WO2016159517A1 - H-bridge multilevel inverter - Google Patents

H-bridge multilevel inverter Download PDF

Info

Publication number
WO2016159517A1
WO2016159517A1 PCT/KR2016/001934 KR2016001934W WO2016159517A1 WO 2016159517 A1 WO2016159517 A1 WO 2016159517A1 KR 2016001934 W KR2016001934 W KR 2016001934W WO 2016159517 A1 WO2016159517 A1 WO 2016159517A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
bridge
bridge inverter
terminals
inverter
Prior art date
Application number
PCT/KR2016/001934
Other languages
French (fr)
Korean (ko)
Inventor
아쉬라프아흐무드
박종후
Original Assignee
숭실대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숭실대학교 산학협력단 filed Critical 숭실대학교 산학협력단
Publication of WO2016159517A1 publication Critical patent/WO2016159517A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters

Definitions

  • the present invention relates to an H-bridge multi-level inverter, and more particularly, to an H-bridge multi-level inverter capable of generating a multi-level alternating output voltage.
  • Multi-level inverters can form multiple levels in the output voltage, making the output voltage close to sinusoidal. These multi-level inverters can achieve high efficiency output voltages by reducing the total harmonic distortion (THD) as the number of voltage levels increases and reducing the loss of switches.
  • TDD total harmonic distortion
  • multi-level inverters are divided into diode-clamps, flying-capacitors, and H-bridge multi-level inverters.
  • the H-bridge multi-level inverter is a structure in which a plurality of H-bridge inverters are connected in series, eliminating the need for clamping diodes or capacitors and grouping in H-bridge units, which is easy to expand and control. have.
  • the background technology of the present invention is disclosed in Korean Patent Registration No. 1230862 (2013.02.07).
  • the present invention provides an H-bridge multi-level inverter capable of generating a multi-level alternating current output having high efficiency from a single input power source and reducing the power throughput of the auxiliary H-bridge inverter connected to the main H-bridge inverter. There is a purpose.
  • a first capacitor is connected to first and second ends of an input power source, respectively, and a first capacitor for removing ripple of a first DC power source supplied from the input power source, and first and second terminals.
  • a first H-bridge inverter having a DC terminal connected to the first and second ends of the first capacitor, and a first AC terminal connected to the first end of the load, and a first AC terminal being the first H-bridge inverter
  • a second H-bridge inverter connected in series with a second AC terminal of the second DC power source, wherein a second DC power source is formed between the first and second DC ends, and the first and second ends of the first H-bridge inverter;
  • a second capacitor connected to a second DC terminal, respectively, to remove the ripple of the second DC power source, and first and second input terminals respectively connected to the first and second terminals of the second capacitor.
  • a voltage converter for stepping down the DC power supply to the third DC power supply and outputting it between the first and second output terminals;
  • a third capacitor connected to the first and second output terminals of the voltage converter, respectively, to remove the ripple of the third DC power source, and the first and second DC terminals connected to the first and second terminals of the third capacitor;
  • H-bridges each of which includes a third H-bridge inverter connected to a second AC terminal of the second H-bridge inverter, the first AC terminal being connected in series, and the second AC terminal being connected to the second terminal of the load.
  • the voltage converter may be configured as a transformer-type isolated converter or a buck converter.
  • the voltage converter may include a first switch having a control signal applied to a first stage and a second stage connected to a first stage of the second capacitor, and a control signal applied to a first stage and the third stage being the A second switch connected to the second end of the second capacitor, a first diode connected at the anode to the third end of the first switch, a second diode connected at the cathode of the second switch, and an anode A third diode connected to the anode of the second diode and a cathode connected to the cathode of the first diode; a first end connected to the cathode of the first diode; and a second end connected to the first end of the third capacitor.
  • the connected first inductor may include a second inductor connected to an anode of the second diode and a second end connected to the second terminal of the third capacitor.
  • the first H-bridge inverter may output an AC voltage having the same switching frequency as the operating frequency of the load.
  • the H-bridge multi-level inverter it is possible to generate a multi-level alternating current output having high efficiency from a single input power supply and to reduce the power throughput of the auxiliary H-bridge inverter connected to the main H-bridge inverter. This reduces cost and volume, and improves the efficiency and reliability of the system.
  • FIG. 1 is a block diagram of an H-bridge multi-level inverter according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating the voltage converter of FIG. 1 in detail.
  • FIG. 3 is a diagram illustrating individual DC voltages input to the plurality of H-bridge inverters shown in FIG. 1.
  • FIG. 4 is a diagram illustrating individual AC voltages output from the plurality of H-bridge inverters shown in FIG. 1.
  • FIG. 5 is a diagram illustrating a final output waveform formed by superimposing three waveforms shown in FIG. 4.
  • H-bridge multi-level inverter 100 is the first capacitor 120, the first H-bridge inverter 130, the second H-bridge inverter 140, the second capacitor 150 , The voltage converter 160, the third capacitor 170, and the third H-bridge inverter 180.
  • the first capacitor 120 has first and second ends connected to the first and second ends of the input power source 110, respectively, and removes ripples of the first DC power supply Vs supplied from the input power source 110. And smooth. At this time, the voltage V Main applied between both ends of the first capacitor 120 is equal to the size of the first DC power supply.
  • first and second DC terminals are connected to first and second terminals of the first capacitor 120, respectively.
  • the first H-bridge inverter 130 converts the first DC power V Main input to the first and second DC terminals into AC power by using internal switches, and outputs the AC power between the first and second AC terminals. . Since the structure of the H-bridge inverter composed of a plurality of switches is well known, a detailed description of its operation principle is omitted.
  • the first H-bridge inverter 130 and the second H-bridge inverter 140 are connected in series with the AC terminals.
  • a first AC end is connected to the first end of the load 10
  • a second AC end is connected in series to the first AC end of the second H-bridge inverter 140.
  • a structure in which AC outputs of a plurality of H-bridge inverters are connected in series to each other is known in the art, and an AC output voltage having a plurality of levels may be provided to the load 10 through the structure.
  • the first H-bridge inverter 130 corresponds to the H-bridge which is the main body of the multi-level inverter 100, and the AC voltage output from the first H-bridge inverter 130 is an operating frequency of the load 10. Has the same switching frequency as.
  • the operating frequency of the AC load 10 is 60 Hz. Since the first H-bridge inverter 130 may be implemented to output an AC voltage of 60 Hz, high speed switching is not necessary, and thus switching loss is low.
  • an auxiliary H-bridge inverter i.e., a second and third H-bridge inverter 180, at the next stage of the first H-bridge inverter 130.
  • Performs higher speed switching ex, 10-20kHz.
  • the switching frequency of the AC voltage output between each of the first and second AC terminals increases as the first to third H-bridge inverters 130, 140, and 180 become higher.
  • the second H-bridge inverter 140 has a first AC terminal connected in series with the second AC terminal of the first H-bridge inverter 130, and the second AC terminal is serially connected with the first AC terminal of the third H-bridge inverter 180.
  • the second DC power source V Aux1 is formed between the first and second DC terminals. The voltage of the second DC power supply V Aux1 is smoothed in the second capacitor 150.
  • the second capacitor 150 has a first stage and a second stage connected to the first and second DC terminals of the second H-bridge inverter 140, respectively, to remove the ripple of the second DC power supply V Aux1 .
  • the voltage converter 160 may be implemented as a DC-DC converter.
  • the voltage converter 160 includes first and second input terminals connected to first and second ends of the second capacitor 150, respectively, and includes a second DC power supply V Aux1 connected to both ends of the second capacitor 150. Is stepped down by a third DC power supply (V Aux2 ) and output between the first and second output terminals.
  • the voltage converter 160 serves as an auxiliary power supply for supplying a DC voltage to the third H-bridge inverter 180.
  • the voltage converter 160 may be composed of a conventional transformer type isolated converter or a buck converter, a modified isolated buck converter, and the like, capable of stepping down a voltage.
  • the configuration of the modified buck converter is a transformerless isolated buck converter comprising at least two inductors, which will be described in detail later.
  • the third capacitor 170 has first and second ends connected to the first and second output terminals of the voltage converter 160, respectively, and has a ripple of the third DC power source V Aux2 output from the voltage converter 160. Remove it.
  • first and second DC terminals are connected to first and second ends of the third capacitor 170, respectively.
  • the third H-bridge inverter 180 converts the third DC power V Aux2 input to the first and second DC terminals into AC power by using the operations of the internal switches, and outputs the alternating current between the first and second AC terminals. .
  • the third H-bridge inverter 180 has a first AC terminal connected in series with a second AC terminal of the second H-bridge inverter 140, and the second AC terminal is connected to the second terminal of the load 10. Accordingly, a stepped multi-level AC voltage waveform is output between the first AC terminal of the first H-bridge inverter 130 and the second AC terminal of the third H-bridge inverter 190, and the AC voltage waveform is a load ( 10) is supplied with AC power.
  • the asymmetric voltages Vmain, Vaux1, and Vaux2 are generated at each stage, and synthesized through the H-bridge inverters at each stage to generate an AC output having a stepped voltage waveform to load 10. Supplies).
  • Asymmetrical voltages generally have multiples of one another.
  • the first H-bridge inverter 130 is implemented to output an AC voltage having the same switching frequency as the operating frequency ex, 60 Hz of the load 10, and the second H-bridge inverter 140.
  • the third H-bridge inverter 180 performs high speed switching to output an AC voltage having a high frequency.
  • the AC voltage output from the third H-bridge inverter 180 has a higher frequency than the second H-bridge inverter 140.
  • AC power having multiple levels may be supplied to the load 10.
  • the AC output finally output through the plurality of H-bridge inverters is a concept including an AC current output or grid-connected renewable energy generation power for motor control.
  • the plurality of H-bridge inverters have a structure in which AC terminals are connected to each other in series, and the H-bridge inverter unit used may have three stages as shown in FIG.
  • the overall power flow in the multi-level inverter according to the embodiment of the present invention as shown in FIG. 1 can be known by referring to the arrow.
  • the flow of power is applied to the first H-bridge inverter 130, the second H-bridge inverter 140, the voltage converter 160, and the third H-bridge inverter 180 at the input power source 110. It can be seen that the path occurs.
  • an embodiment of the present invention provides that the power provided from the input power supply is the first H-bridge inverter.
  • the auxiliary power source i.e., voltage converter 160
  • second H-bridge inverter 140 in the intermediate stage.
  • the first H-bridge inverter 130 may generate about 90% of the total AC output supplied to the load 10, and the remaining second and third H-bridge inverters 180 may each have a power of 5%. Can produce power in%. That is, most of the power supplied to the load 10 may be produced through the first H-bridge inverter 130.
  • FIG. 2 is a diagram illustrating the voltage converter of FIG. 1 in detail.
  • the voltage converter 160 shown in FIG. 2 has a modified buck converter form. Its basic operation is the same as that of a conventional buck converter.
  • the voltage converter 160 includes a first switch S1, a second switch S2, a first diode D1, a second diode D2, a third diode D3, a first inductor L1, A second inductor L2 is included.
  • the first voltage converter 160 has a form similar to that of a conventional buck converter.
  • the conventional buck converter does not have an insulation function, but the voltage converter according to the present embodiment has an insulation function because it includes an inductor on the ground line.
  • the voltage converter can also be configured as a bidirectional switch.
  • the first switch S1 is composed of a transistor or the like, and a control signal is applied to the first stage (gate stage), the second stage is connected to the first stage of the second capacitor 150, and the third stage is the first stage. It is connected to the anode of the diode D1.
  • the second switch S2 is composed of a transistor or the like and a control signal is applied to the first stage (gate stage), the third stage is connected to the second stage of the second capacitor 150, and the second stage is the second stage. It is connected to the cathode of the diode D2.
  • an anode is connected to the third end of the first switch S1, and a cathode is connected to the first end of the first inductor L1.
  • the second diode D2 has a cathode connected to the second end of the second switch S2 and an anode connected to the first end of the second inductor L2.
  • the third diode D3 has an anode connected to the anode of the second diode D2 and a cathode connected to the cathode of the first diode D1.
  • the first inductor L1 has a first end connected to the cathode of the first diode D1 and a second end connected to the first end of the second capacitor 150.
  • the second inductor L2 has a first end connected to the anode of the second diode D2 and a second end connected to the second end of the second capacitor 150.
  • the second inductor L2 separates the ground of the third H-bridge inverter 180 from the ground of the input power source 110 to secure insulation.
  • the first switch S1-> first diode D1-> first inductor L1-> third capacitor 170-> second inductor L2 A current flow occurs in the direction of the second diode D2 to the second switch S2.
  • the direction is formed by the third diode D3 and the first inductor L1-> second capacitor 170-> second inductor L2-> third diode D3-> first Current flows in the inductor L1 direction.
  • the voltage converter may mean including a capacitor.
  • FIG. 3 is a diagram illustrating individual DC voltages input to the plurality of H-bridge inverters shown in FIG. 1. In the case of Figure 3 shows an example using a multiple of the asymmetric voltage.
  • the DC power Vmain_DC input to the first H-bridge inverter 130 is the same 225V as the input power 110 and the DC power Vaux1_DC input to the second H-bridge inverter 140.
  • Is 75V, which is 1/3 of Vmain_DC, and DC power (Vaux2_DC) input to the third H-bridge inverter 180 is observed as 25V, which is 1/3 of Vaux1_DC.
  • FIG. 4 is a diagram illustrating individual AC voltages output from the plurality of H-bridge inverters shown in FIG. 1.
  • the AC outputs of the first to third H-bridge inverters 130, 140 and 180 are represented by Vmain_AC, Vaux1_AC and Vaux2_AC, respectively. If the AC output Vmain_AC of the first H-bridge inverter 130 exhibits a switching frequency characteristic of 60 Hz, the AC outputs Vaux1_AC and Vaux2_AC of the second and third H-bridge inverters 140 and 180 have higher frequency characteristics. It can be seen that represents. Of course, it can be seen that the frequency of the AC voltage output as the first to third H-bridge inverter (130, 140, 180) increases.
  • FIG. 5 is a diagram illustrating a final output waveform formed by superimposing three waveforms shown in FIG. 4.
  • the final output waveform of FIG. 5 is a waveform actually applied to a load, and through the circuit configuration of FIG. 1, an AC voltage form having a total of 21 levels can be output.
  • the final output frequency has a 60Hz component that is equal to the operating frequency of the load.
  • the H-bridge multi-level inverter according to the present invention as described above, it is possible to generate a multi-level alternating current output having high efficiency from a single input power source, and to control the power throughput of the auxiliary H-bridge inverter connected to the main H-bridge inverter. Can be reduced, reducing cost and volume, and improving the efficiency and reliability of the system.

