WO2018131668A1 - Quartz glass and ultraviolet emitting element member using same - Google Patents

Quartz glass and ultraviolet emitting element member using same Download PDF

Info

Publication number
WO2018131668A1
WO2018131668A1 PCT/JP2018/000548 JP2018000548W WO2018131668A1 WO 2018131668 A1 WO2018131668 A1 WO 2018131668A1 JP 2018000548 W JP2018000548 W JP 2018000548W WO 2018131668 A1 WO2018131668 A1 WO 2018131668A1
Authority
WO
WIPO (PCT)
Prior art keywords
quartz glass
wavelength
thickness
linear transmittance
ppm
Prior art date
Application number
PCT/JP2018/000548
Other languages
French (fr)
Japanese (ja)
Inventor
美紗子 貴島
真美 西方
脩 本間
信 勝田
泰夫 篠崎
谷田 正道
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201880007132.3A priority Critical patent/CN110198918A/en
Priority to KR1020197015725A priority patent/KR102566079B1/en
Priority to JP2018561422A priority patent/JP7001066B2/en
Publication of WO2018131668A1 publication Critical patent/WO2018131668A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/02Pure silica glass, e.g. pure fused quartz

Definitions

  • the present invention relates to quartz glass and an ultraviolet light emitting element member using the same.
  • the quartz glass of the present invention is suitable for a window member of an ultraviolet light emitting element such as an ultraviolet light emitting diode (UV-LED).
  • UV-LED ultraviolet light emitting diode
  • UV light-emitting elements are used in various applications such as sterilization, disinfection, water purification, air purification, light therapy, plant growth control, sensing, resin curing, analysis, and surface modification.
  • mercury lamps have been frequently used as ultraviolet light-emitting elements, but in recent years, conversion to LEDs (light-emitting diodes) with less environmental impact is being studied.
  • a flat plate or a lens-shaped window member is used at the light emitting portion.
  • the window member functions as a cover member that protects the ultraviolet LED chip, and also has a function of condensing and expanding light emitted from the ultraviolet LED.
  • synthetic quartz glass having excellent transmission characteristics in a short wavelength region (deep ultraviolet region) having a wavelength of approximately 350 nm or less is used (Patent Document 1).
  • Microbial nucleic acids such as bacteria, fungi, and viruses have an absorption spectrum peak in the vicinity of a wavelength of 265 nm. Therefore, transmission characteristics with a wavelength of 265 nm are important for sterilization applications.
  • a flame hydrolysis method is generally used (Patent Document 2).
  • a window member made of quartz glass having a thickness of about 0.5 mm and a thickness of about 3.5 to 5 mm square is used for the UV-LED module.
  • a synthetic quartz glass ingot obtained by the flame hydrolysis method into a wafer and further to make a small piece by laser processing, and the productivity is low.
  • it is extremely difficult to obtain a synthetic quartz glass having a desired shape by casting or pressing because of its high melting point and viscosity.
  • the gel casting method is a method of casting a slurry containing a ceramic powder, a dispersion medium, and a gelling agent, and then solidifying the slurry by gelation by adding temperature conditions or a crosslinking agent. How to get.
  • Patent Document 3 discloses a method for producing quartz glass by a gel cast method. According to the gel cast method, it is considered that quartz glass having a wafer shape or an uneven shape can be directly produced, and a UV-LED window member can be obtained by making a small piece by laser processing.
  • Quartz glass used as a window member of a UV-LED is required to have good laser processability in order to make a desired shape by adding a small piece from a wafer or fine processing.
  • Known laser processing methods include thermal processing using ultraviolet, visible, and infrared lasers, and non-thermal processing (ablation processing) using a short pulse laser. Non-thermal processing is a more preferable method because the thermal effect on the glass and the occurrence of chipping are suppressed.
  • quartz glass is irradiated with a short pulse laser, a modified layer is continuously or intermittently formed inside the glass.
  • quartz glass used as a window member for UV-LEDs has high absorption in the wavelength region of light used for laser processing.
  • the light transmittance in the wavelength range of the light emitted from the UV-LED is high. That is, it is preferable that there is wavelength selective light transparency.
  • the window member mounted on the UV-LED module for sterilization uses an important transmission characteristic at a wavelength of 265 nm.
  • the peripheral member is locally irradiated with high energy light, which causes member deterioration. That is, it is preferable that there is a wavelength-selective light transmission property that suppresses transmission of high-energy light that causes deterioration of the member while transmitting light having a wavelength of 265 nm that has a high bactericidal effect.
  • the present invention achieves the above-mentioned object, and the indentation load of the Vickers indenter with a crack occurrence rate of 50% when the indentation is formed on the surface using the Vickers indenter is 0.1 to 0.5 kgf. Provide glass.
  • the quartz glass of the present invention preferably has a ⁇ -OH group concentration of 10 to 800 ppm converted from a Si—OH-derived peak of 2500 to 3900 cm ⁇ 1 in the IR spectrum.
  • the quartz glass of the present invention has a difference ⁇ T of 10 to 50% between the linear transmittance (%) at a wavelength of 250 nm (in terms of thickness 1 mm) and the linear transmittance (%) at a wavelength of 200 nm (in terms of thickness 1 mm). Is preferred.
  • the quartz glass of the present invention preferably has a total light transmittance (%) at a wavelength of 265 nm (in terms of thickness 1 mm) of 85% or more.
  • the quartz glass of the present invention preferably has a linear transmittance (%) at a wavelength of 265 nm (in terms of thickness 1 mm) of 60% or more.
  • the quartz glass of the present invention preferably has a total content of Na and K of 10 to 800 ppm.
  • the number of scatterers having an average diameter of 1 to 50 ⁇ m is preferably 50 to 5000 per cm 2 , and the scatterers are selected from the group consisting of holes, crystals and opals. It is preferable that it is at least one kind.
  • the quartz glass of the present invention has a linear transmittance (%) at a wavelength of 265 nm (converted to a thickness of 1 mm) of 80% or more, and a linear transmittance (%) at a wavelength of 230 nm (converted to a thickness of 1 mm) and a straight line having a wavelength of 200 nm.
  • the difference ⁇ T from the transmittance (%) (in terms of thickness 1 mm) is preferably 10 to 50%.
  • the present invention also provides a member for an ultraviolet light emitting element using the quartz glass of the present invention.
  • the present invention also provides a member for an ultraviolet light emitting element in which the orientation (light distribution) of light is controlled by imparting a shape to the quartz glass of the present invention.
  • the present invention also provides an ultraviolet light emitting element member in which the quartz glass of the present invention and a bonding agent are integrated.
  • the present invention provides a member for an ultraviolet light emitting element, in which the quartz glass of the present invention is AR coated.
  • the quartz glass of the present invention has good laser processability when the quartz glass of a large substrate such as a wafer shape is cut into pieces by laser processing. Moreover, the quartz glass of the present invention has a wavelength-selective light transmittance suitable for sterilization applications and suppressing deterioration of peripheral members.
  • the quartz glass of the present invention has a Vickers indenter indentation load (hereinafter referred to as “CIL value”) of 0.1 when the indentation is formed on the surface using a Vickers indenter and the incidence of cracks is 50%. ⁇ 0.5 kgf.
  • CIL value Vickers indenter indentation load
  • the CIL value exceeds 0.5 kgf, high energy is required when performing ultrashort pulse laser processing, and an expensive apparatus with high output is required. Further, even if such an apparatus is used, the pulse energy becomes excessive, and there is a possibility that problems such as chipping and shape defects may occur.
  • the CIL value is less than 0.1 kgf, when the quartz glass of the present invention is used for a member for an ultraviolet light emitting element, there is a possibility that problems such as being easily damaged when used as a window member of the ultraviolet light emitting element may occur. Therefore, the CIL value is 0.1 to 0.5 kgf, preferably 0.1 to 0.3 kgf, and more preferably 0.2 to 0.3 kgf.
  • the quartz glass of the present invention preferably has a ⁇ -OH group concentration of 10 to 800 ppm converted from a Si—OH-derived peak of 2500 to 3900 cm ⁇ 1 in the IR spectrum.
  • a radical species such as E ′ center or NBOHC
  • the repair action by Si—OH is achieved. This is preferable because it can suppress a change in transmittance due to laser processing.
  • the ⁇ -OH group concentration is more preferably 40 ppm or more, and more preferably 100 ppm or less.
  • the difference ⁇ T between the linear transmittance (%) at a wavelength of 265 nm (in terms of thickness 1 mm) and the linear transmittance (%) at a wavelength of 200 nm (in terms of thickness 1 mm) is preferably 10 to 50%. . If ⁇ T is in the above range, the light transmittance in the wavelength range (wavelength 265 nm) of the light emitted from the UV-LED is high, while the wavelength range of light having a wavelength of 200 nm or less, for example, excimer laser, used for high-energy laser processing. This is because the wavelength-selective light transmission property that absorption at a wavelength of 193 nm is better achieved.
  • the quartz glass of the present invention preferably has a total light transmittance (%) at a wavelength of 265 nm (in terms of 1 mm thickness) of 80% or more, more preferably 85% or more, and further preferably 90% or more. preferable.
  • the quartz glass of the present invention preferably has a linear transmittance (%) at a wavelength of 265 nm (in terms of thickness of 1 mm) of 60% or more, more preferably 75% or more, and further preferably 80% or more.
  • a linear transmittance (%) at a wavelength of 265 nm (in terms of thickness 1 mm) is 60% or more, the influence of scattering is small, and the shape of the window member is changed to a lens type, a dome type, a bullet type, etc. It is preferable because light distribution control by imparting a shape becomes easy.
  • the total content of Na and K is preferably 10 ppm to 800 ppm.
  • Na and K act as crystallization accelerators in order to stabilize the crystal structure of crystalline silica such as cristobalite and tridymite.
  • quartz glass contains microcrystals, so that an effect as a scattering layer can be obtained, and an improvement in light extraction efficiency can be expected.
  • a light source including high-energy light with a wavelength of 230 nm or less which is unnecessary for sterilization applications, such as a low-pressure UV lamp, is prevented from being locally irradiated with high-energy light with a wavelength of 230 nm or less.
  • Deterioration can be suppressed.
  • the total content of Na and K to 800 ppm or less, it is possible to prevent crystallization from proceeding further and increase the influence of scattering. It is preferable because light distribution can be easily controlled by giving a shape instead of a mold.
  • the total content of Na and K is preferably 10 ppm to 800 ppm, more preferably 15 ppm or more, further preferably 20 ppm or more, further preferably 25 ppm or more, and further preferably 40 ppm or more.
  • 50 ppm or more is still more preferable, and 80 ppm or more is particularly preferable.
  • 600 ppm or less is more preferable, 580 ppm or less is more preferable, 200 ppm or less is further more preferable, and 130 ppm or less is further more preferable.
  • the quartz glass of the present invention may contain elements other than Na and K as long as the optical properties are not adversely affected. Specifically, one or more elements selected from the group consisting of Al, Mg, Ca and Fe may be contained.
  • the total content of these elements is preferably 1 ppm or more and less than 800 ppm. By making the total content of these elements less than 800 ppm, it is possible to prevent crystallization from proceeding further and increase the influence of scattering, and the shape of the window member can be changed to a lens type, a dome type, a shell type, etc. Instead, it is preferable because light distribution control by providing a shape becomes easy.
  • the total content of these elements is more preferably 5 ppm or more and less than 580 ppm, and further preferably less than 100 ppm.
  • the number of scatterers having an average diameter of 1 to 50 ⁇ m is preferably 50 to 5000 per cm 2 .
  • the scatterer voids (holes), crystals, and opals are considered, and at least one selected from these is preferable. If 50 to 5000 scatterers per 1 cm 2 are present in the quartz glass, the haze value becomes high, preferably 0.5% or more. Thereby, the effect as a scattering layer is acquired and the raise of light extraction efficiency can be anticipated.
  • the number of scatterers is more preferably 500 or less.
  • the quartz glass of the present invention preferably has a haze value of 0.1% or more and less than 10%, more preferably 0.5% or more.
  • the reason why the haze value is preferably 0.1% or more is as described above.
  • the haze value is less than 10%, the influence of scattering can be prevented from increasing, and the shape of the window member is changed to a lens type, a dome type, a bullet type, etc. It is preferable because light control is easy.
  • the quartz glass of the present invention has a linear transmittance (%) at a wavelength of 265 nm (converted to a thickness of 1 mm) of 80% or more, a linear transmittance (%) at a wavelength of 230 nm (converted to a thickness of 1 mm), and a linear transmittance (%) at a wavelength of 200 nm. ) (In terms of 1 mm thickness) ⁇ T is preferably 10 to 50%. If it is the said range, deterioration of the peripheral member by having irradiated high energy light with a wavelength of 230 nm or less locally can be suppressed, having a high transmittance
  • the linear transmittance (%) at the wavelength of 265 nm is more preferably 85% or more.
  • a preferable embodiment is one in which quartz glass is AR-coated.
  • the quartz glass of the present invention can be produced by a gel cast method. Specifically, the following steps 1 to 8 may be performed in order.
  • Step 1 Dispersion Preparation Step for Dispersing Raw Material Silica Powder in a Solvent
  • Step 2 Adding a Curable Resin, Curing Agent, Curing Catalyst, and Surfactant to the Dispersion Obtained in Step 1 to Silica Liquid preparation step for preparing a mixed solution of curable resin and curable resin
  • Step 3 Molding step for pouring and filling the liquid mixture obtained in Step 2
  • Step 4 Curing step for curing the mixed solution in the mold
  • Step 5 Demolding process for removing the cured molded body from the mold 6: Degreasing process for burning off organic substances such as curable resin contained in the dried molded body 7: Firing process for sintering the degreased molded body to obtain quartz glass
  • Step 8 Heat treatment step of heating the sintered compact in a gas atmosphere Details of each step are described below.
  • the raw material silica powder used in Step 1 preferably has a purity of 99.0% or more, more preferably a purity of 99.5% or more, and further preferably a purity of 99.9% or more.
  • the raw silica powder preferably has an average particle size of 5 nm to 400 nm, more preferably an average particle size of 7 nm to 350 nm, and still more preferably an average particle size of 12 nm to 300 nm.
  • raw material silica powders having an average particle diameter of 20 nm (Examples 1, 2, 4, 5) and an average particle diameter of 120 nm (Example 3) were used.
  • the method of dispersing the raw silica powder in the solvent in Step 1 is not particularly limited as long as the aggregation of the raw silica powder can be dissociated, but in the examples described later, an ultrasonic homogenizer (Examples 1, 2, 3, 4). Alternatively, an ultrasonic cleaner (Example 5) was used. Moreover, in order to dissociate and further disperse the aggregation of the silica powder, a pH adjuster, a surfactant, a polymer dispersant and the like can be appropriately selected and added.
  • the pH adjuster, surfactant, polymer dispersant and the like are preferably those that do not adversely affect the gelation of the curable resin described below.
