WO2018131387A1 - Wind power generation device - Google Patents

Wind power generation device Download PDF

Info

Publication number
WO2018131387A1
WO2018131387A1 PCT/JP2017/045171 JP2017045171W WO2018131387A1 WO 2018131387 A1 WO2018131387 A1 WO 2018131387A1 JP 2017045171 W JP2017045171 W JP 2017045171W WO 2018131387 A1 WO2018131387 A1 WO 2018131387A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
pump
hydraulic pressure
supply line
generator
Prior art date
Application number
PCT/JP2017/045171
Other languages
French (fr)
Japanese (ja)
Inventor
龍樹 古賀
齊藤 靖
昌男 中島
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2018131387A1 publication Critical patent/WO2018131387A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/28Wind motors characterised by the driven apparatus the apparatus being a pump or a compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a wind power generator.
  • Patent Document 1 includes a tower installed on the ground, a nacelle attached to the top of the tower, a generator housed in the nacelle, and a rotor attached to the rotating shaft of the generator, and wind A wind power generator is described in which a generator is driven by the rotational force of a rotor that receives and rotates.
  • Patent Document 2 includes a rotor that rotates by receiving wind, a hydraulic transmission that accelerates the rotation of the rotor, and a synchronous generator that is linked to an electric power system.
  • a wind power generator housed inside a tower that supports this is disclosed.
  • an object of the present invention is to provide a wind turbine generator capable of reducing the size of the device and improving its maintainability.
  • a wind turbine generator includes a drive unit, a power generation unit, and a hydraulic pressure circuit.
  • the drive unit includes a windmill that receives wind and rotates, and a hydraulic pump that generates hydraulic pressure according to the rotation of the windmill, and is provided at the top of a tower installed on the ground.
  • the power generation unit includes a hydraulic motor that rotates upon receipt of the hydraulic pressure, and a generator that is driven by the rotation of the hydraulic motor, and is installed on the ground.
  • the hydraulic circulation circuit includes a first hydraulic pressure supply line that supplies hydraulic fluid from the hydraulic pump to the hydraulic motor, and a second hydraulic fluid that supplies hydraulic fluid from the hydraulic motor to the hydraulic pump. A hydraulic pressure supply line for circulating hydraulic fluid between the hydraulic pump and the hydraulic motor.
  • the generator is installed not on the top of the tower but on the ground (low). For this reason, the drive unit can be reduced in size and weight, and the apparatus can be reduced in size. Moreover, since the generator is installed in a low place, the maintainability of the generator can be improved.
  • the hydraulic circulation circuit may further include a charge pump unit.
  • the charge pump unit is installed in the second hydraulic pressure supply line and configured to be able to pump hydraulic fluid to the hydraulic pump. Thereby, for example, at the time of rapid rotation of the windmill, the hydraulic fluid can be quickly supplied to the hydraulic pump.
  • the hydraulic circulation circuit may further include a valve mechanism.
  • the valve mechanism is provided in the first hydraulic pressure supply line, and is configured to be able to shut off the supply of hydraulic fluid from the hydraulic pump to the hydraulic motor. Thereby, for example, when the wind turbine is stopped, the hydraulic fluid in the first hydraulic pressure supply line can be prevented from flowing into the hydraulic motor.
  • the wind power generator may further include a controller.
  • the controller opens and closes the valve mechanism based on the output of the hydraulic pump or the hydraulic motor. Thereby, the rotation stop state of a windmill can be monitored from the drive state of a hydraulic pump or a hydraulic motor, and a valve mechanism can be controlled appropriately.
  • the hydraulic pump may be a variable displacement hydraulic pump, and the hydraulic motor may be a variable displacement hydraulic motor.
  • the generator can be driven at a constant rotational speed, a stable power generation operation is possible.
  • FIG. 1 is a schematic side view showing a configuration of a wind turbine generator according to an embodiment of the present invention
  • FIG. 2 is a piping configuration diagram showing a drive circuit (hydraulic circuit) 50 thereof.
  • the wind power generator 1 of this embodiment includes a drive unit 20 provided at the top of the tower 10, a power generation unit 30, and a hydraulic circulation circuit 40.
  • the power generation amount of the wind turbine generator 1 is not particularly limited, and is, for example, several tens of kW class.
  • the tower 10 supports the drive unit 20 including the windmill 21.
  • the ground H may be a flat ground or an inclined surface.
  • the wind power generator 1 may be installed on the ocean.
  • the ground H may be the surface of the base portion that supports the tower 10 or the sea surface.
  • the height of the tower 10 from the ground surface H is not particularly limited, and is, for example, from several tens of mail to one hundred and several tens of meters.
  • the drive unit 20 includes a windmill 21 that rotates by receiving wind in the sky, and a hydraulic pump 22 that generates a hydraulic pressure in accordance with the rotation of the windmill 21.
  • the windmill 21 is configured by a parallel axis (horizontal axis) type windmill in which a rotation axis is installed in parallel with the direction of the wind, and includes a hub 211 and a plurality of blades (wings) 212 attached around the hub 211. And have.
  • the hydraulic pump 22 is accommodated in the nacelle 201 installed at the top of the tower 10.
  • the nacelle 201 includes a power transmission mechanism that rotatably supports the wind turbine 21 and transmits the rotational power to the hydraulic pump 22.
  • the power generation unit 30 includes a hydraulic motor 31 that rotates by receiving the hydraulic pressure generated by the hydraulic pump 22, and a generator 32 that is driven by the rotation of the hydraulic motor 31.
  • the power generation unit 30 is installed on the ground, and is typically installed on the ground H.
  • the power generation unit 30 may be disposed on a support base (not shown) installed on the ground H. In short, the power generation unit 30 may be at a position lower than the drive unit 20. Thereby, compared with the case where the generator 32 is installed in the top part of the tower 10, the maintainability of the generator 32 can be improved.
  • the hydraulic pressure circulation circuit 40 includes hydraulic equipment such as piping, valves, pumps, hydraulic fluid reservoirs, etc. for circulating hydraulic fluid between the drive unit 20 (hydraulic pump 22) and the power generation unit 30 (hydraulic motor 31). .
  • the hydraulic circulation circuit 40 is typically installed inside the tower 10.
  • the drive circuit 50 includes a hydraulic pump 22, a hydraulic motor 31, a hydraulic circulation circuit 40, and the like.
  • a hydraulic pump 22 As shown in FIG. 2, the drive circuit 50 includes a hydraulic pump 22, a hydraulic motor 31, a hydraulic circulation circuit 40, and the like.
  • details of the drive circuit 50 will be described.
  • the drive circuit 50 constitutes a power transmission mechanism that transmits the rotational power of the windmill 21 to the generator 32.
  • the wind turbine generator 1 includes a controller 60 that controls the drive circuit 50.
  • the controller 60 is typically composed of a computer including a CPU, a memory, and the like, and is installed in the power generation unit 30 or the tower 10 or in the vicinity thereof, for example.
  • the hydraulic pump 22 is composed of a rotary hydraulic pump that receives the rotational force of the windmill 21 and generates hydraulic pressure.
  • the hydraulic pump 22 is configured by a hydraulic pump capable of controlling the discharge amount in accordance with a command from the controller 60.
  • a swash plate type axial piston pump is employed.
  • the hydraulic pump 22 is connected to the rotating shaft 21 a of the windmill 21 via a gear mechanism 23.
  • the gear mechanism 23 is typically composed of a speed increasing gear, but is not limited thereto, and may be composed of a speed reducing gear. Further, the gear mechanism 23 may be omitted as necessary.
  • the hydraulic motor 31 is a hydraulic motor that receives the hydraulic pressure of the hydraulic fluid (hydraulic oil) supplied from the hydraulic pump 22 and outputs rotational power to the generator 32.
  • the configuration of the hydraulic motor 31 is not particularly limited, and a swash plate type axial piston motor is employed in the present embodiment.
  • the hydraulic motor 31 is configured to be able to control the rotation speed in accordance with a command from the controller 60.
  • the generator 32 is typically composed of a rotating electric machine.
  • the electric power generated by the generator 32 may be sent to a predetermined location via a transmission line (not shown), or a storage battery (not shown) for storing the electric power generated by the generator 32 is further installed. Also good.
  • the hydraulic pressure circuit 40 has a first hydraulic pressure supply line 41 and a second hydraulic pressure supply line 42.
  • the first hydraulic pressure supply line 41 is connected between the discharge port of the hydraulic pressure pump 22 and the suction port of the hydraulic pressure motor 31, and supplies hydraulic fluid (hydraulic pressure) from the hydraulic pressure pump 22 to the hydraulic pressure motor 31.
  • the second hydraulic pressure supply line 42 is connected between the discharge port of the hydraulic motor 31 and the suction port of the hydraulic pump 22, and supplies hydraulic fluid (hydraulic pressure) from the hydraulic motor 31 to the hydraulic pump 22. To do.
  • a relief valve 43 is connected in parallel to the hydraulic motor 31 between the first hydraulic pressure supply line 41 and the second hydraulic pressure supply line 42.
  • the relief valve 43 is configured to open when the hydraulic pressure in the first hydraulic pressure supply line 41 exceeds a predetermined level.
  • a check valve 44 that opens when the pressure on the discharge side of the hydraulic motor 31 exceeds a predetermined value is provided between the suction port and the discharge port of the hydraulic motor 31 with respect to the hydraulic motor 31. Connected in parallel. Thereby, the hydraulic pump 22 and the hydraulic motor 31 can be protected from overload.
  • a pressure sensor 45 is connected to the first hydraulic pressure supply line 41, and the hydraulic pressure of the first hydraulic pressure supply line 41 is monitored by the controller 60 via the pressure sensor 45.
  • the controller 60 adjusts at least one of the discharge pressure of the hydraulic pump 22 and the rotation amount of the hydraulic motor 31 based on the output of the pressure sensor 45, and the drive circuit 50 so that the power generation amount of the generator 32 becomes constant.
  • the hydraulic pump 22 and the hydraulic motor 31 may be provided with sensors that detect these operating states or rotational states, and the outputs of these sensors may be supplied to the controller 60.
  • the hydraulic pressure circuit 40 further includes a charge pump unit 70.
  • the charge pump unit 70 is installed in the second hydraulic pressure supply line 42 and is used to pump hydraulic fluid to the hydraulic pump 22 when the pressure of the second hydraulic pressure line 42 decreases.
  • the hydraulic pump 22 is installed at the top of the tower 10, whereas the hydraulic motor 31 is installed on the ground (ground H), and the hydraulic pump 22, the hydraulic motor 31, There is a height difference corresponding to the height of the tower 10. For this reason, for example, when the windmill 21 rotates at high speed, the hydraulic fluid cannot be quickly returned to the hydraulic pump 22, and the hydraulic pump 22 can stably discharge the hydraulic pressure corresponding to the rotation amount of the windmill. There is a risk that it will not be possible.
  • the charge pump unit 70 has a reservoir R that stores hydraulic fluid and a pump unit P that sucks the hydraulic fluid in the reservoir R.
  • the charge pump unit 70 includes a first charge line L1 for sending the hydraulic fluid in the reservoir R to the second hydraulic pressure supply line 42 via the first check valve Cv1, And a second charge line L2 for sending hydraulic fluid discharged from the pump part P to the second hydraulic pressure supply line 42 via the second check valve Cv2.
  • the first check valve Cv1 allows the flow of hydraulic fluid from the first charge line L1 toward the second hydraulic pressure supply line 42, and allows the hydraulic fluid to flow from the hydraulic motor 31 toward the first charge line L1. Prohibit flow.