Abstract

The present invention relates to an H-bridge multilevel inverter and provides an H-bridge multilevel inverter comprising: a first capacitor that is connected to an input power source and removes a ripple of a first DC power source supplied from the input power source; a first H-bridge inverter having two DC terminals connected to both terminals of the first capacitor, and a first AC terminal connected to a first terminal of a load; a second H-bridge inverter having a first AC terminal connected to a second AC terminal of the first H-bridge inverter in series, wherein a second DC power source is formed between two DC terminals thereof; a second capacitor having both terminals connected to the two DC terminals of the second H-bridge inverter, respectively; a voltage converter that has an input terminal connected to both terminals of the second capacitor, and drops a voltage from the second DC power source to a third DC power source; a third capacitor having both terminals connected to an output terminal of the voltage converter; and a third H-bridge inverter having two DC terminals connected to both terminals of the third capacitor, a first AC terminal connected to the second AC terminal of the second H-bridge inverter in series, and a second AC terminal connected to a second terminal of the load.

Description

H-브리지 멀티 레벨 인버터H-bridge multi level inverter
본 발명은 H-브리지 멀티 레벨 인버터에 관한 것으로서, 보다 상세하게는 멀티 레벨의 교류 출력 전압을 발생시킬 수 있는 H-브리지 멀티 레벨 인버터에 관한 것이다.The present invention relates to an H-bridge multi-level inverter, and more particularly, to an H-bridge multi-level inverter capable of generating a multi-level alternating output voltage.
멀티 레벨 인버터는 출력 전압에 다수의 레벨을 형성하여 출력 전압을 정현파에 가깝게 구현할 수 있다. 이러한 멀티 레벨 인버터는 전압 레벨의 수를 증가시킴에 따라 전고조파 왜율(Total Harmonic Distortion;THD)을 감소시키고 스위치의 손실을 줄임에 따라 고효율의 출력 전압을 얻을 수 있다.Multi-level inverters can form multiple levels in the output voltage, making the output voltage close to sinusoidal. These multi-level inverters can achieve high efficiency output voltages by reducing the total harmonic distortion (THD) as the number of voltage levels increases and reducing the loss of switches.
일반적으로 멀티 레벨 인버터는 다이오드-클램프(Diode-clamp), 플라잉-커패시터(Flying-capacitors), H-브리지(H-bridge) 멀티 레벨 인버터로 구분된다. 그 중에서 H-브리지 멀티 레벨 인버터는 다수의 H-브리지 인버터를 직렬로 연결한 구조로서, 클램핑 다이오드나 다수의 커패시터가 불필요하고, H-브리지 단위로 그룹화가 가능하므로 확장 및 제어가 용이한 이점이 있다.In general, multi-level inverters are divided into diode-clamps, flying-capacitors, and H-bridge multi-level inverters. Among them, the H-bridge multi-level inverter is a structure in which a plurality of H-bridge inverters are connected in series, eliminating the need for clamping diodes or capacitors and grouping in H-bridge units, which is easy to expand and control. have.
하지만, 이러한 H-브리지 멀티 레벨 인버터는 복수의 H-브리지의 개수에 대응하여 복수의 전력 공급원을 필요로 한다. 이를 해결하기 위하여 단일의 전력 공급원으로부터 변압기 등과 같은 전력 변환 장치를 거쳐, 각 단의 H-브리지에 전원을 보조적으로 공급하는 방법이 있지만, 이 경우 전력 변환 장치와 H-브리지가 처리해야 하는 전력량이 상당히 커지게 된다.However, such an H-bridge multi-level inverter requires a plurality of power sources corresponding to the number of the plurality of H-bridges. In order to solve this problem, there is a method of auxiliary power supply to the H-bridges of each stage from a single power source through a power converter such as a transformer, but in this case, the amount of power that the power converter and the H-bridge has to handle It becomes quite big.
본 발명의 배경이 되는 기술은 한국등록특허 제1230862호(2013.02.07 공고)에 개시되어 있다.The background technology of the present invention is disclosed in Korean Patent Registration No. 1230862 (2013.02.07).
본 발명은 단일 입력 전원으로부터 고효율을 가지는 멀티 레벨의 교류 출력을 발생시킬 수 있으며 메인 H-브리지 인버터와 연결되는 보조 H-브리지 인버터의 전력 처리량을 감소시킬 수 있는 H-브리지 멀티 레벨 인버터를 제공하는데 목적이 있다.The present invention provides an H-bridge multi-level inverter capable of generating a multi-level alternating current output having high efficiency from a single input power source and reducing the power throughput of the auxiliary H-bridge inverter connected to the main H-bridge inverter. There is a purpose.
본 발명은, 제1 및 제2 단이 입력 전원의 제1 및 제2 단에 각각 연결되고, 상기 입력 전원에서 공급된 제1 직류 전원의 리플을 제거하는 제1 커패시터와, 제1 및 제2 직류단이 상기 제1 커패시터의 제1 및 제2 단에 각각 연결되고, 제1 교류단이 부하의 제1단에 연결되는 제1 H-브리지 인버터와, 제1 교류단이 상기 제1 H-브리지 인버터의 제2 교류단과 직렬 연결되고, 제1 및 제2 직류단 사이에 제2 직류 전원이 형성되는 제2 H-브리지 인버터와, 제1 및 제2 단이 상기 제2 H-브리지 인버터의 제1 및 제2 직류단에 각각 연결되고, 상기 제2 직류 전원의 리플을 제거하는 제2 커패시터와, 제1 및 제2 입력단이 상기 제2 커패시터의 제1 및 제2 단에 각각 연결되고, 상기 제2 직류 전원을 제3 직류 전원으로 강압하여 제1 및 제2 출력단 사이로 출력하는 전압 컨버터와, 제1 및 제2 단이 상기 전압 컨버터의 제1 및 제2 출력단에 각각 연결되고, 상기 제3 직류 전원의 리플을 제거하는 제3 커패시터, 및 제1 및 제2 직류단이 상기 제3 커패시터의 제1 및 제2 단에 각각 연결되고, 제1 교류단이 상기 제2 H-브리지 인버터의 제2 교류단과 직렬 연결되고, 제2 교류단이 상기 부하의 제2단에 연결되는 제3 H-브리지 인버터를 포함하는 H-브리지 멀티 레벨 인버터를 제공한다.According to the present invention, a first capacitor is connected to first and second ends of an input power source, respectively, and a first capacitor for removing ripple of a first DC power source supplied from the input power source, and first and second terminals. A first H-bridge inverter having a DC terminal connected to the first and second ends of the first capacitor, and a first AC terminal connected to the first end of the load, and a first AC terminal being the first H-bridge inverter A second H-bridge inverter connected in series with a second AC terminal of the second DC power source, wherein a second DC power source is formed between the first and second DC ends, and the first and second ends of the first H-bridge inverter; And a second capacitor connected to a second DC terminal, respectively, to remove the ripple of the second DC power source, and first and second input terminals respectively connected to the first and second terminals of the second capacitor. 2 a voltage converter for stepping down the DC power supply to the third DC power supply and outputting it between the first and second output terminals; A third capacitor connected to the first and second output terminals of the voltage converter, respectively, to remove the ripple of the third DC power source, and the first and second DC terminals connected to the first and second terminals of the third capacitor; H-bridges, each of which includes a third H-bridge inverter connected to a second AC terminal of the second H-bridge inverter, the first AC terminal being connected in series, and the second AC terminal being connected to the second terminal of the load. Provide a multi-level inverter.
