WO2018131821A1 - Automatic angle-of-attack control wing and aircraft and vessels comprising automatic angle-of-attack control wing - Google Patents

Automatic angle-of-attack control wing and aircraft and vessels comprising automatic angle-of-attack control wing Download PDF

Info

Publication number
WO2018131821A1
WO2018131821A1 PCT/KR2017/015135 KR2017015135W WO2018131821A1 WO 2018131821 A1 WO2018131821 A1 WO 2018131821A1 KR 2017015135 W KR2017015135 W KR 2017015135W WO 2018131821 A1 WO2018131821 A1 WO 2018131821A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
wing
attack
rotation
propeller
Prior art date
Application number
PCT/KR2017/015135
Other languages
French (fr)
Korean (ko)
Inventor
최익현
Original Assignee
한국항공우주연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170053752A external-priority patent/KR101936196B1/en
Priority claimed from KR1020170174008A external-priority patent/KR101988383B1/en
Application filed by 한국항공우주연구원 filed Critical 한국항공우주연구원
Publication of WO2018131821A1 publication Critical patent/WO2018131821A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H3/00Propeller-blade pitch changing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/58Transmitting means, e.g. interrelated with initiating means or means acting on blades
    • B64C27/59Transmitting means, e.g. interrelated with initiating means or means acting on blades mechanical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/38Adjustment of complete wings or parts thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to fixed or rotary blades such as propellers / rotors and wind turbine blades of aircraft / ships, and more specifically, the angle of attack is automatically adjusted by the change of aerodynamic force according to the operating conditions of the aircraft. It is about.
  • Streamlined vanes are characterized by a high angle of lift (lift-to-drag ratio) as they pass through the fluid with an angle of attack within the appropriate range. At this time, if the angle of attack of the wing is not within the appropriate range, the ratio of the lowering ratio is lowered and the efficiency as a wing is lowered.
  • lift-to-drag ratio lift-to-drag ratio
  • FIG. 1 is a diagram showing the relationship between the lift and drag acting on the wing of the aircraft, showing the relationship between the lift and drag according to the change in the angle of attack.
  • the angle of attack of the main wing is controlled by the attitude control of the aircraft.
  • separate means are used to vary the angle of attack of the rotor blades from time to time, depending on the operating conditions of the aircraft (rising / lowering / forwarding / stopping).
  • the helicopter which is a typical rotorcraft aircraft, applies a complex device called a swash plate in the rotor system to adjust the angle of attack of the rotor blades (rotary blades) every turn to generate aerodynamics suitable for various operating conditions.
  • the propellers of fixed wing aircraft or screw propellers of large ships use simple variable pitch propellers rather than helicopter rotor systems.
  • the angle of attack of propeller blades is determined using a separate control device depending on the operating conditions. Is adjusting.
  • most small fixed-wing aircraft or ship propulsion systems use fixed-pitch propellers, and propeller wing angles cannot be actively changed due to high / low speed operating conditions.
  • the rotor system of a multicopter or a drone has a large number of rotor blades, and it is difficult to apply a swash plate or a variable pitch propeller system of a helicopter due to the relatively small size of the drone and the large number of rotor systems. .
  • Figure 2 shows an example of a conventional variable pitch control propeller for aircraft or ships.
  • the propeller (P) has a center of rotation (C) in the center of the cross section, and the pitch angle is artificially adjusted by using a pitch control device using a separate power.
  • the angle of attack of the wing is automatically adjusted to provide an automatic angle of attack which maintains the standard angle of attack with optimum efficiency at all times.
  • the angle of attack of the wing when the angle of attack of the wing is changed from the position of the angle of attack by the change of the fluid flow direction, the angle of attack is automatically rotated around the angle of attack angle adjustment axis, and the angle of attack is automatically adjusted.
  • the angle of attack adjustment axis S allows the vane to pass through a point on the downward extension of the force vector received from the fluid at the reference angle of attack.
  • a rotary power device (M) for generating rotary power for generating rotary power; And a rotating member 100 provided at an upper side of the rotary power unit and rotating to receive the rotary force of the rotary power unit, wherein the wings are formed by bending the wing horizontal portion W1 and the wing horizontal portion. It consists of a root portion (W2), the wing root portion (W2) is attached to the rotating member 100 to be three-axis rotatable.
  • the blade root portion (W2) and the rotating member 100 uses a rod end or ring-shaped connecting means for the three-axis rotation possible connection.
  • a fastening member 110 fixedly mounted to the rotating member 100; And a fastening shaft 120 connecting the fastening member and the wing root portion W2.
  • a wing tip (W3) is formed bent with the wing horizontal portion (W1), the wing root portion and the wing tip is formed below the wing horizontal portion is inclined forward.
  • the upper surface of the rotating member 100 further includes a wing displacement support 200 for preventing the deflection of the wing and limiting the angle of attack of the wing, the wing displacement support is the rear of the wing root portion (W2) It may be arranged first and may additionally be placed outside.
  • the present invention also provides a ship, characterized in that the angle of attack automatic adjustment blade is a propeller.
  • a propeller shaft 500 mounted to automatically adjust the angle of attack of the propeller;
  • a rotation bearing 520 rotatably mounted to the propeller shaft, the rotation bearing being rotated about a point below the cross section of the wing based on a direction perpendicular to the longitudinal direction of the propeller shaft;
  • a propeller 550 fixedly mounted to the rotary bearing and having an angle of attack changed as the rotary bearing rotates.
  • a rotation range limiting member 560 provided on the propeller shaft to limit a rotation range of the rotation bearing; And a stopper 570 integrally provided at an outer side of the rotating bearing and contacting the rotation range limiting member as the bearing rotates.
  • the present invention provides a simple means and method for naturally returning the position of the wing to the reference angle of attack, using the phenomenon of aerodynamic force variation in accordance with the inherent characteristics of the wing cross-sectional shape.
  • the effect obtained by the present invention is that the angle of attack of the wing can always be maintained at the state of optimum efficiency, so the effect of utilizing the aerodynamic force is greatly increased.
  • the present invention can be applied to all devices that operate by generating lift using a wing or propeller, and the efficiency of these devices is increased.
  • a sudden wind direction change such as a gust of wind on the wing
  • there is a characteristic that shows a constant constant lift can be expected to effect the stable operation of the transport machinery.
  • 1 is a diagram showing the relationship between the lift and drag acting on the wing of the aircraft
  • Figure 2 is a structure of a conventional variable pitch propeller for aircraft or ships
  • Figure 3a is a diagram illustrating the force acting on the wing of the plane
  • Figure 3b shows the relationship between the position of the pressure center and the angle of attack on the plane wing
  • 5a to 5c show that the standard angle of attack recovers again after the angle of attack increases from the standard angle of attack.
  • FIG. 6 is a view of the rotation axis position of the angle of attack automatic adjustment propeller according to the present invention.
  • 7 and 8 are a cross-sectional side view and a plan view of the angle of attack automatic adjustment blade according to the invention.
  • Figure 12a is a view of the angle of attack automatically adjusts the angle of rotation according to the invention seen from the cross section A-A of FIG.
  • Figure 12b is a view of the angle of attack automatically adjusts the angle of rotation according to the invention seen from the cross-section B-B of FIG.
  • Figure 13a is a view as seen from the cross-sectional view A-A of FIG.
  • Figure 13b is a view as seen from the cross-section B-B of Figure 7 rotates the receiving angle automatic adjustment blade according to the present invention
  • 16 is a perspective view of the wing displacement support
  • Figure 17a and 17b shows the principle of adjusting the propeller pitch in the existing vessel
  • Figure 18 shows the propeller receiving angle automatic adjustment of the ship according to another embodiment of the present invention.
  • 19A and 19B illustrate a principle of being limited to a certain range while automatically adjusting a propeller receiving angle of a ship according to another embodiment of the present invention.
  • 3A is a diagram illustrating a force acting on an airplane wing. On the front of the plane, the wind is blowing relatively toward the wing. The relative wind direction is indicated by W. In addition, the angle of attack formed by the cord line of the wing and the wind direction is represented by ⁇ .
  • the lifting force L is generated in the plane wing in the direction perpendicular to the wind direction W at the time of flight, and the drag D in the direction parallel to the wind direction W is generated.
  • the sum vector of lift and drag becomes the aerodynamic vector (V) and the starting point of this vector is called the center of pressure (CP).
  • the pressure center CP tends to move forward when the angle of attack ⁇ becomes large, and moves backward when the angle of attack ⁇ decreases.
  • the direction of the air force vector tends to be forward when the angle of attack increases, and toward the rear when the angle of attack decreases.
  • the biggest feature of the present invention is to operate the aircraft by freely rotating the wing about any point on the wing downward extension of the air force vector (V) without fixedly mounting the wing to the fixed wing aircraft fuselage or rotorcraft hub.
  • the angle of attack is automatically provided by the angle of attack automatically adjusted by the change of air force. That is, the wing angle is freely rotatable based on a specific position below the wing so that the angle of attack is automatically adjusted even if the wind direction changes.
  • 5A to 5C show that the standard angle of attack recovers again after the angle of attack increases from the standard angle of attack.
  • the stationary flight will have the best aerodynamic efficiency by the set angle of reference (in this case, the induced flow by the rotor blades needs to be considered separately).
  • the position of the pressure center CP is moved backward (d1 in FIG. 4B). This means that as the angle of attack becomes smaller, the pressure center moves backward.
  • the direction of the air force vector is directed backward while there is little change in the position of the pressure center.
  • the direction of the aerodynamic force vector (V) is directed rearward as viewed from the angle of attack adjustment axis (S) of the wing.
  • the change in air force is applied to the rotational angle in the clockwise direction on the basis of the angle of attack adjustment axis (S), and thus the wing rotates rearward (clockwise) about the angle of attack angle adjustment axis (S).
  • the amount of rotation of the wing is appropriately limited to set the range of rotational movement or return to the initial position. It may be necessary to install a stopper or support for this purpose, which will be described later.
  • 5A to 5C show that the standard angle of attack is restored after the angle of attack is increased from the standard angle of attack.
  • the angle of attack increases or decreases due to the rising wind, the angle of attack is increased.
  • the position of the pressure center CP moves forward, and the direction of the air force vector V also faces forward (d2 in FIG. 5B).
  • the direction of the air force vector may be directed forward with little change in the position of the pressure center.
  • the blade rotates forward (counterclockwise) about the angle of attack adjustment axis by the change of the pneumatic force.
  • the position of the pressure center (CP) moves forward occurs in a state where the wing angle is approximately 0 degrees or more, so that the stopper or the wing rotation limiting member (support) is set to set the range of rotational movement or return to the initial position. You need to consider this when installing.
  • Figure 6 is an example of the angle of attack angle adjustment position of the automatic angle of attack propeller of the present invention. It shows the setting of the angle of attack angle S of the wing at an appropriate point on the downward extension of the air force vector V.
  • the position of the angle of attack adjustment shaft should be selected to operate the rotation smoothly. If the angle of attack is installed too close to the wing, the angle of change of air force may not be so large that the angle of attack may not be automatically adjusted.
  • FIG. 7 and 8 are a cross-sectional side view and a plan view of the automatic angle of attack blade according to the present invention
  • Figure 9 is a partial configuration of the automatic angle of attack blade according to the present invention.
  • the wing according to the present invention when the angle of attack angle of the wing is changed from the standard angle of attack position by the change of the fluid flow direction, the wing automatically rotates around the angle of attack angle adjustment axis to return to the angle of the standard angle of attack Is characteristic.
  • a rotary wing in a multicopter such as a drone.
  • the present invention is not limited to this type of wing.
  • a rotary power device for generating a rotational power transmitted to the wing and a rotating member 100 provided on the upper side of the rotational power unit to receive the rotational power of the rotary power unit to rotate.
  • the rotary power unit (M) is typically a motor, but may be another power unit such as an engine, so the name is called a rotary power unit.
  • the wing is preferably composed of a wing horizontal portion (W1) and the wing root portion (W2) formed by bending the wing horizontal portion and the wing tip (W3) formed by bending at the other end of the wing horizontal portion has a c shape as a whole. . However, it may be made only in the shape of the wing horizontal portion and wing root portion.
  • the c-shape is formed so that the wing centrifugal force balance axis is located at the bottom of the wing horizontal portion if possible.
  • the centrifugal force equilibrium axis is an imaginary axis in which the moments in the vertical direction of the centrifugal force are balanced, and means the axis in which the angle of attack of the blade is rotated by the action of aerodynamic / gravity around this axis. Means the axis marked with SS.
  • the wing shape is not necessarily a c-shape, the function of the present invention may be implemented according to the mass distribution of the wing tip, and thus the scope of the present invention is not limited to the c-shaped wing.
  • the wing root portion (W2) is attached to the rotating member 100, it is attached to enable three-axis rotation.
  • the three-axis rotation means that three-axis rotation is possible based on a single point, such as a three-axis rotary bearing, a rod end, a ring, and various rotating parts may be adopted.
  • one of three-axis rotation bearings may be used, and various other methods may be adopted.
  • a three-axis rotatable connection method may be attached using a rod end or ring-shaped connecting means. That is, the wing is connected to the upper side of the rotating member but is connected to allow free movement so that the angle of attack of the wing can be automatically adjusted.
  • the wing is connected, the fastening member 110 is attached to the upper surface of the rotating member 100, the wing root portion (W2) is rotated through the fastening shaft 120 to the fastening member It is attached freely.
  • the wing root portion (W2) through the connection hole 130 is formed, the fastening shaft 120 may pass through the connection hole.
  • the wing tip (W3) formed bent with the wing horizontal portion (W1), the wing is c-shaped as a whole.
  • the wing root portion and the wing tip are formed below the wing horizontal portion and are inclined forward. In the top view of FIG. 8, it can be seen that the wing root portion and the wing tip slightly protrude forward (upper view from the ground in the figure).
  • FIG. 10 is a state in which the automatic angle of attack according to the present invention is rotated forward, this is a state in which the blade is rotated forward when the drone descends or the wind direction changes upward
  • Figure 11 is in accordance with the present invention Automatic angle of attack
  • the wing is rotated to the rear, which means that the wing is rotated backward when the drone is raised or the wind direction is changed, and the wing angle is automatically rotated forward (forward) or backward (rear). Is adjusted.
  • Figure 12a is a view of the angle of view automatically rotates the receiving angle according to the present invention in cross section AA of Figure 7
  • Figure 12b is a view of the angle of view automatically rotates the receiving angle automatic adjustment blade according to the present invention Seen from BB.
  • Figure 13a is a view of the rotation angle of the automatic angle of adjustment blade according to the present invention as seen from the cross-section AA of Figure 7,
  • Figure 13b is a cross-sectional view of the angle of attack angle automatic adjustment blade of the present invention to rotate rearward. As seen from BB,
  • a rotating part (various rotating parts capable of three-axis rotation based on a single point such as a three-axis rotating bearing, a rod end, and a ring) coupled to the wing root is operated in an angle of attack as a design criterion as described above. It is located at a point on the downward extension line in the aerodynamic direction.
  • the blade centrifugal force balance axis naturally passes through the center of rotation of the rotating part and is formed outward in the radius of rotation.
  • the wing centrifugal force balance axis has a lower extension line in the direction of aerodynamic force at the angle of attack as a design reference.
  • the shape and mass distribution of the wing are designed to be located at the point. This is because the wing angle is automatically rotated around the blade centrifugal force balance axis, which is a virtual axis, according to the change in the direction of aerodynamic force according to the change of the wind direction so that the angle of attack can be smoothly changed to the standard angle of attack.
  • Figure 16 is a perspective view of the wing displacement support.
  • FIG. 200 shows the wing displacement support 200 for limiting the rotational displacement of the wing to maintain the wing angle automatic adjustment state well. This is because when the rotation angle is too large or small angle of attack at the beginning of rotation, depending on the shape of the wing cross-section airfoil may not be rotated wing angle depending on the air force change.
  • the wing displacement support 200 is formed on the upper surface of the rotating member 100, and is a member for preventing the deflection of the wing and limiting the angle of attack of the wing.
  • the wing displacement support is disposed in the rear and the outer side of the wing root (W2).
  • the rear is the rear of the wing with respect to the downward air flow direction in the figure of Figure 15, the outer side means the direction from the blade root toward the blade tip.
  • the wing displacement support 200 may be formed of first and second supports 210 and 220 which are formed to be substantially perpendicular to the rear and the outer side of the wing, respectively.
  • the rear support 220 of the wing must be erected, but the outer support 210 may interfere with the rod or beam structure supporting the rotor system from the initial rotation motor or the drone body. It may be set up selectively to avoid. That is, although the first and second supports 210 and 220 are formed as shown in FIG. 16 (a), they may be made of only the second support 220 as shown in FIG. 16 (b).
  • the wings are connected by three-axis rotating parts (three-axis rotating bearing / rod end / ring, etc.).
  • the blade centrifugal force balance axis is to be located at a point on the downward extension of the aerodynamic force vector at the design angle of attack.
  • Supports may be provided to limit the blade rotational displacement in three-axis rotating parts so that the angle of attack of the blades is smoothly adjusted.
  • rotational displacement can be limited by utilizing the functions of the 3-axis rotating part itself.
  • the angle of attack automatically adjustable wing can be applied to the propeller of the ship.
  • the propeller of the existing ship will be described for explaining the present embodiment.
  • 17a and 17b show the principle of adjusting the propeller pitch in the existing vessel.
  • the conventional variable pitch (pitch-adjusted) ship propeller is provided with a means for adjusting the pitch of the propeller blades to have the most optimal pitch, the propeller (D) to obtain the propulsion force of the ship to the propeller shaft (A) It is provided.
  • the pitch control part B and the pitch adjustment bearing C are provided in the propeller shaft A.
  • Rotating the pitch control unit B drives the pitch control bearing C through a complicated transmission process such as a bevel gear, and adjusts the pitch of the propeller D attached to the pitch control bearing.
  • the present invention is to automatically adjust the propeller pitch angle in such a conventional vessel.
  • the propeller is a configuration corresponding to the wing, the pitch angle is a concept corresponding to the angle of attack.
  • a rotation bearing 520 is mounted on a propeller shaft 500 generating a propulsion force of a ship, and a propeller 550 is mounted on the rotation bearing.
  • the rotating bearing is rotatably mounted on the propeller shaft, and rotates about a point below the cross section of the wing based on a direction perpendicular to the longitudinal direction of the propeller shaft.
  • the propeller 550 is fixedly mounted to the rotary bearing so that the angle of attack (pitch angle) changes as the rotary bearing rotates.
  • the present embodiment unlike the conventional variable pitch propeller, there is no need for a complicated mechanism or an adjusting device therein, and only a wing angle adjustment rotating bearing can be provided to adjust the angle of attack. Then, the wing angle is automatically changed in accordance with the change in the fluid flow direction is possible to operate efficiently.
  • 19A and 19B illustrate a principle of being limited to a certain range while automatically adjusting a propeller receiving angle of a ship according to another embodiment of the present invention.
  • the stopper is integrally provided at one side of the outer bearing so that the bearing rotates as the bearing rotates, and when the stopper exceeds a certain range, the stopper contacts the limiting member of the rotating range, thereby preventing the rotating bearing from rotating any further. do.
  • the reason for this limitation of the bearing rotation range is that if the rotation angle is too large or small at the initial angle of rotation, the wing angle of rotation cannot be changed due to the change of fluid flow direction depending on the shape of the wing cross-section airfoil. Because.
  • the vane is connected to the axis of rotation through the angle of rotation adjustable bearing.
  • Center of the angle of attack rotational bearing (as described in the multicopter embodiment) is located at a point on the downward extension of the load the blade receives from the fluid at the design angle of attack.
  • Supports may be provided to limit wing rotational displacement so that the angle of attack of the wing is smooth.
  • the principles of the present invention can be applied to wind turbine blades. Operating range for wind speed by generating large lift in small winds by automatically adjusting the position of the wing to the angle of attack which is optimal for the lifting ratio (lift / drag ratio) against wind speed and wind direction blade rotation speed.
  • the initial starting wind speed can be lowered, especially in small wind generators without pitch control blades. In this case, the initial starting wind speed can be lowered by adjusting the initial angle of attack using a stopper using a centrifugal force.

