WO2018128341A1 - Pbch 인코딩 및 전송을 위한 방법과 이를 위한 통신 장치 - Google Patents

Pbch 인코딩 및 전송을 위한 방법과 이를 위한 통신 장치 Download PDF

Info

Publication number
WO2018128341A1
WO2018128341A1 PCT/KR2018/000015 KR2018000015W WO2018128341A1 WO 2018128341 A1 WO2018128341 A1 WO 2018128341A1 KR 2018000015 W KR2018000015 W KR 2018000015W WO 2018128341 A1 WO2018128341 A1 WO 2018128341A1
Authority
WO
WIPO (PCT)
Prior art keywords
pbch
bits
sub
encoded data
bit
Prior art date
Application number
PCT/KR2018/000015
Other languages
English (en)
French (fr)
Inventor
김봉회
노광석
고현수
변일무
황승계
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/475,625 priority Critical patent/US10931311B2/en
Publication of WO2018128341A1 publication Critical patent/WO2018128341A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/635Error control coding in combination with rate matching
    • H03M13/6362Error control coding in combination with rate matching by puncturing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services

Definitions

  • the present invention relates to wireless communications, and more particularly, to a method for encoding and transmitting PBCH and a communication apparatus therefor.
  • Wireless Sensor Network WSN
  • MTC Massive Machine Type Communication
  • Massive MTC service has very limited Connection Density Requirement, while Data Rate and End-to-End (E2E) Latency Requirement are very free (for example, Connection Density: Up to 200,000 / km2, E2E Latency: Seconds to hours, DL / UL Data Rate: typically 1-100 kbps).
  • An object of the present invention is to provide a method for a base station to transmit a physical broadcast channel (PBCH).
  • PBCH physical broadcast channel
  • Another object of the present invention is to provide a method for a UE to receive a PBCH.
  • Another technical problem to be achieved in the present invention is to provide a base station for transmitting a physical broadcast channel (PBCH).
  • PBCH physical broadcast channel
  • Another technical problem to be achieved in the present invention is to provide a terminal for receiving a physical broadcast channel (PBCH).
  • PBCH physical broadcast channel
  • a base station transmits a physical broadcast channel (Physical Broadcast CHannel, PBCH), for each of two symbols of a predetermined subframe for PBCH transmission using a polar code (pola code) Generating the same encoded data bits; And transmitting the generated identical encoded data bits through the PBCH in each of two symbols of the predetermined subframe.
  • PBCH Physical Broadcast CHannel
  • the generating may include generating the same encoded data bit based on the information size of the PBCH and the size of a mother code size of the polar encoder.
  • the generating step may include: when the mother code size of the polar encoder is larger than the size of the same encoded data bits transmitted in each of the two symbols, the mother code size and the mother code size in the generated encoded data bits of the mother code size. Puncturing as many bits as the size corresponding to the difference between the sizes of the same encoded data bits to generate the same encoded data bits.
  • the mother code size of the polar encoder may be 512, and the size of the same encoded data bit may be 384.
  • a method of receiving a physical broadcast channel (Physical Broadcast Channel) (PBCH) by the terminal receiving the same encoded data bits generated in each of the two symbols of a predetermined subframe through the PBCH
  • the generated encoded data bits may be generated for each of the two symbols of the predetermined subframe for PBCH transmission using a polar code (pola code).
  • a base station for transmitting a physical broadcast channel (Physical Broadcast CHannel, PBCH), each of the two symbols of a predetermined subframe for PBCH transmission using a polar code (pola code)
  • PBCH Physical Broadcast CHannel
  • a polar encoder configured to generate the same encoded data bits for the same;
  • a transmitter configured to transmit the generated identical encoded data bits on the PBCH in each of two symbols of the predetermined subframe.
  • the polar encoder may be configured to generate the same encoded data bits based on the information size of the PBCH and the size of the mother code size of the polar encoder.
  • the polar encoder is configured to display the mother code size and the code in the generated encoded data bits of the mother code size. It may be configured to puncture as many bits as the size corresponding to the difference between the sizes of the same encoded data bits to generate the same encoded data bits.
  • the mother code size of the polar encoder may be 512, and the size of the same encoded data bit may be 384.
  • a method for a terminal to receive a physical broadcast channel Physical Broadcast CHannel, PBCH
  • the receiver And a processor for controlling the receiver to receive the same encoded data bits generated through the PBCH in each of two symbols of a predetermined subframe, wherein the generated encoded data bits use a polar code. For each of the two symbols of the predetermined subframe for the PBCH transmission may be generated.
  • PBCH Physical Broadcast CHannel
  • the method for encoding and transmitting PBCH can improve communication performance by lowering the performance of PBCH transmission / reception and the complexity of the encoder / decoder.
  • 1 is a diagram illustrating a physical channel and a signal transmission method using the same.
  • FIG. 2 is a diagram illustrating an example of a structure of a radio frame.
  • 3 is a diagram illustrating a resource grid for a downlink slot.
  • FIG. 4 is a diagram illustrating an example of a structure of an uplink subframe.
  • 5 is a diagram illustrating an example of a structure of a downlink subframe.
  • FIG. 6 illustrates a subframe structure of an LTE-A system according to cross carrier scheduling used in embodiments of the present invention.
  • FIG. 7 is a diagram illustrating an example of an initial access procedure used in an LTE / LTE-A system.
  • FIG. 8 is a diagram illustrating one method of transmitting a broadcast channel signal.
  • FIG. 9 is a conceptual diagram of a CoMP system operating based on a CA environment.
  • FIG. 10 is a diagram illustrating an example of a subframe to which a cell specific reference signal (CRS) is allocated, which can be used in embodiments of the present invention.
  • CRS cell specific reference signal
  • FIG. 11 is a diagram illustrating an example of subframes in which CSI-RSs that can be used in embodiments of the present invention are allocated according to the number of antenna ports.
  • FIG. 12 is a diagram illustrating an example in which legacy PDCCH, PDSCH, and E-PDCCH used in an LTE / LTE-A system are multiplexed.
  • FIG. 13 is a diagram illustrating first level channel combining for polar coding.
  • FIG. 14 is a diagram illustrating N-th level channel combining for polar code.
  • 15 is a view comparing the performance according to the method 1 to method 5.
  • 16 is a diagram illustrating a transmission method of a synchronization signal in an NR (New RAT) system.
  • FIGS. 18A, 18B, and 18C illustrate embodiments of the PBCH transmission scheme when eight transmission opportunities are present. Drawing.
  • FIG. 19 is a means by which the methods described in FIGS. 1 to 18 may be implemented.
  • Embodiments of the present invention described in detail below provide methods and apparatuses using heterogeneous network signals to measure the position of a terminal.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • the base station is meant as a terminal node of a network that directly communicates with a mobile station.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • various operations performed for communication with a mobile station in a network consisting of a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station.
  • the 'base station' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an advanced base station (ABS), or an access point.
  • a terminal may be a user equipment (UE), a mobile station (MS), a subscriber station (SS), or a mobile subscriber station (MSS). It may be replaced with terms such as a mobile terminal or an advanced mobile station (AMS).
  • UE user equipment
  • MS mobile station
  • SS subscriber station
  • MSS mobile subscriber station
  • AMS advanced mobile station
  • the transmitting end refers to a fixed and / or mobile node that provides a data service or a voice service
  • the receiving end refers to a fixed and / or mobile node that receives a data service or a voice service. Therefore, in uplink, a mobile station may be a transmitting end and a base station may be a receiving end. Similarly, in downlink, a mobile station may be a receiving end and a base station may be a transmitting end.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the IEEE 802.xx system, the 3rd Generation Partnership Project (3GPP) system, the 3GPP LTE system, and the 3GPP2 system, which are wireless access systems, and in particular, the present invention.
  • Embodiments of the may be supported by 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321 and 3GPP TS 36.331 documents. That is, obvious steps or portions not described among the embodiments of the present invention may be described with reference to the above documents.
  • all terms disclosed in the present document can be described by the above standard document.
  • 3GPP LTE / LTE-A system will be described as an example of a wireless access system in which embodiments of the present invention can be used.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3GPP Long Term Evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (Advanced) system is an improved system of the 3GPP LTE system.
  • embodiments of the present invention will be described based on the 3GPP LTE / LTE-A system, but can also be applied to IEEE 802.16e / m system.
  • a terminal receives information from a base station through downlink (DL) and transmits information to the base station through uplink (UL).
  • the information transmitted and received by the base station and the terminal includes general data information and various control information, and various physical channels exist according to the type / use of the information they transmit and receive.
  • FIG. 1 is a diagram for explaining physical channels that can be used in embodiments of the present invention and a signal transmission method using the same.
  • the initial cell search operation such as synchronizing with the base station is performed in step S11.
  • the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • the terminal may receive a physical broadcast channel (PBCH) signal from the base station to obtain broadcast information in a cell.
  • PBCH physical broadcast channel
  • the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to confirm the downlink channel state.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the physical downlink control channel information in step S12. Specific system information can be obtained.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the terminal may perform a random access procedure as in steps S13 to S16 to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S13), a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Can be received (S14).
  • PRACH physical random access channel
  • the UE may perform contention resolution such as transmitting an additional physical random access channel signal (S15) and receiving a physical downlink control channel signal and a corresponding physical downlink shared channel signal (S16). Procedure).
  • the UE After performing the above-described procedure, the UE subsequently receives a physical downlink control channel signal and / or a physical downlink shared channel signal (S17) and a physical uplink shared channel (PUSCH) as a general uplink / downlink signal transmission procedure.
  • a transmission (Uplink Shared Channel) signal and / or a Physical Uplink Control Channel (PUCCH) signal may be transmitted (S18).
  • UCI uplink control information
  • HARQ-ACK / NACK Hybrid Automatic Repeat and reQuest Acknowledgement / Negative-ACK
  • SR Scheduling Request
  • CQI Channel Quality Indication
  • PMI Precoding Matrix Indication
  • RI Rank Indication
  • UCI is generally transmitted periodically through the PUCCH, but may be transmitted through the PUSCH when control information and traffic data should be transmitted at the same time.
  • the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
  • FIG. 2 shows a structure of a radio frame used in embodiments of the present invention.
  • the type 1 frame structure can be applied to both full duplex Frequency Division Duplex (FDD) systems and half duplex FDD systems.
  • FDD Frequency Division Duplex
  • One subframe is defined as two consecutive slots, and the i-th subframe includes slots corresponding to 2i and 2i + 1. That is, a radio frame consists of 10 subframes.
  • the time taken to transmit one subframe is called a transmission time interval (TTI).
  • the slot includes a plurality of OFDM symbols or SC-FDMA symbols in the time domain and a plurality of resource blocks in the frequency domain.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain. Since 3GPP LTE uses OFDMA in downlink, the OFDM symbol is for representing one symbol period. The OFDM symbol may be referred to as one SC-FDMA symbol or symbol period.
  • a resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
  • 10 subframes may be used simultaneously for downlink transmission and uplink transmission during each 10ms period. At this time, uplink and downlink transmission are separated in the frequency domain.
  • the terminal cannot transmit and receive at the same time.
  • the structure of the radio frame described above is just one example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
  • Type 2 frame structure is applied to the TDD system.
  • the type 2 frame includes a special subframe consisting of three fields: a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS uplink pilot time slot
  • the DwPTS is used for initial cell search, synchronization or channel estimation in the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • Table 1 below shows the structure of the special frame (length of DwPTS / GP / UpPTS).
  • FIG. 3 is a diagram illustrating a resource grid for a downlink slot that can be used in embodiments of the present invention.
  • one downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes seven OFDM symbols, and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
  • Each element on the resource grid is a resource element, and one resource block includes 12 ⁇ 7 resource elements.
  • the number N DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 4 shows a structure of an uplink subframe that can be used in embodiments of the present invention.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • the control region is allocated a PUCCH carrying uplink control information.
  • a PUSCH carrying user data is allocated.
  • one UE does not simultaneously transmit a PUCCH and a PUSCH.
  • the PUCCH for one UE is allocated an RB pair in a subframe. RBs belonging to the RB pair occupy different subcarriers in each of the two slots.
  • the RB pair assigned to this PUCCH is said to be frequency hopping at the slot boundary.
  • FIG. 5 shows a structure of a downlink subframe that can be used in embodiments of the present invention.
