐 상기 제2열교환부(2422)로 공급될 수 있다. 상기 제2열교환부(2422)에서 상기 제2냉각유체를 냉각시키고 가열되어 배출되는 해수는 상기 재기화부(222)로 공급될 수 있다. 상기 제2열교환부(2422)에서 배출되는 해수는 상기 부유식 발전설비(24)의 해수배출관, 상기 제2이송라인(26), 상기 부유식 재기화설비(22)의 해수수급관을 순차적으로 거쳐 상기 재기화부(222)로 공급될 수 있다. 상기 제2열교환부(2422)에서 상기 재기화부(222)로 공급된 해수는 액화천연가스(LNG)를 재기화시키기 위한 열원으로 사용될 수 있다. 상기 제2열교환부(2422)에서 상기 재기화부(222)로 공급된 해수는 상기 취수부(221)에서 공급되는 해수와 병합된 후에 상기 액화천연가스(LNG)를 재기화시킬 수도 있다.The second heat exchanger 2422 heat-exchanges the liquefied natural gas (LNG) in the regasification unit 222 and cools the discharged sea water and a second cooling fluid for cooling the gas turbine 24121. Can be. The second cooling fluid may be cooled by the cooled seawater supplied from the regasification unit 222. The seawater supplied to the second heat exchange unit 2422 is a seawater discharge pipe of the floating regasification facility 22, and the seawater supply pipes of the first transfer line 25 and the floating power generation facility 24 are sequentially. By way of example, it may be supplied to the second heat exchanger 2422. The seawater discharged by cooling the second cooling fluid in the second heat exchange part 2422 and heating it may be supplied to the regasification part 222. The seawater discharged from the second heat exchange unit 2422 sequentially includes the seawater discharge pipe of the floating power generation facility 24, the second transfer line 26, and the seawater supply pipe of the floating regasification facility 22. Can be supplied to the regasification unit 222 through. The seawater supplied from the second heat exchange unit 2422 to the regasification unit 222 may be used as a heat source for regasifying liquefied natural gas (LNG). The seawater supplied from the second heat exchange unit 2422 to the regasification unit 222 may be regasified after liquefied natural gas (LNG) after merging with the seawater supplied from the intake unit 221.
따라서, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 다음과 같은 작용 효과를 도모할 수 있다.Therefore, the marine power generation system 21 according to the second embodiment of the present invention can achieve the following effects.
첫째, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 부유식 재기화설비(22)의 재기화부(222)로부터 냉각된 해수를 공급받아 상기 부유식 발전설비(24)의 가스터빈(24121)을 냉각시킬 수 있으므로, 상기 제2열교환부(2422)의 용량을 줄일 수 있다. 이에 따라, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 부유식 발전설비(24)의 전체적인 크기 및 중량을 감소시킬 수 있으므로, 수심이 낮은 연안 지역에 용이하게 설치될 수 있다. 또한, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 외부의 해수 온도에 덜 민감하게 반응할 수 있으므로, 상기 가스터빈(24121)을 안정적으로 냉각시킬 수 있을 뿐만 아니라 전기 생산량을 일정하게 유지시킬 수 있다.First, the marine power generation system 21 according to the second embodiment of the present invention receives the cooled seawater from the regasification unit 222 of the floating regasification facility 22, and supplies the gas of the floating power generation facility 24. Since the turbine 24121 can be cooled, the capacity of the second heat exchanger 2422 can be reduced. Accordingly, the offshore power generation system 21 according to the second embodiment of the present invention can reduce the overall size and weight of the floating power generation equipment 24, and thus can be easily installed in a coastal region having a low water depth. . In addition, the offshore power generation system 21 according to the second embodiment of the present invention may react less sensitively to external seawater temperature, thereby not only cooling the gas turbine 24121 stably but also producing a constant amount of electricity. Can be maintained.
둘째, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 부유식 발전설비(24)의 제2열교환부(2422)에서 배출되는 가열된 해수를 상기 부유식 재기화설비(22)에서 액화천연가스(LNG)를 재기화시키는 열원으로 사용할 수 있다. 이에 따라, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 액화천연가스(LNG)에 대한 재기화 효율을 더 향상시킬 수 있다. 따라서, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 정전과 같은 비상 상황 시 신속하게 전기를 생산할 수 있을 뿐만 아니라 전기 생산량을 더 증대시킬 수 있다.Second, the offshore power generation system 21 according to the second embodiment of the present invention uses the floating regasification facility 22 to discharge the heated seawater discharged from the second heat exchange unit 2422 of the floating power generation facility 24. Can be used as a heat source to regasify liquefied natural gas (LNG). Accordingly, the offshore power generation system 21 according to the second embodiment of the present invention can further improve the regasification efficiency for liquefied natural gas (LNG). Therefore, the offshore power generation system 21 according to the second embodiment of the present invention can not only produce electricity quickly in an emergency situation such as a power failure, but also increase the amount of electricity production.
