WO2018130096A1 - 一种冷冻消融系统 - Google Patents

一种冷冻消融系统 Download PDF

Info

Publication number
WO2018130096A1
WO2018130096A1 PCT/CN2017/119960 CN2017119960W WO2018130096A1 WO 2018130096 A1 WO2018130096 A1 WO 2018130096A1 CN 2017119960 W CN2017119960 W CN 2017119960W WO 2018130096 A1 WO2018130096 A1 WO 2018130096A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
module
fluid
passage
working
Prior art date
Application number
PCT/CN2017/119960
Other languages
English (en)
French (fr)
Inventor
杨泰克•布
刁月鹏
葛均波
沈雳
Original Assignee
康沣生物科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 康沣生物科技(上海)有限公司 filed Critical 康沣生物科技(上海)有限公司
Publication of WO2018130096A1 publication Critical patent/WO2018130096A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0212Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0231Characteristics of handpieces or probes
    • A61B2018/0262Characteristics of handpieces or probes using a circulating cryogenic fluid

Definitions

  • the present application relates to a medical device, and more particularly to a cryoablation system for freezing and destroying biological tissue.
  • Cryosurgical treatment is the proper freezing of the target biological tissue to be treated using extremely low temperatures and complex systems designed. Many of these systems use a working fluid that is pre-pressurized in a refillable gas cylinder. These gas cylinders typically have a large internal volume to store enough fluid to ensure a normal cryosurgery procedure. They are usually made of steel with a very thick wall to achieve high pressure requirements, but this often makes the tank very bulky. Considering the size, the refillable gas canister is usually placed outside the cryoablation unit, which makes the entire system very awkward to operate. The purpose of this application is to remove the outer gas cylinder and to develop an integrated refrigeration unit that produces a pressurized working fluid and converts it into a working refrigerant that is delivered to the ablation assembly of the refrigeration unit.
  • a cryoablation system comprising:
  • boosting module pressurizes the received liquid refrigerant to a first level pressure level
  • An adjustment module the adjustment module being coupled to the boosting module, receiving a fluid of a first level of pressure level, pressurizing the fluid having a first level of pressure level to a second level of pressure level, and then adjusting it to have Working fluid at a working pressure level;
  • control module being coupled to the adjustment module, receiving the working fluid and delivering the working fluid to a refrigeration passage;
  • the cooling module is connected to the control module, the freezing passage extends into the interior of the cooling module, and the cooling module converts the working fluid inside the freezing passage into a working refrigerant;
  • a freezing unit connected to the freezing passage for receiving the working refrigerant, and a distal end portion of the freezing unit is a cold source releasing region of the working refrigerant.
  • the cryoablation system further includes a rewarming passage, a distal end of the rewarming passage is connected to the freezing unit, and a proximal end of the rewarming passage is connected to the control module.
  • a switching valve is disposed between the rewarming passage and the freezing passage, and the working fluid is preheated to above room temperature when entering the rewarming passage.
  • the boost module utilizes thermal energy to evaporate the liquid fluid to generate pressure. More preferably, the thermal energy is derived from a pressure heater integrated with a temperature sensor.
  • the boost module includes a mechanical pressure relief valve as a primary safety element and an electric exhaust valve as a secondary safety element.
  • the mechanical pressure relief valve includes three mechanical pressure relief valves that respectively set different opening pressures, wherein the mechanical pressure relief valve that sets the minimum opening pressure is a silent pressure relief valve.
  • the electric exhaust valve as a secondary safety element opens, the opening pressure being the highest pressure set by the mechanical relief valve.
  • the adjustment module controls the temperature and pressure at which the working fluid is discharged.
  • the temperature of the working fluid is maintained above -50 ° C but less than or equal to room temperature, and the pressure of the working fluid is maintained above the working pressure but less than the set pressure of the mechanical relief valve.
  • control module has a heater that heats the working fluid to above room temperature to rewarrate the fluid.
  • control module has an exhaust valve that drains the working fluid at the end of each refrigeration cycle and rewarming cycle.
  • the cryoablation unit of the present application has a fluid pressurization stage that works with a control module and a cooling module.
  • the technical solution adopted in this application is:
  • a cryoablation system comprising:
  • a pressurization module that receives liquid fluid from the outside and pressurizes the liquid fluid to a working fluid having a working pressure level
  • control module being coupled to the boosting module, the control module receiving the working fluid from the boosting module and delivering the working fluid to the freezing passage;
  • cooling module being coupled to the control module, the freezing passage extending into the interior of the cooling module, the cooling module converting the working fluid inside the freezing passage into a working refrigerant;
  • a freezing unit connected to the freezing passage for receiving the working refrigerant, and a distal end portion of the freezing unit is a cold source releasing region of the working refrigerant.
  • the cryoablation system further includes a rewarming passage, a distal end of the rewarming passage is connected to the freezing unit, and a proximal end of the rewarming passage is connected to the control module.
  • a switching valve is disposed between the rewarming passage and the freezing passage, and the working fluid is preheated to above room temperature when entering the rewarming passage.
  • the boost module is mounted within the cooling module.
  • the boost module utilizes thermal energy to evaporate the liquid fluid to generate pressure. More preferably, the thermal energy is derived from a pressure heater integrated with a temperature sensor.
  • the boost module includes a mechanical pressure relief valve as a primary safety element and an electric exhaust valve as a secondary safety element.
  • the mechanical pressure relief valve includes three mechanical pressure relief valves that respectively set different opening pressures, wherein the mechanical pressure relief valve that sets the minimum opening pressure is a silent pressure relief valve.
  • the electric exhaust valve as a secondary safety element opens, the opening pressure being the highest pressure set by the mechanical relief valve.
  • control module has a heater that heats the working fluid to above room temperature to rewarrate the fluid.
  • control module has an exhaust valve that drains the working fluid at the end of each refrigeration cycle and rewarming cycle.
  • the present application provides a self-contained integrated cryoablation unit that can generate positive pressure fluids on its own, control fluid temperature, and direct fluid to the freezing unit for treatment.
  • This system utilizes multi-stage pressurization, one type of refrigerant feedstock, a rewarming liquid generator, and a refrigerated fluid reservoir.
  • the volumetric expansion of the refrigerant from a liquid to a gaseous state produces a positive fluid pressure.
  • Thermal energy is introduced into each pressurization stage to provide enthalpy energy for evaporating liquid refrigerant or to provide further kinetic energy for further volume expansion of the chilled liquid in each pressurization stage.
  • the system uses one type of refrigerant fluid, preferably a liquid fluid.
  • the liquid fluid can be used both as a working fluid and as a refrigerant in a refrigerating liquid reservoir.
  • This application contains a built-in heater to heat the fluid for rewarming purposes.
  • the boosting module used in the system comprises a mechanical pressure relief valve as a primary safety element and an electric exhaust valve as a secondary safety element, the mechanical relief valve comprising three mechanical reliefs respectively setting different opening pressures a pressure valve, wherein the mechanical pressure relief valve that sets a minimum opening pressure is a silent pressure relief valve, and when the pressure reaches an opening pressure, the electric exhaust valve as a secondary safety element is opened, and the opening pressure is The highest pressure set by the mechanical relief valve, the primary safety element and the secondary safety element work together to operate the boost module in a safe and optimal state.
  • FIG. 1 is a schematic diagram of a cryoablation system provided by an embodiment of the present application.
  • FIG. 2 is a schematic illustration of an ablation unit in the system of FIG. 1.
  • Figure 3 is a schematic illustration of the boost module of Figure 2.
  • FIG. 4 is a control flow chart of the boosting module shown in FIG.
  • Figure 5 is a schematic illustration of the adjustment module of Figure 2.
  • Figure 6 is a control flow chart of the adjustment module shown in Figure 5.
  • FIG. 7 is a schematic illustration of the control module of Figure 2.
  • Figure 8 is a schematic illustration of the cooling module of Figure 2.
  • Figure 9 is a schematic illustration of a second embodiment of the ablation unit of Figure 1.
  • FIG. 10 is a schematic illustration of the control module of Figure 9.
  • FIG 11 is a schematic illustration of the freezing unit of the cryoablation system of Figure 1.
  • the present application provides a cryoablation system 10 that can use cold and hot energy as a liquid refrigerant (e.g., liquid fluid, liquid helium, liquid argon, liquid helium, etc.)
  • a liquid refrigerant e.g., liquid fluid, liquid helium, liquid argon, liquid helium, etc.
  • the form is delivered to the end of the freezing unit 600.
  • the cryoablation system 10 includes a cryoablation unit 100 having a pressurization module 200 that receives liquid refrigerant at approximately one atmosphere and pressurizes it to a first level of pressure level.
  • the pressurized fluid is delivered directly from the boost module 200 to the conditioning module 500.
  • the adjustment module 500 heats the fluid to a higher temperature range, further pressurizes the fluid to a second stage pressure level, and adjusts the outlet pressure to a working pressure level to deliver a working fluid having a working pressure level.
  • the control module 300 cooperates with the safety element to improve the state of the working fluid flowing out of the adjustment module 500 to guide the flow of the working fluid.
  • the working fluid is delivered to the refrigeration passage or the rewarmed fluid is delivered to the rewarming passage.
  • the working fluid is again cooled by the cooling module 400 and converted into a working refrigerant before entering the freezing unit 600.
  • the fluid returning from the freezing unit 600 will again enter and drain into the cooling module 400.
  • the boost module 200 receives liquid refrigerant, compresses it and controls the internal fluid pressure to within a predetermined range (first pressure level), and the boost module 200 is communicatively coupled to a software control module (not shown).
  • the boost module 200 has a two-layer vacuum insulated cylindrical high pressure reservoir 206 through which the high pressure reservoir 206 is filled with liquid refrigerant.
  • the gas evaporated during the filling process is discharged through the valve 224.
