WO2018131351A1 - Negative photosensitive resin composition, resin film and electronic device - Google Patents

Negative photosensitive resin composition, resin film and electronic device Download PDF

Info

Publication number
WO2018131351A1
WO2018131351A1 PCT/JP2017/044142 JP2017044142W WO2018131351A1 WO 2018131351 A1 WO2018131351 A1 WO 2018131351A1 JP 2017044142 W JP2017044142 W JP 2017044142W WO 2018131351 A1 WO2018131351 A1 WO 2018131351A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
photosensitive resin
negative photosensitive
structural unit
formula
Prior art date
Application number
PCT/JP2017/044142
Other languages
French (fr)
Japanese (ja)
Inventor
陽雄 池田
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2018509928A priority Critical patent/JP6332583B1/en
Priority to CN201780083437.8A priority patent/CN110178085B/en
Priority to KR1020197023189A priority patent/KR102614402B1/en
Publication of WO2018131351A1 publication Critical patent/WO2018131351A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • C08F216/16Monomers containing no hetero atoms other than the ether oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/08Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable

Definitions

  • the present invention relates to a negative photosensitive resin composition, a resin film, and an electronic device.
  • Patent Document 1 a radiation-sensitive resin composition containing a [A] polymer and a [B] acid generator is described. And, because the [A] polymer has the structural unit (I) and the structural unit (II), it is excellent in LWR (Line Width Roughness) performance and defect suppression property, which indicates a small variation in line width.
  • LWR Line Width Roughness
  • the structural unit (I) is N- (t-butyloxycarbonylmethyl) maleimide, N- (1-methyl-1-cyclopentyloxycarbonylmethyl) maleimide, or N- (2-ethyl-2-adamantyloxy) It is described that it is a structural unit derived from (carbonylmethyl) maleimide. Further, it is described that the structural unit (II) is a structural unit derived from 2-norbornene.
  • the inventor produced a resin film made of a negative photosensitive resin composition, and examined the durability of the resin film such as heat resistance and solvent resistance, and developability such as the remaining film ratio after development. As a result, it has been found that the resin film made of the radiation-sensitive resin composition described in Patent Document 1 has room for further improvement in terms of durability and developability. Then, this invention makes it a subject to provide the negative photosensitive resin composition which can improve durability and developability with sufficient balance, without impairing alkali developability.
  • the present inventor In order to improve the durability such as heat resistance and solvent resistance of a resin film made of a negative photosensitive resin composition and the developability such as the remaining film ratio after development, the present inventor The structural unit with As a result, the copolymer has a norbornene-type structural unit substituted with a functional group containing a terminal carbon unsaturated double bond, a norbornene-type structural unit substituted with a carboxyl group, maleic anhydride, maleic anhydride It has been found that by including a derivative, a maleimide or a structural unit derived from a maleimide derivative, durability and developability can be improved in a balanced manner without impairing alkali developability. As described above, the present inventors include a copolymer containing a specific structural unit, so that the durability and developability of the resin film using the negative photosensitive resin composition can be obtained without impairing alkali developability. The present invention has been completed.
  • a polymer which is a copolymer represented by the following formula (1); A crosslinking agent; A negative photosensitive resin composition containing a photosensitive agent is provided.
  • A is a structural unit represented by the following formula (A1);
  • R 1 , R 2 , R 3 and R 4 are each independently hydrogen or an organic group having 1 to 30 carbon atoms, and at least R 1 , R 2 , R 3 and R 4 Contains one terminal unsaturated carbon double bond, n is 0, 1 or 2)
  • R 5 , R 6 and R 7 are each independently hydrogen or an organic group having 1 to 30 carbon atoms, and n is 0, 1 or 2.
  • R 8 is independently an organic group having 1 to 30 carbon atoms.
  • R 9 and R 10 are each independently an organic group having 1 to 30 carbon atoms.
  • R 11 is independently an organic group having 1 to 30 carbon atoms.
  • a resin film comprising the above negative photosensitive resin composition.
  • an electronic device including the resin film is provided.
  • a negative photosensitive resin composition capable of improving the durability and developability of a resin film comprising a negative photosensitive resin composition without impairing alkali developability.
  • a to B mean A or more and B or less.
  • summary of the negative photosensitive resin composition of this embodiment is demonstrated.
  • the negative photosensitive resin composition of the present embodiment is A polymer which is a copolymer represented by the following formula (1); A crosslinking agent; And a photosensitizer.
  • A is a structural unit represented by the following formula (A1);
  • R 1 , R 2 , R 3 and R 4 are each independently hydrogen or an organic group having 1 to 30 carbon atoms, and at least R 1 , R 2 , R 3 and R 4 Contains one terminal unsaturated carbon double bond, n is 0, 1 or 2)
  • R 5 , R 6 and R 7 are each independently hydrogen or an organic group having 1 to 30 carbon atoms, and n is 0, 1 or 2.
  • R 8 is independently an organic group having 1 to 30 carbon atoms.
  • R 9 and R 10 are each independently an organic group having 1 to 30 carbon atoms.
  • R 11 is independently an organic group having 1 to 30 carbon atoms.
  • the copolymer comprises a norbornene-type structural unit substituted with a functional group containing a terminal unsaturated carbon double bond, a norbornene-type structural unit substituted with a carboxyl group, and maleic anhydride. And structural units derived from maleic anhydride derivatives, maleimides or maleimide derivatives.
  • the negative photosensitive resin composition according to this embodiment is cured by the radical chain reaction caused by the photosensitizer generating radicals upon exposure.
  • the negative photosensitive resin composition according to the present embodiment it is considered that the terminal unsaturated carbon double bond of the norbornene side chain of the copolymer contributes to the radical chain reaction.
  • the negative photosensitive resin composition according to the present embodiment has a crosslinked structure formed by radical chain reaction as compared with the conventional negative photosensitive resin composition. It is estimated that the density can be improved and the mobility of the molecular chain can be more limited. Therefore, durability such as heat resistance and solvent resistance of a cured film of the negative photosensitive resin composition and developability such as a remaining film ratio after development can be improved.
  • the negative photosensitive resin composition according to the present embodiment is, for example, partially exposed and cured as described above, while the portion is not exposed and not cured. And the unexposed part which is not hardened
  • the norbornene-type structural unit substituted with a functional group containing a terminal unsaturated carbon double bond substitutes a part of the norbornene-type structural unit substituted with a carboxyl group. Formed by. And the norbornene-type structural unit substituted by a part of carboxyl group remains in a copolymer as it is.
  • the copolymer which concerns on this embodiment contains the norbornene-type structural unit provided with a carboxyl group.
  • alkali solubility can be improved.
  • the alkali solubility of the copolymer can be appropriately controlled by including a structural unit derived from maleic anhydride, a maleic anhydride derivative, a maleimide or a maleimide derivative.
  • the alkali solubility is lowered simply by making the structure easy to crosslink. There was an inconvenience that it would end up.
  • the negative photosensitive resin composition according to this embodiment includes a norbornene type structural unit in which the copolymer is substituted with a functional group containing a terminal unsaturated carbon double bond, and a norbornene type substituted with a carboxyl group.
  • a norbornene type structural unit in which the copolymer is substituted with a functional group containing a terminal unsaturated carbon double bond
  • a norbornene type substituted with a carboxyl group By improving the durability and developability of the cured film without deteriorating alkali solubility, it is possible to include the structural unit of the above and the structural unit derived from maleic anhydride, maleic anhydride derivative, maleimide or maleimide derivative. can do.
  • the negative photosensitive resin composition according to this embodiment can improve the durability and developability of the resin film made of the negative photosensitive resin composition without impairing the alkali developability. .
  • the negative photosensitive resin composition according to the present embodiment includes a polymer, a crosslinking agent, and a photosensitive agent.
  • the polymer according to this embodiment is a copolymer represented by the following formula (1).
  • following formula (1) does not limit the arrangement
  • a random copolymer, an alternating copolymer, a block copolymer, a periodic copolymer, or the like can be selected.
  • A is a structural unit represented by the following formula (A1);
  • the composition ratio between the structural unit A and the structural unit B in the copolymer will be described.
  • the molar content (mol%) of the structural unit of A is 1
  • the numerical range of 1 is 0.1 ⁇ l ⁇ 0.9
  • the numerical range of m is 0.1 ⁇ m ⁇ 0.9.
  • A is a structural unit derived from a norbornene-type monomer substituted by a functional group containing a terminal unsaturated carbon double bond represented by the following formula (A1): And a structural unit derived from a norbornene-type monomer substituted with a carboxyl group represented by the following formula (A2).
  • A1 a structural unit derived from a norbornene-type monomer substituted by a functional group containing a terminal unsaturated carbon double bond represented by the following formula (A1):
  • A2 a structural unit derived from a norbornene-type monomer substituted with a carboxyl group represented by the following formula (A2).
  • R 1 , R 2 , R 3 and R 4 are each independently hydrogen or an organic group having 1 to 30 carbon atoms, and at least R 1 , R 2 , R 3 and R 4 Contains one terminal unsaturated carbon double bond, n is 0, 1 or 2)
  • R 5 , R 6 and R 7 are each independently hydrogen or an organic group having 1 to 30 carbon atoms, and n is 0, 1 or 2.
  • R 1 to R 4 in the above formula (A1) and R 5 to R 7 in the above formula (A2) are hydrogen or an organic group having 1 to 30 carbon atoms in the structure. May contain one or more atoms selected from O, N, S, P and Si. Furthermore, in this embodiment, the organic group which comprises R ⁇ 1 >, R ⁇ 2 >, R ⁇ 3 > and R ⁇ 4 > does not have any acidic functional group. Thereby, control of the acid value in a polymer can be made easy.
  • R 1 to R 4 in the above formula (A1) and R 5 to R 7 in the above formula (A2) are each independently hydrogen or an organic compound having 1 to 30 carbon atoms.
  • Each of which is independently hydrogen or an organic group having 1 to 10 carbon atoms, more preferably independently hydrogen or an organic group having 1 to 5 carbon atoms. More preferred is hydrogen or an organic group having 1 to 3 carbon atoms.
  • examples of the organic group constituting R 1 to R 4 in the above formula (A1) and R 5 to R 7 in the above formula (A2) include an alkyl group, an alkenyl group, and an alkynyl group. , Alkylidene group, aryl group, aralkyl group, alkaryl group, cycloalkyl group, and heterocyclic group.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, An octyl group, a nonyl group, and a decyl group are mentioned.
  • alkenyl group examples include allyl group, pentenyl group, and vinyl group. An ethynyl group is mentioned as an alkynyl group.
  • Examples of the alkylidene group include a methylidene group and an ethylidene group.
  • Examples of the aryl group include a tolyl group, a xylyl group, a phenyl group, a naphthyl group, and an anthracenyl group.
  • Examples of the aralkyl group include a benzyl group and a phenethyl group.
  • Examples of the cycloalkyl group include an adamantyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group.
  • Examples of the heterocyclic group include an epoxy group and an oxetanyl group.
  • R 1 , R 2 , R 3 and R 4 include at least one terminal unsaturated carbon double bond.
  • the structural unit which is radicalized at the time of exposure and contributes to a crosslinked structure can be increased.
  • the side chain of the norbornene-type structural unit contributes to the crosslinked structure, so that the movement of the polymer chain can be more firmly limited.
  • the heat resistance of a negative photosensitive resin composition, solvent resistance, and the remaining film rate after image development can be improved with sufficient balance.
  • one containing a terminal unsaturated carbon double bond is preferably any one of R 1 to R 4 .
  • the functional group containing a terminal unsaturated carbon double bond does not become a steric hindrance, and is preferable from the viewpoint that a suitable crosslinked structure can be formed.
  • n is independently 0, 1 or 2
  • n is 0 or 1
  • n is 0.
  • R 1 , R 2 , R 3 and R 4 preferably contain a structure represented by the following formula (E1) in order to contain a terminal unsaturated carbon double bond.
  • E1 a structure represented by the formula (E1)
  • E2 a structure represented by the following formula (E2).
  • R e is independently hydrogen or an organic group having 1 to 10 carbon atoms.
  • R e is independently hydrogen or an organic group having 1 to 10 carbon atoms.
  • R e is independently hydrogen or an organic group having 1 to 10 carbon atoms, preferably hydrogen or an organic group having 1 to 7 carbon atoms, It is more preferably an organic group having 1 to 5 carbon atoms, more preferably hydrogen or an organic group having 1 to 3 carbon atoms, and particularly preferably hydrogen or an organic group having 1 carbon atom.
  • R 1 , R 2 , R 3 and R 4 containing a terminal unsaturated carbon double bond include vinyl group, vinylidene group, acrylic group, methacryl group, acrylate group, methacrylate group and the like.
  • R 1 , R 2 , R 3 and R 4 including a terminal unsaturated carbon double bond may be at least one selected from the group consisting of an acryl group, a methacryl group, an acrylate group and a methacrylate group. Preferably, it is an acrylate group or a methacrylate group.
  • the lower limit of the content of the structural unit represented by the above formula (A1) in the copolymer is preferably 0.1 mol or more with respect to 1 mol of the structural unit represented by the above formula (A2), More preferably, it is 0.2 mol or more. Thereby, a suitable crosslinked structure can be formed.
  • the upper limit of the content of the structural unit represented by the above formula (A1) in the copolymer is, for example, 3.0 mol or less with respect to 1 mol of the structural unit represented by the above formula (A2). It is preferably 2.0 mol or less, more preferably 1.0 mol or less, and even more preferably 0.7 mol or less. Thereby, alkali solubility can be expressed suitably.
  • the content of the structural unit represented by the above formula (A1) with respect to 1 mol of the structural unit represented by the above formula (A1) in the polymer is, for example, a nuclear magnetic resonance apparatus (for example, JEOL Ltd.). Can be evaluated by 1H-NMR measurement.
  • a nuclear magnetic resonance apparatus for example, JEOL Ltd.
  • B represents the following formula (B1), the following formula (B2), the following formula (B3), the following formula (B4), the following formula (B5), or the following formula.
  • Including at least one of the structural units represented by (B6) it is preferable to include a structural unit represented by the following formula (B5) or the following formula (B6).
  • the following formula (B6) is included in the following formula (B5) or the following formula (B6).
  • R 8 is independently an organic group having 1 to 30 carbon atoms.
  • R 9 and R 10 are each independently an organic group having 1 to 30 carbon atoms.
  • R 11 is independently an organic group having 1 to 30 carbon atoms.
  • B preferably further includes a structural unit represented by the above formula (B5) in addition to the structural unit represented by the above formula (B6).
  • the organic group having 1 to 30 carbon atoms constituting R 8 to R 11 in the above formulas (B1), (B2), and (B6) has O, N, S, One or more atoms selected from P and Si may be included. Further, in the present embodiment, any of organic groups constituting R 8 to R 11 may not have an acidic functional group. Thereby, control of the acid value in a polymer can be made easy.
  • R 8 to R 11 in the above formulas (B1), (B2), and (B6) are each independently an organic group having 1 to 30 carbon atoms, and each independently It is preferably an organic group having 1 to 10 carbon atoms, more preferably independently an organic group having 1 to 5 carbon atoms, and each independently an organic group having 1 to 3 carbon atoms. Is more preferable.
  • the organic groups constituting R 8 to R 11 in the above formulas (B1), (B2), and (B6) include R 1 to R 4 in the above formula (A1), and An organic group similar to the organic group constituting R 5 to R 7 in the above formula (A2) can be used.
  • the upper limit value of Mw (weight average molecular weight) of the polymer according to this embodiment is, for example, 30000 or less, preferably 20000 or less, more preferably 14000 or less, and even more preferably 10,000 or less. preferable. Thereby, the mobility of a molecular chain improves and a more suitable crosslinked structure can be made.
  • the lower limit value of the polymer Mw is, for example, 1500 or more, preferably 2000 or more, and more preferably 3000 or more. Thereby, when exposing a negative photosensitive resin composition, it becomes possible to form a crosslinked structure rapidly. Therefore, the sensitivity of the negative photosensitive resin composition can be improved.
  • the degree of dispersion of the polymer according to the present embodiment that is, the upper limit value of Mw (weight average molecular weight) / Mn (number average molecular weight) is, for example, 2.5 or less and 2.2 or less. Preferably, it is 2.0 or less.
  • variety of the molecular weight distribution of a polymer can be reduced, and the same crosslinked structure can be formed in the whole negative photosensitive resin composition. Therefore, the physical properties can be made uniform throughout the cured product of the negative photosensitive resin composition.
  • the lower limit of Mw / Mn may be 1.0 or more, for example, and can be 1.5 or more. Mw / Mn is preferably closer to monodispersion.
  • Mw / Mn is a degree of dispersion indicating the width of the molecular weight distribution.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Mw / Mn molecular weight distribution
  • a polystyrene conversion value obtained from a standard polystyrene (PS) calibration curve obtained by GPC measurement is used.
  • the measurement conditions are, for example, as follows.
  • Tosoh gel permeation chromatography device HLC-8320GPC Column: Tosoh TSK-GEL Supermultipore HZ-M Detector: RI detector for liquid chromatogram Measurement temperature: 40 ° C
  • Solvent THF Sample concentration: 2.0 mg / ml
  • the alkali dissolution rate of the polymer in the present embodiment is, for example, not less than 500 kg / sec and not more than 20,000 kg / sec.
  • the alkali dissolution rate of the polymer can be determined by, for example, dissolving a polymer in propylene glycol monomethyl ether acetate and applying a polymer solution adjusted to a solid content of 20% by weight on a silicon wafer by a spin method, followed by soft baking at 110 ° C. for 100 seconds.
  • the polymer film thus obtained is impregnated with a 2.38% tetramethylammonium hydroxide aqueous solution at 23 ° C., and the time until the polymer film is visually erased is calculated.
  • the alkali dissolution rate of the polymer By setting the alkali dissolution rate of the polymer to 500 kg / second or more, it is possible to improve the throughput in the development step using an alkali developer. Moreover, the residual film rate after the image development process by an alkali developing solution can be improved by making the alkali dissolution rate of a polymer into 20,000 kg / sec or less. For this reason, it is possible to suppress film loss due to the lithography process.
  • the polymer according to this embodiment is produced, for example, as follows.
  • a ring-opening step (treatment) S′1) and then a cleaning step (processing S′2) for removing residual metal components may be included. Details of each step will be described below.
  • a norbornene type monomer substituted with a carboxyl group and maleic anhydride, maleimide or a maleimide derivative are prepared.
  • the norbornene type monomer substituted with the carboxyl group (hereinafter referred to as monomer A) is derived from the structural unit represented by A.
  • one or more monomers selected from the group consisting of maleic anhydride, maleimide and maleimide derivatives (hereinafter referred to as monomer B) are derived from the structural unit represented by B.
  • Monomer A is represented by the following formula (2).
  • R 5 to R 7 can be the same as those in the above-described formula (A2).
  • R 5 , R 6 and R 7 are each independently hydrogen or an organic group having 1 to 30 carbon atoms, and n is 0, 1 or 2.
  • norbornene-type monomer substituted by the carboxyl group represented by the above formula (2) include 5-norbornene-2-carboxylic acid, 5-norbornene-2,3-dicarboxylic acid, and tetracyclododecenecarboxylic acid. An acid etc. are mentioned.
  • the norbornene type monomer substituted with a carboxyl group one or more of these can be used. Of these, 5-norbornene-2-carboxylic acid is preferably used from the viewpoint of improving heat resistance.
  • Monomer B is one or more monomers selected from the group consisting of maleic anhydride, maleimide and maleimide derivatives, and one or more monomers selected from the group consisting of maleimide and maleimide derivatives.
  • a maleimide derivative By using a maleimide derivative, the heat resistance, the remaining film ratio after curing, and the solvent resistance can be improved. Further, by using maleimide and a maleimide derivative in combination, the alkali dissolution rate of the negative photosensitive resin composition can be improved, and further the sensitivity can be improved.
  • the maleimide derivative is represented by the following formula (3).
  • R 11 is independently an organic group having 1 to 30 carbon atoms.
  • maleimide derivatives represented by the above formula (3) include N-linear alkylmaleimides such as N-methylmaleimide and N-ethylmaleimide; N-branched alkylmaleimides such as N-isopropylmaleimide; N-cyclohexylmaleimide And N-arylmaleimide such as N-phenylmaleimide and N-naphthylmaleimide.
  • N-linear alkylmaleimides such as N-methylmaleimide and N-ethylmaleimide
  • N-branched alkylmaleimides such as N-isopropylmaleimide
  • N-arylmaleimide such as N-phenylmaleimide and N-naphthylmaleimide.
  • linear N-alkylmaleimide, branched alkylmaleimide or N-cycloalkylmaleimide is preferably used, and N-cycloalkylmaleimide
  • the copolymer 1 is synthesized by addition polymerization of the monomer A and the monomer B.
  • the method of addition polymerization is not particularly limited, but in this embodiment, the copolymer 1 is synthesized by radical polymerization.
  • copolymer 1 having a structural unit derived from monomer A and a structural unit derived from monomer B can be synthesized.
  • the structural unit derived from the monomer A is represented by the following formula (A2).
  • R 5 , R 6 and R 7 are each independently hydrogen or an organic group having 1 to 30 carbon atoms, and n is 0, 1 or 2.
  • R 11 is independently an organic group having 1 to 30 carbon atoms.
  • the molar ratio of monomer A to monomer B is preferably 0.5: 1 to 1: 0.5. Among these, from the viewpoint of controlling the molecular structure, the molar ratio is preferably 1: 1. Monomer A, monomer B, and a polymerization initiator are dissolved in a solvent, and then heated for a predetermined time to cause addition polymerization to proceed.
  • the heating temperature is, for example, 50 to 80 ° C., and the heating time is 10 to 20 hours.
  • azo compounds and organic peroxides can be used as the polymerization initiator.
  • the azo compound include azobisisobutyronitrile (AIBN), dimethyl 2,2′-azobis (2-methylpropionate), 1,1′-azobis (cyclohexanecarbonitrile) (ABCN). Any one or more of these can be used.
  • the organic peroxide include hydrogen peroxide, ditertiary butyl peroxide (DTBP), benzoyl peroxide (benzoyl peroxide, BPO), and methyl ethyl ketone peroxide (MEKP). Any one or more of them can be used.
  • the amount (number of moles) of the polymerization initiator is 1% to the total number of moles of the norbornene-type monomer substituted with the carboxyl group derived from the structural unit A and the monomer derived from the structural unit B. 10% is preferable.
  • the weight average molecular weight (Mw) of the resulting polymer can be adjusted to 5000-30000 by appropriately setting the amount of the polymerization initiator within the above range and appropriately setting the reaction temperature and reaction time.
  • solvent for example, one or more of diethyl ether, tetrahydrofuran, toluene and the like can be used.
  • copolymer 1 which is a copolymer of monomer A and monomer B can be polymerized.
  • sequence of the copolymer 1 is not specifically limited, Any of a random copolymer, an alternating copolymer, a block copolymer, and a periodic copolymer may be sufficient.
  • the copolymer 1 is represented by the following formula (4). A copolymer having a structural unit is formed.
  • R 5 to R 7 are the same as the above formula (A2). Also, R 11 is the same as the above formula (3).
  • the functional groups of R 5 to R 7 derived from the monomer A may be different in each repeating unit or may be common. Among these, it is preferable that they are common. Thereby, the patterning precision of a negative photosensitive resin composition can be improved.
  • the method for substituting the copolymer 1 and synthesizing the copolymer 2 is not particularly limited, for example, the following method can be used.
  • the copolymer 1 and the compound having a terminal unsaturated carbon double bond are dissolved in a solvent and heated for a predetermined time, whereby the substitution reaction proceeds to synthesize the copolymer 2.
  • the heating temperature is, for example, 50 to 100 ° C.
  • the heating time is 2 to 20 hours.
  • a common unit comprising a repeating unit derived from the monomer A, a repeating unit in which the monomer A is substituted with a compound having a terminal unsaturated carbon double bond, and a structural unit derived from the monomer B.
  • Polymer 2 can be obtained.
  • a structural unit in which the monomer A is substituted with a compound having a terminal unsaturated carbon double bond is shown in the following formula (A1).
  • R 1 , R 2 , R 3 and R 4 are each independently hydrogen or an organic group having 1 to 30 carbon atoms, and at least R 1 , R 2 , R 3 and R 4 Contains one terminal unsaturated carbon double bond, n is 0, 1 or 2)
  • an acrylic compound is preferably used as the compound having a terminal unsaturated carbon double bond.
  • the acrylic compound include methacrylic acid methacrylic acid (glycidyl methacrylate), glycidyl acrylate, 4-hydroxybutyl acrylate glycidyl ether, hydroxyethyl methacrylate, and the like. Among these, it is preferable to use glycidyl methacrylate.
  • solvent for example, one or more of diethyl ether, tetrahydrofuran, toluene and the like can be used.
  • the copolymer 2 for example, it is preferable to replace 5 mol% or more of structural units with the structural unit represented by the above formula (A1) with respect to all the structural units represented by A, and to replace 10 mol% or more. It is more preferable to substitute 15 mol% or more, and it is more preferable to substitute 20 mol% or more.
  • substitution rate By setting the substitution rate in this way, the terminal unsaturated carbon double bond derived from the norbornene unit can be appropriately crosslinked. Thereby, the heat resistance of the negative photosensitive resin composition containing the copolymer 2 and a residual film rate and solvent resistance can be improved.
  • substitution of some of the repeating units derived from the norbornene-type monomer substituted with a carboxyl group can be identified by spectral data of 1H-NMR measurement.
  • substitution rate which substituted the carboxyl group with the acrylic compound can be measured as follows.
  • the polymer solution of copolymer 2 is subjected to 1H-NMR measurement.
  • the signal integral value X per unit proton derived from the carboxyl group and the signal per unit proton derived from the terminal unsaturated carbon double bond formed by the added acrylic compound An integral value Y is calculated.
  • the extraction operation is preferably repeated until the content of low nuclei having a molecular weight of 1000 or less in the copolymer 2 is 1% or less. Thereby, the amount of the low molecular weight component in the first polymer can be reduced to a degree sufficient to suppress the deformation of the film pattern during curing.
  • the ring-opening step (S′1) and the washing step (S′2) are performed after the polymerization step (S1) and before the low molecular weight component removal step (S3). You may go. This will be described below.
  • the ring-opening rate of the repeating unit derived from maleic anhydride can be measured as follows.
  • the IR absorption intensity (A1) of (C ⁇ O) in the acid anhydride structure of copolymer 1 or copolymer 2 before ring opening was measured, and (C ⁇ O) in the acid anhydride structure after ring opening was measured.
  • the ring opening rate is calculated from the IR absorption intensity (A2) by the following formula.
  • Ring-opening rate (%) ((A1-A2) / A1) ⁇ 100 Acetonitrile is used as an internal standard substance.
  • reaction liquid L1 a part of the anhydride ring of the repeating unit derived from the maleic anhydride of the copolymer 1 is opened, and a part of the terminal formed by the ring opening is esterified. The remaining terminals are not esterified and have a metal salt structure.
  • the number of moles of metal alkoxide or alkali metal hydroxide is preferably 50% or less of the number of moles of maleic anhydride used in the polymerization step.
  • the number of moles of metal alkoxide or alkali metal hydroxide is preferably 40% or less, 10% or more, and more preferably 30% or less of the number of moles of maleic anhydride used in the polymerization step. It is preferable. By doing so, the amount of metal alkoxide or alkali metal hydroxide can be reduced, and the alkali metal concentration in the finally obtained polymer can be reduced. By reducing the alkali metal concentration in the polymer, migration of metal ions can be suppressed when a device using this polymer is formed.
  • the metal alkoxide described above is preferably one represented by M (OR 8 ) (M is a monovalent metal and R 8 is an organic group having 1 to 18 carbon atoms).
  • M is a monovalent metal and R 8 is an organic group having 1 to 18 carbon atoms.
  • the metal M include alkali metals, and sodium is preferable from the viewpoint of handleability.
  • the R 8, are the same as those for R 8 in example above formula (B1). Two or more different metal alkoxides may be used. However, from the viewpoint of production stability, it is preferable to use one kind of metal alkoxide.
  • the maleic anhydride-derived structure of copolymer 1 or copolymer 2 may be ring-opened in the presence of (B) an alcohol and an alkali metal hydroxide as a base.
  • an alcohol As the alkali metal hydroxide, sodium hydroxide is preferable from the viewpoint of handleability.
  • the alcohol monovalent alcohol (R 8 OH) is preferable. What was mentioned above can be used for R ⁇ 8 > which is an organic group. R 8 preferably has 30 or less carbon atoms.
  • the repeating unit derived from maleic anhydride opened in this ring-opening step (treatment S′1) has a structure represented by the following formula (6), and has a structure having a carboxyl group salt moiety.
  • this ring-opening step (treatment S′1) it is preferable that 50% or more of the repeating units derived from maleic anhydride of Copolymer 1 or Copolymer 2 are not opened.
  • a metal for example, Na
  • the amount of metal contained in the product polymer can be reduced.
  • the quantity of the alkali metal in the polymer finally obtained by this embodiment can be reduced, and a desired characteristic can be exhibited in the negative photosensitive resin composition using this polymer.
  • the above-described cleaning step (processing S′2) is repeated, for example, 5 times or more, more preferably 10 times. Further, it is preferable to remove 85% or more of the remaining sodium and more preferably 90% or more by one washing step by adjusting the addition amount of water and organic solvent used in the washing step. Thereby, the density
  • the negative photosensitive resin composition can contain the polymer, a photosensitive agent, and a crosslinking agent. Furthermore, an additive such as a solvent and an adhesion improving agent or a surfactant can be contained.
  • the upper limit of the polymer content is 80 parts by mass or less, preferably 75 parts by mass or less, with respect to 100 parts by mass of the total solid content of the negative photosensitive resin composition. It is still more preferable that it is below mass parts.
  • the lower limit of the content of the polymer is 5 parts by mass or more, preferably 10 parts by mass or more, and 20 parts by mass or less with respect to 100 parts by mass of the total solid content of the negative photosensitive resin composition. More preferably.
  • a radical photopolymerization initiator can be used as the photosensitive agent.
  • the radical photopolymerization initiator include alkylphenone type initiators, oxime ester type initiators, acylphosphine oxide type initiators, and the like.
  • a radical photopolymerization initiator one or a combination of two or more of the above specific examples can be used. Among these, it is preferable to use an oxime ester type radical photopolymerization initiator. Thereby, the photosensitive agent can be radicalized with a low exposure amount, and the sensitivity can be increased.
  • Specific photo radical polymerization initiators include, for example, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 2-methyl-1 [4- (methylthio) phenyl] -2-Morifolinopropan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2- Methyl-1-propan-1-one, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyl) Oxime)), ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (0-acetylo Shim), and the like. Among these, you may use 1 type, or 2
  • the upper limit of the content of the photosensitive agent may be 1 part by mass or more, preferably 1.5 parts by mass or more, and preferably 2 parts by mass or more with respect to 100 parts by mass of the polymer. More preferably it is.
  • the reaction rate by exposure can be improved. Therefore, sensitivity can be improved.
  • the lower limit of the content of the photosensitive agent is preferably 20 parts by mass or less, more preferably 15 parts by mass or less, and further preferably 10 parts by mass or less. Thereby, in a negative photosensitive resin composition, appropriate reactivity with respect to a polymer can be expressed.
  • a known crosslinking agent can be used as the crosslinking agent.
  • the crosslinking agent for example, an acrylic crosslinking agent containing a (meth) acryl group is preferably used.
  • the acrylic crosslinking agent is, for example, a polyfunctional acrylic compound.
  • the polyfunctional acrylic compound is a compound having two or more (meth) acryl groups.
  • a (meth) acryl group shows an acryl group or a methacryl group, ie, a methacryl group.
  • the acrylic group includes an acrylate group.
  • the methacryl group includes a methacrylate group, that is, a methacrylate group.
  • the crosslinking agent is preferably an acrylic crosslinking agent
  • the functional group having a terminal unsaturated carbon double bond of the copolymer preferably includes a structure represented by the general formula (E1) or the general formula (E2).
  • Specific polyfunctional acrylic compounds include trifunctional (meth) acrylates such as trimethylolpropane tri (meth) acrylate and pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and ditrimethylolpropane tetra (meth).
  • trifunctional (meth) acrylates such as trimethylolpropane tri (meth) acrylate and pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and ditrimethylolpropane tetra (meth).
  • examples include tetrafunctional (meth) acrylates such as acrylate and hexafunctional (meth) acrylates such as dipentaerythritol hexa (meth) acrylate. Among these, you may use 1 type, or 2 or more types.
  • the lower limit value of the content of the crosslinking agent may be 20 parts by mass or more, preferably 25 parts by mass or more, and 30 parts by mass or more with respect to 100 parts by mass of the polymer. Is more preferable.
  • the upper limit of the content of the crosslinking agent may be 80 parts by mass or less, preferably 75 parts by mass or less, and more preferably 70 parts by mass or less with respect to 100 parts by mass of the polymer. .
  • the negative photosensitive resin composition described in the present embodiment can be used as a varnish by dissolving the above-described components in a solvent.
  • solvents include N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylacetamide, dimethyl sulfoxide, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, dipropylene glycol Monomethyl ether, propylene glycol monomethyl ether acetate, methyl lactate, ethyl lactate, butyl lactate, methyl-1,3-butylene glycol acetate, 1,3-butylene glycol-3-monomethyl ether, methyl pyruvate, and ethyl and methyl pyruvate -3-Methoxypropionate and the like.
  • ⁇ -butyrolaclone dimethyl sulfoxide, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether are among these compounds from the viewpoint of significantly suppressing the occurrence of cracks in the resin film. It is preferable to use a compound selected from the group consisting of propylene glycol monomethyl ether acetate.
  • the negative photosensitive resin composition is added as necessary, such as an adhesion improving agent, a surfactant, an antioxidant, a filler, a sensitizer, a silane coupling agent, and a terminal blocking agent.
  • An agent may be included.
  • the resin film according to the present embodiment is made of a cured product of a negative photosensitive resin composition.
  • the resin film of this embodiment consists of the said negative photosensitive resin composition, and can be comprised with these dry films or cured films.
  • the negative photosensitive resin composition of this embodiment is used for forming a resin film such as a resist or a permanent film.
  • a resin film such as a resist or a permanent film.
  • the resist is, for example, a resin obtained by applying a negative photosensitive resin composition by spin coating, roll coating, flow coating, dip coating, spray coating, doctor coating, or the like, and removing the solvent. Consists of a membrane.
  • the permanent film is composed of a cured film obtained by exposing and developing the resin film, patterning it into a desired shape, and curing it by heat treatment or the like.
  • the permanent film can be used, for example, as a protective film, an interlayer film, or a dam material.
  • the resin film is used in the electronic device according to the present embodiment.
  • the electronic device 100 of the present embodiment can include the above resin film.
  • An electronic device 100 shown in FIG. 1 is, for example, a semiconductor chip.
  • a semiconductor package can be obtained by mounting the electronic device 100 on the wiring board via the bumps 52.
  • the electronic device 100 includes a semiconductor substrate provided with a semiconductor element such as a transistor, and a multilayer wiring layer provided on the semiconductor substrate (not shown).
  • An interlayer insulating film 30 and an uppermost layer wiring 34 provided on the interlayer insulating film 30 are provided in the uppermost layer of the multilayer wiring layer.
  • the uppermost layer wiring 34 is made of, for example, Al.
  • a passivation film 32 is provided on the interlayer insulating film 30 and the uppermost layer wiring 34. An opening through which the uppermost layer wiring 34 is exposed is provided in a part of the passivation film 32.
  • a rewiring layer 40 is provided on the passivation film 32.
  • the rewiring layer 40 includes an insulating layer 42 provided on the passivation film 32, a rewiring 46 provided on the insulating layer 42, an insulating layer 44 provided on the insulating layer 42 and the rewiring 46, Have An opening connected to the uppermost layer wiring 34 is formed in the insulating layer 42.
  • the rewiring 46 is formed on the insulating layer 42 and in an opening provided in the insulating layer 42, and is connected to the uppermost layer wiring 34.
  • the insulating layer 44 is provided with an opening connected to the rewiring 46.
  • one or more of the passivation film 32, the insulating layer 42, and the insulating layer 44 may be formed of a resin film formed by curing, for example, the above-described negative photosensitive resin composition. it can.
  • the coating film formed of a negative photosensitive resin material is exposed to ultraviolet light, patterned by performing development, and then heated and cured to thereby passivate the passivation film 32, the insulating layer 42, or the insulating layer. 44 is formed.
  • a bump 52 is formed via a UBM (Under Bump Metallurgy) layer 50.
  • the electronic device 100 is connected to a wiring board or the like via bumps 52, for example.
  • Synthesis Example 1 A copolymer is prepared by charging 5-norbornene-2-carboxylic acid and N-cyclohexylmaleimide at a molar ratio of 50/50, and adding glycidyl methacrylate to the copolymer. A polymer was synthesized and designated as Synthesis Example 1. Details will be described below.
  • a polymer which is a copolymer of the above-mentioned 5-norbornene-2-carboxylic acid and N-cyclohexylmaleimide, is weighed into a reaction vessel of an appropriate size equipped with a stirrer and a condenser. (140.0 g).
  • glycidyl methacrylate (GMA, manufactured by Tokyo Chemical Industry Co., Ltd., 20.7 g, 0.146 mol) and triethylamine (1.8 g) were added and heated at 80 ° C. for 5 hours.
  • GMA glycidyl methacrylate
  • triethylamine (1.8 g) were added and heated at 80 ° C. for 5 hours.
  • formic acid was added to the reaction solution for acid treatment, the solution was added dropwise to a large amount of methanol / water mixture (weight ratio 8/2) to precipitate the polymer of Synthesis Example 1.
  • the solid collected by filtration was dried in a vacuum dryer at 40 ° C. for 40 hours to obtain the polymer of Synthesis Example 1.
  • the yield was 50.5 g, Mw was 5,500, and Mw / Mn was 1.65.
  • the obtained polymer of Synthesis Example 1 was dissolved in heavy DMSO, and 1H-NMR measurement was performed using a nuclear magnetic resonance apparatus manufactured by JEOL. From the spectrum obtained by 1H-NMR measurement, a signal derived from the methacryloyl group of the added GMA was confirmed at ⁇ 5.68 and ⁇ 6.07, and a signal derived from the carboxyl group in the polymer was confirmed at ⁇ 12.13. In addition, from the integration ratio of each signal, it was confirmed that the molar ratio of the carboxyl group to the methacryloyl group was 1: 0.3.
  • the dissolved solution was purged with nitrogen for 10 minutes to remove oxygen, and then reacted at 70 ° C. for 6 hours with stirring.
  • a mixed solution of maleimide (14.9 g, 0.154 mol), CMI (50.1 g, 0.279 mol) and MEK 91.0 g was continuously added to the reaction vessel over 6 hours.
  • the mixture was further reacted at 70 ° C. for 3 hours.
  • 200 g of MEK was added to the reaction solution for dilution, it was added dropwise to a large amount of methanol / water mixture (weight ratio 5/5) to precipitate a solid.
  • the solid collected by filtration was dried in a vacuum dryer at 50 ° C.
  • a polymer which is a copolymer of 5-norbornene-2-carboxylic acid, maleimide and N-cyclohexylmaleimide.
  • the yield was 124.3 g, Mw was 4,500, and Mw / Mn was 1.75.
  • glycidyl methacrylate (GMA, manufactured by Tokyo Chemical Industry Co., Ltd., 24.3 g, 0.171 mol) and triethylamine (1.5 g) were added and heated at 90 ° C. for 4 hours.
  • formic acid was added to the reaction solution for acid treatment, it was dropped into a large amount of methanol / water mixture (weight ratio 5/5) to precipitate the polymer of Synthesis Example 2.
  • the solid collected by filtration was dried in a vacuum dryer at 40 ° C. for 40 hours to obtain the polymer of Synthesis Example 2.
  • the yield was 31.2 g, Mw was 4,900, and Mw / Mn was 1.72.
  • the obtained polymer of Synthesis Example 2 was dissolved in heavy DMSO, and 1H-NMR measurement was performed using a nuclear magnetic resonance apparatus manufactured by JEOL. Similar to Synthesis Example 1, a peak derived from the carboxyl group and a peak derived from the structure of the methacryloyl group were confirmed. As a result, it was confirmed that the carboxyl groups in some structural units derived from 5-norbornene-2-carboxylic acid were substituted with glycidyl methacrylate. Therefore, in Synthesis Example 2, it was confirmed that a copolymer having each structural unit represented by the following formula (10) was obtained.
  • the solution was purged with nitrogen for 10 minutes to remove oxygen, and then heated to 60 ° C. with stirring. After 16 hours, MEK (320 g) was added to dilute and cool.
  • the reaction mixture was added dropwise to a large amount of methanol to precipitate a solid, which was filtered using a Nutsche, further washed with methanol, and the solid was collected by filtration.
  • the obtained solid was vacuum dried at 70 ° C. to obtain a copolymer of 2-norbornene and maleic anhydride.
  • the yield was 208.1 g, the weight average molecular weight (Mw) was 11,100, and the dispersity (Mw / Mn) was 2.25.
  • the above-mentioned copolymer of 2-norbornene and maleic anhydride (10.0 g) was weighed and dissolved in MEK (30.0 g) in an appropriately sized reaction vessel equipped with a stirrer and a condenser. Further, 2-hydroxyethyl methacrylate (HEMA, Nippon Shokubai Co., Ltd., 8.5 g, 65 mmol) and sodium acetate (1.0 g) were added and heated at 70 ° C. for 8 hours. To this reaction solution, glycidyl methacrylate (GMA, 1.5 g, 10 mmol) was added, and the mixture was further stirred at 70 ° C. for 16 hours.
  • HEMA 2-hydroxyethyl methacrylate
  • GMA glycidyl methacrylate
  • Table 1 shows the evaluation results of acid value and alkali dissolution rate for the polymers of each synthesis example.
  • Photosensitive agent Photosensitizer 1: A photoradical polymerization initiator represented by the following formula (11) (Irgacure OXE02 manufactured by BASF) was used.
  • Crosslinking agent 1 An acrylic crosslinking agent (DPHA manufactured by Daicel Cytec Co., Ltd.) represented by the following formula (12) was used.
  • Adhesion improver 1 3-glycidoxypropyltrimethoxysilane (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Surfactant 1 Megafac F-556 (manufactured by DIC Corporation)
  • the cured film of the photosensitive resin composition was peeled from the wafer using hydrofluoric acid, and dried under conditions of 60 ° C. and 10 hours. In this way, a cured film cured at a curing temperature of 200 ° C. was obtained for each of the examples and comparative examples. Next, the 5% weight loss temperature (° C.) of the sample was measured.
  • the measurement was performed on a sample obtained by weighing 10 mg of the cured film using a thermogravimetric / differential calorimeter (TG / DTA), a starting temperature of 30 ° C., a measuring temperature range of 30 to 500 ° C., and a heating rate of 5 The measurement was performed under the conditions of ° C / min. The temperature at which the weight of the weighed sample was reduced by 5% was defined as a 5% weight reduction temperature.
  • TG / DTA thermogravimetric / differential calorimeter
  • the remaining film rate after hardening was evaluated as follows using the obtained negative photosensitive resin composition.
  • the obtained negative photosensitive resin composition was spin-coated on a 4-inch silicon wafer treated with HMDS (Hexamethyldisilazane) and baked on a hot plate at 110 ° C. for 100 seconds to obtain a thin film A having a thickness of about 3.0 ⁇ m. .
  • HMDS Hexamethyldisilazane
  • solvent resistance About each Example and each comparative example, solvent resistance was evaluated as follows using the obtained negative photosensitive resin composition.
  • the obtained negative photosensitive resin composition was spin-coated on a 1737 glass substrate made by Corning 100 mm long and 100 mm wide, baked on a hot plate at 110 ° C. for 100 seconds, and with a thin film having a thickness of about 3.0 ⁇ m.
  • a glass substrate was obtained.
  • the glass substrate with a thin film was immersed in N-methylpyrrolidone (Kanto Chemical Co., Inc.) at room temperature (25 ° C.) for 10 minutes, and then rinsed with pure water.
  • the sensitivity evaluation was performed as follows using the obtained negative photosensitive resin composition.
  • the obtained negative photosensitive resin composition was spin-coated on a 4-inch silicon wafer treated with HMDS (Hexamethyldisilazane) and baked on a hot plate at 90 ° C. for 120 seconds to obtain a thin film having a thickness of about 3.0 ⁇ m.
  • This thin film was exposed with a g + h + i line mask aligner (PLA-501F) manufactured by Canon Inc. using a mask having a 10 ⁇ m line and a space width of 1: 1.
  • PPA-501F g + h + i line mask aligner

