WO2018131076A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2018131076A1
WO2018131076A1 PCT/JP2017/000505 JP2017000505W WO2018131076A1 WO 2018131076 A1 WO2018131076 A1 WO 2018131076A1 JP 2017000505 W JP2017000505 W JP 2017000505W WO 2018131076 A1 WO2018131076 A1 WO 2018131076A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooler
heat insulating
refrigerator
chamber
room
Prior art date
Application number
PCT/JP2017/000505
Other languages
French (fr)
Japanese (ja)
Inventor
中津 哲史
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to AU2017392447A priority Critical patent/AU2017392447B2/en
Priority to PCT/JP2017/000505 priority patent/WO2018131076A1/en
Priority to JP2018561122A priority patent/JP6752297B2/en
Priority to TW106130781A priority patent/TWI716636B/en
Priority to CN201721353625.1U priority patent/CN207515331U/en
Priority to CN201710976846.2A priority patent/CN108286854B/en
Publication of WO2018131076A1 publication Critical patent/WO2018131076A1/en
Priority to HK18115687.6A priority patent/HK1256702A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/24Construction of moulds; Filling devices for moulds for refrigerators, e.g. freezing trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/003Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors with respect to movable containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/003Arrangement or mounting of control or safety devices for movable devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices

Definitions

  • the present invention relates to a refrigerator having a drainage channel.
  • a water receiving portion (drip tray) is installed below the cooler, and a drainage path that penetrates the heat insulating wall is provided below the drip tray (see, for example, Patent Document 1 and Patent Document 2).
  • Patent Document 1 discloses a drainage path provided below the vertical line with respect to the cooler
  • Patent Document 2 discloses a drainage path outlet from the ceiling of the machine room provided below the cooler room. The structure which protrudes is disclosed. When the drainage route is to be secured at the shortest distance, the configuration as described in the above patent document is suitable.
  • refrigerators are required to be space-saving and large-capacity and energy-saving. Therefore, for example, there is a refrigerator that uses a vacuum heat insulating material excellent in heat insulating properties for a part of the heat insulating wall.
  • the refrigerator of Patent Document 2 is provided with a machine room at the lower back and a cooler room directly above the machine room. It may deteriorate and cooling capacity may decrease.
  • the above vacuum heat insulating material as part of the heat insulating material to ensure the heat insulating performance, but in this case, the drainage path from the drip tray is largely curved to avoid the vacuum heat insulating material. To do. For this reason, the drainage path needs to be provided with a connecting portion inside the foam heat insulating material filled around the vacuum heat insulating material.
  • the drainage path may be configured by connecting a plurality of parts for reasons such as ease of molding.
  • route penetrates in a foaming heat insulating material gradually by a capillary phenomenon.
  • a foaming heat insulating material changes to the swelling state which hold
  • the moisture inside the heat insulating material does not evaporate spontaneously, and the swollen foam heat insulating material has a heat capacity that is increased by the water. Therefore, the swollen foam heat insulating material becomes a temperature equivalent to the freezing temperature, freezes water adhering to the connection part of the drainage path, and the frozen ice mass gradually grows as a core to block the drainage path. As a result, the melted water generated by the defrosting operation may not be discharged into the machine room but may be discharged into the refrigerator, causing water leakage in the cabinet.
  • the molten water generated at the time of defrosting penetrates into the heat insulating material from the connection portion, and freezing in the drainage path occurs.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a refrigerator that achieves both performance and quality.
  • the refrigerator according to the present invention includes an inner box and an outer box, a heat insulating box having a heat insulating material installed in a space between the inner box and the outer box, and a lower back portion of the heat insulating box inside.
  • a machine room in which a compressor is disposed, a cooler room formed in the heat insulation box above the machine room, and a cooler for generating cool air is disposed; and
  • the cooler chamber is provided below the cooler and receives a water from the cooler, and an inlet is installed in the water receiver, so that the cooler chamber and the machine chamber communicate with each other.
  • a drainage path that passes through a heat insulating wall interposed between the machine room and an outlet projecting into the machine room, and the cross-sectional area increases as the inlet side of the drainage path proceeds downstream. And has a shape in which the center position of the cross section approaches the back side, Water pathway are those configured integrally from said inlet to said outlet.
  • the drainage path is closer to the back side of the refrigerator while the inner diameter is reduced from the inlet to the outlet, so in the heat insulating wall between the cooler room and the machine room, A front area is widely secured, and a vacuum heat insulating material can be installed in the secured area. Therefore, the refrigerator can increase the heat insulation performance by increasing the installation area of the vacuum heat insulating material.
  • the drainage path is integrally formed from the inlet to the outlet, the penetration of moisture from the drainage path to the heat insulating material is suppressed, and the probability that the drainage path is blocked can be reduced.
  • the refrigerator can improve drainage while maintaining heat insulation.
  • FIG. 1 It is front sectional drawing which shows the back wall seen from the vegetable compartment which concerns on Embodiment 1 of this invention. It is explanatory drawing which shows the refrigerator compartment blowing air path of the refrigerator which concerns on Embodiment 1 of this invention, and the return air path of the refrigerator compartment 2. As shown in FIG. It is a front view which shows the example of installation of the air path heater of the refrigerator which concerns on Embodiment 1 of this invention. It is a front view which shows another example of installation of the air path heater of the refrigerator which concerns on Embodiment 1 of this invention. It is explanatory drawing which shows the ice making chamber blowing air path and ice making chamber return air path of the refrigerator which concerns on Embodiment 1 of this invention.
  • FIG. 1 is an external perspective view showing a refrigerator according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram showing a refrigerant circuit and an air circulation path of the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 3 is a side sectional view showing the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic configuration diagram of a machine room on the back surface of the refrigerator according to Embodiment 1 of the present invention.
  • the refrigerator 1 includes a heat insulating box 19 configured in a vertically long rectangular parallelepiped shape, and a plurality of storage chambers are formed in the heat insulating box 19.
  • storage rooms are arranged in the order of the refrigerator compartment 2, the ice making room 3 on the left side, the temperature switching room 4 on the right side of the ice making room 3, the vegetable room 5, and the freezing room 6.
  • the refrigerator compartment 2 the ice making room 3 on the left side
  • the temperature switching room 4 on the right side of the ice making room 3
  • the vegetable room 5 the freezing room 6.
  • the freezing room 6 are each provided with a partition.
  • the heat insulation box 19 includes an upper surface portion, a bottom surface portion, a right side surface portion, a left side surface portion, a back surface portion, and doors provided on the front side of each storage room. Further, as shown in FIG. 3, a cooler chamber 27 is formed in the heat insulating box 19, and the cooler chamber 27 is located on the back of the ice making chamber 3, the temperature switching chamber 4, and the vegetable chamber 5. ing.
  • the refrigerator 1 further includes a machine room 90 formed on the outside of the heat insulation box 19 with a part of the wall portion 19a of the heat insulation box 19 being recessed inside at the lower back portion. The machine room 90 is located on the back side of the freezer room 6, and a machine room cover (not shown) is provided on the back side of the machine room 90.
  • the refrigerator 1 includes a refrigerant circuit 7 through which refrigerant circulates and an air circulation path 36 through which air circulates, and cools the interior of the refrigerator 1 by exchanging heat between the refrigerant and air.
  • the solid line arrows indicate the flow direction of the refrigerant flowing through the refrigerant circuit 7, and the broken line arrows indicate the flow direction of the cold air flowing through the air circulation path.
  • FIG. 4 shows the inside of the machine room 90 when viewed from the rear with the machine room cover removed.
  • the refrigerant circuit 7 includes a compressor 8, an air-cooled condenser 9, a heat radiating pipe 10, a dew prevention pipe 11, a dryer 12, a decompressor 13, and a cooler 14. Etc. are connected by piping.
  • the compressor 8 compresses the refrigerant and circulates it in the refrigerant circuit 7, and is installed in the machine room 90.
  • the machine room 90 is provided with a machine room fan 95 that takes outside air into the machine room 90 and circulates the air in the machine room 90 to cool the compressor 8 and the like.
  • the air-cooled condenser 9 is an air-cooled heat exchanger that is disposed in the machine room 90 and radiates the heat of the refrigerant to the air blown by the machine room fan 95.
  • the heat radiating pipe 10 is a pipe installed inside the urethane of the refrigerator 1 main body, and naturally radiates the heat of the refrigerant to the air outside the refrigerator 1.
  • the dew prevention pipe 11 is stretched around each storage room on the front surface of the refrigerator 1 to prevent condensation on the front surface.
  • the air-cooled condenser 9, the heat radiating pipe 10, and the dew prevention pipe 11 have a function of condensing the refrigerant in the refrigerant circuit 7. Further, the dryer 12 removes moisture in the refrigerant and prevents freezing due to moisture.
  • the decompression device 13 includes, for example, a capillary tube, and decompresses the refrigerant.
  • the cooler 14 is disposed in the cooler chamber 27, and the blower 15 that circulates the air in the refrigerator 1 is also disposed in the cooler chamber 27.
  • the cooler 14 is a heat exchanger that absorbs the heat of the refrigerant into the air blown by the blower 15. That is, the cooler 14 has a function of evaporating the refrigerant.
  • the refrigerator 1 is also provided with an air passage for introducing the cold air cooled by the cooler chamber 27 into each storage chamber, and an air volume adjusting device 18a that is provided in the air passage and adjusts the amount of the cold air flowing into each storage chamber. 18b, 18c (hereinafter sometimes collectively referred to as an air volume adjusting device 18).
  • the air volume adjusting device 18 is composed of, for example, a damper having a variable opening.
  • the refrigerator 1 includes a control board 17 and a plurality of temperature sensors as shown in FIG.
  • the temperature sensors 16a, 16b, 16c, and 16d are composed of, for example, a thermistor and are installed in each storage room, and the air temperature in the installed storage room, or Detect the temperature of stored food.
  • the temperature sensor 16a is installed in the refrigerator compartment 2
  • the temperature sensor 16b is installed in the temperature switching chamber 4
  • the temperature sensor 16c is installed in the vegetable compartment 5
  • the temperature sensor 16d is installed in the freezer compartment 6.
  • the control board 17 is built in the upper back of the refrigerator 1.
  • the control board 17 includes, for example, a microcomputer and electronic components, and performs various controls of the refrigerator 1.
  • the control board 17 controls the opening degree of the air volume adjusting device 18 installed in the air passage, the driving frequency of the compressor 8, the air volume of the blower 15, and the like according to the temperature information input from the temperature sensor 16. To do.
  • the refrigerant discharged from the compressor 8 sequentially passes through the air-cooled condenser 9, the heat radiating pipe 10, and the dew prevention pipe 11, and is radiated and condensed while passing.
  • the refrigerant that has flowed out of the dew prevention pipe 11 flows into the dryer 12 to remove moisture, and flows into the decompression device 13.
  • the refrigerant flowing into the decompression device 13 is decompressed and flows into the cooler 14.
  • the cooler 14 the refrigerant absorbs heat from the air circulating in the refrigerator 1 by the blower 15 and evaporates. At this time, the air around the cooler 14 is cooled.
  • the refrigerant evaporated in the cooler 14 passes through the suction pipe connecting the cooler 14 and the compressor 8, the temperature rises while exchanging heat with the refrigerant flowing through the decompression device 13, and returns to the compressor 8.
  • the cool air generated by the air in the refrigerator 1 exchanging heat with the refrigerant flowing in the cooler chamber 27 is blown by the blower 15 through the air passage to each storage chamber, thereby cooling each storage chamber.
  • the temperature of each storage room is detected by a temperature sensor 16 installed in each storage room, and the control board 17 operates the air volume adjusting device 18 and the like so that the detected temperature becomes a preset temperature. Maintained at an appropriate temperature.
  • the cold air that has cooled each storage chamber is returned to the cooler chamber 27 by the blower 15 through the air passage.
  • the cooler 14 is preferably provided in the cooler chamber 27 so that the lower end 14 a is positioned below the position F on the floor surface of the vegetable chamber 5.
  • a larger space is secured above the cooler 14, so that the degree of freedom of the size of the blower 15 that blows cool air into each storage chamber is increased, and the air volume adjusting device 18 is disposed. Space to do this is secured.
  • FIG. 5 is a partial cross-sectional view showing the configuration of the heat insulation box according to Embodiment 1 of the present invention.
  • FIG. 6 is a partial cross-sectional view showing a state in which the members of the heat insulation box according to Embodiment 1 of the present invention are fixed.
  • FIG. 7 is a partial cross-sectional view showing a first example of the configuration of the heat insulating box according to Embodiment 1 of the present invention.
  • FIG. 8 is a partial cross-sectional view showing a second example of the configuration of the heat insulating box according to Embodiment 1 of the present invention.
  • FIG. 9 is a partial explanatory view showing a third example of the configuration of the heat insulation box according to Embodiment 1 of the present invention.
  • the heat insulation box 19 is composed of an outer box 21 and an inner box 22 that form an outer shell, and a heat insulating material 23 and the like disposed between the outer box 21 and the inner box 22.
  • the heat intrusion from is suppressed.
  • the inner box 22 is a part of the outer shell of the heat insulating box 19 and constitutes the inner wall of each storage chamber.
  • a urethane foam material 23a or the like is used for the heat insulating material 23a or the like.
  • a rail structure 25b for receiving the frame structure 25a is installed on the inner box 22 side of the heat insulating box body 19.
  • various internal members such as a reinforcing member that corrects the distortion of the refrigerator 1, components of the refrigerant circuit 7, and electric wiring components are fixed by the urethane foam material 23a.
  • the heat insulating material 23 of the heat insulating box 19 may be composed of a urethane foam material 23a and a vacuum heat insulating material 23b.
  • the vacuum heat insulating material 23b is disposed in a part of the space formed between the outer box 21 and the inner box 22, and the urethane foam 23a is filled in the remaining space.
  • the vacuum heat insulating material 23 b is attached to the wall surface of the outer box 21.
  • the heat insulation box 19 can further reduce the amount of heat intrusion into the refrigerator 1 by using the vacuum heat insulating material 23 b for a part of the heat insulating material 23.
  • the vacuum heat insulating material 23 b is arranged by a spacer 26 at an intermediate position between the wall surface of the outer box 21 and the wall surface of the inner box 22 according to the position installed inside the heat insulating box body 19. It may be configured. Alternatively, as shown in FIG. 9, the vacuum heat insulating material 23 b may be attached to the wall surface of the inner box 22. In the configuration of FIG. 9, the vacuum heat insulating material 23b is preferably installed so as not to interfere with the internal member. In addition, the position and range in which the vacuum heat insulating material 23b is installed in the heat insulation box 19 are not limited to the above configuration, and may be installed so as to ensure the housing strength of the refrigerator 1. The refrigerator 1 can reduce the distance (heat insulation thickness) between the outer box 21 and the inner box 22 and increase the internal volume by mounting the vacuum heat insulating material 23b.
  • the air passage is composed of an air passage connected to the cooler chamber 27 and some of the storage compartment air passages, a blowout air passage from which cool air blows out to each storage compartment, and a return air passage from which the cold air returns from each storage compartment.
  • FIG. 10 is an explanatory diagram showing the lower periphery of the refrigerator according to Embodiment 1 of the present invention.
  • A is front sectional drawing when a door is removed
  • (b) is side sectional drawing.
  • a return air passage 30a from the refrigerator compartment 2 is formed on the right side of the cooler 14, and a return air passage 30c from the temperature switching chamber 4 and a vegetable compartment are in front of the return air passage 30a.
  • a blowout air passage 29d to 5 is formed.
  • a back wall 31 is formed in front of the cooler 14, the return air passage 30 c, and the blowout air passage 29 d to be a partition from the space in the vegetable compartment 5.
  • FIG. 11 is a side cross-sectional view showing the configuration around the vegetable compartment according to Embodiment 1 of the present invention.
  • a back wall 31 that separates the vegetable compartment 5 from the cooler compartment 27 is formed on the back of the vegetable compartment 5.
  • the back wall 31 is a heat insulating wall, and a heat insulating wall shell 38 on the vegetable room 5 side and a heat insulating wall shell 42 on the cooler chamber 27 side, a vacuum heat insulating material 39, and a foam heat insulating material disposed around the vacuum heat insulating material 39. 40 etc.
  • the foam heat insulating material 40 on the back wall 31 is provided with an air passage 28 through which cool air is blown into storage rooms such as the freezer compartment 6 and the refrigerator compartment 2.
  • the front and rear arrangement of the air passage 28 is in the order of the cooler 14, the heat insulating wall shell 42, the foam heat insulating material 40 on which the air passage 28 is formed, the vacuum heat insulating material 39, and the heat insulating wall outer wall 38 on the vegetable compartment 5 side from the rear. It has become.
  • the foam heat insulating material 40 having the air path configuration also has a function of holding the air volume adjusting device 18.
  • the ceiling wall 32 of the vegetable room 5 serves as a partition between the vegetable room 5, the ice making room 3 and the temperature switching room 4, and the bottom wall 35 of the vegetable room 5 serves as a partition between the vegetable room 5 and the freezing room 6. It becomes.
  • the ceiling wall 32 and the bottom wall 35 are heat insulating walls, and suppress heat transfer between storage rooms having different set temperatures.
  • the ceiling wall 32 and the bottom wall 35 are formed of, for example, an injection molding material, and the inside is formed of a urethane foam material 35a and a vacuum heat insulating material 35b.
  • the vacuum heat insulating material 35b By securing the viscosity and flow path width of the urethane foam material 35a, the vacuum heat insulating material 35b can be arranged in the middle of the partition outer wall surface, and the entire structure can be wrapped with the urethane foam material 35a to further suppress deterioration.
  • the vacuum heat insulating material 35b when the vacuum heat insulating material 35b is disposed on the low temperature storage chamber side, the temperature in the storage chamber set at a low temperature can be easily maintained.
  • the vacuum heat insulating material 35 b is disposed on the ice making chamber 3 and temperature switching chamber 4 side in the ceiling wall 32, and is disposed on the freezing chamber 6 side in the bottom wall 35.
  • FIG. 12 is a front cross-sectional view showing the back wall portion viewed from the vegetable compartment according to Embodiment 1 of the present invention.
  • the air outlet 44 through which cool air blows into the vegetable compartment 5 is formed in the upper right portion of the inner wall of the back wall 31 of the vegetable compartment 5.
  • the cold air outlet 44 is located outside the projection surface in the front-rear direction of the vacuum heat insulating material 39 installed on the back wall 31.
  • the return port 45 from which the cold air returns from the vegetable compartment 5 is formed in the lower left portion diagonally with respect to the air outlet 44 in the back wall 31.
  • the return port 45 is located outside the projection surface in the front-rear direction of the vacuum heat insulating material 39.
  • the blower outlet 44 is configured so that the air generated by the cooler 14 is blown by the blower 15 disposed above the cooler 14 and the air volume adjusting device 18 (for example, the air flow adjusting device 18 c) provided above the cooler chamber 27. To supply via. The cold air blown into the vegetable compartment 5 from the blower outlet 44 cools the vegetable compartment 5, then is discharged from the cold return port 45, led to the cooler compartment 27, and cooled again by the cooler 14. .
  • FIG. 13 is an explanatory diagram showing a refrigerator air outlet air passage and a return air passage of the refrigerator compartment 2 of the refrigerator according to Embodiment 1 of the present invention.
  • A is the partial front view of the refrigerator 1 when a door is removed
  • (b) is side sectional drawing of the refrigerator 1 in the blowing air path 29a of a refrigerator compartment
  • (c) is the return wind of the refrigerator compartment 2 It is a partial side sectional view of refrigerator 1 in way 30a.
  • the blowout air passage 29 a of the refrigerator compartment 2 is configured by connecting a plurality of air passages through which the cold air passes after being discharged from the blower 15 installed above the cooler 14.
  • the plurality of air paths include, for example, an air path 28 in the back wall 31, an air path toward the refrigerating room 2 in the foam insulation above the cooler room 27, the refrigerating room 2, the ice making room 3, and the temperature switching room.
  • 4 are an air passage in a heat insulating wall that partitions 4 and an air passage formed by a foam heat insulating material installed on the back side of the refrigerator compartment 2.
  • the air volume adjusting device 18a that adjusts the amount of cold air supplied to the refrigerating room 2 is installed in the middle of the blowout air passage 29a of the refrigerating room 2, for example.
  • the return air path 30a of the refrigerator compartment 2 is installed on the right side of the cooler 14 so as to obtain necessary heat insulation using a foam heat insulating material.
  • the outlet of the return air passage 30a of the refrigerator compartment 2 is connected from the lower right side of the cooler 14 in the cooler compartment 27 to a drip tray 80 that receives the molten water at the time of defrosting.
  • FIG. 14A is a front view showing an installation example of the air path heater of the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 14B is a front view showing another installation example of the air passage heater of the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 14A and FIG. 14B show the lower periphery of the refrigerator when the door is removed.
  • the air passage heater 33a is installed in the return air passage 30a of the refrigerator compartment 2, and generates heat when necessary.
  • the air path heater 33a is installed in an arbitrary position in the return air path 30a in the longitudinal direction of the air path.
  • the air path heater 33a may be installed in a range equal to or larger than the size of the cooler 14 projected in the vertical direction.
  • the air path heater 33b is installed in the vicinity of the drip tray 80.
  • the air path heater 33b may be provided so as to be along the flow direction of the return cold air in a range of about 100 mm above and below around the junction between the return air path 30a and the drip tray 80.
  • FIG. 15 is an explanatory diagram showing an ice making chamber blowing air passage and an ice making chamber return air passage of the refrigerator according to Embodiment 1 of the present invention.
  • A is the partial front view of the refrigerator 1 when a door is removed
  • (b) is a perspective view in the ice making chamber 3.
  • the blowout air passage 29b of the ice making chamber 3 is configured by connecting a plurality of air passages through which cool air passes after being discharged from the blower 15 installed above the cooler 14.
  • the plurality of air paths are, for example, an air path in the foam heat insulating material above the cooler chamber 27, an air path molded with a foam heat insulating material installed on the back side of the ice making chamber 3, and the like.
  • an air volume adjusting device (not shown) that adjusts the amount of cold air supplied to the ice making chamber 3 is installed in the middle of the blowout air passage 29b of the ice making chamber 3, for example.
  • the cold air outlet 70 is provided at an arbitrary position on the back surface of the ice making chamber 3, and the cold air blown out from the air outlet 70 flows into the ice making mechanism 71.
  • the return air passage 30 b of the ice making chamber 3 is installed in the projected width in the front-rear direction of the ice making chamber 3 on the ice making chamber 3 side from the center of the refrigerator 1 within the entire width of the cooler 14 from the front surface of the cooler 14.
  • the return air passage 30b of the ice making chamber 3 includes a return opening 72 arbitrarily installed in the back wall of the ice making chamber 3, a back side of the outer surface of the ice making chamber surface, and a foam heat insulating material adjacent to the outer surface of the ice making chamber 3 surface.
  • the discharge port of the return air passage 30 b of the ice making chamber 3 joins in the vicinity of the cold air return port 74 from the freezing chamber 6.
  • the cold air return port 74 from the freezer compartment 6 is formed in the vicinity of the cold air outlet from the ice making chamber 3 to have a dimension equal to or larger than the left and right width of the return air passage 30b of the ice making chamber 3. It is good to be done.
  • the return air passage 30 b of the ice making chamber 3 may be directly returned into the cooler chamber 27 at a position above the cold air return port 74 from the freezer compartment 6.
  • FIG. 16 is an explanatory diagram showing a switching chamber blowing air passage and a switching chamber return air passage of the refrigerator according to Embodiment 1 of the present invention.
  • A is a partial front view of the refrigerator 1 when a door is removed
  • (b) is a partial side sectional view of the refrigerator 1.
  • the cool air blowing air passage 29 c to the temperature switching chamber 4 connects a plurality of air passages through which the cooler after being discharged from the blower 15 installed above the cooler 14 passes.
  • the plurality of air paths are an air path in the foam heat insulating material above the cooler chamber 27, an air path formed by the foam heat insulating material installed on the back side of the temperature switching chamber 4, and the like.
  • the air volume adjusting device 18b (see FIG. 3) that adjusts the amount of cold air supplied to the temperature switching chamber 4 is installed in the middle of the blowout air passage 29c of the temperature switching chamber 4, for example.
  • the return air passage 30c of the switching chamber is adjacent to the cool air return port arbitrarily installed in the back wall of the temperature switching chamber 4, the back side of the outer surface of the temperature switching chamber 4, and the outer surface of the temperature switching chamber 4 surface. And a part of the foam insulation. Further, the outlet of the return air passage 30 c is provided on the right side of the return air passage 30 e from the freezer compartment 6.
  • FIG. 17 is an explanatory diagram showing a freezer compartment outlet air passage of the refrigerator and a return air passage of the freezer compartment 6 according to Embodiment 1 of the present invention.
  • (A) is a partial front view of the refrigerator 1 when a door is removed
  • (b) is a partial side sectional view of the refrigerator 1.
  • the blowout air passage 29e of the freezer compartment 6 is configured by connecting a plurality of air passages through which the cold air discharged from the blower 15 installed above the cooler 14 passes.