  • up to three OFDM symbols from the OFDM symbol index 0 in the first slot in the subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which the PDSCH is allocated. to be.
  • a downlink control channel used in 3GPP LTE includes a Physical Control Format Indicator Channel (PCFICH), a PDCCH, and a Physical Hybrid-ARQ Indicator Channel (PHICH).
  • PCFICH Physical Control Format Indicator Channel
  • PDCCH Physical Hybrid-ARQ Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe.
  • the PHICH is a response channel for the uplink and carries an ACK (Acknowledgement) / NACK (Negative-Acknowledgement) signal for a hybrid automatic repeat request (HARQ).
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • the downlink control information includes uplink resource allocation information, downlink resource allocation information or an uplink transmission (Tx) power control command for a certain terminal group.
  • CA Carrier Aggregation
  • LTE system 3rd Generation Partnership Project Long Term Evolution (Rel-8 or Rel-9) system
  • MCM multi-carrier modulation
  • CC component carrier
  • Multi-Carrier Modulation is used.
  • LTE-A system a method such as Carrier Aggregation (CA) may be used in which one or more component carriers are combined to support a wider system bandwidth than the LTE system.
  • CA Carrier Aggregation
  • Carrier aggregation may be replaced with the words carrier aggregation, carrier matching, multi-component carrier environment (Multi-CC) or multicarrier environment.
  • the multi-carrier means the aggregation of carriers (or carrier aggregation), wherein the aggregation of carriers means not only merging between contiguous carriers but also merging between non-contiguous carriers.
  • the number of component carriers aggregated between downlink and uplink may be set differently.
  • the case where the number of downlink component carriers (hereinafter referred to as 'DL CC') and the number of uplink component carriers (hereinafter referred to as 'UL CC') is the same is called symmetric merging. This is called asymmetric merging.
  • Such carrier aggregation may be used interchangeably with terms such as carrier aggregation, bandwidth aggregation, spectrum aggregation, and the like.
  • Carrier aggregation in which two or more component carriers are combined, aims to support up to 100 MHz bandwidth in an LTE-A system.
  • the bandwidth of the combining carrier may be limited to the bandwidth used by the existing system to maintain backward compatibility with the existing IMT system.
  • the existing 3GPP LTE system supports ⁇ 1.4, 3, 5, 10, 15, 20 ⁇ MHz bandwidth
  • the 3GPP LTE-advanced system i.e., LTE-A
  • LTE-A 3GPP LTE-advanced system
  • the carrier aggregation system used in the present invention may support carrier aggregation by defining a new bandwidth regardless of the bandwidth used in the existing system.
  • the carrier aggregation may be divided into an intra-band CA and an inter-band CA.
  • Intra-band carrier merging means that a plurality of DL CCs and / or UL CCs are located adjacent to or in proximity to frequency. In other words, it may mean that the carrier frequencies of the DL CCs and / or UL CCs are located in the same band.
  • an environment far from the frequency domain may be referred to as an inter-band CA.
  • the terminal may use a plurality of radio frequency (RF) terminals to perform communication in a carrier aggregation environment.
  • RF radio frequency
  • the LTE-A system uses the concept of a cell to manage radio resources.
  • the carrier aggregation environment described above may be referred to as a multiple cell environment.
  • a cell is defined as a combination of a downlink resource (DL CC) and an uplink resource (UL CC), but the uplink resource is not an essential element. Accordingly, the cell may be configured with only downlink resources or with downlink resources and uplink resources.
  • a specific UE when a specific UE has only one configured serving cell, it may have one DL CC and one UL CC. However, when a specific terminal has two or more configured serving cells, it may have as many DL CCs as the number of cells and the number of UL CCs may be the same or smaller than that. Alternatively, the DL CC and the UL CC may be configured on the contrary. That is, when a specific UE has a plurality of configured serving cells, a carrier aggregation environment in which a UL CC has more than the number of DL CCs may be supported.
  • Carrier coupling may also be understood as the merging of two or more cells, each having a different carrier frequency (center frequency of the cell).
  • the term 'cell' in terms of carrier combining is described in terms of frequency, and should be distinguished from 'cell' as a geographical area covered by a commonly used base station.
  • intra-band carrier merging is referred to as an intra-band multi-cell
  • inter-band carrier merging is referred to as an inter-band multi-cell.
  • the cell used in the LTE-A system includes a primary cell (P cell) and a secondary cell (S cell).
  • the PCell and the SCell may be used as serving cells.
  • the UE that is in the RRC_CONNECTED state but the carrier aggregation is not configured or does not support the carrier aggregation, there is only one serving cell composed of the PCell.
  • one or more serving cells may exist, and the entire serving cell includes a PCell and one or more SCells.
  • Serving cells may be configured through an RRC parameter.
  • PhyS cell Id is a cell's physical layer identifier and has an integer value from 0 to 503.
  • SCell Index is a short identifier used to identify SCell and has an integer value from 1 to 7.
  • ServCellIndex is a short identifier used to identify a serving cell (P cell or S cell) and has an integer value from 0 to 7. A value of 0 is applied to the P cell, and the S cell Index is given in advance to apply to the S cell. That is, a cell having the smallest cell ID (or cell index) in ServCellIndex becomes a P cell.
  • P cell refers to a cell operating on a primary frequency (or primary CC).
  • the UE may be used to perform an initial connection establishment process or to perform a connection re-establishment process, and may also refer to a cell indicated in a handover process.
  • the P cell refers to a cell serving as a center of control-related communication among serving cells configured in a carrier aggregation environment. That is, the terminal may receive and transmit a PUCCH only in its own Pcell, and may use only the Pcell to acquire system information or change a monitoring procedure.
  • E-UTRAN Evolved Universal Terrestrial Radio Access
  • RRC connection reconfigutaion message of a higher layer including mobility control information to a UE supporting a carrier aggregation environment. It may be.
  • the S cell may refer to a cell operating on a secondary frequency (or, secondary CC). Only one PCell may be allocated to a specific UE, and one or more SCells may be allocated.
  • the SCell is configurable after the RRC connection is established and may be used to provide additional radio resources.
  • PUCCH does not exist in the remaining cells excluding the P cell, that is, the S cell, among the serving cells configured in the carrier aggregation environment.
  • the E-UTRAN may provide all system information related to the operation of the related cell in the RRC_CONNECTED state through a dedicated signal.
  • the change of the system information may be controlled by the release and addition of the related SCell, and at this time, an RRC connection reconfigutaion message of a higher layer may be used.
  • the E-UTRAN may transmit specific signaling having different parameters for each terminal, rather than broadcasting in the related SCell.
  • the E-UTRAN may configure a network including one or more Scells in addition to the Pcells initially configured in the connection establishment process.
  • the Pcell and the SCell may operate as respective component carriers.
  • the primary component carrier (PCC) may be used in the same sense as the PCell
  • the secondary component carrier (SCC) may be used in the same sense as the SCell.
  • Cross carrier scheduling may be referred to as Cross Component Carrier Scheduling or Cross Cell Scheduling.
  • Self-scheduling is transmitted through a DL CC in which a PDCCH (DL Grant) and a PDSCH are transmitted in the same DL CC, or a PUSCH transmitted according to a PDCCH (UL Grant) transmitted in a DL CC is linked to a DL CC in which a UL Grant has been received. It means to be.
  • a DL CC in which a PDCCH (DL Grant) and a PDSCH are transmitted to different DL CCs or a UL CC in which a PUSCH transmitted according to a PDCCH (UL Grant) transmitted in a DL CC is linked to a DL CC having received an UL grant This means that it is transmitted through other UL CC.
  • Whether to perform cross-carrier scheduling may be activated or deactivated UE-specifically and may be known for each UE semi-statically through higher layer signaling (eg, RRC signaling).
  • higher layer signaling eg, RRC signaling
  • a carrier indicator field (CIF: Carrier Indicator Field) indicating a PDSCH / PUSCH indicated by the corresponding PDCCH is transmitted to the PDCCH.
  • the PDCCH may allocate PDSCH resource or PUSCH resource to one of a plurality of component carriers using CIF. That is, when the PDCCH on the DL CC allocates PDSCH or PUSCH resources to one of the multi-aggregated DL / UL CC, CIF is set.
  • the DCI format of LTE Release-8 may be extended according to CIF.
  • the set CIF may be fixed as a 3 bit field or the position of the set CIF may be fixed regardless of the DCI format size.
  • the PDCCH structure (same coding and resource mapping based on the same CCE) of LTE Release-8 may be reused.
  • the PDCCH on the DL CC allocates PDSCH resources on the same DL CC or PUSCH resources on a single linked UL CC, CIF is not configured.
  • the same PDCCH structure (same coding and resource mapping based on the same CCE) and DCI format as in LTE Release-8 may be used.
  • the UE When cross carrier scheduling is possible, the UE needs to monitor the PDCCHs for the plurality of DCIs in the control region of the monitoring CC according to the transmission mode and / or bandwidth for each CC. Therefore, it is necessary to configure the search space and PDCCH monitoring that can support this.
  • the terminal DL CC set represents a set of DL CCs scheduled for the terminal to receive a PDSCH
  • the terminal UL CC set represents a set of UL CCs scheduled for the terminal to transmit a PUSCH.
  • the PDCCH monitoring set represents a set of at least one DL CC that performs PDCCH monitoring.
  • the PDCCH monitoring set may be the same as the terminal DL CC set or may be a subset of the terminal DL CC set.
  • the PDCCH monitoring set may include at least one of DL CCs in the terminal DL CC set. Alternatively, the PDCCH monitoring set may be defined separately regardless of the UE DL CC set.
  • the DL CC included in the PDCCH monitoring set may be configured to always enable self-scheduling for the linked UL CC.
  • the UE DL CC set, the UE UL CC set, and the PDCCH monitoring set may be configured UE-specifically, UE group-specifically, or cell-specifically.
  • cross-carrier scheduling When cross-carrier scheduling is deactivated, it means that the PDCCH monitoring set is always the same as the UE DL CC set. In this case, an indication such as separate signaling for the PDCCH monitoring set is not necessary.
  • a PDCCH monitoring set is defined in the terminal DL CC set. That is, in order to schedule PDSCH or PUSCH for the UE, the base station transmits the PDCCH through only the PDCCH monitoring set.
  • FIG. 6 illustrates a subframe structure of an LTE-A system according to cross carrier scheduling used in embodiments of the present invention.
  • DL CC 'A' represents a case in which a PDCCH monitoring DL CC is configured.
  • each DL CC may transmit a PDCCH for scheduling its PDSCH without CIF.
  • the CIF is used through higher layer signaling, only one DL CC 'A' may transmit a PDCCH for scheduling its PDSCH or PDSCH of another CC using the CIF.
  • DL CCs 'B' and 'C' that are not configured as PDCCH monitoring DL CCs do not transmit the PDCCH.
  • the initial access procedure may consist of a cell search process, a system information acquisition process, and a random access procedure.
  • FIG. 7 is a diagram illustrating an example of an initial access procedure used in an LTE / LTE-A system.
  • the terminal may obtain downlink synchronization information by receiving synchronization signals (for example, primary synchronization signal (PSS) and secondary synchronization signal (SSS)) transmitted from the base station.
  • synchronization signals for example, primary synchronization signal (PSS) and secondary synchronization signal (SSS)
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the synchronization signals are transmitted twice every frame (10 ms units). That is, the synchronization signals are transmitted every 5 ms (S710).
  • the downlink synchronization information obtained in step S710 may include a physical cell identifier (PCID), downlink time and frequency synchronization, and cyclic prefix (CP) length information.
  • PCID physical cell identifier
  • CP cyclic prefix
  • the terminal receives a PBCH signal transmitted through a physical broadcast channel (PBCH).
  • PBCH physical broadcast channel
  • the PBCH signal is repeatedly transmitted four times in different scrambling sequences for four frames (that is, 40 ms) (S720).
  • the PBCH signal includes a master information block (MIB) as one of system information.
  • MIB master information block
  • One MIB has a total size of 24 bits, of which 14 bits represent physical HARQ indication channel (PHICH) configuration information, downlink cell bandwidth (dl-bandwidth) information, and a system frame number (SFN). Used to bet. The remaining 10 bits consist of extra bits.
