WO2018131769A1 - Device for controlling power factor and method for controlling power factor - Google Patents

Device for controlling power factor and method for controlling power factor Download PDF

Info

Publication number
WO2018131769A1
WO2018131769A1 PCT/KR2017/009828 KR2017009828W WO2018131769A1 WO 2018131769 A1 WO2018131769 A1 WO 2018131769A1 KR 2017009828 W KR2017009828 W KR 2017009828W WO 2018131769 A1 WO2018131769 A1 WO 2018131769A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
voltage
control
current
switching
Prior art date
Application number
PCT/KR2017/009828
Other languages
French (fr)
Korean (ko)
Inventor
임금성
Original Assignee
주식회사 모스트파워
임금성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 모스트파워, 임금성 filed Critical 주식회사 모스트파워
Publication of WO2018131769A1 publication Critical patent/WO2018131769A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/175Indicating the instants of passage of current or voltage through a given value, e.g. passage through zero
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R25/00Arrangements for measuring phase angle between a voltage and a current or between voltages or currents
    • G01R25/04Arrangements for measuring phase angle between a voltage and a current or between voltages or currents involving adjustment of a phase shifter to produce a predetermined phase difference, e.g. zero difference
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/70Regulating power factor; Regulating reactive current or power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a power factor control apparatus and a power factor control method, and more particularly, to a power factor control apparatus and a power factor control method for controlling a power factor using phase control.
  • alternating current Current that changes in magnitude and direction periodically with time
  • alternating current voltage voltage that changes in magnitude and direction periodically with time
  • An AC power source having a sinusoidal wave shape may have various frequencies, but generally, an AC power source having a frequency of 50 Hz or 60 Hz is used. In the case of 60Hz, which is mainly used at present, the half cycle time is 8.33ms and the phase angle corresponds to 0 ° ⁇ 180 °.
  • the power factor means the ratio of the active power to the apparent power.
  • a phase difference ⁇ of voltage and current is generated by a capacitance or inductance component present in a circuit.
  • the effective power is expressed as voltage x current x cos ⁇
  • the cos ⁇ value is referred to as a power factor (PF)
  • the sin ⁇ value is referred to as inefficiency.
  • a large power factor means that the active power is close to the apparent power, so that power from the power source is efficiently delivered to the load.
  • the power factor is low, it means that power from the power source is not transmitted to the load efficiently. Therefore, it is necessary to perform power factor control to increase the power factor.
  • An object of the present invention is to perform efficient power factor control by using phase control in performing power factor control.
  • the power factor control device for solving the above technical problem, the voltage sensing unit for detecting the phase of the voltage waveform, the current sensing unit for detecting the phase of the current waveform, switching the input signal is output or cut off toward the load And a controller configured to control the switching operation of the switching unit by using the switching unit to perform the switching and the phase information of the voltage and current acquired through the voltage sensing unit and the current sensing unit.
  • the power factor control method for solving the above technical problem, the step of detecting the phase of the voltage waveform, the phase of the current waveform, and the input waveform at the time when the voltage waveform has a constant phase And performing phase control on the output waveform when the current waveform has a constant phase.
  • the present invention has an effect of performing power factor control through phase control by sequentially performing on control and off control in one period.
  • the present invention has the effect of enabling power saving control through power factor control.
  • Fig. 1 shows waveforms of voltage and current in the case of the forward phase.
  • FIG 3 shows an example of a signal waveform according to phase on control.
  • FIG. 5 is an embodiment illustrating a power factor control method using phase control in the case of fastening.
  • Fig. 6 shows waveforms after performing power factor control using phase control in the case of true phase.
  • FIG. 7 illustrates an embodiment of a power factor control method using phase control in the case of the ground.
  • FIG. 9 shows a power factor control apparatus according to an embodiment of the present invention.
  • the present invention provides a voltage sensing unit for sensing a phase of a voltage waveform, a current sensing unit for sensing a phase of a current waveform, a switching unit for switching an input signal to be output or cut off toward a load, and the voltage sensing unit and the current. It includes a control unit for controlling the switching operation of the switching unit by using the phase information of the voltage and current obtained through the sensing unit.
  • the present invention provides a method for detecting a phase of a voltage waveform, detecting a phase of a current waveform, performing phase control on an input waveform at a time when the voltage waveform has a constant phase, and And performing phase control on the output waveform at a point in time with a constant phase.
  • the power factor is controlled to be 1 within the effective period by performing phase on control or phase off control on the current waveform and the voltage waveform.