Abstract

The present invention provides an automatic angle-of-attack control wing that always maintains a reference angle of attack with optimum efficiency by automatically controlling the angle of attack of a wing according to changes in the direction of a fluid flow. The present invention comprises an angle-of-attack control shaft that serves as a reference for the rotation of a wing under a specific point of the wing, such that when the angle of attack of the wing is changed from a reference angle of attack due to a change in a fluid flow direction, the wing is automatically rotated based on the angle-of-attack control shaft to automatically return to the reference angle of attack. Due to this feature, since the angle of attack of the wing can be maintained at optimum efficiency at all times, the effect of utilizing aerodynamic force is significantly increased, the present invention can be applied to all devices that are actuated by generating lift or thrust by means of a wing or a propeller, and the efficiency of such devices is enhanced.

Description

받음각 자동 조절 날개 및 받음각 자동 조절 날개를 포함하는 항공기 및 선박Aircraft and vessels comprising automatic angle of attack vanes and automatic angle of attack vanes
본 발명은 항공기/선박의 프로펠러/로터 및 풍력터빈 블레이드 등의 고정형 또는 회전형 날개에 관한 것이며, 구체적으로는 비행체 등의 운용조건에 따른 받음각이 공기력의 변화에 의해 자동으로 조절되는 받음각 자동 조절 날개에 관한 것이다.The present invention relates to fixed or rotary blades such as propellers / rotors and wind turbine blades of aircraft / ships, and more specifically, the angle of attack is automatically adjusted by the change of aerodynamic force according to the operating conditions of the aircraft. It is about.
유선형 날개는 적절한 범위 내의 받음각을 갖고 유체 속을 지날 때 높은 양항비(양력/항력 비율, lift-to-drag ratio)를 갖는 특성이 있다. 이때 날개의 받음각(angle of attack)이 적절한 범위 내에 있지 않으면 양향비 비율이 낮아져서 날개로서의 효율이 낮아진다. Streamlined vanes are characterized by a high angle of lift (lift-to-drag ratio) as they pass through the fluid with an angle of attack within the appropriate range. At this time, if the angle of attack of the wing is not within the appropriate range, the ratio of the lowering ratio is lowered and the efficiency as a wing is lowered.
도 1은 비행체 날개에 작용하는 양력과 항력의 관계를 보여주는 그림으로서, 받음각의 변화에 따른 양력과 항력의 관계를 보여주고 있다. 대부분의 고정익 항공기의 경우에는 기체의 자세 제어를 통하여 주익의 받음각을 조절한다. 회전익 항공기의 경우에는 기체의 운용조건(상승/하강/전진/정지비행)에 따라 회전 날개의 받음각을 수시로 다양하게 변화시키기 위한 별도의 수단을 사용한다. 즉, 대표적인 회전익 항공기인 헬리콥터는 로터 시스템 내에 스와시 플레이트(swash plate)라는 복잡한 장치를 적용하여 매회전시마다 로터 블레이드(회전 날개)의 받음각을 조절하여 다양한 운용조건에 적합한 공력을 발생시킨다. 1 is a diagram showing the relationship between the lift and drag acting on the wing of the aircraft, showing the relationship between the lift and drag according to the change in the angle of attack. On most fixed wing aircraft, the angle of attack of the main wing is controlled by the attitude control of the aircraft. For rotorcraft, separate means are used to vary the angle of attack of the rotor blades from time to time, depending on the operating conditions of the aircraft (rising / lowering / forwarding / stopping). In other words, the helicopter, which is a typical rotorcraft aircraft, applies a complex device called a swash plate in the rotor system to adjust the angle of attack of the rotor blades (rotary blades) every turn to generate aerodynamics suitable for various operating conditions.
고정익 항공기의 추진 장치인 프로펠러나 대형 선박의 스크류 프로펠러의 경우에는 헬리콥터의 로터 시스템보다는 간단한 가변 피치(받음각과 유사한 의미) 프로펠러를 사용하는데, 운용조건에 따라 별도의 조작 장치를 사용하여 프로펠러 날개의 받음각을 조절하고 있다. 하지만 대부분의 소형 고정익 항공기나 선박의 추진 장치에는 고정 피치 프로펠러를 사용하고 있는데, 고속/저속의 운용조건에 따른 프로펠러 날개의 받음각을 능동적으로 변화시킬 수 없어 프로펠러 효율의 감소가 불가피하다. The propellers of fixed wing aircraft or screw propellers of large ships use simple variable pitch propellers rather than helicopter rotor systems.The angle of attack of propeller blades is determined using a separate control device depending on the operating conditions. Is adjusting. However, most small fixed-wing aircraft or ship propulsion systems use fixed-pitch propellers, and propeller wing angles cannot be actively changed due to high / low speed operating conditions.
또한, 멀티콥터 내지 드론의 로터시스템은 많은 수의 회전 날개를 갖게 되는데, 대부분 드론의 상대적인 작은 크기와 로터시스템의 개수가 많아짐으로 인하여, 헬리콥터의 스와시 플레이트나 가변 피치 프로펠러 시스템을 적용하기 곤란하다. In addition, the rotor system of a multicopter or a drone has a large number of rotor blades, and it is difficult to apply a swash plate or a variable pitch propeller system of a helicopter due to the relatively small size of the drone and the large number of rotor systems. .
도 2에서는 기존의 항공기용 또는 선박용 가변 피치 조절 프로펠러의 예를 보여준다. 그림에서 알 수 있는 바와 같이, 프로펠러(P)의 단면 중심에 회전 중심(C)을 갖고 있으며, 별도의 동력을 사용하는 피치 조절 장치를 사용하여 피치각을 인위적으로 조절하고 있다. Figure 2 shows an example of a conventional variable pitch control propeller for aircraft or ships. As can be seen from the figure, the propeller (P) has a center of rotation (C) in the center of the cross section, and the pitch angle is artificially adjusted by using a pitch control device using a separate power.
결론적으로 날개의 받음각이 고정된 프로펠러를 사용하는 소형항공기/선박의 프로펠러 및 멀티콥터 드론의 로터/프로펠러 등은 다양한 운용조건에 따라 프로펠러의 받음각을 적절하게 조절할 수 없어 공력 효율 향상에 제한이 있는 상황이다.In conclusion, small aircraft / vessel propellers using propellers with fixed wing angles and rotors / propellers of multicopter drones are unable to properly adjust the angles of propeller propagation according to various operating conditions, thus limiting aerodynamic efficiency. to be.
또한 가변 피치 프로펠러 등 별도의 장치를 사용하여 받음각을 조절하는 경우에도 인위적인 구동수단을 동원하여 적절한 받음각을 유지하도록 하거나 받음각을 변경시켜야 하는 문제점이 있고 자동으로 적절한 받음각을 계속하여 유지할 수 있는 기술은 없었다. In addition, even when the angle of attack is adjusted by using a separate device such as a variable pitch propeller, there is a problem of maintaining an appropriate angle of attack or changing the angle of attack by using artificial driving means, and there is no technology that can automatically maintain an appropriate angle of attack. .
날개에 작용하는 풍향이 변화하더라도 날개의 받음각이 자동으로 조절되어 항상 최적의 효율을 갖는 기준 받음각 상태를 유지하는 받음각 자동 조절 날개를 제공하는 것이다.Even if the wind direction acting on the wing is changed, the angle of attack of the wing is automatically adjusted to provide an automatic angle of attack which maintains the standard angle of attack with optimum efficiency at all times.
본 발명은, 유체 흐름 방향의 변화에 의하여 날개의 받음각 각도가 기준 받음각 위치에서 달라졌을 때, 상기 날개가 받음각 조절축을 중심으로 자동으로 회전하여 기준 받음각의 각도로 복귀하는 것을 특징으로 하는 받음각 자동 조절 날개를 제공한다.According to the present invention, when the angle of attack of the wing is changed from the position of the angle of attack by the change of the fluid flow direction, the angle of attack is automatically rotated around the angle of attack angle adjustment axis, and the angle of attack is automatically adjusted. Provide wings.
상기 받음각 조절축(S)은, 상기 기준 받음각 각도에서 날개가 유체로부터 받는 힘 벡터의 하방쪽 연장선 상의 한 지점을 통과하도록 한다.The angle of attack adjustment axis S allows the vane to pass through a point on the downward extension of the force vector received from the fluid at the reference angle of attack.
회전 동력을 생성하는 회전동력장치(M); 및 상기 회전동력장치의 상측에 구비되어 회전동력장치의 회전력을 전달받아 회전하는 회전부재(100);를 포함하고, 상기 날개는 날개 수평부(W1)와 상기 날개 수평부에 절곡되어 형성되는 날개 루트부(W2)로 이루어지고, 상기 날개 루트부(W2)는 상기 회전부재(100)에 3축 회전 가능하게 부착된다.A rotary power device (M) for generating rotary power; And a rotating member 100 provided at an upper side of the rotary power unit and rotating to receive the rotary force of the rotary power unit, wherein the wings are formed by bending the wing horizontal portion W1 and the wing horizontal portion. It consists of a root portion (W2), the wing root portion (W2) is attached to the rotating member 100 to be three-axis rotatable.
상기 날개 루트부(W2)와 상기 회전부재(100)는 3축 회전이 가능한 연결을 위해 로드엔드 또는 고리 형상의 연결수단을 이용한다.The blade root portion (W2) and the rotating member 100 uses a rod end or ring-shaped connecting means for the three-axis rotation possible connection.
상기 회전부재(100)에 고정장착되는 체결부재(110); 및 상기 체결부재와 상기 날개 루트부(W2)를 연결하는 체결축(120);을 더 포함한다.A fastening member 110 fixedly mounted to the rotating member 100; And a fastening shaft 120 connecting the fastening member and the wing root portion W2.
상기 날개의 끝단에는 상기 날개 수평부(W1)와 절곡되어 형성된 날개 팁(W3) 이 구비되고, 상기 날개 루트부와 상기 날개 팁은, 상기 날개 수평부의 하방으로 형성되되 전방으로 경사지게 형성된다.At the end of the wing is provided with a wing tip (W3) is formed bent with the wing horizontal portion (W1), the wing root portion and the wing tip is formed below the wing horizontal portion is inclined forward.
상기 회전부재(100)의 상면에는 상기 날개의 처짐을 방지하고 상기 날개의 받음각 조절범위를 제한하기 위한 날개변위 지지대(200)를 더 포함하고, 상기 날개변위 지지대는 날개 루트부(W2)의 후방에 우선 배치되며 추가적으로 외측방에도 배치될 수 있다.The upper surface of the rotating member 100 further includes a wing displacement support 200 for preventing the deflection of the wing and limiting the angle of attack of the wing, the wing displacement support is the rear of the wing root portion (W2) It may be arranged first and may additionally be placed outside.