  • PHICH physical HARQ indication channel
  • dl-bandwidth downlink cell bandwidth
  • SFN system frame number
  • the terminal may acquire the remaining system information by receiving different system information blocks (SIBs) transmitted from the base station.
  • SIBs are transmitted on the DL-SCH, and the presence or absence of the SIB is confirmed as a PDCCH signal masked with SI-RNTI (System Information Radio Network Temporary Identities) (S730).
  • SI-RNTI System Information Radio Network Temporary Identities
  • the system information block type 1 (SIB1) of the SIBs includes parameters necessary for determining whether a corresponding cell is a cell suitable for cell selection and information on time axis scheduling for other SIBs.
  • the system information block type 2 (SIB2) includes common channel information and shared channel information.
  • SIB3 to SIB8 include information on cell reselection, inter-frequency, intra-frequency, and the like.
  • SIB9 is used to convey the name of the Home eNodeB (HeNB), and SIB10-SIB12 is the Earthquake and Tsunami Warning Service (ETWS) Notification and Disaster Warning System (CMAS). Contains a warning message.
  • SIB13 includes MBMS related control information.
  • the terminal may perform a random access procedure when performing steps S710 to S730.
  • the UE may acquire parameters for transmitting a Physical Random Access Channel (PRACH) signal. Therefore, the terminal may perform a random access procedure with the base station by generating and transmitting a PRACH signal using the parameters included in the SIB2 (S740).
  • PRACH Physical Random Access Channel
  • PBCH Physical Broadcast Channel
  • PBCH is used for MIB transmission.
  • a method of configuring a PBCH will be described.
  • Bit block ( ) Is a scrambled bit block (scrambled with a cell-specific sequence before modulation) Is calculated.
  • M bit means the number of bits transmitted on the PBCH, 1920 bits for the normal cyclic prefix, 1728 bits are used for the extended cyclic prefix.
  • Equation 1 shows one of methods of scrambling a bit block.
  • Equation 1 c (i) represents a scrambling sequence.
  • Block of scrambled bits Is modulated to yield complex value modulation symbol blocks d (0), ..., d (M symb -1).
  • a modulation scheme applicable to the physical broadcast channel is quadrature phase shift keying (QPSK).
  • Resource element indices are given by Equation 2 below.
  • Resource elements for reference signals are excluded from the mapping.
  • the mapping operation assumes that there are cell specific reference signals for antenna ports 0-3 regardless of the actual configuration.
  • the UE assumes that reference signals are reserved, but resource elements that are not used for transmission of the reference signal are not available for PDSCH transmission. The terminal makes no other assumptions about these resource elements.
  • MIB is system information transmitted through the PBCH.
  • the MIB includes system information transmitted through the BCH.
  • Signaling radio bearer is not applied to MIB, RLC-SAP (Radio Link Control-Service Access Point) is TM (Transparent Mode), logical channel is BCCH (Broadcast Control Channel), and is transmitted from E-UTRAN to UE .
  • Table 2 below shows an example of the MIB format.
  • the MIB includes a downlink bandwidth (dl-Bandwidth) parameter, a PHICH-Config parameter, a system frame number parameter, and an extra bit.
  • the downlink bandwidth parameter represents 16 different transmission bandwidth configurations (N RB ). For example, n6 corresponds to 6 resource blocks and n15 corresponds to 15 resource blocks.
  • the PHICH configuration parameter indicates a PHICH configuration required for receiving a control signal on a PDCCH necessary for receiving a DL-SCH.
  • the system frame number (SFN) parameter defines the most significant (MSB) eight bits of the SFN. At this time, the least significant 2 bits of the SFN are obtained indirectly through decoding of the PBCH. For example, the 40 ms timing of the PBCH TTI may indicate 2 bits of LSB. This will be described in detail with reference to FIG. 8.
  • FIG. 8 is a diagram illustrating one method of transmitting a broadcast channel signal.
  • the MIB transmitted through BCCH which is a logical channel
  • BCH which is a transport channel
  • the MIB is mapped to the transport block
  • the CRC is added to the MIB transport block, and is transferred to the physical channel PBCH through channel coding and rate matching.
  • the MIB is mapped to the resource element RE through scrambling, modulation, layer mapping, and precoding. That is, the same PBCH signal is scrambled with different scrambling sequences for 40 ms period (ie, 4 frames) and then transmitted.
  • the UE may detect one PBCH for 40 ms through blind decoding, and may estimate the remaining 2 bits of the SFN through this.
  • the LSB of the SFN is set to '00'; if it is transmitted in the second radio frame, the LSB is set to '01' and the third radio
  • the LSB may be set to '10', and when transmitted in the last radio frame, the LSB may mean '11'.
  • the PBCH may be allocated to 72 subcarriers in the middle of the first four OFDM symbols of the second slot (slot # 1) of the first subframe (subframe # 0) of each frame.
  • the subcarrier region to which the PBCH is allocated is always 72 subcarrier regions in the middle regardless of the cell bandwidth. This is to enable the UE to detect the PBCH even if the UE does not know the size of the downlink cell bandwidth.
  • the primary synchronization channel (PSC) to which the primary synchronization signal (PSS) is transmitted has a TTI of 5 ms and is applied to the last symbol of the first slot (slot # 0) of subframes # 0 and # 5 in each frame. Is assigned.
  • the Secondary Synchronization Channel (SSC) through which the secondary synchronization signal (SSS) is transmitted has a TTI of 5 ms and is allocated to the second symbol (ie, the symbol immediately before the PSS) at the end of the same slot.
  • the PSC and the SSC always occupy the middle 72 subcarriers regardless of the cell bandwidth and are allocated to the 62 subcarriers.
  • CoMP transmission may be implemented using a carrier aggregation (CA) function in LTE.
  • CA carrier aggregation
  • a carrier operating as a PCell and a carrier operating as an SCell may use the same frequency band as the frequency axis, and are allocated to two geographically separated eNBs.
  • the serving eNB of the UE1 may be allocated to the Pcell, and the neighboring cell which gives a lot of interference may be allocated to the Scell. That is, the base station of the P cell and the base station of the S cell may perform various DL / UL CoMP operations such as joint transmission (JT), CS / CB, and dynamic cell selection with respect to one UE.
  • FIG. 9 shows an example of combining cells managed by two eNBs for one UE (e.g. UE1) as a Pcell and an Scell, respectively.
  • one UE e.g. UE1
  • three or more cells may be combined.
  • some of the three or more cells may be configured to perform a CoMP operation on one terminal in the same frequency band, and other cells to perform a simple CA operation in another frequency band.
  • the Pcell does not necessarily participate in CoMP operation.
  • FIG. 10 is a diagram illustrating an example of a subframe to which a cell specific reference signal (CRS) is allocated, which can be used in embodiments of the present invention.
  • CRS cell specific reference signal
  • CRS 10 shows an allocation structure of a CRS when a system supports four antennas.
  • CRS is used for decoding and channel state measurement. Accordingly, the CRS is transmitted over the entire downlink bandwidth in all downlink subframes in a cell supporting PDSCH transmission, and is transmitted in all antenna ports configured in the eNB.
  • the CRS sequence is mapped to complex-valued modulation symbols used as reference symbols for antenna port p in slot n s .
  • the UE can measure the CSI using the CRS, and can decode the downlink data signal received through the PDSCH in a subframe including the CRS using the CRS. That is, the eNB transmits the CRS at a predetermined position in each RB in all RBs, and the UE detects the PDSCH after performing channel estimation based on the CRS. For example, the UE measures the signal received at the CRS RE. The UE may detect the PDSCH signal from the PD to which the PDSCH is mapped by using a ratio of the reception energy for each CRS RE to the reception energy for each RE to which the PDSCH is mapped.
  • the 3GPP LTE-A system further defines a UE-specific RS (hereinafter, UE-RS) and a channel state information reference signal (CSI-RS) in addition to the CRS.
  • UE-RS is used for demodulation and CSI-RS is used to derive channel state information.
  • UE-RS and CRS are used for demodulation, they can be referred to as demodulation RS in terms of use. That is, the UE-RS may be regarded as a kind of DM-RS (DeModulation Reference Signal).
  • DM-RS Demodulation Reference Signal
  • the CSI-RS and the CRS are used for channel measurement or channel estimation, the CSI-RS and CRS may be referred to as RS for channel state measurement in terms of use.
  • FIG. 11 is a diagram illustrating an example of subframes in which CSI-RSs that can be used in embodiments of the present invention are allocated according to the number of antenna ports.
  • the CSI-RS is a downlink reference signal introduced in the 3GPP LTE-A system not for demodulation purposes but for measuring a state of a wireless channel.
  • the 3GPP LTE-A system defines a plurality of CSI-RS settings for CSI-RS transmission. In subframes in which CSI-RS transmission is configured, the CSI-RS sequence is mapped according to complex modulation symbols used as reference symbols on antenna port p.
  • FIG. 11 (a) shows 20 CSI-RS configurations 0 to 19 available for CSI-RS transmission by two CSI-RS ports among CSI-RS configurations
  • FIG. 11 (b) shows CSI-RS configurations. Of the configurations, 10 CSI-RS configurations available through four CSI-RS ports 0 through 9 are shown, and FIG. 11 (c) shows 5 available by eight CSI-RS ports among the CSI-RS configurations. Branch CSI-RS configuration 0-4 are shown.
  • the CSI-RS port means an antenna port configured for CSI-RS transmission. Since the CSI-RS configuration varies depending on the number of CSI-RS ports, even if the CSI-RS configuration numbers are the same, different CSI-RS configurations are obtained when the number of antenna ports configured for CSI-RS transmission is different.
  • the CSI-RS is configured to be transmitted every predetermined transmission period corresponding to a plurality of subframes. Therefore, the CSI-RS configuration depends not only on the positions of REs occupied by the CSI-RS in a resource block pair but also on the subframe in which the CSI-RS is configured.
  • the CSI-RS configuration may be regarded as different. For example, if the CSI-RS transmission period (T CSI-RS ) is different or the start subframe ( ⁇ CSI-RS ) configured for CSI-RS transmission in one radio frame is different, the CSI-RS configuration may be different.
  • the CSI-RS configuration depends on (1) the CSI-RS configuration to which the CSI-RS configuration number is assigned, and (2) the CSI-RS configuration number, the number of CSI-RS ports, and / or subframes in which the CSI-RS is configured.
  • the configuration of the latter 2 is called a CSI-RS resource configuration.
  • the setting of the former 1 is also referred to as CSI-RS configuration or CSI-RS pattern.
  • eNB informs UE of CSI-RS resource configuration
  • the number of antenna ports, CSI-RS pattern, CSI-RS subframe configuration I CSI-RS , CSI used for transmission of CSI-RSs UE assumption on reference PDSCH transmitted power for feedback (CSI) can be informed about P c , zero power CSI-RS configuration list, zero power CSI-RS subframe configuration, etc. .
  • I CSI-RS is information for specifying the subframe configuration period T CSI-RS and subframe offset ⁇ CSI-RS for the presence of CSI-RSs .
  • Table 3 illustrates CSI-RS subframe configuration index I CSI-RS according to T CSI-RS and ⁇ CSI-RS .
  • CSI-RS-SubframeConfig I CSI-RS CSI-RS periodicity T CSI-RS (subframes) CSI-RS subframe offset ⁇ CSI-RS (subframes) 0-4 5 I CSI-RS 5-14 10 I CSI-RS -5 15-34 20 I CSI-RS -15 35-74 40 I CSI-RS -35 75-154 80 I CSI-RS -75
  • subframes satisfying Equation 3 below are subframes including the CSI-RS.
  • UE set to a transmission mode defined after 3GPP LTE-A system performs channel measurement using CSI-RS and PDSCH using UE-RS Can be decoded.
  • UE set to a transmission mode defined after 3GPP LTE-A system performs channel measurement using CSI-RS and PDSCH using UE-RS Can be decoded.
  • a cross carrier scheduling (CCS) operation in a combined situation for a plurality of component carrier (CC) cells
  • CC cross carrier scheduling
  • the scheduled CC may be preset to receive DL / UL scheduling only from another scheduling CC (ie, to receive a DL / UL grant PDCCH for the scheduled CC).
  • the scheduling CC may basically perform DL / UL scheduling on itself.