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

This negative photosensitive resin composition contains a polymer that is specifically a copolymer, a crosslinking agent and a sensitizing agent. According to the present invention, the copolymer contains: a norbornene-type structural unit that is substituted by a functional group containing a terminal unsaturated carbon double bond; a norbornene-type structural unit that is substituted by a carboxyl group; and a structural unit that is derived from maleic acid anhydride, a maleic acid anhydride derivative, maleimide or a maleimide derivative.

Description

ネガ型感光性樹脂組成物、樹脂膜及び電子装置Negative photosensitive resin composition, resin film and electronic device
 本発明は、ネガ型感光性樹脂組成物、樹脂膜及び電子装置に関する。 The present invention relates to a negative photosensitive resin composition, a resin film, and an electronic device.
 これまでのネガ型感光性樹脂組成物の分野においては、パターンの微細化に伴うレジストパターン高精度化を目的として様々な技術が開発されている。この種の技術としては、例えば、特許文献1に記載の技術が挙げられる。同文献によれば、[A]重合体及び[B]酸発生体を含有する感放射線性樹脂組成物が記載されている。そして、[A]重合体が、構造単位(I)と構造単位(II)とを有することで、線幅のガタつきの小ささを示すLWR(Line Width Roughness)性能及び欠陥抑制性に優れる、と記載されている(特許文献1の段落0012)。
 ここで、構造単位(I)はN-(t-ブチルオキシカルボニルメチル)マレイミド、N-(1-メチル-1-シクロペンチルオキシカルボニルメチル)マレイミド、または、N-(2-エチル-2-アダマンチルオキシカルボニルメチル)マレイミドに由来する構造単位であることが記載されている。また、構造単位(II)は、2-ノルボルネンに由来する構造単位であることが記載されている。
In the field of the negative photosensitive resin composition so far, various techniques have been developed for the purpose of increasing the accuracy of resist patterns accompanying pattern miniaturization. As this type of technology, for example, the technology described in Patent Document 1 can be cited. According to this document, a radiation-sensitive resin composition containing a [A] polymer and a [B] acid generator is described. And, because the [A] polymer has the structural unit (I) and the structural unit (II), it is excellent in LWR (Line Width Roughness) performance and defect suppression property, which indicates a small variation in line width. (Patent Document 1, paragraph 0012).
Here, the structural unit (I) is N- (t-butyloxycarbonylmethyl) maleimide, N- (1-methyl-1-cyclopentyloxycarbonylmethyl) maleimide, or N- (2-ethyl-2-adamantyloxy) It is described that it is a structural unit derived from (carbonylmethyl) maleimide. Further, it is described that the structural unit (II) is a structural unit derived from 2-norbornene.
特開2015-184458号公報Japanese Patent Application Laid-Open No. 2015-184458
 本発明者は、ネガ型感光性樹脂組成物からなる樹脂膜を作製し、該樹脂膜の耐熱性、耐溶剤性といった耐久性、及び、現像後における残膜率といった現像性を検討した。その結果、特許文献1に記載の感放射線性樹脂組成物からなる樹脂膜は、耐久性及び現像性の観点で更なる改善の余地があることが判明した。
 そこで、本発明は、アルカリ現像性を損なうことなく、耐久性及び現像性をバランス良く向上できるネガ型感光性樹脂組成物を提供することを課題とする。
The inventor produced a resin film made of a negative photosensitive resin composition, and examined the durability of the resin film such as heat resistance and solvent resistance, and developability such as the remaining film ratio after development. As a result, it has been found that the resin film made of the radiation-sensitive resin composition described in Patent Document 1 has room for further improvement in terms of durability and developability.
Then, this invention makes it a subject to provide the negative photosensitive resin composition which can improve durability and developability with sufficient balance, without impairing alkali developability.
 本発明者は、ネガ型感光性樹脂組成物からなる樹脂膜の耐熱性、耐溶剤性といった耐久性、及び、現像後における残膜率といった現像性を向上するために、共重合体であるポリマーが備える構造単位について検討した。その結果、共重合体が、末端炭素不飽和二重結合を含む官能基によって置換されたノルボルネン型の構造単位と、カルボキシル基によって置換されたノルボルネン型の構造単位と、無水マレイン酸、無水マレイン酸誘導体、マレイミドまたはマレイミド誘導体に由来する構造単位とを備えることにより、アルカリ現像性を損なうことなく、耐久性、及び、現像性をバランス良く向上できることが判明した。
 以上より、本発明者が、特定の構造単位を含む共重合体を含むことによって、アルカリ現像性を損なうことなく、ネガ型感光性樹脂組成物を用いた樹脂膜の耐久性、及び、現像性を向上できることを見出し、本発明は完成した。
In order to improve the durability such as heat resistance and solvent resistance of a resin film made of a negative photosensitive resin composition and the developability such as the remaining film ratio after development, the present inventor The structural unit with As a result, the copolymer has a norbornene-type structural unit substituted with a functional group containing a terminal carbon unsaturated double bond, a norbornene-type structural unit substituted with a carboxyl group, maleic anhydride, maleic anhydride It has been found that by including a derivative, a maleimide or a structural unit derived from a maleimide derivative, durability and developability can be improved in a balanced manner without impairing alkali developability.
As described above, the present inventors include a copolymer containing a specific structural unit, so that the durability and developability of the resin film using the negative photosensitive resin composition can be obtained without impairing alkali developability. The present invention has been completed.
 本発明によれば、
 下記式(1)で示される共重合体であるポリマーと、
 架橋剤と、
 感光剤と、を含むネガ型感光性樹脂組成物が提供される。
According to the present invention,
A polymer which is a copolymer represented by the following formula (1);
A crosslinking agent;
A negative photosensitive resin composition containing a photosensitive agent is provided.
Figure JPOXMLDOC01-appb-C000011
(式(1)中、
lおよびmはポリマー中におけるモル含有率を示し、
l+m=1であり、
Aは下記式(A1)により示される構造単位と、
下記式(A2)により示される構造単位と、を含み、
Bは下記式(B1)、下記式(B2)、下記式(B3)、下記式(B4)、下記式(B5)または下記式(B6)により示される構造単位の少なくとも1種以上を含む。)
Figure JPOXMLDOC01-appb-C000011
(In the formula (1),
l and m represent the molar content in the polymer,
l + m = 1,
A is a structural unit represented by the following formula (A1);
A structural unit represented by the following formula (A2):
B includes at least one structural unit represented by the following formula (B1), the following formula (B2), the following formula (B3), the following formula (B4), the following formula (B5), or the following formula (B6). )
Figure JPOXMLDOC01-appb-C000012
(式(A1)中、R、R、RおよびRはそれぞれ独立して水素または炭素数1~30の有機基であって、R、R、RおよびRに少なくとも1つの末端不飽和炭素二重結合を含む。nは0、1または2である。)
Figure JPOXMLDOC01-appb-C000012
(In the formula (A1), R 1 , R 2 , R 3 and R 4 are each independently hydrogen or an organic group having 1 to 30 carbon atoms, and at least R 1 , R 2 , R 3 and R 4 Contains one terminal unsaturated carbon double bond, n is 0, 1 or 2)
Figure JPOXMLDOC01-appb-C000013
(式(A2)中、R、RおよびRはそれぞれ独立して水素または炭素数1~30の有機基であり、nは0、1または2である。)
Figure JPOXMLDOC01-appb-C000013
(In the formula (A2), R 5 , R 6 and R 7 are each independently hydrogen or an organic group having 1 to 30 carbon atoms, and n is 0, 1 or 2.)
Figure JPOXMLDOC01-appb-C000014
(式(B1)中、Rは、独立して炭素数1~30の有機基である。)
Figure JPOXMLDOC01-appb-C000014
(In formula (B1), R 8 is independently an organic group having 1 to 30 carbon atoms.)
Figure JPOXMLDOC01-appb-C000015
(式(B2)中、R及びR10は、それぞれ独立して炭素数1~30の有機基である。)
Figure JPOXMLDOC01-appb-C000015
(In Formula (B2), R 9 and R 10 are each independently an organic group having 1 to 30 carbon atoms.)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
(式(B6)中、R11は、独立して炭素数1~30の有機基である。)
Figure JPOXMLDOC01-appb-C000019
(In Formula (B6), R 11 is independently an organic group having 1 to 30 carbon atoms.)
 また、本発明によれば、上記ネガ型感光性樹脂組成物からなる樹脂膜が提供される。 Moreover, according to the present invention, there is provided a resin film comprising the above negative photosensitive resin composition.
 さらに、本発明によれば、上記樹脂膜を備える電子装置が提供される。 Furthermore, according to the present invention, an electronic device including the resin film is provided.
 本発明によれば、アルカリ現像性を損なうことなく、ネガ型感光性樹脂組成物からなる樹脂膜の耐久性、及び、現像性を向上できるネガ型感光性樹脂組成物が提供される。 According to the present invention, there is provided a negative photosensitive resin composition capable of improving the durability and developability of a resin film comprising a negative photosensitive resin composition without impairing alkali developability.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
本実施形態に係る電子装置の一例を示す断面図である。It is sectional drawing which shows an example of the electronic device which concerns on this embodiment.
 以下、本実施形態について、適宜図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、説明を省略する。また、本実施形態において、A~BとはA以上B以下を意図する。 Hereinafter, the present embodiment will be described with reference to the drawings as appropriate. In all the drawings, similar constituent elements are denoted by the same reference numerals, and description thereof is omitted. Further, in this embodiment, A to B mean A or more and B or less.
 本実施形態のネガ型感光性樹脂組成物の概要について説明する。
 本実施形態のネガ型感光性樹脂組成物は、
 下記式(1)で示される共重合体であるポリマーと、
 架橋剤と、
 感光剤と、を含む。
The outline | summary of the negative photosensitive resin composition of this embodiment is demonstrated.
The negative photosensitive resin composition of the present embodiment is
A polymer which is a copolymer represented by the following formula (1);
A crosslinking agent;
And a photosensitizer.
Figure JPOXMLDOC01-appb-C000020
(式(1)中、
lおよびmはポリマー中におけるモル含有率を示し、
l+m=1であり、
Aは下記式(A1)により示される構造単位と、
下記式(A2)により示される構造単位と、を含み、
Bは下記式(B1)、下記式(B2)、下記式(B3)、下記式(B4)、下記式(B5)または下記式(B6)により示される構造単位の少なくとも1種以上を含む。)
Figure JPOXMLDOC01-appb-C000020
(In the formula (1),
l and m represent the molar content in the polymer,
l + m = 1,
A is a structural unit represented by the following formula (A1);
A structural unit represented by the following formula (A2):
B includes at least one structural unit represented by the following formula (B1), the following formula (B2), the following formula (B3), the following formula (B4), the following formula (B5), or the following formula (B6). )
Figure JPOXMLDOC01-appb-C000021
(式(A1)中、R、R、RおよびRはそれぞれ独立して水素または炭素数1~30の有機基であって、R、R、RおよびRに少なくとも1つの末端不飽和炭素二重結合を含む。nは0、1または2である。)
Figure JPOXMLDOC01-appb-C000021
(In the formula (A1), R 1 , R 2 , R 3 and R 4 are each independently hydrogen or an organic group having 1 to 30 carbon atoms, and at least R 1 , R 2 , R 3 and R 4 Contains one terminal unsaturated carbon double bond, n is 0, 1 or 2)
Figure JPOXMLDOC01-appb-C000022
(式(A2)中、R、RおよびRはそれぞれ独立して水素または炭素数1~30の有機基であり、nは0、1または2である。)
Figure JPOXMLDOC01-appb-C000022
(In the formula (A2), R 5 , R 6 and R 7 are each independently hydrogen or an organic group having 1 to 30 carbon atoms, and n is 0, 1 or 2.)
Figure JPOXMLDOC01-appb-C000023
(式(B1)中、Rは、独立して炭素数1~30の有機基である。)
Figure JPOXMLDOC01-appb-C000023
(In formula (B1), R 8 is independently an organic group having 1 to 30 carbon atoms.)
Figure JPOXMLDOC01-appb-C000024
(式(B2)中、R及びR10は、それぞれ独立して炭素数1~30の有機基である。)
Figure JPOXMLDOC01-appb-C000024
(In Formula (B2), R 9 and R 10 are each independently an organic group having 1 to 30 carbon atoms.)
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
(式(B6)中、R11は、独立して炭素数1~30の有機基である。)
Figure JPOXMLDOC01-appb-C000028
(In Formula (B6), R 11 is independently an organic group having 1 to 30 carbon atoms.)
 本実施形態によれば、共重合体が、末端不飽和炭素二重結合を含む官能基によって置換されたノルボルネン型の構造単位と、カルボキシル基によって置換されたノルボルネン型の構造単位と、無水マレイン酸、無水マレイン酸誘導体、マレイミドまたはマレイミド誘導体に由来する構造単位とを含む。 According to this embodiment, the copolymer comprises a norbornene-type structural unit substituted with a functional group containing a terminal unsaturated carbon double bond, a norbornene-type structural unit substituted with a carboxyl group, and maleic anhydride. And structural units derived from maleic anhydride derivatives, maleimides or maleimide derivatives.
 本実施形態に係るネガ型感光性樹脂組成物は、露光によって感光剤がラジカルを生じ、ラジカル連鎖反応が起こることによって硬化する。本実施形態に係るネガ型感光性樹脂組成物では、共重合体のノルボルネン側鎖の末端不飽和炭素二重結合が、ラジカル連鎖反応に寄与すると考えられる。これにより、詳細なメカニズムは定かではないが、本実施形態に係るネガ型感光性樹脂組成物は、従来のネガ型感光性樹脂組成物と比べて、ラジカル連鎖反応によって形成される架橋構造の架橋密度を向上でき、分子鎖の運動性をより制限できると推測される。したがって、ネガ型感光性樹脂組成物の硬化膜の耐熱性、耐溶剤性といった耐久性、及び、現像後における残膜率といった現像性を向上することができる。 The negative photosensitive resin composition according to this embodiment is cured by the radical chain reaction caused by the photosensitizer generating radicals upon exposure. In the negative photosensitive resin composition according to the present embodiment, it is considered that the terminal unsaturated carbon double bond of the norbornene side chain of the copolymer contributes to the radical chain reaction. Thus, although the detailed mechanism is not clear, the negative photosensitive resin composition according to the present embodiment has a crosslinked structure formed by radical chain reaction as compared with the conventional negative photosensitive resin composition. It is estimated that the density can be improved and the mobility of the molecular chain can be more limited. Therefore, durability such as heat resistance and solvent resistance of a cured film of the negative photosensitive resin composition and developability such as a remaining film ratio after development can be improved.
 また、本実施形態に係るネガ型感光性樹脂組成物は、例えば、上述したように一部分を露光して硬化させる一方、一部分は露光せず硬化させない。そして、硬化していない未露光部分をアルカリ溶液によって除去して、所望の用途に用いることができる。
 本実施形態に係る共重合体において、末端不飽和炭素二重結合を含む官能基によって置換されたノルボルネン型の構造単位は、カルボキシル基によって置換されたノルボルネン型の構造単位の一部を置換することによって形成される。そして、一部のカルボキシル基によって置換されたノルボルネン型の構造単位は、そのまま共重合体中に残る。これにより、本実施形態に係る共重合体は、カルボキシル基を備えるノルボルネン型の構造単位を含む。これにより、未露光部分を除去する際に、アルカリ溶解性を向上させることができる。
 さらに、共重合体は、無水マレイン酸、無水マレイン酸誘導体、マレイミドまたはマレイミド誘導体に由来する構造単位を含むことによって、アルカリ溶解性を適宜制御することができる。
 従来のネガ型感光性樹脂組成物では、ネガ型感光性樹脂組成物の硬化膜の耐久性、及び現像性を向上する場合、単純に架橋しやすい構造とするだけではアルカリ溶解性が低下してしまうという不都合があった。しかしながら、本実施形態に係るネガ型感光性樹脂組成物は、共重合体が末端不飽和炭素二重結合を含む官能基によって置換されたノルボルネン型の構造単位と、カルボキシル基によって置換されたノルボルネン型の構造単位と、無水マレイン酸、無水マレイン酸誘導体、マレイミドまたはマレイミド誘導体に由来する構造単位とを含むことによって、アルカリ溶解性を低下させることなく、硬化膜の耐久性、及び、現像性を向上することができる。
 以上より、本実施形態に係るネガ型感光性樹脂組成物は、アルカリ現像性を損なうことなく、ネガ型感光性樹脂組成物からなる樹脂膜の耐久性、及び、現像性を向上できるものである。
In addition, the negative photosensitive resin composition according to the present embodiment is, for example, partially exposed and cured as described above, while the portion is not exposed and not cured. And the unexposed part which is not hardened | cured can be removed with an alkaline solution, and it can use for a desired use.
In the copolymer according to this embodiment, the norbornene-type structural unit substituted with a functional group containing a terminal unsaturated carbon double bond substitutes a part of the norbornene-type structural unit substituted with a carboxyl group. Formed by. And the norbornene-type structural unit substituted by a part of carboxyl group remains in a copolymer as it is. Thereby, the copolymer which concerns on this embodiment contains the norbornene-type structural unit provided with a carboxyl group. Thereby, when removing an unexposed part, alkali solubility can be improved.
Further, the alkali solubility of the copolymer can be appropriately controlled by including a structural unit derived from maleic anhydride, a maleic anhydride derivative, a maleimide or a maleimide derivative.
In the conventional negative photosensitive resin composition, when improving the durability and developability of the cured film of the negative photosensitive resin composition, the alkali solubility is lowered simply by making the structure easy to crosslink. There was an inconvenience that it would end up. However, the negative photosensitive resin composition according to this embodiment includes a norbornene type structural unit in which the copolymer is substituted with a functional group containing a terminal unsaturated carbon double bond, and a norbornene type substituted with a carboxyl group. By improving the durability and developability of the cured film without deteriorating alkali solubility, it is possible to include the structural unit of the above and the structural unit derived from maleic anhydride, maleic anhydride derivative, maleimide or maleimide derivative. can do.
As described above, the negative photosensitive resin composition according to this embodiment can improve the durability and developability of the resin film made of the negative photosensitive resin composition without impairing the alkali developability. .
 以下、本実施形態のネガ型感光性樹脂組成物の各成分について説明する。
 本実施形態に係るネガ型感光性樹脂組成物は、ポリマーと、架橋剤と、感光剤とを含む。
Hereinafter, each component of the negative photosensitive resin composition of this embodiment is demonstrated.
The negative photosensitive resin composition according to the present embodiment includes a polymer, a crosslinking agent, and a photosensitive agent.
(ポリマー)
 まず、本実施形態に係るポリマーについて説明する。
 本実施形態に係るポリマーは、下記式(1)で示される共重合体である。なお、下記式(1)は共重合体の配列を限定するものではない。共重合体の配列としては、例えば、ランダム共重合体、交互共重合体、ブロック共重合体及び周期共重合体などが選択できる。
(polymer)
First, the polymer according to this embodiment will be described.
The polymer according to the present embodiment is a copolymer represented by the following formula (1). In addition, following formula (1) does not limit the arrangement | sequence of a copolymer. As the arrangement of the copolymer, for example, a random copolymer, an alternating copolymer, a block copolymer, a periodic copolymer, or the like can be selected.
Figure JPOXMLDOC01-appb-C000029
(式(1)中、
lおよびmはポリマー中におけるモル含有率を示し、
l+m=1であり、
Aは下記式(A1)により示される構造単位と、
下記式(A2)により示される構造単位と、を含み、
Bは下記式(B1)、下記式(B2)、下記式(B3)、下記式(B4)、下記式(B5)または下記式(B6)により示される構造単位の少なくとも1種以上を含む。)
Figure JPOXMLDOC01-appb-C000029
(In the formula (1),
l and m represent the molar content in the polymer,
l + m = 1,
A is a structural unit represented by the following formula (A1);
A structural unit represented by the following formula (A2):
B includes at least one structural unit represented by the following formula (B1), the following formula (B2), the following formula (B3), the following formula (B4), the following formula (B5), or the following formula (B6). )
 共重合体における、上記Aの構造単位と、上記Bの構造単位との組成比について説明する。上記Aの構造単位のモル含有率(mol%)をl、上記Bの構造単位のモル含有率(mol%)をm、l+m=1とした場合、lの数値範囲は0.1≦l≦0.9である。また、mの数値範囲は0.1≦m≦0.9である。これにより、上記Aの構造単位及び上記Bの構造単位を十分に含むことで、耐熱性の向上、耐溶剤性の向上、及び、現像後における残膜率の向上を実現できる。 The composition ratio between the structural unit A and the structural unit B in the copolymer will be described. When the molar content (mol%) of the structural unit of A is 1 and the molar content (mol%) of the structural unit of B is m and l + m = 1, the numerical range of 1 is 0.1 ≦ l ≦ 0.9. The numerical range of m is 0.1 ≦ m ≦ 0.9. Thereby, by sufficiently including the structural unit of A and the structural unit of B, it is possible to realize improvement in heat resistance, improvement in solvent resistance, and improvement in the remaining film ratio after development.
 上記式(1)によって示される共重合体において、Aは、下記式(A1)によって示される、末端不飽和炭素二重結合を含む官能基によって置換されたノルボルネン型モノマーに由来する構造単位と、下記式(A2)により示されるカルボキシル基によって置換されたノルボルネン型モノマー由来の構造単位とを含む。
 共重合体が下記式(A1)により示される構造単位を含むことで、上述した通り、ネガ型感光性樹脂組成物としたときの耐熱性、耐溶剤性、及び、現像後における残膜率を向上させることができる。
 また、共重合体が下記式(A2)により示される構造単位を含むことで、上述した通り、ネガ型感光性樹脂組成物としたときのアルカリ溶解性を調整することができる。
In the copolymer represented by the above formula (1), A is a structural unit derived from a norbornene-type monomer substituted by a functional group containing a terminal unsaturated carbon double bond represented by the following formula (A1): And a structural unit derived from a norbornene-type monomer substituted with a carboxyl group represented by the following formula (A2).
As described above, when the copolymer contains a structural unit represented by the following formula (A1), the heat resistance, the solvent resistance, and the remaining film ratio after development as a negative photosensitive resin composition can be obtained. Can be improved.
Moreover, alkali solubility when it is set as a negative photosensitive resin composition can be adjusted as mentioned above because a copolymer contains the structural unit shown by following formula (A2).
Figure JPOXMLDOC01-appb-C000030
(式(A1)中、R、R、RおよびRはそれぞれ独立して水素または炭素数1~30の有機基であって、R、R、RおよびRに少なくとも1つの末端不飽和炭素二重結合を含む。nは0、1または2である。)
Figure JPOXMLDOC01-appb-C000030
(In the formula (A1), R 1 , R 2 , R 3 and R 4 are each independently hydrogen or an organic group having 1 to 30 carbon atoms, and at least R 1 , R 2 , R 3 and R 4 Contains one terminal unsaturated carbon double bond, n is 0, 1 or 2)
Figure JPOXMLDOC01-appb-C000031
(式(A2)中、R、RおよびRはそれぞれ独立して水素または炭素数1~30の有機基であり、nは0、1または2である。)
Figure JPOXMLDOC01-appb-C000031
(In the formula (A2), R 5 , R 6 and R 7 are each independently hydrogen or an organic group having 1 to 30 carbon atoms, and n is 0, 1 or 2.)
 本実施形態において、上記式(A1)中のR~R、及び、上記式(A2)中のR~Rを構成する水素または炭素数1~30の有機基は、その構造中にO、N、S、PおよびSiから選択される1以上の原子を含んでいてもよい。
 さらに本実施形態において、R、R、RおよびRを構成する有機基は、いずれも酸性官能基を有しないものとすることができる。これにより、ポリマー中における酸価の制御を容易とすることができる。
In this embodiment, R 1 to R 4 in the above formula (A1) and R 5 to R 7 in the above formula (A2) are hydrogen or an organic group having 1 to 30 carbon atoms in the structure. May contain one or more atoms selected from O, N, S, P and Si.
Furthermore, in this embodiment, the organic group which comprises R < 1 >, R < 2 >, R < 3 > and R < 4 > does not have any acidic functional group. Thereby, control of the acid value in a polymer can be made easy.