  • Valve 202 and valve 224 are both manually operable and electrically operable.
  • Pressure heaters 208 and 210 incorporating temperature sensors provide thermal energy to convert refrigerant from a liquid state to a gaseous state to create a positive pressure within high pressure accumulator 206.
  • the liquid refrigerant evaporates to generate a large amount of gas, which accumulates a high pressure in a fixed space.
  • the high pressure accumulator 206 is typically designed to withstand pressure ratings from 2 bar to 100 bar or higher.
  • the optimum design pressure for the high pressure accumulator 206 of this embodiment is 43 bar.
  • the refrigerant pressure Pc in the high pressure accumulator 206 is compressed to be equal to or lower than the reservoir pressure.
  • the average pressure at which the chilled fluid in the high pressure accumulator 206 of the present embodiment is compressed is about 35 bar, which varies between the upper pressure limit P H and the lower pressure limit P L , depending on the performance of the pressure heater evaporating the refrigerant to generate pressure.
  • P H and P L are preferably equal. In practice, it is generally feasible to control P H and P L in a fluctuation range of an average pressure of ⁇ 1 bar to ⁇ 10 bar.
  • a pressure sensor integrated with a temperature sensor used in the boost module 200 is a very important component.
  • the output signal of the temperature sensor is one of the variables controlling the pressure heater, which will be described in detail below.
  • the reading of the temperature sensor can be indirectly measured to measure the level/volume of the refrigerant in the high pressure reservoir 206. Because the temperature of the internal refrigerant fluid rises as the refrigerant in the memory is consumed.
  • the level of refrigerant in the high pressure accumulator 206 is related to the temperature and pressure of the refrigerant. It can be said that once the temperature reading of the refrigerant rises above the set temperature T CS of the refrigerant, the refrigerant in the reservoir will be considered to be a low level.
  • the set temperature of the refrigerant can be set to any temperature at or below room temperature. In the present embodiment, 0 ° C is a preferred set temperature of the refrigerant.
  • a software alarm will be triggered, indicating that the refrigerant level is low and will prevent the heater from working until the refrigerant temperature cools below the set temperature.
  • T CS the pressure heaters 208 and 210 have a high temperature limit value T HH that cannot be exceeded because when the pressure heater temperature reaches T HH , the software control module is triggered to turn off the pressure heater until the temperature cools below this limit. This limit will be discussed below.
  • the high temperature limit T HH will be set lower than the maximum rated temperature of the heater. For example, the T HH will be 50% of the maximum rated temperature or 200 ° C of the present embodiment. This safe range avoids heater temperatures that are too high.
  • the control flow of the boost module, refrigerant pressure P C is detected by pressure sensors 214 and 218 for controlling pressure heaters 208 and 210.
  • the refrigerant pressure is monitored and fed back into a software control module (not shown).
  • the pressure heater is turned on. Otherwise, the pressure heater is turned off when the pressure heater temperature is greater than or equal to T HH .
  • the pressure heater is turned on when the refrigerant pressure is lower than the low pressure limit value P L and the refrigerant temperature is lower than the set temperature T CS .
  • the refrigerant temperature is equal to or higher than the set temperature T CS .
  • an alarm of the low level of the refrigerant will be triggered.
  • the pressure heater will be turned off until the pressure range is below the lower pressure limit P L .
  • the software control module controls the closing of the pressure heater in real time to maintain the pressure between P L and P H .
  • the boost module 200 utilizes a mechanical relief valve as a safety element to limit the pressure build up in the high pressure accumulator 206.
  • the mechanical relief valve works alone and acts as a primary safety element. When the pressure in the high pressure accumulator 206 is above the upper pressure limit P H , these relief valves are set to the open state to relieve excess pressure.
  • the boost module includes three mechanical pressure relief valves 216, 220, 222 to avoid system overpressure. These three mechanical relief valves set different opening pressures.
  • the mechanical pressure relief valve 216 is a silent valve with a minimum opening pressure setting. The opening pressure of the mechanical pressure relief valve 216 is set at the upper pressure limit P H .
  • the opening pressure of the mechanical relief valve 216 can also be set above P H and the excess pressure range is between 0 bar and 20 bar or higher. Higher extra pressures require a stronger and more expensive design.
  • the purpose of setting the silent mechanical relief valve 216 is to release the accumulated excess pressure under low noise conditions and to minimize the chance of the high pressure relief valve opening.
  • the high pressure relief valve is a high pressure fluid device and is very noisy when turned on.
  • the opening noise of the high pressure mechanical pressure relief valves 220 and 222 is a sudden panic of sound waves and makes people feel that the frozen ablation system is broken. Reducing the flow rate of the fluid or reducing the noise of these valves may affect the normal operation of the mechanical relief valve and in turn affect the safety of the system.
  • Mechanical relief valve 220 is a coordinated pressure valve with a typical actuation pressure set between mechanical relief valves 216 and 222.
  • the mechanical relief valve 222 has the highest starting pressure P HPR and is typically set at or below the upper pressure limit of the high pressure accumulator 206. Once the refrigerant pressure in the high pressure accumulator 206 reaches P HPR , the mechanical pressure relief valve 222 will open, and the mechanical pressure relief valves 216 and 220 will drain additional pressure and reduce the refrigerant pressure to or below P H or The opening pressure of the mechanical pressure relief valve 216.
  • the boost module 200 activates the secondary safety element when the mechanical relief valve fails.
  • an electric exhaust valve 228 is provided adjacent point B in Figure 3.
  • the software control system will send an overvoltage alarm signal and drain excess pressure in the high pressure reservoir 206 until the pressure level is below the upper pressure limit P H .
  • the cryoablation unit 100 will require a thorough verification and overhaul of all safety elements prior to use.
  • the pressure gauge 212 can intuitively determine the level of pressure in the high pressure reservoir 206.
  • the primary safety element and the secondary safety element cooperate to operate the boost module 200 in a safe and optimal state.
  • the refrigerant in the high pressure accumulator 206 is compressed, the pressure range is between P L and P H , and the average refrigerant pressure is P C .
  • the temperature of the refrigerant fluid rises in the high pressure memory 206.
  • the refrigerant temperature reaches T CS or 0 ° C, the low liquid level alarm will be triggered.
  • the refrigerant fluid temperature is allowed to rise to room temperature, however, once the refrigerant temperature reaches TCS or higher, the pressure heaters 208 and 210 will not operate.
  • the compressed refrigerant fluid will enter the conditioning module 500 directly from the boost module 200.
  • the adjustment module 500 is coupled to the boost module 200, and the adjustment module 500 receives fluid having a first level of pressure from the boost module 200 via point B.
  • the fluid passes through check valve 506 and control valve 504 prior to entering warming heater 508.
  • the warming heater 508 has a built-in temperature sensor T WH , an inlet pipe temperature sensor T WHI and an outlet pipe temperature sensor T WHO (not shown).
  • the inlet pipe temperature sensor is used as a measurement reference.
  • the inlet tube temperature sensor and the outlet tube temperature sensor provide feedback signals to control the warming heater 508.
  • the purpose of the warming heater is to further increase the pressure and temperature of the fluid entering the conditioning module 500.
  • the pressure level should rise above the pressure point set by the pressure regulating valve 514, but below the opening pressure P RV of the pressure relief valve 512.
  • Higher fluid pressure or adjustment module pressure P RM allows fluid storage energy to be easily supported.
  • the pressure regulating valve 514 accurately controls the outlet pressure or the working pressure P W .
  • the pressure regulating valve discharges the working pressure when the inlet pressure is higher than the outlet pressure.
  • the function of the warming heater 508 is to increase the temperature of the fluid entering the conditioning module 500 to above -50 ° C up to room temperature. This allows the pressure regulating valve 514 to achieve optimum operation under its temperature parameters.
  • Control valve 504 prevents fluid from flowing back into boost module 200.
  • Pressure sensor 510 monitors the rise in pressure and controls the switch of warming heater 508 in real time and enables control valve 504 to maintain adjustment module pressure P RW within an acceptable range between greater than P W and less than P RV .
  • the exhaust valve 502 acts as a second stage safety element of the adjustment module 500. When the pressure reaches P ORV or exceeds P RV 2bar, the exhaust valve 502 will open, draining excess fluid and triggering an overpressure alarm. The exhaust valve remains open until the pressure interval drops below an acceptable level of P RV .
  • Integrating the second stage boost stage of the adjustment module 500 into the cryoablation unit 100 has advantages but is also associated with risks.
  • the advantage is that the second stage boost stage of the adjustment module 500 enables the first stage boost stage of the boost module 200 to be designed to have a much higher withstand voltage level than the required fluid working pressure P W .
  • the low pressure rating design makes it more cost effective, smaller and easier to mass produce.
  • the risk of the second stage of pressurization is the need to control the increased fluid pressure.
  • the magnitude of the increase in control pressure is achieved by manipulating the switch of control valve 504 in real time such that a certain amount of refrigerant enters adjustment module 500 at a time. This step allows a small amount of refrigerant to be heated at any time to limit the accumulation of pressure.
  • Another approach is to add a pressure reservoir (not shown) behind the heater to provide room for further expansion of the refrigerant to provide sufficient power for fluid motion.
  • a control flow chart of the adjustment module 500 is shown.
  • the fluid pressure P RM is first detected. If this pressure is equal to or lower than P W , the control valve 504 will open. Thereafter, depending on the temperature T WHO of the fluid outlet pipe and the internal temperature T WH of the temperature rising heater 508, the temperature rising heater 508 is turned on or off, or the control valve is closed. In another case, when the pressure P RM of the adjustment module rises to the opening pressure of the pressure relief valve 510, the temperature rise heater will be turned off. Once the pressure level reaches P ORV , the exhaust valve 502 will open to drain excess fluid until the pressure is below P RV .