  • the plurality of air passages are, for example, air passages 28 provided in the back wall 31 and the bottom wall 35 of the vegetable compartment 5.
  • the cold air that has passed through the blowout air passage 29e of the freezer compartment 6 is guided into storage cases stacked in a plurality of stages in the freezer compartment 6 by a guide portion provided on the back ceiling of the freezer compartment 6. Cool the stored items inside.
  • the return air passage 30 e of the freezer compartment 6 is configured by an air passage provided from the inside of the freezer compartment 6 toward the rear of the bottom wall 35 of the vegetable compartment 5.
  • the return air passage 30e is formed in a range within the left-right width of the cooler 14.
  • the outlet of the return air passage 30e of the freezer compartment 6 is connected to the drip tray 80 from the lower right side of the cooler 14 in the cooler compartment 27, similarly to the return air passage 30a of the refrigerator compartment 2.
  • said guide part is provided with the two guides arranged in the front-back direction of the refrigerator 1, for example, the guide of the blowing side into the freezer compartment 6 ahead, and the return side from the inside of the freezer compartment 6 back A guide may be arranged.
  • FIG. 18 is a schematic cross-sectional view showing a first example of the configuration of the storage compartment partition according to Embodiment 1 of the present invention.
  • FIG. 19 is a schematic cross-sectional view showing a second example of the configuration of the storage compartment partition according to Embodiment 1 of the present invention.
  • the vacuum heat insulating material 35b in the bottom wall 35 of the vegetable room 5 is arranged on the low temperature storage room side (the freezing room 6 side) has been described. As shown in FIG. 19, it can be arranged at an arbitrary position in the bottom wall 35.
  • the vacuum heat insulating material 35b when the vacuum heat insulating material 35b is disposed on the vegetable wall 5 side of the outer wall surface, the coverage on the inner wall surface of the vegetable room 5 can be increased, and the amount of heat penetration can be suppressed. it can.
  • FIG. 20 is a side cross-sectional view showing a first example of the wall surface configuration around the vegetable compartment according to Embodiment 1 of the present invention.
  • FIG. 21 is a side cross-sectional view showing a second example of the wall surface configuration around the vegetable compartment according to Embodiment 1 of the present invention.
  • FIG. 22 is a side cross-sectional view showing a third example of the wall configuration around the vegetable compartment according to Embodiment 1 of the present invention.
  • the back wall 31 is from the rear near the cooler 14 to the front, the heat insulating wall shell 42, the foam heat insulating material 40 in which the air passage 28 is formed, the vacuum heat insulating material 39, the foam heat insulating material 40, the vegetable compartment 5 side. It is comprised so that it may become the order of the heat insulation wall outline 38 of this. Further, in FIG. 21, the vacuum heat insulating material 39 is attached to the inner wall of the heat insulating wall outline 42 on the cooler 14 side in order to ensure the effect of the vacuum heat insulating material 39. In the configuration example shown in FIG.
  • the height dimension of the vacuum heat insulating material 39 may be reduced in response to restrictions on the position of the outlet of the cold air discharged from the blower 15 or the size of the outlet. Further, in the configuration in which the foam heat insulating material 40 is not disposed around the vacuum heat insulating material 39, there is a concern about the promotion of deterioration of the vacuum heat insulating material 39. However, as shown in FIG. The vacuum heat insulating material 39 is protected by installing the foam heat insulating material 40 therebetween. Note that the size of the vacuum heat insulating material 39 is set larger than the area where the cooler 14 is projected forward, thereby minimizing the one-dimensional heat transfer amount passing through the back wall 31.
  • FIG. 23A is a front cross-sectional view showing a first example of a back wall portion viewed from the vegetable compartment according to Embodiment 1 of the present invention.
  • FIG. 23B is a front cross-sectional view showing a second example of the back wall portion viewed from the vegetable compartment according to Embodiment 1 of the present invention.
  • FIG. 24 is a schematic diagram showing the arrangement of the heat retaining heaters in the vegetable compartment according to Embodiment 1 of the present invention.
  • FIG. 24 shows an example in which a heat retaining heater 46 using electrical resistance is installed in order to maintain the room temperature of the vegetable room 5 when necessary.
  • the warming heater 46 is at an arbitrary position on the floor, back, left side, and right side of the vegetable room 5, particularly at a point where the room temperature of the vegetable room 5 is relatively low, for example, an arbitrary capacity of about 3W or less and about 10W. Installed at.
  • the heat retaining heater 46 is energized at a time-based energization rate (ratio of energization time to reference time) depending on the outside air temperature and the room temperature of the vegetable room 5.
  • FIG. 25 is a schematic diagram showing the arrangement of the heat radiating pipes in the vegetable compartment according to Embodiment 1 of the present invention.
  • FIG. 26 is a schematic diagram showing a connection relationship between the heat radiation pipe of the vegetable compartment and the refrigerant circuit according to Embodiment 1 of the present invention.
  • FIG. 25 shows a configuration in which a heat radiating pipe 47 is arranged in place of the heat retaining heater 46 inside the urethane foam material 23 a on the left and right side walls of the vegetable compartment 5 and on the heat insulating material side inside the outer wall of the bottom wall 35. .
  • the heat radiating pipe 47 circulates the refrigerant used for the cooler 14 and radiates heat into the vegetable compartment 5. As shown in FIG.
  • the decompression device 13 of the refrigerant circuit 7 includes, for example, a flow path switching three-way valve 48 and two capillaries (capillary tube 51a, capillary tube 51b, and the like).
  • a flow path switching three-way valve 48 On the refrigerant circuit 7 described above, after being connected to the dryer 12 through the dew prevention pipe 11, the downstream side of the flow path switching three-way valve 48 is switched.
  • the outlet pipe 50 is connected to one end of the capillary tube 51 a through the heat radiating pipe 47.
  • the outlet pipe 49 is connected to one end of the capillary tube 51b.
  • the capillary tube 51b to which the outlet pipe 49 is connected may be configured to change the amount of decompression.
  • FIG. 27 is a diagram showing a flow rate characteristic on the outlet pipe side that is not connected to the heat radiating pipe to the vegetable compartment in the flow path switching three-way valve according to Embodiment 1 of the present invention.
  • FIG. 28 is a schematic configuration diagram of a flow path switching three-way valve according to Embodiment 1 of the present invention.
  • FIG. 29 is an explanatory diagram showing a flow path formation state with respect to STEP of the rotating gear in the flow path switching three-way valve according to Embodiment 1 of the present invention.
  • the flow path switching three-way valve 48 uses, for example, an electronically controlled expansion valve such as a linear electronic expansion valve, and the flow rate of the refrigerant discharged from the outlet pipe 49 connected to the capillary 51b. Is adjusted in multiple stages.
  • the flow path switching three-way valve 48 is generally composed of a low-voltage four-phase stepping motor 52, a valve body 53, and the like.
  • the valve body 53 includes, as main components, a magnetized rotor 54, a center gear 55, a rotating gear 56, a rotating pad 57, a valve seat 58, an outer case 59, a floor plate 60, and the like.
  • the flow path switching three-way valve 48 rotates the magnetized rotor 54 by unipolarly driving the four-phase stepping motor 52 by 1-2 phase excitation.
  • the magnetized rotor 54 is directly connected to the center gear 55.
  • the center gear 55 rotates by the same amount in the same direction as the magnetized rotor 54.
  • the center gear 55 and the rotation gear 56 are directly joined. Therefore, the rotation pad 57 fixed to the rotation gear 56 has a center axis provided on the valve seat 58 as a reference. Rotation is performed in response to the rotation drive.
  • the rotary pad 57 is provided with three orifices 61, 62, and 63 having different inner diameters. When one of the three orifices 61, 62, 63 overlaps with the outlet orifice 64 of the valve seat 58 due to the rotation operation of the rotary pad 57, a predetermined refrigerant flow rate flows out.
  • 29 (a) to 29 (g) show the flow path formation state for different STEPs of the rotary gear 56.
  • the flow control is switched in five stages of fully closed, throttle flow rate A, throttle flow rate B, throttle flow rate C, and full open in ascending order of flow rate.
  • the state (b) is fully closed
  • the state (c) is the throttle flow rate A
  • the state (d) is the throttle flow rate B
  • the state (e) is the throttle flow rate C
  • the state (f) is Corresponds to fully open.
  • the refrigerator 1 can reduce the power consumption while ensuring the temperature of the vegetable compartment 5.
  • a two-way valve that leaves only the flow controllable side of the two outlets is provided. May be used.
  • FIG. 30 is a partial side cross-sectional view showing the configuration of a part of the cooler room and the machine room according to Embodiment 1 of the present invention.
  • FIG. 31A is a schematic plan view showing a first example of the configuration of the drip tray according to Embodiment 1 of the present invention.
  • FIG. 31B is a schematic plan view showing a second example of the configuration of the drip tray according to Embodiment 1 of the present invention.
  • defrosting means 67 that melts frost adhering to the cooler 14, and water such as melted water generated during the defrosting operation from the cooler chamber 27 to the machine.
  • a drip tray 80 leading to the chamber 90 is provided.
  • the defrosting means 67 is constituted by a glass tube heater, for example.
  • the glass tube heater is composed of a nichrome wire and a glass tube for protecting the nichrome wire.
  • the defrosting means 67 is preferably installed below the cooler 14 in the cooler chamber 27 and on the projection surface in the vertical direction of the drainage path inlet described later.
  • the drip tray 80 is constituted by a heat insulating wall 99 interposed between the vegetable compartment 5 and the machine compartment 90, and is provided at a position lower than the floor surface of the vegetable compartment 5.
  • the heat insulating wall 99 refers to, for example, a rear portion of the heat insulating wall that constitutes the bottom wall 35 of the vegetable room 5 (hereinafter referred to as the wall portion 34), and a wall portion 19a that forms the machine chamber 90 in the heat insulating box body 19.
  • the upper surface 34 a of the wall portion 34 is molded integrally with the floor surface of the vegetable compartment 5, and the lower surface 34 b is molded integrally with the ceiling surface of the freezer compartment 6.
  • a heat insulating material 34c is installed between the upper surface 34a and the lower surface 34b of the wall 34, and the lower surface 34b is formed by offsetting a certain distance from the upper surface 34a.
  • the drip tray 80 has a water receiving portion 81 that receives moisture dripping from the cooler 14 and a tubular drainage passage 82 through which water received by the water receiving portion 81 passes.
  • the water receiving portion 81 is formed on the upper surface 34 a of the wall portion 34 and has a shape that is inclined downward toward the inlet 83 of the drainage path 82 so as to guide moisture to the drainage path 82.
  • the drainage path 82 penetrates the inside of the heat insulating material of the heat insulating wall 99, and the outlet 84 protrudes into the machine room 90.
  • the drainage path 82 has a smaller inner diameter at the outlet 84 than at the inlet 83.
  • the drainage path 82 is integrally formed from the inlet 83 to the outlet 84 without providing a seam on the path inside the heat insulating wall 99.
  • the drainage path 82 is integrally formed with the water receiving portion 81 at the inlet 83.
  • the water receiving portion 81 and the drainage path 82 are formed by the outer shell that is the upper surface 34a of the wall portion 34, moisture is guided from the cooler chamber 27 to the machine chamber 90 without passing through the connecting portion. Is done.
  • the inlet 83 is disposed, for example, in a substantially central portion of the drip tray 80 in the left-right direction, and is formed as a groove shape having a width of 50 mm or less rearward from an arbitrary front position in the front-rear direction.
  • the cross-sectional shape of the inlet 83 is, for example, a circular shape, an elliptical shape or an oval shape, or a combination shape of a semi-ellipse and a rectangle, or a combination shape of a semi-oval and a rectangle, and the water receiving surface of the drip tray 80 on the rear side.
  • the outlet 84 of the drainage channel 82 has an inner diameter of 20 mm or less and a substantially circular cross-sectional shape.
  • the drainage path 82 has a substantially funnel shape that gradually narrows in the depth direction as it proceeds downward from the inlet 83 of the drainage path 82. That is, the inlet 83 side of the drainage passage 82 (hereinafter referred to as the upstream portion 82a) has a smaller cross-sectional area as it goes downstream, and the position of the front side of the cross section approaches the back side.
  • the outlet 84 side of the drainage passage 82 (hereinafter referred to as the downstream portion 82 b) has a tube shape with a substantially constant inner diameter and is formed to have a length that protrudes into the machine chamber 90.
  • the cross section of the upstream portion 82a converges from the cross sectional shape of the inlet 83 to the circular shape of the downstream portion 82b.
  • the upstream portion 82a is formed through the wall portion 34, and the downstream portion 82b is formed through the wall portion 19a.
  • a lid structure may be provided at the outlet of the drainage path 82 so that the high humidity air in the machine room 90 does not flow back into the refrigerator 1 through the drainage path 82.
  • 31A and 31B show the cross-sectional center Oa of the upstream portion 82a and the cross-sectional center Ob of the downstream portion 82b, and the cross-sectional center Oa of the upstream portion 82a moves to the rear of the refrigerator 1 as it goes downstream. And reaches the cross-sectional center Ob of the downstream portion 82b.
  • the drainage path 82 is provided from the inlet 83 to the outlet 84 so that the rearmost part is along the back surface of the refrigerator 1.
  • a urethane foam material 23a and a vacuum heat insulating material 23b are installed in the wall portion 19a.
  • the drainage path has a cross-sectional area smaller than that of the upstream part 82a in the downstream part 82b formed in the wall part 19a, and the last part of the drainage path is provided along the back surface of the refrigerator 1. Yes. Therefore, the vacuum heat insulating material 23b can be disposed up to the vicinity of the back surface of the refrigerator 1 in the wall portion 19a.
  • a path heater 85 may be further installed in the upstream portion 82 a of the drainage path 82.
  • the path heater 85 is constituted by, for example, a cord heater having a coating made of silicon, and is installed in the heat insulating material 34 c of the wall portion 34.
  • the path heater 85 suppresses clogging of the drain path 82 by melting the ice that has fallen to the inlet 83 of the drain path 82 without being melted until reaching the water by heat generation at the time of defrosting.
  • a metal tray 89 formed of metal is installed on the surface forming the inlet 83.
  • the metal tray 89 is installed in the water receiving portion 81 and the upstream portion 82 a of the drainage path 82, and transmits the radiant heat of the defrosting means 67 onto the drip tray 80 surface and the ice that has fallen on the drip tray 80. Makes it easier to melt.
  • the metal tray 89 has a dimension equal to or greater than the length of the defrosting means 67 installed above in the left-right direction, and is at least one-half the front-back width of the drip tray 80 in the front-rear direction. It may be configured to have dimensions. Further, an area outside the area covered with the metal tray 89 in the drip tray 80 may be covered with a metal tape or the like.
  • the metal tray 89 is formed along the water receiving part 81 and the upstream part 82a so as to substantially match the shape of the inlet 83 of the drainage path 82, and generates heat generated from the path heater 85 installed inside the heat insulating material 34c. Promotes conduction.
  • the melted water partially melted by the defrosting means 67 and dripped from the cooler 14 to the water receiving portion 81 of the drip tray 80 is guided to the inlet 83 of the drainage path 82 by the inclination of the water receiving portion 81.
  • the molten water guided to the inlet 83 flows into the drainage path 82, further melts by the path heater 85 while passing through the upstream section 82a, and flows into the downstream section 82b having a small inner diameter. Since no connection portion is provided in the drainage path 82, the molten water that passes through the drainage path 82 is discharged from the outlet 84 protruding into the machine room 90 into the machine room 90 without penetrating into the heat insulating wall 99.
  • FIG. 32 is a rear view showing the internal configuration of the machine room according to Embodiment 1 of the present invention.
  • the machine chamber 90 is further provided with a water tray (drain pan 91) that receives moisture discharged from the outlet 84 of the drainage passage 82 into the machine chamber 90.
  • a heating pipe 92 is installed in the drain pan 91. Yes.
  • the heating pipe 92 is constituted by, for example, a refrigerant pipe through which a high-temperature refrigerant flows.
  • the molten water that has passed through the drainage path 82 is discharged from the outlet 84 to the drain pan 91 of the machine room 90 and accumulated in the drain pan 91. Evaporation of the molten water accumulated in the drain pan 91 is promoted by the heating pipe 92 and the cooling air that cools the air-cooled condenser 9 and the compressor 8 installed in the machine room 90. With such a configuration, the evaporation of the molten water generated last time is completed before the next defrosting operation is started.
  • FIG. 33 is a front view showing another configuration example of the back wall viewed from the vegetable compartment of the refrigerator according to Embodiment 1 of the present invention.
  • the configuration may be such that the return cold air from the refrigerator compartment 2 flows into the vegetable compartment 5.
  • the outlet from which the cold air returning from the refrigerator compartment 2 blows out to the vegetable compartment 5 that is, the refrigerator return outlet 75 is formed on the upper right side of the inner wall of the back wall 31 of the vegetable compartment 5.
  • the return port 45 is formed at a substantially central portion at the lower back of the vegetable compartment 5.
  • the return air path of the refrigerator compartment 2 and the vegetable room return air path merge in the lower back side of the vegetable room 5, and from between the return air paths 30e of the freezer compartment 6 divided into right and left, the cooler room 27 is configured to return.
  • the return air path 76 of the refrigerator compartment 2 disposed in the back wall 31 of the vegetable compartment 5 has no heat insulating function between the vegetable compartment 5 and is separated by an inner wall surface formed by injection molding, for example. . Therefore, in order to adjust the temperature in the vegetable compartment 5, a plurality of holes 77 may be provided on the inner wall surface that separates the return air passage 76 of the refrigerator compartment 2 from the vegetable compartment 5. Further, a slider 78 that freely opens and closes the plurality of holes 77 may be provided.
  • the slider 78 When the slider 78 is slid in the vertical direction indicated by the arrow, the number of holes 77 to be closed is adjusted, so that the user can arbitrarily adjust the temperature in the vegetable compartment 5 by moving the slider 78. In such a configuration, since the temperature can be adjusted in the vegetable compartment 5, the above-described air volume adjusting device 18c for adjusting the amount of cold air supplied to the vegetable compartment 5 may not be installed in the air passage.
  • the refrigerator 1 includes the inner box 22 and the outer box 21, and the heat insulating box 19 having the heat insulating material 23 installed in the space between the inner box 22 and the outer box 21.
  • a lower part of the back surface of the heat insulation box 19 is formed inwardly, a machine room 90 in which the compressor 8 is disposed, and a cooler that is formed in the heat insulation box 19 above the machine room 90 and generates cool air.
  • the 14 is disposed below the cooler 14 in the cooler chamber 27, and a water receiving portion 81 for receiving water from the cooler 14, and an inlet 83 is installed in the water receiving portion 81,
  • a drainage path 82 that penetrates through a heat insulating wall 99 interposed between the cooler chamber 27 and the machine chamber 90 so that the cooler chamber 27 and the machine chamber 90 communicate with each other;
  • the inlet 83 side of the drainage channel 82 follows the downstream side.
  • the cross-sectional area is reduced, and has the shape center position of the cross section (the cross-sectional center Oa) approaches the rear side, the drainage path 82 is integrally formed from the inlet 83 to the outlet 84.
  • the drainage path 82 has a shape in which the inner diameter decreases from the inlet 83 to the outlet 84 while the cross-sectional center Oa approaches the back side of the refrigerator 1.
  • the heat insulating wall 99 can be provided with a vacuum heat insulating material (for example, a vacuum heat insulating material 23b). Therefore, the refrigerator 1 can ensure heat insulation performance.
  • the drainage path 82 is integrally molded from the inlet 83 to the outlet 84, so that moisture permeates from the drainage path 82 into the heat insulating wall 99. It is suppressed. Therefore, the refrigerator 1 can reduce generation
  • the drainage path 82 has a wall surface extending in the vertical direction on the back side or a part of the back side in plan view. That is, the drainage path 82 is provided so that the portion closest to the back surface of the refrigerator 1 in plan view is, for example, along the back surface of the refrigerator 1 in the vertical direction of the refrigerator 1.
  • the range in which the vacuum heat insulating material for example, the vacuum heat insulating material 23b
  • the refrigerator 1 can increase the covering area of the vacuum heat insulating material 23b particularly at a position where heat insulation is required. As a result, the dew on the top surface of the machine room 90 is reduced and the energy saving performance is improved.
  • the drainage path 82 is configured integrally with the water receiving portion 81. Therefore, since the connection part is not provided on the path
  • the cross-sectional shape of the inlet 83 of the drainage channel 82 is elliptical or oval.
  • the drainage path is easily formed integrally with the drip tray 80.
  • the drainage path entrance provided on the water receiving surface of the drip tray has a substantially circular shape. Maintaining such a shape and securing a length that allows the drainage channel to protrude into the machine room is a long and narrow drainage channel.
  • the inner diameter of the route outlet becomes extremely small. Therefore, in the conventional drainage route, the drainage performance decreases and the probability of occurrence of blockage due to foreign matter increases.
  • the refrigerator 1 can obtain a drainage path 82 with stable quality.
  • the refrigerator 1 further includes defrosting means 67 for melting the frost in the cooler 14 with a heater or a high-temperature refrigerant. From this, the defrosting means 67 can melt
  • FIG. 1 is a diagrammatic representation of the frost in the cooler 14 with a heater or a high-temperature refrigerant. From this, the defrosting means 67 can melt
  • the refrigerator 1 further includes a drain pan 91 installed below the outlet 84 in the machine room 90.
  • the drain pan 91 has a heating pipe 92 disposed therein.
  • the refrigerator 1 further includes a first storage room (for example, the vegetable room 5) formed in the heat insulating box 19, and the water receiving portion 81 and the drainage path 82 are the floor surface of the first storage room (the vegetable room 5). Is formed to extend to the cooler chamber 27 and is disposed at a position lower than the floor surface. Thereby, the refrigerator 1 can obtain the drip tray 80 in which the connection part is not provided on the path
  • the refrigerator 1 is a second storage room (below the first storage room (for example, the vegetable room 5) and is formed in front of the machine room 90, and is set at a lower temperature than the first storage room (the vegetable room 5)).
  • a freezing room 6) is further provided, and the heat insulation wall 99 is a bottom wall 35 of the first storage room (vegetable room) and a wall portion 19a that forms a machine room of the heat insulation box 19.
  • the refrigerator 1 can ensure heat insulation also between the 2nd storage chamber (freezer compartment 6) installed in low temperature, and the machine room 90 formed in the outer side of the heat insulation box 19.
  • FIG. Energy saving can be improved.
  • the refrigerator 1 expands the vacuum heat insulating material 23b in the wall portion 19a. Insulation between the second storage chamber (freezer chamber 6) and the cooler chamber 27 can be enhanced.
  • Embodiment 2 the drainage path was provided from the inlet to the outlet so that the rearmost part was along the back of the refrigerator.
  • the second embodiment a configuration in which the drainage path is inclined on the outlet side will be described.
  • only differences from the first embodiment will be described, and the other configurations have the same configuration.
  • FIG. 34 is a partial side sectional view showing the configuration of a part of the cooler room and the machine room according to Embodiment 2 of the present invention.
  • the inlet 183 of the drainage channel 182 is, for example, a circular shape, an elliptical shape or an oval shape, or a combination shape of a semi-ellipse and a rectangle, or a combination shape of a semi-oval and a rectangle, and the rear side is almost the last of the water receiving surface. Has reached the department.
  • the outlet 184 has, for example, a substantially circular cross section. As shown in FIG.
  • the cross-sectional area becomes smaller and the position on the front side of the cross section approaches the back side as it goes downstream.
  • the outlet 184 side of the drainage passage 182 (hereinafter referred to as the downstream portion 182b) has a tube shape with a substantially constant inner diameter, and is formed in such a length as to protrude into the machine chamber 90.
  • the drainage path 182 is integrally formed from the inlet 183 to the outlet 184, and the cross section of the upstream portion 182a is formed to converge from the cross sectional shape of the inlet 183 to the circular shape of the downstream portion 182b.
  • the downstream portion 182b of the drainage path 182 is formed to be inclined from the direction along the back surface of the refrigerator 1 (for example, the vertically downward direction) to the back surface side. That is, the downstream portion 182 b is located closer to the rear side of the refrigerator 1 as the position is closer to the outlet 184.
  • the angle at which the downstream portion 182b is formed is set to an angle that does not impair the moldability of the drainage path 182 and the drainage of the molten water, and does not retain foreign matter.
  • the inclination angle of the outlet 184 may be configured to have a downward elevation angle (angle ⁇ ) of 7 ° or more, which is an angle at which a water droplet falls by its own weight, with respect to the depth horizontal direction of the refrigerator 1. Moreover, what is necessary is just to set the upper limit of an elevation angle (angle (theta)) below 90 degrees so that the flow of the molten water from the upstream part 182a of the drainage path 182 may not be prevented, for example.
  • angle ⁇ downward elevation angle
  • the drainage path 182 is such that the center position approaches the back side of the refrigerator 1 while reducing the inner diameter from the inlet 183 toward the outlet 184. Further, it is integrally formed from the inlet 183 to the outlet 184. Therefore, as in the case of the first embodiment, the refrigerator 1 can ensure the heat insulating performance of the heat insulating wall 99 and can prevent the drainage path 182 from being blocked, and can suppress the occurrence of water leakage in the cabinet. .
  • the inclination angle of the outlet 184 of the drainage channel 182 has an elevation angle (angle ⁇ ) downward of 7 ° or more with respect to the depth horizontal direction. Accordingly, since the outlet 184 of the drainage path 182 is formed toward the back side of the refrigerator 1, a wide area in which the vacuum heat insulating material can be disposed in the heat insulating wall 99 is secured, and the refrigerator 1 is made of the vacuum heat insulating material. The insulation area can be enhanced by increasing the covering area.
  • Embodiment 1 a heater that generates heat when energized is used as the defrosting means 67, but a configuration in which frost is melted by a high-temperature refrigerant instead of the heater may be used.