여기서, 상기 전압 컨버터는, 변압기형 절연형 컨버터 또는 벅 컨버터(Buck converter)로 구성될 수 있다.Here, the voltage converter may be configured as a transformer-type isolated converter or a buck converter.
또한, 상기 전압 컨버터는, 제1 단에 제어 신호가 인가되고 제2 단이 상기 제2 커패시터의 제1 단에 연결된 제1 스위치와, 제1 단에 상기 제어 신호가 인가되고 제3 단이 상기 제2 커패시터의 제2 단에 연결된 제2 스위치와, 애노드가 상기 제1 스위치의 제3 단에 연결된 제1 다이오드와, 캐소드가 상기 제2 스위치의 제2 단에 연결된 제2 다이오드와, 애노드가 상기 제2 다이오드의 애노드에 연결되고 캐소드가 상기 제1 다이오드의 캐소드에 연결된 제3 다이오드와, 제1 단이 상기 제1 다이오드의 캐소드에 연결되고 제2 단이 상기 제3 커패시터의 제1 단에 연결된 제1 인덕터, 및 제1 단이 상기 제2 다이오드의 애노드에 연결되고 제2 단이 상기 제3 커패시터의 제2 단에 연결된 제2 인덕터를 포함할 수 있다.In addition, the voltage converter may include a first switch having a control signal applied to a first stage and a second stage connected to a first stage of the second capacitor, and a control signal applied to a first stage and the third stage being the A second switch connected to the second end of the second capacitor, a first diode connected at the anode to the third end of the first switch, a second diode connected at the cathode of the second switch, and an anode A third diode connected to the anode of the second diode and a cathode connected to the cathode of the first diode; a first end connected to the cathode of the first diode; and a second end connected to the first end of the third capacitor. The connected first inductor may include a second inductor connected to an anode of the second diode and a second end connected to the second terminal of the third capacitor.
또한, 상기 제1 H-브리지 인버터는 상기 부하의 동작 주파수와 동일한 스위칭 주파수를 가지는 교류 전압을 출력할 수 있다.The first H-bridge inverter may output an AC voltage having the same switching frequency as the operating frequency of the load.
본 발명에 따른 H-브리지 멀티 레벨 인버터에 따르면, 단일 입력 전원으로부터 고효율을 가지는 멀티 레벨의 교류 출력을 발생시킬 수 있으며 메인 H-브리지 인버터와 연결되는 보조 H-브리지 인버터의 전력 처리량을 감소시킬 수 있어, 가격 및 부피를 줄이고 시스템의 효율 및 신뢰성을 향상시킬 수 있다.According to the H-bridge multi-level inverter according to the present invention, it is possible to generate a multi-level alternating current output having high efficiency from a single input power supply and to reduce the power throughput of the auxiliary H-bridge inverter connected to the main H-bridge inverter. This reduces cost and volume, and improves the efficiency and reliability of the system.
도 1은 본 발명의 실시예에 따른 H-브리지 멀티 레벨 인버터의 구성도이다.1 is a block diagram of an H-bridge multi-level inverter according to an embodiment of the present invention.
도 2는 도 1의 전압 컨버터를 상세히 나타낸 구성도이다.FIG. 2 is a diagram illustrating the voltage converter of FIG. 1 in detail.
도 3은 도 1에 도시된 복수의 H-브리지 인버터에 입력되는 개별 직류 전압을 나타낸 도면이다. FIG. 3 is a diagram illustrating individual DC voltages input to the plurality of H-bridge inverters shown in FIG. 1.
도 4는 도 1에 도시된 복수의 H-브리지 인버터에서 출력되는 개별 교류 전압을 나타낸 도면이다.FIG. 4 is a diagram illustrating individual AC voltages output from the plurality of H-bridge inverters shown in FIG. 1.
도 5는 도 4에 도시된 세 개의 파형이 중첩되어 형성된 최종 출력 파형을 나타낸 도면이다. FIG. 5 is a diagram illustrating a final output waveform formed by superimposing three waveforms shown in FIG. 4.
그러면 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention.
도 1은 본 발명의 실시예에 따른 H-브리지 멀티 레벨 인버터의 구성도이다. 본 발명의 실시예에 따른 H-브리지 멀티 레벨 인버터(100)는 제1 커패시터(120), 제1 H-브리지 인버터(130), 제2 H-브리지 인버터(140), 제2 커패시터(150), 전압 컨버터(160), 제3 커패시터(170), 제3 H-브리지 인버터(180)를 포함한다.1 is a block diagram of an H-bridge multi-level inverter according to an embodiment of the present invention. H-bridge multi-level inverter 100 according to an embodiment of the present invention is the first capacitor 120, the first H-bridge inverter 130, the second H-bridge inverter 140, the second capacitor 150 , The voltage converter 160, the third capacitor 170, and the third H-bridge inverter 180.
제1 커패시터(120)는 제1 및 제2 단이 입력 전원(110)의 제1 및 제2 단에 각각 연결되고, 입력 전원(110)에서 공급된 제1 직류 전원(Vs)의 리플을 제거하고 평활화한다. 이때 제1 커패시터(120)의 양단 사이에 걸리는 전압(VMain)은 제1 직류 전원의 크기와 동일하다.The first capacitor 120 has first and second ends connected to the first and second ends of the input power source 110, respectively, and removes ripples of the first DC power supply Vs supplied from the input power source 110. And smooth. At this time, the voltage V Main applied between both ends of the first capacitor 120 is equal to the size of the first DC power supply.
제1 H-브리지 인버터(130)는 제1 및 제2 직류단이 제1 커패시터(120)의 제1 및 제2 단에 각각 연결되어 있다. 제1 H-브리지 인버터(130)는 제1 및 제2 직류단으로 입력되는 제1 직류 전원(VMain)을 내부 스위치들의 동작을 이용하여 교류 전원으로 변환하여 제1 및 제2 교류단 사이로 출력한다. 다수의 스위치로 구성된 H-브리지 인버터의 구조는 기 공지된 것이므로 그 동작 원리에 대한 상세한 설명은 생략한다.In the first H-bridge inverter 130, first and second DC terminals are connected to first and second terminals of the first capacitor 120, respectively. The first H-bridge inverter 130 converts the first DC power V Main input to the first and second DC terminals into AC power by using internal switches, and outputs the AC power between the first and second AC terminals. . Since the structure of the H-bridge inverter composed of a plurality of switches is well known, a detailed description of its operation principle is omitted.
제1 H-브리지 인버터(130)와 제2 H-브리지 인버터(140)는 교류단 끼리 직렬 연결된다. 제1 H-브리지 인버터(130)는 제1 교류단이 부하(10)의 제1 단에 연결되고, 제2 교류단이 제2 H-브리지 인버터(140)의 제1 교류단에 직렬 연결되어 있다. 이와 같이 복수의 H-브리지 인버터의 교류 출력을 서로 직렬 연결하는 구조는 기 공지된 것이며 이러한 구조를 통하여 다수의 레벨을 가지는 교류 출력 전압을 부하(10)에 제공할 수 있다.The first H-bridge inverter 130 and the second H-bridge inverter 140 are connected in series with the AC terminals. In the first H-bridge inverter 130, a first AC end is connected to the first end of the load 10, and a second AC end is connected in series to the first AC end of the second H-bridge inverter 140. As described above, a structure in which AC outputs of a plurality of H-bridge inverters are connected in series to each other is known in the art, and an AC output voltage having a plurality of levels may be provided to the load 10 through the structure.