본 발명은 또한, 상기 받음각 자동 조절 날개는 프로펠러인 것을 특징으로 하는 선박을 제공한다.The present invention also provides a ship, characterized in that the angle of attack automatic adjustment blade is a propeller.
상기 프로펠러의 받음각이 자동으로 조절되게 장착되는 프로펠러축(500); 상기 프로펠러축에 회전 자유롭게 장착되고, 상기 프로펠러축의 길이방향에 수직한 방향을 기준으로 날개 단면의 하방의 한 지점을 중심으로 회전하는 회전베어링(520); 및 상기 회전베어링에 고정장착되고, 상기 회전베어링이 회전함에 따라 받음각이 변화하는 프로펠러(550);를 포함한다.A propeller shaft 500 mounted to automatically adjust the angle of attack of the propeller; A rotation bearing 520 rotatably mounted to the propeller shaft, the rotation bearing being rotated about a point below the cross section of the wing based on a direction perpendicular to the longitudinal direction of the propeller shaft; And a propeller 550 fixedly mounted to the rotary bearing and having an angle of attack changed as the rotary bearing rotates.
상기 프로펠러축에 구비되어 상기 회전베어링의 회전범위를 제한하는 회전범위 제한부재(560); 및 상기 회전베어링의 외곽 일측에 일체로 구비되고, 상기 베어링이 회전함에 따라 상기 회전범위 제한부재에 맞닿게 되는 스토퍼(570);를 더 포함한다. A rotation range limiting member 560 provided on the propeller shaft to limit a rotation range of the rotation bearing; And a stopper 570 integrally provided at an outer side of the rotating bearing and contacting the rotation range limiting member as the bearing rotates.
발명은 날개 단면 형상의 고유 특성에 따른 공기력 변화의 현상을 이용하여, 자연스럽게 기준 받음각 상태로 날개의 위치가 복귀하는 간단한 수단과 방법을 제공하고 있다. 본 발명으로 얻을 수 있는 효과로는 날개의 받음각을 항상 최적 효율의 상태로 유지할 수 있기 때문에 공기력 활용의 효과가 매우 증대된다.The present invention provides a simple means and method for naturally returning the position of the wing to the reference angle of attack, using the phenomenon of aerodynamic force variation in accordance with the inherent characteristics of the wing cross-sectional shape. The effect obtained by the present invention is that the angle of attack of the wing can always be maintained at the state of optimum efficiency, so the effect of utilizing the aerodynamic force is greatly increased.
본 발명은 날개 또는 프로펠러를 이용하여 양력을 발생시켜서 작동하는 모든 장치에 적용이 가능하며 이들 장치의 효율이 상승되는 효과를 발휘한다. 또한 날개에 돌풍이 불거나 하는 갑작스런 풍향의 변화가 있을 때에도 거의 일정한 양력을 나타내는 특성이 있어 수송기계류의 안정된 작동이 가능한 효과를 기대할 수 있다.The present invention can be applied to all devices that operate by generating lift using a wing or propeller, and the efficiency of these devices is increased. In addition, even when there is a sudden wind direction change, such as a gust of wind on the wing, there is a characteristic that shows a constant constant lift can be expected to effect the stable operation of the transport machinery.
도 1은 비행체 날개에 작용하는 양력과 항력의 관계를 보여주는 그림이며,1 is a diagram showing the relationship between the lift and drag acting on the wing of the aircraft,
도 2는 종래의 항공기용 또는 선박용 가변 피치 프로펠러의 구조이며,Figure 2 is a structure of a conventional variable pitch propeller for aircraft or ships,
도 3a는 비행기 날개에 작용하는 힘을 도식화한 그림이며,Figure 3a is a diagram illustrating the force acting on the wing of the plane,
도 3b는 비행기 날개에서 압력 중심의 위치와 받음각의 관계를 보여주며,Figure 3b shows the relationship between the position of the pressure center and the angle of attack on the plane wing,
도 4a 내지 도 4c는 기준 받음각에서 받음각이 작아진 후 다시 기준 받음각을 회복하는 것을 보여주고 있으며,4A to 4C show that the standard angle of attack is restored again after the angle of attack is reduced from the standard angle of attack.
도 5a 내지 도 5c는 기준 받음각에서 받음각이 커진 후 다시 기준 받음각을 회복하는 것을 보여주며.5a to 5c show that the standard angle of attack recovers again after the angle of attack increases from the standard angle of attack.
도 6은 본 발명에 따른 받음각 자동 조절 프로펠러의 회전축 위치의 모습이며,6 is a view of the rotation axis position of the angle of attack automatic adjustment propeller according to the present invention,
도 7과 도 8은 본 발명에 따른 받음각 자동조절 날개의 측단면도와 평면도이며,7 and 8 are a cross-sectional side view and a plan view of the angle of attack automatic adjustment blade according to the invention,
도 9는 본 발명에 따른 받음각 자동조절 날개의 일부 구성도이며,9 is a partial configuration of the automatic angle of attack blade according to the invention,
도 10은 본 발명에 따른 받음각 자동조절 날개가 전방으로 회전한 모습이며,10 is a state in which the automatic angle of attack blade according to the invention rotated forward,
도 11은 본 발명에 따른 받음각 자동조절 날개가 후방으로 회전한 모습이며,11 is a state in which the angle of attack automatic adjustment blade rotated to the rear,
도 12a는 본 발명에 따른 받음각 자동조절 날개가 전방으로 회전하는 모습을 도 7의 단면 A-A에서 바라본 모습이며,Figure 12a is a view of the angle of attack automatically adjusts the angle of rotation according to the invention seen from the cross section A-A of FIG.
도 12b는 본 발명에 따른 받음각 자동조절 날개가 전방으로 회전하는 모습을 도 7의 단면 B-B에서 바라본 모습이며,Figure 12b is a view of the angle of attack automatically adjusts the angle of rotation according to the invention seen from the cross-section B-B of FIG.
도 13a는 본 발명에 따른 받음각 자동조절 날개가 후방으로 회전하는 모습을 도 7의 단면 A-A에서 바라본 모습이며,Figure 13a is a view as seen from the cross-sectional view A-A of FIG.
도 13b는 본 발명에 따른 받음각 자동조절 날개가 후방으로 회전하는 모습을 도 7의 단면 B-B에서 바라본 모습이며,Figure 13b is a view as seen from the cross-section B-B of Figure 7 rotates the receiving angle automatic adjustment blade according to the present invention,
도 14와 도 15는 본 발명에 따른 받음각 자동조절 날개에 날개 변위 지지대가 구비된 측면의 모습과 평면의 모습이며,14 and 15 is a side view and a plan view of the side provided with a wing displacement support on the automatic angle of attack according to the invention,
도 16은 상기 날개 변위 지지대의 사시도 모습이며,16 is a perspective view of the wing displacement support;
도 17a와 도 17b는 기존의 선박에서 프로펠러 피치를 조절하는 원리를 보여주며,Figure 17a and 17b shows the principle of adjusting the propeller pitch in the existing vessel,
도 18은 본 발명의 다른 실시예에 따른 선박의 프로펠러 받음각 자동 조절 모습을 보여주며,Figure 18 shows the propeller receiving angle automatic adjustment of the ship according to another embodiment of the present invention,
도 19a와 도 19b는 본 발명의 다른 실시예에 따른 선박의 프로펠러 받음각 자동 조절되면서 일정 범위로 제한되는 원리를 보여준다. 19A and 19B illustrate a principle of being limited to a certain range while automatically adjusting a propeller receiving angle of a ship according to another embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명에 대해서 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail with respect to the present invention.
도 3a는 비행기 날개에 작용하는 힘을 도식화한 그림이다. 비행기 날개의 전면에는 바람이 날개를 향해 상대적으로 불어오게 되는데 이 상대적인 바람의 방향을 W로 표시하였다. 그리고, 날개의 코드선과 바람 방향이 이루는 각인 받음각(angle of attack)은 θ로 표기하였다.3A is a diagram illustrating a force acting on an airplane wing. On the front of the plane, the wind is blowing relatively toward the wing. The relative wind direction is indicated by W. In addition, the angle of attack formed by the cord line of the wing and the wind direction is represented by θ.
그리고, 비행기 날개에는 비행시에 바람 방향(W)에 수직한 방향으로 양력(L)이 발생하고, 바람 방향(W)에 평행한 방향의 항력(D)을 발생시킨다. 양력과 항력의 합 벡터가 공기력 벡터(V)가 되며 이 벡터의 시작점을 압력 중심(CP, Center of Pressure)이라 한다. Then, the lifting force L is generated in the plane wing in the direction perpendicular to the wind direction W at the time of flight, and the drag D in the direction parallel to the wind direction W is generated. The sum vector of lift and drag becomes the aerodynamic vector (V) and the starting point of this vector is called the center of pressure (CP).
그런데, 도 3b에서 도시된 바와 같이, 압력 중심(CP)은 받음각(θ)이 커지면 전방으로 이동하고, 받음각(θ)이 작아지면 후방으로 이동하는 경향이 있다. 에어포일의 형상 특성에 따라서는 압력중심의 이동은 거의 없지만, 공기력 벡터의 방향이 받음각이 커지면 전방을 향하고, 받음각이 작아지면 후방을 향하는 경향을 보이기도 한다.However, as shown in FIG. 3B, the pressure center CP tends to move forward when the angle of attack θ becomes large, and moves backward when the angle of attack θ decreases. Depending on the shape characteristics of the airfoil, there is little movement of the pressure center, but the direction of the air force vector tends to be forward when the angle of attack increases, and toward the rear when the angle of attack decreases.
본 발명의 가장 큰 특징은 날개를 고정익 항공기 동체 또는 회전익 항공기 허브에 고정장착하지 않고, 날개를 공기력 벡터(V)의 날개 하방쪽 연장선 상의 임의의 한 지점을 중심으로 자유롭게 회전 가능하게 하여 비행체의 운용조건(날개에 대한 상대적인 풍향조건)에 따라 받음각이 공기력의 변화에 의하여 자동으로 조절되는 받음각 자동 조절 날개를 제공하는 것이다. 즉, 날개 하방쪽에 특정 위치를 기준으로 날개가 자유롭게 회전가능하게 하여 바람 방향이 변하더라도 받음각이 자동으로 조절되도록 한 것이다. The biggest feature of the present invention is to operate the aircraft by freely rotating the wing about any point on the wing downward extension of the air force vector (V) without fixedly mounting the wing to the fixed wing aircraft fuselage or rotorcraft hub. According to the conditions (relative wind direction to the wing), the angle of attack is automatically provided by the angle of attack automatically adjusted by the change of air force. That is, the wing angle is freely rotatable based on a specific position below the wing so that the angle of attack is automatically adjusted even if the wind direction changes.
도 4a 내지 도 4c는 기준 받음각에서 받음각이 작아진 후 다시 기준 받음각을 회복하는 것을 보여주고 있으며,4A to 4C show that the standard angle of attack is restored again after the angle of attack is reduced from the standard angle of attack.
도 5a 내지 도 5c는 기준 받음각에서 받음각이 커진 후 다시 기준 받음각을 회복하는 것을 보여주고 있다.5A to 5C show that the standard angle of attack recovers again after the angle of attack increases from the standard angle of attack.