Abstract

A refrigerator (1) is provided with: a thermal insulation casing (19); a machine room (90) which is formed by causing a lower back surface portion of the thermal insulation casing to be depressed inwards and in which a compressor is disposed; a cooler room (27) which is formed above the machine room and in the thermal insulation casing and in which a cooler (14) for generating cold air is disposed; a water receiving unit (81) which is provided below the cooler in the cooler room and which receives water from the cooler; and a discharge channel (82) having an inlet (83) provided to the water receiving unit and an outlet (84) protruded to the machine room, the discharge channel penetrating a thermal insulation wall (99) intervened between the cooler room and the machine room so as to cause the cooler room and the machine room to communicate. On the inlet side, a cross-sectional area of the discharge channel is gradually reduced toward a downstream side, and a center position of the cross section approaches a back surface side. The discharge channel is configured integrally from the inlet to the outlet. As a result, it is possible to provide a refrigerator with good water discharge performance while maintaining thermal insulation.

Description

冷蔵庫refrigerator
 本発明は、排水経路を備える冷蔵庫に関する。 The present invention relates to a refrigerator having a drainage channel.
 従来の冷蔵庫においては、冷却器の下方に水受け部(ドリップトレイ)が設置され、ドリップトレイの下に断熱壁を貫通した排水経路が設けられるものがある(例えば特許文献1および特許文献2参照)。特許文献1には、冷却器に対し、鉛直線上の下方に設けられた排水経路が開示され、また特許文献2には、冷却器室の下方に設けられた機械室の天井から、排水経路出口が突出する構成が開示されている。排水経路を最短距離で確保しようとした場合、上記の特許文献の様な構成が適している。 In some conventional refrigerators, a water receiving portion (drip tray) is installed below the cooler, and a drainage path that penetrates the heat insulating wall is provided below the drip tray (see, for example, Patent Document 1 and Patent Document 2). ). Patent Document 1 discloses a drainage path provided below the vertical line with respect to the cooler, and Patent Document 2 discloses a drainage path outlet from the ceiling of the machine room provided below the cooler room. The structure which protrudes is disclosed. When the drainage route is to be secured at the shortest distance, the configuration as described in the above patent document is suitable.
 ところで、冷蔵庫においては、省スペース且つ大容量であること、そして省エネ性が要求される。そのため、例えば、断熱壁の一部に、断熱性に優れた真空断熱材を使用する冷蔵庫もある。 By the way, refrigerators are required to be space-saving and large-capacity and energy-saving. Therefore, for example, there is a refrigerator that uses a vacuum heat insulating material excellent in heat insulating properties for a part of the heat insulating wall.
特開2003-56972号公報JP 2003-56972 A 特開2003-83668号公報JP 2003-83668 A
 特許文献2の冷蔵庫は、特に、背面下部に機械室を設け、機械室の直上に冷却器室を配置しているため、最も温度差の大きい空間を仕切る断熱壁において、排水経路により断熱性能著しく劣化し、冷却能力が低下する場合がある。これに対し、断熱材の一部に上記の真空断熱材を使用して断熱性能を確保することが考えられるが、この場合、ドリップトレイからの排水経路は、真空断熱材を回避するため大きく湾曲する。そのため、排水経路は、真空断熱材の周囲に充填された発泡断熱材の内部に、接続部を設ける必要が生じる。また、例えば特許文献1のように、排水経路を最短距離で確保する構成においても、成型容易性等の理由から、排水経路が、複数の部品を接続して構成される場合もある。このように排水経路の途中に接続部を設ける構成では、長期使用するに当たり、排水経路内部の接続部に付着した融解水が、毛管現象により発泡断熱材内に徐々に浸透する。そして発泡断熱材は、経時的に、内部に水分を保持する膨潤状態へと変化する。断熱材内部の水分は自発的に蒸発することは無く、膨潤した発泡断熱材は、結果として水分により熱容量が大きくなる。そのため、膨潤した発泡断熱材は、冷凍温度と同等の温度となり、排水経路の接続部に付着した水分を氷結させ、氷結した氷塊が核となって徐々に成長し、排水経路を閉塞させる。その結果、霜取り動作により生じた融解水が、機械室に排出されず、冷蔵庫内に排出されて庫内水漏れが発生する場合がある。 In particular, the refrigerator of Patent Document 2 is provided with a machine room at the lower back and a cooler room directly above the machine room. It may deteriorate and cooling capacity may decrease. On the other hand, it is conceivable to use the above vacuum heat insulating material as part of the heat insulating material to ensure the heat insulating performance, but in this case, the drainage path from the drip tray is largely curved to avoid the vacuum heat insulating material. To do. For this reason, the drainage path needs to be provided with a connecting portion inside the foam heat insulating material filled around the vacuum heat insulating material. Further, for example, as in Patent Document 1, even in a configuration in which the drainage path is secured at the shortest distance, the drainage path may be configured by connecting a plurality of parts for reasons such as ease of molding. Thus, in the structure which provides a connection part in the middle of a waste_water | drain path | route, when using for a long term, the molten water adhering to the connection part inside a waste_water | drain path | route penetrates in a foaming heat insulating material gradually by a capillary phenomenon. And a foaming heat insulating material changes to the swelling state which hold | maintains a water | moisture content inside with time. The moisture inside the heat insulating material does not evaporate spontaneously, and the swollen foam heat insulating material has a heat capacity that is increased by the water. Therefore, the swollen foam heat insulating material becomes a temperature equivalent to the freezing temperature, freezes water adhering to the connection part of the drainage path, and the frozen ice mass gradually grows as a core to block the drainage path. As a result, the melted water generated by the defrosting operation may not be discharged into the machine room but may be discharged into the refrigerator, causing water leakage in the cabinet.
 このように、断熱材内に接続部が設けられた排水経路では、霜取り時に発生する融解水が接続部から断熱材内に浸透し、排水経路内の氷結が発生する。また、冷却器下部のドリップトレイと、冷蔵庫の背面下部の機械室との間に排水経路が存在する場合、断熱材内部に真空断熱材が配設できなくなり、最も断熱が必要とされる冷却器室と機械室間との境界において断熱性能が低下する。その結果、冷蔵庫の省エネ性が悪化する、あるいは機械室天面の露付き等が生じる。 As described above, in the drainage path provided with the connection portion in the heat insulating material, the molten water generated at the time of defrosting penetrates into the heat insulating material from the connection portion, and freezing in the drainage path occurs. In addition, when there is a drainage path between the drip tray at the bottom of the cooler and the machine room at the bottom of the back of the refrigerator, it is impossible to dispose the vacuum heat insulating material inside the heat insulating material, and the cooler that requires the most heat insulation Insulation performance is reduced at the boundary between the chamber and the machine room. As a result, the energy saving performance of the refrigerator deteriorates or the machine room top surface is exposed.
 本発明は、上記のような課題を解決するためになされたもので、性能と品質を両立する冷蔵庫を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a refrigerator that achieves both performance and quality.
 本発明に係る冷蔵庫は、内箱および外箱、並びに、前記内箱と前記外箱との間の空間に設置された断熱材を有する断熱箱体と、前記断熱箱体の背面下部が内側に凹んで形成され、圧縮機が配置される機械室と、前記機械室の上方に前記断熱箱体内に形成され、冷気を生成する冷却器が配置される冷却器室と、前記冷却器室において前記冷却器の下方に設けられ、前記冷却器からの水を受ける水受け部と、前記水受け部に入口が設置され、前記冷却器室と前記機械室とを連通するように、前記冷却器室と前記機械室との間に介在する断熱壁を貫通し、前記機械室に出口が突出した排水経路と、を備え、前記排水経路の前記入口側は、下流側に進むにしたがって、断面積が小さくなり、且つ、断面の中心位置が背面側へ近づく形状を有し、前記排水経路は、前記入口から前記出口まで一体構成されるものである。 The refrigerator according to the present invention includes an inner box and an outer box, a heat insulating box having a heat insulating material installed in a space between the inner box and the outer box, and a lower back portion of the heat insulating box inside. A machine room in which a compressor is disposed, a cooler room formed in the heat insulation box above the machine room, and a cooler for generating cool air is disposed; and The cooler chamber is provided below the cooler and receives a water from the cooler, and an inlet is installed in the water receiver, so that the cooler chamber and the machine chamber communicate with each other. And a drainage path that passes through a heat insulating wall interposed between the machine room and an outlet projecting into the machine room, and the cross-sectional area increases as the inlet side of the drainage path proceeds downstream. And has a shape in which the center position of the cross section approaches the back side, Water pathway are those configured integrally from said inlet to said outlet.
 本発明の冷蔵庫によれば、排水経路は、入口から出口に向かい内径が縮小しながら中心位置が冷蔵庫の背面側に近づくので、冷却器室と機械室との間の断熱壁において、排水経路より前方の領域が広く確保され、確保された領域に真空断熱材を設置することができる。そのため、冷蔵庫は、真空断熱材の設置面積を大きくして断熱性能を高めることができる。また排水経路は、入口から出口まで一体構成されるので、排水経路から断熱材への水分の浸透が抑制され、排出経路の閉塞が生じる確立を低減することができる。このように、冷蔵庫は、断熱性を維持するとともに、排水性を良くすることができる。 According to the refrigerator of the present invention, the drainage path is closer to the back side of the refrigerator while the inner diameter is reduced from the inlet to the outlet, so in the heat insulating wall between the cooler room and the machine room, A front area is widely secured, and a vacuum heat insulating material can be installed in the secured area. Therefore, the refrigerator can increase the heat insulation performance by increasing the installation area of the vacuum heat insulating material. In addition, since the drainage path is integrally formed from the inlet to the outlet, the penetration of moisture from the drainage path to the heat insulating material is suppressed, and the probability that the drainage path is blocked can be reduced. Thus, the refrigerator can improve drainage while maintaining heat insulation.
本発明の実施の形態1に係る冷蔵庫を示す外観斜視図である。It is an external appearance perspective view which shows the refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷蔵庫の冷媒回路と空気循環経路を示す模式図である。It is a schematic diagram which shows the refrigerant circuit and air circulation path | route of the refrigerator which concern on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷蔵庫を示す側面断面図である。It is side surface sectional drawing which shows the refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷蔵庫の背面の機械室の概略構成図である。It is a schematic block diagram of the machine room of the back surface of the refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る断熱箱体の構成を示す部分断面図である。It is a fragmentary sectional view which shows the structure of the heat insulation box which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る断熱箱体の部材が固定された状態を示す部分断面図である。It is a fragmentary sectional view which shows the state by which the member of the heat insulation box which concerns on Embodiment 1 of this invention was fixed. 本発明の実施の形態1に係る断熱箱体の構成の第1例を示す部分断面図である。It is a fragmentary sectional view which shows the 1st example of a structure of the heat insulation box which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る断熱箱体の構成の第2例を示す部分断面図である。It is a fragmentary sectional view which shows the 2nd example of a structure of the heat insulation box which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る断熱箱体の構成の第3例を示す部分説明図である。It is a partial explanatory view showing the 3rd example of the composition of the heat insulation box concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷蔵庫の下部周辺を示す説明図である。It is explanatory drawing which shows the lower part periphery of the refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る野菜室周辺の構成を示す側面断面図である。It is side surface sectional drawing which shows the structure of the vegetable room periphery which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る野菜室内から見た背面壁を示す正面断面図である。It is front sectional drawing which shows the back wall seen from the vegetable compartment which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷蔵庫の冷蔵室吹出し風路と冷蔵室2の戻り風路を示す説明図である。It is explanatory drawing which shows the refrigerator compartment blowing air path of the refrigerator which concerns on Embodiment 1 of this invention, and the return air path of the refrigerator compartment 2. As shown in FIG. 本発明の実施の形態1に係る冷蔵庫の風路ヒータの設置例を示す正面図である。It is a front view which shows the example of installation of the air path heater of the refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷蔵庫の風路ヒータの別の設置例を示す正面図である。It is a front view which shows another example of installation of the air path heater of the refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷蔵庫の製氷室吹出し風路および製氷室戻り風路を示す説明図である。It is explanatory drawing which shows the ice making chamber blowing air path and ice making chamber return air path of the refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷蔵庫の切替室吹出し風路および切替室戻り風路を示す説明図である。It is explanatory drawing which shows the switching chamber blowing air path and switching room return air path of the refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷蔵庫の冷凍室吹出し風路および冷凍室6の戻り風路を示す説明図である。It is explanatory drawing which shows the freezer compartment blowing air path of the refrigerator which concerns on Embodiment 1 of this invention, and the return air path of the freezer compartment. 本発明の実施の形態1に係る貯蔵室仕切りの構成の第1例を示す概略断面図である。It is a schematic sectional drawing which shows the 1st example of a structure of the storeroom partition which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る貯蔵室仕切りの構成の第2例を示す概略断面図である。It is a schematic sectional drawing which shows the 2nd example of a structure of the storeroom partition which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る野菜室周辺の壁面構成の第1例を示す側面断面図である。It is side surface sectional drawing which shows the 1st example of the wall surface structure of the vegetable room periphery which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る野菜室周辺の壁面構成の第2例を示す側面断面図である。It is side surface sectional drawing which shows the 2nd example of the wall surface structure of the vegetable room periphery which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る野菜室周辺の壁面構成の第3例を示す側面断面図である。It is side surface sectional drawing which shows the 3rd example of the wall surface structure of the vegetable room periphery which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る野菜室内から見た背面壁の第1例を示す正面断面図である。It is front sectional drawing which shows the 1st example of the back wall seen from the vegetable compartment which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る野菜室内から見た背面壁の第2例を示す正面断面図である。It is front sectional drawing which shows the 2nd example of the back wall seen from the vegetable compartment which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る野菜室の保温ヒータの配置を示す模式図である。It is a schematic diagram which shows arrangement | positioning of the heat retention heater of the vegetable compartment which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る野菜室の放熱パイプの配置を示す模式図である。It is a schematic diagram which shows arrangement | positioning of the heat radiating pipe of the vegetable compartment which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る野菜室の放熱パイプと冷媒回路の接続関係を示す模式図である。It is a schematic diagram which shows the connection relation of the heat radiating pipe of the vegetable compartment which concerns on Embodiment 1 of this invention, and a refrigerant circuit. 本発明の実施の形態1に係る流路切替三方弁における野菜室への放熱パイプに接続されていない出口パイプ側の流量特性を示す図である。It is a figure which shows the flow volume characteristic by the side of the outlet pipe which is not connected to the heat radiating pipe to the vegetable compartment in the flow-path switching three-way valve which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る流路切替三方弁の概略構成図である。It is a schematic block diagram of the flow-path switching three-way valve which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る流路切替三方弁における回転ギアのSTEPに対する流路形成状態を示す説明図である。It is explanatory drawing which shows the flow-path formation state with respect to STEP of the rotation gear in the flow-path switching three-way valve which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷却器室の一部と機械室の構成を示す部分側面断面図を示す図である。It is a figure which shows the partial side surface sectional drawing which shows the structure of a part of cooler room | chamber and machine room which concern on Embodiment 1 of this invention. 本発明の実施の形態1に係るドリップトレイの構成の第1例を示す概略平面図である。It is a schematic plan view which shows the 1st example of a structure of the drip tray which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るドリップトレイの構成の第2例を示す概略平面図である。It is a schematic plan view which shows the 2nd example of a structure of the drip tray which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る機械室の内部の構成を示す背面図である。It is a rear view which shows the structure inside the machine room which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷蔵庫の野菜室内から見た背面壁の他の構成例を示す正面図である。It is a front view which shows the other structural example of the back wall seen from the vegetable compartment of the refrigerator which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷却器室の一部と機械室の構成を示す部分側面断面図を示す図である。It is a figure which shows the partial side surface sectional drawing which shows the structure of a part of cooler room | chamber and machine room which concern on Embodiment 2 of this invention.
実施の形態1.
 図1~図4に基づき、冷蔵庫1の構成について説明する。図1は、本発明の実施の形態1に係る冷蔵庫を示す外観斜視図である。図2は、本発明の実施の形態1に係る冷蔵庫の冷媒回路と空気循環経路を示す模式図である。図3は、本発明の実施の形態1に係る冷蔵庫を示す側面断面図である。図4は、本発明の実施の形態1に係る冷蔵庫の背面の機械室の概略構成図である。
Embodiment 1 FIG.
The configuration of the refrigerator 1 will be described with reference to FIGS. FIG. 1 is an external perspective view showing a refrigerator according to Embodiment 1 of the present invention. FIG. 2 is a schematic diagram showing a refrigerant circuit and an air circulation path of the refrigerator according to Embodiment 1 of the present invention. FIG. 3 is a side sectional view showing the refrigerator according to Embodiment 1 of the present invention. FIG. 4 is a schematic configuration diagram of a machine room on the back surface of the refrigerator according to Embodiment 1 of the present invention.
 図1および図3に示す様に、冷蔵庫1は、縦長の直方体形状に構成された断熱箱体19を備え、断熱箱体19内に複数の貯蔵室が形成されている。冷蔵庫1は、上から、冷蔵室2、左側の製氷室3および製氷室3の右側の温度切替室4、野菜室5、冷凍室6の順で貯蔵室が配置され、各貯蔵室の間には、それぞれ仕切りが設けられている。 As shown in FIGS. 1 and 3, the refrigerator 1 includes a heat insulating box 19 configured in a vertically long rectangular parallelepiped shape, and a plurality of storage chambers are formed in the heat insulating box 19. In the refrigerator 1, storage rooms are arranged in the order of the refrigerator compartment 2, the ice making room 3 on the left side, the temperature switching room 4 on the right side of the ice making room 3, the vegetable room 5, and the freezing room 6. Are each provided with a partition.
 断熱箱体19は、上面部、底面部、右側面部、左側面部、背面部、並びに、各貯蔵室の正面側にそれぞれ設けられた扉で構成される。また、図3に示す様に、断熱箱体19内には冷却器室27が形成されており、冷却器室27は、製氷室3、温度切替室4、および野菜室5の背面に位置している。また冷蔵庫1は、背面下部に、断熱箱体19の一部の壁部19aが内部に凹んで断熱箱体19の外側に形成された機械室90を備えている。機械室90は、冷凍室6の背面に位置し、機械室90の背面側には図示しない機械室カバーが設けられている。 The heat insulation box 19 includes an upper surface portion, a bottom surface portion, a right side surface portion, a left side surface portion, a back surface portion, and doors provided on the front side of each storage room. Further, as shown in FIG. 3, a cooler chamber 27 is formed in the heat insulating box 19, and the cooler chamber 27 is located on the back of the ice making chamber 3, the temperature switching chamber 4, and the vegetable chamber 5. ing. The refrigerator 1 further includes a machine room 90 formed on the outside of the heat insulation box 19 with a part of the wall portion 19a of the heat insulation box 19 being recessed inside at the lower back portion. The machine room 90 is located on the back side of the freezer room 6, and a machine room cover (not shown) is provided on the back side of the machine room 90.
 図2に示す様に、冷蔵庫1は、冷媒が循環する冷媒回路7と、空気が循環する空気循環経路36とを備え、冷媒と空気とを熱交換させることで冷蔵庫1内を冷却している。図2において、実線の矢印は、冷媒回路7を流れる冷媒の流れ方向を示し、破線の矢印は、空気循環経路を流れる冷気の流れ方向を示している。 As shown in FIG. 2, the refrigerator 1 includes a refrigerant circuit 7 through which refrigerant circulates and an air circulation path 36 through which air circulates, and cools the interior of the refrigerator 1 by exchanging heat between the refrigerant and air. . In FIG. 2, the solid line arrows indicate the flow direction of the refrigerant flowing through the refrigerant circuit 7, and the broken line arrows indicate the flow direction of the cold air flowing through the air circulation path.
 図4には、機械室カバーを外して後方から見たときの機械室90の内部が示されている。図2および図4に示す様に、冷媒回路7は、圧縮機8と、空冷凝縮器9と、放熱パイプ10と、露付き防止パイプ11と、ドライヤ12と、減圧装置13と、冷却器14等とが配管により接続されて構成される。圧縮機8は、冷媒を圧縮して冷媒回路7内に循環させるものであり、機械室90に設置されている。機械室90には、外気を機械室90内に取り込み、機械室90内の空気を循環させて圧縮機8等を冷却する機械室ファン95が設置されている。空冷凝縮器9は、機械室90に配置され、機械室ファン95により送風される空気に冷媒の熱を放熱する空冷の熱交換器である。放熱パイプ10は、冷蔵庫1本体のウレタン内部に設置された配管であり、冷媒の熱を冷蔵庫1外の空気に自然放熱させるものである。露付き防止パイプ11は、冷蔵庫1の前面の各貯蔵室周囲に張り巡らされ、前面における結露を防止する。このように、空冷凝縮器9、放熱パイプ10および露付き防止パイプ11は、冷媒回路7において冷媒を凝縮させる機能を有している。また、ドライヤ12は、冷媒内の水分を除去し、水分による凍結を防止する。減圧装置13は、例えば毛細管等を有して構成され、冷媒を減圧するものである。冷却器14は冷却器室27に配置され、冷却器室27には、冷蔵庫1内の空気を循環させる送風機15も配置されている。冷却器14は、送風機15により送風される空気に冷媒の熱を吸熱する熱交換器である。すなわち、冷却器14は、冷媒を蒸発させる機能を有している。 FIG. 4 shows the inside of the machine room 90 when viewed from the rear with the machine room cover removed. As shown in FIGS. 2 and 4, the refrigerant circuit 7 includes a compressor 8, an air-cooled condenser 9, a heat radiating pipe 10, a dew prevention pipe 11, a dryer 12, a decompressor 13, and a cooler 14. Etc. are connected by piping. The compressor 8 compresses the refrigerant and circulates it in the refrigerant circuit 7, and is installed in the machine room 90. The machine room 90 is provided with a machine room fan 95 that takes outside air into the machine room 90 and circulates the air in the machine room 90 to cool the compressor 8 and the like. The air-cooled condenser 9 is an air-cooled heat exchanger that is disposed in the machine room 90 and radiates the heat of the refrigerant to the air blown by the machine room fan 95. The heat radiating pipe 10 is a pipe installed inside the urethane of the refrigerator 1 main body, and naturally radiates the heat of the refrigerant to the air outside the refrigerator 1. The dew prevention pipe 11 is stretched around each storage room on the front surface of the refrigerator 1 to prevent condensation on the front surface. As described above, the air-cooled condenser 9, the heat radiating pipe 10, and the dew prevention pipe 11 have a function of condensing the refrigerant in the refrigerant circuit 7. Further, the dryer 12 removes moisture in the refrigerant and prevents freezing due to moisture. The decompression device 13 includes, for example, a capillary tube, and decompresses the refrigerant. The cooler 14 is disposed in the cooler chamber 27, and the blower 15 that circulates the air in the refrigerator 1 is also disposed in the cooler chamber 27. The cooler 14 is a heat exchanger that absorbs the heat of the refrigerant into the air blown by the blower 15. That is, the cooler 14 has a function of evaporating the refrigerant.
 また冷蔵庫1は、冷却器室27により冷却された冷気を各貯蔵室へ導入するための風路、および、風路に設けられ、各貯蔵室に流れる冷気の量を調整する風量調整装置18a,18b,18c(以下、総称して風量調整装置18という場合がある)等を備える。風量調整装置18は、例えば、開度が可変なダンパ等で構成される。また冷蔵庫1は、図3に示す様に、制御基板17および複数の温度センサ等を備えている。温度センサ16a,16b,16c,16d(以下、総称して温度センサ16という場合がある)は、例えばサーミスタ等で構成され、各貯蔵室にそれぞれ設置され、設置された貯蔵室内の空気温度、あるいは貯蔵食品の温度を検知する。図3において、温度センサ16aは冷蔵室2に、温度センサ16bは温度切替室4に、温度センサ16cは野菜室5に、そして温度センサ16dは冷凍室6に設置されている。制御基板17は、冷蔵庫1の背面上部に内蔵されている。制御基板17は、例えばマイクロコンピュータおよび電子部品等を備え、冷蔵庫1の各種制御を行う。例えば、制御基板17は、温度センサ16から入力された温度情報に応じて、風路に設置された風量調整装置18の開度、圧縮機8の駆動周波数、および送風機15の送風量等を制御する。 The refrigerator 1 is also provided with an air passage for introducing the cold air cooled by the cooler chamber 27 into each storage chamber, and an air volume adjusting device 18a that is provided in the air passage and adjusts the amount of the cold air flowing into each storage chamber. 18b, 18c (hereinafter sometimes collectively referred to as an air volume adjusting device 18). The air volume adjusting device 18 is composed of, for example, a damper having a variable opening. The refrigerator 1 includes a control board 17 and a plurality of temperature sensors as shown in FIG. The temperature sensors 16a, 16b, 16c, and 16d (hereinafter sometimes collectively referred to as the temperature sensor 16) are composed of, for example, a thermistor and are installed in each storage room, and the air temperature in the installed storage room, or Detect the temperature of stored food. In FIG. 3, the temperature sensor 16a is installed in the refrigerator compartment 2, the temperature sensor 16b is installed in the temperature switching chamber 4, the temperature sensor 16c is installed in the vegetable compartment 5, and the temperature sensor 16d is installed in the freezer compartment 6. The control board 17 is built in the upper back of the refrigerator 1. The control board 17 includes, for example, a microcomputer and electronic components, and performs various controls of the refrigerator 1. For example, the control board 17 controls the opening degree of the air volume adjusting device 18 installed in the air passage, the driving frequency of the compressor 8, the air volume of the blower 15, and the like according to the temperature information input from the temperature sensor 16. To do.