도 12를 참고하면, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 발전시스템(241)이 상기 제1발전기구(2411) 및 상기 제2발전기구(2412)를 포함하고, 상기 냉각시스템(242)이 상기 제3열교환부(2423)를 포함할 수 있다.Referring to FIG. 12, in the offshore power generation system 21 according to the second embodiment of the present invention, the power generation system 241 includes the first power generation mechanism 2411 and the second power generation mechanism 2412. The cooling system 242 may include the third heat exchanger 2423.
이 경우, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 제1발전기구(2411) 및 상기 제2발전기구(2412) 중 적어도 하나를 이용하여 전기를 생산할 수 있다. 상기 제3열교환부(2423)는 상기 재기화부(222)에서 액화천연가스(LNG)를 재기화시키고 냉각되어 배출되는 해수, 상기 이종연료엔진(24111)을 냉각시키기 위한 제1냉각유체, 및 상기 가스터빈(24121)을 냉각시키기 위한 제2냉각유체를 열교환시킬 수 있다. 상기 제1냉각유체 및 상기 제2냉각유체는 상기 재기화부(222)에서 공급되는 냉각된 해수에 의해 냉각될 수 있다. 상기 제3열교환부(2423)에 공급되는 해수는 상기 부유식 재기화설비(22)의 해수배출관로, 상기 제1이송라인(25), 상기 부유식 발전설비(24)의 해수수급관을 순차적으로 거쳐 상기 제3열교환부(2423)로 공급될 수 있다. 상기 제3열교환부(2423)에서 상기 제1냉각유체와 상기 제2냉각유체를 냉각시킨 후 가열되어 배출되는 해수는 상기 재기화부(222)로 공급될 수 있다. 상기 제3열교환부(2423)에서 배출되는 해수는 상기 부유식 발전설비(24)의 해수배출관, 상기 제2이송라인(26), 상기 부유식 재기화설비(22)의 해수수급관을 순차적으로 거쳐 상기 재기화부(222)로 공급될 수 있다. 상기 제3열교환부(2423)에서 상기 재기화부(222)로 공급된 해수는 액화천연가스(LNG)를 재기화시키기 위한 열원으로 사용될 수 있다. 상기 제3열교환부(2423)에서 상기 재기화부(222)로 공급된 해수는 상기 취수부(221)에서 공급되는 해수와 병합된 후에 상기 액화천연가스(LNG)를 재기화시킬 수도 있다.In this case, the marine power generation system 21 according to the second embodiment of the present invention may generate electricity using at least one of the first power generation mechanism 2411 and the second power generation mechanism 2412. The third heat exchanger 2423 regasifies the LNG by the regasification unit 222 and cools the discharged sea water, a first cooling fluid for cooling the heterogeneous fuel engine 24111, and the The second cooling fluid for cooling the gas turbine 24121 may be heat-exchanged. The first cooling fluid and the second cooling fluid may be cooled by the cooled seawater supplied from the regasification unit 222. The seawater supplied to the third heat exchange unit 2423 is a seawater discharge pipe of the floating regasification facility 22, and the seawater supply pipes of the first transfer line 25 and the floating power generation facility 24 are sequentially. Through it may be supplied to the third heat exchange unit (2423). The seawater, which is heated and discharged after cooling the first cooling fluid and the second cooling fluid in the third heat exchange part 2423, may be supplied to the regasification part 222. The seawater discharged from the third heat exchange unit 2423 sequentially includes the seawater discharge pipe of the floating power generation facility 24, the second transfer line 26, and the seawater supply pipe of the floating regasification facility 22. Can be supplied to the regasification unit 222 through. The seawater supplied from the third heat exchanger 2423 to the regasification unit 222 may be used as a heat source for regasifying liquefied natural gas (LNG). The seawater supplied from the third heat exchange unit 2423 to the regasification unit 222 may be regasified after liquefied natural gas (LNG) after merging with the seawater supplied from the intake unit 221.
따라서, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 다음과 같은 작용 효과를 도모할 수 있다.Therefore, the marine power generation system 21 according to the second embodiment of the present invention can achieve the following effects.
첫째, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 부유식 재기화설비(22)의 재기화부(222)로부터 냉각된 해수를 공급받아 상기 부유식 발전설비(24)의 이종연료엔진(24111) 및 가스터빈(24121) 중 적어도 하나를 냉각시킬 수 있으므로, 상기 제3열교환부(2423)의 용량을 줄일 수 있다. 이에 따라, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 부유식 발전설비(24)의 전체적인 크기 및 중량을 감소시킬 수 있으므로, 수심이 낮은 연안 지역에 용이하게 설치될 수 있다. 