  • the internal pressure of the first charge line L1 is typically atmospheric pressure, and the first check valve Cv1 opens with a pressure difference from the internal pressure of the second hydraulic pressure supply line 42.
  • the second check valve Cv2 allows the flow of hydraulic fluid from the second charge line L2 toward the second hydraulic pressure supply line 42 and operates from the hydraulic motor 31 toward the second charge line L2. Prohibit liquid flow.
  • the valve opening pressure of the second check valve Cv2 may be the same as the valve opening pressure of the first check valve Cv1, or is set slightly higher than the valve opening pressure of the first check valve Cv1. Also good.
  • the second check valve Cv2 is configured to open at the pressure difference between the second hydraulic pressure supply line 42 and the second charge line L2 when the pump unit P is driven.
  • the charge pump unit 70 further includes a third check valve Cv3 as shown in FIG.
  • the third check valve Cv3 is disposed in the middle of the second hydraulic pressure supply line 42 between the first charge line L1 and the second charge line L2.
  • the third check valve Cv3 allows the flow of hydraulic fluid from the hydraulic motor 31 toward the hydraulic pump 22, and prohibits the flow of hydraulic fluid from the second charge line L2 toward the hydraulic motor 31. Thereby, the hydraulic fluid sent from the pump part P to the second hydraulic pressure supply line 42 via the second charge line L2 can be appropriately supplied to the hydraulic pump 22.
  • a relief valve Rv for preventing the hydraulic pressure in the second charge line L2 from rising to a predetermined level is provided between the second charge line L2 and the reservoir R.
  • the pump part P is constituted by a hydraulic pump having a variable rotation speed driven in response to a control command from the controller 60.
  • the controller 60 detects that the internal pressure of the first hydraulic pressure supply line 41 has rapidly increased to a predetermined level based on the output of the pressure sensor 45, the controller 60 determines that the windmill 21 has rapidly rotated, and the pump unit Start P.
  • the rapid rotation of the windmill 21 may be determined by detecting that the rotational speed of the hydraulic pump 22 has rapidly increased to a predetermined level.
  • a pressure sensor 45A is installed in the second hydraulic pressure supply line 42, and the controller 60 reduces the hydraulic pressure in the second hydraulic pressure supply line 42 to a predetermined level (below atmospheric pressure) based on the output. It may be configured to start the pump unit P when it is determined.
  • the rotational power is transmitted to the hydraulic pump 22 via the gear mechanism 23.
  • the hydraulic pump 22 generates a hydraulic pressure according to the rotation of the wind turbine 21 and transmits the hydraulic pressure to the hydraulic motor 31 via the first hydraulic pressure supply line 41.
  • the hydraulic motor 31 rotates in response to the hydraulic pressure from the hydraulic pump 22 and drives the generator 32.
  • the hydraulic fluid discharged from the hydraulic motor 31 returns to the hydraulic pump 22 via the second hydraulic pressure supply line 42.
  • the controller 60 constantly monitors the internal pressure of the first hydraulic pressure supply line 41 based on the output of the pressure sensor 45, and the discharge amount or liquid of the hydraulic pump 22 is adjusted so that the output of the pressure sensor 45 becomes a constant predetermined value.
  • the number of rotations of the pressure motor 31 is controlled. As a result, the generator 32 can stably generate electric power with a certain amount of power generation.
  • the internal pressure of the second hydraulic pressure supply line 42 may decrease to a predetermined level or lower (for example, atmospheric pressure or lower).
  • a predetermined level or lower for example, atmospheric pressure or lower.
  • the first check valve Cv1 of the charge pump unit 70 opens and operates from the reservoir R via the first charge line L1. Liquid is replenished to the second hydraulic pressure supply line. Thereby, the fall of the internal pressure of the 2nd hydraulic pressure supply line 42 is suppressed, and the rotation state of the hydraulic pump 22 is maintained stably.
  • the controller 60 causes the second hydraulic pressure supply line 42 to move in response to a sudden increase in the hydraulic pressure in the first hydraulic pressure supply line 41 based on the output of the pressure sensor 45 or a rapid increase in the rotational speed of the hydraulic pump 22.
  • a decrease in hydraulic pressure is detected indirectly, or when a decrease in hydraulic pressure in the second hydraulic pressure supply line 42 is directly detected based on the output of the pressure sensor 45A, the pump unit of the charge pump unit 70 Start P. Even in such control, since the hydraulic fluid is replenished to the second hydraulic pressure supply line 42 via the second charge line L2, it is possible to supply a sufficient amount of hydraulic fluid to the hydraulic pump 22. It becomes.
  • the generator 32 is installed not at a high place such as the top of the tower 10 but at a lower place (the ground such as the ground H). For this reason, the drive unit 20 installed at the top of the tower 10 can be reduced in size and weight, and the apparatus can be reduced in size.
  • FIG. 3A is a schematic side view of a wind turbine generator 100 according to a comparative example in which the generator G is stored in the nacelle 121, and FIG. 3B compares the wind turbine generator 1 according to this embodiment with the wind turbine generator 100. It is a schematic side view shown.
  • the generator G is accommodated in the nacelle 121 installed at the top of the tower 110, the nacelle 121 is large in size and its weight is large, and thus the tower that supports the nacelle 121 is supported. In order to increase the rigidity of 110, it was essential to increase the diameter.
  • the generator G is housed in the ground power generation unit 30, so that the nacelle 201 can be reduced in size and weight. As a result of reducing the rigidity required for the tower 10 that supports 201, the diameter of the tower 10 can be reduced.
  • the generator G is installed on the ground, work at a high place becomes unnecessary, and therefore maintenance workability of the generator G is improved.
  • the wind power generator 1 of this embodiment has the charge pump unit 70, for example, even when the windmill 21 rotates at high speed, the hydraulic fluid is quickly returned to the hydraulic pump 22, and the hydraulic pump 22 rotates the amount of rotation of the windmill. Can be stably discharged.
  • the pump part P of the charge pump unit 70 may be activated when the windmill 21 starts to rotate and the like, thereby enabling stable power generation quickly after the windmill 21 starts rotating.
  • FIG. 4 is a circuit diagram showing a drive circuit 51 of the wind turbine generator 2 according to the second embodiment of the present invention.
  • the configuration different from the first embodiment will be mainly described, and the same configuration as the first embodiment will be denoted by the same reference numeral, and the description thereof will be omitted or simplified.
  • the wind power generator 2 of the present embodiment is different from the first embodiment in that the hydraulic circuit 40 has a valve mechanism 80.
  • the valve mechanism 80 is provided in the first hydraulic pressure supply line 41 and is configured to be able to shut off the supply of hydraulic fluid from the hydraulic pump 22 to the hydraulic motor 31.
  • the charge pump unit 70 may be omitted as necessary.
  • the valve mechanism 80 includes an opening / closing valve 81 and a switching valve 82 that controls opening / closing of the opening / closing valve 81.
  • FIG. 5 is a schematic enlarged view showing a state where the on-off valve 81 is closed
  • FIG. 6 is a schematic enlarged view showing a state where the on-off valve 81 is opened.
  • the on-off valve 81 includes a casing 811 having a valve seat 810, a valve body 812 movably accommodated inside the casing 811, and a spring member 813.
  • the casing 811 has an inlet P1 communicating with the hydraulic pump 22 and an outlet P2 communicating with the hydraulic motor 31, and the valve seat 810 is provided in the vicinity of the outlet P2.
  • the valve body 812 divides the inside of the casing 811 into a pressure chamber S1 and a pilot chamber S2, and the spring member 813 is disposed in the pilot chamber S2, and urges the valve body 812 toward the valve seat 810.
  • the switching valve 82 is a 4-port 2-position electromagnetic switching valve having an A position and a B position.
  • the switching valve 82 communicates the pilot chamber S2 of the on-off valve 81 with the first hydraulic pressure supply line 41 at the A position (see FIG. 5), and communicates the pilot chamber S2 with the reservoir R of the charge pump unit 70 at the B position. (See FIGS. 4 and 6).
  • the switching valve 82 maintains the position A shown in FIG. 5 by urging the spring member 822 when the solenoid part 821 is not excited, and when the solenoid part 821 is excited by a control command (current signal) from the controller 60, FIG. To position B shown in FIG.
  • the controller 60 excites the solenoid portion 821 of the valve mechanism 80 when the wind turbine generator 2 is in operation (power generation), and sets the switching valve 82 to B. Move to position.
  • the pilot chamber S2 of the on-off valve 81 communicates with the reservoir R as shown in FIG.
  • the valve body 812 resists the spring force of the spring member 813 due to the differential pressure between the pressure chamber S1 that receives the discharge pressure of the hydraulic pump 22 and the pilot chamber S2 that is maintained near atmospheric pressure. Move to the S2 side and leave the valve seat 810.
  • the hydraulic pump 22 and the hydraulic motor 31 communicate with each other, and the discharge pressure of the hydraulic pump 22 is supplied to the hydraulic motor 31, whereby predetermined power is generated in the generator 32. .
  • the operating state of the wind power generator 2 is determined by the controller 60 based on the output of the pressure sensor 45, the rotational state of the hydraulic pump 22 or the hydraulic motor 31, and the like.
  • the controller 60 when the controller 60 detects a rotation stop state of the wind turbine 21 such as when there is no wind or when the air volume is small, for example, the controller 60 cuts off the excitation of the solenoid unit 821 and returns the switching valve 82 to the A position.
  • the pilot chamber S2 of the on-off valve 81 communicates with the first hydraulic pressure supply line 41 as shown in FIG. For this reason, there is no differential pressure between the pilot chamber S2 and the pressure chamber S1, and the valve body 812 receives the urging force of the spring member 813 and abuts on the valve seat 810. Thereby, the communication between the hydraulic pump 22 and the hydraulic motor 31 is blocked.
  • the controller 60 excites the solenoid portion 821 and moves the switching valve 82 to the B position again. Thereby, the on-off valve 81 is opened, and the driving of the generator 32 by the hydraulic motor 31 is resumed.
  • the valve mechanism 80 prevents the hydraulic fluid in the first hydraulic pressure supply line 41 from flowing into the hydraulic motor 31 side.
  • the hydraulic motor 31 can be rapidly rotated at the time of the rotation restart of the windmill 21, and an electric power generation loss can be suppressed.
  • a remarkable effect is obtained in terms of improving power generation efficiency.
  • the on-off valve 81 can be kept closed by the pressure balance between the pressure chamber S1 and the pilot chamber S2 when the rotation of the wind turbine 21 is stopped. Therefore, the on-off valve 81 does not need high durability against the static load of the hydraulic fluid, and the on-off valve 81 can be configured with a simple structure.
  • the valve mechanism 80 is configured to be closed when the solenoid unit 821 is not supplied with power, the first hydraulic pressure supply line 41 is promptly generated when a system error or a failure of the controller 60 occurs. Can be cut off.
  • the static load of the hydraulic fluid acts on the hydraulic motor 31 while the rotation is stopped by using the shut-off action by the valve mechanism 80. I can prevent it. Thereby, it can contribute to the early restoration of the wind power generator 2.
  • the windmill 21 is configured as a horizontal type, but is not limited thereto, and may be configured as a vertical type windmill whose rotation axis is orthogonal to the direction of the wind.
  • the valve mechanism 80 is configured by combining the on-off valve 81 and the switching valve 82.
  • the present invention is not limited to this.
  • the valve mechanism 80 is configured by a single electromagnetic on-off valve at two ports and two positions. May be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