 冷媒回路7において、圧縮機8から吐出された冷媒は、空冷凝縮器9、放熱パイプ10、および露付き防止パイプ11を順に通過し、通過する間に放熱して凝縮される。露付き防止パイプ11を流出した冷媒は、ドライヤ12に流入して水分が除去され、減圧装置13に流入する。減圧装置13に流入した冷媒は減圧されて冷却器14に流入する。冷却器14において、冷媒は、送風機15により冷蔵庫1内を循環している空気から吸熱して蒸発する。このとき、冷却器14周辺の空気は冷却される。冷却器14において蒸発した冷媒は、冷却器14と圧縮機8とを接続する吸入管を通過する際に、減圧装置13を流れる冷媒と熱交換しながら温度上昇し、圧縮機8に戻る。 In the refrigerant circuit 7, the refrigerant discharged from the compressor 8 sequentially passes through the air-cooled condenser 9, the heat radiating pipe 10, and the dew prevention pipe 11, and is radiated and condensed while passing. The refrigerant that has flowed out of the dew prevention pipe 11 flows into the dryer 12 to remove moisture, and flows into the decompression device 13. The refrigerant flowing into the decompression device 13 is decompressed and flows into the cooler 14. In the cooler 14, the refrigerant absorbs heat from the air circulating in the refrigerator 1 by the blower 15 and evaporates. At this time, the air around the cooler 14 is cooled. When the refrigerant evaporated in the cooler 14 passes through the suction pipe connecting the cooler 14 and the compressor 8, the temperature rises while exchanging heat with the refrigerant flowing through the decompression device 13, and returns to the compressor 8.
 一方、冷蔵庫1内の空気が、冷却器室27内を流れる冷媒と熱交換して生成された冷気は、送風機15により、風路を通って各貯蔵室へ送風され、各貯蔵室を冷却する。各貯蔵室の温度は、各貯蔵室に設置された温度センサ16により検知され、検知した温度が予め設定された温度になるように、制御基板17が風量調整装置18等を動作させることで、適切な温度に保たれる。各貯蔵室を冷却した冷気は、送風機15により、風路を通って再び冷却器室27に戻される。 On the other hand, the cool air generated by the air in the refrigerator 1 exchanging heat with the refrigerant flowing in the cooler chamber 27 is blown by the blower 15 through the air passage to each storage chamber, thereby cooling each storage chamber. . The temperature of each storage room is detected by a temperature sensor 16 installed in each storage room, and the control board 17 operates the air volume adjusting device 18 and the like so that the detected temperature becomes a preset temperature. Maintained at an appropriate temperature. The cold air that has cooled each storage chamber is returned to the cooler chamber 27 by the blower 15 through the air passage.
 図3に示す様に、冷却器14の位置は、冷却器室27内において、下端14aが野菜室5の床面の位置Fよりも下方に位置するように設けられるとよい。このように構成された場合、冷却器14の上部にはより大きな空間が確保されるので、各貯蔵室に冷気を送風する送風機15のサイズの自由度が増し、また、風量調整装置18を配置するための空間が確保される。 As shown in FIG. 3, the cooler 14 is preferably provided in the cooler chamber 27 so that the lower end 14 a is positioned below the position F on the floor surface of the vegetable chamber 5. When configured in this manner, a larger space is secured above the cooler 14, so that the degree of freedom of the size of the blower 15 that blows cool air into each storage chamber is increased, and the air volume adjusting device 18 is disposed. Space to do this is secured.
 次に、図5~図9に基づき、冷蔵庫1の断熱箱体19の構成について説明する。図5は、本発明の実施の形態1に係る断熱箱体の構成を示す部分断面図である。図6は、本発明の実施の形態1に係る断熱箱体の部材が固定された状態を示す部分断面図である。図7は、本発明の実施の形態1に係る断熱箱体の構成の第1例を示す部分断面図である。図8は、本発明の実施の形態1に係る断熱箱体の構成の第2例を示す部分断面図である。図9は、本発明の実施の形態1に係る断熱箱体の構成の第3例を示す部分説明図である。 Next, the configuration of the heat insulation box 19 of the refrigerator 1 will be described with reference to FIGS. FIG. 5 is a partial cross-sectional view showing the configuration of the heat insulation box according to Embodiment 1 of the present invention. FIG. 6 is a partial cross-sectional view showing a state in which the members of the heat insulation box according to Embodiment 1 of the present invention are fixed. FIG. 7 is a partial cross-sectional view showing a first example of the configuration of the heat insulating box according to Embodiment 1 of the present invention. FIG. 8 is a partial cross-sectional view showing a second example of the configuration of the heat insulating box according to Embodiment 1 of the present invention. FIG. 9 is a partial explanatory view showing a third example of the configuration of the heat insulation box according to Embodiment 1 of the present invention.
 図5に示す様に、断熱箱体19は、外郭を構成する外箱21および内箱22と、外箱21と内箱22との間に配置される断熱材23等とで構成され、外部からの熱侵入を抑制している。内箱22は、断熱箱体19の外郭の一部であり、各貯蔵室の内壁を構成する。断熱材23には、例えばウレタン発泡材23a等が使用される。 As shown in FIG. 5, the heat insulation box 19 is composed of an outer box 21 and an inner box 22 that form an outer shell, and a heat insulating material 23 and the like disposed between the outer box 21 and the inner box 22. The heat intrusion from is suppressed. The inner box 22 is a part of the outer shell of the heat insulating box 19 and constitutes the inner wall of each storage chamber. For the heat insulating material 23, for example, a urethane foam material 23a or the like is used.
 また、図6に示す様に、フレーム構造25aを備える引出式の貯蔵室扉が設置される場合には、断熱箱体19の内箱22側に、フレーム構造25aを受けるレール構造25bが設置される。レール構造25bの支え25cが設置される位置において、断熱箱体19は、支え25cの形状に対応した形状を有しており、支え25cは、周囲の内箱22およびウレタン発泡材23aにより固定される。断熱箱体19の他の部位においては、冷蔵庫1の歪みを矯正する補強部材、上記冷媒回路7の部品、および電気配線部品等のような様々な内設部材が、ウレタン発泡材23aにより固定される。 Further, as shown in FIG. 6, when a drawer-type storage room door having a frame structure 25a is installed, a rail structure 25b for receiving the frame structure 25a is installed on the inner box 22 side of the heat insulating box body 19. The At the position where the support 25c of the rail structure 25b is installed, the heat insulating box 19 has a shape corresponding to the shape of the support 25c, and the support 25c is fixed by the surrounding inner box 22 and the urethane foam material 23a. The In other parts of the heat insulating box 19, various internal members such as a reinforcing member that corrects the distortion of the refrigerator 1, components of the refrigerant circuit 7, and electric wiring components are fixed by the urethane foam material 23a. The
 図7に示す様に、断熱箱体19の断熱材23は、ウレタン発泡材23aと真空断熱材23bとで構成されてもよい。この場合、外箱21と内箱22との間に形成される空間の一部に真空断熱材23bが配置され、残りの空間にウレタン発泡材23aが充填される。図7において、真空断熱材23bは外箱21の壁面に貼付されている。このように、断熱材23の一部に真空断熱材23bを使用することで、断熱箱体19は、冷蔵庫1内への熱侵入量をさらに低減することができる。 As shown in FIG. 7, the heat insulating material 23 of the heat insulating box 19 may be composed of a urethane foam material 23a and a vacuum heat insulating material 23b. In this case, the vacuum heat insulating material 23b is disposed in a part of the space formed between the outer box 21 and the inner box 22, and the urethane foam 23a is filled in the remaining space. In FIG. 7, the vacuum heat insulating material 23 b is attached to the wall surface of the outer box 21. Thus, the heat insulation box 19 can further reduce the amount of heat intrusion into the refrigerator 1 by using the vacuum heat insulating material 23 b for a part of the heat insulating material 23.
 また、図8に示す様に、真空断熱材23bは、断熱箱体19内部で設置される位置に応じて、外箱21の壁面と内箱22の壁面との中間位置にスペーサ26によって配される構成でもよい。あるいは、図9に示す様に、真空断熱材23bは、内箱22の壁面に貼付されてもよい。図9の構成では、真空断熱材23bは、上記の内設部材と干渉しないように設置されるとよい。なお、断熱箱体19において真空断熱材23bが設置される位置および範囲は上記の構成に限定されず、冷蔵庫1の筐体強度を担保できるように設置されていればよい。冷蔵庫1は、真空断熱材23bを搭載することにより、外箱21と内箱22との間の距離(断熱厚)を狭め、内容積を増やすことができる。 Further, as shown in FIG. 8, the vacuum heat insulating material 23 b is arranged by a spacer 26 at an intermediate position between the wall surface of the outer box 21 and the wall surface of the inner box 22 according to the position installed inside the heat insulating box body 19. It may be configured. Alternatively, as shown in FIG. 9, the vacuum heat insulating material 23 b may be attached to the wall surface of the inner box 22. In the configuration of FIG. 9, the vacuum heat insulating material 23b is preferably installed so as not to interfere with the internal member. In addition, the position and range in which the vacuum heat insulating material 23b is installed in the heat insulation box 19 are not limited to the above configuration, and may be installed so as to ensure the housing strength of the refrigerator 1. The refrigerator 1 can reduce the distance (heat insulation thickness) between the outer box 21 and the inner box 22 and increase the internal volume by mounting the vacuum heat insulating material 23b.
 次に、冷蔵庫1内に形成された風路について説明する。風路は、冷却器室27と一部の貯蔵室風路に接続した風路と、各貯蔵室へ冷気が吹き出す吹出し風路と、各貯蔵室から冷気が戻る戻り風路等とで構成される。 Next, the air path formed in the refrigerator 1 will be described. The air passage is composed of an air passage connected to the cooler chamber 27 and some of the storage compartment air passages, a blowout air passage from which cool air blows out to each storage compartment, and a return air passage from which the cold air returns from each storage compartment. The
 図10は、本発明の実施の形態1に係る冷蔵庫の下部周辺を示す説明図である。(a)は扉を外したときの正面断面図であり、(b)は側面断面図である。図10に示す様に、冷却器14の右側には、冷蔵室2からの戻り風路30aが形成され、戻り風路30aの前方には、温度切替室4からの戻り風路30cおよび野菜室5への吹出し風路29dが形成されている。冷却器14、戻り風路30cおよび吹出し風路29dの前方には、野菜室5内の空間との仕切りとなる背面壁31が形成されている。 FIG. 10 is an explanatory diagram showing the lower periphery of the refrigerator according to Embodiment 1 of the present invention. (A) is front sectional drawing when a door is removed, (b) is side sectional drawing. As shown in FIG. 10, a return air passage 30a from the refrigerator compartment 2 is formed on the right side of the cooler 14, and a return air passage 30c from the temperature switching chamber 4 and a vegetable compartment are in front of the return air passage 30a. A blowout air passage 29d to 5 is formed. A back wall 31 is formed in front of the cooler 14, the return air passage 30 c, and the blowout air passage 29 d to be a partition from the space in the vegetable compartment 5.
 図11は、本発明の実施の形態1に係る野菜室周辺の構成を示す側面断面図である。野菜室5の背面には、野菜室5と冷却器室27とを隔てる背面壁31が形成されている。背面壁31は断熱壁であり、野菜室5側の断熱壁外郭38および冷却器室27側の断熱壁外郭42と、真空断熱材39と、真空断熱材39の周囲に配置された発泡断熱材40等とにより構成される。背面壁31の発泡断熱材40には、冷凍室6および冷蔵室2等の貯蔵室へ冷気が送風される風路28が設けられている。風路28の前後配置は、後方から、冷却器14、断熱壁外郭42、風路28が形成された発泡断熱材40、真空断熱材39、および、野菜室5側の断熱壁外郭38の順になっている。風路構成を有した発泡断熱材40は、風量調整装置18を保持する機能も備えている。 FIG. 11 is a side cross-sectional view showing the configuration around the vegetable compartment according to Embodiment 1 of the present invention. A back wall 31 that separates the vegetable compartment 5 from the cooler compartment 27 is formed on the back of the vegetable compartment 5. The back wall 31 is a heat insulating wall, and a heat insulating wall shell 38 on the vegetable room 5 side and a heat insulating wall shell 42 on the cooler chamber 27 side, a vacuum heat insulating material 39, and a foam heat insulating material disposed around the vacuum heat insulating material 39. 40 etc. The foam heat insulating material 40 on the back wall 31 is provided with an air passage 28 through which cool air is blown into storage rooms such as the freezer compartment 6 and the refrigerator compartment 2. The front and rear arrangement of the air passage 28 is in the order of the cooler 14, the heat insulating wall shell 42, the foam heat insulating material 40 on which the air passage 28 is formed, the vacuum heat insulating material 39, and the heat insulating wall outer wall 38 on the vegetable compartment 5 side from the rear. It has become. The foam heat insulating material 40 having the air path configuration also has a function of holding the air volume adjusting device 18.
 野菜室5の天井壁32は、野菜室5と、製氷室3および温度切替室4との間の仕切りとなり、野菜室5の底壁35は、野菜室5と冷凍室6との間の仕切りとなる。天井壁32および底壁35は、断熱壁で構成され、設定温度が異なる貯蔵室間の熱移動を抑制している。天井壁32および底壁35は、例えば、射出成型材にて外郭が構成され、内部がウレタン発泡材35aと真空断熱材35bとにより構成される。ウレタン発泡材35aの粘性や流路幅を確保することにより、真空断熱材35bを仕切外郭壁面の中間に配設し、ウレタン発泡材35aによって全体を包み込み、更なる劣化抑制を図ることができる。図11に示される様に真空断熱材35bが低温の貯蔵室側に配置された場合には、低温に設定された貯蔵室内の温度が維持し易くなる。図11において、真空断熱材35bは、天井壁32内では製氷室3および温度切替室4側に配置され、底壁35内では冷凍室6側に配置されている。 The ceiling wall 32 of the vegetable room 5 serves as a partition between the vegetable room 5, the ice making room 3 and the temperature switching room 4, and the bottom wall 35 of the vegetable room 5 serves as a partition between the vegetable room 5 and the freezing room 6. It becomes. The ceiling wall 32 and the bottom wall 35 are heat insulating walls, and suppress heat transfer between storage rooms having different set temperatures. The ceiling wall 32 and the bottom wall 35 are formed of, for example, an injection molding material, and the inside is formed of a urethane foam material 35a and a vacuum heat insulating material 35b. By securing the viscosity and flow path width of the urethane foam material 35a, the vacuum heat insulating material 35b can be arranged in the middle of the partition outer wall surface, and the entire structure can be wrapped with the urethane foam material 35a to further suppress deterioration. As shown in FIG. 11, when the vacuum heat insulating material 35b is disposed on the low temperature storage chamber side, the temperature in the storage chamber set at a low temperature can be easily maintained. In FIG. 11, the vacuum heat insulating material 35 b is disposed on the ice making chamber 3 and temperature switching chamber 4 side in the ceiling wall 32, and is disposed on the freezing chamber 6 side in the bottom wall 35.
 図12は、本発明の実施の形態1に係る野菜室内から見た背面壁部を示す正面断面図である。図12に示す様に、野菜室5内へ冷気が吹出す吹出口44は、野菜室5の背面壁31の内壁における右側上部に形成されている。冷気の吹出口44は、背面壁31に設置された真空断熱材39の前後方向における投影面より外側に位置している。また、野菜室5から冷気が戻る戻り口45は、背面壁31において、吹出口44に対して対角上の左側下部に形成されている。戻り口45は、真空断熱材39の前後方向における投影面より外側に位置している。吹出口44は、冷却器14の上方に配設された送風機15により、冷却器14で生成された冷気を、冷却器室27の上方に設けられた風量調整装置18(例えば風量調整装置18c)を経由して供給する。吹出口44より野菜室5内に吹出された冷気は、野菜室5内を冷却した後、冷気の戻り口45から排出され、冷却器室27へと導かれ、再び冷却器14により冷却される。 FIG. 12 is a front cross-sectional view showing the back wall portion viewed from the vegetable compartment according to Embodiment 1 of the present invention. As shown in FIG. 12, the air outlet 44 through which cool air blows into the vegetable compartment 5 is formed in the upper right portion of the inner wall of the back wall 31 of the vegetable compartment 5. The cold air outlet 44 is located outside the projection surface in the front-rear direction of the vacuum heat insulating material 39 installed on the back wall 31. The return port 45 from which the cold air returns from the vegetable compartment 5 is formed in the lower left portion diagonally with respect to the air outlet 44 in the back wall 31. The return port 45 is located outside the projection surface in the front-rear direction of the vacuum heat insulating material 39. The blower outlet 44 is configured so that the air generated by the cooler 14 is blown by the blower 15 disposed above the cooler 14 and the air volume adjusting device 18 (for example, the air flow adjusting device 18 c) provided above the cooler chamber 27. To supply via. The cold air blown into the vegetable compartment 5 from the blower outlet 44 cools the vegetable compartment 5, then is discharged from the cold return port 45, led to the cooler compartment 27, and cooled again by the cooler 14. .
 図13は、本発明の実施の形態1に係る冷蔵庫の冷蔵室吹出し風路と冷蔵室2の戻り風路を示す説明図である。(a)は扉を外したときの冷蔵庫1の部分正面図であり、(b)は冷蔵室の吹出し風路29aにおける冷蔵庫1の側面断面図であり、(c)は冷蔵室2の戻り風路30aにおける冷蔵庫1の部分側面断面図である。 FIG. 13 is an explanatory diagram showing a refrigerator air outlet air passage and a return air passage of the refrigerator compartment 2 of the refrigerator according to Embodiment 1 of the present invention. (A) is the partial front view of the refrigerator 1 when a door is removed, (b) is side sectional drawing of the refrigerator 1 in the blowing air path 29a of a refrigerator compartment, (c) is the return wind of the refrigerator compartment 2 It is a partial side sectional view of refrigerator 1 in way 30a.
 図13に示す様に、冷蔵室2の吹出し風路29aは、冷却器14の上方に設置された送風機15から排出された後に冷気が通過する、複数の風路を接続して構成される。複数の風路は、例えば、背面壁31内の風路28と、冷却器室27上方の発泡断熱材内の冷蔵室2へ向けた風路と、冷蔵室2と製氷室3および温度切替室4とを仕切る断熱壁内の風路と、冷蔵室2の背面側に設置された発泡断熱材にて成型された風路等である。なお、冷蔵室2への冷気供給量を調整する風量調整装置18aは、例えば、冷蔵室2の吹出し風路29aの途中に設置される。また、冷蔵室2の戻り風路30aは、冷却器14より右側に発泡断熱材を用いて必要断熱を得られるように設置される。冷蔵室2の戻り風路30aの排出口は、冷却器室27内で冷却器14の下方右側から、霜取り時の融解水を受けるドリップトレイ80に接続される。 As shown in FIG. 13, the blowout air passage 29 a of the refrigerator compartment 2 is configured by connecting a plurality of air passages through which the cold air passes after being discharged from the blower 15 installed above the cooler 14. The plurality of air paths include, for example, an air path 28 in the back wall 31, an air path toward the refrigerating room 2 in the foam insulation above the cooler room 27, the refrigerating room 2, the ice making room 3, and the temperature switching room. 4 are an air passage in a heat insulating wall that partitions 4 and an air passage formed by a foam heat insulating material installed on the back side of the refrigerator compartment 2. The air volume adjusting device 18a that adjusts the amount of cold air supplied to the refrigerating room 2 is installed in the middle of the blowout air passage 29a of the refrigerating room 2, for example. Moreover, the return air path 30a of the refrigerator compartment 2 is installed on the right side of the cooler 14 so as to obtain necessary heat insulation using a foam heat insulating material. The outlet of the return air passage 30a of the refrigerator compartment 2 is connected from the lower right side of the cooler 14 in the cooler compartment 27 to a drip tray 80 that receives the molten water at the time of defrosting.
 上記の冷蔵室2の戻り風路30aにおいて必要断熱が確保されない場合には、戻り風路30aに、着霜による風路の閉塞を回避するための風路ヒータを設けると良い。図14Aは、本発明の実施の形態1に係る冷蔵庫の風路ヒータの設置例を示す正面図である。図14Bは、本発明の実施の形態1に係る冷蔵庫の風路ヒータの別の設置例を示す正面図である。図14Aおよび図14Bには、扉を外したときの冷蔵庫の下部周辺が示されている。 When the required heat insulation is not ensured in the return air passage 30a of the refrigerator compartment 2, the return air passage 30a may be provided with an air passage heater for avoiding blockage of the air passage due to frost formation. FIG. 14A is a front view showing an installation example of the air path heater of the refrigerator according to Embodiment 1 of the present invention. FIG. 14B is a front view showing another installation example of the air passage heater of the refrigerator according to Embodiment 1 of the present invention. FIG. 14A and FIG. 14B show the lower periphery of the refrigerator when the door is removed.
 図14Aにおいて、風路ヒータ33aは冷蔵室2の戻り風路30a内に設置され、必要な時に発熱を行う。風路ヒータ33aは、戻り風路30a内の任意の位置に風路長手方向に設置され、例えば、冷却器14を上下方向に投影した寸法以上の範囲に設置されるとよい。また、図14Bにおいて、風路ヒータ33bはドリップトレイ80の近傍に設置されている。風路ヒータ33bは、例えば、戻り風路30aとドリップトレイ80との接合部を中心に、上下100mm程度の範囲で戻り冷気の流動方向に沿うように設けられると良い。 In FIG. 14A, the air passage heater 33a is installed in the return air passage 30a of the refrigerator compartment 2, and generates heat when necessary. The air path heater 33a is installed in an arbitrary position in the return air path 30a in the longitudinal direction of the air path. For example, the air path heater 33a may be installed in a range equal to or larger than the size of the cooler 14 projected in the vertical direction. 14B, the air path heater 33b is installed in the vicinity of the drip tray 80. For example, the air path heater 33b may be provided so as to be along the flow direction of the return cold air in a range of about 100 mm above and below around the junction between the return air path 30a and the drip tray 80.
 図15は、本発明の実施の形態1に係る冷蔵庫の製氷室吹出し風路および製氷室戻り風路を示す説明図である。(a)は扉を外したときの冷蔵庫1の部分正面図であり、(b)は製氷室3内の斜視図である。 FIG. 15 is an explanatory diagram showing an ice making chamber blowing air passage and an ice making chamber return air passage of the refrigerator according to Embodiment 1 of the present invention. (A) is the partial front view of the refrigerator 1 when a door is removed, (b) is a perspective view in the ice making chamber 3. FIG.
 図15に示す様に、製氷室3の吹出し風路29bは、冷却器14の上方に設置された送風機15から排出された後に冷気が通過する、複数の風路を接続して構成される。複数の風路は、例えば、冷却器室27上方の発泡断熱材内の風路、および、製氷室3の背面側に設置された発泡断熱材にて成型された風路等である。なお、製氷室3への冷気供給量を調整する図示しない風量調整装置は、例えば、製氷室3の吹出し風路29bの途中に設置される。製氷室3において冷気の吹出口70は、製氷室3の背面の任意の位置に設けられ、吹出口70から吹出した冷気は、製氷機構71に流入する。製氷室3の戻り風路30bは、冷却器14の前面から冷却器14の全幅内における冷蔵庫1中心より製氷室3側でかつ製氷室3の前後方向の投影幅内に設置されている。製氷室3の戻り風路30bは、製氷室3の背面壁内に任意に設置された戻り口72と、製氷室表面の外郭における裏側と、製氷室3の表面の外郭に隣接する発泡断熱材の一部等と、で構成される。製氷室3の戻り風路30bの排出口は、冷凍室6からの冷気戻り口74近傍で合流する。合流圧損を回避するために、冷凍室6からの冷気戻り口74は、製氷室3からの冷気の排出口近傍において、製氷室3の戻り風路30bの左右幅以上の寸法を有するように形成されるとよい。なお、製氷室3の戻り風路30bは、冷凍室6からの冷気戻り口74より上方位置にて、冷却器室27内に直接戻しても良い。 As shown in FIG. 15, the blowout air passage 29b of the ice making chamber 3 is configured by connecting a plurality of air passages through which cool air passes after being discharged from the blower 15 installed above the cooler 14. The plurality of air paths are, for example, an air path in the foam heat insulating material above the cooler chamber 27, an air path molded with a foam heat insulating material installed on the back side of the ice making chamber 3, and the like. Note that an air volume adjusting device (not shown) that adjusts the amount of cold air supplied to the ice making chamber 3 is installed in the middle of the blowout air passage 29b of the ice making chamber 3, for example. In the ice making chamber 3, the cold air outlet 70 is provided at an arbitrary position on the back surface of the ice making chamber 3, and the cold air blown out from the air outlet 70 flows into the ice making mechanism 71. The return air passage 30 b of the ice making chamber 3 is installed in the projected width in the front-rear direction of the ice making chamber 3 on the ice making chamber 3 side from the center of the refrigerator 1 within the entire width of the cooler 14 from the front surface of the cooler 14. The return air passage 30b of the ice making chamber 3 includes a return opening 72 arbitrarily installed in the back wall of the ice making chamber 3, a back side of the outer surface of the ice making chamber surface, and a foam heat insulating material adjacent to the outer surface of the ice making chamber 3 surface. And a part of. The discharge port of the return air passage 30 b of the ice making chamber 3 joins in the vicinity of the cold air return port 74 from the freezing chamber 6. In order to avoid the merging pressure loss, the cold air return port 74 from the freezer compartment 6 is formed in the vicinity of the cold air outlet from the ice making chamber 3 to have a dimension equal to or larger than the left and right width of the return air passage 30b of the ice making chamber 3. It is good to be done. Note that the return air passage 30 b of the ice making chamber 3 may be directly returned into the cooler chamber 27 at a position above the cold air return port 74 from the freezer compartment 6.
 図16は、本発明の実施の形態1に係る冷蔵庫の切替室吹出し風路および切替室戻り風路を示す説明図である。(a)は扉を外したときの冷蔵庫1の部分正面図であり、(b)は冷蔵庫1の部分側面断面図である。 FIG. 16 is an explanatory diagram showing a switching chamber blowing air passage and a switching chamber return air passage of the refrigerator according to Embodiment 1 of the present invention. (A) is a partial front view of the refrigerator 1 when a door is removed, (b) is a partial side sectional view of the refrigerator 1.
 図16に示す様に、温度切替室4への冷気の吹出し風路29cは、冷却器14の上方に設置された送風機15から排出された後の冷器が通過する、複数の風路を接続して構成される。複数の風路は、冷却器室27上方の発泡断熱材内の風路、および、温度切替室4の背面側に設置された発泡断熱材にて成型された風路等である。なお、温度切替室4への冷気供給量を調整する風量調整装置18b(図3参照)は、例えば、温度切替室4の吹出し風路29cの途中に設置される。また、切替室の戻り風路30cは、温度切替室4の背面壁内に任意に設置された冷気戻り口と、温度切替室4表面の外郭の裏側と、温度切替室4表面の外郭に隣接する発泡断熱材の一部等と、で構成される。また、戻り風路30cの排出口は、冷凍室6からの戻り風路30eの右側に設けられる。 As shown in FIG. 16, the cool air blowing air passage 29 c to the temperature switching chamber 4 connects a plurality of air passages through which the cooler after being discharged from the blower 15 installed above the cooler 14 passes. Configured. The plurality of air paths are an air path in the foam heat insulating material above the cooler chamber 27, an air path formed by the foam heat insulating material installed on the back side of the temperature switching chamber 4, and the like. Note that the air volume adjusting device 18b (see FIG. 3) that adjusts the amount of cold air supplied to the temperature switching chamber 4 is installed in the middle of the blowout air passage 29c of the temperature switching chamber 4, for example. Further, the return air passage 30c of the switching chamber is adjacent to the cool air return port arbitrarily installed in the back wall of the temperature switching chamber 4, the back side of the outer surface of the temperature switching chamber 4, and the outer surface of the temperature switching chamber 4 surface. And a part of the foam insulation. Further, the outlet of the return air passage 30 c is provided on the right side of the return air passage 30 e from the freezer compartment 6.
 図17は、本発明の実施の形態1に係る冷蔵庫の冷凍室吹出し風路および冷凍室6の戻り風路を示す説明図である。(a)は扉を外したときの冷蔵庫1の部分正面図であり、(b)は冷蔵庫1の部分側面断面図である。 FIG. 17 is an explanatory diagram showing a freezer compartment outlet air passage of the refrigerator and a return air passage of the freezer compartment 6 according to Embodiment 1 of the present invention. (A) is a partial front view of the refrigerator 1 when a door is removed, (b) is a partial side sectional view of the refrigerator 1.