 また、本実施形態において、上記式(A1)中のR~R、及び、上記式(A2)中のR~Rは、それぞれ独立して、水素または炭素数1~30の有機基であって、それぞれ独立して水素又は炭素数1~10の有機基であることが好ましく、それぞれ独立して水素又は炭素数1~5の有機基であることがさらに好ましく、それぞれ独立して水素又は炭素数1~3の有機基であることが一層好ましい。 In this embodiment, R 1 to R 4 in the above formula (A1) and R 5 to R 7 in the above formula (A2) are each independently hydrogen or an organic compound having 1 to 30 carbon atoms. Each of which is independently hydrogen or an organic group having 1 to 10 carbon atoms, more preferably independently hydrogen or an organic group having 1 to 5 carbon atoms. More preferred is hydrogen or an organic group having 1 to 3 carbon atoms.
 本実施形態において、上記式(A1)中のR~R、及び、上記式(A2)中のR~Rを構成する有機基としては、例えば、アルキル基、アルケニル基、アルキニル基、アルキリデン基、アリール基、アラルキル基、アルカリル基、シクロアルキル基、およびヘテロ環基が挙げられる。
 アルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、およびデシル基が挙げられる。アルケニル基としては、例えばアリル基、ペンテニル基、およびビニル基が挙げられる。アルキニル基としては、エチニル基が挙げられる。アルキリデン基としては、例えばメチリデン基、およびエチリデン基が挙げられる。アリール基としては、例えばトリル基、キシリル基、フェニル基、ナフチル基、およびアントラセニル基が挙げられる。アラルキル基としては、例えばベンジル基、およびフェネチル基が挙げられる。シクロアルキル基としては、例えばアダマンチル基、シクロペンチル基、シクロヘキシル基、およびシクロオクチル基が挙げられる。ヘテロ環基としては、例えばエポキシ基、およびオキセタニル基が挙げられる。
In this embodiment, examples of the organic group constituting R 1 to R 4 in the above formula (A1) and R 5 to R 7 in the above formula (A2) include an alkyl group, an alkenyl group, and an alkynyl group. , Alkylidene group, aryl group, aralkyl group, alkaryl group, cycloalkyl group, and heterocyclic group.
Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, An octyl group, a nonyl group, and a decyl group are mentioned. Examples of the alkenyl group include allyl group, pentenyl group, and vinyl group. An ethynyl group is mentioned as an alkynyl group. Examples of the alkylidene group include a methylidene group and an ethylidene group. Examples of the aryl group include a tolyl group, a xylyl group, a phenyl group, a naphthyl group, and an anthracenyl group. Examples of the aralkyl group include a benzyl group and a phenethyl group. Examples of the cycloalkyl group include an adamantyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group. Examples of the heterocyclic group include an epoxy group and an oxetanyl group.
 本実施形態において、上記式(A1)中、R、R、RおよびRは少なくとも1つの末端不飽和炭素二重結合を含む。これにより、ネガ型感光性樹脂組成物において、露光時にラジカル化して架橋構造に寄与する構造単位を増やすことができる。加えて、詳細なメカニズムは定かではないが、ノルボルネン型の構造単位の側鎖が架橋構造に寄与することにより、ポリマー鎖の運動をより強固に制限できる。これにより、ネガ型感光性樹脂組成物の耐熱性、耐溶剤性、及び、現像後における残膜率をバランスよく向上させることができる。
 なお、本実施形態では、R、R、RおよびRが2つ以上の末端不飽和炭素二重結合を含むことを特に制限するものではない。R~Rのうち、末端不飽和炭素二重結合を含むものはR~Rのいずれか1つであることが好ましい。これにより、末端不飽和炭素二重結合を含む官能基同士が立体障害とならず、好適な架橋構造を形成できる観点で好ましい。
In the present embodiment, in the above formula (A1), R 1 , R 2 , R 3 and R 4 include at least one terminal unsaturated carbon double bond. Thereby, in a negative photosensitive resin composition, the structural unit which is radicalized at the time of exposure and contributes to a crosslinked structure can be increased. In addition, although the detailed mechanism is not clear, the side chain of the norbornene-type structural unit contributes to the crosslinked structure, so that the movement of the polymer chain can be more firmly limited. Thereby, the heat resistance of a negative photosensitive resin composition, solvent resistance, and the remaining film rate after image development can be improved with sufficient balance.
In the present embodiment, it is not particularly limited that R 1 , R 2 , R 3, and R 4 include two or more terminal unsaturated carbon double bonds. Of R 1 to R 4 , one containing a terminal unsaturated carbon double bond is preferably any one of R 1 to R 4 . Thereby, the functional group containing a terminal unsaturated carbon double bond does not become a steric hindrance, and is preferable from the viewpoint that a suitable crosslinked structure can be formed.
 上記式(A1)、式(A2)において、それぞれ独立して、nは0、1または2であり、nは0または1であって、nは0である。 In the above formulas (A1) and (A2), n is independently 0, 1 or 2, n is 0 or 1, and n is 0.
 R、R、RおよびRは、末端不飽和炭素二重結合を含むために、下記式(E1)で表される構造を含むことが好ましい。式(E1)で示される構造の中でも、下記式(E2)で表される構造を含むことがより好ましい。これにより、好適な架橋構造を形成できる。したがって、ネガ型感光性樹脂組成物の耐熱性、耐溶剤性、及び、現像後における残膜率をバランスよく向上させることができる。 R 1 , R 2 , R 3 and R 4 preferably contain a structure represented by the following formula (E1) in order to contain a terminal unsaturated carbon double bond. Among the structures represented by the formula (E1), it is more preferable to include a structure represented by the following formula (E2). Thereby, a suitable crosslinked structure can be formed. Therefore, the heat resistance, solvent resistance, and remaining film ratio after development of the negative photosensitive resin composition can be improved in a balanced manner.
Figure JPOXMLDOC01-appb-C000032
(式(E1)中、Rは独立して水素または炭素数1~10の有機基である。)
Figure JPOXMLDOC01-appb-C000032
(In the formula (E1), R e is independently hydrogen or an organic group having 1 to 10 carbon atoms.)
Figure JPOXMLDOC01-appb-C000033
(式(E2)中、Rは独立して水素または炭素数1~10の有機基である。)
Figure JPOXMLDOC01-appb-C000033
(In formula (E2), R e is independently hydrogen or an organic group having 1 to 10 carbon atoms.)
 上記式(E1)、(E2)において、Rは、独立して水素または炭素数1~10の有機基であり、水素または炭素数1~7の有機基であることが好ましく、水素または炭素数1~5の有機基であることが更に好ましく、水素または炭素数1~3の有機基であることが一層好ましく、水素または炭素数1の有機基であることが殊更好ましい。 In the above formulas (E1) and (E2), R e is independently hydrogen or an organic group having 1 to 10 carbon atoms, preferably hydrogen or an organic group having 1 to 7 carbon atoms, It is more preferably an organic group having 1 to 5 carbon atoms, more preferably hydrogen or an organic group having 1 to 3 carbon atoms, and particularly preferably hydrogen or an organic group having 1 carbon atom.
 末端不飽和炭素二重結合を含むR、R、RおよびRの具体例としては、ビニル基、ビニリデン基、アクリル基、メタクリル基、アクリレート基、メタクリレート基などが挙げられる。これらの中でも、末端不飽和炭素二重結合を含むR、R、RおよびRはアクリル基、メタクリル基、アクリレート基及びメタクリレート基からなる群より選択される1種以上であることが好ましく、アクリレート基またはメタクリレート基であることが更に好ましい。 Specific examples of R 1 , R 2 , R 3 and R 4 containing a terminal unsaturated carbon double bond include vinyl group, vinylidene group, acrylic group, methacryl group, acrylate group, methacrylate group and the like. Among these, R 1 , R 2 , R 3 and R 4 including a terminal unsaturated carbon double bond may be at least one selected from the group consisting of an acryl group, a methacryl group, an acrylate group and a methacrylate group. Preferably, it is an acrylate group or a methacrylate group.
 共重合体中の上記式(A1)によって示される構造単位の含有量の下限値は、上記式(A2)によって示される構造単位1molに対して、例えば、0.1mol以上であることが好ましく、0.2mol以上であることがより好ましい。これにより、好適な架橋構造を形成することができる。
 また、共重合体中の上記式(A1)によって示される構造単位の含有量の上限値は、上記式(A2)によって示される構造単位1molに対して、例えば、3.0mol以下であることが好ましく、2.0mol以下であることが更に好ましく、1.0mol以下であることが一層好ましく、0.7mol以下であることが殊更好ましい。これにより、アルカリ溶解性を好適に発現することができる。
 なお、本実施形態において、ポリマー中の上記式(A1)によって示される構造単位1molに対する、上記式(A1)によって示される構造単位の含有量は、例えば、核磁気共鳴装置(例えば、日本電子社製)を用いた1H-NMR測定によって評価することができる。
The lower limit of the content of the structural unit represented by the above formula (A1) in the copolymer is preferably 0.1 mol or more with respect to 1 mol of the structural unit represented by the above formula (A2), More preferably, it is 0.2 mol or more. Thereby, a suitable crosslinked structure can be formed.
The upper limit of the content of the structural unit represented by the above formula (A1) in the copolymer is, for example, 3.0 mol or less with respect to 1 mol of the structural unit represented by the above formula (A2). It is preferably 2.0 mol or less, more preferably 1.0 mol or less, and even more preferably 0.7 mol or less. Thereby, alkali solubility can be expressed suitably.
In this embodiment, the content of the structural unit represented by the above formula (A1) with respect to 1 mol of the structural unit represented by the above formula (A1) in the polymer is, for example, a nuclear magnetic resonance apparatus (for example, JEOL Ltd.). Can be evaluated by 1H-NMR measurement.
 また、上記式(1)によって示される共重合体において、Bは、下記式(B1)、下記式(B2)、下記式(B3)、下記式(B4)、下記式(B5)または下記式(B6)により示される構造単位の少なくとも1種以上を含む。
 これらの中でも下記式(B5)または下記式(B6)によって示される構造単位を含むことが好ましい。これにより、アルカリ溶解性を向上させることができ、現像性を向上させることができる。
 さらに、下記式(B5)または下記式(B6)の中でも、下記式(B6)を含むことがさらに好ましい。これにより、ネガ型感光性樹脂組成物としたときのアルカリ溶解性を調整することができ、さらに、耐熱性を向上させることができる。
In the copolymer represented by the above formula (1), B represents the following formula (B1), the following formula (B2), the following formula (B3), the following formula (B4), the following formula (B5), or the following formula. Including at least one of the structural units represented by (B6).
Among these, it is preferable to include a structural unit represented by the following formula (B5) or the following formula (B6). Thereby, alkali solubility can be improved and developability can be improved.
Furthermore, it is more preferable that the following formula (B6) is included in the following formula (B5) or the following formula (B6). Thereby, alkali solubility when it is set as a negative photosensitive resin composition can be adjusted, and also heat resistance can be improved.
Figure JPOXMLDOC01-appb-C000034
(式(B1)中、Rは、独立して炭素数1~30の有機基である。)
Figure JPOXMLDOC01-appb-C000034
(In formula (B1), R 8 is independently an organic group having 1 to 30 carbon atoms.)
Figure JPOXMLDOC01-appb-C000035
(式(B2)中、R及びR10は、それぞれ独立して炭素数1~30の有機基である。)
Figure JPOXMLDOC01-appb-C000035
(In Formula (B2), R 9 and R 10 are each independently an organic group having 1 to 30 carbon atoms.)
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
(式(B6)中、R11は、独立して炭素数1~30の有機基である。)
Figure JPOXMLDOC01-appb-C000039
(In Formula (B6), R 11 is independently an organic group having 1 to 30 carbon atoms.)
 本実施形態において、Bは、上記式(B6)により示される構造単位に加えて、さらに上記式(B5)により示される構造単位を含むことが好ましい。上記式(B6)及び上記式(B5)により示される構造単位を共に含むことで、ネガ型感光性樹脂組成物としたとき、アルカリ溶解性を向上させ、さらに、感度を向上できる。これにより、ネガ型感光性樹脂組成物としたとき、耐熱性、耐溶剤性、及び、現像後における残膜率の向上に加えて、優れた感度を維持することを両立することができる。 In this embodiment, B preferably further includes a structural unit represented by the above formula (B5) in addition to the structural unit represented by the above formula (B6). By including both the structural units represented by the above formula (B6) and the above formula (B5), when the negative photosensitive resin composition is obtained, the alkali solubility can be improved and the sensitivity can be further improved. Thereby, when it is set as a negative photosensitive resin composition, in addition to the improvement of heat resistance, solvent resistance, and the remaining film rate after image development, it can maintain maintaining the outstanding sensitivity.
 本実施形態において、上記式(B1)、式(B2)および式(B6)中のR~R11を構成する炭素数1~30の有機基は、その構造中にO、N、S、PおよびSiから選択される1以上の原子を含んでいてもよい。
 さらに本実施形態において、R~R11を構成する有機基は、いずれも酸性官能基を有しないものとすることができる。これにより、ポリマー中における酸価の制御を容易とすることができる。
In the present embodiment, the organic group having 1 to 30 carbon atoms constituting R 8 to R 11 in the above formulas (B1), (B2), and (B6) has O, N, S, One or more atoms selected from P and Si may be included.
Further, in the present embodiment, any of organic groups constituting R 8 to R 11 may not have an acidic functional group. Thereby, control of the acid value in a polymer can be made easy.
 また、本実施形態において、上記式(B1)、式(B2)および式(B6)中のR~R11は、それぞれ独立して、炭素数1~30の有機基であって、それぞれ独立して炭素数1~10の有機基であることが好ましく、それぞれ独立して炭素数1~5の有機基であることがさらに好ましく、それぞれ独立して炭素数1~3の有機基であることが一層好ましい。 In this embodiment, R 8 to R 11 in the above formulas (B1), (B2), and (B6) are each independently an organic group having 1 to 30 carbon atoms, and each independently It is preferably an organic group having 1 to 10 carbon atoms, more preferably independently an organic group having 1 to 5 carbon atoms, and each independently an organic group having 1 to 3 carbon atoms. Is more preferable.
 本実施形態において、上記式(B1)、式(B2)および式(B6)中のR~R11を構成する有機基としては、上記式(A1)中のR~R、及び、上記式(A2)中のR~Rを構成する有機基と同様の有機基を用いることができる。 In the present embodiment, the organic groups constituting R 8 to R 11 in the above formulas (B1), (B2), and (B6) include R 1 to R 4 in the above formula (A1), and An organic group similar to the organic group constituting R 5 to R 7 in the above formula (A2) can be used.
 本実施形態に係るポリマーのMw(重量平均分子量)の上限値は、例えば、30000以下であって、20000以下とするのが好ましく、14000以下とするのがさらに好ましく、10000以下とするのが一層好ましい。これにより、分子鎖の運動性が向上することで、より適切な架橋構造を作ることができる。
 また、ポリマーMwの下限値は、例えば、1500以上であって、2000以上とするのが好ましく、3000以上とするのがより好ましい。これにより、ネガ型感光性樹脂組成物を露光する際、速やかに架橋構造を形成することが可能になる。したがって、ネガ型感光性樹脂組成物の感度を向上させることができる。
The upper limit value of Mw (weight average molecular weight) of the polymer according to this embodiment is, for example, 30000 or less, preferably 20000 or less, more preferably 14000 or less, and even more preferably 10,000 or less. preferable. Thereby, the mobility of a molecular chain improves and a more suitable crosslinked structure can be made.
Further, the lower limit value of the polymer Mw is, for example, 1500 or more, preferably 2000 or more, and more preferably 3000 or more. Thereby, when exposing a negative photosensitive resin composition, it becomes possible to form a crosslinked structure rapidly. Therefore, the sensitivity of the negative photosensitive resin composition can be improved.
 また、本実施形態に係るポリマーの分散度、すなわち、Mw(重量平均分子量)/Mn(数平均分子量)の上限値は、例えば、2.5以下であって、2.2以下とするのが好ましく、2.0以下とするのが更に好ましい。これにより、ポリマーの分子量分布の幅を減らすことができ、ネガ型感光性樹脂組成物全体で、同様の架橋構造を形成することができる。したがって、ネガ型感光性樹脂組成物の硬化物全体で物性を均一にすることができる。
 また、Mw/Mnの下限値は、例えば、1.0以上としてもよく、1.5以上とすることができる。なお、Mw/Mnは、単分散に近いほどよい。
 なお、Mw/Mnは、分子量分布の幅を示す分散度である。ポリマーのMw/Mnを上記範囲とすることにより、ポリマーを含む樹脂組成物からなる樹脂膜の形状を良好なものとすることができる。なお、このような効果は、同時に上述のようにポリマーの低分子量成分を低減する場合において特に顕著に表れる。
In addition, the degree of dispersion of the polymer according to the present embodiment, that is, the upper limit value of Mw (weight average molecular weight) / Mn (number average molecular weight) is, for example, 2.5 or less and 2.2 or less. Preferably, it is 2.0 or less. Thereby, the width | variety of the molecular weight distribution of a polymer can be reduced, and the same crosslinked structure can be formed in the whole negative photosensitive resin composition. Therefore, the physical properties can be made uniform throughout the cured product of the negative photosensitive resin composition.
Moreover, the lower limit of Mw / Mn may be 1.0 or more, for example, and can be 1.5 or more. Mw / Mn is preferably closer to monodispersion.
Mw / Mn is a degree of dispersion indicating the width of the molecular weight distribution. By setting Mw / Mn of the polymer in the above range, the shape of the resin film made of the resin composition containing the polymer can be improved. Such an effect is particularly noticeable when the low molecular weight component of the polymer is simultaneously reduced as described above.
 なお、重量平均分子量(Mw)、数平均分子量(Mn)、および分子量分布(Mw/Mn)は、例えばGPC測定により得られる標準ポリスチレン(PS)の検量線から求めたポリスチレン換算値を用いる。測定条件は、例えば以下の通りである。
東ソー社製ゲルパーミエーションクロマトグラフィー装置HLC-8320GPC
カラム:東ソー社製TSK-GEL Supermultipore HZ-M
検出器:液体クロマトグラム用RI検出器
測定温度:40℃
溶媒:THF
試料濃度:2.0mg/ミリリットル
For the weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution (Mw / Mn), for example, a polystyrene conversion value obtained from a standard polystyrene (PS) calibration curve obtained by GPC measurement is used. The measurement conditions are, for example, as follows.
Tosoh gel permeation chromatography device HLC-8320GPC
Column: Tosoh TSK-GEL Supermultipore HZ-M
Detector: RI detector for liquid chromatogram Measurement temperature: 40 ° C
Solvent: THF
Sample concentration: 2.0 mg / ml
 本実施形態におけるポリマーのアルカリ溶解速度は、たとえば500Å/秒以上20,000Å/秒以下である。ポリマーのアルカリ溶解速度は、たとえばポリマーをプロピレングリコールモノメチルエーテルアセテートに溶解させ、固形分20重量%に調整したポリマー溶液を、シリコンウェハ上にスピン方式で塗布し、これを110℃で100秒間ソフトベークして得られるポリマー膜を、23℃で2.38%のテトラメチルアンモニウムハイドロオキサイド水溶液に含浸させ、視覚的に前記ポリマー膜が消去するまでの時間を測定することにより算出される。
 ポリマーのアルカリ溶解速度を500Å/秒以上とすることにより、アルカリ現像液による現像工程におけるスループットを良好なものとすることができる。また、ポリマーのアルカリ溶解速度を20,000Å/秒以下とすることにより、アルカリ現像液による現像工程後における残膜率を向上させることができる。このため、リソグラフィ工程による膜減りを抑えることが可能となる。
The alkali dissolution rate of the polymer in the present embodiment is, for example, not less than 500 kg / sec and not more than 20,000 kg / sec. The alkali dissolution rate of the polymer can be determined by, for example, dissolving a polymer in propylene glycol monomethyl ether acetate and applying a polymer solution adjusted to a solid content of 20% by weight on a silicon wafer by a spin method, followed by soft baking at 110 ° C. for 100 seconds. The polymer film thus obtained is impregnated with a 2.38% tetramethylammonium hydroxide aqueous solution at 23 ° C., and the time until the polymer film is visually erased is calculated.
By setting the alkali dissolution rate of the polymer to 500 kg / second or more, it is possible to improve the throughput in the development step using an alkali developer. Moreover, the residual film rate after the image development process by an alkali developing solution can be improved by making the alkali dissolution rate of a polymer into 20,000 kg / sec or less. For this reason, it is possible to suppress film loss due to the lithography process.
(ポリマーの製造方法)
 本実施形態に係るポリマーは、例えば、以下のように製造される。
 モノマーAと、モノマーBとを重合し、共重合体1を重合する重合工程(処理S1)と、次いで、共重合体1のモノマーA由来のカルボキシル基を、末端不飽和炭素二重結合をもつ化合物によって置換し、共重合体2を得る置換工程(処理S2)と、共重合体2から低分子量成分を除去しポリマーを得る低分子量除去工程(処理S3)とを少なくとも含む。
 モノマーBが無水マレイン酸を含む場合、重合工程(処理S1)の後、低分子量除去工程(処理S3)の前に、一部の無水マレイン酸由来の繰り返し単位を開環する開環工程(処理S'1)と、次いで、残留金属成分を除去する洗浄工程(処理S'2)とを含んでもよい。
 以下、各工程の詳細について説明する。
(Method for producing polymer)
The polymer according to this embodiment is produced, for example, as follows.
Polymerization step (Process S1) for polymerizing monomer A and monomer B to polymerize copolymer 1, and then the carboxyl group derived from monomer A of copolymer 1 has a terminal unsaturated carbon double bond It includes at least a substitution step (treatment S2) for obtaining a copolymer 2 by substitution with a compound and a low molecular weight removal step (treatment S3) for removing a low molecular weight component from the copolymer 2 to obtain a polymer.
When monomer B contains maleic anhydride, after the polymerization step (treatment S1) and before the low molecular weight removal step (treatment S3), a ring-opening step (treatment) S′1) and then a cleaning step (processing S′2) for removing residual metal components may be included.
Details of each step will be described below.
(重合工程(処理S1))
 はじめに、カルボキシル基によって置換されたノルボルネン型モノマーと、無水マレイン酸、マレイミドまたはマレイミド誘導体と、を用意する。
 上記式(1)で示される共重合体において、上記カルボキシル基によって置換されたノルボルネン型モノマー(以下、モノマーAとする。)がAで示される構造単位の由来となる。また、無水マレイン酸、マレイミド及びマレイミド誘導体からなる群より選択される1種または2種以上のモノマー(以下、モノマーBとする。)がBで示される構造単位の由来となる。
(Polymerization step (Process S1))
First, a norbornene type monomer substituted with a carboxyl group and maleic anhydride, maleimide or a maleimide derivative are prepared.
In the copolymer represented by the above formula (1), the norbornene type monomer substituted with the carboxyl group (hereinafter referred to as monomer A) is derived from the structural unit represented by A. Further, one or more monomers selected from the group consisting of maleic anhydride, maleimide and maleimide derivatives (hereinafter referred to as monomer B) are derived from the structural unit represented by B.
 モノマーAは、下式(2)で示される。下式(2)において、R~Rは、上述した式(A2)のものと同様とすることができる。 Monomer A is represented by the following formula (2). In the following formula (2), R 5 to R 7 can be the same as those in the above-described formula (A2).
Figure JPOXMLDOC01-appb-C000040
(式(2)中、R、RおよびRはそれぞれ独立して水素または炭素数1~30の有機基であり、nは0、1または2である。)
Figure JPOXMLDOC01-appb-C000040
(In the formula (2), R 5 , R 6 and R 7 are each independently hydrogen or an organic group having 1 to 30 carbon atoms, and n is 0, 1 or 2.)
 上記式(2)で示されるカルボキシル基によって置換されたノルボルネン型モノマーとしては、具体的には、5-ノルボルネン-2-カルボン酸、5-ノルボルネン-2,3-ジカルボン酸及びテトラシクロドデセンカルボン酸などが挙げられる。
 カルボキシル基によって置換されたノルボルネン型モノマーとしては、これらのうち1種または2種以上を使用できる。中でも、耐熱性向上の観点から、5-ノルボルネン-2-カルボン酸を使用することが好ましい。
Specific examples of the norbornene-type monomer substituted by the carboxyl group represented by the above formula (2) include 5-norbornene-2-carboxylic acid, 5-norbornene-2,3-dicarboxylic acid, and tetracyclododecenecarboxylic acid. An acid etc. are mentioned.
As the norbornene type monomer substituted with a carboxyl group, one or more of these can be used. Of these, 5-norbornene-2-carboxylic acid is preferably used from the viewpoint of improving heat resistance.
 モノマーBは無水マレイン酸、マレイミド及びマレイミド誘導体からなる群より選択される1種または2種以上のモノマーであって、マレイミド及びマレイミド誘導体からなる群より選択される1種または2種以上のモノマーであることが好ましい。マレイミド誘導体を用いることで、耐熱性、硬化後残膜率及び耐溶剤性を向上させることができる。また、マレイミド及びマレイミド誘導体を併用することで、ネガ型感光性樹脂組成物のアルカリ溶解速度を向上させ、さらに、感度を向上させることができる。
 上記マレイミド誘導体としては、下記式(3)に示される。
Monomer B is one or more monomers selected from the group consisting of maleic anhydride, maleimide and maleimide derivatives, and one or more monomers selected from the group consisting of maleimide and maleimide derivatives. Preferably there is. By using a maleimide derivative, the heat resistance, the remaining film ratio after curing, and the solvent resistance can be improved. Further, by using maleimide and a maleimide derivative in combination, the alkali dissolution rate of the negative photosensitive resin composition can be improved, and further the sensitivity can be improved.