  • the number of OFDM symbols used for transmission of control channels in each subframe may be delivered to the UE dynamically through a physical channel such as PCFICH or in a semi-static manner through RRC signaling.
  • the PDCCH which is a physical channel for transmitting DL / UL scheduling and various control information, has a limitation such as being transmitted through limited OFDM symbols.
  • the PDCCH is transmitted through an OFDM symbol separate from the PDSCH, such as a PDCCH.
  • An extended PDCCH ie E-PDCCH
  • FIG. 12 is a diagram illustrating an example in which legacy PDCCH, PDSCH, and E-PDCCH used in an LTE / LTE-A system are multiplexed.
  • the payload of the PBCH consists of downlink system bandwidth, PHICH configuration information, and system frame number (SFN) information.
  • the payload of the PBCH is added to the payload to perform 1/3 tail-biting convolutional coding.
  • the PBCH is transmitted in four radio frame units (40 ms units). That is, the PBCH is transmitted through four OFDM symbols of the second slot of subframe # 0 of radio frame # 0.
  • the bits of the encoded PBCH transmitted at each instant of PBCH transmission are 480 bits, so that a total of 1920 bits of encoded bits can be transmitted four times.
  • PBCH (0), the PBCH (1), the PBCH (2), and the PBCH (3) having a size of 480 bits are concatenated with the entire PBCH encoded bit of 1920 bits.
  • PBCH (k mod 4) is a 480 bit sized PBCH encoded bit transmitted in radio frame #k.
  • An input of a polar encoder is divided into a bit channel to which information data is mapped and a bit channel that is not.
  • the input bit channel may be divided into a noise free channel and a noise channel. Therefore, when information is allocated to the noise free bit channel, channel capacity can be obtained.
  • a bit channel for allocating data bits is referred to as a “good bit channel” in the present invention. Accordingly, a good bit channel may correspond to an input bit channel to which data bits are mapped.
  • the bit channel to which data is not mapped is referred to as a frozen bit channel, and the frozen bit channel is generally set to 0 (any value known to the transmitter / receiver end), and encoding is performed.
  • information on a good bit channel obtained during polar encoding may be utilized. That is, the codeword bit position corresponding to the input bit position not allocated to the information bit can be punctured.
  • the polar code is known as a code for obtaining channel capacity in a binary-input discrete memoryless channel (B-DMC). That is, if the size N of the code block (CB) is infinitely large, the channel capacity can be obtained.
  • the encoder of the polar code is composed of two processes, channel combining and channel channel splitting.
  • FIG. 13 is a diagram illustrating first level channel combining for polar coding.
  • Channel combining is a process of determining the size of a code block by connecting B-DMC channels in parallel.
  • FIG. 13 is a diagram illustrating a combination of two B-DMC channels, W and two.
  • u 1 and u 2 are binary-input source bits and y 1 and y 2 are output coded bits. In this case, it is assumed that the entire equivalent channel is W 2 .
  • each channel can be represented in a recursive form. In other words, With respect to the generator matrix G N , where G N can be expressed as Equation 4 below.
  • Equation 4 RN represents a bit-reversal interleaver, and input Output for Is to be mapped. Meanwhile, the bit-reversal interleaver may not be included in the transmitter. This relationship is shown in FIG. Code block size, N is limited to 2 n (n is a natural number).
  • FIG. 14 is a diagram illustrating N-th level channel combining for polar code.
  • channel splitting The process of defining an equivalent channel for a specific input after combining N B-DMC channels is called channel splitting. This may be expressed as a channel transition probability as shown in Equation 5 below.
  • theorem After channel combining and channel splitting, the theorem can be obtained as shown in Table 4 below.
  • the equivalent channel for a specific input bit becomes a noisy channel or is divided into a noise free channel.
  • the equivalent channel capacity for a particular input bit is divided into 0 or I (W) (capacity of channel W).
  • Such a decoding method of the polar code is a successive cancellation (SC) decoding method.
  • SC decoding method calculates channel transition probability and calculates likelihood ratio (LLR) for input bit.
  • the channel transition probability may be calculated in a repetitive form by using a characteristic in which the channel combining and channel splitting processes are recursive.
  • the LLR value can be calculated in an iterative form.
  • the channel transition probability for input bit, u i Can be obtained as Is divided into odd index and even index, It can be expressed as In this case, the channel transition probability may be expressed as in Equations 6 and 7 below.
  • the complexity of the polar encoder and the SC decoder depends on the code block length N, which is known to have a complexity of O (NlogN).
  • N the code block length
  • the coding rate is N / K.
  • the encoded bit is Can be expressed as Among K bits, the payload bit corresponds to a payload bit, and a row index of G N corresponding to the payload bit is assumed to be I, and a row index of G N corresponding to the remaining NK bits is assumed to be F.
  • the minimum distance for this polar code is Can be given together.
  • Table 5 below describes a description of initial access in the NR system.
  • NR synchronization signal is based on CP-OFDM.
  • NR defines at least two types of synchronization signals; NR-PSS and NR-SSS.
  • NR-PSS is defined at least for initial symbol boundary synchronization to the NR cell.
  • NR-SSS is defined for detection of NR cell ID or at least part of NR cell ID. The number of NR cell IDs is targeted to be approximately 1000.
  • NR-SSS detection is based on the fixed time / frequency relationship with NR-PSS resource position irrespective of duplex mode and beam operation type at least within a given frequency range and CP overhead . At least, normal CP is supported for NR-PSS / SSS.
  • the raster for NR synchronization signals can be different per frequency range.
  • the NR synchronization signals raster can be larger than the 100 kHz raster of LTE.
  • the synchronization signal bandwidth is the same as the minimum system bandwidth for a given frequency band which UE searches, synchronization signal frequency raster is the same as the channel raster.
  • minimum carrier bandwidth for NR can be either 5 or 10 MHz and is frequency band dependent.
  • minimum carrier bandwidth for 6 GHz to 52.6 GHz minimum carrier bandwidth for NR can be either 40 or 80 MHz and is frequency band dependent.
  • At least one broadcast channel (NR-PBCH) is defined.
  • NR-PBCH decoding is based on the fixed relationship with NR-PSS and / or NR-SSS resource position irrespective of duplex mode and beam operation type at least within a given frequency range and CP overhead.
  • NR-PBCH is a non-scheduled broadcast channel carrying at least a part of minimum system information with fixed payload size and periodicity predefined in the specification depending on carrier frequency range.
  • time division multiplexing of NR -PSS, NR-SSS, and NR-PBCH is supported.
  • NR-PSS, NR-SSS and / or NR-PBCH can be transmitted within an SS block.
  • an synchronization signal (SS) block corresponds to N OFDM symbols based on the default subcarrier spacing, and N is a constant.
  • the signal multiplexing structure is fixed in a specification.
  • UE shall be able to identify at least OFDM symbol index, slot index in a radio frame and radio frame number from an SS block.
  • One or multiple SS block (s) compose an SS burst.
  • One or multiple SS burst (s) further compose an SS burst set where the number of SS bursts within a SS burst set is finite.
  • at least one periodicity of SS burst set is supported.
  • SS burst set transmission is periodic and UE may assume that a given SS block is repeated with a SS burst set periodicity.
  • NR-PBCH contents in a given repeated SS block may change.
  • a single set of possible SS block time locations is specified per frequency band.
  • the maximum number of SS-blocks within SS burst set may be carrier frequency dependent.
  • the position (s) of actual transmitted SS-blocks can be informed for helping CONNECTED / IDLE mode measurement, for helping CONNECTED mode UE to receive DL data / control in unused SS-blocks and potentially for helping IDLE mode UE to receive DL data / control in unused SS-blocks.
  • the UE may neither assume the gNB transmits the same number of physical beam (s), nor the same physical beam (s) across different SS-blocks within an SS burst set.
  • UE may assume default SS burst set periodicity which may be frequency band-dependent. At least for multi-beams case, at least the time index of SS-block is indicated to the UE.
  • Table 6 below describes a cell search (initial access) in the NR system.
  • Cell search is the procedure by which a UE acquires time and frequency synchronization with a cell and detects the physical layer Cell ID of that cell.
  • a UE receives the following synchronization signals (SS) in order to perform cell search: the primary synchronization signal (PSS) and secondary synchronization signal (SSS) as defined in 3GPP TS 38.211 [3].
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • a UE shall assume that reception occasions of a physical broadcast channel (PBCH), PSS, and SSS coexist, as defined in 3GPP TS 38.211 [3], and form a SS / PBCH block.
  • PBCH physical broadcast channel
  • PSS PSS
  • SSS secondary synchronization signal
  • the UE shall assume a maximum of 8 SS / PBCH blocks per half frame.
  • the UE shall assume a maximum of 64 SS / PBCH blocks per half frame.
  • the number and first OFDM symbol indexes for candidate SS / PBCH blocks are as follows.
  • KHz sub-carrier spacing 2 candidate SS / PBCH blocks with respective first OFDM symbol indexes of 2 and 8.-30 KHz sub-carrier spacing: 4 candidate SS / PBCH blocks with respective first OFDM symbol indexes of 4, 8, 16, and 20.- 30 KHz sub-carrier spacing: 4 candidate SS / PBCH blocks with respective first OFDM symbol indexes of 2, 8, 16, and 22.- 120 KHz sub-carrier spacing: 4 candidate SS / PBCH blocks with respective first OFDM symbol indexes of 4, 8, 16, and 20.- 240 KHz sub-carrier spacing: 8 candidate SS / PBCH blocks with respective first OFDM symbol indexes of 8, 12, 16, 20, 33, 37, 41, and 45.
  • 2 SS / PBCH blocks are located in each of the first and second consecutive and non-overlapping blocks of 14 OFDM symbols per half frame.
  • 2 SS / PBCH blocks are located in each of the first, second, third, and fourth consecutive and non-overlapping blocks of 14 OFDM symbols per half frame.
  • subcarrier spacing of 120 KHz and 64 SS / PBCH blocks per half frame 2 SS / PBCH blocks are located in each consecutive and non-overlapping blocks of 14 OFDM symbols per half frame except for the 5th, 10th, 15th, 20th, 25th, 30th, 35th, and 40th blocks.
  • 4 SS / PBCH blocks are located in each consecutive non-overlapping blocks of 28 OFDM symbols in the first half of the half frame except for the 5th, 10th, 15th, and 20th blocks.
  • SS / PBCH blocks in a half frame are indexed [in an ascending order in time].
  • a UE shall determine the 3 [LSB] bits of a SS / PBCH block index per half frame from the sequence of the DMRS transmitted in the PBCH.
  • a UE can be configured [per serving cell] by higher layer parameter blocks_period a periodicity of the half frames for receptions of SS / PBCH blocks per serving cell. If the UE is not configured a periodicity of the half frames for receptions of SS / PBCH blocks, the UE shall assume a periodicity of half frame. For initial cell search, a UE may assume that half frames with SS / PBCH blocks occur with a periodicity of 2 frames
  • the UE When the UE performs initial access to a specific cell, the UE receives a master information block for the corresponding cell through a physical broadcast channel (PBCH) from an eNodeB that operates / controls the cell. And SIB (System Information Block) information and RRC (radio resource control) parameters through PDSCH.
  • PBCH physical broadcast channel
  • SIB System Information Block
  • RRC radio resource control
  • the PBCH payload size is assumed to be 30 bits or 40 bits.
  • a PBCH transmission scheme is proposed assuming a 30 bits payload size.
  • the polar encoder punctures 128 bits of the encoded 2048 bits to generate 1920 bits.
  • the polar encoder divides the generated 1920 bit into four equal parts and transmits 480 bits to the corresponding subframe. In this case, it is preferable that the 480 bit blocks transmitted in each subframe are not identical blocks.
  • 64 bits of the encoded 1024 bits are punctured to generate 960 bits, and 960 bits are repeatedly generated to generate 1920 bits.
  • the polar encoder generates 896 bits by puncturing 128 bits of the encoded 1024 bits, and generates 1920 bits by concatenating 1024 bits and 896 bits.
  • the polar encoder divides the generated 1920 bit into four equal parts and transmits 480 bits to the corresponding subframe.
  • the polar encoder generates 480 bits by puncturing 32 bits among the encoded 512 bits, and generates 1920 bits by repeating 480 bits four times.
  • PBCH_sub (k) can be configured to be the same.