  • phase control refers to controlling only a part of all sinusoidal inputs to be output based on a half cycle with respect to an AC voltage.
  • phase control methods include a phase on control method and a phase off control method.
  • the phase on control method does not output a voltage (or current) signal for a predetermined time from the zero crossing time point, and then controls to output a voltage (or current) when a specific time point is reached. That is, since there is no output signal for a predetermined time from the zero crossing time point and output starts at a specific time point, this is called phase-on control.
  • the phase-off control method outputs a voltage (or current) signal for a predetermined time from the time of zero crossing, and then controls not to output the voltage (or current) when the specific time is reached. That is, since the signal is continuously output from the time of zero crossing and the output is cut off at a specific time, this is called phase-off control.
  • FIG 3 shows an example of a signal waveform according to phase on control.
  • the AC voltage is blocked from the first zero crossing point T11 to the on control point T12.
  • the AC voltage signal starts to be output as soon as the on-control time point T12 is reached, and the output of the AC voltage is continued until the second zero crossing point (phase angle 180 °) T13.
  • the output of the AC voltage is cut off from the second zero crossing time point (phase angle 180 °) T13.
  • the AC voltage is output again from the moment when the on-control time point T14 is reached, and the output of the AC voltage continues until the third zero crossing time point T15 (phase angle 360 °).
  • an AC voltage is output from the first zero crossing point T21 to the off control point T22. Then, the AC voltage starts to be cut off from the OFF control point T22, and the AC voltage is cut off until the second zero crossing point (phase angle 180 °) T23. Then, the AC voltage output starts from the second zero crossing time T23 and continues until the off control time T24. The output of the AC voltage is cut off from the off control point T24 to the instant (phase angle 360 °) of the third zero crossing point T25.
  • FIG. 5 is an embodiment illustrating a power factor control method using phase control in the case of fastening.
  • power factor control may be performed by performing phase on control at a specific time point based on a voltage waveform and then performing phase off control at a specific time point based on a current waveform.
  • the specific time point based on the voltage waveform is preferably a zero crossing time point of the voltage.
  • the specific time point based on the current waveform is preferably a zero crossing time point of the current.
  • Fig. 6 shows waveforms after performing power factor control using phase control in the case of true phase. That is, the waveforms of the phase-on control are performed at the time point T31 of the valid section and the phase-off control is performed at the end point T32 of the valid section.
  • the power factor can be set to 1.
  • FIG. 7 illustrates an embodiment of a power factor control method using phase control in the case of the ground.
  • power factor control may be performed by performing phase on control at a specific time point based on a current waveform and then performing phase off control at a specific time point based on a voltage waveform.
  • the specific time point based on the current waveform is preferably a zero crossing time point of the current.
  • the specific time point based on the voltage waveform is preferably a zero crossing time point of the voltage.
  • FIG 8 shows waveforms after performing power factor control using phase control in the case of the ground. That is, the waveforms of the phase-on control are performed at the time point T41 of the valid section and the phase-off control is performed at the end point T42 of the valid section.
  • the power factor can be set to 1.
  • FIG. 9 shows a power factor control apparatus according to an embodiment of the present invention.
  • the switching unit 92 performs an on operation at the zero crossing time point T31 of the voltage, and performs a switching off operation at the zero crossing time point T32 of the current. That is, when the controller 94 detects the zero crossing point T31 of the voltage through the voltage detector 91, the control unit 94 performs a switching on operation at the zero crossing point T31 of the voltage. . In addition, when the controller 94 detects the zero crossing point T32 of the current through the current detector 97, the control unit 94 performs a switching-off operation at the zero crossing point T32 of the current. .
  • the switching unit 92 performs an on operation at the zero crossing point T41 of the current, and performs a switching off operation at the zero crossing point T42 of the voltage. That is, when the controller 94 detects the zero crossing point T41 of the current through the current detector 97, the control unit 94 performs a switching on operation at the zero crossing point T41 of the current. . In addition, when the controller 94 detects the zero crossing point T42 of the voltage through the voltage detector 91, the control unit 94 performs a switching-off operation at the zero crossing point T42 of the voltage. .
  • the THD (Total Harmonic Distortion) problem that may occur during phase control is a reactive power generated at high frequency due to the harmonics of the power used and the distortion of the load current. .
  • the present invention can be used to control power factor in an AC circuit.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