The maleimide derivative is represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000041
(式(3)中、R11は、独立して炭素数1~30の有機基である。)
Figure JPOXMLDOC01-appb-C000041
(In Formula (3), R 11 is independently an organic group having 1 to 30 carbon atoms.)
 上記式(3)で示されるマレイミド誘導体としては、例えば、N-メチルマレイミド、N-エチルマレイミドなどのN-直鎖状アルキルマレイミド;N-イソプロピルマレイミドなどのN-分岐アルキルマレイミド;N-シクロヘキシルマレイミドなどのN-シクロアルキルマレイミド;N-フェニルマレイミド、N-ナフチルマレイミドなどのN-アリールマレイミドなどが挙げられる。これらのなかでも、直鎖状N-アルキルマレイミド、分岐アルキルマレイミドまたはN-シクロアルキルマレイミドを用いることが好ましく、N-シクロアルキルマレイミドを含むことが一層好ましい。N-シクロアルクルマレイミドとしては、N-シクロヘキシルマレイミドを用いるのが好ましい。これにより、耐熱性、硬化後残膜率及び耐溶剤性を向上させることができる。 Examples of maleimide derivatives represented by the above formula (3) include N-linear alkylmaleimides such as N-methylmaleimide and N-ethylmaleimide; N-branched alkylmaleimides such as N-isopropylmaleimide; N-cyclohexylmaleimide And N-arylmaleimide such as N-phenylmaleimide and N-naphthylmaleimide. Among these, linear N-alkylmaleimide, branched alkylmaleimide or N-cycloalkylmaleimide is preferably used, and N-cycloalkylmaleimide is more preferably included. As N-cycloalkalemaleimide, N-cyclohexylmaleimide is preferably used. Thereby, heat resistance, the remaining film rate after hardening, and solvent resistance can be improved.
 次いで、モノマーAと、モノマーBとを付加重合して共重合体1を合成する。
 付加重合の方法としては特に限定されないが、本実施形態においては、ラジカル重合により共重合体1を合成する。
 付加重合することにより、モノマーAに由来する構造単位と、モノマーBに由来する構造単位とを有する共重合体1を合成することができる。
 ここで、モノマーAに由来する構造単位を下記式(A2)に示す。
 また、モノマーBとして、無水マレイン酸、マレイミド、マレイミド誘導体を用いることで、それぞれ、下記式(B3)、下記式(B5)、下記式(B6)に由来する構造単位を有する共重合体1を得ることができる。
Next, the copolymer 1 is synthesized by addition polymerization of the monomer A and the monomer B.
The method of addition polymerization is not particularly limited, but in this embodiment, the copolymer 1 is synthesized by radical polymerization.
By addition polymerization, copolymer 1 having a structural unit derived from monomer A and a structural unit derived from monomer B can be synthesized.
Here, the structural unit derived from the monomer A is represented by the following formula (A2).
Further, by using maleic anhydride, maleimide, and a maleimide derivative as the monomer B, the copolymer 1 having structural units derived from the following formula (B3), the following formula (B5), and the following formula (B6), respectively. Obtainable.
Figure JPOXMLDOC01-appb-I000042
(式(A2)中、R、RおよびRはそれぞれ独立して水素または炭素数1~30の有機基であり、nは0、1または2である。)
Figure JPOXMLDOC01-appb-I000042
(In the formula (A2), R 5 , R 6 and R 7 are each independently hydrogen or an organic group having 1 to 30 carbon atoms, and n is 0, 1 or 2.)
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
(式(B6)中、R11は、独立して炭素数1~30の有機基である。)
Figure JPOXMLDOC01-appb-C000045
(In Formula (B6), R 11 is independently an organic group having 1 to 30 carbon atoms.)
 モノマーAと、モノマーBとのモル比は、0.5:1~1:0.5であることが好ましい。なかでも、分子構造制御の観点から、モル比は1:1であることが好ましい。
 モノマーAと、モノマーBと、重合開始剤とを溶媒に溶解し、その後、所定時間加熱することで、付加重合を進行させる。加熱温度は、例えば、50~80℃であり、加熱時間は10~20時間である。
The molar ratio of monomer A to monomer B is preferably 0.5: 1 to 1: 0.5. Among these, from the viewpoint of controlling the molecular structure, the molar ratio is preferably 1: 1.
Monomer A, monomer B, and a polymerization initiator are dissolved in a solvent, and then heated for a predetermined time to cause addition polymerization to proceed. The heating temperature is, for example, 50 to 80 ° C., and the heating time is 10 to 20 hours.
 重合開始剤としては、アゾ化合物および有機過酸化物のうち1種または2種以上を使用できる。
 アゾ化合物としては、例えば、アゾビスイソブチロニトリル(AIBN)、ジメチル2,2'-アゾビス(2-メチルプロピオネート)、1,1'-アゾビス(シクロヘキサンカルボニトリル)(ABCN)が挙げられ、これらのうち、いずれか1種以上を使用できる。
 また、有機過酸化物としては、例えば、過酸化水素、ジターシャリブチルパーオキサイド(DTBP)、過酸化ベンゾイル(ベンゾイルパーオキサイド,BPO)および、メチルエチルケトンパーオキサイド(MEKP)を挙げることができ、これらのうち、いずれか1種以上を使用できる。
As the polymerization initiator, one or more of azo compounds and organic peroxides can be used.
Examples of the azo compound include azobisisobutyronitrile (AIBN), dimethyl 2,2′-azobis (2-methylpropionate), 1,1′-azobis (cyclohexanecarbonitrile) (ABCN). Any one or more of these can be used.
Examples of the organic peroxide include hydrogen peroxide, ditertiary butyl peroxide (DTBP), benzoyl peroxide (benzoyl peroxide, BPO), and methyl ethyl ketone peroxide (MEKP). Any one or more of them can be used.
 重合開始剤の量(モル数)は、上記Aの構造単位の由来となるカルボキシル基によって置換されたノルボルネン型モノマーと、上記Bの構造単位の由来となるモノマーとの合計モル数の1%~10%とすることが好ましい。重合開始剤の量を前記範囲内で適宜設定し、かつ、反応温度、反応時間を適宜設定することで、得られるポリマーの重量平均分子量(Mw)を5000~30000に調整することができる。 The amount (number of moles) of the polymerization initiator is 1% to the total number of moles of the norbornene-type monomer substituted with the carboxyl group derived from the structural unit A and the monomer derived from the structural unit B. 10% is preferable. The weight average molecular weight (Mw) of the resulting polymer can be adjusted to 5000-30000 by appropriately setting the amount of the polymerization initiator within the above range and appropriately setting the reaction temperature and reaction time.
 溶媒としては、例えば、ジエチルエーテル、テトラヒドロフラン、トルエン等のうち、1種または2種以上を使用することができる。 As the solvent, for example, one or more of diethyl ether, tetrahydrofuran, toluene and the like can be used.
 この重合工程により、モノマーAと、モノマーBとの共重合体である、共重合体1を重合することができる。共重合体1の配列は、特に限定されず、ランダム共重合体、交互共重合体、ブロック共重合体及び周期共重合体のいずれでもよい。
 共重合体1は、例えば、モノマーAとして上記式(2)に示されるモノマーを用い、かつ、モノマーBとして上記式(3)に示されるモノマーを用いた場合、下記式(4)で示される構造単位を有する共重合体が形成される。
By this polymerization step, copolymer 1 which is a copolymer of monomer A and monomer B can be polymerized. The arrangement | sequence of the copolymer 1 is not specifically limited, Any of a random copolymer, an alternating copolymer, a block copolymer, and a periodic copolymer may be sufficient.
For example, when the monomer represented by the above formula (2) is used as the monomer A and the monomer represented by the above formula (3) is used as the monomer B, the copolymer 1 is represented by the following formula (4). A copolymer having a structural unit is formed.
Figure JPOXMLDOC01-appb-I000046
(式(4)において、R~Rは、上記式(A2)と同じである。また、R11は、上記式(3)と同じである。)
Figure JPOXMLDOC01-appb-I000046
(In the formula (4), R 5 to R 7 are the same as the above formula (A2). Also, R 11 is the same as the above formula (3).)
 共重合体1において、モノマーAに由来するR~Rの官能基は、各繰り返し単位において異なっていてもよく、共通であってもよい。これらの中でも共通であることが好ましい。これにより、ネガ型感光性樹脂組成物のパターニング精度を向上させることができる。 In the copolymer 1, the functional groups of R 5 to R 7 derived from the monomer A may be different in each repeating unit or may be common. Among these, it is preferable that they are common. Thereby, the patterning precision of a negative photosensitive resin composition can be improved.
(置換工程(S2))
 次いで、得られた共重合体1において、一部の上記式(A2)によって示される構造単位のカルボキシル基を、末端不飽和炭素二重結合をもつ化合物によって置換し、共重合体2とする。
(Replacement step (S2))
Next, in the obtained copolymer 1, some of the carboxyl groups of the structural units represented by the above formula (A2) are substituted with a compound having a terminal unsaturated carbon double bond to obtain a copolymer 2.
 共重合体1を置換し、共重合体2を合成する方法については特に限定されないが、例えば、以下の方法で行うことができる。
 上記共重合体1と、末端不飽和炭素二重結合をもつ化合物とを溶媒に溶解し、所定時間加熱することで、置換反応を進行し、共重合体2を合成する。ここで、加熱温度は、例えば、50~100℃であり、加熱時間は2~20時間である。
 これにより、Aの構造単位において、モノマーAに由来する繰り返し単位と、モノマーAが末端不飽和炭素二重結合をもつ化合物により置換された繰り返し単位と、モノマーB由来の構造単位と、を備える共重合体2を得ることができる。
 モノマーAが末端不飽和炭素二重結合をもつ化合物により置換された構造単位を下記式(A1)に示す。
Although the method for substituting the copolymer 1 and synthesizing the copolymer 2 is not particularly limited, for example, the following method can be used.
The copolymer 1 and the compound having a terminal unsaturated carbon double bond are dissolved in a solvent and heated for a predetermined time, whereby the substitution reaction proceeds to synthesize the copolymer 2. Here, the heating temperature is, for example, 50 to 100 ° C., and the heating time is 2 to 20 hours.
Thereby, in the structural unit of A, a common unit comprising a repeating unit derived from the monomer A, a repeating unit in which the monomer A is substituted with a compound having a terminal unsaturated carbon double bond, and a structural unit derived from the monomer B. Polymer 2 can be obtained.
A structural unit in which the monomer A is substituted with a compound having a terminal unsaturated carbon double bond is shown in the following formula (A1).
Figure JPOXMLDOC01-appb-I000047
(式(A1)中、R、R、RおよびRはそれぞれ独立して水素または炭素数1~30の有機基であって、R、R、RおよびRに少なくとも1つの末端不飽和炭素二重結合を含む。nは0、1または2である。)
Figure JPOXMLDOC01-appb-I000047
(In the formula (A1), R 1 , R 2 , R 3 and R 4 are each independently hydrogen or an organic group having 1 to 30 carbon atoms, and at least R 1 , R 2 , R 3 and R 4 Contains one terminal unsaturated carbon double bond, n is 0, 1 or 2)
 上記末端不飽和炭素二重結合をもつ化合物としては、アクリル化合物を用いることが好ましい。
 アクリル化合物としては、例えば、グリシジル酸メタクリル(グリシジルメタクリレート)、グリシジルアクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル、ヒドロキシエチルメタクリレートなどが挙げられる。これらの中でも、グリシジルメタクリレートを用いるのが好ましい。
As the compound having a terminal unsaturated carbon double bond, an acrylic compound is preferably used.
Examples of the acrylic compound include methacrylic acid methacrylic acid (glycidyl methacrylate), glycidyl acrylate, 4-hydroxybutyl acrylate glycidyl ether, hydroxyethyl methacrylate, and the like. Among these, it is preferable to use glycidyl methacrylate.
 溶媒としては、例えば、ジエチルエーテル、テトラヒドロフラン、トルエン等のうち、1種または2種以上を使用することができる。 As the solvent, for example, one or more of diethyl ether, tetrahydrofuran, toluene and the like can be used.
 共重合体2において、例えば、Aにより示される構造単位全てに対して、5mol%以上の構造単位を上記式(A1)で表される構造単位に置換するのが好ましく、10mol%以上を置換するのがより好ましく、15mol%以上を置換するのが更に好ましく、20mol%以上を置換するのが一層好ましい。このように置換率を設定することで、ノルボルネン単位に由来する末端不飽和炭素二重結合を適切に架橋することができる。これにより、共重合体2を含むネガ型感光性樹脂組成物の耐熱性、残膜率及び耐溶剤性を向上することができる。 In the copolymer 2, for example, it is preferable to replace 5 mol% or more of structural units with the structural unit represented by the above formula (A1) with respect to all the structural units represented by A, and to replace 10 mol% or more. It is more preferable to substitute 15 mol% or more, and it is more preferable to substitute 20 mol% or more. By setting the substitution rate in this way, the terminal unsaturated carbon double bond derived from the norbornene unit can be appropriately crosslinked. Thereby, the heat resistance of the negative photosensitive resin composition containing the copolymer 2 and a residual film rate and solvent resistance can be improved.
 ここで、カルボキシル基によって置換されたノルボルネン型モノマーに由来する繰り返し単位のうち、一部の繰り返し単位を置換したことについては、1H-NMR測定のスペクトルデータにより同定することができる。 Here, substitution of some of the repeating units derived from the norbornene-type monomer substituted with a carboxyl group can be identified by spectral data of 1H-NMR measurement.
 また、カルボキシル基をアクリル化合物により置換した置換率は、以下のようにして計測することができる。
 共重合体2のポリマー溶液について、1H―NMR測定する。1H-NMR測定によって得られたスペクトルデータについて、カルボキシル基に由来する単位プロトンあたりのシグナル積分値Xと、添加したアクリル化合物により形成される末端不飽和炭素二重結合に由来する単位プロトンあたりのシグナル積分値Yとを算出する。上記シグナル積分値を用いて、以下の式により、置換率を算出することができる。
置換率(%)=Y/(X+Y)×100
Moreover, the substitution rate which substituted the carboxyl group with the acrylic compound can be measured as follows.
The polymer solution of copolymer 2 is subjected to 1H-NMR measurement. For the spectral data obtained by 1H-NMR measurement, the signal integral value X per unit proton derived from the carboxyl group and the signal per unit proton derived from the terminal unsaturated carbon double bond formed by the added acrylic compound. An integral value Y is calculated. Using the signal integration value, the substitution rate can be calculated by the following equation.
Substitution rate (%) = Y / (X + Y) × 100
(低分子量除去工程(S3))
 次に、共重合体2と、残留モノマーおよびオリゴマー等の低分子量成分とが含まれた前記有機層を、濃縮した後、THF等の有機溶媒に再度溶解させる。そして、この溶液に、ヘキサンおよびメタノールを加えて、共重合体2を含むポリマーを凝固沈殿させる。ここで、低分子量成分としては、残留モノマー、オリゴマー、さらには、重合開始剤等が含まれる。次いで、ろ過を行い、得られた凝固物を、乾燥させる。これにより、低分子量成分が除去された共重合体2を主成分(主生成物)とするポリマーを得ることができる。
 本実施形態においては、当該低分子量成分除去工程(処理S3)において、共重合体2中における分子量1000以下の低核体含有率が1%以下になるまで抽出操作を繰り返すことが好ましい。これにより、第一のポリマー中における低分子量成分の量を、硬化時における膜のパターン変形を抑制するために十分な程度に低減することができる。
(Low molecular weight removal step (S3))
Next, the organic layer containing the copolymer 2 and low molecular weight components such as residual monomers and oligomers is concentrated and then dissolved again in an organic solvent such as THF. And hexane and methanol are added to this solution, and the polymer containing the copolymer 2 is coagulated and precipitated. Here, as a low molecular weight component, a residual monomer, an oligomer, a polymerization initiator, and the like are included. Next, filtration is performed, and the obtained coagulum is dried. Thereby, the polymer which has the copolymer 2 from which the low molecular weight component was removed as a main component (main product) can be obtained.
In the present embodiment, in the low molecular weight component removing step (processing S3), the extraction operation is preferably repeated until the content of low nuclei having a molecular weight of 1000 or less in the copolymer 2 is 1% or less. Thereby, the amount of the low molecular weight component in the first polymer can be reduced to a degree sufficient to suppress the deformation of the film pattern during curing.
 なお、モノマーBが無水マレイン酸を含む場合、上記重合工程(S1)の後、上記低分子量成分除去工程(S3)の前に開環工程(S'1)及び洗浄工程(S'2)を行ってもよい。以下、説明する。 In addition, when the monomer B contains maleic anhydride, the ring-opening step (S′1) and the washing step (S′2) are performed after the polymerization step (S1) and before the low molecular weight component removal step (S3). You may go. This will be described below.
(開環工程(S'1))
 得られた共重合体1または共重合体2の無水マレイン酸のうち、一部の繰り返し単位を閉環した状態としながら、残りの繰り返し単位を開環する。これにより、共重合体1中におけるカルボキシル基の量を調整することができる。すなわち、作製されるポリマーにおける酸価の制御が可能となる。
 本実施形態においては、共重合体1または共重合体2の無水マレイン酸由来の繰り返し単位のうち、例えば50%以上の繰り返し単位を開環せずに、前記残りの繰り返し単位の環状構造(無水環)を開環する。すなわち、共重合体1の開環率は、例えば50%未満である。なかでも、共重合体1の無水マレイン酸由来の環状構造の繰り返し単位の全個数のうち、60%以上、90%以下の繰り返し単位を開環しないことが好ましい。
(Ring opening process (S'1))
Among the maleic anhydrides of the obtained copolymer 1 or copolymer 2, the remaining repeating units are opened while some of the repeating units are in a closed state. Thereby, the quantity of the carboxyl group in the copolymer 1 can be adjusted. That is, the acid value of the produced polymer can be controlled.
In this embodiment, among the repeating units derived from maleic anhydride of Copolymer 1 or Copolymer 2, for example, 50% or more of the repeating units are not opened, and the cyclic structure (anhydrous Ring). That is, the ring opening rate of the copolymer 1 is, for example, less than 50%. Among these, it is preferable that 60% or more and 90% or less of the repeating units of the cyclic structure derived from maleic anhydride of the copolymer 1 are not ring-opened.
 ここで、無水マレイン酸由来の繰り返し単位の開環率は以下のようにして計測することができる。
 開環前の共重合体1または共重合体2の酸無水物構造における(C=O)のIR吸収強度(A1)を測定し、開環後の酸無水物構造における(C=O)のIR吸収強度(A2)より以下式にて開環率を算出する。
開環率(%)=((A1-A2)/A1)×100
 なお、内部標準物質としてアセトニトリルを用いる。
Here, the ring-opening rate of the repeating unit derived from maleic anhydride can be measured as follows.
The IR absorption intensity (A1) of (C═O) in the acid anhydride structure of copolymer 1 or copolymer 2 before ring opening was measured, and (C═O) in the acid anhydride structure after ring opening was measured. The ring opening rate is calculated from the IR absorption intensity (A2) by the following formula.
Ring-opening rate (%) = ((A1-A2) / A1) × 100
Acetonitrile is used as an internal standard substance.
 具体的には、
(A)塩基としての金属アルコキシド
(B)アルコールおよび塩基としてのアルカリ金属の水酸化物
 のいずれか一方を、前記重合工程において、前記共重合体1が重合された反応液に添加するとともに、メチルエチルケトン(MEK)等の有機溶媒をさらに添加し、40~50℃で1~5時間攪拌して、反応液L1を得る。反応液L1中では、共重合体1の無水マレイン酸由来の繰り返し単位の一部の無水環が開環するとともに、開環することで形成された一部の末端がエステル化される。なお、残りの末端はエステル化されずに、金属塩構造となる。
In particular,
(A) One of the metal alkoxide (B) alcohol as the base and the alkali metal hydroxide as the base is added to the reaction solution obtained by polymerizing the copolymer 1 in the polymerization step, and methyl ethyl ketone. An organic solvent such as (MEK) is further added and stirred at 40 to 50 ° C. for 1 to 5 hours to obtain a reaction liquid L1. In the reaction liquid L1, a part of the anhydride ring of the repeating unit derived from the maleic anhydride of the copolymer 1 is opened, and a part of the terminal formed by the ring opening is esterified. The remaining terminals are not esterified and have a metal salt structure.
 本実施形態において、金属アルコキシドあるいはアルカリ金属の水酸化物のモル数は、重合工程で使用した無水マレイン酸のモル数の50%以下とすることが好ましい。なかでも、金属アルコキシドあるいはアルカリ金属の水酸化物のモル数は、重合工程で使用した無水マレイン酸のモル数の40%以下、10%以上とすることが好ましく、さらには、30%以下とすることが好ましい。このようにすることで、金属アルコキシドあるいはアルカリ金属の水酸化物の量を少なくすることができ、最終的に得られるポリマー中のアルカリ金属濃度を低減することができる。
 ポリマー中のアルカリ金属濃度を低減することで、このポリマーを使用したデバイスを形成した際に、金属イオンのマイグレートを抑制することができる。
In the present embodiment, the number of moles of metal alkoxide or alkali metal hydroxide is preferably 50% or less of the number of moles of maleic anhydride used in the polymerization step. Among them, the number of moles of metal alkoxide or alkali metal hydroxide is preferably 40% or less, 10% or more, and more preferably 30% or less of the number of moles of maleic anhydride used in the polymerization step. It is preferable. By doing so, the amount of metal alkoxide or alkali metal hydroxide can be reduced, and the alkali metal concentration in the finally obtained polymer can be reduced.
By reducing the alkali metal concentration in the polymer, migration of metal ions can be suppressed when a device using this polymer is formed.
 前述した金属アルコキシドとしては、M(OR)で示されるもの(Mは1価の金属、Rは炭素数1~18の有機基である。)が好ましい。金属Mとしては、アルカリ金属があげられ、なかでも、取り扱い性の観点からナトリウムが好ましい。Rとしては、例えば上記式(B1)におけるRと同様のものが挙げられる。
 なお、金属アルコキシドとしては、異なるものを2種以上使用してもよい。ただし、製造安定性の観点からは、1種の金属アルコキシドを使用することが好ましい。
The metal alkoxide described above is preferably one represented by M (OR 8 ) (M is a monovalent metal and R 8 is an organic group having 1 to 18 carbon atoms). Examples of the metal M include alkali metals, and sodium is preferable from the viewpoint of handleability. The R 8, are the same as those for R 8 in example above formula (B1).
Two or more different metal alkoxides may be used. However, from the viewpoint of production stability, it is preferable to use one kind of metal alkoxide.
 一方で、前述したように、共重合体1または共重合体2の無水マレイン酸由来の構造体を(B)アルコールおよび塩基としてのアルカリ金属の水酸化物の存在下で開環してもよい。
 アルカリ金属の水酸化物としては、取り扱い性の観点から水酸化ナトリウムが好ましい。
 アルコールとしては、1価のアルコール(ROH)が好ましい。有機基であるRは、前述したものを使用できる。なお、Rは炭素数30以下であることが好ましい。
On the other hand, as described above, the maleic anhydride-derived structure of copolymer 1 or copolymer 2 may be ring-opened in the presence of (B) an alcohol and an alkali metal hydroxide as a base. .
As the alkali metal hydroxide, sodium hydroxide is preferable from the viewpoint of handleability.
As the alcohol, monovalent alcohol (R 8 OH) is preferable. What was mentioned above can be used for R < 8 > which is an organic group. R 8 preferably has 30 or less carbon atoms.
 この開環工程(処理S'1)で開環した無水マレイン酸由来の繰り返し単位は、以下の式(6)で示す構造となり、カルボキシル基の塩部分を有する構造となる。 The repeating unit derived from maleic anhydride opened in this ring-opening step (treatment S′1) has a structure represented by the following formula (6), and has a structure having a carboxyl group salt moiety.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 なお、(A)塩基としての金属アルコキシド、または、(B)アルコールおよび塩基としてのアルカリ金属の水酸化物で共重合体を開環した場合、わずかではあるが下式(8)、下式(B2)で示す構造体が形成されることがある。なお、下式(B2)において、R、R10は上記Rと同じでもよい。 When the copolymer is opened with (A) a metal alkoxide as a base, or (B) an alcohol and an alkali metal hydroxide as a base, the following formulas (8), ( The structure shown in B2) may be formed. In the following formula (B2), R 9 and R 10 may be the same as R 8 described above.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 次いで、反応液L1に、塩酸あるいは蟻酸等の酸性水溶液を加えることで、共重合体1または共重合体2を酸処理して、金属イオン(Na+)をプロトン(H+)と置換する。
 上式(6)、(8)で示される構造単位は、それぞれ、プロトン置換によって以下の(B1)、(B4)で示される構造単位になる。
Next, an acidic aqueous solution such as hydrochloric acid or formic acid is added to the reaction liquid L1, whereby the copolymer 1 or the copolymer 2 is acid-treated to replace the metal ions (Na +) with protons (H +).
The structural units represented by the above formulas (6) and (8) become structural units represented by the following (B1) and (B4) by proton substitution, respectively.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 この開環工程(処理S'1)では、共重合体1または共重合体2の無水マレイン酸由来の繰り返し単位のうち、50%以上の繰り返し単位を開環しないことが好ましい。共重合体2では、前述したように、無水マレイン環が開環して形成された一方の末端に金属(例えば、Na)が結合しているが、50%以上の繰り返し単位を開環しないことで、生成物であるポリマー中に含まれる金属量を少なくすることができる。これにより、本実施形態で最終的に得られるポリマー中のアルカリ金属の量を低減することができ、このポリマーを用いたネガ型感光性樹脂組成物において所望の特性を発揮させることができる。 In this ring-opening step (treatment S′1), it is preferable that 50% or more of the repeating units derived from maleic anhydride of Copolymer 1 or Copolymer 2 are not opened. In the copolymer 2, as described above, a metal (for example, Na) is bonded to one end formed by opening an anhydrous maleic ring, but 50% or more of repeating units must not be opened. Thus, the amount of metal contained in the product polymer can be reduced. Thereby, the quantity of the alkali metal in the polymer finally obtained by this embodiment can be reduced, and a desired characteristic can be exhibited in the negative photosensitive resin composition using this polymer.