[Problem] To provide a wind power generation device which is capable of achieving a reduction in the size of the device and an improvement in maintenance properties. [Solution] A wind power generation device 1 according to one embodiment of the present invention is provided with a drive unit 20, a power generation unit 30, and a hydraulic circulation circuit 40. The drive unit 20 is provided with: a wind turbine 21 which receives wind and rotates; and a hydraulic pump 22 which generates hydraulic pressure in accordance with the rotation of the wind turbine 21. The drive unit is provided to the top part of a tower 10 installed on the ground. The power generation unit 30 is provided with: a hydraulic motor 31 which receives a supply of the hydraulic pressure and rotates; and a power generator 32 which is driven by the rotation of the hydraulic motor 31. The power generation unit is installed on the ground. The hydraulic circulation circuit 40 circulates a working fluid between the hydraulic pump 22 and the hydraulic motor 31.

Description

風力発電装置Wind power generator
 本発明は、風力発電装置に関する。 The present invention relates to a wind power generator.
 近年、再生エネルギ発電システムとして、風力発電の普及が進められている。例えば特許文献1には、地面に設置されたタワーと、タワーの頂部に取り付けられたナセルと、ナセルに収容された発電機と、発電機の回転軸に取り付けられたロータとを備え、風を受けて回転するロータの回転力で発電機を駆動する風力発電装置が記載されている。 In recent years, wind power generation has been popularized as a renewable energy power generation system. For example, Patent Document 1 includes a tower installed on the ground, a nacelle attached to the top of the tower, a generator housed in the nacelle, and a rotor attached to the rotating shaft of the generator, and wind A wind power generator is described in which a generator is driven by the rotational force of a rotor that receives and rotates.
 一方、ロータの回転動力を発電機へ伝達する動力伝達機構に油圧回路を用いる発電システムが知られている。例えば特許文献2には、風を受けて回転するロータと、ロータの回転を増速する油圧トランスミッションと、電力系統に連系された同期発電機とを備え、油圧トランスミッションおよび同期発電機がナセル又はこれを支持するタワーの内部に収納された風力発電装置が開示されている。 On the other hand, a power generation system using a hydraulic circuit for a power transmission mechanism that transmits the rotational power of a rotor to a generator is known. For example, Patent Document 2 includes a rotor that rotates by receiving wind, a hydraulic transmission that accelerates the rotation of the rotor, and a synchronous generator that is linked to an electric power system. A wind power generator housed inside a tower that supports this is disclosed.
特開2016-15882号公報JP 2016-15882 A 特表2013-520596号公報Special table 2013-520596 gazette
 しかしながら、従来の風力発電装置においては、ナセルに発電機が収容されているため、ナセルの小型化を図ることが困難となる。また、ナセルの重量が大きくなるため、これを支持するタワーの大型化も避けられない。さらに、発電機の点検や修理、交換等のメンテナンス作業を高所で行う必要があるため、作業性が悪いという問題がある。 However, in the conventional wind power generator, since the generator is accommodated in the nacelle, it is difficult to reduce the size of the nacelle. Moreover, since the weight of a nacelle becomes large, the enlargement of the tower which supports this is inevitable. Furthermore, since it is necessary to perform maintenance work such as inspection, repair, and replacement of the generator at a high place, there is a problem that workability is poor.
 以上のような事情に鑑み、本発明の目的は、装置の小型化とメンテナンス性の向上を図ることができる風力発電装置を提供することにある。 In view of the circumstances as described above, an object of the present invention is to provide a wind turbine generator capable of reducing the size of the device and improving its maintainability.
 上記目的を達成するため、本発明の一形態に係る風力発電装置は、駆動ユニットと、発電ユニットと、液圧循環回路とを具備する。
 上記駆動ユニットは、風を受けて回転する風車と、上記風車の回転に応じて液圧を発生させる液圧ポンプとを有し、地上に設置されたタワーの頂部に設けられる。
 上記発電ユニットは、上記液圧の供給を受けて回転する液圧モータと、上記液圧モータの回転により駆動される発電機とを有し、地上に設置される。
 上記液圧循環回路は、上記液圧ポンプから上記液圧モータへ作動液を供給する第1の液圧供給ラインと、上記液圧モータから上記液圧ポンプへ作動液を供給する第2の液圧供給ラインとを有し、上記液圧ポンプと上記液圧モータとの間において作動液を循環させる。
In order to achieve the above object, a wind turbine generator according to an embodiment of the present invention includes a drive unit, a power generation unit, and a hydraulic pressure circuit.
The drive unit includes a windmill that receives wind and rotates, and a hydraulic pump that generates hydraulic pressure according to the rotation of the windmill, and is provided at the top of a tower installed on the ground.
The power generation unit includes a hydraulic motor that rotates upon receipt of the hydraulic pressure, and a generator that is driven by the rotation of the hydraulic motor, and is installed on the ground.
The hydraulic circulation circuit includes a first hydraulic pressure supply line that supplies hydraulic fluid from the hydraulic pump to the hydraulic motor, and a second hydraulic fluid that supplies hydraulic fluid from the hydraulic motor to the hydraulic pump. A hydraulic pressure supply line for circulating hydraulic fluid between the hydraulic pump and the hydraulic motor.
 上記風力発電装置においては、発電機がタワー頂部の高所ではなく、地上(低所)に設置されている。このため、駆動ユニットの小型化、軽量化を図り、装置の小型化を実現することができる。また、発電機が低所に設置されているため、発電機のメンテナンス性を向上させることができる。 In the above wind turbine generator, the generator is installed not on the top of the tower but on the ground (low). For this reason, the drive unit can be reduced in size and weight, and the apparatus can be reduced in size. Moreover, since the generator is installed in a low place, the maintainability of the generator can be improved.
 上記液圧循環回路は、チャージポンプユニットをさらに有してもよい。上記チャージポンプユニットは、上記第2の液圧供給ラインに設置され、上記液圧ポンプへ作動液を圧送することが可能に構成される。
 これにより、例えば風車の急速回転時において、作動液を液圧ポンプへ迅速に供給することができる。
The hydraulic circulation circuit may further include a charge pump unit. The charge pump unit is installed in the second hydraulic pressure supply line and configured to be able to pump hydraulic fluid to the hydraulic pump.
Thereby, for example, at the time of rapid rotation of the windmill, the hydraulic fluid can be quickly supplied to the hydraulic pump.
 上記液圧循環回路は、弁機構をさらに有してもよい。上記弁機構は、上記第1の液圧供給ラインに設けられ、上記液圧ポンプから上記液圧モータへの作動液の供給を遮断可能に構成される。
 これにより、例えば風車の停止時において、第1の液圧供給ライン中の作動液の液圧モータ側への流れ込みを阻止することができる。
The hydraulic circulation circuit may further include a valve mechanism. The valve mechanism is provided in the first hydraulic pressure supply line, and is configured to be able to shut off the supply of hydraulic fluid from the hydraulic pump to the hydraulic motor.
Thereby, for example, when the wind turbine is stopped, the hydraulic fluid in the first hydraulic pressure supply line can be prevented from flowing into the hydraulic motor.
 上記風力発電装置は、コントローラをさらに具備してもよい。上記コントローラは、上記液圧ポンプ又は上記液圧モータの出力に基づいて、上記弁機構を開閉する。
 これにより、液圧ポンプ又は液圧モータの駆動状態から風車の回転停止状態を監視して、弁機構を適切に制御することができる。
The wind power generator may further include a controller. The controller opens and closes the valve mechanism based on the output of the hydraulic pump or the hydraulic motor.
Thereby, the rotation stop state of a windmill can be monitored from the drive state of a hydraulic pump or a hydraulic motor, and a valve mechanism can be controlled appropriately.
 上記液圧ポンプは、可変容量式の液圧ポンプであってもよいし、上記液圧モータは、可変容量式の液圧モータであってもよい。
 これにより、一定の回転数で発電機を駆動させることができるため、安定した発電動作が可能となる。
The hydraulic pump may be a variable displacement hydraulic pump, and the hydraulic motor may be a variable displacement hydraulic motor.
Thereby, since the generator can be driven at a constant rotational speed, a stable power generation operation is possible.
本発明の一実施形態に係る風力発電装置の構成を示す概略側面図である。It is a schematic side view which shows the structure of the wind power generator which concerns on one Embodiment of this invention. 上記風力発電装置の駆動回路を示す配管構成図である。It is a piping block diagram which shows the drive circuit of the said wind power generator. 上記風力発電装置と比較例に係る風力発電装置とを比較して示す概略側面図である。It is a schematic side view which compares and shows the said wind power generator and the wind power generator which concerns on a comparative example. 本発明の他の実施形態に係る風力発電装置の駆動回路を示す配管構成図である。It is a piping block diagram which shows the drive circuit of the wind power generator which concerns on other embodiment of this invention. 上記駆動回路における弁機構の閉状態を示す概略拡大図である。It is a schematic enlarged view which shows the closed state of the valve mechanism in the said drive circuit. 上記駆動回路における弁機構の開状態を示す概略拡大図である。It is a schematic enlarged view which shows the open state of the valve mechanism in the said drive circuit.
 以下、図面を参照しながら、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<第1の実施形態>
[全体構成]
 図1は、本発明の一実施形態に係る風力発電装置の構成を示す概略側面図、図2はその駆動回路(油圧回路)50を示す配管構成図である。
<First Embodiment>
[overall structure]
FIG. 1 is a schematic side view showing a configuration of a wind turbine generator according to an embodiment of the present invention, and FIG. 2 is a piping configuration diagram showing a drive circuit (hydraulic circuit) 50 thereof.
 本実施形態の風力発電装置1は、タワー10の頂部に設けられた駆動ユニット20と、発電ユニット30と、液圧循環回路40とを備える。風力発電装置1の発電量は特に限定されず、例えば、数十kWクラスである。 The wind power generator 1 of this embodiment includes a drive unit 20 provided at the top of the tower 10, a power generation unit 30, and a hydraulic circulation circuit 40. The power generation amount of the wind turbine generator 1 is not particularly limited, and is, for example, several tens of kW class.
 タワー10は、風車21を含む駆動ユニット20を支持する。タワー10は地上に設置されるが、その地面Hは平地面でもよいし、傾斜面であってもよい。なお、風力発電装置1は洋上に設置されてもよく、この場合、地面Hはタワー10を支持するベース部の表面でもよいし、海面であってもよい。タワー10の地面Hからの高さは特に限定されず、例えば数十メールから百数十メートルである。 The tower 10 supports the drive unit 20 including the windmill 21. Although the tower 10 is installed on the ground, the ground H may be a flat ground or an inclined surface. The wind power generator 1 may be installed on the ocean. In this case, the ground H may be the surface of the base portion that supports the tower 10 or the sea surface. The height of the tower 10 from the ground surface H is not particularly limited, and is, for example, from several tens of mail to one hundred and several tens of meters.