또한, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 외부의 해수 온도에 덜 민감하게 반응하므로, 상기 이종연료엔진(24111) 및 상기 가스터빈(24121)을 안정적으로 냉각시킬 수 있을 뿐만 아니라 전기 생산량을 일정하게 유지시킬 수 있다.First, the offshore power generation system 21 according to the second embodiment of the present invention receives cooled seawater from the regasification unit 222 of the floating regasification facility 22, and heterogeneous of the floating power generation facility 24. Since at least one of the fuel engine 24111 and the gas turbine 24121 may be cooled, the capacity of the third heat exchanger 2423 may be reduced. Accordingly, the offshore power generation system 21 according to the second embodiment of the present invention can reduce the overall size and weight of the floating power generation equipment 24, and thus can be easily installed in a coastal region having a low water depth. . In addition, since the offshore power generation system 21 according to the second embodiment of the present invention reacts less sensitively to external seawater temperature, it is possible to stably cool the heterogeneous fuel engine 24111 and the gas turbine 24121. In addition, electricity production can be kept constant.
둘째, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 부유식 발전설비(24)의 제3열교환부(2423)에서 배출되는 가열된 해수를 상기 부유식 재기화설비(22)에서 액화천연가스(LNG)를 재기화시키는 열원으로 사용할 수 있다. 이에 따라, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 취수부(221)가 취수한 해수만을 이용하여 액화천연가스(LNG)를 재기화시키는 경우에 비해 액화천연가스(LNG)에 대한 재기화 효율을 더 향상시킬 수 있다. 따라서, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 정전과 같은 비상 상황 시 신속하게 전기를 생산할 수 있을 뿐만 아니라 전기 생산량을 더 증대시킬 수 있다.Second, the offshore power generation system 21 according to the second embodiment of the present invention uses the floating seawater discharged from the third heat exchange unit 2423 of the floating power generation facility 24 to the floating regasification facility 22. Can be used as a heat source to regasify liquefied natural gas (LNG). Accordingly, in the offshore power generation system 21 according to the second embodiment of the present invention, compared to the case where the liquefied natural gas (LNG) is regasified using only the seawater collected by the intake unit 221, the liquefied natural gas (LNG). The regasification efficiency for can be further improved. Therefore, the offshore power generation system 21 according to the second embodiment of the present invention can not only produce electricity quickly in an emergency situation such as a power failure, but also increase the amount of electricity production.
셋째, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 복수개의 발전기를 이용하여 전기를 생산하도록 구현됨으로써, 전기 생산량을 증대시킬 수 있을 뿐만 아니라 정전과 같은 비상 시 상기 실시예들에 비해 신속하게 전기를 생산할 수 있다. 또한, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 육상의 사용처로 공급하기 위한 전기 생산이 중단되는 것을 방지할 수 있다.Third, the marine power generation system 21 according to the second embodiment of the present invention is implemented to produce electricity by using a plurality of generators, thereby not only increasing the amount of electricity produced but also in the above-described embodiments in case of an emergency such as a power failure. It can produce electricity faster than that. In addition, the marine power generation system 21 according to the second embodiment of the present invention can prevent the generation of electricity for supply to the land use.
넷째, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 천연가스(NG)가 상기 이종연료엔진(24111) 및 상기 가스터빈(24121)으로 분기되는 부분에 밸브를 설치함으로써, 상기 이종연료엔진(24111) 및 상기 가스터빈(24121)으로 공급되는 천연가스(NG)의 양을 조절할 수 있다. 이에 따라, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 제1발전기(24112), 상기 제2발전기(24122) 및 상기 제3발전기(24125)가 각각 생산하는 전기의 양을 조절할 수 있다.Fourth, in the offshore power generation system 21 according to the second embodiment of the present invention, by installing a valve at a portion where the natural gas NG branches to the heterogeneous fuel engine 24111 and the gas turbine 24121, The amount of natural gas NG supplied to the heterogeneous fuel engine 24111 and the gas turbine 24121 may be adjusted. Accordingly, the marine power generation system 21 according to the second embodiment of the present invention measures the amount of electricity produced by the first generator 24112, the second generator 24122, and the third generator 24125, respectively. I can regulate it.
도시되지 않았지만, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 제1순환배관, 상기 제2순환배관이 해수에 연결되도록 설치될 경우, 상기 제1열교환부(2421), 상기 제2열교환부(2422) 및 상기 제3열교환부(2423)를 포함하지 않을 수도 있다. 따라서, 본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 발전시스템(241)을 냉각시키기 위한 구축비용을 절감할 수 있다.Although not shown, when the marine power generation system 21 according to the second embodiment of the present invention is installed so that the first circulation pipe and the second circulation pipe are connected to sea water, the first heat exchange unit 2421 and the The second heat exchanger 2422 and the third heat exchanger 2423 may not be included. Therefore, the offshore power generation system 21 according to the second embodiment of the present invention can reduce the construction cost for cooling the power generation system 241.