  • the software control system continuously monitors the pressure level and fluid temperature to ensure proper operation and provide an alarm when necessary.
  • the adjustment module 500 has a very difficult task of adjusting the pressure and temperature of the fluid prepared for the control module 300.
  • the working fluid released from the conditioning module 500 has a working pressure PW and a fluid temperature greater than -50 ° C to room temperature.
  • the working fluid flows directly from the conditioning module 500 into the control module 300.
  • the control module 300 is connected to the adjustment module 500.
  • the control module 300 receives the working fluid from the adjustment module 500 through the E point, and after purification, is sent to the cooling passage or the rewarming passage.
  • a distal end of the rewarming passage is connected to the freezing unit 600
  • a proximal end of the rewarming passage is connected to the control module 1300
  • a switching valve is disposed between the rewarming passage and the freezing passage.
  • the working fluid is pre-warmed to above room temperature when entering the rewarming path.
  • the working fluid inlet control module is first passed through a particulate filter 316 via an optional water vapor filter 314.
  • the refrigerating valve 320 directs fluid to point C during the refrigerating cycle, and the rewarming valve 308 directs fluid to point D during the rewarming cycle.
  • Pressure relief valve 304, pressure sensor 318, and exhaust valve 302 are safety elements to prevent fluid overpressure between refrigeration valve 320 and rewarming valve 308.
  • the rewarming heater 312 is a rewarming liquid generator, and the rewarming causes the fluid temperature to rise above room temperature to prepare for the rewarming cycle.
  • the exhaust valve 310 also acts as a safety element to prevent overpressure due to the heater 312 and to release fluid that collects in the pipeline. For example, the fluid is clogged in the freezing unit 600 during the refrigeration cycle. Valve 310 drains the working fluid from the system at the end of the refrigeration cycle and rewarming cycle.
  • the cooling module 400 includes a double layer vacuum insulated Dewar 402.
  • Dewar 402 is an open, non-pressure, refrigerant-filled reservoir.
  • the refrigerant in the Dewar is the same as the refrigerant used in the pressurization module 200. Its purpose is to use one type of cryogenic fluid throughout the system. It provides the benefit of not having to purchase different types of fluids and allowing fluid to mix from one module to another.
  • the compressed fluid from the boost module 200 flows from the refrigeration unit back to the cooling module 400.
  • the cooling module 400 is coupled to the control module 300, which receives fluid from the control module 300 through points C and D.
  • the freezing passage extends into the interior of the cooling module 400, and the cooling module 400 converts the working fluid inside the freezing passage into working refrigerant.
  • the working fluid flows from point C through heat exchanger 404 or a freezing fluid generator that is adjacent to the bottom of Dewar 402 and immersed in the refrigerant.
  • the working fluid is re-cooled and converted to working refrigerant as it passes through the heat exchanger 404.
  • This working refrigerant enters the delivery pipe 410 through the check valve 406 and then enters the connection port A with the freezing unit 600.
  • Check valve 406 prevents fluid from flowing back into heat exchanger 404. Reflow occurs when the fluid path from point C to point A is under vacuum conditions.
  • point A is an open port, contaminants such as moisture in high-humidity air are sucked in after the end of freezing, and then frozen and blocked the conveying pipe 410 to prevent the flow of the required fluid.
  • the negative temperature gradient inside the fluid (this gradient is due to molecular compression in the negative pressure) forms a vacuum path from point C to point A.
  • the Dewar bottle 402 filled with refrigerant will cause fluid to flow inside the delivery tube 410, and the heat exchanger 404 and the passage from the heat exchanger to the refrigerating valve 320 and the rewarming valve 308 create a vacuum space due to contraction.
  • the working refrigerant is insulated with an optional vacuum insulation chamber (shown by dashed line 414).
  • the ultra-high vacuum system 416 produces vacuum insulation.
  • the vacuum insulation system heats the transfer pipe 410, the check valve 406, the point A, the freezing unit 600, and the return pipe 408.
  • the secondary cooled fluid exiting the heat exchanger 404 is incubated during the process of point A of the cryoablation unit 100.
  • the working refrigerant enters the freezing unit 600 through the conveying pipe 410 at point A, and also flows back to the return pipe 408 through point A.
  • the freezer unit return fluid is discharged through an optional check valve 412 into a double layer vacuum insulated Dewar 402.
  • Check valve 412 blocks unwanted contaminants, such as condensed water vapor entering from return line 408.
  • the delivery tube 410 and the return air tube 408 have residual fluid. Any vacuum or negative pressure such as those described above will produce a siphon effect inside the return air tube 408. Because the opening of the return line 408 is near the bottom of the Dewar 402, particulate contaminants as well as moisture will be drawn in and contaminated.
  • An optional pressure sensor 418 for monitoring the return pressure and feeding back information to the software control system is integrated into the cooling module 400. From a baseline and safety consideration, sensor 418 is used to measure downstream pressure. When an abnormal high pressure condition, such as the return air line 408 is blocked, is detected, it can trigger the opening and closing of the exhaust valve 310 on the control module 300.
  • a first embodiment of the present application is a cryoablation unit comprising a pressurization module, a pressure adjustment module, a fluid control module and a refrigerant cooling module, the cryoablation unit and a freezing unit working together to form a cryoablation system .
  • the boost module receives the fluid refrigerant at one atmosphere and then compresses it to the first stage pressure level.
  • the first level of pressure can range from 2 bar to 100 bar or higher.
  • the first level of pressure can be higher or lower than the working pressure at the outlet of the conditioning module.
  • the adjustment module further compresses the fluid to a second level of pressure level.
  • the second level of pressure is higher than the working fluid pressure.
  • the adjustment module increases fluid quality, optimizes fluid temperature and adjusts outlet pressure to adjust to working pressure levels.
  • the pre-warmed fluid is prepared for rewarming or it is introduced into the cooling module for secondary cooling before being delivered to the freezing unit.
  • the freezing unit is connected to the cryoablation unit and receives the working refrigerant or rewarming fluid.
  • the fluid discharged from the freezing unit is returned to the cryoablation unit.
  • the entire cryoablation system 10 utilizes thermal energy to generate a positive pressure from the fluid refrigerant, control the temperature of the fluid, and then deliver it to the freezing unit for therapeutic purposes. It is a separate cryoablation system that integrates a self-pressurizing subsystem without the need to obtain continuous gas from an external gas cylinder to provide working fluid to the freezing unit.
  • the booster module into the cooling module to reduce the space.
  • the adjustment module is removed to create a primary pressurized cryoablation unit. This will make it easier to control fluid pressure and fluid temperature in one module.
  • the adjusted advantage is that it simplifies software control, is more economical, and has higher refrigerant efficiency. Because the amount of refrigerant required to convert the compressed refrigerant to the working refrigerant is less than that required to switch the working fluid to the working refrigerant at a higher temperature, as shown in the first embodiment of the present application.
  • the cryoablation unit 1100 includes a boost module 200, a control module 1300, and a cooling module 400.
  • An atmospheric pressure of refrigerated fluid is converted to compressed refrigerant in the boost module 200 and flows directly to the control module 1300.
  • the cooling module receives the compressed refrigerant and converts it into a working refrigerant.
  • the boost module 200 and the cooling module 400 are the same as described above.
  • the control module 1300 is different from the control module 300 described above.
  • Control module 1300 is coupled to boost module 200, which receives compressed refrigerant from boost module 200 at point B.
  • the refrigerant is delivered to point C through the refrigerating valve 1302.
  • the vent valve 1304 begins to operate after the chill valve is used to drain the working fluid.
  • the compressed refrigerant flows into the rewarming heater 1308 through the rewarming valve 1306.
  • the compressed refrigerant is converted to a rewarming fluid at the outlet of the rewarmed heater, then flows into point D and then flows into the freezing unit at point A.
  • the secondary pressurization stage and the mechanical pressure regulating valve are removed.
  • the working pressure is adjusted in the boost module 200 by the software control system. Since there is no mechanical pressure regulating valve in the second embodiment, the refrigerant pressure P C in the boosting module becomes the working pressure P W .
  • the control system adjusts the pressure level very well, keeping the working pressure within the tolerance range of ⁇ 1bar to ⁇ 10bar. Or as much as possible as described in the first embodiment of the present application, there is a pressure upper limit P H and a close lower pressure limit P L .
  • the freezing unit 600 is preferably a conduit.
  • the freezing unit is connected to the cryoablation system 10 at point A.
  • the freezing unit has a thermally insulating portion 506, a freezing portion 508, and a distal head portion 510.
  • Thermal insulation portion 506 includes point A.
  • the delivery tube 502 of the freezing unit 600 and the return air tube 504 of the freezing unit 600 are connected to point A.
  • the thermally insulating portion 506 from point A to the intersection with the frozen portion 508 is thermally insulated by the vacuum system 416.
  • the frozen portion 508 is free of thermal insulation.
  • the freezing unit 600 is connected to the freezing passage through point A for receiving the working refrigerant, and the freezing energy is supplied through the conveying pipe and the return pipe, and the working fluid is delivered to the treatment site through the freezing portion 508 of the freezing unit 600, and the freezing unit 600
  • the distal portion is the cold source release area of the working refrigerant.
  • the chilled energy is directly contacted with the tissue to be treated or by a heat exchange medium encapsulated with a medical balloon or other equivalent method.
  • the heat exchange medium is saline or other non-volatile, biocompatible fluid at room temperature.
  • the delivery tube 502 and the return air tube 504 of the freezing unit 600 extend beyond the thermal insulation 506 portion into the frozen portion 508 and into the distal end portion 510.
  • the distal head 510 extends from the frozen portion 508.
  • the head is typically designed to be soft, elastic, and smooth, allowing the freezing unit to pass through complex passages without damaging the surrounding tissue.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Otolaryngology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)