(洗浄工程(処理S'2))
 上記開環工程(処理S'1)を行った場合、工程により得られた開環後の共重合体1または共重合体2を含む溶液を、水と有機溶媒(例えば、メチルエチルケトン)との混合物で洗浄して、残留金属成分を除去する。開環後の共重合体1または共重合体2、残留モノマーおよびオリゴマーは、有機層に移動する。その後、水層を除去する(第一の洗浄)。
 その後、再度、有機層に、水と有機溶媒(例えば、メチルエチルケトン)との混合物を加えて、洗浄する(第二の洗浄)。
 本実施形態においては、以上のような洗浄工程(処理S'2)を、例えば、5回以上、より好ましくは10回繰り返す。また、洗浄工程に用いる水と有機溶媒の添加量を調節することで、洗浄工程1回によって、残留しているナトリウムの85%以上を取り除くことが好ましく、90%以上を取り除くことがより好ましい。これにより、開環後の共重合体1または共重合体2中におけるアルカリ金属の濃度を、十分に低減することができる。
 なお、開環後の共重合体1または共重合体2中のアルカリ金属濃度が10ppm以下、好ましくは5ppm以下となるように洗浄工程(処理S3)を繰り返し行うことが好ましい。
(Washing process (Processing S'2))
When the ring-opening step (treatment S′1) is performed, the solution containing the copolymer 1 or the copolymer 2 after the ring-opening obtained in the step is mixed with water and an organic solvent (for example, methyl ethyl ketone). To remove residual metal components. The copolymer 1 or the copolymer 2, the residual monomer and the oligomer after the ring opening move to the organic layer. Thereafter, the aqueous layer is removed (first cleaning).
Thereafter, again, a mixture of water and an organic solvent (for example, methyl ethyl ketone) is added to the organic layer for washing (second washing).
In the present embodiment, the above-described cleaning step (processing S′2) is repeated, for example, 5 times or more, more preferably 10 times. Further, it is preferable to remove 85% or more of the remaining sodium and more preferably 90% or more by one washing step by adjusting the addition amount of water and organic solvent used in the washing step. Thereby, the density | concentration of the alkali metal in the copolymer 1 or the copolymer 2 after ring-opening can fully be reduced.
In addition, it is preferable to repeat a washing | cleaning process (process S3) so that the alkali metal concentration in the copolymer 1 or the copolymer 2 after ring-opening may be 10 ppm or less, Preferably it is 5 ppm or less.
 本実施形態において、ネガ型感光性樹脂組成物は上記ポリマー、感光剤、架橋剤を含むことができる。さらに、溶媒と、密着改善剤、界面活性剤などの添加物を含むことができる。 In this embodiment, the negative photosensitive resin composition can contain the polymer, a photosensitive agent, and a crosslinking agent. Furthermore, an additive such as a solvent and an adhesion improving agent or a surfactant can be contained.
 本実施形態における、ポリマーの含有量の上限値は、ネガ型感光性樹脂組成物の全固形分100質量部に対して、80質量部以下であり、75質量部以下であることが好ましく、70質量部以下であることが更に好ましい。
 また、ポリマーの含有量の下限値は、ネガ型感光性樹脂組成物の全固形分100質量部に対して、5質量部以上であり、10質量部以上であることが好ましく、20質量部以下であることが更に好ましい。
 ポリマーの含有量が上記上限下限の範囲内であることによって、ネガ型感光性樹脂組成物を露光することで、適切な架橋構造を形成することが可能になる。
In this embodiment, the upper limit of the polymer content is 80 parts by mass or less, preferably 75 parts by mass or less, with respect to 100 parts by mass of the total solid content of the negative photosensitive resin composition. It is still more preferable that it is below mass parts.
Further, the lower limit of the content of the polymer is 5 parts by mass or more, preferably 10 parts by mass or more, and 20 parts by mass or less with respect to 100 parts by mass of the total solid content of the negative photosensitive resin composition. More preferably.
When the content of the polymer is within the above upper and lower limits, it is possible to form an appropriate crosslinked structure by exposing the negative photosensitive resin composition.
 (感光剤)
 本実施形態において、感光剤は、光ラジカル重合開始剤を用いることができる。
 光ラジカル重合開始剤としては、具体的には、アルキルフェノン型の開始剤、オキシムエステル型の開始剤、アシルフォスフィンオキサイド型の開始剤等が挙げられる。光ラジカル重合開始剤としては、上記具体例のうち、1種または2種以上を組み合わせて用いることができる。これらのなかでも、オキシムエステル型の光ラジカル重合開始剤を用いることが好ましい。これにより、低い露光量で感光剤をラジカル化することができ、感度を上昇させることができる。
(Photosensitive agent)
In the present embodiment, a radical photopolymerization initiator can be used as the photosensitive agent.
Specific examples of the radical photopolymerization initiator include alkylphenone type initiators, oxime ester type initiators, acylphosphine oxide type initiators, and the like. As a radical photopolymerization initiator, one or a combination of two or more of the above specific examples can be used. Among these, it is preferable to use an oxime ester type radical photopolymerization initiator. Thereby, the photosensitive agent can be radicalized with a low exposure amount, and the sensitivity can be increased.
 具体的な光ラジカル重合開始剤としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-メチル-1[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム))、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)等が挙げられる。これらのうち、1種または2種以上を使用してもよい。 Specific photo radical polymerization initiators include, for example, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 2-methyl-1 [4- (methylthio) phenyl] -2-Morifolinopropan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2- Methyl-1-propan-1-one, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyl) Oxime)), ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (0-acetylo Shim), and the like. Among these, you may use 1 type, or 2 or more types.
 本実施形態における、感光剤の含有量の上限値は、ポリマー100質量部に対して、1質量部以上であってもよく、1.5質量部以上であることが好ましく、2質量部以上であることが更に好ましい。これにより、ネガ型感光性樹脂組成物において、露光による反応速度を向上することができる。したがって、感度を向上することができる。
 また、感光剤の含有量の下限値は、20質量部以下とするのが好ましく、15質量部以下とするのがより好ましく、10質量部以下とするのが更に好ましい。これにより、ネガ型感光性樹脂組成物において、ポリマーに対して適切な反応性を発現することができる。
In this embodiment, the upper limit of the content of the photosensitive agent may be 1 part by mass or more, preferably 1.5 parts by mass or more, and preferably 2 parts by mass or more with respect to 100 parts by mass of the polymer. More preferably it is. Thereby, in a negative photosensitive resin composition, the reaction rate by exposure can be improved. Therefore, sensitivity can be improved.
Further, the lower limit of the content of the photosensitive agent is preferably 20 parts by mass or less, more preferably 15 parts by mass or less, and further preferably 10 parts by mass or less. Thereby, in a negative photosensitive resin composition, appropriate reactivity with respect to a polymer can be expressed.
(架橋剤)
 本実施形態において、架橋剤としては公知の架橋剤を用いることができる。架橋剤としては、例えば、(メタ)アクリル基を含むアクリル系架橋剤を用いることが好ましい。アクリル系架橋剤は、例えば、多官能アクリル化合物である。ここで、多官能アクリル化合物とは、2以上の(メタ)アクリル基を有する化合物のことである。
 なお、本実施形態において、(メタ)アクリル基とは、アクリル基、または、メタアクリル基すなわちメタクリル基を示す。なお、アクリル基とは、アクリレート基を含む。また、メタアクリル基とは、メタクリレート基、すなわち、メタアクリレート基を含む。
 ここで、架橋剤及び共重合体の末端不飽和炭素二重結合の組み合わせとしては、例えば、
架橋剤がアクリル系架橋剤であり、共重合体の末端不飽和炭素二重結合を備える官能基が上記一般式(E1)または一般式(E2)で表される構造を含むことが好ましい。これにより、架橋剤及び共重合体のラジカル連鎖反応の反応性を同程度に保つことができる。したがって、好適な架橋構造を形成することができる。
(Crosslinking agent)
In the present embodiment, a known crosslinking agent can be used as the crosslinking agent. As the crosslinking agent, for example, an acrylic crosslinking agent containing a (meth) acryl group is preferably used. The acrylic crosslinking agent is, for example, a polyfunctional acrylic compound. Here, the polyfunctional acrylic compound is a compound having two or more (meth) acryl groups.
In addition, in this embodiment, a (meth) acryl group shows an acryl group or a methacryl group, ie, a methacryl group. The acrylic group includes an acrylate group. The methacryl group includes a methacrylate group, that is, a methacrylate group.
Here, as a combination of the crosslinking agent and the terminal unsaturated carbon double bond of the copolymer, for example,
The crosslinking agent is preferably an acrylic crosslinking agent, and the functional group having a terminal unsaturated carbon double bond of the copolymer preferably includes a structure represented by the general formula (E1) or the general formula (E2). Thereby, the reactivity of the radical chain reaction of a crosslinking agent and a copolymer can be maintained at the same level. Therefore, a suitable cross-linked structure can be formed.
 具体的な多官能アクリル化合物としては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の三官能(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等の四官能(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の六官能(メタ)アクリレートが挙げられる。これらのうち、1種または2種以上を使用してもよい。
 なお、本実施形態において、(メタ)アクリレート基とは、アクリレート基またはメタアクリレート基を示す。
Specific polyfunctional acrylic compounds include trifunctional (meth) acrylates such as trimethylolpropane tri (meth) acrylate and pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and ditrimethylolpropane tetra (meth). Examples include tetrafunctional (meth) acrylates such as acrylate and hexafunctional (meth) acrylates such as dipentaerythritol hexa (meth) acrylate. Among these, you may use 1 type, or 2 or more types.
In addition, in this embodiment, a (meth) acrylate group shows an acrylate group or a methacrylate group.
 本実施形態における、架橋剤の含有量の下限値は、ポリマー100質量部に対して、20質量部以上であってもよく、25質量部以上であるのが好ましく、30重量部以上とするのがさらに好ましい。これにより、ノルボルネン型構造単位の末端不飽和炭素二重結合に由来する架橋構造以外にも、架橋構造を形成することができる。したがって、耐熱性の向上、耐溶剤性の向上、及び、現像後における残膜率の向上を実現することができる。
 また、架橋剤の含有量の上限値は、ポリマー100質量部に対して、80質量部以下であってもよく、75質量部以下であるのが好ましく、70質量部以下であることが更に好ましい。これにより、架橋剤が過剰に架橋構造に寄与することを防ぐことができ、ノルボルネン型の構造単位の運動性を適切に抑制することができる。したがって、耐熱性の向上、耐溶剤性の向上、及び、現像後における残膜率の向上を実現することができる。
In the present embodiment, the lower limit value of the content of the crosslinking agent may be 20 parts by mass or more, preferably 25 parts by mass or more, and 30 parts by mass or more with respect to 100 parts by mass of the polymer. Is more preferable. Thereby, in addition to the crosslinked structure derived from the terminal unsaturated carbon double bond of the norbornene-type structural unit, a crosslinked structure can be formed. Therefore, improvement in heat resistance, improvement in solvent resistance, and improvement in the remaining film ratio after development can be realized.
Further, the upper limit of the content of the crosslinking agent may be 80 parts by mass or less, preferably 75 parts by mass or less, and more preferably 70 parts by mass or less with respect to 100 parts by mass of the polymer. . Thereby, it can prevent that a crosslinking agent contributes to a crosslinked structure excessively, and can suppress the mobility of a norbornene-type structural unit appropriately. Therefore, improvement in heat resistance, improvement in solvent resistance, and improvement in the remaining film ratio after development can be realized.
(溶媒)
 本実施形態に記載のネガ型感光性樹脂組成物は、上述の各成分を溶媒に溶解することで、ワニスとして使用することができる。
 このような溶媒の例としては、N-メチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸メチル、乳酸エチル、乳酸ブチル、メチル-1,3-ブチレングリコールアセテート、1,3-ブチレングリコール-3-モノメチルエーテル、ピルビン酸メチル、およびピルビン酸エチル及びメチル-3-メトキシプロピオネート等が挙げられる。
 なお、樹脂膜のクラック発生を顕著に抑制する観点からは、これらの化合物のうち、γ-ブチロラクロン、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートからなる群から選ばれる化合物を用いることが好ましい態様である。
(solvent)
The negative photosensitive resin composition described in the present embodiment can be used as a varnish by dissolving the above-described components in a solvent.
Examples of such solvents include N-methyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylacetamide, dimethyl sulfoxide, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, dipropylene glycol Monomethyl ether, propylene glycol monomethyl ether acetate, methyl lactate, ethyl lactate, butyl lactate, methyl-1,3-butylene glycol acetate, 1,3-butylene glycol-3-monomethyl ether, methyl pyruvate, and ethyl and methyl pyruvate -3-Methoxypropionate and the like.
Of these compounds, γ-butyrolaclone, dimethyl sulfoxide, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether are among these compounds from the viewpoint of significantly suppressing the occurrence of cracks in the resin film. It is preferable to use a compound selected from the group consisting of propylene glycol monomethyl ether acetate.
(その他の添加剤)
 本実施形態において、ネガ型感光性樹脂組成物は、必要に応じて、密着改善剤、界面活性剤、酸化防止剤、充填材、増感剤、シランカップリング剤及び末端封止剤等の添加剤を含んでもよい。
(Other additives)
In the present embodiment, the negative photosensitive resin composition is added as necessary, such as an adhesion improving agent, a surfactant, an antioxidant, a filler, a sensitizer, a silane coupling agent, and a terminal blocking agent. An agent may be included.
 本実施形態に係る樹脂膜は、ネガ型感光性樹脂組成物の硬化物からなる。 The resin film according to the present embodiment is made of a cured product of a negative photosensitive resin composition.
 本実施形態の樹脂膜は、上記ネガ型感光性樹脂組成物からなるものであり、これらの乾燥膜または硬化膜で構成することができる。
 本実施形態のネガ型感光性樹脂組成物は、レジストや永久膜等の樹脂膜を形成するために用いられる。このような用途は、耐熱性の観点から好適である。
 また、上記レジストは、例えば、ネガ型感光性樹脂組成物をスピンコート、ロールコート、フローコート、ディップコート、スプレーコート、ドクターコート等の方法で塗布し、溶媒を除去することにより得られた樹脂膜で構成される。
 上記永久膜は、上記の樹脂膜に対して露光および現像を行い、所望の形状にパターニングした後、熱処理等によって硬化させることにより得られた硬化膜で構成される。永久膜は、例えば、保護膜、層間膜、またはダム材等に用いることができる。
The resin film of this embodiment consists of the said negative photosensitive resin composition, and can be comprised with these dry films or cured films.
The negative photosensitive resin composition of this embodiment is used for forming a resin film such as a resist or a permanent film. Such an application is suitable from the viewpoint of heat resistance.
The resist is, for example, a resin obtained by applying a negative photosensitive resin composition by spin coating, roll coating, flow coating, dip coating, spray coating, doctor coating, or the like, and removing the solvent. Consists of a membrane.
The permanent film is composed of a cured film obtained by exposing and developing the resin film, patterning it into a desired shape, and curing it by heat treatment or the like. The permanent film can be used, for example, as a protective film, an interlayer film, or a dam material.
 本実施形態に係る電子装置は、上記樹脂膜が用いられる。 The resin film is used in the electronic device according to the present embodiment.
 本実施形態の電子装置100は、上記の樹脂膜を備えることができる。
 図1に示す電子装置100は、たとえば半導体チップである。この場合、たとえば電子装置100を、バンプ52を介して配線基板上に搭載することにより半導体パッケージが得られる。電子装置100は、トランジスタ等の半導体素子が設けられた半導体基板と、半導体基板上に設けられた多層配線層と、を備えている(図示せず)。多層配線層のうち最上層には、層間絶縁膜30と、層間絶縁膜30上に設けられた最上層配線34が設けられている。最上層配線34は、たとえばAlにより構成される。また、層間絶縁膜30上および最上層配線34上には、パッシベーション膜32が設けられている。パッシベーション膜32の一部には、最上層配線34が露出する開口が設けられている。
The electronic device 100 of the present embodiment can include the above resin film.
An electronic device 100 shown in FIG. 1 is, for example, a semiconductor chip. In this case, for example, a semiconductor package can be obtained by mounting the electronic device 100 on the wiring board via the bumps 52. The electronic device 100 includes a semiconductor substrate provided with a semiconductor element such as a transistor, and a multilayer wiring layer provided on the semiconductor substrate (not shown). An interlayer insulating film 30 and an uppermost layer wiring 34 provided on the interlayer insulating film 30 are provided in the uppermost layer of the multilayer wiring layer. The uppermost layer wiring 34 is made of, for example, Al. Further, a passivation film 32 is provided on the interlayer insulating film 30 and the uppermost layer wiring 34. An opening through which the uppermost layer wiring 34 is exposed is provided in a part of the passivation film 32.
 パッシベーション膜32上には、再配線層40が設けられている。再配線層40は、パッシベーション膜32上に設けられた絶縁層42と、絶縁層42上に設けられた再配線46と、絶縁層42上および再配線46上に設けられた絶縁層44と、を有する。絶縁層42には、最上層配線34に接続する開口が形成されている。再配線46は、絶縁層42上および絶縁層42に設けられた開口内に形成され、最上層配線34に接続されている。絶縁層44には、再配線46に接続する開口が設けられている。
 本実施形態においては、パッシベーション膜32、絶縁層42および絶縁層44のうちの一つ以上を、たとえば上述のネガ型感光性樹脂組成物を硬化することにより形成される樹脂膜により構成することができる。この場合、たとえばネガ型感光性樹脂材料により形成される塗布膜に対し紫外線を露光し、現像を行うことによりパターニングした後、これを加熱硬化することにより、パッシベーション膜32、絶縁層42または絶縁層44が形成される。
A rewiring layer 40 is provided on the passivation film 32. The rewiring layer 40 includes an insulating layer 42 provided on the passivation film 32, a rewiring 46 provided on the insulating layer 42, an insulating layer 44 provided on the insulating layer 42 and the rewiring 46, Have An opening connected to the uppermost layer wiring 34 is formed in the insulating layer 42. The rewiring 46 is formed on the insulating layer 42 and in an opening provided in the insulating layer 42, and is connected to the uppermost layer wiring 34. The insulating layer 44 is provided with an opening connected to the rewiring 46.
In the present embodiment, one or more of the passivation film 32, the insulating layer 42, and the insulating layer 44 may be formed of a resin film formed by curing, for example, the above-described negative photosensitive resin composition. it can. In this case, for example, the coating film formed of a negative photosensitive resin material is exposed to ultraviolet light, patterned by performing development, and then heated and cured to thereby passivate the passivation film 32, the insulating layer 42, or the insulating layer. 44 is formed.
 絶縁層44に設けられた開口内には、たとえばUBM(Under Bump Metallurgy)層50を介してバンプ52が形成される。電子装置100は、たとえばバンプ52を介して配線基板等に接続される。 In the opening provided in the insulating layer 44, for example, a bump 52 is formed via a UBM (Under Bump Metallurgy) layer 50. The electronic device 100 is connected to a wiring board or the like via bumps 52, for example.
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。 It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within the scope that can achieve the object of the present invention are included in the present invention.
 次に、本発明の実施例について説明する。
 まず、実施例で用いた各材料については以下に示すように準備を行った。
Next, examples of the present invention will be described.
First, each material used in the examples was prepared as shown below.
(合成例1)
 5-ノルボルネン-2-カルボン酸と、N-シクロヘキシルマレイミドとを仕込みmol比50/50で用いて共重合体を作製し、この共重合体にメタクリル酸グリシジルを付加することで、共重合体であるポリマーを合成し、合成例1とした。以下、詳細を説明する。
 撹拌機,冷却管を備えた適切なサイズの反応容器に、5-ノルボルネン-2-カルボン酸(NC、本州化学工業(株)製、87.7g、0.630mol)およびジメチル2,2'-アゾビス(2-メチルプロピオネート)(V-601、和光純薬工業(株)製、14.5g、63mmol)を計量しメチルエチルケトン(MEK、58.0g)に溶解させ、溶解液を作製した。この溶解液に対して、10分間窒素を通気して酸素を除去し、その後、撹拌しつつ70℃で6時間反応させた。6時間の反応に際して、N-シクロヘキシルマレイミド(CMI、(株)日本触媒製、112.9g,0.630mol)とMEK127.5gの混合液を反応容器内に6時間かけて連続的に添加した。CMIの混合液の添加が終了した後、70℃で3時間さらに反応させた。反応液にMEK266.7gを加えて希釈した後、大量のメタノール/水混合液(重量比8/2)に滴下し固体を析出させた。濾取した固体を真空乾燥機にて50℃で16時間乾燥させ、5-ノルボルネン-2-カルボン酸と、N-シクロヘキシルマレイミドとの共重合体であるポリマーを得た。収量は128.1g、Mwは4,700、Mw/Mnは1.63であった。
 撹拌機,冷却管を備えた適切なサイズの反応容器に、上記の5-ノルボルネン-2-カルボン酸と、N-シクロヘキシルマレイミドとの共重合体であるポリマー(60.0g)を計量し、PGMEA(140.0g)に溶解させた。さらにメタクリル酸グリシジル(GMA,東京化成工業製、20.7g,0.146mol)、トリエチルアミン(1.8g)を添加し、80℃で5時間加熱した。反応液にギ酸を加えて酸処理した後、大量のメタノール/水混合液(重量比8/2)に滴下し合成例1のポリマーを析出させた。濾取した固体を真空乾燥機にて40℃で40時間乾燥させ、合成例1のポリマーを得た。収量は50.5g、Mwは5,500、Mw/Mnは1.65であった。
(Synthesis Example 1)
A copolymer is prepared by charging 5-norbornene-2-carboxylic acid and N-cyclohexylmaleimide at a molar ratio of 50/50, and adding glycidyl methacrylate to the copolymer. A polymer was synthesized and designated as Synthesis Example 1. Details will be described below.
To a suitably sized reaction vessel equipped with a stirrer and a condenser, 5-norbornene-2-carboxylic acid (NC, manufactured by Honshu Chemical Industry Co., Ltd., 87.7 g, 0.630 mol) and dimethyl 2,2′- Azobis (2-methylpropionate) (V-601, manufactured by Wako Pure Chemical Industries, Ltd., 14.5 g, 63 mmol) was weighed and dissolved in methyl ethyl ketone (MEK, 58.0 g) to prepare a solution. The dissolved solution was purged with nitrogen for 10 minutes to remove oxygen, and then reacted at 70 ° C. for 6 hours with stirring. During the 6-hour reaction, a mixed solution of N-cyclohexylmaleimide (CMI, manufactured by Nippon Shokubai Co., Ltd., 112.9 g, 0.630 mol) and MEK 127.5 g was continuously added to the reaction vessel over 6 hours. After the addition of the mixture of CMI was completed, the mixture was further reacted at 70 ° C. for 3 hours. After diluting the reaction solution by adding 266.7 g of MEK, the solution was added dropwise to a large amount of methanol / water mixture (weight ratio 8/2) to precipitate a solid. The solid collected by filtration was dried in a vacuum dryer at 50 ° C. for 16 hours to obtain a polymer which is a copolymer of 5-norbornene-2-carboxylic acid and N-cyclohexylmaleimide. The yield was 128.1 g, Mw was 4,700, and Mw / Mn was 1.63.
A polymer (60.0 g), which is a copolymer of the above-mentioned 5-norbornene-2-carboxylic acid and N-cyclohexylmaleimide, is weighed into a reaction vessel of an appropriate size equipped with a stirrer and a condenser. (140.0 g). Further, glycidyl methacrylate (GMA, manufactured by Tokyo Chemical Industry Co., Ltd., 20.7 g, 0.146 mol) and triethylamine (1.8 g) were added and heated at 80 ° C. for 5 hours. After formic acid was added to the reaction solution for acid treatment, the solution was added dropwise to a large amount of methanol / water mixture (weight ratio 8/2) to precipitate the polymer of Synthesis Example 1. The solid collected by filtration was dried in a vacuum dryer at 40 ° C. for 40 hours to obtain the polymer of Synthesis Example 1. The yield was 50.5 g, Mw was 5,500, and Mw / Mn was 1.65.
 得られた合成例1のポリマーを、重DMSOに溶解し、日本電子社製核磁気共鳴装置にて1H-NMR測定を行った。1H-NMR測定により得られたスペクトルから、δ5.68とδ6.07に付加GMAのメタクリロイル基に由来するシグナルが、またδ12.13にポリマー中のカルボキシル基に由来するシグナルがそれぞれ確認された。
 なお、それぞれのシグナルの積分比から、カルボキシル基と、メタクリロイル基とのmol比は1:0.3であることが確認された。