본 발명의 제2실시예에 따른 해상발전시스템(21)은 상기 취수부(221)와 상기 재기화부(222)를 연결하는 해수관로에 설치되는 해수밸브, 상기 해수밸브를 제어하기 위한 해수유량제어부, 및 상기 해수관로 내부의 해수 유량을 측정하기 위한 해수유량측정센서를 더 포함할 수 있다. 상기 해수밸브는 상기 재기화부(222)에 공급되는 해수의 양을 조절하기 위해 상기 해수관로 내부가 개방되는 정도를 조절하기 위한 것이다. 상기 해수밸브는 상기 해수유량제어부에 의해 제어됨으로써, 상기 해수관로 내부의 개방 정도를 조절할 수 있다. 상기 해수유량제어부는 무선통신 및 유선통신 중 적어도 하나의 방법으로 상기 해수유량측정센서와 연결됨으로써, 상기 해수유량측정센서로부터 상기 해수관로 내부의 해수 유량에 대한 정보를 제공받을 수 있다. 상기 해수유량제어부는 상기 해수유량측정센서가 측정한 해수 유량이 기설정된 기준해수유량을 초과하면, 상기 해수관로의 개방 정도가 감소되도록 상기 해수밸브를 제어할 수 있다. 이 경우, 상기 취수부(221)에서 상기 재기화부(222)로 공급되는 해수의 유량이 감소될 수 있다. 상기 해수유량제어부는 상기 해수유량측정센서가 측정한 해수 유량이 기설정된 기준해수유량 미만이면, 상기 해수관로의 개방 정도가 증가되도록 상기 해수밸브를 제어할 수 있다. 이 경우, 상기 취수부(221)에서 상기 재기화부(222)로 공급되는 해수의 유량이 증가될 수 있다. 상기 기준해수유량은 상기 액화천연가스(LNG)를 재기화시키는데 필요한 최소 해수 유량을 의미하며, 작업자에 의해 미리 설정될 수 있다. 상기 해수유량제어부는 상기 재기화부(222)에 해수를 공급할 필요가 없는 경우, 상기 해수관로가 폐쇄되도록 상기 해수밸브를 제어함으로써 상기 재기화부(222)에 공급되는 해수를 차단할 수 있다. 상기 재기화부(222)에 해수를 공급할 필요가 없는 경우는 상기 재기화부(222)에 이미 공급된 해수의 양이 상기 재기화부(222)에서 액화천연가스(LNG)를 재기화시키기에 충분할 뿐만 아니라, 상기 냉각시스템(242)에서 이종연료엔진(2111) 및 가스터빈(24121) 중 적어도 하나를 냉각시키기에 충분한 경우이다. 이에 따라, 본 발명의 제2실시예에 따른 해상시스템(21)은 외부로부터 취수하는 해수의 양을 줄일 수 있으므로, 자원이 낭비되는 것을 방지할 수 있다.The marine power generation system 21 according to the second embodiment of the present invention includes a seawater valve installed in a seawater pipe connecting the intake unit 221 and the regasification unit 222, and a seawater flow rate control unit for controlling the seawater valve. And, it may further comprise a seawater flow rate sensor for measuring the seawater flow rate inside the seawater pipe. The seawater valve is for adjusting the degree of opening of the seawater pipe to adjust the amount of seawater supplied to the regasification unit 222. The seawater valve may be controlled by the seawater flow rate controller to adjust the degree of opening of the seawater pipe. The seawater flow rate control unit may be connected to the seawater flow rate sensor by at least one of wireless communication and wired communication, so that the seawater flow rate sensor may receive information about the seawater flow rate inside the seawater pipe from the seawater flow rate sensor. The seawater flow rate control unit may control the seawater valve so that the opening degree of the seawater pipe is reduced when the seawater flow rate measured by the seawater flow rate measurement sensor exceeds a preset reference seawater flow rate. In this case, the flow rate of seawater supplied from the intake unit 221 to the regasification unit 222 may be reduced. The seawater flow rate control unit may control the seawater valve so that the opening degree of the seawater pipe is increased when the seawater flow rate measured by the seawater flow rate measurement sensor is less than a predetermined reference seawater flow rate. In this case, the flow rate of seawater supplied from the intake unit 221 to the regasification unit 222 may be increased. The reference seawater flow rate refers to the minimum seawater flow rate required to regasify the liquefied natural gas (LNG), and may be preset by an operator. When the seawater flow rate control unit does not need to supply seawater to the regasification unit 222, the seawater flow rate control unit may block the seawater supplied to the regasification unit 222 by controlling the seawater valve to close the seawater pipe. If it is not necessary to supply seawater to the regasification unit 222, the amount of seawater already supplied to the regasification unit 222 is not only sufficient to regasify the liquefied natural gas (LNG) in the regasification unit 222 In this case, the cooling system 242 is sufficient to cool at least one of the heterogeneous fuel engine 2111 and the gas turbine 24121. Accordingly, since the marine system 21 according to the second embodiment of the present invention can reduce the amount of seawater taken from the outside, it is possible to prevent waste of resources.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiment and the accompanying drawings, and it is common in the art that various substitutions, modifications, and changes can be made without departing from the technical spirit of the present invention. It will be evident to those who have knowledge of.