제1 H-브리지 인버터(130)는 멀티 레벨 인버터(100)에서 메인이 되는 H-브리지에 해당되는 것으로서, 제1 H-브리지 인버터(130)에서 출력되는 교류 전압은 부하(10)의 동작 주파수와 동일한 스위칭 주파수를 가진다. The first H-bridge inverter 130 corresponds to the H-bridge which is the main body of the multi-level inverter 100, and the AC voltage output from the first H-bridge inverter 130 is an operating frequency of the load 10. Has the same switching frequency as.
일반적으로 교류 부하(10)의 동작 주파수는 60Hz이다. 제1 H-브리지 인버터(130)는 60Hz의 교류 전압을 출력하도록 구현하면 되므로 고속 스위칭이 필요 없고 이에 따라 스위칭 손실이 낮은 특성을 가진다. In general, the operating frequency of the AC load 10 is 60 Hz. Since the first H-bridge inverter 130 may be implemented to output an AC voltage of 60 Hz, high speed switching is not necessary, and thus switching loss is low.
물론, 부하(10)에 멀티 레벨의 교류 출력을 공급하기 위하여, 제1 H-브리지 인버터(130)의 다음 단에 있는 보조 H-브리지 인버터 즉, 제2 및 제3 H-브리지 인버터(180)는 그보다 높은 고속 스위칭(ex, 10~20kHz)을 수행한다. 여기서, 제1 내지 제3 H-브리지 인버터(130,140,180)로 갈수록 각각의 제1 및 제2 교류단 사이에 출력되는 교류 전압의 스위칭 주파수가 높아지도록 구현한다.Of course, to supply a multi-level alternating current output to the load 10, an auxiliary H-bridge inverter, i.e., a second and third H-bridge inverter 180, at the next stage of the first H-bridge inverter 130. Performs higher speed switching (ex, 10-20kHz). Here, the switching frequency of the AC voltage output between each of the first and second AC terminals increases as the first to third H- bridge inverters 130, 140, and 180 become higher.
제2 H-브리지 인버터(140)는 제1 교류단이 제1 H-브리지 인버터(130)의 제2 교류단과 직렬 연결되고 제2 교류단은 제3 H-브리지 인버터(180)의 제1 교류단과 직렬 연결되며, 제1 및 제2 직류단 사이에는 제2 직류 전원(VAux1)이 형성된다. 이러한 제2 직류 전원(VAux1)의 전압은 제2 커패시터(150)에서 평활화된다.The second H-bridge inverter 140 has a first AC terminal connected in series with the second AC terminal of the first H-bridge inverter 130, and the second AC terminal is serially connected with the first AC terminal of the third H-bridge inverter 180. The second DC power source V Aux1 is formed between the first and second DC terminals. The voltage of the second DC power supply V Aux1 is smoothed in the second capacitor 150.
제2 커패시터(150)는 제1 및 제2 단이 제2 H-브리지 인버터(140)의 제1 및 제2 직류단에 각각 연결되어 제2 직류 전원(VAux1)의 리플을 제거하여 다음 단의 전압 컨버터(160)으로 제공한다. 전압 컨버터(160)는 DC-DC 컨버터로 구현될 수 있다.The second capacitor 150 has a first stage and a second stage connected to the first and second DC terminals of the second H-bridge inverter 140, respectively, to remove the ripple of the second DC power supply V Aux1 . To the voltage converter 160. The voltage converter 160 may be implemented as a DC-DC converter.
전압 컨버터(160)는 제1 및 제2 입력단이 제2 커패시터(150)의 제1 및 제2 단에 각각 연결되어 있으며, 제2 커패시터(150)의 양단에 걸린 제2 직류 전원(VAux1)을 제3 직류 전원(VAux2)으로 강압하여 제1 및 제2 출력단 사이로 출력한다. The voltage converter 160 includes first and second input terminals connected to first and second ends of the second capacitor 150, respectively, and includes a second DC power supply V Aux1 connected to both ends of the second capacitor 150. Is stepped down by a third DC power supply (V Aux2 ) and output between the first and second output terminals.
전압 컨버터(160)는 제3 H-브리지 인버터(180)에 직류 전압을 공급하는 보조 전원 역할을 한다. 이러한 전압 컨버터(160)는 전압을 강압할 수 있는 기존의 변압기 타입 절연형 컨버터 또는 벅 컨버터(Buck converter), 변형된 절연형 벅 컨버터 등으로 구성될 수 있다. 변형된 벅 컨버터의 구성은 적어도 2개의 인덕터를 포함하는 무변압기 절연형 벅 컨버터로서 그 구성은 추후 상세히 설명할 것이다.The voltage converter 160 serves as an auxiliary power supply for supplying a DC voltage to the third H-bridge inverter 180. The voltage converter 160 may be composed of a conventional transformer type isolated converter or a buck converter, a modified isolated buck converter, and the like, capable of stepping down a voltage. The configuration of the modified buck converter is a transformerless isolated buck converter comprising at least two inductors, which will be described in detail later.
제3 커패시터(170)는 제1 및 제2 단이 전압 컨버터(160)의 제1 및 제2 출력단에 각각 연결되어 있으며, 전압 컨버터(160)에서 출력된 제3 직류 전원(VAux2)의 리플을 제거한다.The third capacitor 170 has first and second ends connected to the first and second output terminals of the voltage converter 160, respectively, and has a ripple of the third DC power source V Aux2 output from the voltage converter 160. Remove it.
제3 H-브리지 인버터(180)는 제1 및 제2 직류단이 제3 커패시터(170)의 제1 및 제2 단에 각각 연결되어 있다. 제3 H-브리지 인버터(180)는 제1 및 제2 직류단으로 입력되는 제3 직류 전원(VAux2)을 내부 스위치들의 동작을 이용하여 교류 전원으로 변환하여 제1 및 제2 교류단 사이로 출력한다.In the third H-bridge inverter 180, first and second DC terminals are connected to first and second ends of the third capacitor 170, respectively. The third H-bridge inverter 180 converts the third DC power V Aux2 input to the first and second DC terminals into AC power by using the operations of the internal switches, and outputs the alternating current between the first and second AC terminals. .
이러한 제3 H-브리지 인버터(180)는 제1 교류단이 제2 H-브리지 인버터(140)의 제2 교류단과 직렬 연결되고, 제2 교류단이 부하(10)의 제2 단에 연결된다. 이에 따라, 제1 H-브리지 인버터(130)의 제1 교류단과 제3 H-브리지 인버터(190)의 제2 교류단 사이에는 계단식의 멀티 레벨의 교류 전압 파형이 출력되고 이러한 교류 전압 파형은 부하(10)에 교류 전력으로 공급된다.The third H-bridge inverter 180 has a first AC terminal connected in series with a second AC terminal of the second H-bridge inverter 140, and the second AC terminal is connected to the second terminal of the load 10. Accordingly, a stepped multi-level AC voltage waveform is output between the first AC terminal of the first H-bridge inverter 130 and the second AC terminal of the third H-bridge inverter 190, and the AC voltage waveform is a load ( 10) is supplied with AC power.
이러한 도 1의 구성에 따르면, 각 단에서 비대칭 전압(Vmain, Vaux1, Vaux2)를 만들고, 이를 각 단의 H-브리지 인버터를 통하여 합성함에 따라 계단식의 전압 파형을 가지는 교류 출력을 생성하여 부하(10)에 공급한다. 비대칭 전압이란 일반적으로 서로의 배수 형태를 가진다.According to the configuration of FIG. 1, the asymmetric voltages Vmain, Vaux1, and Vaux2 are generated at each stage, and synthesized through the H-bridge inverters at each stage to generate an AC output having a stepped voltage waveform to load 10. Supplies). Asymmetrical voltages generally have multiples of one another.