  • Examples of the solvent include pure water.
  • a basic organic substance can be used as the basic pH adjuster.
  • alkanolamines such as ammonia, monoethanolamine, diethanolamine, and triethanolamine, choline, guanidines, tetramethylammonium hydroxide, and the like.
  • a quaternary ammonium salt etc. are mentioned.
  • acidic pH adjuster inorganic acids and organic acids and salts thereof can be used. For example, phosphoric acid, nitric acid, citric acid, malic acid, acetic acid, lactic acid, oxalic acid, tartaric acid, salts thereof, amino acids And amphoteric salts.
  • Surfactants include, for example, alkylamine salts, aliphatic or aromatic quaternary ammonium salts, heterocyclic quaternary ammonium salts such as pyridinium and imidazolium, and phosphonium or sulfonium salts containing aliphatic or heterocyclic rings, Examples include acetylene glycol.
  • Polymer dispersing agents include polymers having primary to tertiary amines, quaternary ammonium bases or quaternary phosphonium bases in the polymer main chain or side chain, homopolymers of acrylic acid or salts thereof, And a functional aminocarboxylic acid polymer, or a (co) polymer of an acrylic ester. These pH adjusters, surfactants and polymer dispersants may be used alone or in combination of two or more.
  • filtering may be performed to remove aggregates remaining in the dispersion.
  • filtering was performed by installing a depth filter in an air pressure-feed type filtering device.
  • step 2 it is preferable to use a solvent.
  • the mold can be easily filled in the step 3 by adjusting the viscosity of the liquid mixture by using a solvent to form a slurry.
  • Solvents used for this purpose include, for example, pure water such as ion-exchanged water and distilled water, and aqueous solvents that are mixtures of these with alcohols, ethers, amides, ethanolamines, acetone, hexane, and the like.
  • Organic solvents can be used.
  • a surfactant can also be added to the solvent for the purpose of defoaming and defoaming.
  • aqueous solvents such as ion-exchanged water, pure water, and aqueous solvents are preferable from the viewpoint of production cost and environmental load.
  • Examples of the curable resin used in Step 2 include melamine resin, phenol resin, epoxy resin, acrylic resin, and urethane resin.
  • Epoxy resins are preferred in that the molded article has high shape retention and is cured in the air atmosphere, and acrylic resins are preferred in that the reaction proceeds rapidly at room temperature.
  • the epoxy resin examples include glycidyl such as diglycidyl ether type epoxy resins of bisphenols such as bisphenol A type and bisphenol F type, phenol novolac type epoxy resins, cresol novolac type epoxy resins, glycidyl amine type epoxy resins, aliphatic epoxy resins, and the like.
  • examples include ether type epoxy resins, glycidyl ester type epoxy resins, methyl glycidyl ether type epoxy resins, cyclohexene oxide type epoxy resins, and rubber-modified epoxy resins.
  • Examples of the monomer that reacts to form an acrylic resin include acrylic acid, methacrylamide, methacrylic acid, methoxy (polyethylene glycol) monomethacrylate, n-vinyl pyrrolidone, acrylamide, alkyl acrylamide, alkyl methacrylamide, alkyl acrylate, and alkyl methacrylate.
  • the average molecular weight is preferably 20 to 30000.
  • the average number of epoxy functional groups of the epoxy resin is preferably 2 to 10.
  • the curable resin is also preferably water-soluble, and the water-soluble epoxy resin preferably has a water content of 70 to 100%.
  • a curable resin may be used independently and may be used in combination of 2 or more type.
  • the compounding quantity of curable resin can be selected suitably, and it is preferable that the weight ratio with respect to a silica powder is 0.1-1.0.
  • the curing agent used in step 2 is for curing the curable resin, and is selected according to the curable resin to be used.
  • the epoxy resin curing agent include amine curing agents, acid anhydride curing agents, and polyamide curing agents.
  • An amine-based curing agent is preferable in that the reaction is rapid, and an acid anhydride-based curing agent is preferable in that a cured product having excellent thermal shock resistance can be obtained.
  • the amine curing agent include aliphatic amines, alicyclic amines, aromatic amines, modified polyaminoamides, modified aliphatic polyamines, and the like, and any of monoamines, diamines, triamines, and polyamines can be used.
  • Examples of the acid anhydride curing agent include methyltetrahydrophthalic anhydride, dibasic acid polyanhydride, and the like.
  • Examples of the acrylic resin curing agent include radical polymerization initiators and cationic polymerization initiators.
  • Examples of the radical polymerization initiator include peroxides such as ammonium persulfate, sodium persulfate, and potassium persulfate, 2,2′-azobis (isobutyronitrile) (AIBN), 2,2′-azobis (2-methylbutyrate).
  • Examples of the cationic polymerization initiator include onium salts such as benzoin compounds, acetophenone compounds, anthraquinone compounds, thioxanthone compounds, ketal compounds, benzophenone compounds, diazonium salts, iodonium salts, and sulfonium salts.
  • onium salts such as benzoin compounds, acetophenone compounds, anthraquinone compounds, thioxanthone compounds, ketal compounds, benzophenone compounds, diazonium salts, iodonium salts, and sulfonium salts.
  • the curing catalyst used in step 2 is to accelerate the curing of the curable resin, and is selected according to the curable resin to be used.
  • the curing catalyst include tertiary amines and imidazoles.
  • Tertiary amines include benzyldimethylamine, 2- (dimethylaminomethyl) phenol, 2,4,6-tris (dimethylaminomethyl) phenol and the like.
  • imidazoles include 2-methylimidazole, 1,2-dimethylimidazole, N-benzyl-2-methylimidazole, 2-ethyl-4-methylimidazole, and the like.
  • the quartz glass to be produced contains one or more elements selected from the group consisting of Na and / or K, or Al, Mg, Ca and Fe
  • the content of these elements in the liquid mixture is predetermined. What is necessary is just to prepare a liquid mixture so that it may become content of.
  • the content of the element in the mixed solution is adjusted by appropriately selecting the metal content contained in the raw silica powder, pH adjuster, dispersant, surfactant, curable resin, curing agent, and curing catalyst. Alternatively, it may be adjusted by adding a salt of the above element, or a combination thereof.
  • adding the salt of the said element it is not limited to the addition in the process 2, You may add in the process 3 (molding process), the process 6 (degreasing process), and the process 7 (baking process).
  • the means for mixing the components in step 2 is not particularly limited, but a rotating and revolving mixer was used in the examples described later.
  • a rotating and revolving mixer was used in the examples described later.
  • defoaming in the step 4 (curing step), it is possible to prevent pores caused by bubbles in the slurry from entering the molded body. Defoaming can be carried out while mixing each component using a vacuum rotation and revolution mixer.
  • the type and shape of the mold used in step 3 are not particularly limited, and can be appropriately selected according to the quartz glass to be manufactured.
  • a metal mold, a resin mold, or a silicone rubber mold can be used.
  • the conditions for curing the mixed solution in Step 4 are not particularly limited, and can be appropriately selected according to the curable resin, the curing agent, and the curing catalyst to be used. In the examples described later, the mixed solution filled in the mold was allowed to stand at room temperature and cured.
  • step 6 it is preferable to carry out step 6 after the molded body removed from the mold in step 5 is dried.
  • step 6 the dried molded body is kept at a predetermined temperature for a predetermined time using a heating furnace such as an electric furnace to burn off organic substances such as a curable resin contained in the molded body.
  • the heating temperature and the time for holding at the temperature are not particularly limited, but in the examples described later, held at a temperature of 550 ° C. or lower for 24 hours (Examples 1, 2, 3) or 168 hours (Examples 4, 5). Did.
  • step 7 the green body degreased in step 6 is sintered to obtain quartz glass.
  • the sintering conditions are not particularly limited. In Examples described later, vacuum baking (Examples 1, 3, 4, 5, 6) or atmospheric baking (Example 2) was performed at 1125 ° C.
  • step 8 heat treatment is performed in a gas atmosphere in order to adjust the transmittance characteristics of the sintered quartz glass. If it is not necessary to adjust the transmittance characteristic, it may be omitted.
  • the type of atmosphere gas and heat treatment conditions are not particularly limited, but heat treatment in a hydrogen atmosphere is preferable in order to adjust the transmittance in the deep ultraviolet region. In Examples described later, heat treatment was performed for 10 hours at 600 ° C. in an atmosphere of 100% hydrogen (Examples 1, 2, and 3).
  • Examples 1 to 5 correspond to Examples 1 to 5, and Example 6 corresponds to Comparative Example 1.
  • Example 1 The steps 1 to 8 described above were performed to obtain quartz glass.
  • Step 1 33.9 parts by mass of raw silica powder having a purity of 99.9% or more, an average particle diameter of 20 nm, and a specific surface area of 90 m 2 / g, and water adjusted to pH 13 using a pH adjuster as a solvent 66.
  • a dispersion was prepared by dispersing in 1 part by mass with an ultrasonic homogenizer.
  • Step 2 88.2 parts by mass of the above dispersion, 10.0 parts by mass of a water-soluble epoxy resin, and 1.8 parts by mass of an aliphatic amine curing agent are mixed and defoamed by a rotation revolving mixer equipped with a vacuum pump.
  • a liquid was prepared.
  • step 3 the above mixture was filled in a polyethylene mold having a diameter of 30 mm ⁇ 10 mm.
  • the mixed solution filled in the mold was allowed to stand at room temperature to be cured.
  • step 5 the molded body was removed from the mold and then dried.
  • step 6 the molded body after drying was degreased using an electric furnace at 550 ° C. or lower for 24 hours.
  • step 7 the compact degreased in step 6 was vacuum fired at 1125 ° C. to obtain quartz glass.
  • step 8 in order to adjust the transmittance characteristics of the molded body sintered in step 7, heat treatment was performed by holding at 600 ° C. for 10 hours in a 100% hydrogen atmosphere. The following evaluation was performed on the quartz glass obtained by the above procedure.
  • a value obtained by normalizing A (Si—OH) to a thickness equivalent to 1 mm by the glass thickness was defined as the ⁇ -OH group concentration.
  • CIL evaluation crack occurrence rate
  • HMV-2 micro Vickers hardness tester
  • Quartz glass was processed into a circular plate shape (diameter: 1.5 cm, thickness: about 1.0 mm), and both main surfaces were mirror-polished.
  • the Vickers indenter was pushed for 15 seconds, then the Vickers indenter was removed, and the presence or absence of cracks near the indentation was observed.
  • Ten point impressions were made at 100 ⁇ m intervals with 5 loads of 0.1 kgf, 0.2 kgf, 0.3 kgf, 0.5 kgf, and 1.0 kgf, and the crack occurrence rate of each load was calculated. Note that the load and crack occurrence rate are plotted, and the load at which 50% cracking occurs (the crack occurrence rate is 50%) is the CIL value.
  • Quartz glass was processed into a circular plate shape (diameter: 1.5 cm, thickness: about 1.0 mm), and both main surfaces were mirror-polished.
  • a semiconductor laser femtosecond laser having a center wavelength of 1552 nm, a pulse width of 680 femtoseconds, and an average output of 10 W was condensed inside the sample and scanned in the width direction to continuously put the modified layer inside.
  • the modified layer was separated from the modified layer at a position along the planned dividing line. The sectional surface was observed using an optical microscope, and the depth of the modified layer was measured when the number of scans was one.
  • a spectrophotometer (PerkinElmer Lambda 900) was used. Quartz glass was processed into a circular plate shape (diameter: 1.5 cm, thickness: about 1.0 mm), and both main surfaces were mirror-polished. The linear transmittance and the total light transmittance using an integrating sphere were measured at a measurement wavelength range of 200 to 800 nm and a scanning speed of 60 nm / min. The measured value was converted into a transmittance of 1 mm thickness.
  • haze value A haze meter (HZ-2, Suga Test Instruments Co., Ltd.) was used. Quartz glass was processed into a circular plate shape (diameter: 1.5 cm, thickness: about 1.0 mm), both main surfaces were mirror-polished, and the haze value was measured.
  • Example 2 In Step 7, instead of vacuum firing, the molded body degreased in Step 6 was fired in the air at 1125 ° C. The same procedure as in Example 1 was performed except for step 7.
  • step 3 62.9 parts by mass of raw silica powder having a purity of 99.9% or more, an average particle diameter of 100 nm, and a specific surface area of 55 to 65 m 2 / g, and water adjusted to pH 13 using a pH adjuster as a solvent 37.1 parts by mass was dispersed with an ultrasonic homogenizer to prepare a dispersion.
  • step 2 94.1 parts by mass of the above dispersion, 5.0 parts by mass of a water-soluble epoxy resin, and 0.9 parts by mass of an aliphatic amine curing agent are mixed and defoamed by a rotation-revolving mixer equipped with a vacuum pump. A liquid was prepared.
  • the same procedure as in Example 1 was performed to obtain quartz glass.
  • Example 4 (Example 4) In Step 2, 88.5 parts by mass of the above dispersion, 10.0 parts by mass of a water-soluble epoxy resin, 1.0 part by mass of an aliphatic amine curing agent, and 0.5 parts by mass of a tertiary amine catalyst were mounted on a vacuum pump. A mixed solution was prepared by mixing and defoaming using a mixer. In step 6, the molded body after drying was degreased by holding at 550 ° C. or lower for 168 hours using an electric furnace. Step 8 was not performed. The same procedure as in Example 1 was performed except for Steps 2, 6, and 8.
  • Example 5 An ultrasonic washer was used instead of the ultrasonic homogenizer for the preparation of the dispersion in Step 1.
  • step 6 the molded body after drying was degreased by holding at 550 ° C. or lower for 168 hours using an electric furnace. Step 8 was not performed. The same procedure as in Example 1 was performed except for Steps 2, 6, and 8.
  • Example 6 The same procedure as in Example 1 was performed except that synthetic quartz glass (Asahi Glass Co., Ltd., AQ series) synthesized by a flame hydrolysis method was used, and the samples for each evaluation were plate-shaped (3 cm ⁇ 3 cm ⁇ 1 mmt). .
  • the total light transmittance and the linear transmittance in Table 3 are values in terms of 1 mm thickness.
  • surface shows having not measured.
  • the quartz glass of Examples 1 to 5 has a CIL value of 0.2 to 0.5 kgf, a modified layer containing fine cracks by irradiation with a femtosecond laser that is an ultrashort pulse laser (beginning of cleaving) Is wider than Example 6 and is excellent in laser processability when a wafer-shaped quartz glass is shredded by laser processing.
  • the quartz glass of Examples 1 to 3 has a total light transmittance (%) (wavelength 1 mm conversion) at a wavelength of 265 nm, which is important for sterilization applications, of 85% or more, and a haze value of 0.5% or more and less than 5%.
  • the effect as a scattering layer is obtained, and the improvement of light extraction efficiency can be expected, and it is excellent as a window member.
  • the quartz glass of Examples 1 to 5 has a wavelength-selective difference ⁇ T of 10 to 50% between the linear transmittance (%) at a wavelength of 265 nm (converted to a thickness of 1 mm) and the linear transmittance (%) at a wavelength of 200 nm (converted to a thickness of 1 mm). Since it has optical transparency, it can be expected to absorb light during high-energy laser processing and have excellent processability.
  • the quartz glass of Examples 1 to 5 has a linear transmittance (%) at a wavelength of 265 nm (converted to a thickness of 1 mm) of 80% or more, a linear transmittance (%) at a wavelength of 230 nm (converted to a thickness of 1 mm), and a linear transmittance at a wavelength of 200 nm ( %) (1 mm thickness equivalent) difference ⁇ T is 10 to 50%, and has a wavelength-selective optical transparency, so that it has a high transmittance in a wide wavelength range of 270 to 230 nm having a bactericidal effect. Wavelength-selective optical transparency that can suppress degradation is achieved.