  • the polar encoder generates 448 bits by puncturing 64 bits of the encoded 512 bits, generates 960 bits by concatenating 512 bits and 448 bits, and generates 1920 bits by repeating this once.
  • the polar encoder divides the generated 1920 bit into four equal parts and transmits 480 bits to the corresponding subframe.
  • the polar encoder generates 384 bits by puncturing 128 bits of the encoded 512 bits, and generates 1920 bits by concatenating 1536 bits and 384 bits that are repeated 512 bits three times.
  • the polar encoder divides the generated 1920 bit into four equal parts and transmits 480 bits to the corresponding subframe.
  • the polar encoder generates 240 bits by puncturing 16 bits of the encoded 256 bits, and generates 1920 bits by repeating 240 bits eight times.
  • 224 bits are generated by puncturing 32 bits from the encoded 256 bits
  • 480 bits are generated by concatenating 256 bits and 224 bits, and then, 1920 bits are generated by repeating 4 times.
  • the polar encoder generates 128 bits by puncturing 128 bits among the encoded 256 bits, and generates 1920 bits by concatenating 128 bits and 1792 bits which are repeated 256 times seven times.
  • the polar encoder divides the generated 1920 bit into four equal parts and transmits 480 bits to the corresponding subframe.
  • the polar encoder generates 120 bits by puncturing 8 bits of the encoded 120 bits, and generates 1920 bits by repeating 120 bits 16 times.
  • the polar encoder generates 112 bits by puncturing 16 bits among the encoded 128 bits, generates 240 bits by concatenating 128 bits and 112 bits, and generates 1920 bits by repeating eight times.
  • the polar encoder divides the generated 1920 bit into four equal parts and transmits 480 bits to the corresponding subframe.
  • PBCH (PBCH_sub (k)) transmitted in subframe k may be generated and transmitted to be identical to each OFDM symbol.
  • the information size is 64
  • 768 bits are transmitted in each PBCH_sub (k)
  • 384 bits are transmitted in each of two OFDM symbols.
  • the communication device may generate 384 bits by puncturing 128 bits from 512 bits, and then transmit them in each OFDM symbol.
  • PBCH_sub (k + 1) transmits 768 bits.
  • the communication device can generate and transmit 768 bits by selecting and concatenating 512 bits and 256 bits that were not selected at the time of generating the PBCH_sub (k).
  • PBCH_sub (k) is the same, and PBCH_sub (k_m) is the same PBCH transmission scheme.
  • PBCH_sub (k) is the same, PBCH_sub (k_m) is not the same PBCH transmission scheme.
  • PBCH_sub (k) is not the same at least two or more, PBCH_sub (k_m) is the same PBCH transmission scheme.
  • PBCH_sub (k) is at least two or more identical, and PBCH_sub (k_m) is not the same PBCH transmission scheme.
  • 15 is a view comparing the performance according to the method 1 to method 5.
  • Method 2 is more advantageous to method 1 in terms of decoder complexity because the mother code size of the polar encoder is small. Therefore, a method of transmitting a PBCH like method 1 may be advantageous in terms of performance and complexity.
  • 16 is a diagram illustrating a transmission method of a synchronization signal in an NR (New RAT) system.
  • a PBCH may be transmitted in an SS block within a SS (Synchronization Signal or Synchronization Sequence) burst.
  • SS Synchronization Signal or Synchronization Sequence
  • a plurality of SS blocks may exist in the SS burst, and each SS block may be limited to a specific beam.
  • the UE should detect information (eg, SS block index) on which SS block in the PBCH belongs to the SS burst.
  • the base station may indicate the SS block index to the terminal to enable the terminal to receive the PBCH.
  • the method of indicating the SS block index is as follows.
  • the base station may map the information corresponding to the SS block index and the scrambling sequence to scramble the PBCH encoded bit and transmit the same.
  • the UE After descrambling using a scrambling sequence generated by assuming a specific SS block index on the received PBCH, the UE performs PBCH decoding to check whether there is an error using the CRC. If an error occurs, the UE may determine whether the error is performed by descrambling again after descrambling with a scrambling sequence assuming a different SS block index. This operation performs decoding after descrambling with a scrambling sequence for all SS block indexes, and continues until no error occurs.
  • the terminal descrambles, the terminal may be combined because the information data of the signal transmitted to the SS block corresponds to the encoded bit in the same case.
  • the base station performs polar encoding on the information corresponding to the SS block index and other PBCH information.
  • the terminal may perform decoding including combining through the following operation. It is assumed that the CRC is included in polar encoding of the PBCH.
  • Step 1 Assuming that the SS block index and / or CRC (generated using only the SS block index) are information bits, polar encoding may be performed.
  • Step 2 The terminal performs an XOR operation on the encoded bit generated in Step 1 and the received encoded bit. Assuming a bipolar signal, if the encoded bit generated in step 1 and the received signal have the same sign, only the sign of the received encoded bit is changed to negative, and if it is not the same sign, only the sign of the received signal is changed to positive. When the XOR operation is performed, the influence of the encoded bit due to the SS block index is eliminated, so that the UE may acquire the remaining information bits except the SS block index through decoding.
  • Step 3 The terminal may perform polar decoding on the signal obtained after performing the operation in Step 2. After the terminal decodes, the terminal checks the error using the CRC.
  • Step 4 If no error occurs, it is assumed that the UE successfully performs PBCH decoding, and when an error occurs, the following operation may be considered.
  • Step 4-1 The UE assumes another SS block index and repeats the operation from step 1.
  • Step 4-2 The UE assumes a different SS block index and repeats from step 1, but performs decoding after combining with the received signal obtained after performing step 2 operation on the previous SS block index before performing decoding of Step 3. Can be done.
  • SS block index information may be located at an information bit location that is less reliable than other PBCH information, and may be subjected to polar encoding. Since the received signal obtained in step 3 of the method 9 is in a state in which the information on the SS block index has been removed, the terminal may decode the corresponding information as it is known when decoding. Therefore, if other PBCH information bits are sequentially arranged from a bit position having good reliability, and SS block index information is arranged, optimal performance can be obtained. In fact, the UE assumes the information about the SS block index in step 2, and may perform decoding by considering the information already known at the time of decoding in step 3.
  • a transmission scheme may vary according to frequency band and subcarrier spacing. For example, it is possible to have 4 PBCH transmission opportunities in the frequency band below 3 GHz, 8 PBCH transmission opportunities in the frequency band between 3 GHz and 6 GHz, and 64 PBCH transmissions in the frequency band above 6 GHz. You may have a transmission opportunity. In the case of having four transmission opportunities, the above-described transmission schemes from Method 1 to Method 7 may be adopted. If there are eight transmission opportunities, the following method may be considered.
  • Method 10-2 is a method of transmitting PBCH coded bits by repeating PBCH_sub (k) twice in succession. That is, PBCH_sub (1), PBCH_sub (1), PBCH_sub (2), PBCH_sub (2), PBCH_sub (3), PBCH_sub (3), PBCH_sub (4), and PBCH_sub (4) in this order.
  • the base station may repeatedly transmit PBCH_sub (1), PBCH_sub (2), PBCH_sub (3), and PBCH_sub (4) 16 times in succession so that the PBCH coded bit is transmitted.
  • the base station may include PBCH_sub (1),... , PBCH_sub (1), PBCH_sub (2),... , PBCH_sub (2), PBCH_sub (3),... ..., PBCH_sub (3), PBCH_sub (4),... .., PBCH_sub (4) in order.
  • the base station may repeatedly transmit PBCH_sub (1), PBCH_sub (2), PBCH_sub (3), and PBCH_sub (4) eight times in succession, and then transmit the PBCH coded bit again in the same order.
  • the base station may include PBCH_sub (1),... , PBCH_sub (1), PBCH_sub (2),... , PBCH_sub (2), PBCH_sub (3),... ..., PBCH_sub (3), PBCH_sub (4),... After transmitting in the order of .PBCH_sub (4), it can be repeatedly transmitted in the same order.
  • the base station may repeatedly transmit the PBCH_sub (1), the PBCH_sub (2), the PBCH_sub (3), and the PBCH_sub (4) four times in succession and transmit the PBCH coded bit three times in the same order.
  • the base station may include PBCH_sub (1),... , PBCH_sub (1), PBCH_sub (2),... , PBCH_sub (2), PBCH_sub (3),... ..., PBCH_sub (3), PBCH_sub (4),...
  • PBCH_sub (4) may be transmitted in order and then repeated three times in the same order.
  • the base station may repeatedly transmit PBCH_sub (1), PBCH_sub (2), PBCH_sub (3), and PBCH_sub (4) two times in succession to transmit the PBCH coded bit, and then may transmit the same again seven times.
  • the base station may include PBCH_sub (1),... , PBCH_sub (1), PBCH_sub (2),... , PBCH_sub (2), PBCH_sub (3),... ..., PBCH_sub (3), PBCH_sub (4),... After transmitting in the order of PBCH_sub (4), it can be transmitted seven times in the same order.
  • the base station transmits all of PBCH_sub (1), PBCH_sub (2), PBCH_sub (3), and PBCH_sub (4) in that order, and then transmits 15 more times in the same order.
  • the base station is 16 times in the order of PBCH_sub (1), PBCH_sub (2), PBCH_sub (3), PBCH_sub (4), PBCH_sub (1), PBCH_sub (2), PBCH_sub (3), and PBCH_sub (4).
  • a resource element (RE) that can be transmitted in one SS / PBCH block is 48 bits for the PBCH information block size (including the CRC length), 1/8 for the mother code rate of the polar code, and 512 for the mother code size of the polar code.
  • the base station can transmit 768 bits in one SS / PBCH block.
  • 768 bits can be transmitted at one PBCH transmission time point, 768 bits can be generated as shown in FIG.
  • FIGS. 18A, 18B, and 18C illustrate embodiments of the PBCH transmission scheme when eight transmission opportunities are present. Drawing.
  • cells divided into hatched shapes represent portions of coded bits having a length of 128 bits
  • polar encoders are limited in size to 2 n (n is a natural number) of encoded code blocks, a rate matching operation of puncturing or repetition is required according to the transmission numerology of the system. It is assumed that the size of an encoded codeword for a data payload (including CRC) generated in an upper layer satisfies a relationship of 2 n ⁇ N ⁇ 2 n + 1 . The same method may be applied to payloads (eg, DCI and UCI) transmitted through the control channel as well as upper layer data.
  • payloads eg, DCI and UCI
  • the threshold value (THR1) of the code word if the size is larger than that value, 2 n + 1 the size of the mother polar after performing the encoding by encoder, 2 n + 1 bit as the code -N through the punctured Create a column of encoded bits of word size N.
  • the data payload size K > 2 n .
  • THR2 encoding is performed by a mother polar encoder having a size of 2 n , and then repeated by N-2 n bits to obtain an encoded code block size N. Create a column of encoded bits.
  • THR1 and THR2 may have different values.
  • threshold values such as THR1 / THR2 may be different values depending on n.
  • the polar encoder repeats from the polar code of length 128 or punctures from the polar code of length 256 to codeword 200 of length. Can be generated.
  • the polar encoder may generate a codeword having a length of 200 by puncturing from a polar code having a length of 256.
  • the polar encoder when n ⁇ nc, the polar encoder always generates codewords by puncturing from 2 n + 1 mother codes, and when n> nc, puncturing or puncturing according to thresholds such as THR1 / THR2 above. Iterations may be used to generate codewords.
  • FIG. 19 is a means by which the methods described in FIGS. 1 to 18 may be implemented.
  • the terminal may operate as a transmitting side in the uplink and may operate as a receiving side in the downlink.
  • the base station may operate as the receiving side in the uplink, and may operate as the transmitting side in the downlink.
  • the terminal and the base station may include transmitters 1540 and 1550 and receivers 1550 and 1570, respectively, to control the transmission and reception of information, data and / or messages, and transmit and receive information, data and / or messages.
  • antennas 1500 and 1510 for the purpose of implementation.
  • the terminal and the base station may each include a processor 1520 and 1530 for performing and controlling the above-described embodiments of the present invention, and memories 1580 and 1590 that can temporarily or continuously store processing of the processor. Can be.
  • the processors 1520 and 1530 may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and to perform the present invention.
  • the firmware or software configured to be may be provided in the processors 1520 and 1530 or may be stored in the memories 1580 and 1590 to be driven by the processors 1520 and 1530.