The present invention relates to a device for controlling a power factor and a method for controlling a power factor which control a power factor by using phase control, and the present invention has an effect of performing power factor control through phase control by sequentially performing on-control and off-control within one period.

Description

역률 제어 장치 및 역률 제어 방법Power factor control device and power factor control method
본 발명은 역률 제어 장치 및 역률 제어 방법에 관한 것으로, 더욱 상세하게는 위상 제어를 이용하여 역률을 제어하는 역률 제어 장치 및 역률 제어 방법에 관한 것이다. The present invention relates to a power factor control apparatus and a power factor control method, and more particularly, to a power factor control apparatus and a power factor control method for controlling a power factor using phase control.
시간에 따라 주기적으로 크기와 방향이 변하는 전류를 교류라고 하며, 시간에 따라 주기적으로 크기와 방향이 변하는 전압을 교류전압이라고 한다. Current that changes in magnitude and direction periodically with time is called alternating current, and voltage that changes in magnitude and direction periodically with time is called alternating current voltage.
정현파 형태를 가지는 교류 전원은 다양한 주파수를 가질 수 있으나, 일반적으로는 50Hz 혹은 60Hz의 주파수를 가지는 교류 전원을 사용한다. 현재 주로 사용되고 있는 60Hz의 경우, 반주기의 시간은 8.33ms 이고, 위상각으로는 0°~ 180°에 해당한다. An AC power source having a sinusoidal wave shape may have various frequencies, but generally, an AC power source having a frequency of 50 Hz or 60 Hz is used. In the case of 60Hz, which is mainly used at present, the half cycle time is 8.33ms and the phase angle corresponds to 0 ° ~ 180 °.
직류회로에서는 전력 = 전압×전류가 되나, 교류회로에서는 전류의 실효치에 전압의 실효치를 곱한 것이 반드시 전력으로 되지는 않는다. 즉, 교류회로에서는 전압과 전류와의 곱을 피상전력이라 하고, 이에 역률을 곱해야 비로소 전력이 된다. 이때, 역률이란 피상전력에 대한 유효전력의 비율을 의미한다. In a DC circuit, power = voltage x current, but in an AC circuit, the product of the effective value of the current times the effective value of the voltage does not necessarily become the power. In other words, in the AC circuit, the product of the voltage and the current is called the apparent power, and the power factor is not achieved until the power factor is multiplied. In this case, the power factor means the ratio of the active power to the apparent power.
일반적으로, 교류 전원의 경우, 회로에 존재하는 캐피시턴스(capacitance) 혹은 인덕턴스(inductance) 성분에 의해 전압과 전류의 위상차(θ)가 발생한다. 이때, 유효전력은 전압×전류×cosθ 로 표현되며, cosθ 값을 역률(Power Factor; PF)이라 하고, sinθ 값을 무효율 이라 한다. In general, in the case of an AC power supply, a phase difference θ of voltage and current is generated by a capacitance or inductance component present in a circuit. In this case, the effective power is expressed as voltage x current x cos θ, the cos θ value is referred to as a power factor (PF), and the sin θ value is referred to as inefficiency.
역율이 크다는 것은 유효 전력이 피상 전력에 근접하는 것으로서 전원에서의 전력이 부하에 효율적으로 전달된다는 것을 의미한다. 그러나, 역률이 작다는 것은 전원에서의 전력이 부하에 효율적으로 전달되지 못한다는 것을 의미하므로, 역률이 높아지도록 역률 제어를 수행할 필요가 있다. A large power factor means that the active power is close to the apparent power, so that power from the power source is efficiently delivered to the load. However, since the power factor is low, it means that power from the power source is not transmitted to the load efficiently. Therefore, it is necessary to perform power factor control to increase the power factor.
본 발명은 역률 제어를 수행함에 있어서, 위상 제어를 이용함으로써, 효율적인 역률 제어를 수행하도록 하는데 그 목적이 있다. An object of the present invention is to perform efficient power factor control by using phase control in performing power factor control.
상기 기술적 과제를 해결하기 위한 본 발명에 따른 역률 제어 장치는 전압 파형의 위상을 감지하는 전압 감지부와, 전류 파형의 위상을 감지하는 전류 감지부와, 입력 신호가 부하 쪽으로 출력되거나 차단되도록 스위칭을 수행하는 스위칭부 및 상기 전압 감지부 및 상기 전류 감지부를 통해 획득한 전압 및 전류의 위상 정보를 이용하여 스위칭부의 스위칭 동작을 제어하는 제어부를 포함하여 이루어진다.The power factor control device according to the present invention for solving the above technical problem, the voltage sensing unit for detecting the phase of the voltage waveform, the current sensing unit for detecting the phase of the current waveform, switching the input signal is output or cut off toward the load And a controller configured to control the switching operation of the switching unit by using the switching unit to perform the switching and the phase information of the voltage and current acquired through the voltage sensing unit and the current sensing unit.
또한, 상기 기술적 과제를 해결하기 위한 본 발명에 따른 역률 제어 방법은, 전압 파형의 위상을 감지하는 단계와, 전류 파형의 위상을 감지하는 단계와, 상기 전압 파형이 일정한 위상을 가지는 시점에서 입력 파형에 대해 위상 제어를 수행하는 단계 및 상기 전류 파형이 일정한 위상을 가지는 시점에서 출력 파형에 대해 위상 제어를 수행하는 단계를 포함하여 이루어진다. In addition, the power factor control method according to the present invention for solving the above technical problem, the step of detecting the phase of the voltage waveform, the phase of the current waveform, and the input waveform at the time when the voltage waveform has a constant phase And performing phase control on the output waveform when the current waveform has a constant phase.