Abstract

The purpose of the present invention is to provide a quartz glass which has an excellent laser processability or which has wavelength-selective transmission properties and, therefore, is suitably usable for sterilization. The present invention pertains to a quartz glass wherein, when an indentation is formed on the surface of the quartz glass by using a Vickers indenter, a pressing load of the Vickers indenter at which the incidence of cracking is 50% is 0.1-0.5 kgf, or a quartz glass wherein the linear transmittance (%) at a wavelength of 265 nm in terms of a ​​glass thickness of 1 mm is 85% or more and the difference ΔT between the linear transmittance (%) at a wavelength of 230 nm and the linear transmittance (%) at a wavelength of 200 nm is 10-50%.

Description

石英ガラスおよびそれを用いた紫外線発光素子用部材Quartz glass and ultraviolet light emitting element member using the same
 本発明は、石英ガラスおよびそれを用いた紫外線発光素子用部材に関する。本発明の石英ガラスは、紫外線発光ダイオード(UV-LED)のような紫外線発光素子の窓部材に好適である。 The present invention relates to quartz glass and an ultraviolet light emitting element member using the same. The quartz glass of the present invention is suitable for a window member of an ultraviolet light emitting element such as an ultraviolet light emitting diode (UV-LED).
 紫外線発光素子は、殺菌、消毒、浄水、空気清浄、光線治療、植物育成制御、センシング、樹脂硬化、分析、表面改質等の各種用途に用いられる。従来、紫外線発光素子として水銀灯が多く使用されてきたが、近年は、より環境負荷の少ないLED(発光ダイオード)への転換が検討されつつある。 UV light-emitting elements are used in various applications such as sterilization, disinfection, water purification, air purification, light therapy, plant growth control, sensing, resin curing, analysis, and surface modification. Conventionally, mercury lamps have been frequently used as ultraviolet light-emitting elements, but in recent years, conversion to LEDs (light-emitting diodes) with less environmental impact is being studied.
 紫外線LED(UV-LED)には、光出射部分に平板やレンズ状の窓部材が用いられる。当該窓部材は、紫外線LEDチップを保護するカバー部材としての機能を果たすとともに、紫外線LEDから発せられた光を集光したり拡大したりする働きがある。当該光学レンズの材料として、例えば、概ね波長350nm以下の短波長域(深紫外域)において透過特性に優れた合成石英ガラスが用いられている(特許文献1)。バクテリア、菌、ウイルスなど微生物の核酸は、吸収スペクトルのピークが波長265nm近傍にある。そのため、殺菌用途では波長265nmの透過特性が重要である。
 上記の目的で使用される合成石英ガラスの製造方法としては、火炎加水分解法が一般的である(特許文献2)。
In the ultraviolet LED (UV-LED), a flat plate or a lens-shaped window member is used at the light emitting portion. The window member functions as a cover member that protects the ultraviolet LED chip, and also has a function of condensing and expanding light emitted from the ultraviolet LED. As a material of the optical lens, for example, synthetic quartz glass having excellent transmission characteristics in a short wavelength region (deep ultraviolet region) having a wavelength of approximately 350 nm or less is used (Patent Document 1). Microbial nucleic acids such as bacteria, fungi, and viruses have an absorption spectrum peak in the vicinity of a wavelength of 265 nm. Therefore, transmission characteristics with a wavelength of 265 nm are important for sterilization applications.
As a method for producing synthetic quartz glass used for the above purpose, a flame hydrolysis method is generally used (Patent Document 2).
 UV-LEDモジュールには、例えば、3.5~5mm角で、厚み約0.5mmの石英ガラス製の窓部材が用いられている。このような小片の石英ガラス部材を得るには、火炎加水分解法によって得られる合成石英ガラスのインゴットをウエハに加工し、さらにレーザ加工により小片化する必要があり、生産性が低い。
 生産性向上のために、鋳造やプレスにより所望の形状の合成石英ガラスを得るのは、その融点、粘度の高さから極めて難しい。
For example, a window member made of quartz glass having a thickness of about 0.5 mm and a thickness of about 3.5 to 5 mm square is used for the UV-LED module. In order to obtain such a small piece of quartz glass member, it is necessary to process a synthetic quartz glass ingot obtained by the flame hydrolysis method into a wafer, and further to make a small piece by laser processing, and the productivity is low.
In order to improve productivity, it is extremely difficult to obtain a synthetic quartz glass having a desired shape by casting or pressing because of its high melting point and viscosity.
 一方、所望の形状のセラミックス成形体を得る製造法としてゲルキャスト法がある。ゲルキャスト法とは、セラミックスの粉体、分散媒、及びゲル化剤を含むスラリーを注型した後に、このスラリーを温度条件や架橋剤の添加等によりゲル化させることにより固化して成形体を得る方法である。ゲルキャスト法により石英ガラスを製造する方法が特許文献3に開示されている。
 ゲルキャスト法によればウエハ形状や凹凸形状を有する石英ガラスを直接製造することができ、レーザ加工により小片化することでUV-LEDの窓部材を得ることができると考えられる。
On the other hand, there is a gel casting method as a manufacturing method for obtaining a ceramic molded body having a desired shape. The gel casting method is a method of casting a slurry containing a ceramic powder, a dispersion medium, and a gelling agent, and then solidifying the slurry by gelation by adding temperature conditions or a crosslinking agent. How to get. Patent Document 3 discloses a method for producing quartz glass by a gel cast method.
According to the gel cast method, it is considered that quartz glass having a wafer shape or an uneven shape can be directly produced, and a UV-LED window member can be obtained by making a small piece by laser processing.
 UV-LEDの窓部材として用いられる石英ガラスは、ウエハからの小片化や、微細加工を加えて所望の形状にするため、レーザ加工性が良好であることが求められる。
 レーザ加工法としては、紫外、可視、赤外レーザによる熱加工や、短パルスレーザによる非熱加工(アブレーション加工)が知られている。非熱加工はガラスへの熱影響およびチッピングの発生が抑制されることから、より好ましい方法である。
 石英ガラスに短パルスレーザを照射すると、ガラス内部に改質層が連続的、または断続的に形成される。その後、長パルスレーザ照射による加熱熱膨張や、外部から機械的応力を与えることで改質領域を起点とした割断が行われるが、高精度な割断を行うためには、パルスレーザ照射時に改質領域内に微細なクラックが生じていることが望ましい。
Quartz glass used as a window member of a UV-LED is required to have good laser processability in order to make a desired shape by adding a small piece from a wafer or fine processing.
Known laser processing methods include thermal processing using ultraviolet, visible, and infrared lasers, and non-thermal processing (ablation processing) using a short pulse laser. Non-thermal processing is a more preferable method because the thermal effect on the glass and the occurrence of chipping are suppressed.
When quartz glass is irradiated with a short pulse laser, a modified layer is continuously or intermittently formed inside the glass. After that, heating and thermal expansion by long pulse laser irradiation and cleaving starting from the modified region by applying mechanical stress from outside are performed, but in order to perform high-accuracy cleaving, modification is performed during pulse laser irradiation. It is desirable that fine cracks occur in the region.
日本国特開2015-179734号公報Japanese Unexamined Patent Publication No. 2015-179734 日本国特公平7-33259号公報Japanese Patent Publication No. 7-33259 日本国特許第5937839号明細書Japanese Patent No. 5937839 Specification
 UV-LEDの窓部材として用いられる石英ガラスは、レーザ加工性の観点からは、レーザ加工に用いられる光の波長域の吸収が高いことが望ましい。その一方で、UV-LEDが発する光の波長域の光線透過性が高いことが望ましい。すなわち、波長選択的光透過性があることが好ましい。 From the viewpoint of laser processability, it is desirable that quartz glass used as a window member for UV-LEDs has high absorption in the wavelength region of light used for laser processing. On the other hand, it is desirable that the light transmittance in the wavelength range of the light emitted from the UV-LED is high. That is, it is preferable that there is wavelength selective light transparency.
 また、殺菌用途のUV-LEDモジュールに搭載される当該窓部材は、先述の通り波長265nmの透過特性が重要である。一方で、殺菌用途に不要な波長230nm以下の高エネルギの光を含む光源を用いる場合、高エネルギの光が周辺部材に局所的に照射されるため部材劣化の原因となる。すなわち、殺菌効果の高い波長265nmの光を透過しつつ、部材劣化の原因となる高エネルギの光の透過を抑制する波長選択的光透過性があることが好ましい。 Also, as described above, the window member mounted on the UV-LED module for sterilization uses an important transmission characteristic at a wavelength of 265 nm. On the other hand, when a light source including high energy light having a wavelength of 230 nm or less that is not necessary for sterilization is used, the peripheral member is locally irradiated with high energy light, which causes member deterioration. That is, it is preferable that there is a wavelength-selective light transmission property that suppresses transmission of high-energy light that causes deterioration of the member while transmitting light having a wavelength of 265 nm that has a high bactericidal effect.
 上記実情を鑑みて、本発明は、レーザ加工性に優れる紫外線発光素子用部材およびそれに用いる石英ガラスの提供を目的とする。
 また本発明は、殺菌用途に好適な波長選択的光透過性がある紫外線発光素子用部材およびそれに用いる石英ガラスの提供をも目的とする。
In view of the above circumstances, an object of the present invention is to provide a member for an ultraviolet light emitting element excellent in laser processability and quartz glass used therefor.
Another object of the present invention is to provide a member for an ultraviolet light-emitting device having a wavelength-selective light transmittance suitable for sterilization and a quartz glass used therefor.
 本発明は、上記の目的を達成するため、表面にビッカース圧子を用いて圧痕を形成した際のクラックの発生率が50%となるビッカース圧子の押し込み荷重が0.1~0.5kgfである石英ガラスを提供する。 In order to achieve the above object, the present invention achieves the above-mentioned object, and the indentation load of the Vickers indenter with a crack occurrence rate of 50% when the indentation is formed on the surface using the Vickers indenter is 0.1 to 0.5 kgf. Provide glass.
 また、本発明の石英ガラスは、IRスペクトルの2500~3900cm-1のSi-OH由来ピークから換算したβ-OH基濃度が10~800ppmであることが好ましい。 The quartz glass of the present invention preferably has a β-OH group concentration of 10 to 800 ppm converted from a Si—OH-derived peak of 2500 to 3900 cm −1 in the IR spectrum.
 また、本発明の石英ガラスは、波長250nmの直線透過率(%)(厚み1mm換算)と波長200nmの直線透過率(%)(厚み1mm換算)との差ΔTが10~50%であることが好ましい。 The quartz glass of the present invention has a difference ΔT of 10 to 50% between the linear transmittance (%) at a wavelength of 250 nm (in terms of thickness 1 mm) and the linear transmittance (%) at a wavelength of 200 nm (in terms of thickness 1 mm). Is preferred.
 また、本発明の石英ガラスは、波長265nmの全光線透過率(%)(厚み1mm換算)が85%以上であることが好ましい。 In addition, the quartz glass of the present invention preferably has a total light transmittance (%) at a wavelength of 265 nm (in terms of thickness 1 mm) of 85% or more.
 また、本発明の石英ガラスは、波長265nmの直線透過率(%)(厚み1mm換算)が60%以上であることが好ましい。 The quartz glass of the present invention preferably has a linear transmittance (%) at a wavelength of 265 nm (in terms of thickness 1 mm) of 60% or more.
 また、本発明の石英ガラスは、NaおよびKの含有量の合計が10~800ppmであることが好ましい。 The quartz glass of the present invention preferably has a total content of Na and K of 10 to 800 ppm.
 また、本発明の石英ガラスは、平均径が1~50μmである散乱体の数が1cmあたり50~5000個であることが好ましく、前記散乱体は空孔、結晶及びオパールからなる群より選ばれる少なくとも1種であることが好ましい。 In the quartz glass of the present invention, the number of scatterers having an average diameter of 1 to 50 μm is preferably 50 to 5000 per cm 2 , and the scatterers are selected from the group consisting of holes, crystals and opals. It is preferable that it is at least one kind.
 また、本発明の石英ガラスは、波長265nmの直線透過率(%)(厚み1mm換算)が80%以上であり、かつ波長230nmの直線透過率(%)(厚み1mm換算)と波長200nmの直線透過率(%)(厚み1mm換算)との差ΔTが10~50%であることが望ましい。 The quartz glass of the present invention has a linear transmittance (%) at a wavelength of 265 nm (converted to a thickness of 1 mm) of 80% or more, and a linear transmittance (%) at a wavelength of 230 nm (converted to a thickness of 1 mm) and a straight line having a wavelength of 200 nm. The difference ΔT from the transmittance (%) (in terms of thickness 1 mm) is preferably 10 to 50%.
 また、本発明は、本発明の石英ガラスを用いた紫外線発光素子用部材を提供する。 The present invention also provides a member for an ultraviolet light emitting element using the quartz glass of the present invention.
 また、本発明は、本発明の石英ガラスに形状を付与することにより光の配向(配光)が制御された紫外線発光素子用部材を提供する。 The present invention also provides a member for an ultraviolet light emitting element in which the orientation (light distribution) of light is controlled by imparting a shape to the quartz glass of the present invention.
 また、本発明は、本発明の石英ガラスと接合剤とが一体となっている紫外線発光素子用部材を提供する。 The present invention also provides an ultraviolet light emitting element member in which the quartz glass of the present invention and a bonding agent are integrated.
 また、本発明は、本発明の石英ガラスがARコートされた紫外線発光素子用部材を提供する。 Further, the present invention provides a member for an ultraviolet light emitting element, in which the quartz glass of the present invention is AR coated.
 本発明の石英ガラスは、ウエハ形状等の大型基板の石英ガラスをレーザ加工により小片化する際にレーザ加工性が良好である。
 また、本発明の石英ガラスは、殺菌用途に好適かつ周辺部材の劣化を抑制する波長選択的光透過性を有する。
The quartz glass of the present invention has good laser processability when the quartz glass of a large substrate such as a wafer shape is cut into pieces by laser processing.
Moreover, the quartz glass of the present invention has a wavelength-selective light transmittance suitable for sterilization applications and suppressing deterioration of peripheral members.
 以下、本発明の石英ガラスについて説明する。なお、本明細書において数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。また‘質量部’と‘重量部’とは同義であり、単に‘ppm’と記載する場合には、重量ppmであることを意味する。
 本発明の石英ガラスは、表面にビッカース圧子を用いて圧痕を形成した際のクラックの発生率が50%となるビッカース圧子の押し込み荷重(以下、「CIL値」と記載する。)が0.1~0.5kgfである。上記ビッカース圧子の押し込み荷重が上記範囲であると、ウエハ形状の石英ガラスをレーザ加工により小片化する際のレーザ加工性に優れ、大型化・アレイ化したものから小片化が容易にでき、生産性に優れる。
Hereinafter, the quartz glass of the present invention will be described. In the present specification, “to” indicating a numerical range is used in a sense including numerical values described before and after the numerical value as a lower limit value and an upper limit value. Further, “parts by mass” and “parts by weight” are synonymous, and when “ppm” is simply described, it means that they are ppm by weight.
The quartz glass of the present invention has a Vickers indenter indentation load (hereinafter referred to as “CIL value”) of 0.1 when the indentation is formed on the surface using a Vickers indenter and the incidence of cracks is 50%. ~ 0.5 kgf. When the indentation load of the Vickers indenter is within the above range, it is excellent in laser processability when the wafer-shaped quartz glass is shredded by laser processing, and can be easily shredded from a large-sized or arrayed product. Excellent.
 極短パルスレーザの照射により石英ガラスに内部応力が誘起され、改質層と呼ばれる高密度領域が形成されることが知られている。また、この内部応力で改質領域内に微細なクラックを生じることがあり、改質領域を起点とした高精度な割断に有利に働くと考えられる。断面観察に見られる割断の起点となった改質層の幅は、クラックの発生率が50%となるビッカース圧子の押し込み荷重が0.1~0.5kgfであると大きくなるため、加工性に優れると考えられる。 It is known that internal stress is induced in quartz glass by irradiation with an ultrashort pulse laser, and a high density region called a modified layer is formed. In addition, this internal stress may cause fine cracks in the modified region, which is considered advantageous for high-accuracy cleaving starting from the modified region. The width of the modified layer, which is the starting point of the cleaving observed in the cross-sectional observation, becomes large when the indentation load of the Vickers indenter at which the crack generation rate is 50% is 0.1 to 0.5 kgf. It is considered excellent.
 CIL値が0.5kgfを超える場合、極短パルスレーザ加工を行う際、高いエネルギが必要となり、高出力の高価な装置が必要となる。また、その様な装置を用いてもパルスエネルギが過大となってチッピング、形状不良などの不具合が生じるおそれがある。