  • the processor 1520 of the terminal and the processor 1530 of the base station perform an operation of processing signals and data, except for a function of receiving or transmitting a signal and a storage function of the terminal and the base station, respectively.
  • the processor 1520 and 1530 are not specifically mentioned.
  • a series of operations such as a function of receiving or transmitting a signal and a data processing other than a storage function are performed.
  • a method for PBCH encoding and transmission and a communication device for the same can be industrially used in various wireless communication systems such as 3GPP LTE / LTE-A system and 5G communication system.

Abstract

기지국이 물리 방송 채널(Physcial Broadcast CHannel, PBCH)를 전송하는 방법은, 폴라 코드(pola code)를 이용하여 PBCH 전송을 위한 소정 서브프레임의 2개의 심볼 각각에 대해 동일한 인코딩된 데이터 비트를 생성하는 단계; 및 상기 생성된 동일한 인코딩된 데이터 비트를 상기 소정 서브프레임의 2개의 심볼 각각에서 상기 PBCH를 통해 전송하는 단계를 포함할 수 있다.

Description

PBCH 인코딩 및 전송을 위한 방법과 이를 위한 통신 장치
본 발명은 무선통신에 관한 것으로, 보다 상세하게는 PBCH 인코딩 및 전송을 위한 방법과 이를 위한 통신 장치에 관한 것이다
차세대 5G 시스템에서는 Massive Connection/Low cost/Low power Service를 target으로 작은 패킷을 간헐적으로 전송하는 Wireless Sensor Network (WSN), Massive Machine Type Communication (MTC) 등이 고려되고 있다.
Massive MTC 서비스는 Connection Density Requirement가 매우 제한적인데 반해, 데이터 전송률(Data Rate)과 End-to-End (E2E) Latency Requirement는 매우 자유롭다(일 예로, Connection Density: Up to 200,000/km2, E2E Latency: Seconds to hours, DL/UL Data Rate: typically 1-100kbps).
본 발명에서 이루고자 하는 기술적 과제는 기지국이 물리 방송 채널(PBCH)를 전송하는 방법을 제공하는 데 있다.
본 발명에서 이루고자 하는 다른 기술적 과제는 단말이 PBCH를 수신하는 방법을 제공하는 데 있다.
본 발명에서 이루고자 하는 또 다른 기술적 과제는 물리 방송 채널(PBCH)를 전송하기 위한 기지국을 제공하는 데 있다.
본 발명에서 이루고자 하는 또 다른 기술적 과제는 물리 방송 채널(PBCH)를 수신하기 위한 단말을 제공하는 데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기의 기술적 과제를 달성하기 위한, 기지국이 물리 방송 채널(Physcial Broadcast CHannel, PBCH)를 전송하는 방법은, 폴라 코드(pola code)를 이용하여 PBCH 전송을 위한 소정 서브프레임의 2개의 심볼 각각에 대해 동일한 인코딩된 데이터 비트를 생성하는 단계; 및 상기 생성된 동일한 인코딩된 데이터 비트를 상기 소정 서브프레임의 2개의 심볼 각각에서 상기 PBCH를 통해 전송하는 단계를 포함할 수 있다.
상기 생성 단계는 상기 PBCH의 정보 크기와 폴라 인코더의 마더 코드 크기(mother code size)의 크기에 기초하여 상기 동일한 인코딩된 데이터 비트를 생성하는 단계를 포함할 수 있다.
상기 생성 단계는, 폴라 인코더의 마더 코드 크기가 상기 2개의 심볼 각각에서 전송된 동일한 인코딩된 데이트 비트의 크기 보다 큰 경우에, 상기 마더 코드 크기의 생성된 인코딩된 데이터 비트에서 상기 마더 코드 크기와 상기 동일한 인코딩된 데이터 비트의 크기 간의 차이에 해당하는 크기만큼의 비트를 펑처링(puncturing)하여 상기 동일한 인코딩된 데이터 비트를 생성하는 단계를 포함할 수 있다.
상기 폴라 인코더의 마더 코드 크기는 512이고, 상기 동일한 인코딩된 데이트 비트의 크기는 384일 수 있다.
상기의 다른 기술적 과제를 달성하기 위한, 단말이 물리 방송 채널(Physcial Broadcast CHannel, PBCH)를 수신하는 방법은, 생성된 동일한 인코딩된 데이터 비트를 소정 서브프레임의 2개의 심볼 각각에서 상기 PBCH를 통해 수신하는 단계를 포함하되, 상기 생성된 인코딩된 데이터 비트는 폴라 코드(pola code)를 이용하여 PBCH 전송을 위한 상기 소정 서브프레임의 2개의 심볼 각각에 대해 생성된 것일 수 있다.
상기의 또 다른 기술적 과제를 달성하기 위한, 물리 방송 채널(Physcial Broadcast CHannel, PBCH)를 전송하기 위한 기지국은, 폴라 코드(pola code)를 이용하여 PBCH 전송을 위한 소정 서브프레임의 2개의 심볼 각각에 대해 동일한 인코딩된 데이터 비트를 생성하도록 구성된 폴라 인코더; 및 상기 생성된 동일한 인코딩된 데이터 비트를 상기 소정 서브프레임의 2개의 심볼 각각에서 상기 PBCH를 통해 전송하도록 구성된 송신기를 포함할 수 있다.
상기 폴라 인코더는 상기 PBCH의 정보 크기와 폴라 인코더의 마더 코드 크기(mother code size)의 크기에 기초하여 상기 동일한 인코딩된 데이터 비트를 생성하도록 구성될 수 있다.
상기 폴라 인코더의 마더 코드 크기가 상기 2개의 심볼 각각에서 전송된 동일한 인코딩된 데이트 비트의 크기 보다 큰 경우에, 상기 폴라 인코더는 상기 마더 코드 크기의 생성된 인코딩된 데이터 비트에서 상기 마더 코드 크기와 상기 동일한 인코딩된 데이터 비트의 크기 간의 차이에 해당하는 크기만큼의 비트를 펑처링(puncturing)하여 상기 동일한 인코딩된 데이터 비트를 생성하도록 구성될 수 있다.
상기 폴라 인코더의 마더 코드 크기는 512이고, 상기 동일한 인코딩된 데이트 비트의 크기는 384일 수 있다.
상기의 또 다른 기술적 과제를 달성하기 위한, 단말이 물리 방송 채널(Physcial Broadcast CHannel, PBCH)를 수신하는 방법은, 수신기; 및 상기 수신기가 생성된 동일한 인코딩된 데이터 비트를 소정 서브프레임의 2개의 심볼 각각에서 상기 PBCH를 통해 수신하도록 제어하는 프로세서를 포함하되, 상기 생성된 인코딩된 데이터 비트는 폴라 코드(pola code)를 이용하여 PBCH 전송을 위한 상기 소정 서브프레임의 2개의 심볼 각각에 대해 생성된 것일 수 있다.
본 발명의 일 실시예에 따른 PBCH 인코딩 및 전송하기 위한 방법은 PBCH 전송/수신의 성능과 인코더/디코더의 복잡도를 낮추어 통신 성능을 향상시킬 수 있다.
본 발명의 실시예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 발명의 실시예들에 대한 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 발명을 실시함에 따른 의도하지 않은 효과들 역시 본 발명의 실시예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되고, 첨부된 도면들은 본 발명에 대한 다양한 실시예들을 제공한다. 또한, 첨부된 도면들은 상세한 설명과 함께 본 발명의 실시 형태들을 설명하기 위해 사용된다.
도 1은 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
도 2는 무선 프레임의 구조의 일례를 나타내는 도면이다.
도 3는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 4는 상향링크 서브 프레임의 구조의 일례를 나타내는 도면이다.
도 5는 하향링크 서브 프레임의 구조의 일례를 나타내는 도면이다.
도 6은 본 발명의 실시예들에서 사용되는 크로스 캐리어 스케줄링에 따른 LTE-A 시스템의 서브 프레임 구조를 나타낸다.
도 7은 LTE/LTE-A 시스템에서 사용되는 초기 접속 과정의 일례를 나타내는 도면이다.
도 8은 방송채널 신호를 전송하는 방법 중 하나를 나타내는 도면이다.
도 9는 CA 환경을 기반으로 동작하는 CoMP 시스템의 개념도이다.
도 10은 본 발명의 실시예들에서 사용될 수 있는 셀 특정 참조 신호(CRS: Cell specific Reference Signal)가 할당된 서브프레임의 일례를 나타내는 도면이다.
도 11은 본 발명의 실시예들에서 사용될 수 있는 CSI-RS가 안테나 포트의 개수에 따라 할당된 서브프레임들의 일례를 나타내는 도면이다.
도 12는 LTE/LTE-A 시스템에서 사용되는 레가시 PDCCH(Legacy PDCCH), PDSCH 및 E-PDCCH가 다중화되는 일례를 나타내는 도면이다.
도 13은 폴라 코딩을 위한 first level 채널 컴바이닝을 예시한 도면이다.
도 14는 폴라 코드를 위한 N-th level 채널 컴바이닝을 예시한 도면이다.
도 15는 상기 방법 1 내지 방법 5에 따른 성능을 비교한 도면이다.
도 16은 NR(New RAT) 시스템에서의 동기 신호를 전송 방식을 도시한 도면이다.
도 17a 및 도 17b는 4번의 전송 기회를 가질 경우 PBCH 전송 방식의 실시예를 도시한 도면이고, 도 18a, 도 18b 및 도 18c는 8번의 전송 기회를 가질 때, PBCH 전송 방식의 실시예를 나타낸 도면이다.
도 19에서 설명하는 장치는 도 1 내지 도 18에서 설명한 방법들이 구현될 수 있는 수단이다.
이하에서 상세히 설명하는 본 발명의 실시예들은 단말의 위치를 측정하기 위해 이종망 신호를 이용하는 방법 및 장치들을 제공한다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 발명의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "…부", "…기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 발명을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
본 명세서에서 본 발명의 실시예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 이동국과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 이동국과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNode B(eNB), 발전된 기지국(ABS: Advanced Base Station) 또는 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
또한, 본 발명의 실시예들에서 단말(Terminal)은 사용자 기기(UE: User Equipment), 이동국(MS: Mobile Station), 가입자 단말(SS: Subscriber Station), 이동 가입자 단말(MSS: Mobile Subscriber Station), 이동 단말(Mobile Terminal) 또는 발전된 이동단말(AMS: Advanced Mobile Station) 등의 용어로 대체될 수 있다.
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미한다. 따라서, 상향링크에서는 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP(3rd Generation Partnership Project) 시스템, 3GPP LTE 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있으며, 특히, 본 발명의 실시예들은 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321 및 3GPP TS 36.331 문서들에 의해 뒷받침 될 수 있다. 즉, 본 발명의 실시예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 본 발명의 실시예들에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하에서는 본 발명의 실시예들이 사용될 수 있는 무선 접속 시스템의 일례로 3GPP LTE/LTE-A 시스템에 대해서 설명한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 적용될 수 있다.
CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다.
UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced) 시스템은 3GPP LTE 시스템이 개량된 시스템이다. 본 발명의 기술적 특징에 대한 설명을 명확하게 하기 위해, 본 발명의 실시예들을 3GPP LTE/LTE-A 시스템을 위주로 기술하지만 IEEE 802.16e/m 시스템 등에도 적용될 수 있다.
1. 3GPP LTE/LTE_A 시스템
무선 접속 시스템에서 단말은 하향링크(DL: Downlink)를 통해 기지국으로부터 정보를 수신하고, 상향링크(UL: Uplink)를 통해 기지국으로 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 일반 데이터 정보 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
1.1 시스템 일반
도 1은 본 발명의 실시예들에서 사용될 수 있는 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 S11 단계에서 기지국과 동기를 맞추는 등의 초기 셀 탐색 (Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널 (P-SCH: Primary Synchronization Channel) 및 부동기 채널 (S-SCH: Secondary Synchronization Channel)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다.
그 후, 단말은 기지국으로부터 물리방송채널 (PBCH: Physical Broadcast Channel) 신호를 수신하여 셀 내 방송 정보를 획득할 수 있다.