Abstract

一种冷冻消融系统(10),包括:增压模块(200)、调整模块(500)、控制模块(300,1300)、冷却模块(400)和冷冻单元(600),增压模块(200)将接收的液态制冷剂增压至第一级压力水平;调整模块(500)和增压模块(200)相连,接收第一级压力水平的流体,把流体增压到第二级压力水平,再将它调整为具有工作压力水平的工作流体;控制模块(300,1300)和调整模块(500)相连,接收工作流体并把工作流体输送到冷冻通路;冷却模块(400)和控制模块(300,1300)相连,冷冻通路延伸进入冷却模块(400)内部,冷却模块(400)将冷冻通路内部的工作流体转换成工作制冷剂;冷冻单元(600)与冷冻通路连接,用于接收工作制冷剂,冷冻单元(600)的远端部分为工作制冷剂的冷源释放区域。

Description

一种冷冻消融系统
相关申请
本申请要求2017年01月16日申请的,申请号为201710027827.5,名称为“一种冷冻消融系统”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及一种医疗设备,确切的说涉及一种用来冷冻和破坏生物组织的冷冻消融系统。
背景技术
冷冻手术治疗是利用极低温度和所设计的复杂系统适当地冷冻待治疗的目标生物组织。很多这类系统都要使用工作流体,这个工作流体是在一个可重复充装的气罐里预先加压。这些气罐通常具有一个很大的内部容积来存储足够多的流体,以保证一个正常的冷冻手术过程。它们通常是由壁厚很厚的钢制作成的,这样能达到耐高压要求,但这样通常也使气罐非常笨重。考虑到尺寸,可重复充装的气罐通常是放在冷冻消融单元的外面,这就使整个系统在操作上非常笨拙。本申请的目的是去掉外面的气罐,并开发出一种集成的冷冻单元,它能产生加压工作流体并转换成工作制冷剂,此制冷剂输送到冷冻单元的消融组件。
发明内容
本申请的目的是提供一种改进的用来冷冻和破坏生物组织的冷冻消融系统。
为了实现本申请的目的,本申请所采用的技术方案是:
一种冷冻消融系统,包括:
增压模块,所述增压模块将接收的液态制冷剂增压至第一级压力水平;
调整模块,所述调整模块和所述增压模块相连,接收第一级压力水平的流体,把具有第一级压力水平的所述流体增压到第二级压力水平,再将它调整为具有工作压力水平的工作流体;
控制模块,所述控制模块和所述调整模块相连,接收所述工作流体并把所述工作流体输送到冷冻通路;
冷却模块,所述冷却模块和所述控制模块相连,所述冷冻通路延伸进入所述冷却模块内部,所述冷却模块将所述冷冻通路内部的所述工作流体转换成工作制冷剂;
冷冻单元,所述冷冻单元与所述冷冻通路连接,用于接收所述工作制冷剂,所述冷冻单元的远端部分为所述工作制冷剂的冷源释放区域。
在一个实施方式中,在所述的冷冻消融系统中还包括复温通路,所述复温通路的远端与所 述冷冻单元连接,所述复温通路的近端与所述控制模块连接,在所述复温通路和所述冷冻通路之间设置一个切换阀门,所述工作流体在进入复温通路时被预温到室温以上。
在一个实施方式中,所述增压模块利用热能蒸发所述液态流体来产生压力。更优选的,所述热能来自于集成了温度传感器的压力加热器。
在一个实施方式中,所述增压模块包括作为一级安全元件的机械泄压阀及作为二级安全元件的电动排气阀。
在一个实施方式中,所述的机械泄压阀包括3个分别设定不同的开启压力的机械泄压阀,其中设定最低开启压力的所述机械泄压阀是一个无声泄压阀。
在一个实施方式中,当压力达到开启压力时,作为二级安全元件的所述电动排气阀打开,所述开启压力是所述机械泄压阀所设定的最高压力。
在一个实施方式中,所述调整模块控制所述工作流体排出的温度和压力。
在一个实施方式中,所述工作流体的温度保持在高于-50℃但小于或等于室温,所述工作流体的压力保持在高于工作压力但小于所述机械泄压阀的设定压力。
在一个实施方式中,所述控制模块具有一个使所述工作流体加热到超过室温的加热器,以便复温流体。
在一个实施方式中,所述控制模块具有一个在每个冷冻循环和复温循环结束时排掉所述工作流体的排气阀。
为了进一步简化系统设计和控制,本申请的冷冻消融单元具有一个流体增压阶段,它和一个控制模块和一个冷却模块一起工作。为了实现这个目的,本申请所采用的技术方案是:
一种冷冻消融系统,包括:
增压模块,所述增压模块接收来自于外部的液态流体,并将所述液态流体增压到具有工作压力水平的工作流体;
控制模块,所述控制模块和所述增压模块相连,所述控制模块接收来自于所述增压模块的所述工作流体,并把工作流体输送到冷冻通路;
冷却模块,所述冷却模块和所述控制模块相连,所述冷冻通路延伸进入所述冷却模块内部,所述冷却模块将所述冷冻通路内部的所述工作流体转换成工作制冷剂;以及
冷冻单元,所述冷冻单元与所述冷冻通路连接,用于接收所述工作制冷剂,所述冷冻单元的远端部分为所述工作制冷剂的冷源释放区域。
在一个实施方式中,在所述的冷冻消融系统中还包括复温通路,所述复温通路的远端与所述冷冻单元连接,所述复温通路的近端与所述控制模块连接,在所述复温通路和所述冷冻通路之间设置切换阀门,所述工作流体在进入复温通路时被预温到室温以上。
在一个实施方式中,所述增压模块被安装在所述冷却模块内。
在一个实施方式中,所述增压模块利用热能蒸发所述液态流体来产生压力。更优选的,所述热能来自于集成了温度传感器的压力加热器。
在一个实施方式中,所述增压模块包括作为一级安全元件的机械泄压阀及作为二级安全元件的电动排气阀。
在一个实施方式中,所述的机械泄压阀包括3个分别设定不同的开启压力的机械泄压阀,其中设定最低开启压力的所述机械泄压阀是一个无声泄压阀。
在一个实施方式中,当压力达到开启压力时,作为二级安全元件的所述电动排气阀打开,所述开启压力是所述机械泄压阀所设定的最高压力。
在一个实施方式中,所述控制模块具有一个使所述工作流体加热到超过室温的加热器,以便复温流体。
在一个实施方式中,所述控制模块具有一个在每个冷冻循环和复温循环结束时排掉所述工作流体的排气阀。
同现有技术相比,本申请提供一个独立的集成冷冻消融单元,此冷冻消融单元能自己产生正压流体,控制流体温度,并引导流体到冷冻单元以实现治疗。这个系统利用多级增压,一种类型的制冷液原料、一个复温液体发生器,及一个冷冻液储存器,制冷剂由液态变成气态的体积膨胀产生正向的流体压力。热能被引进到每个增压阶段为蒸发液态制冷剂来提供热焓能量或者为每个增压阶段的冷冻液体进一步体积膨胀提供动能。本系统使用一种类型的制冷液,优选是液态流体。液态流体既可用作工作流体也可用作一种制冷液体存储器里的制冷剂。本申请包含一个内置的加热器来加热流体以达到复温的目的。本系统使用的增压模块包括作为一级安全元件的机械泄压阀及作为二级安全元件的电动排气阀,所述的机械泄压阀包括3个分别设定不同的开启压力的机械泄压阀,其中设定最低开启压力的所述机械泄压阀是一个无声泄压阀,当压力达到开启压力时,作为二级安全元件的所述电动排气阀打开,所述开启压力是所述机械泄压阀所设定的最高压力,一级安全元件和二级安全元件协同作用使增压模块在安全且最佳的状态下工作。
附图说明
图1是本申请实施例提供的冷冻消融系统示意图。
图2是图1所示系统中消融单元的示意图。
图3是图2所示增压模块的示意图。
图4是图3所示增压模块的控制流程图。
图5是图2所示调整模块的示意图。
图6是图5所示调整模块的控制流程图。
图7是图2所示控制模块的示意图。
图8是图2所示冷却模块的示意图。
图9是图1所示消融单元的第二个实施例的示意图。
图10是图9所示控制模块的示意图。
图11是图1所示冷冻消融系统的冷冻单元的示意图。
具体实施方式
以下对本申请的优选的具体实施方式进行详细描述。此描述仅对本申请实施例的基本原理进行阐述,但本申请不仅仅限于此描述。本申请的保护范围由后附的权利要求书进行最准确限定。
消融单元
参照图1和图2,本申请提供一种冷冻消融系统10,此冷冻消融系统10能将冷的和热的能量以液态制冷剂(例如液态流体、液氦、液氩、液氖等)的形式输送到冷冻单元600的末端。冷冻消融系统10包括一个冷冻消融单元100,所述冷冻消融单元100有一个增压模块200,此增压模块200接收约为一个大气压的液态制冷剂并将其增压到第一级压力水平。被增压的流体从增压模块200直接输送到调整模块500。此调整模块500加热流体到一个更高的温度范围,进一步加压流体到第二级压力水平,并且调节出口压力到工作压力水平,以便输送具有工作压力水平的工作流体。控制模块300配合安全元件对从调整模块500中流出的工作流体的状态进行改善,引导工作流体的流动。所述工作流体被输送到冷冻通路,或者产生复温流体被输送到复温通路。工作流体在进入冷冻单元600前由冷却模块400进行再次冷却并转换成工作制冷剂。从冷冻单元600中回流的流体将再次进入并排到冷却模块400中。