 一方、CIL値が0.1kgf未満の場合、本発明の石英ガラスを紫外線発光素子用部材に用いた際、紫外線発光素子の窓部材としての使用時に傷つきやすいなどの不具合が生じるおそれがある。
 そのため、CIL値は0.1~0.5kgfであり、0.1~0.3kgfであることが好ましく、0.2~0.3kgfであることがより好ましい。
When the CIL value exceeds 0.5 kgf, high energy is required when performing ultrashort pulse laser processing, and an expensive apparatus with high output is required. Further, even if such an apparatus is used, the pulse energy becomes excessive, and there is a possibility that problems such as chipping and shape defects may occur.
On the other hand, when the CIL value is less than 0.1 kgf, when the quartz glass of the present invention is used for a member for an ultraviolet light emitting element, there is a possibility that problems such as being easily damaged when used as a window member of the ultraviolet light emitting element may occur.
Therefore, the CIL value is 0.1 to 0.5 kgf, preferably 0.1 to 0.3 kgf, and more preferably 0.2 to 0.3 kgf.
 本発明の石英ガラスは、IRスペクトルの2500~3900cm-1のSi-OH由来ピークから換算したβ-OH基濃度が10~800ppmであることが好ましい。
 β-OH基濃度を10ppm以上とすることにより、高エネルギのレーザ照射した際にSiOの結合が切れることによるE’センター、NBOHCなどのラジカル種が発生した際もSi-OHによる修復作用が働き、レーザ加工による透過率変化を抑制できることから好ましい。一方、β-OH基濃度を800ppm以下とすることにより、波長170nm付近にピークを持つ吸収帯が大きくなるのを防ぎ、吸収端が波長265nmの透過率に影響を及ぼすことも防ぐことができることから好ましい。
 当該β-OH基濃度は40ppm以上がより好ましく、また、100ppm以下がより好ましい。
The quartz glass of the present invention preferably has a β-OH group concentration of 10 to 800 ppm converted from a Si—OH-derived peak of 2500 to 3900 cm −1 in the IR spectrum.
By setting the β-OH group concentration to 10 ppm or more, when a radical species such as E ′ center or NBOHC is generated due to the breakage of the SiO 2 bond when irradiated with a high energy laser, the repair action by Si—OH is achieved. This is preferable because it can suppress a change in transmittance due to laser processing. On the other hand, by setting the β-OH group concentration to 800 ppm or less, it is possible to prevent an absorption band having a peak in the vicinity of a wavelength of 170 nm from increasing, and to prevent the absorption edge from affecting the transmittance at a wavelength of 265 nm. preferable.
The β-OH group concentration is more preferably 40 ppm or more, and more preferably 100 ppm or less.
 本発明の石英ガラスは、波長265nmの直線透過率(%)(厚み1mm換算)と波長200nmの直線透過率(%)(厚み1mm換算)との差ΔTが10~50%であることが好ましい。
 ΔTが上記範囲であれば、UV-LEDが発する光の波長域(波長265nm)の光線透過性は高い一方で、高エネルギのレーザ加工に用いられる波長200nm以下の光の波長域、例えばエキシマレーザの波長193nmで吸収があるという、波長選択的光透過性がより良好に達成されるためである。
In the quartz glass of the present invention, the difference ΔT between the linear transmittance (%) at a wavelength of 265 nm (in terms of thickness 1 mm) and the linear transmittance (%) at a wavelength of 200 nm (in terms of thickness 1 mm) is preferably 10 to 50%. .
If ΔT is in the above range, the light transmittance in the wavelength range (wavelength 265 nm) of the light emitted from the UV-LED is high, while the wavelength range of light having a wavelength of 200 nm or less, for example, excimer laser, used for high-energy laser processing. This is because the wavelength-selective light transmission property that absorption at a wavelength of 193 nm is better achieved.
 本発明の石英ガラスは、波長265nmの全光線透過率(%)(厚み1mm換算)が80%以上であることが好ましく、85%以上であることがより好ましく、90%以上であることがさらに好ましい。 The quartz glass of the present invention preferably has a total light transmittance (%) at a wavelength of 265 nm (in terms of 1 mm thickness) of 80% or more, more preferably 85% or more, and further preferably 90% or more. preferable.
 本発明の石英ガラスは、波長265nmの直線透過率(%)(厚み1mm換算)が60%以上であることが好ましく、75%以上であることがより好ましく、80%以上であることがさらに好ましい。波長265nmの直線透過率(%)(厚み1mm換算)の直線透過率が60%以上であると、散乱の影響が小さく、窓部材の形状を、レンズ型、ドーム型、砲弾型等に変え、形状を付与することによる配光制御が容易となることから好ましい。 The quartz glass of the present invention preferably has a linear transmittance (%) at a wavelength of 265 nm (in terms of thickness of 1 mm) of 60% or more, more preferably 75% or more, and further preferably 80% or more. . When the linear transmittance (%) at a wavelength of 265 nm (in terms of thickness 1 mm) is 60% or more, the influence of scattering is small, and the shape of the window member is changed to a lens type, a dome type, a bullet type, etc. It is preferable because light distribution control by imparting a shape becomes easy.
 本発明の石英ガラスは、NaおよびKの含有量の合計が10ppm~800ppmであることが好ましい。
 NaおよびKは、クリストバライト、トリジマイト等の結晶質シリカの結晶構造を安定化させるため、結晶化促進剤として作用する。
 NaおよびKを合計含有量で10ppm以上含有させると、石英ガラスが微小結晶を含有するため、散乱層としての効果が得られ、光取り出し効率の向上が期待できる。また、低圧UVランプ等、殺菌用途に不要な波長230nm以下の高エネルギの光を含む光源を用いる場合、波長230nm以下の高エネルギの光が局所的に照射されることが抑制され、周辺部材の劣化を抑制できる。
 一方、NaおよびKの合計含有量を800ppm以下とすることにより、結晶化がより進行して散乱の影響が大きくなることを防ぐことができ、窓部材の形状を、レンズ型、ドーム型、砲弾型等に変え、形状を付与することによる配光制御が容易となることから好ましい。
In the quartz glass of the present invention, the total content of Na and K is preferably 10 ppm to 800 ppm.
Na and K act as crystallization accelerators in order to stabilize the crystal structure of crystalline silica such as cristobalite and tridymite.
When Na and K are contained in a total content of 10 ppm or more, quartz glass contains microcrystals, so that an effect as a scattering layer can be obtained, and an improvement in light extraction efficiency can be expected. In addition, when a light source including high-energy light with a wavelength of 230 nm or less, which is unnecessary for sterilization applications, such as a low-pressure UV lamp, is prevented from being locally irradiated with high-energy light with a wavelength of 230 nm or less. Deterioration can be suppressed.
On the other hand, by setting the total content of Na and K to 800 ppm or less, it is possible to prevent crystallization from proceeding further and increase the influence of scattering. It is preferable because light distribution can be easily controlled by giving a shape instead of a mold.
 本発明の石英ガラスは、NaおよびKの含有量の合計が10ppm~800ppmであることが好ましく、15ppm以上がより好ましく、20ppm以上がさらに好ましく、25ppm以上がよりさらに好ましく、40ppm以上がことさらに好ましく、50ppm以上がなおさらに好ましく、80ppm以上が特に好ましい。また、600ppm以下がより好ましく、580ppm以下がさらに好ましく、200ppm以下がよりさらに好ましく、130ppm以下がことさらに好ましい。 In the quartz glass of the present invention, the total content of Na and K is preferably 10 ppm to 800 ppm, more preferably 15 ppm or more, further preferably 20 ppm or more, further preferably 25 ppm or more, and further preferably 40 ppm or more. , 50 ppm or more is still more preferable, and 80 ppm or more is particularly preferable. Moreover, 600 ppm or less is more preferable, 580 ppm or less is more preferable, 200 ppm or less is further more preferable, and 130 ppm or less is further more preferable.
 本発明の石英ガラスは、その光学特性に悪影響が及ばない限り、NaおよびK以外の元素を含有してもよい。
 具体的には、Al、Mg、CaおよびFeからなる群から選択される元素を1種以上含有してもよい。これらの元素の含有量が合計で1ppm以上800ppm未満であることが好ましい。これらの元素の合計含有量が800ppm未満とすることにより、結晶化がより進行して散乱の影響が大きくなることを防ぐことができ、窓部材の形状を、レンズ型、ドーム型、砲弾型等に変え、形状を付与することによる配光制御が容易となることから好ましい。
 これらの元素の合計含有量は、より好ましくは5ppm以上580ppm未満であり、さらに好ましくは100ppm未満である。
The quartz glass of the present invention may contain elements other than Na and K as long as the optical properties are not adversely affected.
Specifically, one or more elements selected from the group consisting of Al, Mg, Ca and Fe may be contained. The total content of these elements is preferably 1 ppm or more and less than 800 ppm. By making the total content of these elements less than 800 ppm, it is possible to prevent crystallization from proceeding further and increase the influence of scattering, and the shape of the window member can be changed to a lens type, a dome type, a shell type, etc. Instead, it is preferable because light distribution control by providing a shape becomes easy.
The total content of these elements is more preferably 5 ppm or more and less than 580 ppm, and further preferably less than 100 ppm.
 本発明の石英ガラスは、平均径が1~50μmの散乱体の数が1cmあたり50~5000個であることが好ましい。散乱体としては空隙(空孔)、結晶、オパールが考えられ、これらから選ばれる少なくとも1種であることが好ましい。
 1cmあたり50~5000個の前記散乱体が石英ガラス中に存在していれば、ヘイズ値が高くなり、好ましくは0.5%以上となる。これにより、散乱層としての効果が得られ、光取り出し効率の上昇が期待できる。
 1cmあたりの前記散乱体の数を5000個以下とすることにより、散乱の影響が大きくなることを防ぐことができ、窓材の形状を、レンズ型、ドーム型、砲弾型等に変え、形状を付与することによる配光制御が容易となることから好ましい。前記散乱体の数は500個以下がより好ましい。
In the quartz glass of the present invention, the number of scatterers having an average diameter of 1 to 50 μm is preferably 50 to 5000 per cm 2 . As the scatterer, voids (holes), crystals, and opals are considered, and at least one selected from these is preferable.
If 50 to 5000 scatterers per 1 cm 2 are present in the quartz glass, the haze value becomes high, preferably 0.5% or more. Thereby, the effect as a scattering layer is acquired and the raise of light extraction efficiency can be anticipated.
By setting the number of the scatterers per 1 cm 2 to 5000 or less, the influence of scattering can be prevented, and the shape of the window material is changed to a lens shape, a dome shape, a bullet shape, etc. It is preferable because light distribution can be easily controlled by imparting. The number of scatterers is more preferably 500 or less.
 本発明の石英ガラスは、ヘイズ値が0.1%以上10%未満であることが好ましく、0.5%以上がより好ましい。ヘイズ値が0.1%以上であることが好ましい理由は上述した通りである。一方、ヘイズ値が10%未満であると、散乱の影響が大きくなるのを防ぐことができ、窓部材の形状を、レンズ型、ドーム型、砲弾型等に変え、形状を付与することによる配光制御が容易となることから好ましい。 The quartz glass of the present invention preferably has a haze value of 0.1% or more and less than 10%, more preferably 0.5% or more. The reason why the haze value is preferably 0.1% or more is as described above. On the other hand, if the haze value is less than 10%, the influence of scattering can be prevented from increasing, and the shape of the window member is changed to a lens type, a dome type, a bullet type, etc. It is preferable because light control is easy.
 本発明の石英ガラスは、波長265nmの直線透過率(%)(厚み1mm換算)が80%以上、かつ波長230nmの直線透過率(%)(厚み1mm換算)と波長200nmの直線透過率(%)(厚み1mm換算)との差ΔTが10~50%であることが好ましい。
 上記範囲であれば、殺菌効果のある波長265nmで高い透過率を有しながら、波長230nm以下の高エネルギの光が局所的に照射されることによる周辺部材の劣化を抑制できる。また、前記波長265nmの直線透過率(%)は85%以上がより好ましい。
The quartz glass of the present invention has a linear transmittance (%) at a wavelength of 265 nm (converted to a thickness of 1 mm) of 80% or more, a linear transmittance (%) at a wavelength of 230 nm (converted to a thickness of 1 mm), and a linear transmittance (%) at a wavelength of 200 nm. ) (In terms of 1 mm thickness) ΔT is preferably 10 to 50%.
If it is the said range, deterioration of the peripheral member by having irradiated high energy light with a wavelength of 230 nm or less locally can be suppressed, having a high transmittance | permeability with a wavelength of 265 nm with a bactericidal effect. The linear transmittance (%) at the wavelength of 265 nm is more preferably 85% or more.
 また、本発明の石英ガラスを用いた紫外線発光素子用部材として、石英ガラスに形状を付与することにより配光が制御されたものの他に、石英ガラスと接合剤とが一体となっているものや、石英ガラスがARコートされたものなどを好ましい態様として挙げることができる。 Further, as a member for an ultraviolet light emitting element using the quartz glass of the present invention, in addition to the one in which the light distribution is controlled by giving the shape to the quartz glass, the one in which the quartz glass and the bonding agent are integrated, A preferable embodiment is one in which quartz glass is AR-coated.
 本発明の石英ガラスは、ゲルキャスト法により製造できる。具体的には、下記工程1~8を順に実施すればよい。
工程1:原料シリカ粉末を溶媒に分散して分散液を作製する分散液調製工程
工程2:工程1で得た分散液に硬化性樹脂、硬化剤、硬化触媒、界面活性剤を添加してシリカと硬化性樹脂の混合液を作製する混合液調製工程
工程3:工程2で得た混合液を型に流し込んで充填させる成形工程
工程4:混合液を型の中で硬化させる硬化工程
工程5:硬化した成形体を型から取り外す脱型工程
工程6:乾燥した成形体に含有する硬化性樹脂等の有機物を焼失させる脱脂工程
工程7:脱脂した成形体を焼結して石英ガラスを得る焼成工程
工程8:焼結した成形体をガス雰囲気中で加熱する熱処理工程
 各工程の詳細について以下に記載する。
The quartz glass of the present invention can be produced by a gel cast method. Specifically, the following steps 1 to 8 may be performed in order.
Step 1: Dispersion Preparation Step for Dispersing Raw Material Silica Powder in a Solvent Step 2: Adding a Curable Resin, Curing Agent, Curing Catalyst, and Surfactant to the Dispersion Obtained in Step 1 to Silica Liquid preparation step for preparing a mixed solution of curable resin and curable resin Step 3: Molding step for pouring and filling the liquid mixture obtained in Step 2 Step 4: Curing step for curing the mixed solution in the mold Step 5: Demolding process for removing the cured molded body from the mold 6: Degreasing process for burning off organic substances such as curable resin contained in the dried molded body 7: Firing process for sintering the degreased molded body to obtain quartz glass Step 8: Heat treatment step of heating the sintered compact in a gas atmosphere Details of each step are described below.
(工程1)
 工程1で使用する原料シリカ粉末は、純度99.0%以上であることが好ましく、より好ましくは純度99.5%以上、さらに好ましくは純度99.9%以上である。
 また、原料シリカ粉末は、平均粒子径が5nm以上400nm以下であることが好ましく、より好ましくは平均粒子径が7nm以上350nm以下であり、さらに好ましくは平均粒子径が12nm以上300nm以下である。後述する実施例では平均粒子径20nm(実施例1、2、4、5)と平均粒子径120nm(実施例3)の原料シリカ粉末をそれぞれ用いた。
(Process 1)
The raw material silica powder used in Step 1 preferably has a purity of 99.0% or more, more preferably a purity of 99.5% or more, and further preferably a purity of 99.9% or more.
The raw silica powder preferably has an average particle size of 5 nm to 400 nm, more preferably an average particle size of 7 nm to 350 nm, and still more preferably an average particle size of 12 nm to 300 nm. In Examples described later, raw material silica powders having an average particle diameter of 20 nm (Examples 1, 2, 4, 5) and an average particle diameter of 120 nm (Example 3) were used.
 工程1で原料シリカ粉末を溶媒に分散させる方法は、原料シリカ粉末の凝集を解離できればその手法は特に限定されないが、後述する実施例では、超音波ホモジナイザー(実施例1、2、3、4)又は超音波洗浄機(実施例5)を用いた。また、シリカ粉末の凝集を解離し、より分散させるため、pH調整剤、界面活性剤、高分子分散剤などを、適宜選択して添加できる。pH調整剤、界面活性剤、高分子分散剤などは、後述の硬化性樹脂のゲル化に悪影響を与えないものが好ましい。また、溶媒としては、例えば純水が挙げられる。 The method of dispersing the raw silica powder in the solvent in Step 1 is not particularly limited as long as the aggregation of the raw silica powder can be dissociated, but in the examples described later, an ultrasonic homogenizer (Examples 1, 2, 3, 4). Alternatively, an ultrasonic cleaner (Example 5) was used. Moreover, in order to dissociate and further disperse the aggregation of the silica powder, a pH adjuster, a surfactant, a polymer dispersant and the like can be appropriately selected and added. The pH adjuster, surfactant, polymer dispersant and the like are preferably those that do not adversely affect the gelation of the curable resin described below. Examples of the solvent include pure water.
 塩基性のpH調整剤には、塩基性有機物質を用いることができ、例えば、アンモニア、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン、コリン、グアニジン類、またテトラメチルアンモニウムハイドロオキサイドなどの4級アンモニウム塩などが挙げられる。
 酸性のpH調整剤には、無機酸および有機酸やその塩類を用いることができ、例えば、リン酸、硝酸、クエン酸、リンゴ酸、酢酸、乳酸、シュウ酸、酒石酸等やその塩類、アミノ酸類などの両性塩類などが挙げられる。