 これにより、5-ノルボルネン-2-カルボン酸由来の一部の構造単位におけるカルボキシル基が、グリシジルメタクリレートによって置換されていることが確認された。したがって、合成例1では下式(9)で示される各構造単位を有する共重合体が得られることが確認された。
The obtained polymer of Synthesis Example 1 was dissolved in heavy DMSO, and 1H-NMR measurement was performed using a nuclear magnetic resonance apparatus manufactured by JEOL. From the spectrum obtained by 1H-NMR measurement, a signal derived from the methacryloyl group of the added GMA was confirmed at δ5.68 and δ6.07, and a signal derived from the carboxyl group in the polymer was confirmed at δ12.13.
In addition, from the integration ratio of each signal, it was confirmed that the molar ratio of the carboxyl group to the methacryloyl group was 1: 0.3.
As a result, it was confirmed that the carboxyl groups in some structural units derived from 5-norbornene-2-carboxylic acid were substituted with glycidyl methacrylate. Therefore, in Synthesis Example 1, it was confirmed that a copolymer having each structural unit represented by the following formula (9) was obtained.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
(合成例2)
 5-ノルボルネン-2-カルボン酸と、マレイミドと、N-シクロヘキシルマレイミドとを仕込みmol比50/15/35で用いて共重合体を作製し、この共重合体にメタクリル酸グリシジルを付加することで、共重合体であるポリマーを合成し、合成例2とした。以下、詳細を説明する。
 撹拌機,冷却管を備えた適切なサイズの反応容器に、5-ノルボルネン-2-カルボン酸(NC、本州化学工業(株)製、70.8g、0.512mol)、N-シクロヘキシルマレイミド(CMI、(株)日本触媒製、14.23g,0.079mol)およびジメチル2,2'-アゾビス(2-メチルプロピオネート)(V-601、和光純薬工業(株)製、11.8g、51mmol)を計量しメチルエチルケトン(MEK、47.2g)に溶解させ溶解液を作製した。この溶解液に対して、10分間窒素を通気して酸素を除去し、その後、撹拌しつつ70℃で6時間反応させた。この6時間の反応に際して、マレイミド(14.9g、0.154mol)、CMI(50.1g, 0.279mol)とMEK91.0gの混合液を反応容器内に6時間かけて連続的に添加した。溶液の添加が終了した後、70℃で3時間さらに反応させた。反応液にMEK200gを加えて希釈した後、大量のメタノール/水混合液(重量比5/5)に滴下し固体を析出させた。濾取した固体を真空乾燥機にて50℃で64時間乾燥させ、5-ノルボルネン-2-カルボン酸と、マレイミドと、N-シクロヘキシルマレイミドとの共重合体であるポリマーを得た。収量は124.3g、Mwは4,500、 Mw/Mnは1.75であった。
 撹拌機,冷却管を備えた適切なサイズの反応容器に、上記の5-ノルボルネン-2-カルボン酸と、マレイミドと、N-シクロヘキシルマレイミドとの共重合体であるポリマー(50.0g)を計量しPGMEA(100.0g)に溶解させた。さらにメタクリル酸グリシジル(GMA,東京化成工業製、24.3g, 0.171mol)、トリエチルアミン(1.5g)を添加し、90℃で4時間加熱した。反応液にギ酸を加えて酸処理した後、大量のメタノール/水混合液(重量比5/5)に滴下し合成例2のポリマーを析出させた。濾取した固体を真空乾燥機にて40℃で40時間乾燥させ、合成例2のポリマーを得た。収量は31.2g、Mwは4,900、Mw/Mnは1.72であった。
(Synthesis Example 2)
By adding 5-norbornene-2-carboxylic acid, maleimide, and N-cyclohexylmaleimide at a molar ratio of 50/15/35, a copolymer was prepared, and glycidyl methacrylate was added to the copolymer. Then, a polymer which is a copolymer was synthesized and used as Synthesis Example 2. Details will be described below.
In a suitably sized reaction vessel equipped with a stirrer and a condenser, 5-norbornene-2-carboxylic acid (NC, manufactured by Honshu Chemical Industry Co., Ltd., 70.8 g, 0.512 mol), N-cyclohexylmaleimide (CMI) Nippon Shokubai Co., Ltd., 14.23 g, 0.079 mol) and dimethyl 2,2′-azobis (2-methylpropionate) (V-601, manufactured by Wako Pure Chemical Industries, Ltd., 11.8 g) 51 mmol) was weighed and dissolved in methyl ethyl ketone (MEK, 47.2 g) to prepare a solution. The dissolved solution was purged with nitrogen for 10 minutes to remove oxygen, and then reacted at 70 ° C. for 6 hours with stirring. During the reaction for 6 hours, a mixed solution of maleimide (14.9 g, 0.154 mol), CMI (50.1 g, 0.279 mol) and MEK 91.0 g was continuously added to the reaction vessel over 6 hours. After the addition of the solution was completed, the mixture was further reacted at 70 ° C. for 3 hours. After 200 g of MEK was added to the reaction solution for dilution, it was added dropwise to a large amount of methanol / water mixture (weight ratio 5/5) to precipitate a solid. The solid collected by filtration was dried in a vacuum dryer at 50 ° C. for 64 hours to obtain a polymer which is a copolymer of 5-norbornene-2-carboxylic acid, maleimide and N-cyclohexylmaleimide. The yield was 124.3 g, Mw was 4,500, and Mw / Mn was 1.75.
A polymer (50.0 g), which is a copolymer of the above-mentioned 5-norbornene-2-carboxylic acid, maleimide, and N-cyclohexylmaleimide, is weighed in an appropriately sized reaction vessel equipped with a stirrer and a condenser. And dissolved in PGMEA (100.0 g). Furthermore, glycidyl methacrylate (GMA, manufactured by Tokyo Chemical Industry Co., Ltd., 24.3 g, 0.171 mol) and triethylamine (1.5 g) were added and heated at 90 ° C. for 4 hours. After formic acid was added to the reaction solution for acid treatment, it was dropped into a large amount of methanol / water mixture (weight ratio 5/5) to precipitate the polymer of Synthesis Example 2. The solid collected by filtration was dried in a vacuum dryer at 40 ° C. for 40 hours to obtain the polymer of Synthesis Example 2. The yield was 31.2 g, Mw was 4,900, and Mw / Mn was 1.72.
 得られた合成例2のポリマーを、重DMSOに溶解し、日本電子社製核磁気共鳴装置にて1H-NMR測定を行った。合成例1と同様に、カルボキシル基由来のピークと、メタクリロイル基の構造に由来するピークとが確認された。これにより、5-ノルボルネン-2-カルボン酸由来の一部の構造単位におけるカルボキシル基が、グリシジルメタクリレートによって置換されていることが確認された。したがって、合成例2では下式(10)で示される各構造単位を有する共重合体が得られることが確認された。 The obtained polymer of Synthesis Example 2 was dissolved in heavy DMSO, and 1H-NMR measurement was performed using a nuclear magnetic resonance apparatus manufactured by JEOL. Similar to Synthesis Example 1, a peak derived from the carboxyl group and a peak derived from the structure of the methacryloyl group were confirmed. As a result, it was confirmed that the carboxyl groups in some structural units derived from 5-norbornene-2-carboxylic acid were substituted with glycidyl methacrylate. Therefore, in Synthesis Example 2, it was confirmed that a copolymer having each structural unit represented by the following formula (10) was obtained.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
(合成例3)
 2-ノルボルネンと、無水マレイン酸とを仕込みmol比50/50で用いて共重合体を作製し、この共重合体の無水マレイン酸に由来する構造単位を酢酸ナトリウムで開環し、メタクリル酸グリシジルを付加することで、共重合体であるポリマーを合成し、合成例3とした。以下、詳細を説明する。
 撹拌機、冷却管を備えた適切なサイズの反応容器に、無水マレイン酸(日本触媒社製、122.4g、1.25mol)、2-ノルボルネン(75wt%トルエン溶液,丸善石油化学社製、156.8g、1.25mol)およびジメチル2,2'-アゾビス(2-メチルプロピオネート)(V-601、和光純薬工業社製、11.5g、50mmol)を計量し、メチルエチルケトン(MEK,150.8g)およびトルエン(38.5g)に溶解させ、溶解液を作製した。この溶解液に対して、10分間窒素を通気して酸素を除去し、その後、撹拌しつつ60℃に加熱した。16時間後、MEK(320g)を加えて希釈し、冷却した。この反応混合物を大量のメタノールに滴下し、固体を析出させ、ヌッチェを用いてろ過した後、さらにメタノールにて洗浄し固体を濾取した。得られた固体を70℃で真空乾燥し、2-ノルボルネンと、無水マレイン酸との共重合体を得た。収量は208.1g、重量平均分子量(Mw)は11,100,分散度(Mw/Mn)は2.25であった。
 撹拌機、冷却管を備えた適切なサイズの反応容器に、上述の2-ノルボルネンと、無水マレイン酸との共重合体(10.0g)を計量しMEK(30.0g)に溶解させた。さらにメタクリル酸-2-ヒドロキシエチル(HEMA,(株)日本触媒製、8.5g,65mmol)、酢酸ナトリウム(1.0g)を添加し、70℃で8時間加熱した。この反応液に対して、メタクリル酸グリシジル(GMA,1.5g,10mmol)を添加し、さらに70℃で16時間撹拌した。反応液にギ酸を加えて酸処理した後、大量の純水に滴下しポリマーを析出させた。濾取した固体を真空乾燥機にて40℃で16時間乾燥させ、合成例3のポリマーを得た。収量は11.5g、Mwは14,100、Mw/Mnは2.30であった。
 合成例3では下式(13)で示される各構造単位を有する共重合体が得られた。
(Synthesis Example 3)
2-Norbornene and maleic anhydride are charged at a molar ratio of 50/50 to prepare a copolymer, and the structural unit derived from maleic anhydride of the copolymer is ring-opened with sodium acetate to obtain glycidyl methacrylate. Was added to synthesize a polymer as a copolymer, which was designated as Synthesis Example 3. Details will be described below.
In a suitably sized reaction vessel equipped with a stirrer and a condenser, maleic anhydride (Nippon Shokubai Co., Ltd., 122.4 g, 1.25 mol), 2-norbornene (75 wt% toluene solution, Maruzen Petrochemical Co., Ltd. 8 g, 1.25 mol) and dimethyl 2,2′-azobis (2-methylpropionate) (V-601, manufactured by Wako Pure Chemical Industries, 11.5 g, 50 mmol) were weighed and methyl ethyl ketone (MEK, 150 0.8 g) and toluene (38.5 g) to prepare a solution. The solution was purged with nitrogen for 10 minutes to remove oxygen, and then heated to 60 ° C. with stirring. After 16 hours, MEK (320 g) was added to dilute and cool. The reaction mixture was added dropwise to a large amount of methanol to precipitate a solid, which was filtered using a Nutsche, further washed with methanol, and the solid was collected by filtration. The obtained solid was vacuum dried at 70 ° C. to obtain a copolymer of 2-norbornene and maleic anhydride. The yield was 208.1 g, the weight average molecular weight (Mw) was 11,100, and the dispersity (Mw / Mn) was 2.25.
The above-mentioned copolymer of 2-norbornene and maleic anhydride (10.0 g) was weighed and dissolved in MEK (30.0 g) in an appropriately sized reaction vessel equipped with a stirrer and a condenser. Further, 2-hydroxyethyl methacrylate (HEMA, Nippon Shokubai Co., Ltd., 8.5 g, 65 mmol) and sodium acetate (1.0 g) were added and heated at 70 ° C. for 8 hours. To this reaction solution, glycidyl methacrylate (GMA, 1.5 g, 10 mmol) was added, and the mixture was further stirred at 70 ° C. for 16 hours. After formic acid was added to the reaction solution for acid treatment, it was dropped into a large amount of pure water to precipitate a polymer. The solid collected by filtration was dried in a vacuum dryer at 40 ° C. for 16 hours to obtain the polymer of Synthesis Example 3. The yield was 11.5 g, Mw was 14,100, and Mw / Mn was 2.30.
In Synthesis Example 3, a copolymer having each structural unit represented by the following formula (13) was obtained.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
(酸価)
 各合成例について、得られたポリマーの酸価を以下のように算出した。
 合成したポリマー約0.2gを秤量し、THF/メタノール=1/1(v/v)の溶液50mLに溶解させた。得られた溶液に対して、濃度0.1Mのナトリウムメトキシド/メタノール溶液を用いて電位差滴定を行った。電位差滴定において、電極で生じる電位の変曲点までの試薬添加量によってポリマーの酸価を評価した。
(Acid value)
For each synthesis example, the acid value of the obtained polymer was calculated as follows.
About 0.2 g of the synthesized polymer was weighed and dissolved in 50 mL of a THF / methanol = 1/1 (v / v) solution. The obtained solution was subjected to potentiometric titration using a sodium methoxide / methanol solution having a concentration of 0.1M. In potentiometric titration, the acid value of the polymer was evaluated by the amount of reagent added up to the inflection point of the potential generated at the electrode.
(アルカリ溶解速度)
 各合成例について、得られたポリマーのアルカリ溶解速度を以下のように測定した。
 ポリマーをPGMEAに溶解させ、固形分濃度25%の溶液を調製した。このポリマー溶液を、シリコンウェハ上にスピン方式で塗布し、これを100℃で120秒間ソフトベークして、厚みHが約2.0μmのポリマー膜を形成した。このポリマー膜を形成したシリコンウェハを、2.38%、23℃のテトラメチルアンモニウムハイドロオキサイド水溶液に含浸させ、視覚的にポリマー膜が消去するまでの時間Tを測定した。H及びTより、以下の式からアルカリ溶解速度を算出した。
(アルカリ溶解速度)[Å/秒]=(膜厚H)/(ポリマー膜が消去するまでの時間T)
(Alkali dissolution rate)
For each synthesis example, the alkali dissolution rate of the obtained polymer was measured as follows.
The polymer was dissolved in PGMEA to prepare a solution having a solid concentration of 25%. This polymer solution was applied onto a silicon wafer by a spin method, and this was soft baked at 100 ° C. for 120 seconds to form a polymer film having a thickness H of about 2.0 μm. The silicon wafer on which this polymer film was formed was impregnated with a 2.38%, 23 ° C. aqueous tetramethylammonium hydroxide solution, and the time T until the polymer film was visually erased was measured. From H and T, the alkali dissolution rate was calculated from the following equation.
(Alkali dissolution rate) [Å / second] = (film thickness H) / (time T until the polymer film is erased)
 各合成例のポリマーについて、酸価とアルカリ溶解速度の評価結果を以下の表1に示す。 Table 1 below shows the evaluation results of acid value and alkali dissolution rate for the polymers of each synthesis example.
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
(感光剤)
 感光剤1:以下の式(11)で示される光ラジカル重合開始剤(BASF社製 Irgacure OXE02)を用いた。
(Photosensitive agent)
Photosensitizer 1: A photoradical polymerization initiator represented by the following formula (11) (Irgacure OXE02 manufactured by BASF) was used.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
(架橋剤)
 架橋剤1:以下の式(12)で示されるアクリル系架橋剤(ダイセルサイテック社製 DPHA)を用いた。
(Crosslinking agent)
Crosslinking agent 1: An acrylic crosslinking agent (DPHA manufactured by Daicel Cytec Co., Ltd.) represented by the following formula (12) was used.
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
(密着改善剤)
 密着改善剤1:3-グリシドキシプロピルトリメトキシシラン(信越化学工業社製 KBM-403)
(Adhesion improver)
Adhesion improver 1: 3-glycidoxypropyltrimethoxysilane (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.)
(界面活性剤)
 界面活性剤1:メガファックF-556(DIC株式会社製)
(Surfactant)
Surfactant 1: Megafac F-556 (manufactured by DIC Corporation)
 次に、本発明の実施例で作製したネガ型感光性樹脂組成物について説明する。 Next, the negative photosensitive resin composition produced in the examples of the present invention will be described.
(実施例1、2及び比較例1のネガ型感光性樹脂組成物の調整)
 各実施例、各比較例について、表2に示される配合量で、合成例1~3で作製したポリマーの20%PGMEA溶液、感光剤、架橋剤、密着改善剤及び界面活性剤を適量のPGMEAに溶解させ撹拌した。撹拌後、0.2μmのフィルターで濾過して、ネガ型樹脂組成物を調製した。
 なお、各実施例および各比較例のネガ型感光性樹脂組成物を調製するにあたり、PGMEAは樹脂成分の含有量(フェノール樹脂とポリマーの総和)が30%となるよう調整した。
(Adjustment of negative photosensitive resin compositions of Examples 1 and 2 and Comparative Example 1)
For each example and each comparative example, a 20% PGMEA solution of the polymer prepared in Synthesis Examples 1 to 3, a photosensitizer, a cross-linking agent, an adhesion improver, and a surfactant were added in appropriate amounts in the amounts shown in Table 2. And stirred. After stirring, the mixture was filtered through a 0.2 μm filter to prepare a negative resin composition.
In preparing the negative photosensitive resin composition of each example and each comparative example, PGMEA was adjusted so that the content of the resin component (total of phenol resin and polymer) was 30%.
(5%重量減少温度)
 各実施例、各比較例について、得られたネガ型感光性樹脂組成物を用いて以下のように硬化後の昇温過程における5%重量減少温度の評価を行った。
 まず、6インチウェハにネガ型感光性樹脂組成物を塗布した後、80℃、90秒の条件下で熱処理を施すことにより脱溶媒を行った。次いで、オーブン中でネガ型感光性樹脂組成物に対し熱処理を行い、感光性樹脂組成物を硬化させた。当該熱処理は、上記ウェハが載置されたオーブン内を30℃、30分で窒素にて置換し、昇温速度5℃/minで硬化温度(200℃)まで昇温した後、硬化温度(200℃)にて30分間保持することにより行った。上記熱処理後、降温速度5℃/minでオーブン内の温度を70℃以下まで降温させ、上記ウェハを取り出した。次いで、フッ酸を用いて上記ウェハから感光性樹脂組成物の硬化膜を剥離して、60℃、10時間の条件下で乾燥した。このようにして、各実施例および各比較例のそれぞれについて、硬化温度200℃により硬化させた硬化膜を得た。
 次いで、上記サンプルの5%重量減少温度(℃)を測定した。測定は、硬化膜を10mg秤量して得られた試料に対し、熱重量/示差熱測定装置(TG/DTA)を用いて、開始温度30℃、測定温度範囲30~500℃、昇温速度5℃/minの条件下において行った。秤量した試料の重量が5%減少した時点の温度を5%重量減少温度とした。
(5% weight loss temperature)
About each Example and each comparative example, 5% weight reduction | decrease temperature in the temperature rising process after hardening was evaluated as follows using the obtained negative photosensitive resin composition.
First, after applying a negative photosensitive resin composition to a 6-inch wafer, the solvent was removed by heat treatment at 80 ° C. for 90 seconds. Next, the negative photosensitive resin composition was heat-treated in an oven to cure the photosensitive resin composition. In the heat treatment, the inside of the oven on which the wafer is placed is replaced with nitrogen at 30 ° C. for 30 minutes, and the temperature is raised to a curing temperature (200 ° C.) at a heating rate of 5 ° C./min. C.) for 30 minutes. After the heat treatment, the temperature in the oven was lowered to 70 ° C. or less at a temperature drop rate of 5 ° C./min, and the wafer was taken out. Next, the cured film of the photosensitive resin composition was peeled from the wafer using hydrofluoric acid, and dried under conditions of 60 ° C. and 10 hours. In this way, a cured film cured at a curing temperature of 200 ° C. was obtained for each of the examples and comparative examples.
Next, the 5% weight loss temperature (° C.) of the sample was measured. The measurement was performed on a sample obtained by weighing 10 mg of the cured film using a thermogravimetric / differential calorimeter (TG / DTA), a starting temperature of 30 ° C., a measuring temperature range of 30 to 500 ° C., and a heating rate of 5 The measurement was performed under the conditions of ° C / min. The temperature at which the weight of the weighed sample was reduced by 5% was defined as a 5% weight reduction temperature.
(硬化後残膜率)
 各実施例、各比較例について、得られたネガ型感光性樹脂組成物を用いて以下のように硬化後の残膜率の評価を行った。
 得られたネガ型感光性樹脂組成物をHMDS(Hexamethyldisilazane)処理した4インチシリコンウエハー上に回転塗布し、110℃、100秒間ホットプレートにてベーク後、約3.0μm厚の薄膜Aを得た。この薄膜Aにキヤノン社製g+h+i線マスクアライナー(PLA-501F)にて10μmのラインとスペースの幅が1:1のマスクを使用し、パターン寸法が10μmのラインとスペースの幅が1:1となる最適露光量(50mJ/cm2)でg+h+i線を露光し、2.38質量%水酸化テトラメチルアンモニウム水溶液で23℃、90秒間現像することで、ラインとスペース幅が1:1のライン&スペースパターンつき薄膜Bを得た。
 上記の手法にて得られた薄膜A、薄膜Bの膜厚から、以下の式より残膜率を算出した。
 硬化後残膜率(%)={(薄膜Bの膜厚(μm))/(薄膜Aの膜厚(μm))}×1
00
(Residual film rate after curing)
About each Example and each comparative example, the remaining film rate after hardening was evaluated as follows using the obtained negative photosensitive resin composition.
The obtained negative photosensitive resin composition was spin-coated on a 4-inch silicon wafer treated with HMDS (Hexamethyldisilazane) and baked on a hot plate at 110 ° C. for 100 seconds to obtain a thin film A having a thickness of about 3.0 μm. . For this thin film A, a g + h + i line mask aligner (PLA-501F) manufactured by Canon Co., Ltd. was used, and a 10 μm line and space width of 1: 1 mask were used, and a pattern dimension of 10 μm line and space width was 1: 1. The line and space width is 1: 1 by exposing the g + h + i line at an optimal exposure amount (50 mJ / cm 2) and developing with a 2.38 mass% tetramethylammonium hydroxide aqueous solution at 23 ° C. for 90 seconds. A thin film B with a pattern was obtained.
From the film thicknesses of the thin film A and the thin film B obtained by the above method, the remaining film ratio was calculated from the following formula.
Residual film ratio after curing (%) = {(film thickness of thin film B (μm)) / (film thickness of thin film A (μm))} × 1
00
(耐溶剤性)
 各実施例、各比較例について、得られたネガ型感光性樹脂組成物を用いて以下のように耐溶剤性の評価を行った。
 得られたネガ型感光性樹脂組成物を縦100mm、横100mmサイズのコーニング社製1737ガラス基板上に回転塗布し、110℃、100秒間ホットプレートにてベーク後、約3.0μm厚の薄膜付ガラス基板を得た。
 上記薄膜付ガラス基板をN-メチルピロリドン(関東化学社)中に室温(25℃)、10分間浸漬した後、純水リンスを行った。以下の演算式で定義される膜厚変化率を算出した。
 膜厚変化率(%)=[{(溶剤浸漬後の膜厚)-(溶剤浸漬前の膜厚)}/(溶剤浸漬前の膜厚)]×100
(Solvent resistance)
About each Example and each comparative example, solvent resistance was evaluated as follows using the obtained negative photosensitive resin composition.
The obtained negative photosensitive resin composition was spin-coated on a 1737 glass substrate made by Corning 100 mm long and 100 mm wide, baked on a hot plate at 110 ° C. for 100 seconds, and with a thin film having a thickness of about 3.0 μm. A glass substrate was obtained.
The glass substrate with a thin film was immersed in N-methylpyrrolidone (Kanto Chemical Co., Inc.) at room temperature (25 ° C.) for 10 minutes, and then rinsed with pure water. The film thickness change rate defined by the following arithmetic expression was calculated.
Change rate of film thickness (%) = [{(film thickness after solvent immersion) − (film thickness before solvent immersion)} / (film thickness before solvent immersion)] × 100
(感度)
 各実施例、各比較例について、得られたネガ型感光性樹脂組成物を用いて以下のように感度の評価を行った。
 得られたネガ型感光性樹脂組成物をHMDS(Hexamethyldisilazane)処理した4インチシリコンウエハー上に回転塗布し、90℃、120秒間ホットプレートにてベーク後、約3.0μm厚の薄膜を得た。この薄膜にキヤノン社製g+h+i線マスクアライナー(PLA-501F)にて10μmのラインとスペースの幅が1:1のマスクを使用し露光した。次いで、110℃、120秒間ホットプレートにてベーク後、2.38質量%水酸化テトラメチルアンモニウム水溶液で23℃、60秒間現像することで形成されたレジストパターンが、10μmのライン幅:スペース幅=1:1のときの露光量(mJ/cm)を感度とした。
(sensitivity)
About each Example and each comparative example, the sensitivity evaluation was performed as follows using the obtained negative photosensitive resin composition.
The obtained negative photosensitive resin composition was spin-coated on a 4-inch silicon wafer treated with HMDS (Hexamethyldisilazane) and baked on a hot plate at 90 ° C. for 120 seconds to obtain a thin film having a thickness of about 3.0 μm. This thin film was exposed with a g + h + i line mask aligner (PLA-501F) manufactured by Canon Inc. using a mask having a 10 μm line and a space width of 1: 1. Next, the resist pattern formed by baking on a hot plate at 110 ° C. for 120 seconds and developing with a 2.38 mass% tetramethylammonium hydroxide aqueous solution at 23 ° C. for 60 seconds has a line width of 10 μm: space width = The exposure amount (mJ / cm 2 ) at 1: 1 was defined as sensitivity.
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
 表1に示すように合成例1、2は適切な酸価及びアルカリ溶解速度を保持した共重合体であることが確認された。
 また、表2に示すように、実施例1のネガ型感光性樹脂組成物は、比較例1のネガ型感光性樹脂組成物と比べて、耐熱性、硬化後残膜率及び耐溶剤性が向上することが確認できた。さらに、実施例2のネガ型感光性樹脂組成物は、比較例1のネガ型感光性樹脂組成物と比べて、耐熱性、硬化後残膜率及び耐溶剤性が向上し、さらに、感度を保持することが確認できた。
As shown in Table 1, it was confirmed that Synthesis Examples 1 and 2 were copolymers having an appropriate acid value and alkali dissolution rate.
In addition, as shown in Table 2, the negative photosensitive resin composition of Example 1 has higher heat resistance, post-curing residual film ratio, and solvent resistance than the negative photosensitive resin composition of Comparative Example 1. It was confirmed that it improved. Furthermore, the negative photosensitive resin composition of Example 2 has improved heat resistance, a post-curing residual film ratio and solvent resistance as compared with the negative photosensitive resin composition of Comparative Example 1, and further improved sensitivity. It was confirmed that it was retained.
 この出願は、2017年1月10日に出願された日本出願特願2017-002022号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2017-002022 filed on January 10, 2017, the entire disclosure of which is incorporated herein.