도 1의 구성에서, 제1 H-브리지 인버터(130)는 부하(10)의 동작 주파수(ex, 60Hz)와 동일한 스위칭 주파수의 교류 전압을 출력하도록 구현하고, 제2 H-브리지 인버터(140) 및 제3 H-브리지 인버터(180)는 고속 스위칭을 수행하여 높은 주파수의 교류 전압을 출력하도록 구현한다. 물론 제3 H-브리지 인버터(180)에서 출력되는 교류 전압은 제2 H-브리지 인버터(140)보다 높은 주파수를 가진다. 본 발명의 실시예서는 이들 세 개의 출력 파형이 중첩되어 출력됨에 따라 다단의 레벨을 가지는 교류 전력이 부하(10)에 공급될 수 있다.In the configuration of FIG. 1, the first H-bridge inverter 130 is implemented to output an AC voltage having the same switching frequency as the operating frequency ex, 60 Hz of the load 10, and the second H-bridge inverter 140. And the third H-bridge inverter 180 performs high speed switching to output an AC voltage having a high frequency. Of course, the AC voltage output from the third H-bridge inverter 180 has a higher frequency than the second H-bridge inverter 140. In the embodiment of the present invention, as these three output waveforms are superimposed and output, AC power having multiple levels may be supplied to the load 10.
본 발명의 실시예에서 복수의 H-브리지 인버터를 통하여 최종적으로 출력되는 교류 출력이란 모터 제어를 위한 교류 전류 출력 또는 계통연계형 신재생에너지 발전 전력을 포함하는 개념이다. 이상과 같은 본 발명의 실시예에서 복수의 H-브리지 인버터는 교류단이 상호 직렬 연결된 구조를 가지며, 사용되는 H-브리지 인버터 단위는 도 1과 같이 3단이 기본 구성이며 이보다 확장될 수도 있다. In the embodiment of the present invention, the AC output finally output through the plurality of H-bridge inverters is a concept including an AC current output or grid-connected renewable energy generation power for motor control. In the embodiment of the present invention as described above, the plurality of H-bridge inverters have a structure in which AC terminals are connected to each other in series, and the H-bridge inverter unit used may have three stages as shown in FIG.
도 1과 같은 본 발명의 실시예에 따른 멀티 레벨 인버터에서 전체적인 전력의 흐름은 화살표를 참조하면 알 수 있다. 본 발명의 실시예는 전력의 흐름이 입력 전원(110)에서 제1 H-브리지 인버터(130), 제2 H-브리지 인버터(140), 전압 컨버터(160), 제3 H-브리지 인버터(180)의 경로로 발생하는 것을 알 수 있다.The overall power flow in the multi-level inverter according to the embodiment of the present invention as shown in FIG. 1 can be known by referring to the arrow. According to an embodiment of the present invention, the flow of power is applied to the first H-bridge inverter 130, the second H-bridge inverter 140, the voltage converter 160, and the third H-bridge inverter 180 at the input power source 110. It can be seen that the path occurs.
기존의 멀티 레벨 인버터는 보조 전원이 단일 입력 전원(메인 전원)으로부터 직접 전압을 제공받아 이를 보조 H-브리지 인버터에 제공하였다면, 본 발명의 실시예는 입력 전원에서 제공된 전력이 제1 H-브리지 인버터(130)를 통해 중간 단에 있는 제2 H-브리지 인버터(140)를 경유하여 다시 보조 전원 즉, 전압 컨버터(160)로 제공된다. In the conventional multi-level inverter, if the auxiliary power is directly supplied from a single input power supply (main power supply) and provided to the auxiliary H-bridge inverter, an embodiment of the present invention provides that the power provided from the input power supply is the first H-bridge inverter. Via 130 is provided to the auxiliary power source, i.e., voltage converter 160, via second H-bridge inverter 140 in the intermediate stage.
이상과 같이, 도 1은 보조적으로 사용된 두 개의 H-브리지 인버터(140,180) 중에서 중간 단의 H-브리지 인버터(140)가 보조 전원에 해당하는 전압 컨버터(160)의 전단에 전력을 공급해주기 때문에, 메인 H-브리지 인버터와 연결되는 보조 H-브리지 인버터의 전력 처리량을 감소시킬 수 있다.As described above, in FIG. 1, since the intermediate stage H-bridge inverter 140 of the two H- bridge inverters 140 and 180 used as auxiliary supplies power to the front end of the voltage converter 160 corresponding to the auxiliary power source. The power throughput of the auxiliary H-bridge inverter connected to the main H-bridge inverter can be reduced.
이와 같은 구조에서 제1 H-브리지 인버터(130)는 부하(10)에 공급되는 전체 교류 출력 중에서 약 90%의 전력을 생산할 수 있고 나머지 제2 및 제3 H-브리지 인버터(180)는 각각 5% 씩의 전력을 생산할 수 있다. 즉, 부하(10)에 공급되는 대부분의 전력이 제1 H-브리지 인버터(130)를 통해서 생산될 수 있다.In such a structure, the first H-bridge inverter 130 may generate about 90% of the total AC output supplied to the load 10, and the remaining second and third H-bridge inverters 180 may each have a power of 5%. Can produce power in%. That is, most of the power supplied to the load 10 may be produced through the first H-bridge inverter 130.
도 2는 도 1의 전압 컨버터를 상세히 나타낸 구성도이다. 도 2에 도시된 전압 컨버터(160)는 변형된 벅 컨버터 형태를 가진다. 그 기본적은 동작은 기존의 벅 컨버터와 동일하다.FIG. 2 is a diagram illustrating the voltage converter of FIG. 1 in detail. The voltage converter 160 shown in FIG. 2 has a modified buck converter form. Its basic operation is the same as that of a conventional buck converter.
이하에서는 전압 컨버터(160)는 제1 스위치(S1), 제2 스위치(S2), 제1 다이오드(D1), 제2 다이오드(D2), 제3 다이오드(D3), 제1 인덕터(L1), 제2 인덕터(L2)를 포함한다.Hereinafter, the voltage converter 160 includes a first switch S1, a second switch S2, a first diode D1, a second diode D2, a third diode D3, a first inductor L1, A second inductor L2 is included.
이러한 제1 전압 컨버터(160)는 기존의 벅 컨버터와 유사한 형태를 가진다. 그런데, 기존의 벅 컨버터는 절연 기능이 없지만 본 실시예에 따른 전압 컨버터는 그라운드 라인 상에 인덕터를 포함하고 있어 절연 기능을 가진다. 또한 전압 컨버터는 양방향 스위치로 구성될 수 있다.The first voltage converter 160 has a form similar to that of a conventional buck converter. However, the conventional buck converter does not have an insulation function, but the voltage converter according to the present embodiment has an insulation function because it includes an inductor on the ground line. The voltage converter can also be configured as a bidirectional switch.
제1 스위치(S1)는 트랜지스터 등으로 구성되며 제1 단(게이트 단)에 제어 신호가 인가되며, 제2 단이 제2 커패시터(150)의 제1 단에 연결되고, 제3 단이 제1 다이오드(D1)의 애노드에 연결되어 있다.The first switch S1 is composed of a transistor or the like, and a control signal is applied to the first stage (gate stage), the second stage is connected to the first stage of the second capacitor 150, and the third stage is the first stage. It is connected to the anode of the diode D1.
제2 스위치(S2)는 트랜지스터 등으로 구성되며 제1 단(게이트 단)에 제어 신호가 인가되며, 제3 단이 제2 커패시터(150)의 제2 단에 연결되고, 제2 단이 제2 다이오드(D2)의 캐소드에 연결되어 있다.The second switch S2 is composed of a transistor or the like and a control signal is applied to the first stage (gate stage), the third stage is connected to the second stage of the second capacitor 150, and the second stage is the second stage. It is connected to the cathode of the diode D2.