As the basic pH adjuster, a basic organic substance can be used. For example, alkanolamines such as ammonia, monoethanolamine, diethanolamine, and triethanolamine, choline, guanidines, tetramethylammonium hydroxide, and the like. A quaternary ammonium salt etc. are mentioned.
As the acidic pH adjuster, inorganic acids and organic acids and salts thereof can be used. For example, phosphoric acid, nitric acid, citric acid, malic acid, acetic acid, lactic acid, oxalic acid, tartaric acid, salts thereof, amino acids And amphoteric salts.
 界面活性剤としては、例えば、アルキルアミン塩類、脂肪族あるいは芳香族第4級アンモニウム塩類、ピリジニウム、イミダゾリウム等の複素環第4級アンモニウム塩類、及び脂肪族または複素環を含むホスホニウムまたはスルホニウム塩類、アセチレングリコール等が挙げられる。
 高分子分散剤としては、ポリマー主鎖または側鎖に第1~3級アミン、第4級アンモニウム塩基、または第4級ホスホニウム塩基などを有する高分子、アクリル酸又はその塩の単独重合体、水溶性アミノカルボン酸系重合体、あるいは、アクリル酸エステルの(共)重合体などが挙げられる。
 これらのpH調整剤、界面活性剤、高分子分散剤は単独で使用してもよく、2種以上を組み合わせて使用してもよい。
Surfactants include, for example, alkylamine salts, aliphatic or aromatic quaternary ammonium salts, heterocyclic quaternary ammonium salts such as pyridinium and imidazolium, and phosphonium or sulfonium salts containing aliphatic or heterocyclic rings, Examples include acetylene glycol.
Polymer dispersing agents include polymers having primary to tertiary amines, quaternary ammonium bases or quaternary phosphonium bases in the polymer main chain or side chain, homopolymers of acrylic acid or salts thereof, And a functional aminocarboxylic acid polymer, or a (co) polymer of an acrylic ester.
These pH adjusters, surfactants and polymer dispersants may be used alone or in combination of two or more.
 なお、分散液中に残存する凝集物を除去するためにフィルタリングを実施してもよい。後述する実施例では、フィルタリング方法として、エア圧送式フィルタリング装置にデプスフィルターを設置してフィルタリングを実施した。 Note that filtering may be performed to remove aggregates remaining in the dispersion. In the examples described later, as a filtering method, filtering was performed by installing a depth filter in an air pressure-feed type filtering device.
(工程2)
 工程2では溶媒を使用することが好ましい。溶剤の使用により混合液の粘度を調整してスラリー状にすることにより、工程3での型への充填が容易になる。この目的で使用する溶媒としては、例えば、イオン交換水、蒸留水等の純水、およびそれらとアルコール類、エーテル類、アミド類、エタノールアミン類等の混合物である水系溶剤、アセトン、ヘキサン等の有機溶媒が使用できる。溶媒には消泡や脱泡を目的として界面活性剤を添加することも出来る。その中でも、製造コストや環境負荷の観点からイオン交換水、純水、水系溶剤などの水系溶媒であることが好ましい。
(Process 2)
In step 2, it is preferable to use a solvent. The mold can be easily filled in the step 3 by adjusting the viscosity of the liquid mixture by using a solvent to form a slurry. Solvents used for this purpose include, for example, pure water such as ion-exchanged water and distilled water, and aqueous solvents that are mixtures of these with alcohols, ethers, amides, ethanolamines, acetone, hexane, and the like. Organic solvents can be used. A surfactant can also be added to the solvent for the purpose of defoaming and defoaming. Of these, aqueous solvents such as ion-exchanged water, pure water, and aqueous solvents are preferable from the viewpoint of production cost and environmental load.
 工程2で使用する硬化性樹脂としては、例えば、メラミン樹脂、フェノール樹脂、エポキシ樹脂、アクリル樹脂、ウレタン樹脂等を挙げることができる。エポキシ樹脂は成形体の保形性が高く、大気雰囲気下で硬化するという点で好ましく、アクリル樹脂は室温で反応が迅速に進行する点で好ましい。 Examples of the curable resin used in Step 2 include melamine resin, phenol resin, epoxy resin, acrylic resin, and urethane resin. Epoxy resins are preferred in that the molded article has high shape retention and is cured in the air atmosphere, and acrylic resins are preferred in that the reaction proceeds rapidly at room temperature.
 エポキシ樹脂としては、例えばビスフェノールA型、ビスフェノールF型等のビスフェノール類のジグリシジルエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、脂肪族エポキシ樹脂等のグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、メチルグリシジルエーテル型エポキシ樹脂、シクロヘキセンオキサイド型エポキシ樹脂、ゴム変性エポキシ樹脂などが挙げられる。
 反応してアクリル樹脂となるモノマーとしては、例えば、アクリル酸、メタクリル酸アミド、メタクリル酸、メトキシ(ポリエチレングリコール)モノメタクリレート、n-ビニルピロリドン、アクリルアミド、アルキルアクリルアミド、アルキルメタクリルアミド、アルキルアクリレート、アルキルメタクリレート、ジメチルアミノエチルメタクリレート、ジメチルアミノプロピルメタクリルアミド、ヒドロキシアルキルアクリルアミド、ヒドロキシアルキルメタクリルアミド、ヒドロキシアルキルアクリレート、ヒドロキシアルキルメタクリレート、メタクリラトエチルトリメチルアンモニウムクロリド、メタクリルアミドプロピルトリメチルアンモニウムクロリド、p-スチレンスルホン酸、p-スチレンスルホン酸塩などが挙げられる。
Examples of the epoxy resin include glycidyl such as diglycidyl ether type epoxy resins of bisphenols such as bisphenol A type and bisphenol F type, phenol novolac type epoxy resins, cresol novolac type epoxy resins, glycidyl amine type epoxy resins, aliphatic epoxy resins, and the like. Examples include ether type epoxy resins, glycidyl ester type epoxy resins, methyl glycidyl ether type epoxy resins, cyclohexene oxide type epoxy resins, and rubber-modified epoxy resins.
Examples of the monomer that reacts to form an acrylic resin include acrylic acid, methacrylamide, methacrylic acid, methoxy (polyethylene glycol) monomethacrylate, n-vinyl pyrrolidone, acrylamide, alkyl acrylamide, alkyl methacrylamide, alkyl acrylate, and alkyl methacrylate. , Dimethylaminoethyl methacrylate, dimethylaminopropyl methacrylamide, hydroxyalkyl acrylamide, hydroxyalkyl methacrylamide, hydroxyalkyl acrylate, hydroxyalkyl methacrylate, methacrylatoethyltrimethylammonium chloride, methacrylamidepropyltrimethylammonium chloride, p-styrenesulfonic acid, p -Styrene sulfonate .
 硬化性樹脂として、エポキシ樹脂を使用する場合、平均分子量は20~30000が好ましい。エポキシ樹脂の平均エポキシ官能基数は2~10であるのが好ましい。これにより、工程5での脱型時に一定の強度が得られ、かつ工程3の成形時に十分な可使時間も確保できる。
 上述したように、製造コストや環境負荷の観点から水系溶剤が好ましい。そのため、硬化性樹脂も水溶性が好ましく、水溶性エポキシ樹脂においては水溶率が70~100%であることが好ましい。
 硬化性樹脂は単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
When an epoxy resin is used as the curable resin, the average molecular weight is preferably 20 to 30000. The average number of epoxy functional groups of the epoxy resin is preferably 2 to 10. Thereby, a certain strength is obtained at the time of demolding in step 5, and sufficient pot life can be secured at the time of molding in step 3.
As described above, an aqueous solvent is preferable from the viewpoint of production cost and environmental load. Therefore, the curable resin is also preferably water-soluble, and the water-soluble epoxy resin preferably has a water content of 70 to 100%.
A curable resin may be used independently and may be used in combination of 2 or more type.
 硬化性樹脂の配合量は適宜選択することができ、シリカ粉末に対する重量比が0.1以上1.0以下であるのが好ましい。 The compounding quantity of curable resin can be selected suitably, and it is preferable that the weight ratio with respect to a silica powder is 0.1-1.0.
 工程2で使用する硬化剤は、硬化性樹脂を硬化させるものであり、使用する硬化性樹脂に応じて選択する。エポキシ樹脂の硬化剤としては、アミン系硬化剤、酸無水物系硬化剤、ポリアミド系硬化剤等が挙げられる。アミン系硬化剤は反応が迅速であるという点で好ましく、酸無水物系硬化剤は耐熱衝撃性に優れた硬化物が得られるという点で好ましい。
 アミン系硬化剤としては、脂肪族アミン、脂環族アミン、芳香族アミン、変性ポリアミノアミド、変性脂肪族ポリアミン等が挙げられ、モノアミン、ジアミン、トリアミン、ポリアミンのいずれも用いることができる。
 酸無水物系硬化剤としてはメチルテトラヒドロ無水フタル酸、2塩基酸ポリ無水物等が挙げられる。
 アクリル樹脂の硬化剤としては、ラジカル重合開始剤、カチオン重合開始剤等が挙げられる。ラジカル重合開始剤としては、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過酸化物、2,2’-アゾビス(イソブチロニトリル)(AIBN)、2,2’-アゾビス(2-メチルブチロニトリル)(AMBN)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(ADVN)、1,1’-アゾビス(1-シクロヘキサンカルボニトリル)(ACHN)、ジメチル-2,2’-アゾビスイソブチレート(MAIB)、4,4’-アゾビス(4-シアノバレリアン酸)(ACVA)、1,1’-アゾビス(1-アセトキシ-1-フェニルエタン)、2,2’-アゾビス(2-メチルブチルアミド)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルアミジノプロパン)二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2-シアノ-2-プロピルアゾホルムアミド、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2’-アゾビス(N-シクロヘキシル-2-メチルプロピオンアミド)等のアゾ化合物などが挙げられる。カチオン性重合開始剤としては、ベンゾイン化合物、アセトフェノン化合物、アントラキノン化合物、チオキサントン化合物、ケタール化合物、ベンゾフェノン化合物、ジアゾニウム塩、ヨードニウム塩、スルホニウム塩などのオニウム塩等が挙げられる。
The curing agent used in step 2 is for curing the curable resin, and is selected according to the curable resin to be used. Examples of the epoxy resin curing agent include amine curing agents, acid anhydride curing agents, and polyamide curing agents. An amine-based curing agent is preferable in that the reaction is rapid, and an acid anhydride-based curing agent is preferable in that a cured product having excellent thermal shock resistance can be obtained.
Examples of the amine curing agent include aliphatic amines, alicyclic amines, aromatic amines, modified polyaminoamides, modified aliphatic polyamines, and the like, and any of monoamines, diamines, triamines, and polyamines can be used.
Examples of the acid anhydride curing agent include methyltetrahydrophthalic anhydride, dibasic acid polyanhydride, and the like.
Examples of the acrylic resin curing agent include radical polymerization initiators and cationic polymerization initiators. Examples of the radical polymerization initiator include peroxides such as ammonium persulfate, sodium persulfate, and potassium persulfate, 2,2′-azobis (isobutyronitrile) (AIBN), 2,2′-azobis (2-methylbutyrate). Ronitrile) (AMBN), 2,2′-azobis (2,4-dimethylvaleronitrile) (ADVN), 1,1′-azobis (1-cyclohexanecarbonitrile) (ACHN), dimethyl-2,2′- Azobisisobutyrate (MAIB), 4,4′-azobis (4-cyanovaleric acid) (ACVA), 1,1′-azobis (1-acetoxy-1-phenylethane), 2,2′-azobis ( 2-methylbutyramide), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis (2-methylamidinopropane) disalt Acid salt, 2,2′-azobis [2- (2-imidazolin-2-yl) propane], 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 2,2 '-Azobis (2,4,4-trimethylpentane), 2-cyano-2-propylazoformamide, 2,2'-azobis (N-butyl-2-methylpropionamide), 2,2'-azobis (N And azo compounds such as (cyclohexyl-2-methylpropionamide). Examples of the cationic polymerization initiator include onium salts such as benzoin compounds, acetophenone compounds, anthraquinone compounds, thioxanthone compounds, ketal compounds, benzophenone compounds, diazonium salts, iodonium salts, and sulfonium salts.
 工程2で使用する硬化触媒は、硬化性樹脂の硬化を促進させるものであり、使用する硬化性樹脂に応じて選択する。この硬化触媒としては、第三アミン類、イミダゾール類等が挙げられる。
 第三アミン類としては、ベンジルジメチルアミン、2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノール等が挙げられる。
 イミダゾール類としては2-メチルイミダゾール、1,2-ジメチルイミダゾール、N-ベンジル-2-メチルイミダゾール、2-エチル-4-メチルイミダゾール等が挙げられる。
The curing catalyst used in step 2 is to accelerate the curing of the curable resin, and is selected according to the curable resin to be used. Examples of the curing catalyst include tertiary amines and imidazoles.
Tertiary amines include benzyldimethylamine, 2- (dimethylaminomethyl) phenol, 2,4,6-tris (dimethylaminomethyl) phenol and the like.
Examples of imidazoles include 2-methylimidazole, 1,2-dimethylimidazole, N-benzyl-2-methylimidazole, 2-ethyl-4-methylimidazole, and the like.
 製造する石英ガラスが、Naおよび/またはK、あるいは、Al、Mg、CaおよびFeからなる群から選択される1種以上の元素を含有する場合は、混合液におけるこれらの元素の含有量が所定の含有量になるように混合液を調製すればよい。
 混合液における上記元素の含有量は、原料シリカ粉末、pH調整剤、分散剤、界面活性剤、硬化性樹脂、硬化剤、硬化触媒中に含有する金属含有量を適宜選択することで調整してもよいし、上記元素の塩を添加することで調整してもよいし、それらの併用でもよい。
 上記元素の塩を添加する場合、工程2での添加に限定されず、工程3(成形工程)、工程6(脱脂工程)、工程7(焼成工程)で添加してもよい。
When the quartz glass to be produced contains one or more elements selected from the group consisting of Na and / or K, or Al, Mg, Ca and Fe, the content of these elements in the liquid mixture is predetermined. What is necessary is just to prepare a liquid mixture so that it may become content of.
The content of the element in the mixed solution is adjusted by appropriately selecting the metal content contained in the raw silica powder, pH adjuster, dispersant, surfactant, curable resin, curing agent, and curing catalyst. Alternatively, it may be adjusted by adding a salt of the above element, or a combination thereof.
When adding the salt of the said element, it is not limited to the addition in the process 2, You may add in the process 3 (molding process), the process 6 (degreasing process), and the process 7 (baking process).
 工程2で各成分を混合する手段は特に限定されないが、後述する実施例では自転公転ミキサーを用いた。
 工程2で各成分を混合する際には、脱泡も行うことが好ましい。脱泡することにより、工程4(硬化工程)において、成形体中にスラリー中の泡起因のポアが入ることを防止できる。脱泡は真空式自転公転ミキサーを用いて各成分を混合しながら実施できる。
The means for mixing the components in step 2 is not particularly limited, but a rotating and revolving mixer was used in the examples described later.
When mixing each component in the step 2, it is preferable to perform defoaming. By defoaming, in the step 4 (curing step), it is possible to prevent pores caused by bubbles in the slurry from entering the molded body. Defoaming can be carried out while mixing each component using a vacuum rotation and revolution mixer.
 工程3で使用する型の種類や形状は特に限定されず、製造する石英ガラスに応じて適宜選択することができ、金属製の型や樹脂製の型、シリコーンゴム製の型を使用できる。 The type and shape of the mold used in step 3 are not particularly limited, and can be appropriately selected according to the quartz glass to be manufactured. A metal mold, a resin mold, or a silicone rubber mold can be used.
 工程4で混合液を硬化させる条件は特に限定されず、使用する硬化性樹脂、硬化剤、硬化触媒に応じて適宜選択することができる。後述する実施例では、型に充填した混合液を室温で静置して硬化させた。 The conditions for curing the mixed solution in Step 4 are not particularly limited, and can be appropriately selected according to the curable resin, the curing agent, and the curing catalyst to be used. In the examples described later, the mixed solution filled in the mold was allowed to stand at room temperature and cured.
 工程5で型から取り外した成形体は乾燥させてから、工程6を実施することが好ましい。 It is preferable to carry out step 6 after the molded body removed from the mold in step 5 is dried.
 工程6では、乾燥させた成形体を電気炉等の加熱炉を用いて、所定の温度で所定時間を保持して、成形体に含有する硬化性樹脂等の有機物を焼失させる。加熱温度および当該温度に保持する時間は特に限定されないが、後述する実施例では、550℃以下の温度で24時間保持(実施例1、2、3)又は168時間保持(実施例4、5)をした。 In step 6, the dried molded body is kept at a predetermined temperature for a predetermined time using a heating furnace such as an electric furnace to burn off organic substances such as a curable resin contained in the molded body. The heating temperature and the time for holding at the temperature are not particularly limited, but in the examples described later, held at a temperature of 550 ° C. or lower for 24 hours (Examples 1, 2, 3) or 168 hours (Examples 4, 5). Did.
 工程7では、工程6で脱脂した成形体を焼結させて石英ガラスを得る。焼結条件は特に限定されない。後述する実施例では、1125℃で真空焼成(実施例1、3、4、5、6)又は大気焼成(実施例2)をした。 In step 7, the green body degreased in step 6 is sintered to obtain quartz glass. The sintering conditions are not particularly limited. In Examples described later, vacuum baking (Examples 1, 3, 4, 5, 6) or atmospheric baking (Example 2) was performed at 1125 ° C.
 工程8では、焼結した石英ガラスの透過率特性を調整するためにガス雰囲気中で熱処理する。透過率特性を調整する必要がない場合は省いてもよい。雰囲気ガスの種類や熱処理条件は特に限定されないが、深紫外領域の透過率を調整するためには水素雰囲気での熱処理が好ましい。後述する実施例では、水素100%雰囲気中600℃で10時間熱処理(実施例1、2、3)した。 In step 8, heat treatment is performed in a gas atmosphere in order to adjust the transmittance characteristics of the sintered quartz glass. If it is not necessary to adjust the transmittance characteristic, it may be omitted. The type of atmosphere gas and heat treatment conditions are not particularly limited, but heat treatment in a hydrogen atmosphere is preferable in order to adjust the transmittance in the deep ultraviolet region. In Examples described later, heat treatment was performed for 10 hours at 600 ° C. in an atmosphere of 100% hydrogen (Examples 1, 2, and 3).