본 발명은, 하나의 주기 내에서 온 제어와 오프 제어를 순차적으로 수행함으로써, 위상 제어를 통한 역률 제어를 수행할 수 있는 효과가 있다. The present invention has an effect of performing power factor control through phase control by sequentially performing on control and off control in one period.
또한, 본 발명은 역률 제어를 통해 절전 제어를 수행할 수 있도록 하는 효과가 있다. In addition, the present invention has the effect of enabling power saving control through power factor control.
도 1 은 진상인 경우의 전압과 전류의 파형을 나타낸 것이다.Fig. 1 shows waveforms of voltage and current in the case of the forward phase.
도 2 는 지상인 경우의 전압과 전류의 파형을 나타낸 것이다. 2 shows waveforms of voltage and current in the case of the ground.
도 3 은 위상 온 제어에 따른 신호 파형의 일례를 나타낸 것이다. 3 shows an example of a signal waveform according to phase on control.
도 4 는 위상 오프 제어에 따른 신호 파형의 일례를 나타낸 것이다. 4 shows an example of a signal waveform according to phase off control.
도 5 는 진상의 경우 위상 제어를 이용한 역률 제어 방법을 나타낸 일실시예이다. 5 is an embodiment illustrating a power factor control method using phase control in the case of fastening.
도 6 은 진상인 경우에, 위상 제어를 이용한 역률 제어를 수행한 후의 파형을 나타낸 것이다.Fig. 6 shows waveforms after performing power factor control using phase control in the case of true phase.
도 7 은 지상의 경우 위상 제어를 이용한 역률 제어 방법을 나타낸 일실시예이다. 7 illustrates an embodiment of a power factor control method using phase control in the case of the ground.
도 8 은 지상인 경우에, 위상 제어를 이용한 역률 제어를 수행한 후의 파형을 나타낸 것이다.8 shows waveforms after performing power factor control using phase control in the case of the ground.
도 9 는 본 발명의 일실시예에 따른 역률 제어 장치를 나타낸 것이다. 9 shows a power factor control apparatus according to an embodiment of the present invention.
본 발명은 전압 파형의 위상을 감지하는 전압 감지부와, 전류 파형의 위상을 감지하는 전류 감지부와, 입력 신호가 부하 쪽으로 출력되거나 차단되도록 스위칭을 수행하는 스위칭부 및 상기 전압 감지부 및 상기 전류 감지부를 통해 획득한 전압 및 전류의 위상 정보를 이용하여 스위칭부의 스위칭 동작을 제어하는 제어부를 포함하여 이루어진다.The present invention provides a voltage sensing unit for sensing a phase of a voltage waveform, a current sensing unit for sensing a phase of a current waveform, a switching unit for switching an input signal to be output or cut off toward a load, and the voltage sensing unit and the current. It includes a control unit for controlling the switching operation of the switching unit by using the phase information of the voltage and current obtained through the sensing unit.
또한, 본 발명은 전압 파형의 위상을 감지하는 단계와, 전류 파형의 위상을 감지하는 단계와, 상기 전압 파형이 일정한 위상을 가지는 시점에서 입력 파형에 대해 위상 제어를 수행하는 단계 및 상기 전류 파형이 일정한 위상을 가지는 시점에서 출력 파형에 대해 위상 제어를 수행하는 단계를 포함하여 이루어진다. In addition, the present invention provides a method for detecting a phase of a voltage waveform, detecting a phase of a current waveform, performing phase control on an input waveform at a time when the voltage waveform has a constant phase, and And performing phase control on the output waveform at a point in time with a constant phase.
상술한 목적, 특징들 및 장점은 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해 질 것이다. 이하 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명한다. The above objects, features and advantages will become more apparent from the following detailed description taken in conjunction with the accompanying drawings. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1 은 진상(leading phase)인 경우의 전압과 전류 파형을 나타낸 것이다.1 shows voltage and current waveforms in the case of a leading phase.
도 1 에 도시된 바와 같이, 진상의 경우에는 전류의 위상이 전압의 위상보다 앞서게 된다.As shown in Fig. 1, in the case of the fast phase, the phase of the current precedes the phase of the voltage.
도 2 는 지상(lagging phase)인 경우의 전압과 전류의 파형을 나타낸 것이다. 2 shows waveforms of voltage and current in the lagging phase.
도 2 에 도시된 바와 같이, 지상의 경우에는 전압의 위상이 전류의 위상보다 앞서게 된다. As shown in FIG. 2, in the case of the ground, the phase of the voltage precedes the phase of the current.
본 발명에 따른 역률 제어 방법은 전류파형 및 전압파형에 대해 위상 온 제어 또는 위상 오프 제어를 수행함으로써, 유효구간 내에서 역률이 1이 되도록 제어하는 것이다. In the power factor control method according to the present invention, the power factor is controlled to be 1 within the effective period by performing phase on control or phase off control on the current waveform and the voltage waveform.
일반적으로, 위상 제어란 교류전압에 대하여 반주기를 기준으로 전체 정현파 형태의 입력 중에서 일부만이 출력되도록 제어하는 것을 말한다. 이와 같은 위상 제어의 방법으로는 위상 온 제어(Phase On Control) 방법과 위상 오프 제어(Phase Off Control) 방법이 있다. In general, phase control refers to controlling only a part of all sinusoidal inputs to be output based on a half cycle with respect to an AC voltage. Such phase control methods include a phase on control method and a phase off control method.