 図17に示す様に、冷凍室6の吹出し風路29eは、冷却器14上方に設置された送風機15から排出された後の冷気が通過する、複数の風路を接続して構成される。複数の風路は、例えば、背面壁31内の風路28、および、野菜室5の底壁35に設けられた風路等である。冷凍室6の吹出し風路29eを通過した冷気は、冷凍室6の奥側天井に設けられたガイド部により、冷凍室6内の複数段に積み上げられた収納ケース内に導かれ、冷凍室6内の貯蔵物を冷却する。また、冷凍室6の戻り風路30eは、冷凍室6内から野菜室5の底壁35の後方に向けて設けられた風路で構成される。戻り風路30eは、冷却器14の左右幅内の範囲で形成されている。冷凍室6の戻り風路30eの排出口は、冷蔵室2の戻り風路30aと同様に、冷却器室27内で冷却器14の下方右側からドリップトレイ80に接続される。なお、上記のガイド部は、例えば、冷蔵庫1の前後方向に配列された2つのガイドを備え、前方に冷凍室6内への吹出し側のガイド、また、後方に冷凍室6内からの戻り側のガイドが配置されてもよい。 As shown in FIG. 17, the blowout air passage 29e of the freezer compartment 6 is configured by connecting a plurality of air passages through which the cold air discharged from the blower 15 installed above the cooler 14 passes. The plurality of air passages are, for example, air passages 28 provided in the back wall 31 and the bottom wall 35 of the vegetable compartment 5. The cold air that has passed through the blowout air passage 29e of the freezer compartment 6 is guided into storage cases stacked in a plurality of stages in the freezer compartment 6 by a guide portion provided on the back ceiling of the freezer compartment 6. Cool the stored items inside. In addition, the return air passage 30 e of the freezer compartment 6 is configured by an air passage provided from the inside of the freezer compartment 6 toward the rear of the bottom wall 35 of the vegetable compartment 5. The return air passage 30e is formed in a range within the left-right width of the cooler 14. The outlet of the return air passage 30e of the freezer compartment 6 is connected to the drip tray 80 from the lower right side of the cooler 14 in the cooler compartment 27, similarly to the return air passage 30a of the refrigerator compartment 2. In addition, said guide part is provided with the two guides arranged in the front-back direction of the refrigerator 1, for example, the guide of the blowing side into the freezer compartment 6 ahead, and the return side from the inside of the freezer compartment 6 back A guide may be arranged.
 図18は、本発明の実施の形態1に係る貯蔵室仕切りの構成の第1例を示す概略断面図である。図19は、本発明の実施の形態1に係る貯蔵室仕切りの構成の第2例を示す概略断面図である。上記の図11では、野菜室5の底壁35内の真空断熱材35bが低温の貯蔵室側(冷凍室6側)に配置された場合について説明したが、真空断熱材35bは、図18および図19に示す様に、底壁35内の任意の位置に配置できる。図19のように、真空断熱材35bが外郭壁面の野菜室5側に配設される場合には、野菜室5内壁面に対する被覆率を増加することができ、熱侵入量を抑制することができる。 FIG. 18 is a schematic cross-sectional view showing a first example of the configuration of the storage compartment partition according to Embodiment 1 of the present invention. FIG. 19 is a schematic cross-sectional view showing a second example of the configuration of the storage compartment partition according to Embodiment 1 of the present invention. In FIG. 11 described above, the case where the vacuum heat insulating material 35b in the bottom wall 35 of the vegetable room 5 is arranged on the low temperature storage room side (the freezing room 6 side) has been described. As shown in FIG. 19, it can be arranged at an arbitrary position in the bottom wall 35. As shown in FIG. 19, when the vacuum heat insulating material 35b is disposed on the vegetable wall 5 side of the outer wall surface, the coverage on the inner wall surface of the vegetable room 5 can be increased, and the amount of heat penetration can be suppressed. it can.
 また、野菜室5の背面壁31内においても、真空断熱材39は任意の位置に配置できる。図20は、本発明の実施の形態1に係る野菜室周辺の壁面構成の第1例を示す側面断面図である。図21は、本発明の実施の形態1に係る野菜室周辺の壁面構成の第2例を示す側面断面図である。図22は、本発明の実施の形態1に係る野菜室周辺の壁面構成の第3例を示す側面断面図である。 Also, the vacuum heat insulating material 39 can be arranged at an arbitrary position in the back wall 31 of the vegetable room 5. FIG. 20 is a side cross-sectional view showing a first example of the wall surface configuration around the vegetable compartment according to Embodiment 1 of the present invention. FIG. 21 is a side cross-sectional view showing a second example of the wall surface configuration around the vegetable compartment according to Embodiment 1 of the present invention. FIG. 22 is a side cross-sectional view showing a third example of the wall configuration around the vegetable compartment according to Embodiment 1 of the present invention.
 図20において、背面壁31は、冷却器14に近い後方から前方へ、断熱壁外郭42、風路28が形成された発泡断熱材40、真空断熱材39、発泡断熱材40、野菜室5側の断熱壁外郭38の順になるように構成される。また、図21において、真空断熱材39は、真空断熱材39の効果を確保するために、冷却器14側の断熱壁外郭42の内壁に貼付される。図21に示される構成例では、送風機15から排出される冷気の出口の位置あるいは出口のサイズによる規制を受けて、真空断熱材39の高さ寸法を減ずる場合がある。また、真空断熱材39の周囲に発泡断熱材40が配置されない構成では、真空断熱材39の劣化促進が懸念されるが、図22に示す様に、断熱壁外郭42と真空断熱材39との間に発泡断熱材40を設置することにより、真空断熱材39が保護される。なお、真空断熱材39の大きさは、冷却器14を前方へ投影した面積よりも大きく設定することで、背面壁31を通過する1次元的な熱移動量が最小化される。 In FIG. 20, the back wall 31 is from the rear near the cooler 14 to the front, the heat insulating wall shell 42, the foam heat insulating material 40 in which the air passage 28 is formed, the vacuum heat insulating material 39, the foam heat insulating material 40, the vegetable compartment 5 side. It is comprised so that it may become the order of the heat insulation wall outline 38 of this. Further, in FIG. 21, the vacuum heat insulating material 39 is attached to the inner wall of the heat insulating wall outline 42 on the cooler 14 side in order to ensure the effect of the vacuum heat insulating material 39. In the configuration example shown in FIG. 21, the height dimension of the vacuum heat insulating material 39 may be reduced in response to restrictions on the position of the outlet of the cold air discharged from the blower 15 or the size of the outlet. Further, in the configuration in which the foam heat insulating material 40 is not disposed around the vacuum heat insulating material 39, there is a concern about the promotion of deterioration of the vacuum heat insulating material 39. However, as shown in FIG. The vacuum heat insulating material 39 is protected by installing the foam heat insulating material 40 therebetween. Note that the size of the vacuum heat insulating material 39 is set larger than the area where the cooler 14 is projected forward, thereby minimizing the one-dimensional heat transfer amount passing through the back wall 31.
 また、野菜室5の背面に形成された上記の吹出口44および戻り口45は、左側および右側のいずれか一方に配置されてもよい。図23Aは、本発明の実施の形態1に係る野菜室内から見た背面壁部の第1例を示す正面断面図である。図23Bは、本発明の実施の形態1に係る野菜室内から見た背面壁部の第2例を示す正面断面図である。 Further, the blower outlet 44 and the return outlet 45 formed on the back surface of the vegetable compartment 5 may be arranged on either the left side or the right side. FIG. 23A is a front cross-sectional view showing a first example of a back wall portion viewed from the vegetable compartment according to Embodiment 1 of the present invention. FIG. 23B is a front cross-sectional view showing a second example of the back wall portion viewed from the vegetable compartment according to Embodiment 1 of the present invention.
 図23Aのように左側に配置された場合、または、図23Bのように右側に配置された場合には、右側または左側に風路を設ける必要がないため、真空断熱材39は拡張して配設することができる。このような構成では、野菜室5の真空断熱材39による被覆率が増加し、断熱性が強化される。つまり、野菜室5から他の貯蔵室への熱移動、あるいは、他の貯蔵室および冷却器室27等から野菜室5への冷熱移動が抑制される。また、冷蔵庫1外部から野菜室5への熱侵入が抑制される。 When it is arranged on the left side as shown in FIG. 23A or when it is arranged on the right side as shown in FIG. 23B, it is not necessary to provide an air passage on the right side or the left side. Can be set. In such a structure, the coverage with the vacuum heat insulating material 39 of the vegetable compartment 5 increases, and heat insulation is strengthened. That is, the heat transfer from the vegetable compartment 5 to the other storage room, or the cold heat transfer from the other storage room and the cooler room 27 to the vegetable room 5 is suppressed. Moreover, the heat penetration | invasion to the vegetable compartment 5 from the refrigerator 1 exterior is suppressed.
 一方、真空断熱材の被覆率を大きく設定した場合には、野菜室5の平均温度が低下する傾向となる。このため、冷蔵庫1は、野菜室5の室内温度を保持するための構成を備えるとよい。 On the other hand, when the coverage of the vacuum heat insulating material is set large, the average temperature of the vegetable compartment 5 tends to decrease. For this reason, the refrigerator 1 is good to provide the structure for hold | maintaining the room temperature of the vegetable compartment 5. FIG.
 図24は、本発明の実施の形態1に係る野菜室の保温ヒータの配置を示す模式図である。図24には、必要な時に野菜室5の室内温度を保つために、電気抵抗を利用した保温ヒータ46が設置された例が示される。保温ヒータ46は、野菜室5の床面、背面、左側面および右側面における任意の位置、特には野菜室5の室内温度が比較的低めのポイントに、例えば、3W以下10W程度の任意の容量で設置される。保温ヒータ46は、外気温度、および野菜室5の室内温度により時間ベースの通電率(規準時間に対する通電時間の割合)により通電が実施される。 FIG. 24 is a schematic diagram showing the arrangement of the heat retaining heaters in the vegetable compartment according to Embodiment 1 of the present invention. FIG. 24 shows an example in which a heat retaining heater 46 using electrical resistance is installed in order to maintain the room temperature of the vegetable room 5 when necessary. The warming heater 46 is at an arbitrary position on the floor, back, left side, and right side of the vegetable room 5, particularly at a point where the room temperature of the vegetable room 5 is relatively low, for example, an arbitrary capacity of about 3W or less and about 10W. Installed at. The heat retaining heater 46 is energized at a time-based energization rate (ratio of energization time to reference time) depending on the outside air temperature and the room temperature of the vegetable room 5.
 図25は、本発明の実施の形態1に係る野菜室の放熱パイプの配置を示す模式図である。図26は、本発明の実施の形態1に係る野菜室の放熱パイプと冷媒回路の接続関係を示す模式図である。図25には、野菜室5の左右側壁におけるウレタン発泡材23aの内部、底壁35の外郭内部における断熱材側に、上記の保温ヒータ46に替えて放熱パイプ47が配置された構成が示される。放熱パイプ47は、冷却器14に用いる冷媒を流通させて野菜室5内に放熱するものである。図26に示す様に、冷媒回路7の減圧装置13は、例えば、流路切替三方弁48および2本の毛細管(毛細管51aおよび毛細管51b等)により構成される。上述した冷媒回路7上において、露付き防止パイプ11を経てドライヤ12に接続後、流路切替三方弁48の下流側は接続が切り替えられる。流路切替三方弁48下流側の2本の出口パイプ49、50のうち、出口パイプ50は、上記の放熱パイプ47を介して、毛細管51aの一端に接続されている。一方、出口パイプ49は、毛細管51bの一端に接続されている。出口パイプ49が接続された毛細管51bは、減圧量を変更できる構成にするとよい。 FIG. 25 is a schematic diagram showing the arrangement of the heat radiating pipes in the vegetable compartment according to Embodiment 1 of the present invention. FIG. 26 is a schematic diagram showing a connection relationship between the heat radiation pipe of the vegetable compartment and the refrigerant circuit according to Embodiment 1 of the present invention. FIG. 25 shows a configuration in which a heat radiating pipe 47 is arranged in place of the heat retaining heater 46 inside the urethane foam material 23 a on the left and right side walls of the vegetable compartment 5 and on the heat insulating material side inside the outer wall of the bottom wall 35. . The heat radiating pipe 47 circulates the refrigerant used for the cooler 14 and radiates heat into the vegetable compartment 5. As shown in FIG. 26, the decompression device 13 of the refrigerant circuit 7 includes, for example, a flow path switching three-way valve 48 and two capillaries (capillary tube 51a, capillary tube 51b, and the like). On the refrigerant circuit 7 described above, after being connected to the dryer 12 through the dew prevention pipe 11, the downstream side of the flow path switching three-way valve 48 is switched. Of the two outlet pipes 49 and 50 on the downstream side of the flow path switching three-way valve 48, the outlet pipe 50 is connected to one end of the capillary tube 51 a through the heat radiating pipe 47. On the other hand, the outlet pipe 49 is connected to one end of the capillary tube 51b. The capillary tube 51b to which the outlet pipe 49 is connected may be configured to change the amount of decompression.
 このような構成では、放熱パイプ47が冷媒の熱を野菜室5内に放熱すると、空気側では負荷は増加し、冷凍サイクル側では冷媒の凝縮能力が増加する方向に作用する。その結果、冷凍サイクルの効率が改善され、保温ヒータ46を用いる場合と比べて消費電力が低減できる。 In such a configuration, when the heat radiating pipe 47 dissipates the heat of the refrigerant into the vegetable compartment 5, the load increases on the air side, and the refrigerant condensing capacity increases on the refrigeration cycle side. As a result, the efficiency of the refrigeration cycle is improved, and power consumption can be reduced as compared with the case where the heat retaining heater 46 is used.
 図27~図29に基づき、放熱パイプ47に流れる冷媒流量を調整する構成について説明する。図27は、本発明の実施の形態1に係る流路切替三方弁における野菜室への放熱パイプに接続されていない出口パイプ側の流量特性を示す図である。図28は、本発明の実施の形態1に係る流路切替三方弁の概略構成図である。図29は、本発明の実施の形態1に係る流路切替三方弁における回転ギアのSTEPに対する流路形成状態を示す説明図である。 A configuration for adjusting the flow rate of the refrigerant flowing through the heat radiating pipe 47 will be described with reference to FIGS. FIG. 27 is a diagram showing a flow rate characteristic on the outlet pipe side that is not connected to the heat radiating pipe to the vegetable compartment in the flow path switching three-way valve according to Embodiment 1 of the present invention. FIG. 28 is a schematic configuration diagram of a flow path switching three-way valve according to Embodiment 1 of the present invention. FIG. 29 is an explanatory diagram showing a flow path formation state with respect to STEP of the rotating gear in the flow path switching three-way valve according to Embodiment 1 of the present invention.
 図28に示す様に、流路切替三方弁48は、例えば、リニア電子膨張弁等のような電子制御膨張弁が使用され、毛細管51bに接続されている出口パイプ49から排出される冷媒の流量が多段階に調整される。流路切替三方弁48は、概ね、低電圧4相ステッピングモータ52と弁本体53等とから構成される。弁本体53は、内部に主要部品として、着磁ロータ54、センタギア55、回転ギア56、回転パッド57、弁座58、外郭ケース59、および床板60等を有している。流路切替三方弁48は、4相ステッピングモータ52を1-2相励磁によりユニポーラ駆動することで、着磁ロータ54を回転動作させる。着磁ロータ54は、センタギア55と直結しており、着磁ロータ54が回転すると、センタギア55が着磁ロータ54と同方向に同量だけ回転動作を行う。 As shown in FIG. 28, the flow path switching three-way valve 48 uses, for example, an electronically controlled expansion valve such as a linear electronic expansion valve, and the flow rate of the refrigerant discharged from the outlet pipe 49 connected to the capillary 51b. Is adjusted in multiple stages. The flow path switching three-way valve 48 is generally composed of a low-voltage four-phase stepping motor 52, a valve body 53, and the like. The valve body 53 includes, as main components, a magnetized rotor 54, a center gear 55, a rotating gear 56, a rotating pad 57, a valve seat 58, an outer case 59, a floor plate 60, and the like. The flow path switching three-way valve 48 rotates the magnetized rotor 54 by unipolarly driving the four-phase stepping motor 52 by 1-2 phase excitation. The magnetized rotor 54 is directly connected to the center gear 55. When the magnetized rotor 54 rotates, the center gear 55 rotates by the same amount in the same direction as the magnetized rotor 54.
 また図29に示す様に、センタギア55と回転ギア56とは直接接合されており、そのため、回転ギア56に固定された回転パッド57は、弁座58に設けた中心軸を基準としてセンタギア55の回転駆動を受けて回転動作を行う。回転パッド57には、内径の異なるオリフィス61、62、63が3箇所設けられている。3箇所のオリフィス61、62、63のうち、いずれかのオリフィスが回転パッド57の回転動作により弁座58の出口オリフィス64と重なったときに、所定の冷媒流量が流出する。図29の(a)~(g)には、回転ギア56の異なるSTEPに対する流路形成状態が示されている。出口パイプ49側では、図27に示す様に、流量が小さい順に、全閉、絞り流量A、絞り流量B、絞り流量C、および全開の5段階の流量制御が切替えられる構成となっている。図29の流路形成状態において、状態(b)は全閉、状態(c)は絞り流量A、状態(d)は絞り流量B、状態(e)は絞り流量C、そして状態(f)は全開と対応している。 As shown in FIG. 29, the center gear 55 and the rotation gear 56 are directly joined. Therefore, the rotation pad 57 fixed to the rotation gear 56 has a center axis provided on the valve seat 58 as a reference. Rotation is performed in response to the rotation drive. The rotary pad 57 is provided with three orifices 61, 62, and 63 having different inner diameters. When one of the three orifices 61, 62, 63 overlaps with the outlet orifice 64 of the valve seat 58 due to the rotation operation of the rotary pad 57, a predetermined refrigerant flow rate flows out. 29 (a) to 29 (g) show the flow path formation state for different STEPs of the rotary gear 56. FIG. On the outlet pipe 49 side, as shown in FIG. 27, the flow control is switched in five stages of fully closed, throttle flow rate A, throttle flow rate B, throttle flow rate C, and full open in ascending order of flow rate. 29, the state (b) is fully closed, the state (c) is the throttle flow rate A, the state (d) is the throttle flow rate B, the state (e) is the throttle flow rate C, and the state (f) is Corresponds to fully open.
 このような構成を備えることで、冷蔵庫1は、野菜室5の温度を確保しつつ、消費電力量の低減を図ることができる。なお、野菜室5の保温に電気抵抗を利用した保温ヒータ46を使用する場合には、流路切替三方弁の代わりに、2つの出口のうち流量制御可能な側のみを残した2方弁を利用しても良い。 By providing such a configuration, the refrigerator 1 can reduce the power consumption while ensuring the temperature of the vegetable compartment 5. In addition, when using the heat retaining heater 46 using electric resistance for the heat retaining of the vegetable compartment 5, instead of the flow path switching three-way valve, a two-way valve that leaves only the flow controllable side of the two outlets is provided. May be used.
 図30~図31Bに基づき、冷却器室27および機械室90のかけて設けられた排水経路について説明する。図30は、本発明の実施の形態1に係る冷却器室の一部と機械室の構成を示す部分側面断面図を示す図である。図31Aは、本発明の実施の形態1に係るドリップトレイの構成の第1例を示す概略平面図である。図31Bは、本発明の実施の形態1に係るドリップトレイの構成の第2例を示す概略平面図である。 A drainage path provided between the cooler room 27 and the machine room 90 will be described with reference to FIGS. 30 to 31B. FIG. 30 is a partial side cross-sectional view showing the configuration of a part of the cooler room and the machine room according to Embodiment 1 of the present invention. FIG. 31A is a schematic plan view showing a first example of the configuration of the drip tray according to Embodiment 1 of the present invention. FIG. 31B is a schematic plan view showing a second example of the configuration of the drip tray according to Embodiment 1 of the present invention.
 図30に示す様に、冷却器室27の下方には、冷却器14に付着した霜を融解する除霜手段67と、霜取り動作時に発生する融解水等の水分を、冷却器室27から機械室90へ導くドリップトレイ80が設けられている。 As shown in FIG. 30, below the cooler chamber 27, defrosting means 67 that melts frost adhering to the cooler 14, and water such as melted water generated during the defrosting operation from the cooler chamber 27 to the machine. A drip tray 80 leading to the chamber 90 is provided.
 除霜手段67は、例えばガラス管ヒータで構成される。ガラス管ヒータは、ニクロム線とニクロム線を保護するガラス管等とから構成され、冷却器14の霜取り時には、ニクロム線が電気抵抗により発熱する。除霜手段67は、冷却器室27において冷却器14の下方に、後述する排水経路入口の上下方向の投影面内に設置されるとよい。 The defrosting means 67 is constituted by a glass tube heater, for example. The glass tube heater is composed of a nichrome wire and a glass tube for protecting the nichrome wire. When the cooler 14 is defrosted, the nichrome wire generates heat due to electric resistance. The defrosting means 67 is preferably installed below the cooler 14 in the cooler chamber 27 and on the projection surface in the vertical direction of the drainage path inlet described later.
 ドリップトレイ80は、野菜室5と機械室90との間に介在する断熱壁99で構成され、野菜室5の床面より低い位置に設けられている。断熱壁99とは、例えば、野菜室5の底壁35を構成する断熱壁の後方部分(以下、壁部34という)、および、断熱箱体19において機械室90を形成する壁部19aを示す。壁部34は、例えば、上面34aが、野菜室5の床面と一体に成型され、下面34bが、冷凍室6の天井面と一体に成型されている。壁部34の上面34aと下面34bとの間には断熱材34cが設置されており、下面34bは、上面34aから一定の距離をオフセットして成形されている。 The drip tray 80 is constituted by a heat insulating wall 99 interposed between the vegetable compartment 5 and the machine compartment 90, and is provided at a position lower than the floor surface of the vegetable compartment 5. The heat insulating wall 99 refers to, for example, a rear portion of the heat insulating wall that constitutes the bottom wall 35 of the vegetable room 5 (hereinafter referred to as the wall portion 34), and a wall portion 19a that forms the machine chamber 90 in the heat insulating box body 19. . For example, the upper surface 34 a of the wall portion 34 is molded integrally with the floor surface of the vegetable compartment 5, and the lower surface 34 b is molded integrally with the ceiling surface of the freezer compartment 6. A heat insulating material 34c is installed between the upper surface 34a and the lower surface 34b of the wall 34, and the lower surface 34b is formed by offsetting a certain distance from the upper surface 34a.
 ドリップトレイ80は、冷却器14から滴り落ちる水分を受ける水受け部81と、水受け部81で受けた水が通過する管形状の排水経路82とを有している。水受け部81は、壁部34の上面34aで形成され、水分を排水経路82に誘導するように、排水経路82の入口83に向かって下方に傾斜する形状となっている。排水経路82は、断熱壁99の断熱材内部を貫通して、出口84が機械室90に突出している。排水経路82は、入口83よりも出口84において内径が小さくなっている。排水経路82は、断熱壁99の内部の経路上に継ぎ目を設けず、入口83から出口84まで一体に成型されている。また排水経路82は、入口83において、水受け部81と一体成型されている。例えば、水受け部81および排水経路82は、壁部34の上面34aである外郭により形成される場合には、水分が、冷却器室27から機械室90まで、接続部を通過することなく誘導される。 The drip tray 80 has a water receiving portion 81 that receives moisture dripping from the cooler 14 and a tubular drainage passage 82 through which water received by the water receiving portion 81 passes. The water receiving portion 81 is formed on the upper surface 34 a of the wall portion 34 and has a shape that is inclined downward toward the inlet 83 of the drainage path 82 so as to guide moisture to the drainage path 82. The drainage path 82 penetrates the inside of the heat insulating material of the heat insulating wall 99, and the outlet 84 protrudes into the machine room 90. The drainage path 82 has a smaller inner diameter at the outlet 84 than at the inlet 83. The drainage path 82 is integrally formed from the inlet 83 to the outlet 84 without providing a seam on the path inside the heat insulating wall 99. The drainage path 82 is integrally formed with the water receiving portion 81 at the inlet 83. For example, when the water receiving portion 81 and the drainage path 82 are formed by the outer shell that is the upper surface 34a of the wall portion 34, moisture is guided from the cooler chamber 27 to the machine chamber 90 without passing through the connecting portion. Is done.
 図31Aおよび図31Bに示す様に、入口83は、例えば、左右方向においてドリップトレイ80の略中央部に配置され、前後方向において前方の任意の位置から後方に幅50mm以下の溝形状として形成される。入口83の断面形状は、例えば、円形状、楕円形状もしくは長円形状、または、半楕円と長方形の組合せ形状、もしくは半長円と長方形の組合せ形状であり、後方側がドリップトレイ80の水受け面のほぼ最後部まで到達している。また、排水経路82の出口84は、例えば、内径20mm以下であり断面形状が略円形状に形成されている。 As shown in FIGS. 31A and 31B, the inlet 83 is disposed, for example, in a substantially central portion of the drip tray 80 in the left-right direction, and is formed as a groove shape having a width of 50 mm or less rearward from an arbitrary front position in the front-rear direction. The The cross-sectional shape of the inlet 83 is, for example, a circular shape, an elliptical shape or an oval shape, or a combination shape of a semi-ellipse and a rectangle, or a combination shape of a semi-oval and a rectangle, and the water receiving surface of the drip tray 80 on the rear side. Has reached almost the last part of. In addition, the outlet 84 of the drainage channel 82 has an inner diameter of 20 mm or less and a substantially circular cross-sectional shape.
 図30、図31Aおよび図31Bに示す様に、排水経路82は、排水経路82の入口83から、下方向へ進むにつれて、徐々に奥行方向に狭まる略漏斗形状となっている。つまり、排水経路82の入口83側(以下、上流部82aという)は、下流側に進むにしたがって、断面積が小さくなり、且つ断面の前方側の位置が背面側に近づく。排水経路82の出口84側(以下、下流部82bという)は、内径が略一定の管形状を有し、機械室90内に突出するような長さに形成されている。上流部82aの断面は、上記の入口83の断面形状から、下流部82bの円形状に収束する。図30に示すように、上流部82aは壁部34を貫通して形成され、下流部82bは壁部19aを貫通して形成されている。なお、排水経路82の出口に蓋構造を設け、機械室90内の高湿空気が排水経路82を経由して冷蔵庫1内部に逆流しないように構成してもよい。 As shown in FIG. 30, FIG. 31A and FIG. 31B, the drainage path 82 has a substantially funnel shape that gradually narrows in the depth direction as it proceeds downward from the inlet 83 of the drainage path 82. That is, the inlet 83 side of the drainage passage 82 (hereinafter referred to as the upstream portion 82a) has a smaller cross-sectional area as it goes downstream, and the position of the front side of the cross section approaches the back side. The outlet 84 side of the drainage passage 82 (hereinafter referred to as the downstream portion 82 b) has a tube shape with a substantially constant inner diameter and is formed to have a length that protrudes into the machine chamber 90. The cross section of the upstream portion 82a converges from the cross sectional shape of the inlet 83 to the circular shape of the downstream portion 82b. As shown in FIG. 30, the upstream portion 82a is formed through the wall portion 34, and the downstream portion 82b is formed through the wall portion 19a. Note that a lid structure may be provided at the outlet of the drainage path 82 so that the high humidity air in the machine room 90 does not flow back into the refrigerator 1 through the drainage path 82.
 図31Aおよび図31Bには、上流部82aの断面中心Oaおよび下流部82bの断面中心Obが示されており、上流部82aの断面中心Oaは、下流側に進むにしたがって冷蔵庫1後方へ移動し、下流部82bの断面中心Obに到達する。排水経路82は、入口83から出口84まで、最後部が冷蔵庫1の背面に沿うように設けられている。 31A and 31B show the cross-sectional center Oa of the upstream portion 82a and the cross-sectional center Ob of the downstream portion 82b, and the cross-sectional center Oa of the upstream portion 82a moves to the rear of the refrigerator 1 as it goes downstream. And reaches the cross-sectional center Ob of the downstream portion 82b. The drainage path 82 is provided from the inlet 83 to the outlet 84 so that the rearmost part is along the back surface of the refrigerator 1.
 また、図30に示す様に、壁部19a内にはウレタン発泡材23aと真空断熱材23bが設置されている。排水経路は、上述したように、壁部19a内に形成される下流部82bでは上流部82aよりも断面積が小さく、且つ、排水経路の最後部は冷蔵庫1の背面に沿うように設けられている。そのため、真空断熱材23bは、壁部19a内において、冷蔵庫1の背面近くまで配設できる。 As shown in FIG. 30, a urethane foam material 23a and a vacuum heat insulating material 23b are installed in the wall portion 19a. As described above, the drainage path has a cross-sectional area smaller than that of the upstream part 82a in the downstream part 82b formed in the wall part 19a, and the last part of the drainage path is provided along the back surface of the refrigerator 1. Yes. Therefore, the vacuum heat insulating material 23b can be disposed up to the vicinity of the back surface of the refrigerator 1 in the wall portion 19a.