 駆動ユニット20は、上空の風を受けて回転する風車21と、風車21の回転に応じて液圧を発生させる液圧ポンプ22とを有する。風車21は、風の向きに対して回転軸が平行に設置される平行軸(水平軸)型の風車で構成され、ハブ211と、ハブ211の周囲に取り付けられた複数のブレード(翼)212とを有する。液圧ポンプ22は、タワー10の頂部に設置されたナセル201の内部に収容される。ナセル201は、風車21を回転可能に支持し、その回転動力を液圧ポンプ22へ伝達する動力伝達機構等を備える。 The drive unit 20 includes a windmill 21 that rotates by receiving wind in the sky, and a hydraulic pump 22 that generates a hydraulic pressure in accordance with the rotation of the windmill 21. The windmill 21 is configured by a parallel axis (horizontal axis) type windmill in which a rotation axis is installed in parallel with the direction of the wind, and includes a hub 211 and a plurality of blades (wings) 212 attached around the hub 211. And have. The hydraulic pump 22 is accommodated in the nacelle 201 installed at the top of the tower 10. The nacelle 201 includes a power transmission mechanism that rotatably supports the wind turbine 21 and transmits the rotational power to the hydraulic pump 22.
 発電ユニット30は、液圧ポンプ22において発生した液圧を受けて回転する液圧モータ31と、液圧モータ31の回転により駆動される発電機32とを有する。発電ユニット30は、地上に設置されており、典型的には、地面Hに設置される。発電ユニット30は、地面Hに設置された支持台(図示略)の上に配置されてもよい。要するに、発電ユニット30は、駆動ユニット20よりも低い位置であればよい。これにより発電機32がタワー10の頂部に設置される場合と比較して、発電機32のメンテナンス性を向上させることができる。 The power generation unit 30 includes a hydraulic motor 31 that rotates by receiving the hydraulic pressure generated by the hydraulic pump 22, and a generator 32 that is driven by the rotation of the hydraulic motor 31. The power generation unit 30 is installed on the ground, and is typically installed on the ground H. The power generation unit 30 may be disposed on a support base (not shown) installed on the ground H. In short, the power generation unit 30 may be at a position lower than the drive unit 20. Thereby, compared with the case where the generator 32 is installed in the top part of the tower 10, the maintainability of the generator 32 can be improved.
 液圧循環回路40は、駆動ユニット20(液圧ポンプ22)と発電ユニット30(液圧モータ31)との間において作動液を循環させる配管、バルブ、ポンプ、作動液リザーバ等の油圧機器を含む。液圧循環回路40は、典型的には、タワー10の内部に設置される。 The hydraulic pressure circulation circuit 40 includes hydraulic equipment such as piping, valves, pumps, hydraulic fluid reservoirs, etc. for circulating hydraulic fluid between the drive unit 20 (hydraulic pump 22) and the power generation unit 30 (hydraulic motor 31). . The hydraulic circulation circuit 40 is typically installed inside the tower 10.
 図2に示すように、駆動回路50は、液圧ポンプ22、液圧モータ31、液圧循環回路40等により構成される。以下、駆動回路50の詳細について説明する。 As shown in FIG. 2, the drive circuit 50 includes a hydraulic pump 22, a hydraulic motor 31, a hydraulic circulation circuit 40, and the like. Hereinafter, details of the drive circuit 50 will be described.
 (駆動回路)
 駆動回路50は、風車21の回転動力を発電機32へ伝達する動力伝達機構を構成する。風力発電装置1は、駆動回路50を制御するコントローラ60を備えている。コントローラ60は、典型的には、CPUやメモリ等を含むコンピュータで構成され、例えば発電ユニット30やタワー10の内部あるいはそれらの近傍に設置される。
(Drive circuit)
The drive circuit 50 constitutes a power transmission mechanism that transmits the rotational power of the windmill 21 to the generator 32. The wind turbine generator 1 includes a controller 60 that controls the drive circuit 50. The controller 60 is typically composed of a computer including a CPU, a memory, and the like, and is installed in the power generation unit 30 or the tower 10 or in the vicinity thereof, for example.
 液圧ポンプ22は、風車21の回転力を受けて液圧を発生させる回転型の油圧ポンプで構成される。本実施形態において液圧ポンプ22は、コントローラ60からの指令に応じて吐出量を制御可能な油圧ポンプで構成され、例えば、斜板型アキシャルピストンポンプが採用される。 The hydraulic pump 22 is composed of a rotary hydraulic pump that receives the rotational force of the windmill 21 and generates hydraulic pressure. In the present embodiment, the hydraulic pump 22 is configured by a hydraulic pump capable of controlling the discharge amount in accordance with a command from the controller 60. For example, a swash plate type axial piston pump is employed.
 液圧ポンプ22は、風車21の回転軸21aにギア機構23を介して接続されている。ギア機構23は、典型的には増速ギアで構成されるが、これに限られず、減速ギアで構成されてもよい。また、ギア機構23は、必要に応じて省略されてもよい。 The hydraulic pump 22 is connected to the rotating shaft 21 a of the windmill 21 via a gear mechanism 23. The gear mechanism 23 is typically composed of a speed increasing gear, but is not limited thereto, and may be composed of a speed reducing gear. Further, the gear mechanism 23 may be omitted as necessary.
 液圧モータ31は、液圧ポンプ22から供給される作動液(作動油)の液圧を受けて、発電機32に回転動力を出力する油圧モータで構成される。液圧モータ31の構成は特に限定されず、本実施形態では、斜板型アキシャルピストンモータが採用される。液圧モータ31は、コントローラ60からの指令に応じて回転数を制御可能に構成される。 The hydraulic motor 31 is a hydraulic motor that receives the hydraulic pressure of the hydraulic fluid (hydraulic oil) supplied from the hydraulic pump 22 and outputs rotational power to the generator 32. The configuration of the hydraulic motor 31 is not particularly limited, and a swash plate type axial piston motor is employed in the present embodiment. The hydraulic motor 31 is configured to be able to control the rotation speed in accordance with a command from the controller 60.
 発電機32は、典型的には、回転電機で構成される。発電機32で発電された電力は、送電線(不図示)を介して所定の場所へ送られてもよいし、発電機32で発電された電力を蓄える蓄電池(不図示)がさらに設置されてもよい。 The generator 32 is typically composed of a rotating electric machine. The electric power generated by the generator 32 may be sent to a predetermined location via a transmission line (not shown), or a storage battery (not shown) for storing the electric power generated by the generator 32 is further installed. Also good.
 液圧循環回路40は、第1の液圧供給ライン41と、第2の液圧供給ライン42とを有する。第1の液圧供給ライン41は、液圧ポンプ22の吐出口と液圧モータ31の吸込口との間に接続され、液圧ポンプ22から液圧モータ31へ作動液(液圧)を供給する。第2の液圧供給ライン42は、液圧モータ31の吐出口と液圧ポンプ22の吸込口との間に接続され、液圧モータ31から液圧ポンプ22へ作動液(液圧)を供給する。 The hydraulic pressure circuit 40 has a first hydraulic pressure supply line 41 and a second hydraulic pressure supply line 42. The first hydraulic pressure supply line 41 is connected between the discharge port of the hydraulic pressure pump 22 and the suction port of the hydraulic pressure motor 31, and supplies hydraulic fluid (hydraulic pressure) from the hydraulic pressure pump 22 to the hydraulic pressure motor 31. To do. The second hydraulic pressure supply line 42 is connected between the discharge port of the hydraulic motor 31 and the suction port of the hydraulic pump 22, and supplies hydraulic fluid (hydraulic pressure) from the hydraulic motor 31 to the hydraulic pump 22. To do.
 なお、第1の液圧供給ライン41と第2の液圧供給ライン42との間には、リリーフバルブ43が液圧モータ31に対して並列的に接続されている。リリーフバルブ43は、第1の液圧供給ライン41の液圧が所定以上になったときに開放するように構成される。また、液圧モータ31の吸込口と吐出口との間には、液圧モータ31の吐出側の圧力が所定以上になったときに開弁する逆止弁44が液圧モータ31に対して並列的に接続されている。これにより液圧ポンプ22および液圧モータ31を過負荷から保護することができる。 A relief valve 43 is connected in parallel to the hydraulic motor 31 between the first hydraulic pressure supply line 41 and the second hydraulic pressure supply line 42. The relief valve 43 is configured to open when the hydraulic pressure in the first hydraulic pressure supply line 41 exceeds a predetermined level. Also, a check valve 44 that opens when the pressure on the discharge side of the hydraulic motor 31 exceeds a predetermined value is provided between the suction port and the discharge port of the hydraulic motor 31 with respect to the hydraulic motor 31. Connected in parallel. Thereby, the hydraulic pump 22 and the hydraulic motor 31 can be protected from overload.
 第1の液圧供給ライン41には圧力センサ45が接続されており、この圧力センサ45を介して第1の液圧供給ライン41の液圧がコントローラ60において監視される。コントローラ60は、圧力センサ45の出力に基づいて液圧ポンプ22の吐出圧および液圧モータ31の回転量の少なくとも1つを調整し、発電機32の発電量が一定となるように駆動回路50を制御する。なお図示せずとも液圧ポンプ22および液圧モータ31にこれらの運転状態あるいは回転状態を検出するセンサを設置し、これらセンサの出力をコントローラ60へ供給するように構成されてもよい。 A pressure sensor 45 is connected to the first hydraulic pressure supply line 41, and the hydraulic pressure of the first hydraulic pressure supply line 41 is monitored by the controller 60 via the pressure sensor 45. The controller 60 adjusts at least one of the discharge pressure of the hydraulic pump 22 and the rotation amount of the hydraulic motor 31 based on the output of the pressure sensor 45, and the drive circuit 50 so that the power generation amount of the generator 32 becomes constant. To control. In addition, although not shown in the figure, the hydraulic pump 22 and the hydraulic motor 31 may be provided with sensors that detect these operating states or rotational states, and the outputs of these sensors may be supplied to the controller 60.
 (チャージポンプユニット)
 一方、液圧循環回路40は、チャージポンプユニット70をさらに有する。チャージポンプユニット70は、第2の液圧供給ライン42に設置され、第2の液圧ライン42の圧力低下時に液圧ポンプ22へ作動液を圧送するためのものである。
(Charge pump unit)
On the other hand, the hydraulic pressure circuit 40 further includes a charge pump unit 70. The charge pump unit 70 is installed in the second hydraulic pressure supply line 42 and is used to pump hydraulic fluid to the hydraulic pump 22 when the pressure of the second hydraulic pressure line 42 decreases.
 上述のように、液圧ポンプ22はタワー10の頂部に設置されているのに対して、液圧モータ31は地上(地面H)に設置されており、液圧ポンプ22と液圧モータ31との間にはタワー10の高さ分の高低差がある。このため、例えば風車21の高速回転時において作動液を液圧ポンプ22へ迅速に還流させることができずに、液圧ポンプ22が風車の回転量に見合う液圧を安定して吐出することができなくなるおそれがある。 As described above, the hydraulic pump 22 is installed at the top of the tower 10, whereas the hydraulic motor 31 is installed on the ground (ground H), and the hydraulic pump 22, the hydraulic motor 31, There is a height difference corresponding to the height of the tower 10. For this reason, for example, when the windmill 21 rotates at high speed, the hydraulic fluid cannot be quickly returned to the hydraulic pump 22, and the hydraulic pump 22 can stably discharge the hydraulic pressure corresponding to the rotation amount of the windmill. There is a risk that it will not be possible.
 このような問題を解消するため、チャージポンプユニット70は、作動液を蓄えるリザーバRと、リザーバR内の作動液を吸引するポンプ部Pとを有する。そして図2に示すように、チャージポンプユニット70は、リザーバR内の作動液を第1の逆止弁Cv1を介して第2の液圧供給ライン42へ送出する第1のチャージラインL1と、ポンプ部Pから吐出される作動液を第2の逆止弁Cv2を介して第2の液圧供給ライン42へ送出する第2のチャージラインL2とを有する。 In order to solve such a problem, the charge pump unit 70 has a reservoir R that stores hydraulic fluid and a pump unit P that sucks the hydraulic fluid in the reservoir R. As shown in FIG. 2, the charge pump unit 70 includes a first charge line L1 for sending the hydraulic fluid in the reservoir R to the second hydraulic pressure supply line 42 via the first check valve Cv1, And a second charge line L2 for sending hydraulic fluid discharged from the pump part P to the second hydraulic pressure supply line 42 via the second check valve Cv2.
 第1の逆止弁Cv1は、第1のチャージラインL1から第2の液圧供給ライン42へ向かう作動液の流れを許容し、液圧モータ31から第1のチャージラインL1へ向かう作動液の流れを禁止する。第1のチャージラインL1の内圧は、典型的には大気圧であり、第1の逆止弁Cv1は、第2の液圧供給ライン42の内圧との圧力差で開弁する。 The first check valve Cv1 allows the flow of hydraulic fluid from the first charge line L1 toward the second hydraulic pressure supply line 42, and allows the hydraulic fluid to flow from the hydraulic motor 31 toward the first charge line L1. Prohibit flow. The internal pressure of the first charge line L1 is typically atmospheric pressure, and the first check valve Cv1 opens with a pressure difference from the internal pressure of the second hydraulic pressure supply line 42.