위상 온 제어 방법은 제로크로싱 시점으로부터 일정한 시간동안 전압(혹은 전류)신호를 출력하지 않다가, 특정 시점에 이르렀을 때 비로소 전압(혹은 전류)을 출력하도록 제어하는 것이다. 즉, 제로크로싱 시점으로부터 일정한 시간동안 출력 신호가 없다가 특정 시점에 출력이 개시되므로 이를 위상 온 제어라고 한다.The phase on control method does not output a voltage (or current) signal for a predetermined time from the zero crossing time point, and then controls to output a voltage (or current) when a specific time point is reached. That is, since there is no output signal for a predetermined time from the zero crossing time point and output starts at a specific time point, this is called phase-on control.
한편, 위상 오프 제어 방법은 제로크로싱 시점으로부터 일정한 시간동안 전압(혹은 전류)신호를 출력하다가, 특정 시점에 이르렀을 때 비로소 전압(혹은 전류)이 출력되지 않도록 제어하는 것이다. 즉, 제로크로싱 시점으로부터 지속적으로 신호를 출력하다가 특정 시점에 이르면 출력이 차단되므로 이를 위상 오프 제어라고 한다. On the other hand, the phase-off control method outputs a voltage (or current) signal for a predetermined time from the time of zero crossing, and then controls not to output the voltage (or current) when the specific time is reached. That is, since the signal is continuously output from the time of zero crossing and the output is cut off at a specific time, this is called phase-off control.
도 3 은 위상 온 제어에 따른 신호 파형의 일례를 나타낸 것이다. 3 shows an example of a signal waveform according to phase on control.
도 3 을 참고하면, 제1제로크로싱 시점(T11)으로부터 온 제어 시점(T12)까지는 교류전압이 차단된다. 한편, 온 제어 시점(T12)이 되는 순간 교류전압 신호가 출력되기 시작하여, 제2제로크로싱 시점(위상각 180°)(T13)까지 교류전압의 출력이 지속된다. 그리고, 제2제로크로싱 시점(위상각 180°)(T13)으로부터 교류전압의 출력이 차단된다. 교류전압은 온 제어 시점(T14)이 되는 순간부터 다시 출력되고, 제3제로크로싱 시점(T15)(위상각 360°)까지 교류전압의 출력이 지속된다. Referring to FIG. 3, the AC voltage is blocked from the first zero crossing point T11 to the on control point T12. On the other hand, the AC voltage signal starts to be output as soon as the on-control time point T12 is reached, and the output of the AC voltage is continued until the second zero crossing point (phase angle 180 °) T13. Then, the output of the AC voltage is cut off from the second zero crossing time point (phase angle 180 °) T13. The AC voltage is output again from the moment when the on-control time point T14 is reached, and the output of the AC voltage continues until the third zero crossing time point T15 (phase angle 360 °).
도 4 는 위상 오프 제어에 따른 신호 파형의 일례를 나타낸 것이다. 4 shows an example of a signal waveform according to phase off control.
도 4 를 참고하면, 제1제로크로싱 시점(T21)으로부터 오프 제어 시점(T22)까지 교류전압이 출력된다. 그리고, 오프 제어 시점(T22)부터 교류전압이 차단되기 시작하여, 제2제로크로싱 시점(위상각 180°)(T23)에 이르기까지 교류전압이 차단된다. 그리고, 제2제로크로싱 시점(T23)으로부터 교류전압 출력이 시작되어 오프 제어 시점(T24)까지 지속된다. 그리고, 오프 제어 시점(T24)으로부터 제3제로크로싱 시점(T25)이 되는 순간(위상각 360°)까지 교류전압의 출력이 차단된다. Referring to FIG. 4, an AC voltage is output from the first zero crossing point T21 to the off control point T22. Then, the AC voltage starts to be cut off from the OFF control point T22, and the AC voltage is cut off until the second zero crossing point (phase angle 180 °) T23. Then, the AC voltage output starts from the second zero crossing time T23 and continues until the off control time T24. The output of the AC voltage is cut off from the off control point T24 to the instant (phase angle 360 °) of the third zero crossing point T25.
도 5 는 진상의 경우 위상 제어를 이용한 역률 제어 방법을 나타낸 일실시예이다. 5 is an embodiment illustrating a power factor control method using phase control in the case of fastening.
도 5 에 도시된 바와 같이, 진상의 경우, 전압 파형을 기준으로 한 특정 시점에서 위상 온 제어를 수행하고 난 후, 전류 파형을 기준으로 한 특정 시점에서 위상 오프 제어를 수행함으로써 역률 제어를 수행할 수 있다. 이때, 상기 전압 파형을 기준으로 한 특정 시점은 전압의 제로크로싱 시점인 것이 바람직하다. 한편, 상기 전류 파형을 기준으로 한 특정 시점은 전류의 제로크로싱 시점인 것이 바람직하다. As shown in FIG. 5, in the case of a true phase, power factor control may be performed by performing phase on control at a specific time point based on a voltage waveform and then performing phase off control at a specific time point based on a current waveform. Can be. In this case, the specific time point based on the voltage waveform is preferably a zero crossing time point of the voltage. On the other hand, the specific time point based on the current waveform is preferably a zero crossing time point of the current.
도 6 은 진상인 경우에, 위상 제어를 이용한 역률 제어를 수행한 후의 파형을 나타낸 것이다. 즉, 유효구간의 시점(T31)에서 위상 온 제어를 수행하고, 유효구간의 종점(T32)에서 위상 오프 제어를 수행한 파형을 나타낸 것이다. Fig. 6 shows waveforms after performing power factor control using phase control in the case of true phase. That is, the waveforms of the phase-on control are performed at the time point T31 of the valid section and the phase-off control is performed at the end point T32 of the valid section.
도 6 에 도시된 바와 같이, 진상의 경우, 전압의 제로크로싱 시점(T31)에서 위상 온 제어를 수행하고, 전류의 제로크로싱 시점(T32)에서 위상 오프 제어를 수행하게 되면, 유효구간 내에서는 무효전력이 없어지므로 역률이 1 이 되도록 할 수 있다. As shown in FIG. 6, in the case of a true phase, when the phase on control is performed at the zero crossing point T31 of the voltage and the phase off control is performed at the zero crossing point T32 of the current, it is invalid within the effective period. Since power is lost, the power factor can be set to 1.
도 7 은 지상의 경우 위상 제어를 이용한 역률 제어 방법을 나타낸 일실시예이다. 7 illustrates an embodiment of a power factor control method using phase control in the case of the ground.