Claims (17)

  1. 해상에 부유한 상태에서 액화천연가스(LNG)를 재기화시키는 재기화공정을 수행하기 위한 부유식 재기화설비;A floating regasification facility for performing a regasification process for regasifying liquefied natural gas (LNG) in a floating state at sea;
    상기 부유식 재기화설비가 접안되도록 해저 지면에 고정되게 설치되는 접안설비; 및An eyepiece installed to be fixed to the sea floor so that the floating regasification facility is docked; And
    해상에 부유한 상태에서 상기 접안설비에 접안되고, 상기 접안설비를 통해 상기 부유식 재기화설비가 재기화한 천연가스를 공급받아 전기를 생산하기 위한 부유식 발전설비를 포함하는 해상발전시스템.An offshore power generation system comprising a floating power generation equipment which is docked to the eyepiece facility in a floating state at sea, and receives electricity from the regasified regasification facility through the eyepiece facility to produce electricity.
  2. 제1항에 있어서,The method of claim 1,
    상기 부유식 재기화설비는 액화천연가스를 재기화시키는 재기화부, 및 상기 재기화부가 설치되는 재기화부유본체를 포함하고,The floating regasification facility includes a regasification unit for regasifying liquefied natural gas, and a regasification unit body in which the regasification unit is installed,
    상기 부유식 발전설비는 상기 접안설비를 통해 공급되는 천연가스를 이용하여 전기를 생산하기 위한 발전시스템, 및 상기 발전시스템이 설치되는 발전부유본체를 포함하며,The floating power generation equipment includes a power generation system for producing electricity using natural gas supplied through the berthing equipment, and a power generation unit main body in which the power generation system is installed.
    상기 접안설비는 상기 재기화부유본체 및 상기 발전부유본체가 서로 이격된 위치에서 접안되는 접안본체를 포함하는 것을 특징으로 하는 해상발전시스템.The eyepiece facility is an offshore power generation system, characterized in that the eyepiece main body and the eyepiece in which the regasification unit main body and the power generation unit main body is docked at a distance from each other.
  3. 제1항에 있어서, 상기 부유식 재기화설비는According to claim 1, The floating regasification plant
    액화천연가스를 저장하기 위한 LNG저장탱크;LNG storage tank for storing liquefied natural gas;
    상기 LNG저장탱크로부터 공급되는 액화천연가스를 재기화시키기 위한 재기화부; 및Regasification unit for regasifying the liquefied natural gas supplied from the LNG storage tank; And
    상기 LNG저장탱크 및 상기 재기화부가 설치되는 재기화부유본체를 포함하는 해상발전시스템.The offshore power generation system including the LNG storage tank and the regasification unit oil main body is installed.
  4. 제1항에 있어서,The method of claim 1,
    상기 부유식 재기화설비는 상기 재기화공정을 수행하는 작업자들이 거주하기 위한 거주구를 포함하는 해상발전시스템.The floating regasification system includes a residential area for residence of the workers performing the regasification process.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 거주구는 상기 접안설비 및 상기 부유식 발전설비 중 적어도 한 곳에서 작업하는 작업자들에 의해 공용(共用)되는 것을 특징으로 하는 해상발전시스템.And said residential port is shared by workers working at at least one of said eyepiece facility and said floating power generation facility.
  6. 제1항에 있어서,The method of claim 1,
    상기 접안설비는 상기 부유식 재기화설비 및 상기 부유식 발전설비 중 적어도 하나를 접안시키기 위한 접안본체, 및 상기 접안본체와 상기 부유식 재기화설비 및 상기 접안본체와 상기 부유식 발전설비를 각각 연결시키기 위한 연결기구를 포함하고,The eyepiece is an eyepiece for docking at least one of the floating regasification facility and the floating power generation facility, and the eyepiece and the floating regasification facility, the eyepiece main body and the floating power generation facility, respectively. Including a connecting mechanism for
    상기 연결기구는,The connecting mechanism,
    상기 접안설비에 서로 이격되게 고정 설치되는 복수개의 고정부재; 및A plurality of fixing members fixedly installed to be spaced apart from each other in the eyepiece; And
    상기 고정부재에 일측이 결합되고, 타측이 상기 부유식 재기화설비 및 상기 부유식 발전설비 중 적어도 하나에 결합되기 위한 연결부재를 포함하는 해상발전시스템.One side is coupled to the fixing member, the other side is an offshore power generation system including a connection member for coupling to at least one of the floating regasification plant and the floating power plant.
  7. 제1항에 있어서,The method of claim 1,
    상기 접안설비는 상기 부유식 재기화설비로부터 재기화된 천연가스를 공급받아 상기 부유식 발전설비에 공급하기 위한 로딩암을 포함하는 해상발전시스템.The docking facility includes a loading arm for receiving the regasified natural gas from the floating regasification facility to supply to the floating power generation facility.
  8. 제7항에 있어서, 상기 로딩암은The method of claim 7, wherein the loading arm is
    상기 접안설비의 일측에 설치되고, 상기 부유식 재기화설비가 재기화시킨 천연가스를 공급받기 위한 제1로딩기구; 및A first loading mechanism installed at one side of the eyepiece and configured to receive natural gas regasified by the floating regasification facility; And
    상기 접안설비의 타측에 설치되고, 상기 제1로딩기구로부터 천연가스를 공급받아 상기 부유식 발전설비에 천연가스를 공급하기 위한 제2로딩기구를 포함하는 해상발전시스템.An offshore power generation system installed on the other side of the eyepiece, and comprising a second loading mechanism for receiving natural gas from the first loading mechanism and supplying natural gas to the floating power generation equipment.