 一方、第2の逆止弁Cv2は、第2のチャージラインL2から第2の液圧供給ライン42へ向かう作動液の流れを許容し、液圧モータ31から第2のチャージラインL2へ向かう作動液の流れを禁止する。第2の逆止弁Cv2の開弁圧は、第1の逆止弁Cv1の開弁圧と同一であってもよいし、第1の逆止弁Cv1の開弁圧よりも若干高く設定されもよい。典型的には、第2の逆止弁Cv2は、ポンプ部Pの駆動時に、第2の液圧供給ライン42と第2のチャージラインL2との圧力差で開弁するように構成される。 On the other hand, the second check valve Cv2 allows the flow of hydraulic fluid from the second charge line L2 toward the second hydraulic pressure supply line 42 and operates from the hydraulic motor 31 toward the second charge line L2. Prohibit liquid flow. The valve opening pressure of the second check valve Cv2 may be the same as the valve opening pressure of the first check valve Cv1, or is set slightly higher than the valve opening pressure of the first check valve Cv1. Also good. Typically, the second check valve Cv2 is configured to open at the pressure difference between the second hydraulic pressure supply line 42 and the second charge line L2 when the pump unit P is driven.
 チャージポンプユニット70は、図2に示すように、第3の逆止弁Cv3をさらに有する。第3の逆止弁Cv3は、第1のチャージラインL1と第2のチャージラインL2と間の第2の液圧供給ライン42の途上に配置される。第3の逆止弁Cv3は、液圧モータ31から液圧ポンプ22へ向かう作動液の流れを許容し、第2のチャージラインL2から液圧モータ31へ向かう作動液の流れを禁止する。これにより、ポンプ部Pから第2のチャージラインL2を介して第2の液圧供給ライン42へ送出された作動液を液圧ポンプ22へ適切に供給することが可能となる。なお、第2のチャージラインL2とリザーバRとの間には、第2のチャージラインL2内の液圧が所定レベルにまで上昇することを防ぐためのリリーフバルブRvが設けられている。 The charge pump unit 70 further includes a third check valve Cv3 as shown in FIG. The third check valve Cv3 is disposed in the middle of the second hydraulic pressure supply line 42 between the first charge line L1 and the second charge line L2. The third check valve Cv3 allows the flow of hydraulic fluid from the hydraulic motor 31 toward the hydraulic pump 22, and prohibits the flow of hydraulic fluid from the second charge line L2 toward the hydraulic motor 31. Thereby, the hydraulic fluid sent from the pump part P to the second hydraulic pressure supply line 42 via the second charge line L2 can be appropriately supplied to the hydraulic pump 22. A relief valve Rv for preventing the hydraulic pressure in the second charge line L2 from rising to a predetermined level is provided between the second charge line L2 and the reservoir R.
 ここで、ポンプ部Pは、コントローラ60からの制御指令を受けて駆動する回転数が可変の油圧ポンプで構成される。コントローラ60は、例えば、圧力センサ45の出力に基づき第1の液圧供給ライン41の内圧が所定レベルにまで急激に上昇したことを検出したときに風車21が急速回転したと判定し、ポンプ部Pを起動させる。上記に代えて又は加えて、液圧ポンプ22の回転数が所定レベルにまで急激に上昇したことを検出することによって、風車21の急速回転を判定するようにしてもよい。あるいは、第2の液圧供給ライン42に圧力センサ45Aを設置し、その出力に基づき、コントローラ60が、第2の液圧供給ライン42の液圧が所定レベル(大気圧以下)にまで低下したと判定したとき、ポンプ部Pを起動させるように構成されてもよい。 Here, the pump part P is constituted by a hydraulic pump having a variable rotation speed driven in response to a control command from the controller 60. For example, when the controller 60 detects that the internal pressure of the first hydraulic pressure supply line 41 has rapidly increased to a predetermined level based on the output of the pressure sensor 45, the controller 60 determines that the windmill 21 has rapidly rotated, and the pump unit Start P. Instead of or in addition to the above, the rapid rotation of the windmill 21 may be determined by detecting that the rotational speed of the hydraulic pump 22 has rapidly increased to a predetermined level. Alternatively, a pressure sensor 45A is installed in the second hydraulic pressure supply line 42, and the controller 60 reduces the hydraulic pressure in the second hydraulic pressure supply line 42 to a predetermined level (below atmospheric pressure) based on the output. It may be configured to start the pump unit P when it is determined.
[風力発電装置の動作]
 次に、以上のように構成される本実施形態の風力発電装置1の典型的な動作について説明する。
[Operation of wind turbine generator]
Next, typical operations of the wind turbine generator 1 of the present embodiment configured as described above will be described.
 風車21が風を受けて回転すると、その回転動力がギア機構23を介して液圧ポンプ22へ伝達される。液圧ポンプ22は、風車21の回転に応じた液圧を発生し、第1の液圧供給ライン41を介してその液圧を液圧モータ31へ伝達する。液圧モータ31は、液圧ポンプ22からの液圧を受けて回転し、発電機32を駆動する。液圧モータ31から吐出された作動液は、第2の液圧供給ライン42を介して液圧ポンプ22へ還流する。 When the windmill 21 receives wind and rotates, the rotational power is transmitted to the hydraulic pump 22 via the gear mechanism 23. The hydraulic pump 22 generates a hydraulic pressure according to the rotation of the wind turbine 21 and transmits the hydraulic pressure to the hydraulic motor 31 via the first hydraulic pressure supply line 41. The hydraulic motor 31 rotates in response to the hydraulic pressure from the hydraulic pump 22 and drives the generator 32. The hydraulic fluid discharged from the hydraulic motor 31 returns to the hydraulic pump 22 via the second hydraulic pressure supply line 42.
 コントローラ60は、圧力センサ45の出力に基づいて第1の液圧供給ライン41の内圧を常時監視し、圧力セン45の出力が一定の所定値となるように液圧ポンプ22の吐出量あるいは液圧モータ31の回転数を制御する。これにより、発電機32において一定の発電量で安定に電力を発生することができる。 The controller 60 constantly monitors the internal pressure of the first hydraulic pressure supply line 41 based on the output of the pressure sensor 45, and the discharge amount or liquid of the hydraulic pump 22 is adjusted so that the output of the pressure sensor 45 becomes a constant predetermined value. The number of rotations of the pressure motor 31 is controlled. As a result, the generator 32 can stably generate electric power with a certain amount of power generation.
 さらに、風量が急激に強くなるなどして風車21の回転が急速に増加したとき、第2の液圧供給ライン42の内圧が所定レベル以下(例えば大気圧以下)にまで低下する場合がある。第2の液圧供給ライン42の内圧が大気圧以下にまで低下すると、チャージポンプユニット70の第1の逆止弁Cv1が開弁して、リザーバRから第1のチャージラインL1を介して作動液が第2の液圧供給ラインへ補充される。これにより第2の液圧供給ライン42の内圧の低下が抑制され、液圧ポンプ22の回転状態が安定に維持される。 Furthermore, when the rotation of the wind turbine 21 rapidly increases, for example, when the air volume suddenly increases, the internal pressure of the second hydraulic pressure supply line 42 may decrease to a predetermined level or lower (for example, atmospheric pressure or lower). When the internal pressure of the second hydraulic pressure supply line 42 falls below the atmospheric pressure, the first check valve Cv1 of the charge pump unit 70 opens and operates from the reservoir R via the first charge line L1. Liquid is replenished to the second hydraulic pressure supply line. Thereby, the fall of the internal pressure of the 2nd hydraulic pressure supply line 42 is suppressed, and the rotation state of the hydraulic pump 22 is maintained stably.
 一方、コントローラ60は、圧力センサ45の出力に基づく第1の液圧供給ライン41内の急激な液圧上昇あるいは液圧ポンプ22の急激な回転数増加により、第2の液圧供給ライン42の液圧の低下を間接的に検出したとき、あるいは、圧力センサ45Aの出力に基づき、第2の液圧供給ライン42の液圧の低下を直接的に検出したとき、チャージポンプユニット70のポンプ部Pを起動させる。このような制御においても、第2のチャージラインL2を介して作動液が第2の液圧供給ライン42へ補充されるため、液圧ポンプ22へ十分な量の作動液を供給することが可能となる。 On the other hand, the controller 60 causes the second hydraulic pressure supply line 42 to move in response to a sudden increase in the hydraulic pressure in the first hydraulic pressure supply line 41 based on the output of the pressure sensor 45 or a rapid increase in the rotational speed of the hydraulic pump 22. When a decrease in hydraulic pressure is detected indirectly, or when a decrease in hydraulic pressure in the second hydraulic pressure supply line 42 is directly detected based on the output of the pressure sensor 45A, the pump unit of the charge pump unit 70 Start P. Even in such control, since the hydraulic fluid is replenished to the second hydraulic pressure supply line 42 via the second charge line L2, it is possible to supply a sufficient amount of hydraulic fluid to the hydraulic pump 22. It becomes.
 本実施形態の風力発電装置1においては、発電機32がタワー10の頂部といった高所ではなく、それよりも低い場所(地面H等の地上)に設置されている。このため、タワー10の頂部に設置される駆動ユニット20の小型化、軽量化を図り、装置の小型化を実現することができる。 In the wind power generator 1 of the present embodiment, the generator 32 is installed not at a high place such as the top of the tower 10 but at a lower place (the ground such as the ground H). For this reason, the drive unit 20 installed at the top of the tower 10 can be reduced in size and weight, and the apparatus can be reduced in size.
 図3Aは、ナセル121に発電機Gが格納された比較例に係る風力発電装置100の概略側面図であり、図3Bは本実施形態に係る風力発電装置1を上記風力発電装置100と比較して示す概略側面図である。 FIG. 3A is a schematic side view of a wind turbine generator 100 according to a comparative example in which the generator G is stored in the nacelle 121, and FIG. 3B compares the wind turbine generator 1 according to this embodiment with the wind turbine generator 100. It is a schematic side view shown.
 比較例に係る風力発電装置100は、タワー110の頂部に設置されたナセル121の内部に発電機Gが収容されているため、ナセル121が大型化しその重量も大きく、したがってナセル121を支持するタワー110の剛性を高めるために大径化が必須とされていた。これに対して図3Bに示す本実施形態の風力発電装置1によれば、発電機Gが地上の発電ユニット30に収容されているため、ナセル201の小型化、軽量化が可能となり、したがってナセル201を支持するタワー10に必要な剛性を低下させることができる結果、タワー10の小径化が図れることになる。さらに本実施形態によれば、発電機Gが地上に設置されているため、高所での作業が不要となり、したがって発電機Gのメンテナンス作業性が向上する。 In the wind turbine generator 100 according to the comparative example, since the generator G is accommodated in the nacelle 121 installed at the top of the tower 110, the nacelle 121 is large in size and its weight is large, and thus the tower that supports the nacelle 121 is supported. In order to increase the rigidity of 110, it was essential to increase the diameter. On the other hand, according to the wind turbine generator 1 of the present embodiment shown in FIG. 3B, the generator G is housed in the ground power generation unit 30, so that the nacelle 201 can be reduced in size and weight. As a result of reducing the rigidity required for the tower 10 that supports 201, the diameter of the tower 10 can be reduced. Furthermore, according to the present embodiment, since the generator G is installed on the ground, work at a high place becomes unnecessary, and therefore maintenance workability of the generator G is improved.
 さらに本実施形態の風力発電装置1は、チャージポンプユニット70を有するため、例えば風車21の高速回転時においても作動液を液圧ポンプ22へ迅速に還流し、液圧ポンプ22が風車の回転量に見合う液圧を安定して吐出することができる。なお、チャージポンプユニット70のポンプ部Pは、風車21の回転開始時等にも起動してもよく、これにより風車21の回転開始から迅速に安定した発電を行うことが可能となる。 Furthermore, since the wind power generator 1 of this embodiment has the charge pump unit 70, for example, even when the windmill 21 rotates at high speed, the hydraulic fluid is quickly returned to the hydraulic pump 22, and the hydraulic pump 22 rotates the amount of rotation of the windmill. Can be stably discharged. Note that the pump part P of the charge pump unit 70 may be activated when the windmill 21 starts to rotate and the like, thereby enabling stable power generation quickly after the windmill 21 starts rotating.