 また、図30に示す様に、排水経路82の上流部82aには、さらに経路ヒータ85が設置されていてもよい。経路ヒータ85は、例えば、シリコン製の被覆を有するコードヒータ等で構成され、壁部34の断熱材34c内に設置される。経路ヒータ85は、霜取り時に、水に至るまで融解されずに排水経路82の入口83に落下した氷を、発熱により融解することで、排水経路82の詰まりを抑制する。 Further, as shown in FIG. 30, a path heater 85 may be further installed in the upstream portion 82 a of the drainage path 82. The path heater 85 is constituted by, for example, a cord heater having a coating made of silicon, and is installed in the heat insulating material 34 c of the wall portion 34. The path heater 85 suppresses clogging of the drain path 82 by melting the ice that has fallen to the inlet 83 of the drain path 82 without being melted until reaching the water by heat generation at the time of defrosting.
 また、入口83を形成する面上には、金属により成型された金属トレイ89が設置される。図30において、金属トレイ89は、水受け部81、および排水経路82の上流部82aに設置され、除霜手段67の輻射熱をドリップトレイ80面上に伝達するとともに、ドリップトレイ80に落ちた氷を融解し易くしている。 Further, a metal tray 89 formed of metal is installed on the surface forming the inlet 83. In FIG. 30, the metal tray 89 is installed in the water receiving portion 81 and the upstream portion 82 a of the drainage path 82, and transmits the radiant heat of the defrosting means 67 onto the drip tray 80 surface and the ice that has fallen on the drip tray 80. Makes it easier to melt.
 金属トレイ89は、左右方向において、上方に設置されている除霜手段67の長さに対し、同等以上の寸法を有し、前後方向において、ドリップトレイ80の前後幅の2分の1以上の寸法を有するように構成されるとよい。また、ドリップトレイ80において金属トレイ89に覆われた領域の外側の領域は、金属製のテープ等により被覆されてもよい。 The metal tray 89 has a dimension equal to or greater than the length of the defrosting means 67 installed above in the left-right direction, and is at least one-half the front-back width of the drip tray 80 in the front-rear direction. It may be configured to have dimensions. Further, an area outside the area covered with the metal tray 89 in the drip tray 80 may be covered with a metal tape or the like.
 金属トレイ89は、排水経路82の入口83の形状と略一致するように、水受け部81および上流部82aに沿って形成され、断熱材34c内部に設置された経路ヒータ85からの発生熱の伝導を促進する。 The metal tray 89 is formed along the water receiving part 81 and the upstream part 82a so as to substantially match the shape of the inlet 83 of the drainage path 82, and generates heat generated from the path heater 85 installed inside the heat insulating material 34c. Promotes conduction.
 除霜手段67により一部が融解され、冷却器14からドリップトレイ80の水受け部81に滴り落ちた融解水は、水受け部81の傾斜により排水経路82の入口83に導かれる。入口83に導かれた融解水は、排水経路82に流入し、上流部82aを通過する間に経路ヒータ85によりさらに融解し、内径が小さい下流部82bに流入する。排水経路82には接続部が設けられていないので、通過する融解水は断熱壁99に浸透することなく、機械室90内に突出した出口84から機械室90へ排出される。 The melted water partially melted by the defrosting means 67 and dripped from the cooler 14 to the water receiving portion 81 of the drip tray 80 is guided to the inlet 83 of the drainage path 82 by the inclination of the water receiving portion 81. The molten water guided to the inlet 83 flows into the drainage path 82, further melts by the path heater 85 while passing through the upstream section 82a, and flows into the downstream section 82b having a small inner diameter. Since no connection portion is provided in the drainage path 82, the molten water that passes through the drainage path 82 is discharged from the outlet 84 protruding into the machine room 90 into the machine room 90 without penetrating into the heat insulating wall 99.
 図32は、本発明の実施の形態1に係る機械室の内部の構成を示す背面図である。機械室90にはさらに、排水経路82の出口84から機械室90に排出された水分を受ける水受け皿(ドレンパン91)が設置されており、ドレンパン91内には、加熱用配管92が設置されている。加熱用配管92は、例えば、高温の冷媒が流通する冷媒配管で構成される。 FIG. 32 is a rear view showing the internal configuration of the machine room according to Embodiment 1 of the present invention. The machine chamber 90 is further provided with a water tray (drain pan 91) that receives moisture discharged from the outlet 84 of the drainage passage 82 into the machine chamber 90. In the drain pan 91, a heating pipe 92 is installed. Yes. The heating pipe 92 is constituted by, for example, a refrigerant pipe through which a high-temperature refrigerant flows.
 排水経路82を通過した融解水は、出口84から機械室90のドレンパン91に排出され、ドレンパン91内に蓄積される。ドレンパン91に蓄積された融解水は、加熱用配管92と、機械室90内に設置されている空冷凝縮器9および圧縮機8等を冷却する冷却風等とにより、蒸発が促進される。このような構成により、次に霜取り動作が開始されるまでに、前回生じた融解水の蒸発が完了するようになっている。 The molten water that has passed through the drainage path 82 is discharged from the outlet 84 to the drain pan 91 of the machine room 90 and accumulated in the drain pan 91. Evaporation of the molten water accumulated in the drain pan 91 is promoted by the heating pipe 92 and the cooling air that cools the air-cooled condenser 9 and the compressor 8 installed in the machine room 90. With such a configuration, the evaporation of the molten water generated last time is completed before the next defrosting operation is started.
 なお、冷蔵庫1の風路並びに吹出口および戻り口は、上述した構成に限定されない。図33は、本発明の実施の形態1に係る冷蔵庫の野菜室内から見た背面壁の他の構成例を示す正面図である。図33に示す様に、冷蔵室2からの戻り冷気が野菜室5に流入する構成であってもよい。この場合、例えば、野菜室5へ冷蔵室2からの戻り冷気が吹出す吹出口、すなわち冷蔵戻り口75は、野菜室5の背面壁31の内壁における右側上部に形成され、野菜室5からの戻り口45は、野菜室5の背面下部の略中央部に形成される。そして、冷蔵室2の戻り風路と野菜室戻り風路とが、野菜室5の背面下側にて合流し、左右に分割された冷凍室6の戻り風路30eの間から、冷却器室27に戻るように構成される。野菜室5の背面壁31内に配設された冷蔵室2の戻り風路76は、例えば、野菜室5内との間に断熱機能が無く、射出成型により成型された内壁面により隔たれている。そのため、野菜室5内の温度を調整するために、冷蔵室2の戻り風路76と野菜室5内とを隔てる内壁面に複数の孔77が設けられても良い。また、複数の孔77を自在に開閉するスライダ78が設けられても良い。矢印に示される上下方向にスライダ78がスライドされると、閉塞する孔77の数が調整されるため、ユーザはスライダ78を移動させることで野菜室5内の温度を任意に調整できる。このような構成では、野菜室5内で温度調整ができるため、風路に、野菜室5内への冷気供給量を調整するための前述した風量調整装置18cは設置しなくてもよい。 In addition, the air path of the refrigerator 1, a blower outlet, and a return port are not limited to the structure mentioned above. FIG. 33 is a front view showing another configuration example of the back wall viewed from the vegetable compartment of the refrigerator according to Embodiment 1 of the present invention. As shown in FIG. 33, the configuration may be such that the return cold air from the refrigerator compartment 2 flows into the vegetable compartment 5. In this case, for example, the outlet from which the cold air returning from the refrigerator compartment 2 blows out to the vegetable compartment 5, that is, the refrigerator return outlet 75 is formed on the upper right side of the inner wall of the back wall 31 of the vegetable compartment 5. The return port 45 is formed at a substantially central portion at the lower back of the vegetable compartment 5. And the return air path of the refrigerator compartment 2 and the vegetable room return air path merge in the lower back side of the vegetable room 5, and from between the return air paths 30e of the freezer compartment 6 divided into right and left, the cooler room 27 is configured to return. The return air path 76 of the refrigerator compartment 2 disposed in the back wall 31 of the vegetable compartment 5 has no heat insulating function between the vegetable compartment 5 and is separated by an inner wall surface formed by injection molding, for example. . Therefore, in order to adjust the temperature in the vegetable compartment 5, a plurality of holes 77 may be provided on the inner wall surface that separates the return air passage 76 of the refrigerator compartment 2 from the vegetable compartment 5. Further, a slider 78 that freely opens and closes the plurality of holes 77 may be provided. When the slider 78 is slid in the vertical direction indicated by the arrow, the number of holes 77 to be closed is adjusted, so that the user can arbitrarily adjust the temperature in the vegetable compartment 5 by moving the slider 78. In such a configuration, since the temperature can be adjusted in the vegetable compartment 5, the above-described air volume adjusting device 18c for adjusting the amount of cold air supplied to the vegetable compartment 5 may not be installed in the air passage.
 以上のように、実施の形態1において、冷蔵庫1は、内箱22および外箱21、並びに、内箱22と外箱21との間の空間に設置された断熱材23を有する断熱箱体19と、断熱箱体19の背面下部が内側に凹んで形成され、圧縮機8が配置される機械室90と、機械室90の上方に断熱箱体19内に形成され、冷気を生成する冷却器14が配置される冷却器室27と、冷却器室27において冷却器14の下方に設けられ、冷却器14からの水を受ける水受け部81と、水受け部81に入口83が設置され、冷却器室27と機械室90とを連通するように、冷却器室27と機械室90との間に介在する断熱壁99を貫通し、機械室90に出口84が突出した排水経路82と、を備え、排水経路82の入口83側は、下流側に進むにしたがって、断面積が小さくなり、且つ、断面の中心位置(断面中心Oa)が背面側へ近づく形状を有し、排水経路82は、入口83から出口84まで一体構成される。 As described above, in the first embodiment, the refrigerator 1 includes the inner box 22 and the outer box 21, and the heat insulating box 19 having the heat insulating material 23 installed in the space between the inner box 22 and the outer box 21. A lower part of the back surface of the heat insulation box 19 is formed inwardly, a machine room 90 in which the compressor 8 is disposed, and a cooler that is formed in the heat insulation box 19 above the machine room 90 and generates cool air. 14 is disposed below the cooler 14 in the cooler chamber 27, and a water receiving portion 81 for receiving water from the cooler 14, and an inlet 83 is installed in the water receiving portion 81, A drainage path 82 that penetrates through a heat insulating wall 99 interposed between the cooler chamber 27 and the machine chamber 90 so that the cooler chamber 27 and the machine chamber 90 communicate with each other; And the inlet 83 side of the drainage channel 82 follows the downstream side. , The cross-sectional area is reduced, and has the shape center position of the cross section (the cross-sectional center Oa) approaches the rear side, the drainage path 82 is integrally formed from the inlet 83 to the outlet 84.
 これより、排水経路82は、入口83から出口84に向かい内径が縮小しながら断面中心Oaが冷蔵庫1の背面側に近づく形状を有しているので、冷却器室27と機械室90との間の断熱壁99は真空断熱材(例えば真空断熱材23b)を配設することができる。したがって、冷蔵庫1は、断熱性能を確保することができる。また排水経路82は、従来のように断熱材内で接続部を有する構成とは異なり、入口83から出口84まで一体成型されているので、排水経路82から断熱壁99内部への水分の浸透が抑制される。したがって、冷蔵庫1は、排水経路82の閉塞による庫内水漏れ等の発生を低減することができる。 Accordingly, the drainage path 82 has a shape in which the inner diameter decreases from the inlet 83 to the outlet 84 while the cross-sectional center Oa approaches the back side of the refrigerator 1. The heat insulating wall 99 can be provided with a vacuum heat insulating material (for example, a vacuum heat insulating material 23b). Therefore, the refrigerator 1 can ensure heat insulation performance. In addition, unlike the conventional configuration in which the drainage path 82 has a connection portion in the heat insulating material, the drainage path 82 is integrally molded from the inlet 83 to the outlet 84, so that moisture permeates from the drainage path 82 into the heat insulating wall 99. It is suppressed. Therefore, the refrigerator 1 can reduce generation | occurrence | production of the water leak etc. in a warehouse by obstruction | occlusion of the drainage path 82. FIG.
 また、排水経路82は、平面視において、背面側または背面側の一部において垂直方向にのびる壁面を有する。つまり、排水経路82は、平面視において冷蔵庫1の背面に最も近接した部位は、冷蔵庫1の上下方向において、例えば冷蔵庫1背面に沿うように設けられる。これより、冷却器室27と機械室90との間に介在する断熱壁99において、真空断熱材(例えば真空断熱材23b)を配設する範囲を、冷蔵庫1の背面側へ拡張することができる。したがって、冷蔵庫1は、特に断熱が必要とされる位置において真空断熱材23bの被覆面積を大きくすることができる。その結果、機械室90天面の露付きが低減され、また、省エネ性が改善する。 Further, the drainage path 82 has a wall surface extending in the vertical direction on the back side or a part of the back side in plan view. That is, the drainage path 82 is provided so that the portion closest to the back surface of the refrigerator 1 in plan view is, for example, along the back surface of the refrigerator 1 in the vertical direction of the refrigerator 1. Thereby, in the heat insulation wall 99 interposed between the cooler room 27 and the machine room 90, the range in which the vacuum heat insulating material (for example, the vacuum heat insulating material 23b) is disposed can be extended to the back side of the refrigerator 1. . Therefore, the refrigerator 1 can increase the covering area of the vacuum heat insulating material 23b particularly at a position where heat insulation is required. As a result, the dew on the top surface of the machine room 90 is reduced and the energy saving performance is improved.
 また、排水経路82は、水受け部81と一体構成されている。これより、冷却器14から滴り落ちる融解水が通過する経路上には接続部が設けられていないため、融解水が冷却器14から機械室90に排水される確実性をさらに高めることができる。 Further, the drainage path 82 is configured integrally with the water receiving portion 81. Thereby, since the connection part is not provided on the path | route through which the molten water dripping from the cooler 14 passes, the certainty that molten water is drained from the cooler 14 to the machine room 90 can further be improved.
 また、排水経路82の入口83の断面形状は、楕円形状または長円形状である。これより、ドリップトレイ80に排水経路が一体成型し易くなる。ところで、従来、ドリップトレイの水受け面に設けられた排水経路入口は、略円形形状を成している。このような形状を維持して排水経路を機械室に突出させる長さを確保しようとした場合、排水経路は細長い形状のため、製品製作および成型工程において、脱型性を確保するためには排水経路出口の内径が極めて小さくなる。そのため、従来の排水経路においては、排水性が低下して異物による閉塞等が生じる確率が高くなる。一方、上記の排水経路82は、入口83が上記のような形状に構成されているので、水受け部81と排水経路82とを一体成型し易い。そのため、冷蔵庫1は、品質の安定した排水経路82を得ることができる。 Moreover, the cross-sectional shape of the inlet 83 of the drainage channel 82 is elliptical or oval. As a result, the drainage path is easily formed integrally with the drip tray 80. By the way, conventionally, the drainage path entrance provided on the water receiving surface of the drip tray has a substantially circular shape. Maintaining such a shape and securing a length that allows the drainage channel to protrude into the machine room is a long and narrow drainage channel. The inner diameter of the route outlet becomes extremely small. Therefore, in the conventional drainage route, the drainage performance decreases and the probability of occurrence of blockage due to foreign matter increases. On the other hand, in the drainage channel 82, since the inlet 83 is configured in the above-described shape, the water receiving portion 81 and the drainage channel 82 are easily molded integrally. Therefore, the refrigerator 1 can obtain a drainage path 82 with stable quality.
 また冷蔵庫1は、冷却器14の霜を、ヒータまたは高温冷媒により融解する除霜手段67をさらに備える。これより、除霜手段67は、冷却器14に付着した霜を融解して冷却器14から除き、冷却器14の性能を維持することができる。 The refrigerator 1 further includes defrosting means 67 for melting the frost in the cooler 14 with a heater or a high-temperature refrigerant. From this, the defrosting means 67 can melt | dissolve the frost adhering to the cooler 14, remove it from the cooler 14, and can maintain the performance of the cooler 14. FIG.
 また冷蔵庫1は、機械室90において出口84の下方に設置されたドレンパン91をさらに備え、ドレンパン91は、内部に加熱用配管92が配置される。これより、機械室90に排出された水分をドレンパン91内で蒸発させることができ、機械室90に設置された機器等を保護することができる。 The refrigerator 1 further includes a drain pan 91 installed below the outlet 84 in the machine room 90. The drain pan 91 has a heating pipe 92 disposed therein. As a result, the water discharged into the machine room 90 can be evaporated in the drain pan 91, and the devices installed in the machine room 90 can be protected.
 また冷蔵庫1は、断熱箱体19内に形成された第1貯蔵室(例えば野菜室5)をさらに備え、水受け部81および排水経路82は、第1貯蔵室(野菜室5)の床面が冷却器室27に延在して形成され、床面よりも低い位置に配される。これより、冷蔵庫1は、ドリップトレイ80を別に構成するための部品を削減しつつ、融解水が通過する経路上に接続部が設けられていないドリップトレイ80を得ることができる。 The refrigerator 1 further includes a first storage room (for example, the vegetable room 5) formed in the heat insulating box 19, and the water receiving portion 81 and the drainage path 82 are the floor surface of the first storage room (the vegetable room 5). Is formed to extend to the cooler chamber 27 and is disposed at a position lower than the floor surface. Thereby, the refrigerator 1 can obtain the drip tray 80 in which the connection part is not provided on the path | route through which molten water passes, reducing the part for comprising the drip tray 80 separately.
 また冷蔵庫1は、第1貯蔵室(例えば野菜室5)の下方であり且つ機械室90の前方に形成され、第1貯蔵室(野菜室5)よりも低温に設定される第2貯蔵室(例えば冷凍室6)をさらに備え、断熱壁99は、第1貯蔵室(野菜室)の底壁35、および、断熱箱体19の機械室を形成する壁部19aである。これより、冷蔵庫1は、低温に設置される第2貯蔵室(冷凍室6)と、断熱箱体19の外側に形成される機械室90との間においても、断熱性を確保することができ、省エネ性を向上させることができる。特に、排水経路の下流部82bは、上流部82aよりも内径が小さく、且つ背面側に位置するため、冷蔵庫1は、壁部19a内の真空断熱材23bを拡張することで、機械室90と、第2貯蔵室(冷凍室6)および冷却器室27との間の断熱を高めることができる。 The refrigerator 1 is a second storage room (below the first storage room (for example, the vegetable room 5) and is formed in front of the machine room 90, and is set at a lower temperature than the first storage room (the vegetable room 5)). For example, a freezing room 6) is further provided, and the heat insulation wall 99 is a bottom wall 35 of the first storage room (vegetable room) and a wall portion 19a that forms a machine room of the heat insulation box 19. Thereby, the refrigerator 1 can ensure heat insulation also between the 2nd storage chamber (freezer compartment 6) installed in low temperature, and the machine room 90 formed in the outer side of the heat insulation box 19. FIG. , Energy saving can be improved. In particular, since the downstream portion 82b of the drainage path has an inner diameter smaller than that of the upstream portion 82a and is located on the back side, the refrigerator 1 expands the vacuum heat insulating material 23b in the wall portion 19a. Insulation between the second storage chamber (freezer chamber 6) and the cooler chamber 27 can be enhanced.
実施の形態2.
 実施の形態1において、排水経路は、入口から出口まで、最後部が冷蔵庫の背面に沿うように設けられていた。実施の形態2では、排水経路が出口側で傾斜する構成について説明する。以下、実施の形態1と異なる点のみ説明し、他の構成については同じ構成を有するものとする。
Embodiment 2.
In Embodiment 1, the drainage path was provided from the inlet to the outlet so that the rearmost part was along the back of the refrigerator. In the second embodiment, a configuration in which the drainage path is inclined on the outlet side will be described. Hereinafter, only differences from the first embodiment will be described, and the other configurations have the same configuration.
 図34は、本発明の実施の形態2に係る冷却器室の一部と機械室の構成を示す部分側面断面図を示す図である。排水経路182の入口183は、例えば、円形状、楕円形状もしくは長円形状、または、半楕円と長方形の組合せ形状、もしくは半長円と長方形の組合せ形状であり、後方側が水受け面のほぼ最後部まで到達している。また出口184は、例えば、断面形状が略円形状に形成されている。図34に示す様に、排水経路182の入口183側(以下、上流部182aという)は、下流側に進むにしたがって、断面積が小さくなり、且つ断面の前方側の位置が背面側に近づく。また、排水経路182の出口184側(以下、下流部182bという)は、内径が略一定の管形状を有し、機械室90内に突出するような長さに形成されている。そして、排水経路182は、入口183から出口184まで一体構成され、上流部182aの断面は、上記の入口183の断面形状から、下流部182bの円形状に収束するように形成されている。 FIG. 34 is a partial side sectional view showing the configuration of a part of the cooler room and the machine room according to Embodiment 2 of the present invention. The inlet 183 of the drainage channel 182 is, for example, a circular shape, an elliptical shape or an oval shape, or a combination shape of a semi-ellipse and a rectangle, or a combination shape of a semi-oval and a rectangle, and the rear side is almost the last of the water receiving surface. Has reached the department. Further, the outlet 184 has, for example, a substantially circular cross section. As shown in FIG. 34, on the inlet 183 side (hereinafter referred to as the upstream portion 182a) of the drainage path 182, the cross-sectional area becomes smaller and the position on the front side of the cross section approaches the back side as it goes downstream. Further, the outlet 184 side of the drainage passage 182 (hereinafter referred to as the downstream portion 182b) has a tube shape with a substantially constant inner diameter, and is formed in such a length as to protrude into the machine chamber 90. The drainage path 182 is integrally formed from the inlet 183 to the outlet 184, and the cross section of the upstream portion 182a is formed to converge from the cross sectional shape of the inlet 183 to the circular shape of the downstream portion 182b.
 実施の形態2では、排水経路182の下流部182bは、冷蔵庫1の背面に沿う方向(例えば鉛直下向き方向)から、背面側に傾斜して形成される。つまり、下流部182bは出口184に近い位置ほど、冷蔵庫1の後方側に位置する。下流部182bを形成する角度は、排水経路182の成形性および融解水の排出性を損なわず、且つ、異物を滞留させない角度に設定される。例えば、出口184の傾斜角が、冷蔵庫1の奥行水平方向に対し、水滴が自重により落下する角度である7°以上の下向きの仰角(角度θ)を備えるように構成されるとよい。また、仰角(角度θ)の上限は、例えば、排水経路182の上流部182aからの融解水の流れが妨げられないように、90°未満に設定すればよい。 In Embodiment 2, the downstream portion 182b of the drainage path 182 is formed to be inclined from the direction along the back surface of the refrigerator 1 (for example, the vertically downward direction) to the back surface side. That is, the downstream portion 182 b is located closer to the rear side of the refrigerator 1 as the position is closer to the outlet 184. The angle at which the downstream portion 182b is formed is set to an angle that does not impair the moldability of the drainage path 182 and the drainage of the molten water, and does not retain foreign matter. For example, the inclination angle of the outlet 184 may be configured to have a downward elevation angle (angle θ) of 7 ° or more, which is an angle at which a water droplet falls by its own weight, with respect to the depth horizontal direction of the refrigerator 1. Moreover, what is necessary is just to set the upper limit of an elevation angle (angle (theta)) below 90 degrees so that the flow of the molten water from the upstream part 182a of the drainage path 182 may not be prevented, for example.
 以上のように、実施の形態2においても実施の形態1の場合と同様に、排水経路182は、入口183から出口184に向かい内径が縮小しながら中心位置が冷蔵庫1の背面側に近づくように形成され、また、入口183から出口184まで一体構成されている。したがって、実施の形態1の場合と同様に、冷蔵庫1は、断熱壁99の断熱性能を確保するとともに排水経路182の閉塞を回避することができ、庫内水漏れ等の発生を抑えることができる。 As described above, in the second embodiment as well, in the same way as in the first embodiment, the drainage path 182 is such that the center position approaches the back side of the refrigerator 1 while reducing the inner diameter from the inlet 183 toward the outlet 184. Further, it is integrally formed from the inlet 183 to the outlet 184. Therefore, as in the case of the first embodiment, the refrigerator 1 can ensure the heat insulating performance of the heat insulating wall 99 and can prevent the drainage path 182 from being blocked, and can suppress the occurrence of water leakage in the cabinet. .
 また、排水経路182の出口184の傾斜角は、奥行水平方向に対して下向きの仰角(角度θ)が7°以上である。これより、排水経路182の出口184が冷蔵庫1の背面側に向けて形成されているので、断熱壁99内において真空断熱材を配設できる領域が広く確保され、冷蔵庫1は、真空断熱材による被覆面積を大きくして断熱性能を強化することができる。 In addition, the inclination angle of the outlet 184 of the drainage channel 182 has an elevation angle (angle θ) downward of 7 ° or more with respect to the depth horizontal direction. Accordingly, since the outlet 184 of the drainage path 182 is formed toward the back side of the refrigerator 1, a wide area in which the vacuum heat insulating material can be disposed in the heat insulating wall 99 is secured, and the refrigerator 1 is made of the vacuum heat insulating material. The insulation area can be enhanced by increasing the covering area.
 なお、本発明の実施の形態は上記実施の形態に限定されず、種々の変更を行うことができる。例えば、実施の形態1では除霜手段67として、通電により発熱するヒータが使用されたが、ヒータの代わりに高温冷媒によって霜を融解する構成であってもよい。 The embodiment of the present invention is not limited to the above embodiment, and various changes can be made. For example, in Embodiment 1, a heater that generates heat when energized is used as the defrosting means 67, but a configuration in which frost is melted by a high-temperature refrigerant instead of the heater may be used.
 1 冷蔵庫、2 冷蔵室、3 製氷室、4 温度切替室、5 野菜室、6 冷凍室、7 冷媒回路、8 圧縮機、9 空冷凝縮器、10 放熱パイプ、11 露付き防止パイプ、12 ドライヤ、13 減圧装置、14 冷却器、14a 下端、15 送風機、16(16a,16b,16c,16d) 温度センサ、17 制御基板、18(18a,18b,18c) 風量調整装置、19 断熱箱体、19a 壁部、21 外箱、22 内箱、23 断熱材、23a ウレタン発泡材、23b 真空断熱材、25a フレーム構造、25b レール構造、25c 支え、26 スペーサ、27 冷却器室、28 風路、29a,29b,29c,29d,29e 吹出し風路、30a,30b,30c,30e 戻り風路、31 背面壁、32 天井壁、33a,33b 風路ヒータ、34 壁部、34a 上面、34b 下面、34c 断熱材、35 底壁、35a ウレタン発泡材、35b 真空断熱材、36 空気循環経路、38 断熱壁外郭、39 真空断熱材、40 発泡断熱材、42 断熱壁外郭、44 吹出口、45 戻り口、46 保温ヒータ、47 放熱パイプ、48 流路切替三方弁、49,50 出口パイプ、51a,51b 毛細管、53 弁本体、54 着磁ロータ、55 センタギア、56 回転ギア、57 回転パッド、58 弁座、59 外郭ケース、60 床、61 オリフィス、62 オリフィス、63 オリフィス、64 出口オリフィス、67 除霜手段、70 吹出口、71 製氷機構、72 戻り口、74 冷気戻り口、75 冷蔵戻り口、76 戻り風路、77 孔、78 スライダ、80 ドリップトレイ、81 水受け部、82,182 排水経路、82a,182a 上流部、82b,182b 下流部、83,183 入口、84,184 出口、85 経路ヒータ、89 金属トレイ、90 機械室、91 ドレンパン、92 加熱用配管、95 機械室ファン、99 断熱壁、Oa,Ob 断面中心、θ 角度。 1 refrigerator, 2 refrigerator compartment, 3 ice making room, 4 temperature switching room, 5 vegetable room, 6 freezer room, 7 refrigerant circuit, 8 compressor, 9 air-cooled condenser, 10 heat radiation pipe, 11 dew prevention pipe, 12 dryer, 13 decompression device, 14 cooler, 14a lower end, 15 blower, 16 (16a, 16b, 16c, 16d) temperature sensor, 17 control board, 18 (18a, 18b, 18c) air volume adjustment device, 19 heat insulation box, 19a wall Part, 21 outer box, 22 inner box, 23 heat insulating material, 23a urethane foam material, 23b vacuum heat insulating material, 25a frame structure, 25b rail structure, 25c support, 26 spacer, 27 cooler room, 28 air passage, 29a, 29b 29c, 29d, 29e Air outlet, 30a, 30b, 30c, 30e Return air passage, 31 Rear 32, ceiling wall, 33a, 33b, air passage heater, 34 wall, 34a upper surface, 34b lower surface, 34c heat insulating material, 35 bottom wall, 35a urethane foam, 35b vacuum heat insulating material, 36 air circulation path, 38 heat insulating wall outline, 39 Vacuum insulation material, 40 Foam insulation material, 42 Heat insulation wall outline, 44 Outlet, 45 Return port, 46 Heat retention heater, 47 Heat dissipation pipe, 48 Flow path switching three-way valve, 49, 50 Outlet pipe, 51a, 51b Capillary tube, 53 Valve body, 54 Magnetized rotor, 55 Center gear, 56 Rotating gear, 57 Rotating pad, 58 Valve seat, 59 Outer case, 60 Floor, 61 Orifice, 62 Orifice, 63 Orifice, 64 Outlet orifice, 67 Defrosting means, 70 Blowing Exit, 71 ice making mechanism, 72 return port, 74 cold air return port, 75 Refrigeration return port, 76 return air channel, 77 holes, 78 slider, 80 drip tray, 81 water receiving part, 82,182 drainage path, 82a, 182a upstream part, 82b, 182b downstream part, 83,183 inlet, 84,184 Exit, 85 path heater, 89 metal tray, 90 machine room, 91 drain pan, 92 heating pipe, 95 machine room fan, 99 heat insulation wall, Oa, Ob cross-sectional center, θ angle.