参照图3,增压模块200接收液态制冷剂,将其压缩并控制内部流体压力在预定的范围内(第一压力水平),增压模块200和一个软件控制模块(未示出)通信连接。
增压模块200具有一个双层真空绝热的圆筒型高压存储器206,高压存储器206通过阀202来灌装液态制冷剂。在灌装过程中蒸发的气体通过阀224排出。阀202和阀224既能手动操作也能电动操作。集成了温度传感器的压力加热器208和210提供热能把制冷剂从液态转换成气态,以在高压存储器206内部产生正压。液态制冷剂蒸发产生大量的气体,会在固定的空间内累积很高的压力。高压存储器206通常被设计成耐压力等级从2bar到100bar或更高。本实施例的高压存储器206的最佳设计压力是43bar。在高压存储器206中的制冷剂压力Pc被压缩到等于或低于存储器压力。本实施例的高压存储器206中的冷冻流体被压缩的平均压力大约是35bar,它在压力上限P H和压力下限P L之间变化,具体取决于压力加热器蒸发制冷剂产生压力的性能。理想中,P H和P L优选是相等的。实际上,一般将P H和P L控制在平均 压力±1bar到±10bar的波动区间是可行的。
在增压模块200中使用的集成了温度传感器的压力加热器是非常重要的元件。温度传感器的输出信号是控制压力加热器的变量之一,这部分将在下面具体描述。温度传感器的读数可间接的来测量高压存储器206中制冷剂的液位/容积。因为随着存储器中制冷剂的消耗,内部冷冻流体的温度上升。在高压存储器206中制冷剂的液位和制冷剂的温度和压力是相关的。可以说,一旦制冷剂的温度读数上升超过制冷剂的设定温度T CS,存储器中的制冷剂将被认为是低液位。制冷剂的设定温度能被设置成任何室温或低于室温的温度。在本实施例中,0℃是优选的制冷剂的设定温度。当压力加热器是关闭状态时,冷冻流体的温度读数如果一直大于或等于0℃将触发软件报警,提示制冷剂液位低并将阻止加热器工作直到制冷剂温度冷却到低于设定的温度T CS。此外,压力加热器208和210具有一个不能超出的高温限制值T HH,因为当压力加热器温度达到T HH时,软件控制模块会被触发以关闭压力加热器直到温度冷却到低于这个极限值,这个极限值将在下面讨论。高温极限T HH将被设定低于加热器最大额定温度。例如,T HH将是最大额定温度的50%或者本实施例的200℃。这个安全范围避免加热器温度过高。
参照图4是增压模块的控制流程,制冷剂压力P C被压力传感器214和218检测用来控制压力加热器208和210。制冷剂压力被监控和反馈到软件控制模块(未示出)中。当制冷剂压力低于低压限制值P L以及加热器温度低于高温限制值T HH时,压力加热器打开。否则,当压力加热器温度大于或等于T HH时,压力加热器关闭。另外一种情况是,当制冷剂压力低于低压限制值P L以及制冷剂温度低于设定温度T CS时,压力加热器打开。同样,当制冷剂温度等于或高于设定温度T CS时,制冷剂低液位的报警将触发。无论什么时候,当制冷剂的压力超过压力上限P H时,压力加热器将关闭直到压力范围低于压力下限P L。软件控制模块实时控制压力加热器的关闭来保持压力在P L和P H之间。
增压模块200利用机械泄压阀作为安全元件来限制在高压存储器206中累积的压力。机械泄压阀单独工作并作为一级安全元件。当高压存储器206中的压力高于压力上限P H时,这些泄压阀被设定到开启状态以释放掉多余的压力。增压模块包括3个机械泄压阀216、220、222来避免系统过压。这三个机械泄压阀设定不同的开启压力。机械泄压阀216是一个无声阀,开启压力设定得最低。机械泄压阀216的开启压力设定在压力上限P H。作为一种选择,机械泄压阀216的开启压力也可设定高于P H,超出的压力范围在0bar到20bar或更高之间。更高的额外压力需要一个更坚固和更昂贵的设计。设置无声的机械泄压阀216的目的是为了在低噪条件下释放累积的多余压力并且尽可能地降低高压泄压阀开启的机率。高压泄压阀是高压流体器件并且开启时噪声很大。高压的机械泄压阀220和222的开启噪声是一种突然的让人恐慌的声波并且让人感觉冷冻消融系统是不是哪地方坏了。降低流体的流速或减少这些 阀的噪声可能会影响到机械泄压阀的正常工作继而影响系统的安全。机械泄压阀220是一个协调压力阀通常启动压力设定在机械泄压阀216和222之间。机械泄压阀222具有最高的启动压力P HPR,通常设定在等于或低于高压存储器206的压力上限。一旦在高压存储器206中的制冷剂压力达到P HPR时,机械泄压阀222将打开,另外机械泄压阀216和220排出掉额外的压力并降低制冷剂压力使其达到或低于P H或机械泄压阀216的开启压力。
当机械泄压阀发生故障的时候,增压模块200启用二级安全元件。参照图3和4所示,在图3中B点附近装有一个电动排气阀228。当压力传感器214和218检测到压力超过机械泄压阀222的开启压力P HPR时,电动排气阀228将打开。软件控制系统将发送一个过压报警信号并排掉高压存储器206中多余的压力,直到压力水平低于压力上限P H。冷冻消融单元100在使用之前将需要进行一次所有安全元件的彻底核查和检修。压力表212可直观的确定高压存储器206中的压力水平。一级安全元件和二级安全元件协同作用使增压模块200在安全且最佳的状态下工作。
在正常的操作下,在高压存储器206中的制冷剂被压缩,压力范围在P L和P H之间,平均制冷剂压力是P C。当存储器中的制冷剂被消耗时,在高压存储器206中制冷剂流体的温度上升。当制冷剂温度达到T CS或0℃,制冷剂低液位的报警会被触发。制冷剂流体温度允许上升到室温,然而一旦制冷剂温度达到T CS或更高,压力加热器208和210将不工作。压缩制冷剂流体将直接从增压模块200进入到调整模块500。
参照图5,调整模块500与增压模块200相连,调整模块500通过B点从增压模块200中接收具有第一级压力水平的流体。在进入升温加热器508之前流体先通过止回阀506和控制阀504。升温加热器508具有一个内置温度传感器T WH,进口管温度传感器T WHI和出口管温度传感器T WHO(未示出)。以进口管温度传感器作为测量基准。进口管温度传感器和出口管温度传感器提供反馈信号来控制升温加热器508。升温加热器的目的是进一步提高进入调整模块500的流体的压力和温度。压力水平应该升高到超出调压阀514设定的压力点,但要低于泄压阀512的开启压力P RV。更高的流体压力或调整模块压力P RM使得流体存储能量便于支持使用。另外,调压阀514精确控制出口压力或工作压力P W。当进口压力高于出口压力时调压阀排出工作压力。升温加热器508的功能是提高进入调整模块500的流体的温度到高于-50℃直至室温。这个使调压阀514在它的温度参数下达到最佳工作状态。
当制冷剂流体温度升高,在止回阀506和调压阀514之间的流体压力也会升高。控制阀504是阻止流体回流到增压模块200中去。压力传感器510监控压力的上升和实时控制升温加热器508的开关并使得控制阀504能保持调整模块压力P RW在大于P W和小于P RV之间的可接受范围内。排气阀502作为调整模块500的第二级安全元件。当压力达到P ORV或者超过P RV2bar时,排气阀502将打开,排掉多余的流体,并触发过压警报。排气阀保持打开状态直 到压力区间降到低于P RV的可接受水平。
把调整模块500的第二级增压阶段整合到冷冻消融单元100具有优势但也伴随着风险。优势是调整模块500的第二级增压阶段能使增压模块200的第一级增压阶段被设计成相对于需要的流体工作压力P W要低的多的耐压水平。对于增压模块而言,低的压力等级设计使它有更高的性价比、更小巧及更容易大规模生产。第二级增压阶段带来的风险是需要控制增加的流体压力。控制压力增加的幅度是通过实时操纵控制阀504的开关使得每次一定量的制冷剂进入调整模块500来实现。这个步骤使得少量的制冷剂可以随时被加热从而限制了压力的累积。另外一种途径是在加热器后面添加一个压力储存器(未示出)使之为制冷剂的进一步膨胀提供空间,为流体运动提供充足的动力。
参照图6是调整模块500的控制流程图。流体压力P RM第一个被检测。如果这个压力等于或低于P W,控制阀504将打开。在此之后,取决于流体出口管的温度T WHO和升温加热器508的内部温度T WH,升温加热器508打开或关闭,或者控制阀将关闭。在另外一种情形下,当调整模块的压力P RM升高到泄压阀510的开启压力,升温加热器将关闭。一旦压力水平达到P ORV,排气阀502将打开排掉多余的流体直到压力低于P RV时关闭。软件控制系统持续的监控压力水平和流体温度以确保正常的操作和必要时提供报警。