<第2の実施形態>
 図4は、本発明の第2の実施形態に係る風力発電装置2の駆動回路51を示す回路図である。以下、第1の実施形態と異なる構成について主に説明し、第1の実施形態と同様の構成については同様の符号を付しその説明を省略または簡略化する。
<Second Embodiment>
FIG. 4 is a circuit diagram showing a drive circuit 51 of the wind turbine generator 2 according to the second embodiment of the present invention. Hereinafter, the configuration different from the first embodiment will be mainly described, and the same configuration as the first embodiment will be denoted by the same reference numeral, and the description thereof will be omitted or simplified.
 本実施形態の風力発電装置2は、液圧循環回路40が弁機構80を有する点で、第1の実施形態と異なる。弁機構80は、第1の液圧供給ライン41に設けられ、液圧ポンプ22から液圧モータ31への作動液の供給を遮断可能に構成される。なお、本実施形態においてチャージポンプユニット70は、必要に応じて省略されてもよい。 The wind power generator 2 of the present embodiment is different from the first embodiment in that the hydraulic circuit 40 has a valve mechanism 80. The valve mechanism 80 is provided in the first hydraulic pressure supply line 41 and is configured to be able to shut off the supply of hydraulic fluid from the hydraulic pump 22 to the hydraulic motor 31. In the present embodiment, the charge pump unit 70 may be omitted as necessary.
 弁機構80は、開閉弁81と、開閉弁81を開閉制御する切替弁82とを有する。図5は開閉弁81が閉じた状態を示す概略拡大図、図6は開閉弁81が開いた状態を示す概略拡大図である。 The valve mechanism 80 includes an opening / closing valve 81 and a switching valve 82 that controls opening / closing of the opening / closing valve 81. FIG. 5 is a schematic enlarged view showing a state where the on-off valve 81 is closed, and FIG. 6 is a schematic enlarged view showing a state where the on-off valve 81 is opened.
 図5に示すように、開閉弁81は、弁座810を有するケーシング811と、ケーシング811の内部に移動可能に収容された弁体812と、バネ部材813とを有する。 As shown in FIG. 5, the on-off valve 81 includes a casing 811 having a valve seat 810, a valve body 812 movably accommodated inside the casing 811, and a spring member 813.
 ケーシング811は、液圧ポンプ22に連絡する入口P1と、液圧モータ31へ連絡する出口P2とを有し、弁座810は、出口P2の近傍に設けられる。弁体812は、ケーシング811の内部を圧力室S1とパイロット室S2とに区画し、バネ部材813は、パイロット室S2に配置され、弁体812を弁座810に向けて付勢する。 The casing 811 has an inlet P1 communicating with the hydraulic pump 22 and an outlet P2 communicating with the hydraulic motor 31, and the valve seat 810 is provided in the vicinity of the outlet P2. The valve body 812 divides the inside of the casing 811 into a pressure chamber S1 and a pilot chamber S2, and the spring member 813 is disposed in the pilot chamber S2, and urges the valve body 812 toward the valve seat 810.
 一方、切替弁82は、A位置とB位置とを有する4ポート2位置の電磁切替弁で構成される。切替弁82は、A位置において、開閉弁81のパイロット室S2を第1の液圧供給ライン41に連通させ(図5参照)、B位置においてパイロット室S2をチャージポンプユニット70のリザーバRへ連通させる(図4,6参照)。切替弁82は、ソレノイド部821の非励磁時にはバネ部材822の付勢により図5に示すA位置を維持し、コントローラ60からの制御指令(電流信号)によりソレノイド部821が励磁されると図6に示すB位置へ移動する。 On the other hand, the switching valve 82 is a 4-port 2-position electromagnetic switching valve having an A position and a B position. The switching valve 82 communicates the pilot chamber S2 of the on-off valve 81 with the first hydraulic pressure supply line 41 at the A position (see FIG. 5), and communicates the pilot chamber S2 with the reservoir R of the charge pump unit 70 at the B position. (See FIGS. 4 and 6). The switching valve 82 maintains the position A shown in FIG. 5 by urging the spring member 822 when the solenoid part 821 is not excited, and when the solenoid part 821 is excited by a control command (current signal) from the controller 60, FIG. To position B shown in FIG.
 以上のように構成される本実施形態の風力発電装置2において、コントローラ60は、風力発電装置2の稼働時(発電時)、弁機構80のソレノイド部821を励磁して、切替弁82をB位置へ移動させる。このとき開閉弁81のパイロット室S2は、図6に示すようにリザーバRと連通する。このため、液圧ポンプ22の吐出圧を受ける圧力室S1と大気圧付近に維持されるパイロット室S2との間の差圧によって、弁体812はバネ部材813のバネ力に抗してパイロット室S2側へ移動し、弁座810から離れる。これにより液圧ポンプ22と液圧モータ31との間が相互に連通し、液圧ポンプ22の吐出圧が液圧モータ31へ供給されることで、発電機32において所定の電力が生成される。 In the wind turbine generator 2 of the present embodiment configured as described above, the controller 60 excites the solenoid portion 821 of the valve mechanism 80 when the wind turbine generator 2 is in operation (power generation), and sets the switching valve 82 to B. Move to position. At this time, the pilot chamber S2 of the on-off valve 81 communicates with the reservoir R as shown in FIG. For this reason, the valve body 812 resists the spring force of the spring member 813 due to the differential pressure between the pressure chamber S1 that receives the discharge pressure of the hydraulic pump 22 and the pilot chamber S2 that is maintained near atmospheric pressure. Move to the S2 side and leave the valve seat 810. As a result, the hydraulic pump 22 and the hydraulic motor 31 communicate with each other, and the discharge pressure of the hydraulic pump 22 is supplied to the hydraulic motor 31, whereby predetermined power is generated in the generator 32. .
 風力発電装置2の稼働状態は、圧力センサ45の出力、液圧ポンプ22あるいは液圧モータ31の回転状態等に基づいて、コントローラ60において判定される。 The operating state of the wind power generator 2 is determined by the controller 60 based on the output of the pressure sensor 45, the rotational state of the hydraulic pump 22 or the hydraulic motor 31, and the like.
 一方、コントローラ60は、例えば無風時や風量が小さいとき等のような風車21の回転停止状態を検出すると、ソレノイド部821の励磁を遮断して、切替弁82をA位置へ復帰させる。このとき開閉弁81のパイロット室S2は、図5に示すように第1の液圧供給ライン41と連通する。このため、パイロット室S2と圧力室S1との間の差圧がなくなり、弁体812はバネ部材813の付勢力を受けて弁座810に当接する。これにより液圧ポンプ22と液圧モータ31との間の連通が遮断される。 On the other hand, when the controller 60 detects a rotation stop state of the wind turbine 21 such as when there is no wind or when the air volume is small, for example, the controller 60 cuts off the excitation of the solenoid unit 821 and returns the switching valve 82 to the A position. At this time, the pilot chamber S2 of the on-off valve 81 communicates with the first hydraulic pressure supply line 41 as shown in FIG. For this reason, there is no differential pressure between the pilot chamber S2 and the pressure chamber S1, and the valve body 812 receives the urging force of the spring member 813 and abuts on the valve seat 810. Thereby, the communication between the hydraulic pump 22 and the hydraulic motor 31 is blocked.
 なお、風車21の回転が再開したとき、コントローラ60はソレノイド部821を励磁して切替弁82をB位置へ再び移動させる。これにより開閉弁81が開放され、液圧モータ31による発電機32の駆動が再開される。 When the rotation of the windmill 21 is resumed, the controller 60 excites the solenoid portion 821 and moves the switching valve 82 to the B position again. Thereby, the on-off valve 81 is opened, and the driving of the generator 32 by the hydraulic motor 31 is resumed.
 本実施形態によれば、風車21の回転停止時、弁機構80によって、第1の液圧供給ライン41内の作動液の液圧モータ31側への流入が阻止される。これにより、第1の液圧供給ライン41の内圧を維持できるため、風車21の回転再開時に迅速に液圧モータ31を回転させて、発電ロスを抑えることができる。特に、風量を安定に確保できない場合や風量の変動幅が大きい場合など、時々刻々と変化する気象条件の影響を受け易い風力発電システムにおいて、発電効率の向上という観点で顕著な効果が得られる。 According to the present embodiment, when the rotation of the wind turbine 21 is stopped, the valve mechanism 80 prevents the hydraulic fluid in the first hydraulic pressure supply line 41 from flowing into the hydraulic motor 31 side. Thereby, since the internal pressure of the 1st hydraulic pressure supply line 41 can be maintained, the hydraulic motor 31 can be rapidly rotated at the time of the rotation restart of the windmill 21, and an electric power generation loss can be suppressed. In particular, in a wind power generation system that is easily affected by weather conditions that change from moment to moment, such as when the air volume cannot be secured stably or when the fluctuation range of the air volume is large, a remarkable effect is obtained in terms of improving power generation efficiency.
 また本実施形態によれば、風車21の回転停止時において圧力室S1およびパイロット室S2間の圧力バランスで開閉弁81の閉弁状態を維持することができる。したがって、開閉弁81について作動液の静荷重に対する高い耐久性を必要とすることはなく、簡素な構造で開閉弁81を構成することができる。 Further, according to the present embodiment, the on-off valve 81 can be kept closed by the pressure balance between the pressure chamber S1 and the pilot chamber S2 when the rotation of the wind turbine 21 is stopped. Therefore, the on-off valve 81 does not need high durability against the static load of the hydraulic fluid, and the on-off valve 81 can be configured with a simple structure.
 さらに本実施形態によれば、ソレノイド部821の無給電時に弁機構80が閉弁するように構成されているため、システムエラーやコントローラ60の故障の発生時には速やかに第1の液圧供給ライン41を遮断することができる。また、発電機32のメンテナンス等により風力発電装置2を一時的に停止させる際にも弁機構80による遮断作用を用いることで、回転停止中の液圧モータ31に作動液の静荷重が作用することを阻止できる。これにより、風力発電装置2の早期復旧に寄与することができる。 Furthermore, according to the present embodiment, since the valve mechanism 80 is configured to be closed when the solenoid unit 821 is not supplied with power, the first hydraulic pressure supply line 41 is promptly generated when a system error or a failure of the controller 60 occurs. Can be cut off. In addition, when the wind power generator 2 is temporarily stopped due to maintenance of the generator 32 or the like, the static load of the hydraulic fluid acts on the hydraulic motor 31 while the rotation is stopped by using the shut-off action by the valve mechanism 80. I can prevent it. Thereby, it can contribute to the early restoration of the wind power generator 2.
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。 As mentioned above, although embodiment of this invention was described, this invention is not limited only to the above-mentioned embodiment, Of course, a various change can be added.
 例えば以上の各実施形態では、風車21は水平型で構成されたが、これに限られず、回転軸が風の向きに対して直交する垂直型の風車で構成されてもよい。 For example, in each of the embodiments described above, the windmill 21 is configured as a horizontal type, but is not limited thereto, and may be configured as a vertical type windmill whose rotation axis is orthogonal to the direction of the wind.
 また以上の第2の実施形態では、弁機構80が開閉弁81と切替弁82とを組み合わせて構成されたが、これに限られず、例えば2ポート2位置の単一の電磁開閉弁で構成されてもよい。 In the second embodiment described above, the valve mechanism 80 is configured by combining the on-off valve 81 and the switching valve 82. However, the present invention is not limited to this. For example, the valve mechanism 80 is configured by a single electromagnetic on-off valve at two ports and two positions. May be.