Claims (9)

  1.  内箱および外箱、並びに、前記内箱と前記外箱との間の空間に設置された断熱材を有する断熱箱体と、
     前記断熱箱体の背面下部が内側に凹んで形成され、圧縮機が配置される機械室と、
     前記機械室の上方に前記断熱箱体内に形成され、冷気を生成する冷却器が配置される冷却器室と、
     前記冷却器室において前記冷却器の下方に設けられ、前記冷却器からの水を受ける水受け部と、
     前記水受け部に入口が設置され、前記冷却器室と前記機械室とを連通するように、前記冷却器室と前記機械室との間に介在する断熱壁を貫通し、前記機械室に出口が突出した排水経路と、を備え、
     前記排水経路の前記入口側は、下流側に進むにしたがって、断面積が小さくなり、且つ、断面の中心位置が背面側へ近づく形状を有し、
     前記排水経路は、前記入口から前記出口まで一体構成される
     冷蔵庫。
    An inner box and an outer box, and a heat insulating box having a heat insulating material installed in a space between the inner box and the outer box;
    A machine room in which a lower back portion of the heat insulating box is formed inwardly and a compressor is disposed,
    A cooler chamber that is formed in the heat insulation box above the machine chamber and in which a cooler that generates cold air is disposed;
    A water receiving portion that is provided below the cooler in the cooler chamber and receives water from the cooler;
    An inlet is installed in the water receiving portion, and penetrates a heat insulating wall interposed between the cooler chamber and the machine chamber so as to communicate the cooler chamber and the machine chamber, and the outlet to the machine chamber And a drainage channel that protrudes,
    The inlet side of the drainage path has a shape in which the cross-sectional area becomes smaller as it goes downstream, and the center position of the cross section approaches the back side,
    The drainage path is configured integrally from the entrance to the exit.
  2.  前記排水経路は、平面視において、背面側または背面側の一部において垂直方向にのびる壁面を有する請求項1記載の冷蔵庫。 The refrigerator according to claim 1, wherein the drainage path has a wall surface extending in a vertical direction on a back side or a part of the back side in a plan view.
  3.  前記排水経路の前記出口の傾斜角は、奥行水平方向に対して下向きの仰角が7°以上である請求項1記載の冷蔵庫。 The refrigerator according to claim 1, wherein an inclination angle of the outlet of the drainage path is such that an elevation angle downward with respect to the horizontal direction of the depth is 7 ° or more.
  4.  前記排水経路は、前記水受け部と一体構成されている請求項1~3のいずれか一項記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 3, wherein the drainage path is configured integrally with the water receiving portion.
  5.  前記排水経路の前記入口の断面形状は、楕円形状または長円形状である請求項1~4のいずれか一項記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 4, wherein a cross-sectional shape of the inlet of the drainage path is an elliptical shape or an oval shape.
  6.  前記冷却器の霜を、ヒータまたは高温冷媒により融解する除霜手段をさらに備える請求項1~5のいずれか一項記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 5, further comprising defrosting means for melting the frost of the cooler with a heater or a high-temperature refrigerant.
  7.  前記機械室において前記出口の下方に設置された水受け皿をさらに備え、
     前記水受け皿は、内部に加熱用配管が配置される請求項1~6のいずれか一項記載の冷蔵庫。
    Further comprising a water tray installed below the outlet in the machine room;
    The refrigerator according to any one of claims 1 to 6, wherein the water tray is provided with a heating pipe.
  8.  前記断熱箱体内に形成された第1貯蔵室をさらに備え、
     前記水受け部および前記排水経路は、前記第1貯蔵室の床面が前記冷却器室に延在して形成され、前記床面よりも低い位置に配される請求項1~7のいずれか一項記載の冷蔵庫。
    A first storage chamber formed in the heat insulation box;
    The water receiving portion and the drainage path are formed by extending the floor surface of the first storage chamber to the cooler chamber, and are disposed at a position lower than the floor surface. The refrigerator according to one item.
  9.  前記第1貯蔵室の下方であり且つ前記機械室の前方に形成され、前記第1貯蔵室よりも低温に設定される第2貯蔵室をさらに備え、
     前記断熱壁は、前記第1貯蔵室の底壁、および、前記断熱箱体の前記機械室を形成する壁部である請求項8記載の冷蔵庫。
    A second storage chamber formed below the first storage chamber and in front of the machine chamber and set at a lower temperature than the first storage chamber;
    The refrigerator according to claim 8, wherein the heat insulating wall is a wall portion forming a bottom wall of the first storage chamber and the machine room of the heat insulating box.
PCT/JP2017/000505 2017-01-10 2017-01-10 Refrigerator WO2018131076A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2017392447A AU2017392447B2 (en) 2017-01-10 2017-01-10 Refrigerator
PCT/JP2017/000505 WO2018131076A1 (en) 2017-01-10 2017-01-10 Refrigerator
JP2018561122A JP6752297B2 (en) 2017-01-10 2017-01-10 refrigerator
TW106130781A TWI716636B (en) 2017-01-10 2017-09-08 refrigerator
CN201721353625.1U CN207515331U (en) 2017-01-10 2017-10-19 Refrigerator
CN201710976846.2A CN108286854B (en) 2017-01-10 2017-10-19 Refrigerator with a door
HK18115687.6A HK1256702A1 (en) 2017-01-10 2018-12-07 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/000505 WO2018131076A1 (en) 2017-01-10 2017-01-10 Refrigerator