도 7 에 도시된 바와 같이, 지상의 경우, 전류 파형을 기준으로 한 특정 시점에서 위상 온 제어를 수행하고 난 후, 전압 파형을 기준으로 한 특정 시점에서 위상 오프 제어를 수행함으로써 역률 제어를 수행할 수 있다. 이때, 상기 전류 파형을 기준으로 한 특정 시점은 전류의 제로크로싱 시점인 것이 바람직하다. 한편, 상기 전압 파형을 기준으로 한 특정 시점은 전압의 제로크로싱 시점인 것이 바람직하다. As shown in FIG. 7, in the case of the ground, power factor control may be performed by performing phase on control at a specific time point based on a current waveform and then performing phase off control at a specific time point based on a voltage waveform. Can be. In this case, the specific time point based on the current waveform is preferably a zero crossing time point of the current. On the other hand, the specific time point based on the voltage waveform is preferably a zero crossing time point of the voltage.
도 8 은 지상인 경우에, 위상 제어를 이용한 역률 제어를 수행한 후의 파형을 나타낸 것이다. 즉, 유효구간의 시점(T41)에서 위상 온 제어를 수행하고, 유효구간의 종점(T42)에서 위상 오프 제어를 수행한 파형을 나타낸 것이다. 8 shows waveforms after performing power factor control using phase control in the case of the ground. That is, the waveforms of the phase-on control are performed at the time point T41 of the valid section and the phase-off control is performed at the end point T42 of the valid section.
도 8 에 도시된 바와 같이, 지상의 경우, 전류의 제로크로싱 시점(T41)에서 위상 온 제어를 수행하고, 전압의 제로크로싱 시점(T42)에서 위상 오프 제어를 수행하게 되면, 유효구간 내에서는 무효전력이 없어지므로 역률이 1 이 되도록 할 수 있다. As shown in FIG. 8, in the case of the ground, when the phase on control is performed at the zero crossing point T41 of the current and the phase off control is performed at the zero crossing point T42 of the voltage, it is invalid within the effective section. Since power is lost, the power factor can be set to 1.
도 9 는 본 발명의 일실시예에 따른 역률 제어 장치를 나타낸 것이다. 9 shows a power factor control apparatus according to an embodiment of the present invention.
도 9 에 도시된 역률 제어 장치(90)를 이용하여 도 6 에 도시된 역률 제어를 수행하는 방법을 설명하면 다음과 같다. A method of performing the power factor control shown in FIG. 6 by using the power factor control device 90 shown in FIG. 9 will now be described.
스위칭부(92)는 전압의 제로크로싱 시점(T31)에 온 동작을 수행하고, 전류의 제로크로싱 시점(T32)에 스위칭 오프 동작을 수행한다. 즉, 제어부(94)가 전압감지부(91)를 통해 전압의 제로크로싱 시점(T31)을 감지하면, 스위칭부(92)가 전압의 제로크로싱 시점(T31)에서 스위칭 온 동작을 수행하도록 제어한다. 또한, 제어부(94)가 전류감지부(97)를 통해 전류의 제로크로싱 시점(T32)를 감지하면, 스위칭부(92)가 전류의 제로크로싱 시점(T32)에서 스위칭 오프 동작을 수행하도록 제어한다. The switching unit 92 performs an on operation at the zero crossing time point T31 of the voltage, and performs a switching off operation at the zero crossing time point T32 of the current. That is, when the controller 94 detects the zero crossing point T31 of the voltage through the voltage detector 91, the control unit 94 performs a switching on operation at the zero crossing point T31 of the voltage. . In addition, when the controller 94 detects the zero crossing point T32 of the current through the current detector 97, the control unit 94 performs a switching-off operation at the zero crossing point T32 of the current. .
한편, 도 9 에 도시된 역률 제어 장치(90)를 이용하여 도 8 에 도시된 역률 제어를 수행하는 방법을 설명하면 다음과 같다. Meanwhile, a method of performing the power factor control shown in FIG. 8 using the power factor control device 90 shown in FIG. 9 will be described below.
스위칭부(92)는 전류의 제로크로싱 시점(T41)에 온 동작을 수행하고, 전압의 제로크로싱 시점(T42)에 스위칭 오프 동작을 수행한다. 즉, 제어부(94)가 전류감지부(97)를 통해 전류의 제로크로싱 시점(T41)을 감지하면, 스위칭부(92)가 전류의 제로크로싱 시점(T41)에서 스위칭 온 동작을 수행하도록 제어한다. 또한, 제어부(94)가 전압감지부(91)를 통해 전압의 제로크로싱 시점(T42)를 감지하면, 스위칭부(92)가 전압의 제로크로싱 시점(T42)에서 스위칭 오프 동작을 수행하도록 제어한다. The switching unit 92 performs an on operation at the zero crossing point T41 of the current, and performs a switching off operation at the zero crossing point T42 of the voltage. That is, when the controller 94 detects the zero crossing point T41 of the current through the current detector 97, the control unit 94 performs a switching on operation at the zero crossing point T41 of the current. . In addition, when the controller 94 detects the zero crossing point T42 of the voltage through the voltage detector 91, the control unit 94 performs a switching-off operation at the zero crossing point T42 of the voltage. .
한편, 위상제어시 발생할 수 있는 THD(Total Harmonic Distortion) 문제는 사용 전력의 고조파 및 부하 전류의 왜곡에 따른 고주파로 발생되는 무효전력이므로, 저역통과 필터(Low Pass Filter)를 사용하여 해결할 수 있을 것이다. On the other hand, the THD (Total Harmonic Distortion) problem that may occur during phase control is a reactive power generated at high frequency due to the harmonics of the power used and the distortion of the load current. .
도 9 는 단상인 경우의 실시예이나, 본 발명은 단상 뿐 아니라 다상의 경우에도 적용이 가능하다. 9 shows an embodiment in the case of a single phase, but the present invention can be applied not only to a single phase but also to a multiphase.
본 발명은 교류회로에 있어서 역률을 제어하는데 이용될 수 있다. The present invention can be used to control power factor in an AC circuit.