Claims (5)

  1.  風を受けて回転する風車と、前記風車の回転に応じて液圧を発生させる液圧ポンプとを有し、地上に設置されたタワーの頂部に設けられた駆動ユニットと、
     前記液圧の供給を受けて回転する液圧モータと、前記液圧モータの回転により駆動される発電機とを有し、地上に設置された発電ユニットと、
     前記液圧ポンプから前記液圧モータへ作動液を供給する第1の液圧供給ラインと、前記液圧モータから前記液圧ポンプへ作動液を供給する第2の液圧供給ラインとを有し、前記液圧ポンプと前記液圧モータとの間において作動液を循環させる液圧循環回路と
     を具備する風力発電装置。
    A windmill that rotates by receiving wind, and a hydraulic pump that generates hydraulic pressure in response to the rotation of the windmill, a drive unit provided at the top of a tower installed on the ground;
    A hydraulic motor that rotates in response to the supply of the hydraulic pressure, a generator driven by the rotation of the hydraulic motor, and a power generation unit installed on the ground;
    A first hydraulic pressure supply line that supplies hydraulic fluid from the hydraulic pump to the hydraulic motor; and a second hydraulic pressure supply line that supplies hydraulic fluid from the hydraulic motor to the hydraulic pump. A wind power generator comprising: a hydraulic pressure circuit that circulates hydraulic fluid between the hydraulic pump and the hydraulic motor.
  2.  請求項1に記載の風力発電装置であって、
     前記液圧循環回路は、前記第2の液圧供給ラインに設置され前記液圧ポンプへ作動液を圧送することが可能なチャージポンプユニットをさらに有する
     風力発電装置。
    The wind turbine generator according to claim 1,
    The hydraulic pressure circuit further includes a charge pump unit that is installed in the second hydraulic pressure supply line and capable of pumping hydraulic fluid to the hydraulic pump.
  3.  請求項1に記載の風力発電装置であって、
     前記液圧循環回路は、前記第1の液圧供給ラインに設置され前記液圧ポンプから前記液圧モータへの作動液の供給を遮断可能な弁機構をさらに有する
     風力発電装置。
    The wind turbine generator according to claim 1,
    The hydraulic pressure circuit further includes a valve mechanism that is installed in the first hydraulic pressure supply line and can shut off the supply of hydraulic fluid from the hydraulic pump to the hydraulic motor.
  4.  請求項3に記載の風力発電装置であって、
     前記液圧ポンプ又は前記液圧モータの出力に基づいて、前記弁機構を制御するコントローラをさらに具備する
     風力発電装置。
    The wind turbine generator according to claim 3,
    A wind turbine generator further comprising a controller that controls the valve mechanism based on an output of the hydraulic pump or the hydraulic motor.
  5.  請求項1に記載の風力発電装置であって、
     前記液圧ポンプは、可変容量式の液圧ポンプであり、
     前記液圧モータは、可変容量式の液圧モータである
     風力発電装置。
    The wind turbine generator according to claim 1,
    The hydraulic pump is a variable displacement hydraulic pump,
    The hydraulic motor is a variable displacement hydraulic motor.
PCT/JP2017/045171 2017-01-10 2017-12-15 Wind power generation device WO2018131387A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017001653A JP2018112082A (en) 2017-01-10 2017-01-10 Wind power generator
JP2017-001653 2017-01-10