 以下、実施例を用いて本発明をさらに説明する。例1~例5は実施例1~5に相当し、例6は比較例1に相当する。 Hereinafter, the present invention will be further described using examples. Examples 1 to 5 correspond to Examples 1 to 5, and Example 6 corresponds to Comparative Example 1.
(例1)
 先述した工程1~工程8の手順を実施して、石英ガラスを得た。
 工程1では、純度99.9%以上、平均粒子径20nm、比表面積90m/gの原料シリカ粉末を33.9質量部、溶媒としてpH調整剤を用いてpHを13に調整した水66.1質量部に超音波ホモジナイザーにより分散させて分散液を作製した。
 工程2では、上記の分散液88.2質量部、水溶性エポキシ樹脂10.0質量部、脂肪族アミン硬化剤1.8質量部を真空ポンプ搭載自転公転式ミキサーにより混合および脱泡して混合液を調製した。
 工程3では、Φ30mm×10mmtのポリエチレン製の型に上記の混合液を充填させた。
 工程4は、型に充填した混合液を室温で静置して硬化させた。
 工程5で型から成形体を取り外した後、乾燥させた。
 工程6では、乾燥後の成形体は電気炉を用いて、550℃以下で24時間保持して脱脂した。
 工程7では、工程6で脱脂した成形体を1125℃で真空焼成させ、石英ガラスを得た。
 工程8では、工程7で焼結した成形体の透過率特性を調整するために水素100%雰囲気中600℃で10時間保持して熱処理した。
 上記の手順で得られた石英ガラスについて以下の評価を実施した。
(Example 1)
The steps 1 to 8 described above were performed to obtain quartz glass.
In Step 1, 33.9 parts by mass of raw silica powder having a purity of 99.9% or more, an average particle diameter of 20 nm, and a specific surface area of 90 m 2 / g, and water adjusted to pH 13 using a pH adjuster as a solvent 66. A dispersion was prepared by dispersing in 1 part by mass with an ultrasonic homogenizer.
In Step 2, 88.2 parts by mass of the above dispersion, 10.0 parts by mass of a water-soluble epoxy resin, and 1.8 parts by mass of an aliphatic amine curing agent are mixed and defoamed by a rotation revolving mixer equipped with a vacuum pump. A liquid was prepared.
In step 3, the above mixture was filled in a polyethylene mold having a diameter of 30 mm × 10 mm.
In step 4, the mixed solution filled in the mold was allowed to stand at room temperature to be cured.
In step 5, the molded body was removed from the mold and then dried.
In step 6, the molded body after drying was degreased using an electric furnace at 550 ° C. or lower for 24 hours.
In step 7, the compact degreased in step 6 was vacuum fired at 1125 ° C. to obtain quartz glass.
In step 8, in order to adjust the transmittance characteristics of the molded body sintered in step 7, heat treatment was performed by holding at 600 ° C. for 10 hours in a 100% hydrogen atmosphere.
The following evaluation was performed on the quartz glass obtained by the above procedure.
(β-OH基濃度)
 フーリエ変換赤外分光光度計(Thermo Fisher Scientific・Nicolet 6700)を使用した。石英ガラスを円形板状(直径1.5cm、約1.0mm厚)に加工し、両主面を鏡面研磨した。電子冷却DTGSにより下記条件で解析を行った。
積算:128回、分解能:8cm-1、測定範囲:4000~400cm-1
 IRスペクトル中、Si-OH由来ピークが2500~3900cm-1に検出される。約3500cm-1の吸光度をA(Peak)、ベースラインとして3955cm-1の吸光度をA(Base)としたとき、Si-OHピーク吸光度A(Si-OH)は、A(Si-OH)=A(Peak)-A(Base)で表される。このA(Si-OH)をガラスの厚さで1mm厚相当に規格化した値をβ-OH基濃度とした。
(Β-OH group concentration)
A Fourier Transform Infrared Spectrophotometer (Thermo Fisher Scientific Nicolet 6700) was used. Quartz glass was processed into a circular plate shape (diameter: 1.5 cm, thickness: about 1.0 mm), and both main surfaces were mirror-polished. Analysis was carried out under the following conditions by electronic cooling DTGS.
Integration: 128 times, resolution: 8 cm −1 , measurement range: 4000 to 400 cm −1
In the IR spectrum, a Si—OH-derived peak is detected at 2500 to 3900 cm −1 . When the absorbance at about 3500 cm −1 is A (Peak) and the absorbance at 3955 cm −1 as the baseline is A (Base), the Si—OH peak absorbance A (Si—OH) is A (Si—OH) = A (Peak) -A (Base). A value obtained by normalizing A (Si—OH) to a thickness equivalent to 1 mm by the glass thickness was defined as the β-OH group concentration.
(金属元素(K,Na,Al,Mg,Ca,Fe)含有量)
 ICP質量分析計(Agilent8800、アジレント・テクノロジー株式会社)を使用した。粉砕した石英ガラスをガラスにフッ化水素酸を添加し加熱して分解した。分解後、硝酸を添加して一定量にし、ICP質量分析法で各金属元素(K,Na,Al,Mg,Ca,Fe)の濃度を測定する。標準液を用いて作製された検量線より濃度を計算する。この測定濃度と石英ガラスの分解量より石英ガラス中の各金属元素(K,Na,Al,Mg,Ca,Fe)の含有量を算出した。
(Metal element (K, Na, Al, Mg, Ca, Fe) content)
An ICP mass spectrometer (Agilent 8800, Agilent Technologies Inc.) was used. The crushed quartz glass was decomposed by adding hydrofluoric acid to the glass and heating. After decomposition, nitric acid is added to a constant amount, and the concentration of each metal element (K, Na, Al, Mg, Ca, Fe) is measured by ICP mass spectrometry. The concentration is calculated from a calibration curve prepared using a standard solution. The content of each metal element (K, Na, Al, Mg, Ca, Fe) in the quartz glass was calculated from the measured concentration and the decomposition amount of the quartz glass.
(散乱体(結晶)の数及び平均径(平均結晶径))
 光学顕微鏡(Nikon ELIPSE LV100)を使用した。石英ガラスを円形板状(直径1.5cm、約1.0mm厚)に加工し、両主面を鏡面研磨した。散乱体の数は、1.5×1.5μmの観察面に観察された結晶の数をカウントし,単位体積当たりの散乱体の数を算出した。平均径は散乱体の直径の総和を散乱体の数で除して算出した。
(Number of scatterers (crystals) and average diameter (average crystal diameter))
An optical microscope (Nikon ELIPSE LV100) was used. Quartz glass was processed into a circular plate shape (diameter: 1.5 cm, thickness: about 1.0 mm), and both main surfaces were mirror-polished. The number of scatterers was calculated by counting the number of crystals observed on the 1.5 × 1.5 μm observation surface and calculating the number of scatterers per unit volume. The average diameter was calculated by dividing the sum of the diameters of the scatterers by the number of scatterers.
(CIL評価、クラック発生率)
 マイクロビッカーズ硬度計(HMV-2、島津製作所)を使用した。石英ガラスを円形板状(直径1.5cm、約1.0mm厚)に加工し、両主面を鏡面研磨した。気温23℃、露点-2.4℃の雰囲気下で、ビッカース圧子を15秒押し込んだ後にビッカース圧子をはずし、圧痕付近のクラックの有無を観測した。0.1kgf、0.2kgf、0.3kgf、0.5kgf及び1.0kgfの5荷重にて100μm間隔で10点圧痕をつくり、各荷重のクラック発生率を算出した。なお、荷重とクラック発生率のプロットを行い、50%クラックが発生する(クラックの発生率が50%となる)荷重がCIL値である。
(CIL evaluation, crack occurrence rate)
A micro Vickers hardness tester (HMV-2, Shimadzu Corporation) was used. Quartz glass was processed into a circular plate shape (diameter: 1.5 cm, thickness: about 1.0 mm), and both main surfaces were mirror-polished. In an atmosphere having a temperature of 23 ° C. and a dew point of −2.4 ° C., the Vickers indenter was pushed for 15 seconds, then the Vickers indenter was removed, and the presence or absence of cracks near the indentation was observed. Ten point impressions were made at 100 μm intervals with 5 loads of 0.1 kgf, 0.2 kgf, 0.3 kgf, 0.5 kgf, and 1.0 kgf, and the crack occurrence rate of each load was calculated. Note that the load and crack occurrence rate are plotted, and the load at which 50% cracking occurs (the crack occurrence rate is 50%) is the CIL value.
(レーザ加工性)
 石英ガラスを円形板状(直径1.5cm、約1.0mm厚)に加工し、両主面を鏡面研磨した。中心波長1552nm、パルス幅680フェムト秒、平均出力10Wの半導体レーザ(フェムト秒レーザ)をサンプル内部に集光し、幅方向に走査することで、内部に改質層を連続的に入れた。ローラーで応力を加えることで改質層を起点として分割予定線に沿った位置で分離した。分断面は光学顕微鏡を用いて観察し、走査回数1回の時の改質層の深さを計測した。
(Laser processability)
Quartz glass was processed into a circular plate shape (diameter: 1.5 cm, thickness: about 1.0 mm), and both main surfaces were mirror-polished. A semiconductor laser (femtosecond laser) having a center wavelength of 1552 nm, a pulse width of 680 femtoseconds, and an average output of 10 W was condensed inside the sample and scanned in the width direction to continuously put the modified layer inside. By applying stress with a roller, the modified layer was separated from the modified layer at a position along the planned dividing line. The sectional surface was observed using an optical microscope, and the depth of the modified layer was measured when the number of scans was one.
(透過率)
 分光光度計(PerkinElmer Lambda 900)を使用した。石英ガラスを円形板状(直径1.5cm、約1.0mm厚)に加工し、両主面を鏡面研磨した。測定波長域200-800nm、スキャンスピード60nm/minで直線透過率、積分球を用いた全光線透過率を測定した。測定値は1mm厚の透過率に換算した。
(Transmittance)
A spectrophotometer (PerkinElmer Lambda 900) was used. Quartz glass was processed into a circular plate shape (diameter: 1.5 cm, thickness: about 1.0 mm), and both main surfaces were mirror-polished. The linear transmittance and the total light transmittance using an integrating sphere were measured at a measurement wavelength range of 200 to 800 nm and a scanning speed of 60 nm / min. The measured value was converted into a transmittance of 1 mm thickness.
(ヘイズ値)
 ヘイズメーター(HZ-2、スガ試験機株式会社)を使用した。石英ガラスを円形板状(直径1.5cm、約1.0mm厚)に加工し、両主面を鏡面研磨し、ヘイズ値を測定した。
(Haze value)
A haze meter (HZ-2, Suga Test Instruments Co., Ltd.) was used. Quartz glass was processed into a circular plate shape (diameter: 1.5 cm, thickness: about 1.0 mm), both main surfaces were mirror-polished, and the haze value was measured.
(例2)
 工程7で、工程6で脱脂した成形体を真空焼成する代わりに1125℃で大気焼成させた。工程7以外は例1と同様の手順を実施した。
(Example 2)
In Step 7, instead of vacuum firing, the molded body degreased in Step 6 was fired in the air at 1125 ° C. The same procedure as in Example 1 was performed except for step 7.
(例3)
 工程1では、純度99.9%以上、平均粒子径100nm、比表面積55~65m/gの原料シリカ粉末を62.9質量部、溶媒としてpH調整剤を用いてpHを13に調整した水37.1質量部を超音波ホモジナイザーにより分散させて分散液を作製した。
 工程2では、上記の分散液94.1質量部、水溶性エポキシ樹脂5.0質量部、脂肪族アミン硬化剤0.9質量部を真空ポンプ搭載自転公転式ミキサーにより混合および脱泡して混合液を調製した。
 以下の工程は例1と同様の手順を実施し、石英ガラスを得た。
(Example 3)
In step 1, 62.9 parts by mass of raw silica powder having a purity of 99.9% or more, an average particle diameter of 100 nm, and a specific surface area of 55 to 65 m 2 / g, and water adjusted to pH 13 using a pH adjuster as a solvent 37.1 parts by mass was dispersed with an ultrasonic homogenizer to prepare a dispersion.
In step 2, 94.1 parts by mass of the above dispersion, 5.0 parts by mass of a water-soluble epoxy resin, and 0.9 parts by mass of an aliphatic amine curing agent are mixed and defoamed by a rotation-revolving mixer equipped with a vacuum pump. A liquid was prepared.
In the following steps, the same procedure as in Example 1 was performed to obtain quartz glass.
(例4)
 工程2では、上記の分散液88.5質量部、水溶性エポキシ樹脂10.0質量部、脂肪族アミン硬化剤1.0質量部、3級アミン触媒0.5質量部を真空ポンプ搭載自転公転式ミキサーにより混合および脱泡して混合液を調製した。
 工程6では、乾燥後の成形体は電気炉を用いて、550℃以下で168時間保持して脱脂した。
 工程8は実施しなかった。
 工程2、6、8以外は例1と同様の手順を実施した。
(Example 4)
In Step 2, 88.5 parts by mass of the above dispersion, 10.0 parts by mass of a water-soluble epoxy resin, 1.0 part by mass of an aliphatic amine curing agent, and 0.5 parts by mass of a tertiary amine catalyst were mounted on a vacuum pump. A mixed solution was prepared by mixing and defoaming using a mixer.
In step 6, the molded body after drying was degreased by holding at 550 ° C. or lower for 168 hours using an electric furnace.
Step 8 was not performed.
The same procedure as in Example 1 was performed except for Steps 2, 6, and 8.
(例5)
 工程1での分散液の作製に超音波ホモジナイザーの代わりに超音波洗浄機を使用した。 工程6では、乾燥後の成形体は電気炉を用いて、550℃以下で168時間保持して脱脂した。
 工程8は実施しなかった。
 工程2、6、8以外は例1と同様の手順を実施した。
(Example 5)
An ultrasonic washer was used instead of the ultrasonic homogenizer for the preparation of the dispersion in Step 1. In step 6, the molded body after drying was degreased by holding at 550 ° C. or lower for 168 hours using an electric furnace.
Step 8 was not performed.
The same procedure as in Example 1 was performed except for Steps 2, 6, and 8.
(例6)
 火炎加水分解法で合成された合成石英ガラス(旭硝子株式会社、AQシリーズ)を使用し、各評価のサンプルを板状(3cm×3cm×1mmt)とした以外は例1と同様の手順を実施した。
(Example 6)
The same procedure as in Example 1 was performed except that synthetic quartz glass (Asahi Glass Co., Ltd., AQ series) synthesized by a flame hydrolysis method was used, and the samples for each evaluation were plate-shaped (3 cm × 3 cm × 1 mmt). .
 例1~6の石英ガラス又は合成石英ガラスについて、β-OH濃度(ppm)、各金属元素の含有量(重量ppm)、平均径が1~50μmの散乱体の数(個/cm)及び散乱体の平均径を表1に、CIL評価及びレーザ加工性の評価結果を表2に、光学特性を表3にそれぞれ示す。表3における全光線透過率及び直線透過率はいずれも厚み1mm換算の値である。なお、表中の空欄は未測定であることを示す。 For the quartz glass or synthetic quartz glass of Examples 1 to 6, the β-OH concentration (ppm), the content of each metal element (ppm by weight), the number of scatterers having an average diameter of 1 to 50 μm (pieces / cm 2 ), and Table 1 shows the average diameter of the scatterer, Table 2 shows the evaluation results of CIL evaluation and laser processability, and Table 3 shows the optical characteristics. The total light transmittance and the linear transmittance in Table 3 are values in terms of 1 mm thickness. In addition, the blank in a table | surface shows having not measured.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 例1~5の石英ガラスは、CIL値が0.2~0.5kgfであるため、極短パルスレーザであるフェムト秒レーザの照射による微細なクラックを含む改質層(割断の起点となる)の幅が例6より広く、ウエハ形状の石英ガラスをレーザ加工により小片化する際のレーザ加工性に優れている。
 例1~3の石英ガラスは殺菌用途に重要な波長265nmの全光線透過率(%)(厚み1mm換算)が85%以上であり、ヘイズ値が0.5%以上5%未満であることから、散乱層としての効果が得られ、光取り出し効率の向上が期待でき、窓部材として優れている。
 例1~5の石英ガラスは波長265nmの直線透過率(%)(厚み1mm換算)と波長200nmの直線透過率(%)(厚み1mm換算)の差ΔTが10~50%という、波長選択的光透過性を持つため、高エネルギのレーザ加工時に光を吸収して、加工性に優れることが期待できる。
 例1~5の石英ガラスは波長265nmの直線透過率(%)(厚み1mm換算)が80%以上、かつ波長230nmの直線透過率(%)(厚み1mm換算)と波長200nmの直線透過率(%)(厚み1mm換算)の差ΔTが10~50%という、波長選択的光透過性を持つため、殺菌効果のある270~230nmの広い波長域で高い透過率を有しながら、周辺部材の劣化を抑制できる、波長選択的光透過性が達成される。
Since the quartz glass of Examples 1 to 5 has a CIL value of 0.2 to 0.5 kgf, a modified layer containing fine cracks by irradiation with a femtosecond laser that is an ultrashort pulse laser (beginning of cleaving) Is wider than Example 6 and is excellent in laser processability when a wafer-shaped quartz glass is shredded by laser processing.
The quartz glass of Examples 1 to 3 has a total light transmittance (%) (wavelength 1 mm conversion) at a wavelength of 265 nm, which is important for sterilization applications, of 85% or more, and a haze value of 0.5% or more and less than 5%. The effect as a scattering layer is obtained, and the improvement of light extraction efficiency can be expected, and it is excellent as a window member.
The quartz glass of Examples 1 to 5 has a wavelength-selective difference ΔT of 10 to 50% between the linear transmittance (%) at a wavelength of 265 nm (converted to a thickness of 1 mm) and the linear transmittance (%) at a wavelength of 200 nm (converted to a thickness of 1 mm). Since it has optical transparency, it can be expected to absorb light during high-energy laser processing and have excellent processability.
The quartz glass of Examples 1 to 5 has a linear transmittance (%) at a wavelength of 265 nm (converted to a thickness of 1 mm) of 80% or more, a linear transmittance (%) at a wavelength of 230 nm (converted to a thickness of 1 mm), and a linear transmittance at a wavelength of 200 nm ( %) (1 mm thickness equivalent) difference ΔT is 10 to 50%, and has a wavelength-selective optical transparency, so that it has a high transmittance in a wide wavelength range of 270 to 230 nm having a bactericidal effect. Wavelength-selective optical transparency that can suppress degradation is achieved.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2017年1月16日出願の日本特許出願(特願2017-5165)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on Jan. 16, 2017 (Japanese Patent Application No. 2017-5165), the contents of which are incorporated herein by reference.