Claims (10)

  1. 전압 파형의 위상을 감지하는 전압 감지부;A voltage sensing unit sensing a phase of the voltage waveform;
    전류 파형의 위상을 감지하는 전류 감지부;A current sensing unit sensing a phase of the current waveform;
    입력 신호가 부하 쪽으로 출력되거나 차단되도록 스위칭을 수행하는 스위칭부; 및 A switching unit which performs switching so that an input signal is output or cut off toward the load; And
    상기 전압 감지부 및 상기 전류 감지부를 통해 획득한 전압 및 전류의 위상 정보를 이용하여 스위칭부의 스위칭 동작을 제어하는 제어부Control unit for controlling the switching operation of the switching unit by using the phase information of the voltage and current obtained through the voltage sensing unit and the current sensing unit
    를 포함하여 이루어지는 역률 제어 장치.Power factor control device comprising a.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제어부는,The control unit,
    전압의 위상정보를 기준으로 스위칭 온 동작을 수행하는 경우에는 전류의 위상정보를 기준으로 스위칭 오프 동작을 수행하고,When the switching on operation is performed based on the phase information of the voltage, the switching off operation is performed based on the phase information of the current.
    전류의 위상정보를 기준으로 스위칭 온 동작을 수행하는 경우에는 전압의 위상정보를 기준으로 스위칭 오프 동작을 수행하도록 제어하며,When the switching on operation is performed based on the phase information of the current, the control is performed to perform the switching off operation based on the phase information of the voltage.
    상기 스위칭부의 스위칭 온 동작과 스위칭 오프 동작이 번갈아가며 수행되도록 제어하는 제어부Control unit for controlling the switching on and switching off operation of the switching unit to be performed alternately
    를 포함하여 이루어지는 역률 제어 장치.Power factor control device comprising a.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 전압 및 전류의 위상 정보는 전류 및 전압의 제로크로싱 시점에 관한 정보인 것을 특징으로 하는 역률 제어 장치.The voltage and phase information of the current is a power factor control device, characterized in that the information on the time of zero crossing of the current and voltage.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 제어부는 전압의 제로크로싱 시점에 상기 스위칭부가 스위칭 온 동작을 수행하도록 제어하고, 전류의 제로크로싱 시점에 상기 스위칭부가 스위칭 오프 동작을 수행하도록 제어하는 것을 특징으로 하는 역률 제어 장치.And the control unit controls the switching unit to perform a switching on operation at a zero crossing point of voltage, and controls the switching unit to perform a switching off operation at a zero crossing point of current.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 전류의 위상이 상기 전압의 위상을 앞서는 것(leading phase)을 특징으로 하는 역률 제어 장치Power factor control device characterized in that the phase of the current leads the phase of the voltage
  6. 제 3 항에 있어서,The method of claim 3, wherein
    상기 제어부는 전류의 제로크로싱 시점에 상기 스위칭부가 스위칭 온 동작을 수행하도록 제어하고, 전압의 제로크로싱 시점에 상기 스위칭부가 스위칭 온 동작을 수행하도록 제어하는 것을 특징으로 하는 역률 제어 장치.And the control unit controls the switching unit to perform a switching-on operation at a zero crossing point of current, and controls the switching unit to perform a switching-on operation at a zero crossing point of voltage.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 전류의 위상이 상기 전압의 위상에 뒤지는 것(lagging phase)을 특징으로 하는 역률 제어 장치.And a lagging phase of the current phase.
  8. 전압 파형의 위상을 감지하는 단계;Sensing the phase of the voltage waveform;
    전류 파형의 위상을 감지하는 단계;Sensing the phase of the current waveform;
    상기 전압 파형이 일정한 위상을 가지는 시점에서 입력 신호에 대해 스위칭 제어를 수행하는 단계; 및Performing switching control on an input signal when the voltage waveform has a constant phase; And
    상기 전류 파형이 일정한 위상을 가지는 시점에서 입력 신호에 대해 위상 제어를 수행하는 단계Performing phase control on an input signal when the current waveform has a constant phase
    를 포함하여 이루어지는 역률 제어 방법. Power factor control method comprising a.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 전압 파형의 제로크로싱 시점에서 위상 온 제어를 수행하고,Perform phase-on control at the zero crossing point of the voltage waveform,
    상기 전류 파형의 제로크로싱 시점에서 위상 오프 제어를 수행하는 것을 특징으로 하는 역률 제어 방법.And a phase-off control is performed at the zero crossing point of the current waveform.
  10. 제 8 항에 있어서,The method of claim 8,
    상기 전류 파형의 제로크로싱 시점에서 위상 온 제어를 수행하고,Perform phase on control at the zero crossing time point of the current waveform,
    상기 전압 파형의 제로크로싱 시점에서 위상 오프 제어를 수행하는 것을 특징으로 하는 역률 제어 방법.And a phase off control is performed at the zero crossing point of the voltage waveform.
PCT/KR2017/009828 2017-01-11 2017-09-07 Device for controlling power factor and method for controlling power factor WO2018131769A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0004386 2017-01-11
KR1020170004386A KR101793696B1 (en) 2017-01-11 2017-01-11 Apparatus and Method for Controlling Power Factor