  9. 제8항에 있어서, 상기 제1로딩기구는The method of claim 8, wherein the first loading mechanism
    상기 접안설비에 결합되는 제1베이스프레임;A first base frame coupled to the eyepiece;
    상기 제1베이스프레임에 회전 가능하게 결합되는 제1선회프레임;A first pivot frame rotatably coupled to the first base frame;
    상기 제1선회프레임에 길이 조절이 가능하게 결합되는 제1승강프레임;A first elevating frame coupled to the first pivot frame to be adjustable in length;
    상기 제1승강프레임에 회전 가능하게 결합되는 제1암프레임; 및A first arm frame rotatably coupled to the first lifting frame; And
    상기 제1암프레임에 결합되고, 상기 부유식 재기화설비로부터 공급되는 천연가스를 상기 부유식 발전설비로 이동시키기 위한 제1파이프라인을 포함하는 해상발전시스템.And a first pipeline coupled to the first arm frame and configured to move natural gas supplied from the floating regasification plant to the floating power plant.
  10. 제9항에 있어서, 상기 제2로딩기구는The method of claim 9, wherein the second loading mechanism
    상기 접안설비에 결합되는 제2베이스프레임;A second base frame coupled to the eyepiece;
    상기 제2베이스프레임에 회전 가능하게 결합되는 제2선회프레임;A second pivot frame rotatably coupled to the second base frame;
    상기 제2선회프레임에 길이 조절이 가능하게 결합되는 제2승강프레임;A second elevating frame coupled to the second pivot frame to be adjustable in length;
    상기 제2승강프레임에 회전 가능하게 결합되는 제2암프레임; 및A second arm frame rotatably coupled to the second lifting frame; And
    상기 제2암프레임에 결합되고, 상기 제1파이프라인으로부터 공급되는 천연가스를 상기 부유식 발전설비로 이동시키기 위한 제2파이프라인을 포함하는 해상발전시스템.And a second pipeline coupled to the second arm frame and configured to move natural gas supplied from the first pipeline to the floating power plant.
  11. 제1항에 있어서,The method of claim 1,
    상기 접안설비는 상기 부유식 발전설비가 생산한 전기를 공급받아 육상으로 송전하기 위한 송전기구를 포함하는 해상발전시스템.The docking facility is a marine power generation system including a power transmission mechanism for transmitting power to the land receiving the electricity produced by the floating power generation equipment.
  12. 제1항에 있어서,The method of claim 1,
    상기 부유식 발전설비는 상기 접안설비를 통해 공급되는 천연가스를 이용하여 전기를 생산하기 위한 발전시스템, 및 상기 발전시스템이 설치되는 발전부유본체를 포함하고,The floating power generation equipment includes a power generation system for producing electricity using natural gas supplied through the eyepiece, and a power generation unit main body in which the power generation system is installed.
    상기 발전시스템은 상기 천연가스 및 디젤연료 중 적어도 하나를 연소시켜 동력을 발생시키는 이종연료엔진, 및 상기 이종연료엔진에 연결되고 상기 이종연료엔진이 발생시킨 동력을 이용하여 전기를 생산하는 제1발전기를 포함하는 제1발전기구를 포함하는 해상발전시스템.The power generation system is a heterogeneous fuel engine that generates power by burning at least one of the natural gas and diesel fuel, and a first generator that is connected to the heterogeneous fuel engine and generates electricity using the power generated by the heterogeneous fuel engine. Offshore power generation system comprising a first power generation mechanism comprising a.
  13. 제1항에 있어서,The method of claim 1,
    상기 부유식 발전설비는 상기 접안설비를 통해 공급되는 천연가스를 이용하여 전기를 생산하기 위한 발전시스템, 및 상기 발전시스템이 설치되는 발전부유본체를 포함하고,The floating power generation equipment includes a power generation system for producing electricity using natural gas supplied through the eyepiece, and a power generation unit main body in which the power generation system is installed.
    상기 발전시스템은 상기 천연가스를 연소시켜 동력을 발생시키는 가스터빈, 상기 가스터빈에 연결되고 상기 가스터빈이 발생시킨 동력을 이용하여 전기를 생산하는 제2발전기, 상기 가스터빈에서 배출되는 배기가스의 폐열을 회수하여 스팀을 발생시키는 배열회수보일러, 상기 배열회수보일러로부터 스팀을 공급받아 동력을 발생시키는 스팀터빈, 및 상기 스팀터빈에 연결되고 상기 스팀터빈이 발생시킨 동력을 이용하여 전기를 생산하는 제3발전기를 포함하는 제2발전기구를 포함하는 해상발전시스템.The power generation system includes a gas turbine configured to generate power by burning the natural gas, a second generator connected to the gas turbine to generate electricity by using the power generated by the gas turbine, and exhaust gas discharged from the gas turbine. A heat recovery boiler for recovering waste heat to generate steam, a steam turbine supplied with steam from the heat recovery boiler to generate power, and a power generator connected to the steam turbine to generate electricity by using the power generated by the steam turbine. An offshore power generation system comprising a second power generation mechanism including a third generator.
  14. 제1항에 있어서,The method of claim 1,
    상기 부유식 발전설비는 상기 접안설비를 통해 공급되는 천연가스를 이용하여 전기를 생산하기 위한 발전시스템, 및 상기 발전시스템이 설치되는 발전부유본체를 포함하고,The floating power generation equipment includes a power generation system for producing electricity using natural gas supplied through the eyepiece, and a power generation unit main body in which the power generation system is installed.