한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호 (DL RS: Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 S12 단계에서 물리하향링크제어채널 (PDCCH: Physical Downlink Control Channel) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널 (PDSCH: Physical Downlink Control Channel)을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 이후 단계 S13 내지 단계 S16과 같은 임의 접속 과정 (Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리임의접속채널 (PRACH: Physical Random Access Channel)을 통해 프리앰블 (preamble)을 전송하고(S13), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S14). 경쟁 기반 임의 접속의 경우, 단말은 추가적인 물리임의접속채널 신호의 전송(S15) 및 물리하향링크제어채널 신호 및 이에 대응하는 물리하향링크공유 채널 신호의 수신(S16)과 같은 충돌해결절차 (Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널 신호 및/또는 물리하향링크공유채널 신호의 수신(S17) 및 물리상향링크공유채널 (PUSCH: Physical Uplink Shared Channel) 신호 및/또는 물리상향링크제어채널 (PUCCH: Physical Uplink Control Channel) 신호의 전송(S18)을 수행할 수 있다.
단말이 기지국으로 전송하는 제어정보를 통칭하여 상향링크 제어정보(UCI: Uplink Control Information)라고 지칭한다. UCI는 HARQ-ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CQI (Channel Quality Indication), PMI (Precoding Matrix Indication), RI (Rank Indication) 정보 등을 포함한다.
LTE 시스템에서 UCI는 일반적으로 PUCCH를 통해 주기적으로 전송되지만, 제어정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 본 발명의 실시예들에서 사용되는 무선 프레임의 구조를 나타낸다.
도 2(a)는 타입 1 프레임 구조(frame structure type 1)를 나타낸다. 타입 1 프레임 구조는 전이중(full duplex) FDD(Frequency Division Duplex) 시스템과 반이중(half duplex) FDD 시스템 모두에 적용될 수 있다.
하나의 무선 프레임(radio frame)은 Tf = 307200*Ts = 10ms의 길이를 가지고, Tslot = 15360*Ts = 0.5ms의 균등한 길이를 가지며 0부터 19의 인덱스가 부여된 20개의 슬롯으로 구성된다. 하나의 서브프레임은 2개의 연속된 슬롯으로 정의되며, i 번째 서브프레임은 2i 와 2i+1에 해당하는 슬롯으로 구성된다. 즉, 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성된다. 하나의 서브프레임을 전송하는 데 걸리는 시간을 TTI(transmission time interval)이라 한다. 여기서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼 또는 SC-FDMA 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block)을 포함한다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함한다. 3GPP LTE는 하향링크에서 OFDMA를 사용하므로 OFDM 심볼은 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블록(resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부반송파(subcarrier)를 포함한다.
전이중 FDD 시스템에서는 각 10ms 구간 동안 10개의 서브프레임은 하향링크 전송과 상향링크 전송을 위해 동시에 이용될 수 있다. 이때, 상향링크와 하향링크 전송은 주파수 영역에서 분리된다. 반면, 반이중 FDD 시스템의 경우 단말은 전송과 수신을 동시에 할 수 없다.
상술한 무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 서브 프레임의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 2(b)는 타입 2 프레임 구조(frame structure type 2)를 나타낸다. 타입 2 프레임 구조는 TDD 시스템에 적용된다. 하나의 무선 프레임(radio frame)은 Tf = 307200*Ts = 10ms의 길이를 가지며, 153600*Ts = 5ms 길이를 가지는 2개의 하프프레임(half-frame)으로 구성된다. 각 하프프레임은 30720*Ts = 1ms의 길이를 가지는 5개의 서브프레임으로 구성된다. i 번째 서브프레임은 2i 와 2i+1에 해당하는 각 Tslot = 15360*Ts = 0.5ms의 길이를 가지는 2개의 슬롯으로 구성된다. 여기에서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다.
타입 2 프레임에는 DwPTS(Downlink Pilot Time Slot), 보호구간(GP: Guard Period), UpPTS(Uplink Pilot Time Slot)인 3가지의 필드로 구성되는 특별 서브프레임을 포함한다. 여기서, DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
다음 표 1는 특별 프레임의 구성(DwPTS/GP/UpPTS의 길이)을 나타낸다.
Figure PCTKR2018000015-appb-T000001
도 3은 본 발명의 실시예들에서 사용될 수 있는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 3을 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
자원 그리드 상에서 각 요소(element)를 자원 요소(resource element)하고, 하나의 자원 블록은 12 × 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 NDL은 하향링크 전송 대역폭(bandwidth)에 종속한다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 4는 본 발명의 실시예들에서 사용될 수 있는 상향링크 서브 프레임의 구조를 나타낸다.
도 4를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH가 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH가 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH를 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH에는 서브 프레임 내에 RB 쌍이 할당된다. RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이러한 PUCCH에 할당된 RB 쌍은 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.
도 5는 본 발명의 실시예들에서 사용될 수 있는 하향링크 서브 프레임의 구조를 나타낸다.
도 5를 참조하면, 서브 프레임내의 첫번째 슬롯에서 OFDM 심볼 인덱스 0부터 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH이 할당되는 데이터 영역(data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH, PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다.
PCFICH는 서브 프레임의 첫 번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Negative-Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보(DCI: downlink control information)라고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함한다.
2. 캐리어 병합(CA: Carrier Aggregation) 환경
2.1 CA 일반
3GPP LTE(3rd Generation Partnership Project Long Term Evolution; Rel-8 또는 Rel-9) 시스템(이하, LTE 시스템)은 단일 컴포넌트 캐리어(CC: Component Carrier)를 여러 대역으로 분할하여 사용하는 다중 반송파 변조(MCM: Multi-Carrier Modulation) 방식을 사용한다. 그러나, 3GPP LTE-Advanced 시스템(이하, LTE-A 시스템) 에서는 LTE 시스템보다 광대역의 시스템 대역폭을 지원하기 위해서 하나 이상의 컴포넌트 캐리어를 결합하여 사용하는 캐리어 병합(CA: Carrier Aggregation)과 같은 방법을 사용할 수 있다. 캐리어 병합은 반송파 집성, 반송파 정합, 멀티 컴포넌트 캐리어 환경(Multi-CC) 또는 멀티캐리어 환경이라는 말로 대체될 수 있다.
본 발명에서 멀티 캐리어는 캐리어의 병합(또는, 반송파 집성)을 의미하며, 이때 캐리어의 병합은 인접한(contiguous) 캐리어 간의 병합뿐 아니라 비 인접한(non-contiguous) 캐리어 간의 병합을 모두 의미한다. 또한, 하향링크와 상향링크 간에 집성되는 컴포넌트 캐리어들의 수는 다르게 설정될 수 있다. 하향링크 컴포넌트 캐리어(이하, 'DL CC'라 한다) 수와 상향링크 컴포넌트 캐리어(이하, 'UL CC'라 한다) 수가 동일한 경우를 대칭적(symmetric) 병합이라고 하고, 그 수가 다른 경우를 비대칭적(asymmetric) 병합이라고 한다. 이와 같은 캐리어 병합은 반송파 집성, 대역폭 집성(bandwidth aggregation), 스펙트럼 집성(spectrum aggregation) 등과 같은 용어와 혼용되어 사용될 수 있다.
두 개 이상의 컴포넌트 캐리어가 결합되어 구성되는 캐리어 병합은 LTE-A 시스템에서는 100MHz 대역폭까지 지원하는 것을 목표로 한다. 목표 대역보다 작은 대역폭을 가지는 1개 이상의 캐리어를 결합할 때, 결합하는 캐리어의 대역폭은 기존 IMT 시스템과의 호환성(backward compatibility) 유지를 위해서 기존 시스템에서 사용하는 대역폭으로 제한할 수 있다.
예를 들어서 기존의 3GPP LTE 시스템에서는 {1.4, 3, 5, 10, 15, 20}MHz 대역폭을 지원하며, 3GPP LTE-advanced 시스템(즉, LTE-A)에서는 기존 시스템과의 호환을 위해 상기의 대역폭들만을 이용하여 20MHz보다 큰 대역폭을 지원하도록 할 수 있다. 또한, 본 발명에서 사용되는 캐리어 병합 시스템은 기존 시스템에서 사용하는 대역폭과 상관없이 새로운 대역폭을 정의하여 캐리어 병합을 지원하도록 할 수도 있다.
또한, 위와 같은 캐리어 병합은 인트라-밴드 CA(Intra-band CA) 및 인터-밴드 CA(Inter-band CA)로 구분될 수 있다. 인트라-밴드 캐리어 병합이란, 다수의 DL CC 및/또는 UL CC들이 주파수상에서 인접하거나 근접하여 위치하는 것을 의미한다. 다시 말해, DL CC 및/또는 UL CC들의 캐리어 주파수가 동일한 밴드 내에 위치하는 것을 의미할 수 있다. 반면, 주파수 영역에서 멀리 떨어져 있는 환경을 인터-밴드 CA(Inter-Band CA)라고 부를 수 있다. 다시 말해, 다수의 DL CC 및/또는 UL CC들의 캐리어 주파수가 서로 다른 밴드들에 위치하는 것을 의미할 수 있다. 이와 같은 경우, 단말은 캐리어 병합 환경에서의 통신을 수행하기 위해서 복수의 RF(radio frequency)단을 사용할 수도 있다.
LTE-A 시스템은 무선 자원을 관리하기 위해 셀(cell)의 개념을 사용한다. 상술한 캐리어 병합 환경은 다중 셀(multiple cells) 환경으로 일컬을 수 있다. 셀은 하향링크 자원(DL CC)과 상향링크 자원(UL CC) 한 쌍의 조합으로 정의되나, 상향링크 자원은 필수 요소는 아니다. 따라서, 셀은 하향링크 자원 단독, 또는 하향링크 자원과 상향링크 자원으로 구성될 수 있다.
예를 들어, 특정 단말이 단 하나의 설정된 서빙 셀(configured serving cell)을 가지는 경우 1개의 DL CC와 1개의 UL CC를 가질 수 있다. 그러나, 특정 단말이 2개 이상의 설정된 서빙 셀을 가지는 경우에는 셀의 수만큼의 DL CC를 가지며 UL CC의 수는 그와 같거나 그보다 작을 수 있다. 또는, 그 반대로 DL CC와 UL CC가 구성될 수도 있다. 즉, 특정 단말이 다수의 설정된 서빙 셀을 가지는 경우 DL CC의 수보다 UL CC가 더 많은 캐리어 병합 환경도 지원될 수 있다.
또한, 캐리어 결합(CA)은 각각 캐리어 주파수(셀의 중심 주파수)가 서로 다른 둘 이상의 셀들의 병합으로 이해될 수 있다. 캐리어 결합에서 말하는 '셀(Cell)'은 주파수 관점에서 설명되는 것으로, 일반적으로 사용되는 기지국이 커버하는 지리적 영역으로서의 '셀'과는 구분되어야 한다. 이하, 상술한 인트라-밴드 캐리어 병합을 인트라-밴드 다중 셀이라고 지칭하며, 인터-밴드 캐리어 병합을 인터-밴드 다중 셀이라고 지칭한다.
LTE-A 시스템에서 사용되는 셀은 프라이머리 셀(P셀: Primary Cell) 및 세컨더리 셀(S셀: Secondary Cell)을 포함한다. P셀(PCell)과 S셀(SCell)은 서빙 셀(Serving Cell)로 사용될 수 있다. RRC_CONNECTED 상태에 있지만 캐리어 병합이 설정되지 않았거나 캐리어 병합을 지원하지 않는 단말의 경우, P셀로만 구성된 서빙 셀이 단 하나 존재한다. 반면, RRC_CONNECTED 상태에 있고 캐리어 병합이 설정된 단말의 경우 하나 이상의 서빙 셀이 존재할 수 있으며, 전체 서빙 셀에는 P셀과 하나 이상의 S셀이 포함된다.
서빙 셀(P셀과 S셀)은 RRC 파라미터를 통해 설정될 수 있다. PhyS셀 Id는 셀의 물리 계층 식별자로 0부터 503까지의 정수값을 가진다. S셀 Index는 S셀을 식별하기 위하여 사용되는 간략한(short) 식별자로 1부터 7까지의 정수값을 가진다. ServCellIndex는 서빙 셀(P셀 또는 S셀)을 식별하기 위하여 사용되는 간략한(short) 식별자로 0부터 7까지의 정수값을 가진다. 0값은 P셀에 적용되며, S셀Index는 S셀에 적용하기 위하여 미리 부여된다. 즉, ServCellIndex에서 가장 작은 셀 ID (또는 셀 인덱스)을 가지는 셀이 P셀이 된다.