먼저, 도 4a를 보면, 비행체의 날개 또는 프로펠러 등에서 양항비(양력/항력 비율)가 가장 좋은, 즉 공력효율이 가장 우수한 받음각을 선정할 수 있다. 이를 풍향의 변화에 상관없이 지속적으로 유지하고 싶은 날개의 최적의 받음각 각도라고 하고 이것을 '기준 받음각(θ1)’으로 설정한다. 이때 공기력 벡터(V)의 하방쪽 연장선 상의 한 지점에 날개의 받음각 조절축(S)을 설정한다. First, referring to Figure 4a, it is possible to select the angle of attack having the best lift ratio (lift / drag ratio), that is, the best aerodynamic efficiency in the wing or propeller of the aircraft. This is called the optimum angle of attack of the wing that you want to keep regardless of the change in the wind direction, and set this as the reference angle of attack (θ1). At this time, the angle of attack adjustment axis (S) of the wing is set at a point on the downward extension of the air force vector (V).
본 발명의 원리를 회전익 항공기의 회전 날개에 적용하여 설명하면, 제자리 정지비행의 경우에는 설정된 기준 받음각에 의하여 가장 우수한 공력 효율을 갖게 된다(여기서 회전 날개에 의한 유도 흐름은 별도 고려 필요).When the principle of the present invention is applied to the rotor blades of the rotorcraft, the stationary flight will have the best aerodynamic efficiency by the set angle of reference (in this case, the induced flow by the rotor blades needs to be considered separately).
그리고, 특정 조건에서 비행체가 상승하던가 또는 하강하는 돌풍에 의하여 받음각이 작아지게 되면 압력중심(CP)의 위치가 후방으로 이동하게 된다(도 4b의 d1). 이것은 받음각이 작아지게 되면 압력중심이 후방으로 이동한다는 것으로 위 그림 도 3b를 통해서 설명한 바 있다. 또는 에어포일의 형상 특성에 따라서는 압력중심의 위치 변화는 거의 없으면서 공기력 벡터의 방향이 후방으로 향하기도 한다. 결과적으로, 날개의 받음각 조절축(S)에서 볼 때 공기력 벡터(V)의 방향이 후방으로 향하게 된다. 이러한 공기력의 변화를 받음각 조절축(S)을 기준으로 그림에서 시계 방향으로의 회전력를 가하게 되고 따라서 날개는 받음각 조절축(S)을 중심으로 후방(시계방향)으로 회전한다.In addition, when the angle of attack becomes small due to the ascending or descending gust under certain conditions, the position of the pressure center CP is moved backward (d1 in FIG. 4B). This means that as the angle of attack becomes smaller, the pressure center moves backward. Alternatively, depending on the shape characteristic of the airfoil, the direction of the air force vector is directed backward while there is little change in the position of the pressure center. As a result, the direction of the aerodynamic force vector (V) is directed rearward as viewed from the angle of attack adjustment axis (S) of the wing. The change in air force is applied to the rotational angle in the clockwise direction on the basis of the angle of attack adjustment axis (S), and thus the wing rotates rearward (clockwise) about the angle of attack angle adjustment axis (S).
후방으로 회전하여 받음각이 처음의 기준 받음각(θ1)까지 오게 되면 공기력 벡터와 받음각 조절축과의 평형으로(받음각 조절축이 공기력 벡터의 하방쪽 연장선 상에 위치) 회전이 멈추고 높은 공력 효율의 기준 받음각(θ1)을 유지하게 된다(도 4c). 즉, 바람의 방향 변화로 받음각이 변화하더라도 받음각 조절축을 중심으로 날개가 회전함으로써 처음의 기준 받음각을 다시 회복하게 되는 것이다.When the angle of attack reaches backward to the initial reference angle of angle (θ1), the rotation stops and the reference angle of high aerodynamic efficiency stops in equilibrium between the air force vector and the angle of adjustment angle (the angle of angle adjustment axis lies on the downward extension of the force force vector). (θ1) is maintained (FIG. 4C). That is, even if the angle of attack changes due to the change in the direction of the wind, the wing is rotated around the angle of adjustment of the angle of attack to restore the initial reference angle of attack again.
여기서 압력중심(CP)의 위치가 후방으로 이동하는 것은 대개 날개 윗면에서 공기의 흐름이 분리(separation)되기 전까지만 이므로 회전운동의 범위를 설정하거나 초기 위치로의 복귀를 위하여 날개 회전량을 적절히 제한할 필요가 있고 이를 위해 스토퍼 또는 지지대를 설치할 수도 있는데, 이것은 후술하여 설명하도록 한다.Since the position of the center of pressure (CP) is moved rearward only until the air flow is separated from the upper surface of the wing, the amount of rotation of the wing is appropriately limited to set the range of rotational movement or return to the initial position. It may be necessary to install a stopper or support for this purpose, which will be described later.
도 5a 내지 도 5c는 기준 받음각에서 받음각이 커진 후 다시 기준 받음각을 회복하는 것을 보여주고 있는데, 도 5a의 기준 받음각(θ1) 상태에서 비행체가 하강하던가 또는 상승하는 돌풍에 의하여 받음각이 커지게 되면, 압력중심(CP)의 위치가 전방으로 이동하며, 또한 공기력 벡터(V)의 방향이 전방으로 향하게 된다(도 5b의 d2). 또는 에어포일의 형상 특성에 따라서는 압력중심의 위치 변화는 거의 없으면서 공기력 벡터의 방향이 전방으로 향하기도 한다. 결과적으로, 이러한 공기력의 변화에 의하여 날개는 받음각 조절축을 중심으로 전방(반시계 방향)으로 회전한다. 여기서 압력중심(CP)의 위치가 전방으로 이동하는 현상은 날개 받음각이 대략 0도 이상인 상태에서 발생하므로 회전운동의 범위를 설정하거나 초기 위치로의 복귀를 위하여 스토퍼 내지 날개 회전 제한 부재(지지대)를 설치할 때 이를 고려할 필요가 있다.5A to 5C show that the standard angle of attack is restored after the angle of attack is increased from the standard angle of attack. When the angle of attack increases or decreases due to the rising wind, the angle of attack is increased. The position of the pressure center CP moves forward, and the direction of the air force vector V also faces forward (d2 in FIG. 5B). Alternatively, depending on the shape characteristics of the airfoil, the direction of the air force vector may be directed forward with little change in the position of the pressure center. As a result, the blade rotates forward (counterclockwise) about the angle of attack adjustment axis by the change of the pneumatic force. In this case, the position of the pressure center (CP) moves forward occurs in a state where the wing angle is approximately 0 degrees or more, so that the stopper or the wing rotation limiting member (support) is set to set the range of rotational movement or return to the initial position. You need to consider this when installing.
전방으로 회전하여 받음각이 처음의 기준 받음각 위치까지 오게 되면 공기력 벡터와 받음각 조절축과의 평형으로 회전이 멈추고 높은 공력 효율의 기준 받음각을 유지하게 된다(도 5c).When the angle of attack reaches forward to the initial reference angle of attack, the rotation stops in equilibrium with the aerodynamic force vector and the angle of attack angle adjustment axis to maintain a high aerodynamic reference angle of attack (Fig. 5c).
도 6은 본 발명의 받음각 자동 조절 프로펠러의 받음각 조절축 위치의 예들이다. 공기력 벡터(V)의 하방쪽 연장선 상의 적절한 지점에 날개의 받음각 조절축(S)을 설정하는 것을 보여준다. 풍향의 변화에 따라 변화되는 공기력의 변화 정도와 받음각 조절을 방해하는 마찰력의 크기를 고려하여 회전운동이 원활하게 작동되는 받음각 조절축의 위치를 선정하여야 한다. 받음각 조절축을 날개로부터 너무 가깝게 설치하면, 공기력 방향의 변화가 크지 않아 받음각 자동 조절이 안 될 수도 있으므로 일정 정도 거리를 두고 적절한 위치에 선정하여야 한다.Figure 6 is an example of the angle of attack angle adjustment position of the automatic angle of attack propeller of the present invention. It shows the setting of the angle of attack angle S of the wing at an appropriate point on the downward extension of the air force vector V. In consideration of the degree of change of air force and the amount of friction that interferes with the angle of attack, the position of the angle of attack adjustment shaft should be selected to operate the rotation smoothly. If the angle of attack is installed too close to the wing, the angle of change of air force may not be so large that the angle of attack may not be automatically adjusted.
도 7과 도 8은 본 발명에 따른 받음각 자동조절 날개의 측단면도와 평면도이며, 도 9는 본 발명에 따른 받음각 자동조절 날개의 일부 구성이다.7 and 8 are a cross-sectional side view and a plan view of the automatic angle of attack blade according to the present invention, Figure 9 is a partial configuration of the automatic angle of attack blade according to the present invention.
본 발명에 따른 날개는, 위에서 설명한 바와 같이, 유체 흐름 방향의 변화에 의하여 날개의 받음각 각도가 기준 받음각 위치에서 달라졌을 때, 날개가 받음각 조절축을 중심으로 자동으로 회전하여 기준 받음각의 각도로 복귀하는 것이 특징이다. 이하 본 발명의 하나의 실시예를 들어 드론과 같은 멀티콥터에서 회전날개 형태를 예로 들어서 본 발명의 원리에 대해 설명하도록 한다. 다만, 본 발명이 이러한 형태의 날개에만 한정되는 것은 아니다.As described above, the wing according to the present invention, when the angle of attack angle of the wing is changed from the standard angle of attack position by the change of the fluid flow direction, the wing automatically rotates around the angle of attack angle adjustment axis to return to the angle of the standard angle of attack Is characteristic. Hereinafter, one embodiment of the present invention will be described for the principle of the present invention by taking the form of a rotary wing in a multicopter, such as a drone. However, the present invention is not limited to this type of wing.
도면을 참조하면, 날개에 전달되는 회전 동력을 생성하는 회전동력장치(M)와 상기 회전동력장치의 상측에 구비되어 회전동력장치의 회전력을 전달받아 회전하는 회전부재(100)를 갖는다. 상기 회전동력장치(M)는 통상적으로 모터일 수 있으나 그외 엔진 등 다른 동력장치일 수 있으므로 명칭을 회전동력장치라고 한다. Referring to the drawings, it has a rotary power device (M) for generating a rotational power transmitted to the wing and a rotating member 100 provided on the upper side of the rotational power unit to receive the rotational power of the rotary power unit to rotate. The rotary power unit (M) is typically a motor, but may be another power unit such as an engine, so the name is called a rotary power unit.
상기 날개는 날개 수평부(W1)와 상기 날개 수평부에 절곡되어 형성되는 날개 루트부(W2)와 날개 수평부의 타단 끝단에 절곡되어 형성된 날개 팁(W3)으로 이루어져서 전체적으로 ㄷ 형상을 가지는 것이 바람직하다. 다만, 날개 수평부와 날개 루트부의 형상으로만 이루어질 수도 있을 것이다. The wing is preferably composed of a wing horizontal portion (W1) and the wing root portion (W2) formed by bending the wing horizontal portion and the wing tip (W3) formed by bending at the other end of the wing horizontal portion has a c shape as a whole. . However, it may be made only in the shape of the wing horizontal portion and wing root portion.