제1 다이오드(D1)는 애노드가 제1 스위치(S1)의 제3 단에 연결되고, 캐소드가 제1 인덕터(L1)의 제1 단에 연결되어 있다. 제2 다이오드(D2)는 캐소드가 제2 스위치(S2)의 제2 단에 연결되고, 애노드가 제2 인덕터(L2)의 제1 단에 연결되어 있다. 그리고 제3 다이오드(D3)는 애노드가 제2 다이오드(D2)의 애노드에 연결되고 캐소드가 제1 다이오드(D1)의 캐소드에 연결된다.In the first diode D1, an anode is connected to the third end of the first switch S1, and a cathode is connected to the first end of the first inductor L1. The second diode D2 has a cathode connected to the second end of the second switch S2 and an anode connected to the first end of the second inductor L2. The third diode D3 has an anode connected to the anode of the second diode D2 and a cathode connected to the cathode of the first diode D1.
제1 인덕터(L1)는 제1 단이 제1 다이오드(D1)의 캐소드에 연결되고 제2 단이 제2 커패시터(150)의 제1 단에 연결된다. 제2 인덕터(L2)는 제1 단이 제2 다이오드(D2)의 애노드에 연결되고 제2 단이 제2 커패시터(150)의 제2 단에 연결된다. 이러한 제2 인덕터(L2)는 제3 H-브리지 인버터(180)의 그라운드를 입력 전원(110)의 그라운드와 분리하여 절연을 확보한다.The first inductor L1 has a first end connected to the cathode of the first diode D1 and a second end connected to the first end of the second capacitor 150. The second inductor L2 has a first end connected to the anode of the second diode D2 and a second end connected to the second end of the second capacitor 150. The second inductor L2 separates the ground of the third H-bridge inverter 180 from the ground of the input power source 110 to secure insulation.
이와 같은 구조에서, 각 스위치가 턴 온 시에는 제1 스위치(S1)->제1 다이오드(D1)->제1 인덕터(L1)->제3 커패시터(170)->제2 인덕터(L2)->제2 다이오드(D2)->제2 스위치(S2) 방향으로 전류 흐름이 발생한다. 턴 오프 시에는 제3 다이오드(D3)에 의해 방향이 형성되면서 제1 인덕터(L1)->제2 커패시터(170)->제2 인덕터(L2)->제3 다이오드(D3)->제1 인덕터(L1) 방향으로 전류 흐름이 발생한다. 전압 컨버터는 커패시터를 포함하는 의미일 수 있다.In this structure, when each switch is turned on, the first switch S1-> first diode D1-> first inductor L1-> third capacitor 170-> second inductor L2 A current flow occurs in the direction of the second diode D2 to the second switch S2. During turn-off, the direction is formed by the third diode D3 and the first inductor L1-> second capacitor 170-> second inductor L2-> third diode D3-> first Current flows in the inductor L1 direction. The voltage converter may mean including a capacitor.
스위치의 턴 온 시에는 인덕터 전류가 증가하고 턴 오프 시에는 스위치가 다시 턴 온될 때까지 인덕터 전류가 감소하는데, 스위치를 주기적으로 온오프 시키면 L과 C에 의해 전압이 평활화되어 직류 전압 형태로 출력될 수 있다. 이러한 원리는 기존의 벅 컨버터의 동작 모드와 거의 동일하므로 상세한 설명은 생략한다.When the switch is turned on, the inductor current increases, and when it is turned off, the inductor current decreases until the switch is turned on again.When the switch is turned on and off periodically, the voltage is smoothed by L and C to output the DC voltage. Can be. This principle is almost the same as the operation mode of the conventional buck converter, so the detailed description is omitted.
이하에서는 본 발명의 실시예에 따른 멀티 레벨 인버터의 성능을 시뮬레이션한 결과를 설명한다. 시뮬레이션에서 입력 전원(110)은 Vs=225V을 사용하였다.Hereinafter, the results of simulating the performance of the multi-level inverter according to the embodiment of the present invention will be described. In the simulation, the input power source 110 used Vs = 225V.
도 3은 도 1에 도시된 복수의 H-브리지 인버터에 입력되는 개별 직류 전압을 나타낸 도면이다. 도 3의 경우 비대칭 전압에 3배수를 사용한 예를 나타낸다.FIG. 3 is a diagram illustrating individual DC voltages input to the plurality of H-bridge inverters shown in FIG. 1. In the case of Figure 3 shows an example using a multiple of the asymmetric voltage.
도 3을 참조하면, 제1 H-브리지 인버터(130)에 입력되는 직류 전원(Vmain_DC)은 입력 전원(110)과 동일한 225V, 제2 H-브리지 인버터(140)에 입력되는 직류 전원(Vaux1_DC)은 Vmain_DC의 1/3인 75V, 그리고 제3 H-브리지 인버터(180)에 입력되는 직류 전원(Vaux2_DC)은 Vaux1_DC의 1/3인 25V로 관측된 것을 알 수 있다.Referring to FIG. 3, the DC power Vmain_DC input to the first H-bridge inverter 130 is the same 225V as the input power 110 and the DC power Vaux1_DC input to the second H-bridge inverter 140. Is 75V, which is 1/3 of Vmain_DC, and DC power (Vaux2_DC) input to the third H-bridge inverter 180 is observed as 25V, which is 1/3 of Vaux1_DC.
도 4는 도 1에 도시된 복수의 H-브리지 인버터에서 출력되는 개별 교류 전압을 나타낸 도면이다. 제1 내지 제3 H-브리지 인버터(130,140,180)의 교류 출력은 각각 Vmain_AC, Vaux1_AC, Vaux2_AC로 나타나 있다. 제1 H-브리지 인버터(130)의 교류 출력(Vmain_AC)은 60Hz의 스위칭 주파수 특성을 나타낸다면, 제2 및 제3 H-브리지 인버터(140,180)의 교류 출력(Vaux1_AC, Vaux2_AC)은 그보다 높은 주파수 특성을 나타내는 것을 알 수 있다. 물론 제1 내지 제3 H-브리지 인버터(130,140,180)로 갈수록 출력되는 교류 전압의 주파수가 높아지는 것을 확인할 수 있다.FIG. 4 is a diagram illustrating individual AC voltages output from the plurality of H-bridge inverters shown in FIG. 1. The AC outputs of the first to third H- bridge inverters 130, 140 and 180 are represented by Vmain_AC, Vaux1_AC and Vaux2_AC, respectively. If the AC output Vmain_AC of the first H-bridge inverter 130 exhibits a switching frequency characteristic of 60 Hz, the AC outputs Vaux1_AC and Vaux2_AC of the second and third H- bridge inverters 140 and 180 have higher frequency characteristics. It can be seen that represents. Of course, it can be seen that the frequency of the AC voltage output as the first to third H-bridge inverter (130, 140, 180) increases.
도 5는 도 4에 도시된 세 개의 파형이 중첩되어 형성된 최종 출력 파형을 나타낸 도면이다. 도 5의 최종 출력 파형은 실제로 부하에 걸리는 파형으로서, 도 1의 회로 구성을 통해서는 총 21개의 레벨을 가지는 교류 전압 형태를 출력할 수 있다. 그리고 최종 출력의 주파수는 부하의 동작 주파수와 동일한 60Hz 성분을 가지고 있다.FIG. 5 is a diagram illustrating a final output waveform formed by superimposing three waveforms shown in FIG. 4. The final output waveform of FIG. 5 is a waveform actually applied to a load, and through the circuit configuration of FIG. 1, an AC voltage form having a total of 21 levels can be output. The final output frequency has a 60Hz component that is equal to the operating frequency of the load.
이상과 같은 본 발명에 따른 H-브리지 멀티 레벨 인버터에 따르면, 단일 입력 전원으로부터 고효율을 가지는 멀티 레벨의 교류 출력을 발생시킬 수 있으며 메인 H-브리지 인버터와 연결되는 보조 H-브리지 인버터의 전력 처리량을 감소시킬 수 있어, 가격 및 부피를 줄이고 시스템의 효율 및 신뢰성을 향상시킬 수 있다.According to the H-bridge multi-level inverter according to the present invention as described above, it is possible to generate a multi-level alternating current output having high efficiency from a single input power source, and to control the power throughput of the auxiliary H-bridge inverter connected to the main H-bridge inverter. Can be reduced, reducing cost and volume, and improving the efficiency and reliability of the system.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