Publications (1)

Publication Number Publication Date
WO2018131387A1 true WO2018131387A1 (en) 2018-07-19

Family

ID=62839492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045171 WO2018131387A1 (en) 2017-01-10 2017-12-15 Wind power generation device

Country Status (3)

Country Link
JP (1) JP2018112082A (en)
TW (1) TW201831780A (en)
WO (1) WO2018131387A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003278640A (en) * 2002-03-20 2003-10-02 Kazumi Machida Wind power generator
JP2007327397A (en) * 2006-06-07 2007-12-20 Bosch Rexroth Corp Hydraulic circuit for wind power generation
US20130127166A1 (en) * 2009-12-23 2013-05-23 Indiana Univeristy Research & Technology Corporation Central Wind Turbine Power Generation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003278640A (en) * 2002-03-20 2003-10-02 Kazumi Machida Wind power generator
JP2007327397A (en) * 2006-06-07 2007-12-20 Bosch Rexroth Corp Hydraulic circuit for wind power generation
US20130127166A1 (en) * 2009-12-23 2013-05-23 Indiana Univeristy Research & Technology Corporation Central Wind Turbine Power Generation

Also Published As

Publication number Publication date
TW201831780A (en) 2018-09-01
JP2018112082A (en) 2018-07-19

Similar Documents

Publication Publication Date Title
US8502402B2 (en) Power generating apparatus of renewable energy type and control method thereof
US8511079B2 (en) Piecewise variable displacement power transmission
KR101248676B1 (en) Cylinder drive device
DK2872776T3 (en) Wind energy system with a pitch setting system
CN106870289A (en) A kind of hydrostatic storage formula hydraulic drive type wind power generating set and control method
US10808734B2 (en) Apparatus for controlling a hydraulic machine
KR20120018290A (en) Fluid working machine and method of operating fluid working machine
JP5377626B2 (en) Lubricating oil system
WO2020026473A1 (en) Wave power generation system
KR20130086130A (en) Rotor blade pitch adjustment device
WO2018131387A1 (en) Wind power generation device
KR20160125567A (en) Power generating apparatus having flow control device
KR20130109413A (en) Hydraulic wind power generation device and its method
KR101460909B1 (en) Hydraulic pressure control system for hydraulic wind power generator
WO2018131388A1 (en) Hydraulic device and wind power generation device
EP2891795B1 (en) Hydraulic transmission, wind turbine power generating apparatus, and operation control method
JP6294813B2 (en) Hydraulic transmission, wind power generator, and hydraulic transmission operating method
CN206738078U (en) A kind of hydraulic drive type wind power generating set
KR100814132B1 (en) A equipment wind power generation complex
JP5788078B2 (en) Renewable energy power generator and method of operating the same
US20240011455A1 (en) Power Production System
WO2018128058A1 (en) Hydraulic device and wind power generation device
CN116591882A (en) Turbine motor pump group for high-fall heading machine
CN108443062A (en) A kind of wind power generating set braked and locked using hydraulic cushion
JP2005320864A (en) Operation control method of centrifugal pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892035

Country of ref document: EP

Kind code of ref document: A1