이렇게 ㄷ 자 형상을 이루도록 한 것은, 날개 원심력 평형축이 가능하면 날개 수평부의 하단에 위치하도록 하기 위함이다. 여기서 원심력 평형축이란, 원심력에 의한 상하 전후 방향의 모멘트가 평형을 이루는 가상의 축으로서, 이 축을 중심으로 공기력/중력의 작용에 의하여 날개의 받음각이 회전하게 되는 축을 의미하며, 도 7의 그림에서 SS로 표기된 축을 의미한다. 날개 형상이 반드시 ㄷ자형이 아니더라도 날개 팁부의 질량분포에 따라서 본 발명의 기능이 구현될 수 있으므로 본 발명의 범위가 ㄷ자 형상의 날개로 국한되는 것은 아니다. The c-shape is formed so that the wing centrifugal force balance axis is located at the bottom of the wing horizontal portion if possible. Here, the centrifugal force equilibrium axis is an imaginary axis in which the moments in the vertical direction of the centrifugal force are balanced, and means the axis in which the angle of attack of the blade is rotated by the action of aerodynamic / gravity around this axis. Means the axis marked with SS. Even if the wing shape is not necessarily a c-shape, the function of the present invention may be implemented according to the mass distribution of the wing tip, and thus the scope of the present invention is not limited to the c-shaped wing.
그리고, 상기 날개 루트부(W2)는 상기 회전부재(100)에 부착되고, 3축 회전 가능하게 부착된다. 여기서 3축 회전 가능하다는 의미는, 3축 회전 베어링, 로드엔드, 고리 등 한 점을 기준으로 3축 회전이 가능하다는 의미이며 다양한 회전부품이 채택될 수 있다.In addition, the wing root portion (W2) is attached to the rotating member 100, it is attached to enable three-axis rotation. In this case, the three-axis rotation means that three-axis rotation is possible based on a single point, such as a three-axis rotary bearing, a rod end, a ring, and various rotating parts may be adopted.
상기 날개 루트부(W2)와 상기 회전부재(100)가 3축 회전이 가능하게 연결되기 위해 3축 회전베어링 하나를 사용할 수 있고 기타 다양한 방식을 채택할 수 있다. 3축 회전 가능한 연결방식의 하나의 예시로서 로드엔드 또는 고리 형상의 연결수단을 이용하여 부착될 수 있다. 즉, 상기 날개는 상기 회전부재의 상측에서 연결되되 자유로운 움직임이 가능하도록 연결되어 있어서 날개의 받음각이 자동으로 조절될 수 있도록 한 것이다.  In order to connect the wing root portion W2 and the rotation member 100 to enable three-axis rotation, one of three-axis rotation bearings may be used, and various other methods may be adopted. As one example of a three-axis rotatable connection method may be attached using a rod end or ring-shaped connecting means. That is, the wing is connected to the upper side of the rotating member but is connected to allow free movement so that the angle of attack of the wing can be automatically adjusted.
날개가 연결되는 모습을 좀 더 구체적으로 보면, 상기 회전부재(100)의 상면에 체결부재(110)가 부착되고, 상기 체결부재에 체결축(120)을 통해서 상기 날개 루트부(W2)가 회전 자유롭게 부착된다. 이를 위해, 상기 날개 루트부(W2)에는 관통하여 연결공(130)이 형성되고, 상기 체결축(120)이 연결공을 관통하도록 할 수도 있다. 상기 날개의 끝단에는 상기 날개 수평부(W1)와 절곡되어 형성된 날개 팁(W3)이 구비되어 날개는 전체적으로 ㄷ형상을 이룬다.In more detail, the wing is connected, the fastening member 110 is attached to the upper surface of the rotating member 100, the wing root portion (W2) is rotated through the fastening shaft 120 to the fastening member It is attached freely. To this end, the wing root portion (W2) through the connection hole 130 is formed, the fastening shaft 120 may pass through the connection hole. At the end of the wing is provided with a wing tip (W3) formed bent with the wing horizontal portion (W1), the wing is c-shaped as a whole.
그리고, 상기 날개 루트부와 상기 날개 팁은, 상기 날개 수평부의 하방으로 형성되되 전방으로 경사지게 형성된다. 도 8의 평면도를 보면 날개 루트부와 날개 팁이 전방(그림의 지면에서 보아 상측)으로 약간 돌출된 것을 볼 수 있다.The wing root portion and the wing tip are formed below the wing horizontal portion and are inclined forward. In the top view of FIG. 8, it can be seen that the wing root portion and the wing tip slightly protrude forward (upper view from the ground in the figure).
도 10은 본 발명에 따른 받음각 자동조절 날개가 전방으로 회전한 모습인데, 이것은 드론이 하강하거나 바람의 풍향이 상향으로 변화하는 경우에 날개가 앞쪽으로 회전한 모습이며, 도 11은 본 발명에 따른 받음각 자동조절 날개가 후방으로 회전한 모습이며, 이것은 드론이 상승하거나 풍향이 하강으로 변화시 날개가 뒤쪽으로 회전한 모습이며, 날개는 이렇게 앞쪽(전방)이나 뒤쪽(후방)으로 회전하면서 받음각이 자동으로 조절된다.10 is a state in which the automatic angle of attack according to the present invention is rotated forward, this is a state in which the blade is rotated forward when the drone descends or the wind direction changes upward, Figure 11 is in accordance with the present invention Automatic angle of attack The wing is rotated to the rear, which means that the wing is rotated backward when the drone is raised or the wind direction is changed, and the wing angle is automatically rotated forward (forward) or backward (rear). Is adjusted.
도 12a는 본 발명에 따른 받음각 자동조절 날개가 전방으로 회전하는 모습을 도 7의 단면 A-A에서 바라본 모습이며, 도 12b는 본 발명에 따른 받음각 자동조절 날개가 전방으로 회전하는 모습을 도 7의 단면 B-B에서 바라본 모습이다.Figure 12a is a view of the angle of view automatically rotates the receiving angle according to the present invention in cross section AA of Figure 7, Figure 12b is a view of the angle of view automatically rotates the receiving angle automatic adjustment blade according to the present invention Seen from BB.
도 13a는 본 발명에 따른 받음각 자동조절 날개가 후방으로 회전하는 모습을 도 7의 단면 A-A에서 바라본 모습이며, 도 13b는 본 발명에 따른 받음각 자동조절 날개가 후방으로 회전하는 모습을 도 7의 단면 B-B에서 바라본 모습이며,Figure 13a is a view of the rotation angle of the automatic angle of adjustment blade according to the present invention as seen from the cross-section AA of Figure 7, Figure 13b is a cross-sectional view of the angle of attack angle automatic adjustment blade of the present invention to rotate rearward. As seen from BB,
도 12a에서 날개 루트부와 체결되는 회전부품(3축 회전 베어링, 로드엔드, 고리 등 한 점을 기준으로 3축 회전이 가능한 다양한 회전부품)은 위에서 설명한 바와 같이 설계 기준이 되는 받음각 상태에서 작용되는 공기력 방향의 하방 연장선 상의 한 지점에 위치하고 있다. 또한 날개 원심력 평형축은 당연히 회전부품의 회전 중심을 통과하여 회전 반경의 바깥 방향으로 형성되는데, 날개 팁에서도 도 12b에서와 같이 날개 원심력 평형축은 설계 기준이 되는 받음각 상태에서의 공기력 방향의 하방 연장선 상의 한 지점에 위치하도록 날개의 형상 및 질량분포 등이 설계되는 것이 바람직하다. 이는 풍향의 변화에 따른 공기력 방향의 변화에 따라 날개 받음각이 가상의 축인 날개 원심력 평형축을 중심으로 자동으로 회전하여 받음각을 기준 받음각 상태로 자동으로 원활하게 변화할 수 있도록 하기 위함이다. In FIG. 12A, a rotating part (various rotating parts capable of three-axis rotation based on a single point such as a three-axis rotating bearing, a rod end, and a ring) coupled to the wing root is operated in an angle of attack as a design criterion as described above. It is located at a point on the downward extension line in the aerodynamic direction. In addition, the blade centrifugal force balance axis naturally passes through the center of rotation of the rotating part and is formed outward in the radius of rotation. As shown in FIG. 12B, the wing centrifugal force balance axis has a lower extension line in the direction of aerodynamic force at the angle of attack as a design reference. It is preferable that the shape and mass distribution of the wing are designed to be located at the point. This is because the wing angle is automatically rotated around the blade centrifugal force balance axis, which is a virtual axis, according to the change in the direction of aerodynamic force according to the change of the wind direction so that the angle of attack can be smoothly changed to the standard angle of attack.
도 14와 도 15는 본 발명에 따른 받음각 자동조절 날개에 날개 변위 지지대가 구비된 측면의 모습과 평면의 모습이며, 도 16은 상기 날개 변위 지지대의 사시도 모습이다.14 and 15 are a side view and a plan view of the side provided with a wing displacement support on the automatic angle of attack according to the present invention, Figure 16 is a perspective view of the wing displacement support.
도면을 보면, 날개의 회전 변위에 제한을 두어 날개가 받음각 자동 조절 상태를 잘 유지할 수 있도록 하기 위한 날개변위 지지대(200)를 보여주고 있다. 이는 회전 초기에 너무 크거나 작은 각도의 받음각 상태로 회전하게 되면 날개 단면 에어포일의 형상에 따라서는 공기력 변화에 따른 날개 받음각 회전이 안 되는 경우가 발생하기 때문이다. Looking at the figure, it shows the wing displacement support 200 for limiting the rotational displacement of the wing to maintain the wing angle automatic adjustment state well. This is because when the rotation angle is too large or small angle of attack at the beginning of rotation, depending on the shape of the wing cross-section airfoil may not be rotated wing angle depending on the air force change.
날개변위 지지대(200)는, 상기 회전부재(100)의 상면에 형성되고, 상기 날개의 처짐을 방지하고 상기 날개의 받음각 조절범위를 제한하는 부재이다. 상기 날개변위 지지대는 날개 루트부(W2)의 후방과 외측방에 배치된다. 후방이란 도 15의 그림에서 보아 아래쪽 방향 공기 흐름 방향을 기준으로 날개의 뒤쪽이며, 외측방이란 날개 루트부에서 날개 팁을 향하는 방향을 의미한다. 날개변위 지지대(200)는 각각 날개의 후방과 외측방에 대략 수직하게 세워져 형성되는 제1 및 제2지지대(210,220)로 이루어질 수 있다. 그러나, 날개변위 지지대(200)에서 날개의 후방 지지대(220)는 필수적으로 세워져야 하지만, 외측방 지지대(210)은 회전 초기 모터나 드론 본체로부터 로터 시스템을 지지하는 봉이나 빔 구조물 등과의 간섭을 피하기 위하여 선택적으로 세워질 수도 있다. 즉, 도 16 (a)처럼 제1 및 제2지지대(210,220)로 이루어져 있으나, 도 16 (b)처럼 제2지지대(220)만으로 이루어질 수도 있다.The wing displacement support 200 is formed on the upper surface of the rotating member 100, and is a member for preventing the deflection of the wing and limiting the angle of attack of the wing. The wing displacement support is disposed in the rear and the outer side of the wing root (W2). The rear is the rear of the wing with respect to the downward air flow direction in the figure of Figure 15, the outer side means the direction from the blade root toward the blade tip. The wing displacement support 200 may be formed of first and second supports 210 and 220 which are formed to be substantially perpendicular to the rear and the outer side of the wing, respectively. However, in the wing displacement support 200, the rear support 220 of the wing must be erected, but the outer support 210 may interfere with the rod or beam structure supporting the rotor system from the initial rotation motor or the drone body. It may be set up selectively to avoid. That is, although the first and second supports 210 and 220 are formed as shown in FIG. 16 (a), they may be made of only the second support 220 as shown in FIG. 16 (b).