Publications (1)

Publication Number Publication Date
WO2018131076A1 true WO2018131076A1 (en) 2018-07-19

Family

ID=62534806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000505 WO2018131076A1 (en) 2017-01-10 2017-01-10 Refrigerator

Country Status (6)

Country Link
JP (1) JP6752297B2 (en)
CN (2) CN108286854B (en)
AU (1) AU2017392447B2 (en)
HK (1) HK1256702A1 (en)
TW (1) TWI716636B (en)
WO (1) WO2018131076A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3699521A1 (en) * 2019-02-25 2020-08-26 LG Electronics Inc. Entrance refrigerator
JP2020139645A (en) * 2019-02-27 2020-09-03 日立グローバルライフソリューションズ株式会社 refrigerator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6752297B2 (en) * 2017-01-10 2020-09-09 三菱電機株式会社 refrigerator
JP7351806B2 (en) * 2020-07-06 2023-09-27 日立グローバルライフソリューションズ株式会社 Refrigerator and its manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53153566U (en) * 1977-05-11 1978-12-02
JPH1151550A (en) * 1997-08-01 1999-02-26 Hoshizaki Electric Co Ltd Drain water evaporator
JP2002267332A (en) * 2001-03-12 2002-09-18 Matsushita Refrig Co Ltd Refrigerator
JP2003083668A (en) * 2001-09-07 2003-03-19 Sanyo Electric Co Ltd Cooling storage compartment
JP2006308232A (en) * 2005-04-28 2006-11-09 Mitsubishi Electric Corp Refrigerator
JP2008002734A (en) * 2006-06-21 2008-01-10 Matsushita Electric Ind Co Ltd Refrigerator
JP2014206369A (en) * 2014-05-26 2014-10-30 株式会社東芝 Refrigerator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682149A (en) * 1992-09-03 1994-03-22 Toshiba Corp Refrigerator
JP3850145B2 (en) * 1998-06-26 2006-11-29 株式会社東芝 Refrigerator evaporating dish structure
JP2001280809A (en) * 2000-03-31 2001-10-10 Sanyo Electric Co Ltd Cooling storage chamber
JP5178642B2 (en) * 2009-06-29 2013-04-10 日立アプライアンス株式会社 refrigerator
CN201653041U (en) * 2010-03-19 2010-11-24 海信容声(广东)冰箱有限公司 Drainage device of refrigerator evaporator
CN102213528A (en) * 2011-07-14 2011-10-12 合肥美的荣事达电冰箱有限公司 Refrigerator
CN102901308B (en) * 2012-11-09 2015-06-17 合肥美的电冰箱有限公司 Refrigerator
CN106813440B (en) * 2015-11-27 2019-10-29 日立环球生活方案株式会社 Refrigerator
JP6752297B2 (en) * 2017-01-10 2020-09-09 三菱電機株式会社 refrigerator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53153566U (en) * 1977-05-11 1978-12-02
JPH1151550A (en) * 1997-08-01 1999-02-26 Hoshizaki Electric Co Ltd Drain water evaporator
JP2002267332A (en) * 2001-03-12 2002-09-18 Matsushita Refrig Co Ltd Refrigerator
JP2003083668A (en) * 2001-09-07 2003-03-19 Sanyo Electric Co Ltd Cooling storage compartment
JP2006308232A (en) * 2005-04-28 2006-11-09 Mitsubishi Electric Corp Refrigerator
JP2008002734A (en) * 2006-06-21 2008-01-10 Matsushita Electric Ind Co Ltd Refrigerator
JP2014206369A (en) * 2014-05-26 2014-10-30 株式会社東芝 Refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3699521A1 (en) * 2019-02-25 2020-08-26 LG Electronics Inc. Entrance refrigerator
US11448456B2 (en) 2019-02-25 2022-09-20 Lg Electronics Inc. Entrance refrigerator
JP2020139645A (en) * 2019-02-27 2020-09-03 日立グローバルライフソリューションズ株式会社 refrigerator

Also Published As

Publication number Publication date
CN108286854B (en) 2021-02-26
JPWO2018131076A1 (en) 2019-07-04
HK1256702A1 (en) 2019-10-04
CN108286854A (en) 2018-07-17
TWI716636B (en) 2021-01-21
AU2017392447B2 (en) 2020-02-06
TW201825844A (en) 2018-07-16
JP6752297B2 (en) 2020-09-09
AU2017392447A1 (en) 2019-05-30
CN207515331U (en) 2018-06-19

Similar Documents

Publication Publication Date Title
KR101260277B1 (en) Refrigerator
WO2018131076A1 (en) Refrigerator
KR101092176B1 (en) Refrigerator
CN108317797B (en) Refrigerator with a door
JP5836227B2 (en) refrigerator
JP2005172303A (en) Refrigerator
JP7126675B2 (en) refrigerator
JP5909426B2 (en) refrigerator
JP5039761B2 (en) refrigerator
JP7140547B2 (en) refrigerator
JP6762149B2 (en) refrigerator
JP2007113800A (en) Refrigerator
TWI822453B (en) Refrigerator
JP2019138514A (en) refrigerator
JP2019132506A (en) refrigerator
JP2001280794A (en) Refrigerator
JP6975735B2 (en) refrigerator
JP7454458B2 (en) refrigerator
JP6955348B2 (en) refrigerator
JPH08247622A (en) Refrigerator
KR100597292B1 (en) Refrigerator
JP2008002731A (en) Refrigerator
JP2022098643A (en) refrigerator
JP2021188864A (en) refrigerator
JP2007278660A (en) Refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018561122

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017392447

Country of ref document: AU

Date of ref document: 20170110

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891200

Country of ref document: EP

Kind code of ref document: A1