调整模块500具有一个非常艰巨的任务,就是调整为控制模块300准备的流体的压力和温度。在正常的操作模式下,从调整模块500中释放的工作流体具有一个工作压力PW和一个大于-50℃到室温的流体温度。工作流体从调整模块500直接流到控制模块300中。
参照图7,控制模块300和调整模块500相连,控制模块300通过E点接收来自调整模块500的工作流体,净化后,再输送到冷却通路或复温通路。所述复温通路的远端与所述冷冻单元600连接,所述复温通路的近端与所述控制模块1300连接,在所述复温通路和所述冷冻通路之间设置切换阀门,所述工作流体在进入复温通路时被预温到室温以上。工作流体进入控制模块首先通过一个可选择的水气过滤器314再通过一个颗粒过滤器316。这个步骤将剔除掉污染物,否则颗粒将顺流堵塞冷冻单元600的孔隙,降低冷冻单元的性能。冷冻阀320在冷冻循环中引导流体到C点,复温阀308在复温循环中引导流体到D点。泄压阀304、压力传感器318和排气阀302是安全元件来防止在冷冻阀320和复温阀308之间的流体过压。复温加热器312是复温液体发生器,复温使流体温度升高到超过室温,为复温循环做准备。排气阀310也是作为安全元件来防止由于加热器312而导致的过压及释放在管路里聚集的流体。例如,在冷冻循环过程中,流体在冷冻单元600中堵塞。阀310在冷冻循环和复温循环结束时从系统中排掉工作流体。
参照图8,冷却模块400包含一个双层真空绝热的杜瓦瓶402。杜瓦瓶402是一个敞口的、不耐压的、充满制冷剂的存储器。杜瓦瓶中的制冷剂和增压模块200中所用的冷冻流体是一 样的。它的目的是在整个系统中使用一种类型的冷冻流体。它提供一个好处是不需要购买不同种类的流体,而且允许流体从一个模块到另外一个模块中混合。例如,从增压模块200出来的压缩流体从冷冻单元流回到冷却模块400。在正常的操作模式下,冷却模块400和控制模块300相连,冷却模块400通过C点和D点接收来自控制模块300的流体。冷冻通路延伸进入冷却模块400内部,冷却模块400将冷冻通路内部的工作流体转换成工作制冷剂。在冷冻单元的冷冻循环中,工作流体从C点流过热交换器404或者冷冻流体发生器,这个冷冻流体发生器靠近杜瓦瓶402的底部并浸在制冷剂里。工作流体在通过热交换器404时被二次冷却再转换成工作制冷剂。这个工作制冷剂通过止回阀406进入到输送管410,再进入到与冷冻单元600的连接口A点。止回阀406阻止流体回流到热交换器404中。当从C点流到A点的流体通路处于真空条件时回流发生。因为A点是开放口,污染物例如高湿度空气中的水汽从冷冻结束后被吸进,之后冷冻并阻塞输送管410进而阻止所需要的流体的流动。流体内部的负温梯度(这个梯度由于负压中分子压缩造成的)形成了从C点到A点的真空通路。灌满制冷剂的杜瓦瓶402将使流体在输送管410内部,热交换器404和从热交换器到冷冻阀320和复温阀308之间的通路由于收缩而产生一个真空空间。
工作制冷剂用一个可选的真空绝热腔体(虚线414所示)保温。超高真空系统416产生真空绝热。真空绝热系统保温输送管410、止回阀406、A点和冷冻单元600及回气管408。从热交换器404中出来的经二次冷却的流体流到冷冻消融单元100的A点的过程中得到保温。工作制冷剂通过输送管410在A点进入冷冻单元600,也通过A点回流进入回气管408。冷冻单元回流流体通过一个可选的止回阀412排放到双层真空绝热的杜瓦瓶402中。止回阀412阻止不想要的污染物,例如从回气管408中进入的冷凝水汽。特别是当冷冻单元连接在冷冻消融单元上,输送管410和回气管408还有残留流体。例如上面描述的任何的真空或负压都将在回气管408内部产生虹吸效应。因为回气管408的开口靠近杜瓦瓶402的底部,颗粒污染物以及水汽将被吸进并产生污染。一个可选的用于监控回流压力并反馈信息到软件控制系统的压力传感器418被整合到冷却模块400中。从基准和安全性考虑,传感器418用于测量下游的压力。当一个不正常的高压情况,例如回气管408被堵塞,被检测到时,它能触发控制模块300上的排气阀310的开关。
本申请第一个实施例是一个冷冻消融单元,包括一个增压模块、一个压力调整模块、流体控制模块和一个制冷剂冷却模块,所述冷冻消融单元和一个冷冻单元一起工作组成一个冷冻消融系统。增压模块在一个大气压下接收流体制冷剂,之后压缩它到第一级压力水平。第一级压力水平可以从2bar到100bar或更高。第一级压力水平可以高于或低于调整模块出口的工作压力。调整模块进一步压缩流体到第二级压力水平。第二级压力水平高于工作流体压力。此外,调整模块能提高流体质量,优化流体温度并调整出口压力,将其调整为工作压力水平。 控制模块之后预温流体为复温做准备或在输送到冷冻单元之前将其引入冷却模块进行二次冷却。冷冻单元被连接到冷冻消融单元并接收工作制冷剂或复温流体。从冷冻单元排出的流体回流到冷冻消融单元。整个冷冻消融系统10利用热能从流体制冷剂中产生正压,控制流体温度,之后输送它到冷冻单元从而到达治疗的目的。它是一个单独的冷冻消融系统,其集成了一个自我增压的子系统,而不需要从外部气罐里获得持续的气体来为冷冻单元提供工作流体。
上述的描述是本申请的第一个实施例。然而进一步改进将简化该实施例使得整个系统更紧凑、更简单和精炼。为了达到以上的目标,第一,把增压模块重新放到冷却模块里来减少空间。第二,在第二个实施例里去掉调整模块来创造一个一级增压的冷冻消融单元。这样在一个模块里控制流体压力及流体温度将更容易。调整后的优点是简化了软件控制,更经济,具有更高的制冷剂使用效率。因为相对于在更高的温度下转换工作流体到工作制冷剂,将压缩制冷剂转换到工作制冷剂需求的制冷剂量更少,就像在本申请第一个实施例所示。参照图9,冷冻消融系统10的冷冻消融单元1100的第二个实施例示意图。冷冻消融单元1100包括增压模块200、控制模块1300和冷却模块400。一个大气压的冷冻流体在增压模块200中转换成压缩制冷剂,并直接流到控制模块1300中。冷却模块接收压缩制冷剂并转化成工作制冷剂。增压模块200和冷却模块400和上述的一样。然而,控制模块1300和上述的控制模块300不一样。
参照图10,控制模块1300的示意图。控制模块1300和增压模块200相连,控制模块1300在B点处接收来自增压模块200的压缩制冷剂。在冷冻循环过程中,制冷剂通过冷冻阀1302输送到C点。在冷冻和复温循环结束时,冷冻阀用来排掉工作流体之后排气阀1304开始工作。在复温循环过程中,压缩制冷剂通过复温阀1306流进复温加热器1308。压缩制冷剂在复温加热器出口处转换成复温流体,之后流进D点再在A点处流进冷冻单元。在本申请第二个实施例中去掉了二级增压阶段以及机械调压阀。工作压力在增压模块200中被软件控制系统调整。因为在第二个实施例中没有机械调压阀,在增压模块中的制冷剂压力P C变成工作压力P W。控制系统很好的调整压力水平,使工作压力维持在公差范围在±1bar到±10bar。或者尽可能的像本申请中第一个实施例里描述的一样,有一个压力上限P H和一个接近的压力下限P L
冷冻单元
参照图11,它是一个典型的冷冻单元600的示意图。所述的冷冻单元600优选为导管。冷冻单元在A点连接到冷冻消融系统10上。冷冻单元具有热绝缘部分506、冷冻部分508和远端头部510。热绝缘部分506包括A点。冷冻单元600的输送管502和冷冻单元600的回气管504连接到A点。从A点直到与冷冻部分508相交的热绝缘部分506由真空系统416真 空绝热。
冷冻部分508是没有热绝热部分的。冷冻单元600通过A点与冷冻通路连接,用于接收工作制冷剂,冷冻能量是通过输送管和回气管提供,通过所述冷冻单元600的冷冻部分508将工作流体输送到治疗部位,冷冻单元600的远端部分为工作制冷剂的冷源释放区域。冷冻能量直接接触待治疗组织或是通过用医用球囊或其他等效方法封装的热交换介质来提供。热交换介质是盐水或者其他在室温下的非挥发的生物相容性流体。冷冻单元600的输送管502和回气管504延长超过热绝缘506部分进入冷冻部分508及部分进入远端头部510。
远端头部510从冷冻部分508中伸出。头部通常被设计成柔软的、弹性的、光滑的,使冷冻单元能在没有损伤周围组织的情况下通过复杂的通路。
以上所述是本申请较佳的具体实施例,我们必须承认在不偏离本申请精神的情况下还有很多替换改进方式,下面的权利要求是为了尽可能地包含落入本申请精神和原则范围内的所有修改方式。