이상에서 설명한 본 발명의 일 실시예의 핵심적인 특징을 정리하면 다음과 같다.The key features of an embodiment of the present invention described above are summarized as follows.
1. 날개는 3축 회전부품(3축 회전 베어링/로드엔드/고리 등)에 의하여 연결된다.1. The wings are connected by three-axis rotating parts (three-axis rotating bearing / rod end / ring, etc.).
2. 날개 원심력 평형축이 설계 기준 받음각에서의 공기력 벡터의 하방 연장선 상의 한 지점에 위치하여야 한다.2. The blade centrifugal force balance axis is to be located at a point on the downward extension of the aerodynamic force vector at the design angle of attack.
3. 날개 원심력 평형축이 날개 수평부의 하방에 위치하도록 하기 위하여 날개 팁부가 날개 수평부의 하방 및 전방으로 형성되는 것이 필요하고 이 때문에 전체적으로 ㄷ자 형상의 날개가 구비되는 것이 바람직하다.  3. In order for the wing centrifugal force balance axis to be located below the wing horizontal portion, it is necessary that the wing tip portion be formed downward and forward of the wing horizontal portion, and for this reason, it is preferable to have a U-shaped wing as a whole.
4. 날개의 받음각 조절이 원활하게 되도록 3축 회전부품에서의 날개 회전 변위를 제한 지지하는 지지대를 구비할 수 있다. 또는 3축 회전부품 자체의 기능을 활용하여 회전 변위를 제한할 수 있다.  4. Supports may be provided to limit the blade rotational displacement in three-axis rotating parts so that the angle of attack of the blades is smoothly adjusted. Alternatively, rotational displacement can be limited by utilizing the functions of the 3-axis rotating part itself.
[본 발명의 다른 실시예][Other Embodiments of the Invention]
본 발명의 다른 실시예에 따르면, 상기 받음각 자동 조절 날개 원리를 선박의 프로펠러에 적용할 수 있다. 본 실시예 설명을 위해 먼저 기존 선박의 프로펠러를 설명한다. 도 17a와 도 17b는 기존의 선박에서 프로펠러 피치를 조절하는 원리를 보여준다.According to another embodiment of the present invention, the angle of attack automatically adjustable wing can be applied to the propeller of the ship. First, the propeller of the existing ship will be described for explaining the present embodiment. 17a and 17b show the principle of adjusting the propeller pitch in the existing vessel.
도면을 보면, 기존의 가변피치(피치 조절) 선박 프로펠러는 프로펠러 날개의 피치를 조절하는 수단을 구비하여 가장 최적의 피치를 갖도록 하는데, 선박 추진력을 얻기 위한 프로펠러(D)가 프로펠러축(A)에 구비된다. 그런데 프로펠러(D)의 피치를 변경하는 구조로서, 프로펠러축(A) 내부에 피치조절부(B)와 피치조절베어링(C)을 구비한다. 여기서 피치조절부(B)를 회전하면 베벨기어 등 복잡한 전달과정을 통해서 피치조절베어링(C)을 구동시키고, 피치조절베어링에 부착된 프로펠러(D)의 피치를 조절하게 된다. 즉, 종래에는 회전할 수 있는 날개(프로펠러) 회전 베어링(C)을 프로펠러축(A) 상에 구비하고 있으며, 내부에는 날개를 회전하기 위한 복잡한 메카니즘과 회전 각도를 조절하기 위한 별도의 조절장치가 구비되어 있는 등 매우 복잡한 구조를 가지고 있었다.Referring to the drawings, the conventional variable pitch (pitch-adjusted) ship propeller is provided with a means for adjusting the pitch of the propeller blades to have the most optimal pitch, the propeller (D) to obtain the propulsion force of the ship to the propeller shaft (A) It is provided. By the way, as a structure which changes the pitch of the propeller D, the pitch control part B and the pitch adjustment bearing C are provided in the propeller shaft A. As shown in FIG. Rotating the pitch control unit B drives the pitch control bearing C through a complicated transmission process such as a bevel gear, and adjusts the pitch of the propeller D attached to the pitch control bearing. That is, conventionally equipped with a rotatable wing (propeller) rotary bearing (C) on the propeller shaft (A), and there is a complex mechanism for rotating the wing and a separate adjusting device for adjusting the rotation angle It was equipped with a very complicated structure.
본 발명은 이러한 종래의 선박에서 프로펠러 피치 각도를 자동조절하게 한 것이다. 이하 프로펠러는 날개에 대응되는 구성이며, 피치각은 받음각에 대응되는 개념이다.The present invention is to automatically adjust the propeller pitch angle in such a conventional vessel. The propeller is a configuration corresponding to the wing, the pitch angle is a concept corresponding to the angle of attack.
도 18을 보면, 선박의 추진력을 발생시키는 프로펠러축(500)에 회전베어링(520)이 장착되고, 상기 회전베어링에 프로펠러(550)가 장착된다. 상기 회전베어링은 프로펠러축에 회전 자유롭게 장착되고, 상기 프로펠러축의 길이방향에 수직한 방향을 기준으로 날개 단면의 하방의 한 지점을 중심으로 회전하도록 한다. 그리고, 상기 프로펠러(550)는 상기 회전베어링에 고정장착되어 상기 회전베어링이 회전함에 따라 받음각(피치각)이 변화하도록 한다.Referring to FIG. 18, a rotation bearing 520 is mounted on a propeller shaft 500 generating a propulsion force of a ship, and a propeller 550 is mounted on the rotation bearing. The rotating bearing is rotatably mounted on the propeller shaft, and rotates about a point below the cross section of the wing based on a direction perpendicular to the longitudinal direction of the propeller shaft. In addition, the propeller 550 is fixedly mounted to the rotary bearing so that the angle of attack (pitch angle) changes as the rotary bearing rotates.
본 실시예에 따르면, 기존의 가변피치 프로펠러와는 달리 내부에 복잡한 메카니즘이나 조절장치는 불필요하며, 단지 받음각 조절이 가능하도록 날개 받음각 조절 회전 베어링만을 구비하면 된다. 그러면, 유체 흐름 방향의 변화에 따라 날개 받음각이 자동으로 변하여 효율적인 운용이 가능하다.According to the present embodiment, unlike the conventional variable pitch propeller, there is no need for a complicated mechanism or an adjusting device therein, and only a wing angle adjustment rotating bearing can be provided to adjust the angle of attack. Then, the wing angle is automatically changed in accordance with the change in the fluid flow direction is possible to operate efficiently.
도 19a와 도 19b는 본 발명의 다른 실시예에 따른 선박의 프로펠러 받음각 자동 조절되면서 일정 범위로 제한되는 원리를 보여준다.19A and 19B illustrate a principle of being limited to a certain range while automatically adjusting a propeller receiving angle of a ship according to another embodiment of the present invention.
상기 회전베어링의 측면에서 상기 프로펠러축에 구비되어 상기 회전베어링의 회전범위를 제한하는 회전범위 제한부재(560)와 회전베어링에 구비되는 스토퍼(570)를 더 포함한다. 그리고, 상기 스토퍼는 회전베어링의 외곽 일측에 일체로 구비되어서 상기 베어링이 회전함에 따라 같이 회전하다가 일정 범위를 넘어서면 상기 회전범위 제한부재에 맞닿게 되어 회전베어링이 더 이상 회전하지 못하게 하는 역할을 수행한다. 베어링 회전 범위를 이렇게 제한하는 이유는, 회전 초기에 너무 크거나 작은 각도의 받음각 상태로 회전하게 되면 날개 단면 에어포일의 형상에 따라서는 유체 흐름 방향 변화에 따른 날개 받음각 회전이 안 되는 경우가 발생하기 때문이다. A rotation range limiting member 560 provided on the propeller shaft at the side of the rotating bearing to limit the rotation range of the rotating bearing and a stopper 570 provided on the rotating bearing. In addition, the stopper is integrally provided at one side of the outer bearing so that the bearing rotates as the bearing rotates, and when the stopper exceeds a certain range, the stopper contacts the limiting member of the rotating range, thereby preventing the rotating bearing from rotating any further. do. The reason for this limitation of the bearing rotation range is that if the rotation angle is too large or small at the initial angle of rotation, the wing angle of rotation cannot be changed due to the change of fluid flow direction depending on the shape of the wing cross-section airfoil. Because.
본 선박 프로펠러 실시예의 핵심적인 특징을 정리하면 다음과 같다.The key features of this ship propeller embodiment are as follows.
1. 날개는 받음각 조절 회전 베어링을 통하여 회전 축에 연결된다.1. The vane is connected to the axis of rotation through the angle of rotation adjustable bearing.
2. (멀티콥터 실시예에서 설명한 바와 마찬가지로) 받음각 조절 회전 베어링의 중심은 설계 기준 받음각에서 날개가 유체로부터 받는 하중의 하방쪽 연장선 상의 한 지점에 위치한다. 2. Center of the angle of attack rotational bearing (as described in the multicopter embodiment) is located at a point on the downward extension of the load the blade receives from the fluid at the design angle of attack.
3. 날개의 받음각 조절이 원활하게 되도록 날개 회전 변위를 제한하는 지지대를 구비할 수 있다. 3. Supports may be provided to limit wing rotational displacement so that the angle of attack of the wing is smooth.
[기타 적용분야][Other Applications]
또한, 본 발명의 원리는 풍력 터빈 블레이드에도 활용이 가능하다. 풍속과 풍력 터빈 블레이드의 회전 속도에 따른 풍향의 변화에 대하여 양항비(양력/항력 비율)가 최적인 받음각 상태로 날개의 위치가 자동 조절되게 함으로써 작은 바람에도 큰 양력이 발생하여 풍속에 대한 작동 범위가 넓어지는 등 본 발명의 개념을 적용하여 공기력 활용 효율의 향상이 가능하다. 특히 피치 제어 블레이드를 적용하지 않는 소형 풍력 발전기에서 초기 기동 풍속을 낮출 수 있다. 이때도 원심력을 이용한 스토퍼를 사용하여 초기 받음각을 조절함으로써 초기 기동 풍속을 낮출 수 있다. In addition, the principles of the present invention can be applied to wind turbine blades. Operating range for wind speed by generating large lift in small winds by automatically adjusting the position of the wing to the angle of attack which is optimal for the lifting ratio (lift / drag ratio) against wind speed and wind direction blade rotation speed. By applying the concept of the present invention, such as is wider it is possible to improve the air force utilization efficiency. The initial starting wind speed can be lowered, especially in small wind generators without pitch control blades. In this case, the initial starting wind speed can be lowered by adjusting the initial angle of attack using a stopper using a centrifugal force.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.