Claims (4)

  1. 제1 및 제2 단이 입력 전원의 제1 및 제2 단에 각각 연결되고, 상기 입력 전원에서 공급된 제1 직류 전원의 리플을 제거하는 제1 커패시터;A first capacitor having first and second ends connected to first and second ends of input power, respectively, for removing ripple of the first DC power supplied from the input power;
    제1 및 제2 직류단이 상기 제1 커패시터의 제1 및 제2 단에 각각 연결되고, 제1 교류단이 부하의 제1단에 연결되는 제1 H-브리지 인버터;A first H-bridge inverter having first and second DC ends connected to first and second ends of the first capacitor, respectively, and a first AC end connected to a first end of a load;
    제1 교류단이 상기 제1 H-브리지 인버터의 제2 교류단과 직렬 연결되고, 제1 및 제2 직류단 사이에 제2 직류 전원이 형성되는 제2 H-브리지 인버터;A second H-bridge inverter having a first AC terminal connected in series with a second AC terminal of the first H-bridge inverter and having a second DC power source formed between the first and second DC terminals;
    제1 및 제2 단이 상기 제2 H-브리지 인버터의 제1 및 제2 직류단에 각각 연결되고, 상기 제2 직류 전원의 리플을 제거하는 제2 커패시터;A second capacitor having first and second ends connected to first and second DC ends of the second H-bridge inverter, respectively, to remove ripples of the second DC power source;
    제1 및 제2 입력단이 상기 제2 커패시터의 제1 및 제2 단에 각각 연결되고, 상기 제2 직류 전원을 제3 직류 전원으로 강압하여 제1 및 제2 출력단 사이로 출력하는 전압 컨버터;A first and second input terminals connected to first and second terminals of the second capacitor, respectively, and a voltage converter for stepping down the second DC power to a third DC power source and outputting the first and second output terminals;
    제1 및 제2 단이 상기 전압 컨버터의 제1 및 제2 출력단에 각각 연결되고, 상기 제3 직류 전원의 리플을 제거하는 제3 커패시터; 및A third capacitor having first and second ends connected to first and second output ends of the voltage converter, respectively, to remove ripple of the third DC power source; And
    제1 및 제2 직류단이 상기 제3 커패시터의 제1 및 제2 단에 각각 연결되고, 제1 교류단이 상기 제2 H-브리지 인버터의 제2 교류단과 직렬 연결되고, 제2 교류단이 상기 부하의 제2단에 연결되는 제3 H-브리지 인버터를 포함하는 H-브리지 멀티 레벨 인버터.First and second DC terminals are connected to the first and second terminals of the third capacitor, respectively, and the first AC terminal is connected in series with the second AC terminal of the second H-bridge inverter, and the second AC terminal is connected to the load. And a third H-bridge inverter connected to the second stage of the H-bridge multi-level inverter.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 전압 컨버터는,The voltage converter,
    변압기형 절연형 컨버터 또는 벅 컨버터(Buck converter)로 구성된 H-브리지 멀티 레벨 인버터.H-bridge multi-level inverter consisting of a transformer-isolated converter or a buck converter.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 전압 컨버터는,The voltage converter,
    제1 단에 제어 신호가 인가되고 제2 단이 상기 제2 커패시터의 제1 단에 연결된 제1 스위치;A first switch having a control signal applied to a first stage and a second stage connected to a first stage of the second capacitor;
    제1 단에 상기 제어 신호가 인가되고 제3 단이 상기 제2 커패시터의 제2 단에 연결된 제2 스위치;A second switch to which the control signal is applied to a first end and a third end is connected to a second end of the second capacitor;
    애노드가 상기 제1 스위치의 제3 단에 연결된 제1 다이오드;A first diode having an anode connected to the third end of the first switch;
    캐소드가 상기 제2 스위치의 제2 단에 연결된 제2 다이오드;A second diode having a cathode connected to the second end of the second switch;
    애노드가 상기 제2 다이오드의 애노드에 연결되고 캐소드가 상기 제1 다이오드의 캐소드에 연결된 제3 다이오드;A third diode having an anode connected to the anode of the second diode and a cathode connected to the cathode of the first diode;
    제1 단이 상기 제1 다이오드의 캐소드에 연결되고 제2 단이 상기 제3 커패시터의 제1 단에 연결된 제1 인덕터; 및A first inductor having a first end connected to the cathode of the first diode and a second end connected to the first end of the third capacitor; And
    제1 단이 상기 제2 다이오드의 애노드에 연결되고 제2 단이 상기 제3 커패시터의 제2 단에 연결된 제2 인덕터를 포함하는 H-브리지 멀티 레벨 인버터. An H-bridge multi level inverter comprising a second inductor having a first end connected to an anode of the second diode and a second end connected to a second end of the third capacitor.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 H-브리지 인버터는 상기 부하의 동작 주파수와 동일한 스위칭 주파수를 가지는 교류 전압을 출력하는 H-브리지 멀티 레벨 인버터.And the first H-bridge inverter outputs an AC voltage having the same switching frequency as the operating frequency of the load.
PCT/KR2016/001934 2015-03-30 2016-02-26 H-bridge multilevel inverter WO2016159517A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0044203 2015-03-30
KR1020150044203A KR101697855B1 (en) 2015-03-30 2015-03-30 H-bridge multi-level inverter