Claims (19)

  1. 一种冷冻消融系统,包括:
    增压模块,所述增压模块将接收的液态制冷剂增压至第一级压力水平;
    调整模块,所述调整模块和所述增压模块相连,接收第一级压力水平的流体,把具有第一级压力水平的所述流体增压到第二级压力水平,再将它调整为具有工作压力水平的工作流体;
    控制模块,所述控制模块和所述调整模块相连,接收所述工作流体并把所述工作流体输送到冷冻通路;
    冷却模块,所述冷却模块和所述控制模块相连,所述冷冻通路延伸进入所述冷却模块内部,所述冷却模块将所述冷冻通路内部的所述工作流体转换成工作制冷剂;
    冷冻单元,所述冷冻单元与所述冷冻通路连接,用于接收所述工作制冷剂,所述冷冻单元的远端部分为所述工作制冷剂的冷源释放区域。
  2. 根据权利要求1所述的冷冻消融系统,其特征在于,在所述的冷冻消融系统中还包括复温通路,所述复温通路的远端与所述冷冻单元连接,所述复温通路的近端与所述控制模块连接,在所述复温通路和所述冷冻通路之间设置切换阀门,所述工作流体在进入复温通路时被预温到室温以上。
  3. 根据权利要求1所述的冷冻消融系统,其特征在于,所述增压模块利用热能蒸发所述液态流体来产生压力。
  4. 根据权利要求1所述的冷冻消融系统,其特征在于,所述增压模块包括作为一级安全元件的机械泄压阀及作为二级安全元件的电动排气阀。
  5. 根据权利要求4所述的冷冻消融系统,其特征在于,所述的机械泄压阀包括3个分别设定不同的开启压力的机械泄压阀,其中设定最低开启压力的所述机械泄压阀是一个无声泄压阀。
  6. 根据权利要求4所述的冷冻消融系统,其特征在于,当压力达到开启压力时,作为二级安全元件的所述电动排气阀打开,所述开启压力是所述机械泄压阀所设定的最高压力。
  7. 根据权利要求4所述的冷冻消融系统,其特征在于,所述调整模块控制所述工作流体排出的温度和压力。
  8. 根据权利要求7所述的冷冻消融系统,其特征在于,所述工作流体的温度保持在高于-50℃但小于或等于室温,所述工作流体的压力保持在高于工作压力但小于所述机械泄压阀的设定压力。
  9. 根据权利要求1所述的冷冻消融系统,其特征在于,所述控制模块具有一个使所述工作流体加热到超过室温的加热器,以便复温流体。
  10. 根据权利要求1所述的冷冻消融系统,其特征在于,所述控制模块具有一个在每个冷 冻循环和复温循环结束时排掉所述工作流体的排气阀。
  11. 一种冷冻消融系统,包括:
    增压模块,所述增压模块接收来自于外部的液态制冷剂,并将所述液态制冷剂增压到具有工作压力水平的工作流体;
    控制模块,所述控制模块和所述增压模块相连,所述控制模块接收来自于所述增压模块的所述工作流体,并把工作流体输送到冷冻通路;
    冷却模块,所述冷却模块和所述控制模块相连,所述冷冻通路延伸进入所述冷却模块内部,所述冷却模块将所述冷冻通路内部的所述工作流体转换成工作制冷剂;以及
    冷冻单元,所述冷冻单元与所述冷冻通路连接,用于接收所述工作制冷剂,所述冷冻单元的远端部分为所述工作制冷剂的冷源释放区域。
  12. 根据权利要求11所述的冷冻消融系统,其特征在于,在所述的冷冻消融系统中还包括复温通路,所述复温通路的远端与所述冷冻单元连接,所述复温通路的近端与所述控制模块连接,在所述复温通路和所述冷冻通路之间设置切换阀门,所述工作流体在进入复温通路时被预温到室温以上。
  13. 根据权利要求11所述的冷冻消融系统,其特征在于,所述增压模块被安装在所述冷却模块内。
  14. 根据权利要求11所述的冷冻消融系统,其特征在于,所述增压模块利用热能蒸发所述液态流体来产生压力。
  15. 根据权利要求11所述的冷冻消融系统,其特征在于,所述增压模块包括作为一级安全元件的机械泄压阀及作为二级安全元件的电动排气阀。
  16. 根据权利要求15所述的冷冻消融系统,其特征在于,所述的机械泄压阀包括3个分别设定不同的开启压力的机械泄压阀,其中设定最低开启压力的所述机械泄压阀是一个无声泄压阀。
  17. 根据权利要求15所述的冷冻消融系统,其特征在于,当压力达到开启压力时,作为二级安全元件的所述电动排气阀打开,所述开启压力是所述机械泄压阀所设定的最高压力。
  18. 根据权利要求11所述的冷冻消融系统,其特征在于,所述控制模块具有一个使所述工作流体加热到超过室温的加热器,以便复温流体。
  19. 根据权利要求11所述的冷冻消融系统,其特征在于,所述控制模块具有一个在每个冷冻循环和复温循环结束时排掉所述工作流体的排气阀。
PCT/CN2017/119960 2017-01-16 2017-12-29 一种冷冻消融系统 WO2018130096A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710027827.5 2017-01-16
CN201710027827.5A CN106806013B (zh) 2017-01-16 2017-01-16 一种冷冻消融系统