Claims (15)

  1. 유체 흐름 방향의 변화에 의하여 날개의 받음각 각도가 기준 받음각 위치에서 달라졌을 때, 상기 날개가 받음각 조절축을 중심으로 회전하여 기준 받음각의 각도로 복귀하는 것을 특징으로 하는 받음각 자동 조절 날개.When the angle of attack of the wing is changed at the position of the angle of attack by the change of the fluid flow direction, the angle of attack automatically adjusts the angle of attack, characterized in that the blade is rotated about the angle of attack angle adjustment axis to return to the angle of reference angle.
  2. 제1항에 있어서,The method of claim 1,
    상기 받음각 조절축(S)은, 상기 기준 받음각 각도에서 날개가 유체로부터 받는 힘 벡터의 하방쪽 연장선 상의 한 지점을 통과하는 것을 특징으로 하는 받음각 자동 조절 날개.The angle of attack adjustment axis (S), the angle of attack automatically adjustable vane, characterized in that passing through a point on the downward extension line of the force vector received from the fluid at the reference angle of attack.
  3. 제2항에 있어서,The method of claim 2,
    회전 동력을 생성하는 회전동력장치(M); 및A rotary power device (M) for generating rotary power; And
    상기 회전동력장치의 상측에 구비되어 회전동력장치의 회전력을 전달받아 회전하는 회전부재(100);를 포함하고,It is provided on the upper side of the rotary power unit rotating member 100 for receiving the rotational force of the rotary power unit to rotate; includes;
    상기 날개는 날개 수평부(W1)와 상기 날개 수평부에 절곡되어 형성되는 날개 루트부(W2)로 이루어지고, The wing is composed of a wing horizontal portion (W1) and the wing root portion (W2) formed by bending the wing horizontal portion,
    상기 날개 루트부(W2)는 상기 회전부재(100)에 3축 회전 가능하게 부착되는 것을 특징으로 하는 받음각 자동 조절 날개.The wing root portion (W2) is automatically receiving angle, characterized in that the three-axis rotatable attachment to the rotating member (100).
  4. 제3항에 있어서,The method of claim 3,
    상기 날개 루트부(W2)와 상기 회전부재(100)는 3축 회전이 가능한 연결을 위해 로드엔드 또는 고리 형상의 연결수단을 이용하는 것을 특징으로 하는 받음각 자동 조절 날개.The wing root portion (W2) and the rotating member 100 is automatically receiving angle of angle, characterized in that for using the rod end or ring-shaped connecting means for the three-axis rotation possible connection.
  5. 제3항에 있어서,The method of claim 3,
    상기 회전부재(100)에 고정장착된 체결부재(110); 및A fastening member 110 fixedly mounted to the rotating member 100; And
    상기 체결부재와 상기 날개 루트부(W2)를 연결하는 체결축(120);을 더 포함하는 것을 특징으로 하는 받음각 자동 조절 날개.An automatic receiving angle, characterized in that it further comprises; a fastening shaft 120 for connecting the fastening member and the wing root (W2).
  6. 제5항에 있어서,The method of claim 5,
    상기 날개의 끝단에는 상기 날개 수평부(W1)와 절곡되어 형성된 날개 팁(W3) 이 구비되는 것을 특징으로 하는 받음각 자동 조절 날개.At the end of the wing, the receiving angle automatic adjustment wing, characterized in that the wing tip (W3) is bent and formed with the wing horizontal portion (W1).
  7. 제6항에 있어서,The method of claim 6,
    상기 날개 루트부와 상기 날개 팁은, 상기 날개 수평부의 하방으로 형성되되 전방으로 경사지게 형성되는 것을 특징으로 하는 받음각 자동 조절 날개.The wing root portion and the wing tip, the angle of attack automatically adjustable wings, characterized in that formed below the wing horizontal portion is inclined forward.
  8. 제3항에 있어서, The method of claim 3,
    상기 회전부재(100)의 상면에는 상기 날개의 처짐을 방지하고 상기 날개의 받음각 조절범위를 제한하기 위한 날개변위 지지대(200)를 더 포함하는 것을 특징으로 하는 받음각 자동 조절 날개.The upper surface of the rotating member 100, the wing angle automatic adjustment wing, characterized in that it further comprises a wing displacement support (200) for preventing the deflection of the wing and limiting the angle of attack adjustment range of the wing.
  9. 제8항에 있어서,The method of claim 8,
    상기 날개변위 지지대는 날개 루트부(W2)의 후방에 배치되는 것을 특징으로 하는 받음각 자동 조절 날개.The blade displacement support is automatic receiving angle, characterized in that disposed on the rear of the wing root (W2).
  10. 제9항에 있어서,The method of claim 9,
    상기 날개변위 지지대는 날개 루트부(W2)의 외측방에 추가적으로 배치되는 것을 특징으로 하는 받음각 자동 조절 날개.The wing displacement support is automatic receiving angle, characterized in that disposed on the outer side of the wing root (W2).
  11. 제3항에 있어서,The method of claim 3,
    상기 회전동력장치는 모터인 것을 특징으로 하는 받음각 자동 조절 날개.The angle of rotation automatic adjustment blade, characterized in that the rotating power device is a motor.
  12. 제1항 내지 제11항 중 어느 한 항에 기재된 받음각 자동 조절 날개를 포함하는 항공기.An aircraft comprising the angle of attack self-adjusting wing according to any one of claims 1 to 11.
  13. 제2항에 기재된 받음각 자동 조절 날개는 프로펠러인 것을 특징으로 하는 선박.The angle of attack automatic adjustment blade of Claim 2 is a propeller, The ship characterized by the above-mentioned.
  14. 제13항에 있어서,The method of claim 13,
    상기 프로펠러의 받음각이 자동으로 조절되게 장착되는 프로펠러축(500);A propeller shaft 500 mounted to automatically adjust the angle of attack of the propeller;
    상기 프로펠러축에 회전 자유롭게 장착되고, 상기 프로펠러축의 길이방향에 수직한 방향을 기준으로 날개 단면의 하방의 한 지점을 중심으로 회전하는 회전베어링(520); 및 A rotation bearing 520 rotatably mounted to the propeller shaft, the rotation bearing being rotated about a point below the cross section of the wing based on a direction perpendicular to the longitudinal direction of the propeller shaft; And
    상기 회전베어링에 고정장착되고, 상기 회전베어링이 회전함에 따라 받음각이 변화하는 프로펠러(550);를 포함하는 것을 특징으로 하는 선박.And a propeller (550) fixedly mounted to the rotary bearing and changing the angle of attack as the rotary bearing rotates.
  15. 제14항에 있어서,The method of claim 14,
    상기 프로펠러축에 구비되어 상기 회전베어링의 회전범위를 제한하는 회전범위 제한부재(560); 및A rotation range limiting member 560 provided on the propeller shaft to limit a rotation range of the rotation bearing; And
    상기 회전베어링의 외곽 일측에 일체로 구비되고, 상기 베어링이 회전함에 따라 상기 회전범위 제한부재에 맞닿게 되는 스토퍼(570);를 더 포함하는 것을 특징으로 하는 선박.And a stopper (570) integrally provided on an outer side of the rotating bearing and contacting the rotation range limiting member as the bearing rotates.
PCT/KR2017/015135 2017-01-10 2017-12-20 Automatic angle-of-attack control wing and aircraft and vessels comprising automatic angle-of-attack control wing WO2018131821A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2017-0003493 2017-01-10
KR20170003493 2017-01-10
KR10-2017-0053752 2017-04-26
KR1020170053752A KR101936196B1 (en) 2017-01-10 2017-04-26 Wing with automatically adjusted angle of attack and aircraft and ship having the same
KR10-2017-0174008 2017-12-18
KR1020170174008A KR101988383B1 (en) 2017-12-18 2017-12-18 Wing with automatically adjusted angle of attack and aircraft and ship having the same