Claims (13)

  1.  下記式(1)で示される共重合体であるポリマーと、
     架橋剤と、
     感光剤と、を含むネガ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、
    lおよびmはポリマー中におけるモル含有率を示し、
    l+m=1であり、
    Aは下記式(A1)により示される構造単位と、
    下記式(A2)により示される構造単位と、を含み、
    Bは下記式(B1)、下記式(B2)、下記式(B3)、下記式(B4)、下記式(B5)または下記式(B6)により示される構造単位の少なくとも1種以上を含む。)
    Figure JPOXMLDOC01-appb-C000002
    (式(A1)中、R、R、RおよびRはそれぞれ独立して水素または炭素数1~30の有機基であって、R、R、RおよびRに少なくとも1つの末端不飽和炭素二重結合を含む。nは0、1または2である。)
    Figure JPOXMLDOC01-appb-C000003
    (式(A2)中、R、RおよびRはそれぞれ独立して水素または炭素数1~30の有機基であり、nは0、1または2である。)
    Figure JPOXMLDOC01-appb-C000004
    (式(B1)中、Rは、独立して炭素数1~30の有機基である。)
    Figure JPOXMLDOC01-appb-C000005
    (式(B2)中、R及びR10は、それぞれ独立して炭素数1~30の有機基である。)
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    (式(B6)中、R11は、独立して炭素数1~30の有機基である。)
    A polymer which is a copolymer represented by the following formula (1);
    A crosslinking agent;
    A negative photosensitive resin composition comprising a photosensitive agent.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1),
    l and m represent the molar content in the polymer,
    l + m = 1,
    A is a structural unit represented by the following formula (A1);
    A structural unit represented by the following formula (A2):
    B includes at least one structural unit represented by the following formula (B1), the following formula (B2), the following formula (B3), the following formula (B4), the following formula (B5), or the following formula (B6). )
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (A1), R 1 , R 2 , R 3 and R 4 are each independently hydrogen or an organic group having 1 to 30 carbon atoms, and at least R 1 , R 2 , R 3 and R 4 Contains one terminal unsaturated carbon double bond, n is 0, 1 or 2)
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (A2), R 5 , R 6 and R 7 are each independently hydrogen or an organic group having 1 to 30 carbon atoms, and n is 0, 1 or 2.)
    Figure JPOXMLDOC01-appb-C000004
    (In formula (B1), R 8 is independently an organic group having 1 to 30 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000005
    (In Formula (B2), R 9 and R 10 are each independently an organic group having 1 to 30 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    (In Formula (B6), R 11 is independently an organic group having 1 to 30 carbon atoms.)
  2.  請求項1に記載のネガ型感光性樹脂組成物において、
     前記共重合体の前記Bで示される構造単位は、上記式(B6)で示される構造単位を含む、ネガ型感光性樹脂組成物。
    In the negative photosensitive resin composition according to claim 1,
    The negative photosensitive resin composition in which the structural unit represented by B of the copolymer includes a structural unit represented by the above formula (B6).
  3.  請求項1または2に記載のネガ型感光性樹脂組成物において、
     前記共重合体の前記Bで示される構造単位は、上記式(B6)で示される構造単位と、上記式(B5)で示される構造単位とを含む、ネガ型感光性樹脂組成物。
    In the negative photosensitive resin composition according to claim 1 or 2,
    The negative photosensitive resin composition in which the structural unit represented by B of the copolymer includes a structural unit represented by the formula (B6) and a structural unit represented by the formula (B5).
  4.  請求項1から3のいずれか1項に記載のネガ型感光性樹脂組成物であって、
     前記共重合体の上記式(A1)により示される構造単位中、R、R、RおよびRの少なくとも1つは、末端不飽和炭素二重結合として、下記一般式(E1)で示される構造単位を含む、ネガ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-I000010
    (式(E1)中、Rは独立して水素または炭素数1~10の有機基である。)
    The negative photosensitive resin composition according to any one of claims 1 to 3,
    In the structural unit represented by the above formula (A1) of the copolymer, at least one of R 1 , R 2 , R 3 and R 4 is represented by the following general formula (E1) as a terminal unsaturated carbon double bond: Negative photosensitive resin composition containing the structural unit shown.
    Figure JPOXMLDOC01-appb-I000010
    (In the formula (E1), R e is independently hydrogen or an organic group having 1 to 10 carbon atoms.)
  5.  請求項1から4のいずれか1項に記載のネガ型感光性樹脂組成物であって、
     前記架橋剤は、(メタ)アクリル基を含むアクリル系架橋剤である、ネガ型感光性樹脂組成物。
    The negative photosensitive resin composition according to any one of claims 1 to 4, wherein
    The negative photosensitive resin composition, wherein the crosslinking agent is an acrylic crosslinking agent containing a (meth) acryl group.
  6.  請求項1から5のいずれか1項に記載のネガ型感光性樹脂組成物であって、
     前記架橋剤の含有量は、前記ポリマー100質量部に対して、20質量部以上80質量部以下である、ネガ型感光性樹脂組成物。
    It is a negative photosensitive resin composition according to any one of claims 1 to 5,
    The negative photosensitive resin composition, wherein the content of the crosslinking agent is 20 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the polymer.
  7.  請求項1から6のいずれか1項に記載のネガ型感光性樹脂組成物であって、
     前記ポリマーの含有量は、前記ネガ型感光性樹脂組成物の全固形分100質量部に対して、5質量部以上80質量部以下である、ネガ型感光性樹脂組成物。
    The negative photosensitive resin composition according to any one of claims 1 to 6,
    The negative photosensitive resin composition, wherein the polymer content is 5 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the total solid content of the negative photosensitive resin composition.
  8.  請求項1から7のいずれか1項に記載のネガ型感光性樹脂組成物であって、
     前記共重合体の上記式(A1)によって示される構造単位の含有量は、上記式(A2)によって示される構造単位1.0molに対して、0.1mol以上3.0mol以下である、ネガ型感光性樹脂組成物。
    The negative photosensitive resin composition according to any one of claims 1 to 7,
    The content of the structural unit represented by the above formula (A1) of the copolymer is 0.1 mol or more and 3.0 mol or less with respect to 1.0 mol of the structural unit represented by the above formula (A2). Photosensitive resin composition.
  9.  請求項1から8のいずれか1項に記載のネガ型感光性樹脂組成物であって、
     前記感光剤は、光ラジカル重合開始剤である、ネガ型感光性樹脂組成物。
    The negative photosensitive resin composition according to any one of claims 1 to 8,
    The negative photosensitive resin composition, wherein the photosensitive agent is a radical photopolymerization initiator.
  10.  請求項1から9のいずれか1項に記載のネガ型感光性樹脂組成物であって、
     前記ポリマーの重量平均分子量が1500以上30000以下であることを特徴とする、ネガ型感光性樹脂組成物。
    It is a negative photosensitive resin composition according to any one of claims 1 to 9,
    The negative photosensitive resin composition, wherein the polymer has a weight average molecular weight of 1500 or more and 30000 or less.
  11.  請求項1から10のいずれか1項に記載のネガ型感光性樹脂組成物であって、
     前記ポリマーの分散度は、1.0以上2.5以下である、ネガ型感光性樹脂組成物。
    It is a negative photosensitive resin composition according to any one of claims 1 to 10,
    The negative photosensitive resin composition, wherein the degree of dispersion of the polymer is 1.0 or more and 2.5 or less.
  12.  請求項1から11のいずれか1項に記載のネガ型感光性樹脂組成物の硬化物からなる樹脂膜。 A resin film comprising a cured product of the negative photosensitive resin composition according to any one of claims 1 to 11.
  13.  請求項12に記載の樹脂膜を用いた電子装置。 An electronic device using the resin film according to claim 12.
PCT/JP2017/044142 2017-01-10 2017-12-08 Negative photosensitive resin composition, resin film and electronic device WO2018131351A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018509928A JP6332583B1 (en) 2017-01-10 2017-12-08 Negative photosensitive resin composition, resin film and electronic device
CN201780083437.8A CN110178085B (en) 2017-01-10 2017-12-08 Negative photosensitive resin composition, resin film, and electronic device
KR1020197023189A KR102614402B1 (en) 2017-01-10 2017-12-08 Negative photosensitive resin composition, resin film, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-002022 2017-01-10
JP2017002022 2017-01-10