Publications (1)

Publication Number Publication Date
WO2018130096A1 true WO2018130096A1 (zh) 2018-07-19

Family

ID=59111018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119960 WO2018130096A1 (zh) 2017-01-16 2017-12-29 一种冷冻消融系统

Country Status (2)

Country Link
CN (1) CN106806013B (zh)
WO (1) WO2018130096A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113749753A (zh) * 2021-11-09 2021-12-07 海杰亚(北京)医疗器械有限公司 一种压力调节方法、装置及冷冻手术系统
CN114504372A (zh) * 2021-06-30 2022-05-17 杭州堃博生物科技有限公司 冷冻消融系统的控制方法
WO2022224256A1 (en) * 2021-04-21 2022-10-27 Nedlin Yakov Method and apparatus for high-power ablation
EP4218638A1 (en) * 2022-01-26 2023-08-02 Medtronic, Inc. Method for managing refrigerant pressure for cryoablation and cryomapping

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106806013B (zh) * 2017-01-16 2020-06-19 康沣生物科技(上海)有限公司 一种冷冻消融系统
JP7146935B2 (ja) 2018-04-27 2022-10-04 バイオコンパティブルズ ユーケー リミテッド 圧力調整機能を備えた冷凍凝固手術システム
CN109223167B (zh) * 2018-08-24 2020-06-09 康沣生物科技(上海)有限公司 一体化冷冻消融设备
CN109431594B (zh) * 2018-12-10 2023-11-24 康沣生物科技(上海)股份有限公司 一种pid控制的自增压冷冻消融系统
CN109907815B (zh) * 2018-12-10 2023-11-03 康沣生物科技(上海)股份有限公司 一种自增压冷冻消融系统
CN109674525B (zh) * 2018-12-21 2021-04-06 海杰亚(北京)医疗器械有限公司 一种用于医用冷冻球囊的治疗设备
CN114251922B (zh) * 2021-12-24 2023-01-17 南京屹立芯创半导体科技有限公司 压力烤箱的温度调整方法以及压力烤箱
CN114668481B (zh) * 2022-05-26 2023-01-24 上海导向医疗系统有限公司 一种基于低温制冷机预冷的双系统低温治疗系统
CN116712158B (zh) * 2023-08-10 2023-10-27 海杰亚(北京)医疗器械有限公司 一种多模态物理场肿瘤消融治疗系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050261671A1 (en) * 2001-05-31 2005-11-24 Baust John G Cryogenic system
US20090171333A1 (en) * 2007-12-27 2009-07-02 Boston Scientific Scimed, Inc. System and method for controllably delivering liquid coolant to a cryo-ablation device
CN103501719A (zh) * 2011-03-02 2014-01-08 远藤护理有限公司 低温医疗系统
EP2807986A1 (en) * 2012-01-26 2014-12-03 Semenov, Vyacheslav Yuryevich Method for feeding a cryogenic agent to a cryogenic instrument and cryosurgical apparatus for implementing same
CN105708541A (zh) * 2016-04-11 2016-06-29 赵国江 一种节流冷冻型冷冻外科装置的控制方法
CN106806013A (zh) * 2017-01-16 2017-06-09 康沣生物科技(上海)有限公司 一种冷冻消融系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9101343B2 (en) * 2012-08-03 2015-08-11 Thach Buu Duong Therapeutic cryoablation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050261671A1 (en) * 2001-05-31 2005-11-24 Baust John G Cryogenic system
US20090171333A1 (en) * 2007-12-27 2009-07-02 Boston Scientific Scimed, Inc. System and method for controllably delivering liquid coolant to a cryo-ablation device
CN103501719A (zh) * 2011-03-02 2014-01-08 远藤护理有限公司 低温医疗系统
EP2807986A1 (en) * 2012-01-26 2014-12-03 Semenov, Vyacheslav Yuryevich Method for feeding a cryogenic agent to a cryogenic instrument and cryosurgical apparatus for implementing same
CN105708541A (zh) * 2016-04-11 2016-06-29 赵国江 一种节流冷冻型冷冻外科装置的控制方法
CN106806013A (zh) * 2017-01-16 2017-06-09 康沣生物科技(上海)有限公司 一种冷冻消融系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224256A1 (en) * 2021-04-21 2022-10-27 Nedlin Yakov Method and apparatus for high-power ablation
CN114504372A (zh) * 2021-06-30 2022-05-17 杭州堃博生物科技有限公司 冷冻消融系统的控制方法
CN113749753A (zh) * 2021-11-09 2021-12-07 海杰亚(北京)医疗器械有限公司 一种压力调节方法、装置及冷冻手术系统
CN113749753B (zh) * 2021-11-09 2022-03-01 海杰亚(北京)医疗器械有限公司 一种压力调节方法、装置及冷冻手术系统
EP4218638A1 (en) * 2022-01-26 2023-08-02 Medtronic, Inc. Method for managing refrigerant pressure for cryoablation and cryomapping

Also Published As

Publication number Publication date
CN106806013A (zh) 2017-06-09
CN106806013B (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
WO2018130096A1 (zh) 一种冷冻消融系统
WO2018130095A1 (zh) 一种冷冻消融治疗系统
CN105213018B (zh) 冷冻消融治疗系统
CA2651835C (en) Precooled cryogenic medical system
CA2517747C (en) Control system for cryosurgery
US20050159735A1 (en) Refrigeration source for a cryoablation catheter
WO2002013710A1 (en) Cooling system
CN110934635A (zh) 高低温复合消融手术系统
AU2001282918A1 (en) Control system for cryosurgery
JP2008518181A (ja) 液化ガスおよびガスの貯蔵
CA2888590C (en) Apparatus, probe and method for a cryogenic system
CN212879546U (zh) 一种单一工质复合式消融手术系统
CN114526444B (zh) 基于冷冻消融系统的复温控制方法
CN210330719U (zh) 一种高低温治疗用的工质供给系统
JP2021121308A (ja) 医療器具に冷却剤を供給するための装置および方法
CN106524545A (zh) 冷冻装置
US3318104A (en) Method and apparatus for storing low-boiling liquids
SU560600A1 (ru) Холодильно-компрессионный аппарат
GB2520355A (en) Steam compression apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891614

Country of ref document: EP

Kind code of ref document: A1