Claims (12)

  1.  表面にビッカース圧子を用いて圧痕を形成した際のクラックの発生率が50%となるビッカース圧子の押し込み荷重が0.1~0.5kgfである石英ガラス。 Quartz glass with a Vickers indentation load of 0.1 to 0.5 kgf with a 50% crack generation rate when indentations are formed on the surface using a Vickers indenter.
  2.  IRスペクトルの2500~3900cm-1のSi-OH由来ピークから換算したβ-OH基濃度が10~800ppmである、請求項1に記載の石英ガラス。 The quartz glass according to claim 1, wherein the β-OH group concentration converted from the Si-OH-derived peak at 2500 to 3900 cm -1 in the IR spectrum is 10 to 800 ppm.
  3.  波長265nmの直線透過率(%)(厚み1mm換算)と波長200nmの直線透過率(%)(厚み1mm換算)との差ΔTが10~50%である、請求項1又は2に記載の石英ガラス。 The quartz according to claim 1 or 2, wherein the difference ΔT between the linear transmittance (%) at a wavelength of 265 nm (converted to a thickness of 1 mm) and the linear transmittance (%) at a wavelength of 200 nm (converted to a thickness of 1 mm) is 10 to 50%. Glass.
  4.  波長265nmの全光線透過率(%)(厚み1mm換算)が85%以上である、請求項1~3のいずれか1項に記載の石英ガラス。 The quartz glass according to any one of claims 1 to 3, wherein the total light transmittance (%) at a wavelength of 265 nm (in terms of thickness 1 mm) is 85% or more.
  5.  波長265nmの直線透過率(%)(厚み1mm換算)が60%以上である、請求項1~4のいずれか1項に記載の石英ガラス。 The quartz glass according to any one of claims 1 to 4, wherein the linear transmittance (%) at a wavelength of 265 nm (in terms of thickness 1 mm) is 60% or more.
  6.  NaおよびKの含有量の合計が10~800ppmである、請求項1~5のいずれか1項に記載の石英ガラス。 The quartz glass according to any one of claims 1 to 5, wherein the total content of Na and K is 10 to 800 ppm.
  7.  平均径が1~50μmである散乱体の数が1cmあたり50~5000個であり、前記散乱体は空孔、結晶及びオパールからなる群より選ばれる少なくとも1種である、請求項1~6のいずれか1項に記載の石英ガラス。 The number of scatterers having an average diameter of 1 to 50 μm is 50 to 5000 per cm 2 , and the scatterers are at least one selected from the group consisting of holes, crystals, and opals. Quartz glass of any one of these.
  8.  波長265nmの直線透過率(%)(厚み1mm換算)が80%以上であり、かつ波長230nmの直線透過率(%)(厚み1mm換算)と波長200nmの直線透過率(%)(厚み1mm換算)との差ΔTが10~50%である石英ガラス。 Linear transmittance (%) at a wavelength of 265 nm (converted to 1 mm thickness) is 80% or more, and linear transmittance (%) at a wavelength of 230 nm (converted to 1 mm thickness) and linear transmittance (%) at a wavelength of 200 nm (converted to 1 mm thickness) And quartz glass having a difference ΔT of 10 to 50%.
  9.  請求項1~8のいずれか1項に記載の石英ガラスを用いた紫外線発光素子用部材。 A member for an ultraviolet light-emitting element using the quartz glass according to any one of claims 1 to 8.
  10.  請求項1~8のいずれか1項に記載の石英ガラスに形状を付与することにより配光が制御された紫外線発光素子用部材。 A member for an ultraviolet light-emitting element in which light distribution is controlled by imparting a shape to the quartz glass according to any one of claims 1 to 8.
  11.  請求項1~8のいずれか1項に記載の石英ガラスと接合剤とが一体となっている紫外線発光素子用部材。 A member for an ultraviolet light emitting element, wherein the quartz glass according to any one of claims 1 to 8 and the bonding agent are integrated.
  12.  請求項1~8のいずれか1項に記載の石英ガラスがARコートされた紫外線発光素子用部材。 A member for an ultraviolet light emitting element, wherein the quartz glass according to any one of claims 1 to 8 is AR-coated.
PCT/JP2018/000548 2017-01-16 2018-01-11 Quartz glass and ultraviolet emitting element member using same WO2018131668A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880007132.3A CN110198918A (en) 2017-01-16 2018-01-11 Quartz glass and ultraviolet ray emitting element component using the quartz glass
KR1020197015725A KR102566079B1 (en) 2017-01-16 2018-01-11 Quartz glass and members for ultraviolet light emitting devices using the same
JP2018561422A JP7001066B2 (en) 2017-01-16 2018-01-11 Quartz glass and members for ultraviolet light emitting elements using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017005165 2017-01-16
JP2017-005165 2017-01-16