Publications (1)

Publication Number Publication Date
WO2018131769A1 true WO2018131769A1 (en) 2018-07-19

Family

ID=60383659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009828 WO2018131769A1 (en) 2017-01-11 2017-09-07 Device for controlling power factor and method for controlling power factor

Country Status (2)

Country Link
KR (1) KR101793696B1 (en)
WO (1) WO2018131769A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233819A (en) * 1996-02-23 1997-09-05 Matsushita Electric Works Ltd Switching power unit
JP2003315388A (en) * 2002-04-18 2003-11-06 Matsushita Electric Works Ltd Phase adjusting device and power measuring device using the same
JP2011199922A (en) * 2010-03-17 2011-10-06 Fuji Electric Co Ltd Half-bridge dc/dc converter
JP2014060847A (en) * 2012-09-18 2014-04-03 Omron Automotive Electronics Co Ltd Control device for power-factor improvement circuit and charger
JP2016111922A (en) * 2014-12-05 2016-06-20 パナソニックIpマネジメント株式会社 Switching power supply unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000050367A (en) 1999-01-07 2000-08-05 윤종용 power-factor improvement apparatus of air-conditioner
US7142997B1 (en) 2004-12-08 2006-11-28 Tripac Systems, Inc. Automatic power factor corrector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233819A (en) * 1996-02-23 1997-09-05 Matsushita Electric Works Ltd Switching power unit
JP2003315388A (en) * 2002-04-18 2003-11-06 Matsushita Electric Works Ltd Phase adjusting device and power measuring device using the same
JP2011199922A (en) * 2010-03-17 2011-10-06 Fuji Electric Co Ltd Half-bridge dc/dc converter
JP2014060847A (en) * 2012-09-18 2014-04-03 Omron Automotive Electronics Co Ltd Control device for power-factor improvement circuit and charger
JP2016111922A (en) * 2014-12-05 2016-06-20 パナソニックIpマネジメント株式会社 Switching power supply unit

Also Published As

Publication number Publication date
KR101793696B1 (en) 2017-11-03

Similar Documents

Publication Publication Date Title
US20200058475A1 (en) Controlling multiple plasma processes
EP3236575A1 (en) Charge/discharge circuit, control method for charge/discharge circuit, control device for charge/discharge circuit, and direct power converter
EP3151381A1 (en) Wireless power transmission system
US11929742B2 (en) Method and device for switching an electronic component on or off
US9800168B2 (en) Inverter power supply system
EP3382874B1 (en) Bi-directional dc-dc converter with load and source synchronized power control
US10250037B2 (en) Harmonic current compensator and air-conditioning system
WO2013155844A1 (en) Three-phase ac phase-sequence detection method and device
WO2017020644A1 (en) Method and apparatus for reducing excitation current of transformer during bypass conducted by isolated ups
EP2814156A3 (en) Power circuit part, power control method thereof and display apparatus having the same
EP3026805A3 (en) System and method for operating power converters
WO2018131769A1 (en) Device for controlling power factor and method for controlling power factor
KR20030040098A (en) Three phase rectifier circuit with virtual neutral
CN112600447B (en) Application method of rectification module
WO2018117499A1 (en) Method and device for driving brushless dc motor using voltage compensation
US20150229203A1 (en) Smart Resistor-Less Pre-Charge Circuit For Power Converter
WO2016060319A1 (en) Reactive power compensation apparatus and reactive power compensation method
US20190212374A1 (en) Method to determine three-phase load impedances driven bypower control device when no neutral reference is available in an alternative electrical network
CN110190760B (en) High-voltage generator rectifying device
KR101435223B1 (en) Method for operating a converter circuit
WO2016159517A1 (en) H-bridge multilevel inverter
WO2018093073A1 (en) Cooking vessel detection apparatus, cooking vessel detection method, and induction heating cooker
KR20190023973A (en) Inverter for protecting over current
KR0163702B1 (en) Pwm converter and its controlling method
WO2018131768A1 (en) Phase control apparatus and phase control method using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17891091

Country of ref document: EP

Kind code of ref document: A1