Publications (1)

Publication Number Publication Date
WO2016159517A1 true WO2016159517A1 (en) 2016-10-06

Family

ID=57006975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001934 WO2016159517A1 (en) 2015-03-30 2016-02-26 H-bridge multilevel inverter

Country Status (2)

Country Link
KR (1) KR101697855B1 (en)
WO (1) WO2016159517A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102032869B1 (en) * 2018-02-09 2019-10-17 주식회사 뉴파워 프라즈마 Power Supply Apparatus including DC-AC Inverter and Method of Controlling the same
KR102144616B1 (en) * 2018-08-23 2020-08-13 숭실대학교산학협력단 Isolation dc-dc converter using coupled-inductor
US11271475B2 (en) * 2019-06-13 2022-03-08 Intel Corporation On-package high-bandwidth resonant switched capacitor voltage regulator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104233A (en) * 2010-01-29 2010-05-06 Mitsubishi Electric Corp Power conversion apparatus
US20110089765A1 (en) * 2008-03-19 2011-04-21 Mitsubishi Electric Corporation Power converting apparatus
US20110228578A1 (en) * 2010-03-18 2011-09-22 Abb Research Ltd. Non-isolated dc-dc converter for solar power plant
KR20130105002A (en) * 2012-03-16 2013-09-25 한국전기연구원 A device for pv power conversion of high-efficiency multi-string using multi-level inverters
JP2013219859A (en) * 2012-04-05 2013-10-24 Daikin Ind Ltd Power conversion device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171272A (en) * 2011-06-30 2014-09-18 Sanyo Electric Co Ltd Inverter and power conversion device mounted with the same
CN103828217B (en) * 2011-08-31 2016-10-12 奥普蒂斯丁技术公司 There is the photovoltaic DC/AC inverter of the H bridge transducer of cascade

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110089765A1 (en) * 2008-03-19 2011-04-21 Mitsubishi Electric Corporation Power converting apparatus
JP2010104233A (en) * 2010-01-29 2010-05-06 Mitsubishi Electric Corp Power conversion apparatus
US20110228578A1 (en) * 2010-03-18 2011-09-22 Abb Research Ltd. Non-isolated dc-dc converter for solar power plant
KR20130105002A (en) * 2012-03-16 2013-09-25 한국전기연구원 A device for pv power conversion of high-efficiency multi-string using multi-level inverters
JP2013219859A (en) * 2012-04-05 2013-10-24 Daikin Ind Ltd Power conversion device

Also Published As

Publication number Publication date
KR20160117675A (en) 2016-10-11
KR101697855B1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
CN109391166B (en) Conversion circuit, control method and power supply equipment
US8400792B2 (en) Power conversion apparatus
US9680392B2 (en) Modular multi-level converter
US8508957B2 (en) Power conversion device for converting DC power to AC power
CN102124625B (en) Power conversion device
US10063142B2 (en) Bipolar high-voltage network and method for operating a bipolar high-voltage network
US20090244936A1 (en) Three-phase inverter
US20220045623A1 (en) Multi-level circuit, three-phase multi-level circuit, and control method
EP2882083A1 (en) Bridgeless power factor correction circuit
US10103645B2 (en) Power converter
WO2007110954A1 (en) Power supply apparatus
EP3633843B1 (en) Current converter and driving method therefor
WO2016108575A1 (en) Power supply device for sub-module controller of mmc converter
KR101373170B1 (en) Converter
CN104242349A (en) Photovoltaic system with potential induced degradation prevention function and photovoltaic inverter
US11496053B2 (en) Power conversion system with dc-bus pre-charge
US10886858B1 (en) Modular multi-level converter pre-chargers
WO2012069646A1 (en) Multilevel inverter circuit
WO2016159517A1 (en) H-bridge multilevel inverter
KR20160040378A (en) Dab convertor with multi-phase structure
Mandol et al. A novel single phase multilevel inverter topology with reduced number of switching elements and optimum THD performance
KR101297320B1 (en) Single phase full-bridge inverter for providing enhanced power quality
CN102437759A (en) High-efficiency grid inverter circuit
Mohamad et al. The effects of number of conducting switches in a cascaded multilevel inverter output
US9647570B2 (en) Photovoltaic system and method of operation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16773298

Country of ref document: EP

Kind code of ref document: A1