    상기 발전시스템은,The power generation system,
    상기 천연가스 및 디젤연료 중 적어도 하나를 연소시켜 동력을 발생시키는 이종연료엔진, 및 상기 이종연료엔진에 연결되고 상기 이종연료엔진이 발생시킨 동력을 이용하여 전기를 생산하는 제1발전기를 포함하는 제1발전기구; 및A heterogeneous fuel engine for generating power by burning at least one of the natural gas and diesel fuel, and a first generator connected to the heterogeneous fuel engine and generating electricity using the power generated by the heterogeneous fuel engine; 1 power generation mechanism; And
    상기 제1발전기구로부터 이격된 위치에 설치되고 상기 천연가스를 연소시켜 동력을 발생시키는 가스터빈, 상기 가스터빈에 연결되고 상기 가스터빈이 발생시킨 동력을 이용하여 전기를 생산하는 제2발전기, 상기 가스터빈에서 배출되는 배기가스의 폐열을 회수하여 스팀을 발생시키는 배열회수보일러, 상기 배열회수보일러로부터 스팀을 공급받아 동력을 발생시키는 스팀터빈, 및 상기 스팀터빈에 연결되고 상기 스팀터빈이 발생시킨 동력을 이용하여 전기를 생산하는 제3발전기를 포함하는 제2발전기구를 포함하는 해상발전시스템.A gas turbine installed at a position spaced apart from the first power generation mechanism and generating power by burning the natural gas; a second generator connected to the gas turbine and generating electricity by using the power generated by the gas turbine; A heat recovery boiler for generating steam by recovering waste heat of the exhaust gas discharged from the gas turbine, a steam turbine supplied with steam from the heat recovery boiler to generate power, and a power generated by the steam turbine connected to the steam turbine. Offshore power generation system comprising a second power generation mechanism including a third generator for producing electricity by using.
  15. 제14항에 있어서,The method of claim 14,
    상기 부유식 발전설비는 상기 제1발전기구 및 상기 제2발전기구 중 적어도 하나를 이용하여 전기를 생산하는 것을 특징으로 하는 해상발전시스템.The floating power generation system is an offshore power generation system, characterized in that for producing electricity using at least one of the first and second power generation mechanism.
  16. 재기화부 및 재기화부유본체를 포함하는 부유식 재기화설비가 접안되는 접안본체를 포함하는 접안설비를 통해 상기 부유식 재기화설비가 재기화한 천연가스를 공급받아 전기를 생산하기 위한 발전시스템; 및A power generation system for supplying natural gas regasified by the floating regasification facility to produce electricity through an eyepiece including the eyepiece body to which the floating regasification facility comprising a regasification unit and a regasification unit body is docked; And
    상기 발전시스템이 설치되는 발전부유본체를 포함하고,It includes a power generation unit main body, in which the power generation system is installed,
    상기 발전시스템은 상기 천연가스 및 디젤연료 중 적어도 하나를 연소시켜 동력을 발생시키는 이종연료엔진, 및 상기 이종연료엔진에 연결되고 상기 이종연료엔진이 발생시킨 동력을 이용하여 전기를 생산하는 제1발전기를 포함하는 제1발전기구를 포함하는 부유식 발전설비.The power generation system is a heterogeneous fuel engine that generates power by burning at least one of the natural gas and diesel fuel, and a first generator that is connected to the heterogeneous fuel engine and generates electricity using the power generated by the heterogeneous fuel engine. Floating power generation equipment comprising a first power generation mechanism including a.
  17. 재기화부 및 재기화부유본체를 포함하는 부유식 재기화설비가 접안되는 접안본체를 포함하는 접안설비를 통해 상기 부유식 재기화설비가 재기화한 천연가스를 공급받아 전기를 생산하기 위한 발전시스템; 및A power generation system for supplying natural gas regasified by the floating regasification facility to produce electricity through an eyepiece including the eyepiece body to which the floating regasification facility comprising a regasification unit and a regasification unit body is docked; And
    상기 발전시스템이 설치되는 발전부유본체를 포함하고,It includes a power generation unit main body, the power generation system is installed,
    상기 발전시스템은 상기 천연가스를 연소시켜 동력을 발생시키는 가스터빈, 상기 가스터빈에 연결되고 상기 가스터빈이 발생시킨 동력을 이용하여 전기를 생산하는 제2발전기, 상기 가스터빈에서 배출되는 배기가스의 폐열을 회수하여 스팀을 발생시키는 배열회수보일러, 상기 배열회수보일러로부터 스팀을 공급받아 동력을 발생시키는 스팀터빈, 및 상기 스팀터빈에 연결되고 상기 스팀터빈이 발생시킨 동력을 이용하여 전기를 생산하는 제3발전기를 포함하는 제2발전기구를 포함하는 부유식 발전설비.The power generation system includes a gas turbine configured to generate power by burning the natural gas, a second generator connected to the gas turbine to generate electricity by using the power generated by the gas turbine, and exhaust gas discharged from the gas turbine. A heat recovery boiler for recovering waste heat to generate steam, a steam turbine supplied with steam from the heat recovery boiler to generate power, and a power generator connected to the steam turbine to generate electricity by using the power generated by the steam turbine. A floating power plant comprising a second power generation mechanism including a third generator.
PCT/KR2018/000714 2017-01-16 2018-01-16 Offshore power generation system WO2018131980A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112019014535-4A BR112019014535A2 (en) 2017-01-16 2018-01-16 OFFSHORE POWER GENERATION SYSTEM