Publications (1)

Publication Number Publication Date
WO2018131351A1 true WO2018131351A1 (en) 2018-07-19

Family

ID=62840203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044142 WO2018131351A1 (en) 2017-01-10 2017-12-08 Negative photosensitive resin composition, resin film and electronic device

Country Status (4)

Country Link
KR (1) KR102614402B1 (en)
CN (1) CN110178085B (en)
TW (1) TWI759378B (en)
WO (1) WO2018131351A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020023654A (en) * 2018-07-27 2020-02-13 住友ベークライト株式会社 Polymer, method for producing polymer, photosensitive resin composition, pattern, color filter, black matrix, liquid crystal display device and solid state image sensor
JP6777275B1 (en) * 2019-05-08 2020-10-28 住友ベークライト株式会社 Photosensitive resin composition, resin film and electronic device
WO2020226052A1 (en) * 2019-05-08 2020-11-12 住友ベークライト株式会社 Photosensitive resin composition, resin film, and electronic device
JPWO2022065225A1 (en) * 2020-09-23 2022-03-31
CN113811556B (en) * 2019-05-08 2024-05-28 住友电木株式会社 Photosensitive resin composition, resin film and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220069051A (en) * 2019-09-26 2022-05-26 스미또모 베이크라이트 가부시키가이샤 Polymers, photosensitive resin compositions, resin films, and electronic devices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217453A (en) * 1988-02-26 1989-08-31 Tosoh Corp Photosensitive composition
JPH02146045A (en) * 1988-02-17 1990-06-05 Tosoh Corp Photoresist composition
JP2015007762A (en) * 2013-05-29 2015-01-15 住友ベークライト株式会社 Negative photosensitive resin composition, electronic device, and polymer
WO2016175103A1 (en) * 2015-04-30 2016-11-03 住友ベークライト株式会社 Process for producing polymer, photosensitive resin composition, and electronic device
WO2016194619A1 (en) * 2015-05-29 2016-12-08 住友ベークライト株式会社 Photosensitive coloring resin composition, colored pattern, black matrix, color filter, liquid crystal display device, solid-state imaging element, and method for producing color filter
JP2017025223A (en) * 2015-07-23 2017-02-02 住友ベークライト株式会社 Polymer, photosensitive resin composition, resin film and electronic apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6065750B2 (en) * 2013-05-29 2017-01-25 住友ベークライト株式会社 Photosensitive resin composition and electronic device
JP6369132B2 (en) * 2013-06-28 2018-08-08 住友ベークライト株式会社 Negative photosensitive resin composition, cured film, electronic device and polymer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02146045A (en) * 1988-02-17 1990-06-05 Tosoh Corp Photoresist composition
JPH01217453A (en) * 1988-02-26 1989-08-31 Tosoh Corp Photosensitive composition
JP2015007762A (en) * 2013-05-29 2015-01-15 住友ベークライト株式会社 Negative photosensitive resin composition, electronic device, and polymer
WO2016175103A1 (en) * 2015-04-30 2016-11-03 住友ベークライト株式会社 Process for producing polymer, photosensitive resin composition, and electronic device
WO2016194619A1 (en) * 2015-05-29 2016-12-08 住友ベークライト株式会社 Photosensitive coloring resin composition, colored pattern, black matrix, color filter, liquid crystal display device, solid-state imaging element, and method for producing color filter
JP2017025223A (en) * 2015-07-23 2017-02-02 住友ベークライト株式会社 Polymer, photosensitive resin composition, resin film and electronic apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020023654A (en) * 2018-07-27 2020-02-13 住友ベークライト株式会社 Polymer, method for producing polymer, photosensitive resin composition, pattern, color filter, black matrix, liquid crystal display device and solid state image sensor
JP7255166B2 (en) 2018-07-27 2023-04-11 住友ベークライト株式会社 Polymer, method for producing polymer, photosensitive resin composition, pattern, color filter, black matrix, liquid crystal display device and solid-state imaging device
JP6777275B1 (en) * 2019-05-08 2020-10-28 住友ベークライト株式会社 Photosensitive resin composition, resin film and electronic device
WO2020226052A1 (en) * 2019-05-08 2020-11-12 住友ベークライト株式会社 Photosensitive resin composition, resin film, and electronic device
CN113811556A (en) * 2019-05-08 2021-12-17 住友电木株式会社 Photosensitive resin composition, resin film, and electronic device
TWI833014B (en) * 2019-05-08 2024-02-21 日商住友電木股份有限公司 Photosensitive resin composition, resin film and electronic device
CN113811556B (en) * 2019-05-08 2024-05-28 住友电木株式会社 Photosensitive resin composition, resin film and electronic device
JPWO2022065225A1 (en) * 2020-09-23 2022-03-31
WO2022065225A1 (en) * 2020-09-23 2022-03-31 住友ベークライト株式会社 Polymer, polymer solution, and photosensitive resin composition
JP7173380B2 (en) 2020-09-23 2022-11-16 住友ベークライト株式会社 Polymer, method for producing polymer, polymer solution and photosensitive resin composition

Also Published As

Publication number Publication date
CN110178085A (en) 2019-08-27
TWI759378B (en) 2022-04-01
KR102614402B1 (en) 2023-12-15
CN110178085B (en) 2022-10-21
KR20190101460A (en) 2019-08-30
TW201835128A (en) 2018-10-01

Similar Documents

Publication Publication Date Title
WO2018131351A1 (en) Negative photosensitive resin composition, resin film and electronic device
JP6398310B2 (en) Negative photosensitive resin composition, electronic device, method for producing negative photosensitive polymer, and method for producing negative photosensitive resin composition
KR101914409B1 (en) METHOD FOR PRODUCING POLYMER, RESIN COMPOSITION AND ELECTRONIC DEVICE
JP7074051B2 (en) Polymer manufacturing method, negative photosensitive resin composition manufacturing method, resin film manufacturing method, electronic device manufacturing method and polymer
JP6332583B1 (en) Negative photosensitive resin composition, resin film and electronic device
JP6661929B2 (en) Negative photosensitive resin composition, resin film and electronic device
CN114599686A (en) Polymer and resin composition
JP2023100610A (en) Photosensitive resin composition, pattern, color filter, black matrix, display device, imaging element, and method for producing display device or imaging element
JP6028580B2 (en) Method for producing polymer
JP6930679B1 (en) Resin composition, photosensitive resin composition and cured product thereof
WO2022270546A1 (en) Negative-type photosensitive polymer, polymer solution, negative-type photosensitive resin composition, cured film, and semiconductor device
WO2023140257A1 (en) Polymer, polymer solution, photosensitive resin composition, and cured object
JP7200532B2 (en) Photosensitive resin composition and electronic device
JP2017044860A (en) Positive photosensitive resin composition, cured film and electronic device
JP2023091961A (en) Polymer, polymer solution, photosensitive resin composition, and cured product
JP2021140133A (en) Polymer solution for forming color filters or black matrices
CN114450318A (en) Polymer, photosensitive resin composition, resin film, and electronic device
JP2023091438A (en) Polymer, polymer solution, photosensitive resin composition, and cured product
JP2023004156A (en) negative photosensitive polymer
JP2021063222A (en) Polymer, method for producing polymer, photosensitive resin composition, and cured product
JP2021175784A (en) Polymer solution and photosensitive resin composition
CN113811556A (en) Photosensitive resin composition, resin film, and electronic device
JP2019167496A (en) Heat-resistant resin composition
JP2017057262A (en) Production method of polymer, polymer, photosensitive resin composition, resin film and electronic apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018509928

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197023189

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17891730

Country of ref document: EP

Kind code of ref document: A1