Publications (1)

Publication Number Publication Date
WO2018131668A1 true WO2018131668A1 (en) 2018-07-19

Family

ID=62839932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000548 WO2018131668A1 (en) 2017-01-16 2018-01-11 Quartz glass and ultraviolet emitting element member using same

Country Status (4)

Country Link
JP (1) JP7001066B2 (en)
KR (1) KR102566079B1 (en)
CN (1) CN110198918A (en)
WO (1) WO2018131668A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020117425A (en) * 2019-01-25 2020-08-06 クアーズテック株式会社 Method for manufacturing silica glass lens and silica glass lens
KR102660630B1 (en) 2019-04-05 2024-04-26 신에쯔 세끼에이 가부시키가이샤 Titanium-containing quartz glass with excellent UV absorption and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7122997B2 (en) * 2019-04-05 2022-08-22 信越石英株式会社 Titanium-containing quartz glass excellent in ultraviolet absorption and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000103629A (en) * 1997-05-16 2000-04-11 Sumitomo Electric Ind Ltd Quartz glass article and its production
JP2001273871A (en) * 2000-03-27 2001-10-05 Ngk Insulators Ltd A luminous tube for high-intensity discharge lamp and method of manufacturing the same
JP2014005204A (en) * 2006-09-11 2014-01-16 Tosoh Corp Melted quartz glass and method for manufacturing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937839U (en) 1982-08-30 1984-03-09 三菱電機株式会社 Salient pole rotor of rotating electric machine
JP3354643B2 (en) 1993-07-20 2002-12-09 三菱重工業株式会社 Rotary valve
US8402786B2 (en) * 1998-01-30 2013-03-26 Asahi Glass Company, Limited Synthetic silica glass optical component and process for its production
CN100389085C (en) * 2002-04-23 2008-05-21 旭硝子株式会社 Synthetic quartz glass for optical member, projection exposure device, and projection exposure method
JP4966527B2 (en) * 2005-09-09 2012-07-04 国立大学法人横浜国立大学 Transparent silica sintered body and method for producing the same
JP5417200B2 (en) 2009-02-17 2014-02-12 日本碍子株式会社 Quartz arc tube and manufacturing method thereof
JP5937839B2 (en) * 2012-02-13 2016-06-22 タテホ化学工業株式会社 Transparent quartz sintered body and method for producing the same
JP2015179734A (en) 2014-03-19 2015-10-08 旭化成株式会社 Method for manufacturing semiconductor light emitting device and semiconductor light emitting device
JP6365187B2 (en) * 2014-09-30 2018-08-01 日亜化学工業株式会社 Light emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000103629A (en) * 1997-05-16 2000-04-11 Sumitomo Electric Ind Ltd Quartz glass article and its production
JP2001273871A (en) * 2000-03-27 2001-10-05 Ngk Insulators Ltd A luminous tube for high-intensity discharge lamp and method of manufacturing the same
JP2014005204A (en) * 2006-09-11 2014-01-16 Tosoh Corp Melted quartz glass and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020117425A (en) * 2019-01-25 2020-08-06 クアーズテック株式会社 Method for manufacturing silica glass lens and silica glass lens
JP7136711B2 (en) 2019-01-25 2022-09-13 クアーズテック株式会社 Silica glass lens manufacturing method and silica glass lens
KR102660630B1 (en) 2019-04-05 2024-04-26 신에쯔 세끼에이 가부시키가이샤 Titanium-containing quartz glass with excellent UV absorption and method for manufacturing the same

Also Published As

Publication number Publication date
JPWO2018131668A1 (en) 2019-11-07
KR102566079B1 (en) 2023-08-10
JP7001066B2 (en) 2022-01-19
CN110198918A (en) 2019-09-03
KR20190103149A (en) 2019-09-04

Similar Documents

Publication Publication Date Title
WO2018131668A1 (en) Quartz glass and ultraviolet emitting element member using same
JP5043317B2 (en) Cyclic dihydrogen polysiloxane, hydrogen polysiloxane, production method thereof, silica-based glass molded body and production method thereof, optical element and production method thereof
CN107286347B (en) Method for preparing phenyl hydrogen-containing silicone resin from methyl hydrogen-containing silicone oil
CN1103381A (en) Alumina composition, alumina molded article, alumina ceramics, and process for producing ceramics
JP2006306674A (en) Silica-titania glass for nanoimprint stamper
CN1512923A (en) Method of forming investment casting shells
CN1112388C (en) Method for producing a shaped piece suitable for optical purposes
JP2016180017A (en) Polymerizable composition containing reactive silicone compound
JP2009227564A (en) Setter for heat treatment of glass substrate, its producing method and method for heat treatment of glass substrate
JP5937839B2 (en) Transparent quartz sintered body and method for producing the same
US20150316798A1 (en) Sealant, preparing method and use method thereof and liquid crystal display panel
US11572313B2 (en) Ceramic slurries with photoreactive-photostable hybrid binders
EP3010051B1 (en) Window material for ultraviolet-ray-emitting element and method for producing same
TW201739796A (en) Silicone resin composition and use of the same
JP2005225755A (en) Method for manufacturing preform for photonic crystal optical fiber
JP2019116556A (en) Epoxy resin composition and reflector
US11578002B2 (en) Ceramic slurries with photoreactive-photostable hybrid binders
CN108047621A (en) A kind of efficiency light triggering cures 3D printing material and preparation method thereof
ATE300572T1 (en) METHOD FOR PRODUCING OPTICAL LENSES BY CATIONIC POLYMERIZATION OF DIEPISULFIDES
Tulliani et al. A visible and long-wavelength photocured epoxy coating for stone protection
CN103805057B (en) White coating composition and device comprising coating formed by same
JP4353742B2 (en) Optical synthetic quartz glass material and evaluation method of optical synthetic quartz glass
KR102107521B1 (en) Method for manufacturing ceramic core having high-strength by combining dry and photopolymerization processes
JPH06329460A (en) Method for optical forming of ceramic
JP7297460B2 (en) UV irradiation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18738691

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197015725

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018561422

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18738691

Country of ref document: EP

Kind code of ref document: A1