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20170007078 2017-01-16
KR10-2017-0007078 2017-01-16
KR1020170082736A KR102077888B1 (en) 2017-01-16 2017-06-29 Offshore Power System
KR1020170082812A KR102077889B1 (en) 2017-01-16 2017-06-29 Offshore Power System
KR10-2017-0082812 2017-06-29
KR10-2017-0082736 2017-06-29

Publications (1)

Publication Number Publication Date
WO2018131980A1 true WO2018131980A1 (en) 2018-07-19

Family

ID=62839491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000714 WO2018131980A1 (en) 2017-01-16 2018-01-16 Offshore power generation system

Country Status (1)

Country Link
WO (1) WO2018131980A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100074692A1 (en) * 2006-09-11 2010-03-25 Mark E Ehrhardt Open-Sea Berth LNG Import Terminal
KR101541127B1 (en) * 2013-03-15 2015-08-03 삼성중공업 주식회사 Floating Power Sharing Method using Floating Power Sharing Unit
KR20150091403A (en) * 2013-01-21 2015-08-10 엠에이치아이 베스타스 오프쇼어 윈드 에이/에스 Method for maintaining floating wind-power generation device
KR101559411B1 (en) * 2014-03-14 2015-10-12 대우조선해양 주식회사 Control system for fsru, and method thereof
KR20160137089A (en) * 2015-05-22 2016-11-30 대우조선해양 주식회사 Power generation system of floating marine structure and method for supplying fuel of the power generation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100074692A1 (en) * 2006-09-11 2010-03-25 Mark E Ehrhardt Open-Sea Berth LNG Import Terminal
KR20150091403A (en) * 2013-01-21 2015-08-10 엠에이치아이 베스타스 오프쇼어 윈드 에이/에스 Method for maintaining floating wind-power generation device
KR101541127B1 (en) * 2013-03-15 2015-08-03 삼성중공업 주식회사 Floating Power Sharing Method using Floating Power Sharing Unit
KR101559411B1 (en) * 2014-03-14 2015-10-12 대우조선해양 주식회사 Control system for fsru, and method thereof
KR20160137089A (en) * 2015-05-22 2016-11-30 대우조선해양 주식회사 Power generation system of floating marine structure and method for supplying fuel of the power generation system

Similar Documents

Publication Publication Date Title
KR101809000B1 (en) Method for maintaining floating wind-power generation device
AU2009237936B2 (en) An improved turbine installation method
CN106926996B (en) The portable small-sized underwater robot of closed shelves
WO2016148412A1 (en) Submersible power generation platform
US8915271B2 (en) System and method for fluids transfer between ship and storage tank
CN102395508A (en) Dockside ship-to-ship transfer of lng
WO2012091336A2 (en) Facilities for offshore liquefied natural gas floating storage with jack-up platform regasification unit
NO160294B (en) SUBJECT OPENING PLUG FOR CONNECTING FLEXIBLE CABLES TO A PROCESSING VESSEL.
US10358338B2 (en) Auto-balancing hose system and method for fluid transfer
CN109416015A (en) Underwater power station, system and method
WO2018131980A1 (en) Offshore power generation system
CN210734442U (en) Floating transmission structure and transmission system for transmitting fluid or electric power
KR102077889B1 (en) Offshore Power System
WO2023101242A1 (en) Exchange-type ocean energy storage system and control method therefor
CN210734441U (en) Floating transmission structure and transmission system for transmitting fluid or electric power
WO2023080308A1 (en) Ecologically friendly aquatic farm-type mooring anchor module, floating solar panel installation structure comprising same, floating wind power generator installation structure, and floating breakwater installation structure
CN210526800U (en) Single-upright-column mooring type wellhead production operation platform
RU2200109C1 (en) Complex for transfer of liquid cargo to tanker (versions)
WO2020032406A1 (en) Lng bunkering equipment test and evaluation system
CN116238657B (en) Arrangement form and operation method of floating structure in limited sea area
WO2023075321A1 (en) Marine hydrogen charging station
US11760446B2 (en) Offshore LNG processing facility
US11440626B2 (en) System and method for power and data transmission in a body of water to unmanned underwater vehicles
CN202098538U (en) LNG (liquefied natural gas) storage and transportation system as well as floating type receiving platform thereof
WO2023219515A1 (en) Offshore energy supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18738779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019014535

Country of ref document: BR

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/10/2019)

ENP Entry into the national phase

Ref document number: 112019014535

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190715

122 Ep: pct application non-entry in european phase

Ref document number: 18738779

Country of ref document: EP

Kind code of ref document: A1