Publications (1)

Publication Number Publication Date
WO2018131821A1 true WO2018131821A1 (en) 2018-07-19

Family

ID=62839802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015135 WO2018131821A1 (en) 2017-01-10 2017-12-20 Automatic angle-of-attack control wing and aircraft and vessels comprising automatic angle-of-attack control wing

Country Status (1)

Country Link
WO (1) WO2018131821A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112455649A (en) * 2020-11-26 2021-03-09 广东国士健科技发展有限公司 Translational wing aircraft adjusting structure
CN113091876A (en) * 2021-04-22 2021-07-09 中国人民解放军92578部队 Wing-type structure flow-induced noise testing device and method based on circulating water tank
CN113212745A (en) * 2021-04-26 2021-08-06 南方科技大学 Rotor unmanned aerial vehicle and endurance prolonging method thereof
CN114076065A (en) * 2020-08-13 2022-02-22 新疆金风科技股份有限公司 Method and device for identifying blade stall of wind generating set
CN114166486A (en) * 2021-11-23 2022-03-11 中国直升机设计研究所 Loading attack angle adjusting method for fatigue test of helicopter tail rotor blade airfoil section

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264701A (en) * 1992-10-22 1994-09-20 Yusaku Fujii Fluid machine
US5492448A (en) * 1993-03-13 1996-02-20 Westland Helicopters Limited Rotary blades
JP2004237975A (en) * 2003-01-16 2004-08-26 Sharp Corp Flapping device
KR101185513B1 (en) * 2010-11-23 2012-09-24 삼성중공업 주식회사 Propeller for vessel
JP2013184645A (en) * 2012-03-09 2013-09-19 Japan Aerospace Exploration Agency Variable pitch propeller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264701A (en) * 1992-10-22 1994-09-20 Yusaku Fujii Fluid machine
US5492448A (en) * 1993-03-13 1996-02-20 Westland Helicopters Limited Rotary blades
JP2004237975A (en) * 2003-01-16 2004-08-26 Sharp Corp Flapping device
KR101185513B1 (en) * 2010-11-23 2012-09-24 삼성중공업 주식회사 Propeller for vessel
JP2013184645A (en) * 2012-03-09 2013-09-19 Japan Aerospace Exploration Agency Variable pitch propeller

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114076065A (en) * 2020-08-13 2022-02-22 新疆金风科技股份有限公司 Method and device for identifying blade stall of wind generating set
CN114076065B (en) * 2020-08-13 2023-09-26 金风科技股份有限公司 Method and device for identifying blade stall of wind generating set
CN112455649A (en) * 2020-11-26 2021-03-09 广东国士健科技发展有限公司 Translational wing aircraft adjusting structure
CN113091876A (en) * 2021-04-22 2021-07-09 中国人民解放军92578部队 Wing-type structure flow-induced noise testing device and method based on circulating water tank
CN113212745A (en) * 2021-04-26 2021-08-06 南方科技大学 Rotor unmanned aerial vehicle and endurance prolonging method thereof
CN114166486A (en) * 2021-11-23 2022-03-11 中国直升机设计研究所 Loading attack angle adjusting method for fatigue test of helicopter tail rotor blade airfoil section
CN114166486B (en) * 2021-11-23 2023-05-23 中国直升机设计研究所 Loading attack angle adjusting method for She Yixing-section fatigue test of helicopter tail rotor

Similar Documents

Publication Publication Date Title
WO2018131821A1 (en) Automatic angle-of-attack control wing and aircraft and vessels comprising automatic angle-of-attack control wing
US7424988B2 (en) Use of aerodynamic forces to assist in the control and positioning of aircraft control surfaces and variable geometry systems
US9409643B2 (en) Helicopter with cross-flow fan
WO2018110987A1 (en) Fan-in-wing aerial vehicle and method for controlling posture thereof
US20200086971A1 (en) Tiltrotor Free-Pivot Wing Extension
WO2017155348A1 (en) Vertical takeoff and landing aircraft
EP3446973B1 (en) Adaptable rotor control system for a variable number of blades
EP3450308B1 (en) Adaptable rotor control system for a variable number of blades
RU2002113662A (en) AIRCRAFT AND METHOD OF OPERATION OF THE AIRCRAFT
WO2020145677A1 (en) Drone
CN111516869A (en) Layout and control method of tilt rotor-wing vertical take-off and landing aircraft
CN104648665A (en) Quad-rotor unmanned helicopter device for line patrol
WO2020130333A1 (en) Vertical takeoff and landing type hybrid drone
CN111348183A (en) Aircraft with a flight control device
CN113799970A (en) Lifting surface structure of integrated ducted fan
US11639217B2 (en) Procedure for maneuvering a hybrid aerodyne of VTOL or STOL
CN114056557A (en) Hybrid power tilt rotor unmanned aerial vehicle
CN209535450U (en) A kind of four ducted fan unmanned planes with duct inclination angle
CN111268117A (en) Multi-duct aircraft with constant lift force and working method thereof
KR102022378B1 (en) wing with automatically adjusted angle of attack and aircraft having the same
CN111776208B (en) Aircraft and rotor head assembly thereof
KR101988383B1 (en) Wing with automatically adjusted angle of attack and aircraft and ship having the same
CN207956060U (en) A kind of off-loading high lift device applied on unmanned plane
KR20090021300A (en) Sky wind energy system
CN108128442A (en) For the pneumatic rudder ducted fan of vector and control method of vertical take-off and landing drone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891559

Country of ref document: EP

Kind code of ref document: A1