P셀은 프라이머리 주파수(또는, primary CC) 상에서 동작하는 셀을 의미한다. 단말이 초기 연결 설정(initial connection establishment) 과정을 수행하거나 연결 재-설정 과정을 수행하는데 사용될 수 있으며, 핸드오버 과정에서 지시된 셀을 지칭할 수도 있다. 또한, P셀은 캐리어 병합 환경에서 설정된 서빙 셀 중 제어관련 통신의 중심이 되는 셀을 의미한다. 즉, 단말은 자신의 P셀에서만 PUCCH를 할당 받아 전송할 수 있으며, 시스템 정보를 획득하거나 모니터링 절차를 변경하는데 P셀만을 이용할 수 있다. E-UTRAN(Evolved Universal Terrestrial Radio Access)은 캐리어 병합 환경을 지원하는 단말에게 이동성 제어 정보(mobilityControlInfo)를 포함하는 상위 계층의 RRC 연결 재설정(RRCConnectionReconfigutaion) 메시지를 이용하여 핸드오버 절차를 위해 P셀만을 변경할 수도 있다.
S셀은 세컨더리 주파수(또는, Secondary CC) 상에서 동작하는 셀을 의미할 수 있다. 특정 단말에 P셀은 하나만 할당되며, S셀은 하나 이상 할당될 수 있다. S셀은 RRC 연결 설정이 이루어진 이후에 구성 가능하고 추가적인 무선 자원을 제공하는데 사용될 수 있다. 캐리어 병합 환경에서 설정된 서빙 셀 중에서 P셀을 제외한 나머지 셀들, 즉 S셀에는 PUCCH가 존재하지 않는다.
E-UTRAN은 S셀을 캐리어 병합 환경을 지원하는 단말에게 추가할 때, RRC_CONNECTED 상태에 있는 관련된 셀의 동작과 관련된 모든 시스템 정보를 특정 시그널(dedicated signal)을 통해 제공할 수 있다. 시스템 정보의 변경은 관련된 S셀의 해제 및 추가에 의하여 제어될 수 있으며, 이 때 상위 계층의 RRC 연결 재설정 (RRCConnectionReconfigutaion) 메시지를 이용할 수 있다. E-UTRAN은 관련된 S셀 안에서 브로드캐스트하기 보다는 단말 별로 상이한 파라미터를 가지는 특정 시그널링(dedicated signaling)을 전송할 수 있다.
초기 보안 활성화 과정이 시작된 이후에, E-UTRAN은 연결 설정 과정에서 초기에 구성되는 P셀에 부가하여 하나 이상의 S셀을 포함하는 네트워크를 구성할 수 있다. 캐리어 병합 환경에서 P셀 및 S셀은 각각의 컴포넌트 캐리어로서 동작할 수 있다. 이하의 실시예에서는 프라이머리 컴포넌트 캐리어(PCC)는 P셀과 동일한 의미로 사용될 수 있으며, 세컨더리 컴포넌트 캐리어(SCC)는 S셀과 동일한 의미로 사용될 수 있다.
2.2 크로스 캐리어 스케줄링(Cross Carrier Scheduling)
캐리어 병합 시스템에서는 캐리어(또는 반송파) 또는 서빙 셀(Serving Cell)에 대한 스케줄링 관점에서 자가 스케줄링(Self-Scheduling) 방법 및 크로스 캐리어 스케줄링(Cross Carrier Scheduling) 방법의 두 가지가 있다. 크로스 캐리어 스케줄링은 크로스 컴포넌트 캐리어 스케줄링(Cross Component Carrier Scheduling) 또는 크로스 셀 스케줄링(Cross Cell Scheduling)으로 일컬을 수 있다.
자가 스케줄링은 PDCCH(DL Grant)와 PDSCH가 동일한 DL CC로 전송되거나, DL CC에서 전송된 PDCCH(UL Grant)에 따라 전송되는 PUSCH가 UL Grant를 수신한 DL CC와 링크되어 있는 UL CC를 통해 전송되는 것을 의미한다.
크로스 캐리어 스케줄링은 PDCCH(DL Grant)와 PDSCH가 각각 다른 DL CC로 전송되거나, DL CC에서 전송된 PDCCH(UL Grant)에 따라 전송되는 PUSCH가 UL 그랜트를 수신한 DL CC와 링크되어 있는 UL CC가 아닌 다른 UL CC를 통해 전송되는 것을 의미한다.
크로스 캐리어 스케줄링 여부는 단말 특정(UE-specific)하게 활성화 또는 비활성화될 수 있으며, 상위계층 시그널링(예를 들어, RRC 시그널링)을 통해서 반정적(semi-static)으로 각 단말 별로 알려질 수 있다.
크로스 캐리어 스케줄링이 활성화된 경우, PDCCH에 해당 PDCCH가 지시하는 PDSCH/PUSCH가 어느 DL/UL CC를 통해서 전송되는지를 알려주는 캐리어 지시자 필드(CIF: Carrier Indicator Field)가 필요하다. 예를 들어, PDCCH는 PDSCH 자원 또는 PUSCH 자원을 CIF를 이용하여 다수의 컴포넌트 캐리어들 중 하나에 할당할 수 있다. 즉, DL CC 상에서의 PDCCH가 다중 집성된 DL/UL CC 중 하나에 PDSCH 또는 PUSCH 자원을 할당하는 경우 CIF가 설정된다. 이 경우, LTE Release-8의 DCI 포맷은 CIF에 따라 확장될 수 있다. 이때 설정된 CIF는 3bit 필드로 고정되거나, 설정된 CIF의 위치는 DCI 포맷 크기와 무관하게 고정될 수 있다. 또한, LTE Release-8의 PDCCH 구조(동일 코딩 및 동일한 CCE 기반의 자원 매핑)를 재사용할 수도 있다.
반면, DL CC 상에서의 PDCCH가 동일한 DL CC 상에서의 PDSCH 자원을 할당하거나 단일 링크된 UL CC 상에서의 PUSCH 자원을 할당하는 경우에는 CIF가 설정되지 않는다. 이 경우, LTE Release-8과 동일한 PDCCH 구조(동일 코딩 및 동일한 CCE 기반의 자원 매핑)와 DCI 포맷이 사용될 수 있다.
크로스 캐리어 스케줄링이 가능할 때, 단말은 CC별 전송 모드 및/또는 대역폭에 따라 모니터링 CC의 제어영역에서 복수의 DCI에 대한 PDCCH를 모니터링하는 것이 필요하다. 따라서, 이를 지원할 수 있는 검색 공간의 구성과 PDCCH 모니터링이 필요하다.
캐리어 병합 시스템에서, 단말 DL CC 집합은 단말이 PDSCH를 수신하도록 스케줄링된 DL CC의 집합을 나타내고, 단말 UL CC 집합은 단말이 PUSCH를 전송하도록 스케줄링된 UL CC의 집합을 나타낸다. 또한, PDCCH 모니터링 집합(monitoring set)은 PDCCH 모니터링을 수행하는 적어도 하나의 DL CC의 집합을 나타낸다. PDCCH 모니터링 집합은 단말 DL CC 집합과 같거나, 단말 DL CC 집합의 부집합(subset)일 수 있다. PDCCH 모니터링 집합은 단말 DL CC 집합내의 DL CC들 중 적어도 어느 하나를 포함할 수 있다. 또는 PDCCH 모니터링 집합은 단말 DL CC 집합에 상관없이 별개로 정의될 수 있다. PDCCH 모니터링 집합에 포함되는 DL CC는 링크된 UL CC에 대한 자기-스케줄링(self-scheduling)은 항상 가능하도록 설정될 수 있다. 이러한, 단말 DL CC 집합, 단말 UL CC 집합 및 PDCCH 모니터링 집합은 단말 특정(UE-specific), 단말 그룹 특정(UE group-specific) 또는 셀 특정(Cell-specific)하게 설정될 수 있다.
크로스 캐리어 스케줄링이 비활성화된 경우에는 PDCCH 모니터링 집합이 항상 단말 DL CC 집합과 동일하다는 것을 의미하며, 이러한 경우에는 PDCCH 모니터링 집합에 대한 별도의 시그널링과 같은 지시가 필요하지 않다. 그러나, 크로스 캐리어 스케줄링이 활성화된 경우에는 PDCCH 모니터링 집합이 단말 DL CC 집합 내에서 정의되는 것이 바람직하다. 즉, 단말에 대하여 PDSCH 또는 PUSCH를 스케줄링하기 위하여 기지국은 PDCCH 모니터링 집합만을 통해 PDCCH를 전송한다.
도 6은 본 발명의 실시예들에서 사용되는 크로스 캐리어 스케줄링에 따른 LTE-A 시스템의 서브 프레임 구조를 나타낸다.
도 6을 참조하면, LTE-A 단말을 위한 DL 서브프레임은 3개의 하향링크 컴포넌트 캐리어(DL CC)가 결합되어 있으며, DL CC 'A'는 PDCCH 모니터링 DL CC로 설정된 경우를 나타낸다. CIF가 사용되지 않는 경우, 각 DL CC는 CIF 없이 자신의 PDSCH를 스케줄링하는 PDCCH를 전송할 수 있다. 반면, CIF가 상위 계층 시그널링을 통해 사용되는 경우, 단 하나의 DL CC 'A'만이 CIF를 이용하여 자신의 PDSCH 또는 다른 CC의 PDSCH를 스케줄링하는 PDCCH를 전송할 수 있다. 이때, PDCCH 모니터링 DL CC로 설정되지 않은 DL CC 'B' 와 'C'는 PDCCH를 전송하지 않는다.
3. 공용 제어 채널 및 방송채널 할당 방법
3.1 초기접속과정
초기 접속 과정은 셀 탐색 과정, 시스템 정보 획득 과정 및 임의 접속 과정(Random Access Procedure)으로 구성될 수 있다.
도 7은 LTE/LTE-A 시스템에서 사용되는 초기 접속 과정의 일례를 나타내는 도면이다.
단말은 기지국에서 전송되는 동기 신호들(예를 들어, 주동기 신호 (PSS: Primary Synchronization Signal) 및 부동기 신호 (SSS: Secondary Synchronization Signal))을 수신함으로써 하향링크 동기 정보를 획득할 수 있다. 동기 신호들은 매 프레임(10ms 단위)마다 두 번씩 전송된다. 즉, 동기 신호들은 5ms마다 전송된다 (S710).
S710 단계에서 획득되는 하향링크 동기 정보에는 물리 셀 식별자(PCID: Physical Cell ID), 하향링크 시간 및 주파수 동기 및 순환 전치(CP: Cyclic Prefix) 길이 정보 등이 포함될 수 있다.
이후, 단말은 물리 방송 채널(PBCH: Physical Broadcast Channel)을 통해 전송되는 PBCH 신호를 수신한다. 이때, PBCH 신호는 4프레임(즉, 40ms) 동안 서로 다른 스크램블링 시퀀스로 4회 반복하여 전송된다 (S720).
PBCH 신호에는 시스템 정보의 하나로 MIB(Master Information Block)가 포함된다. 하나의 MIB는 총 24 비트의 크기를 가지며, 그 중 14 비트는 물리 HARQ 지시 채널(PHICH) 설정 정보, 하향링크 셀 대역폭(dl-bandwidth) 정보, 시스템 프레임 번호(SFN: System Frame Number)를 나타내기 위해 사용된다. 나머지 10비트는 여분의 비트로 구성된다.
이후, 단말은 기지국으로부터 전송되는 서로 다른 시스템 정보 블록(SIB: System Information Block)들을 수신함으로써 나머지 시스템 정보를 획득할 수 있다. SIB들은 DL-SCH 상에 전송되며, SIB의 존재 여부는 SI-RNTI(System Information Radio Network Temporary Identities)로 마스킹된 PDCCH 신호로써 확인된다 (S730).
SIB들 중 시스템 정보 블록 타입 1(SIB1)은 해당 셀이 셀 선택에 적합 셀인지 여부를 결정하기 위해 필요한 파라미터들 및 다른 SIB들에 대한 시간 축상 스케줄링에 대한 정보를 포함한다. 시스템 정보 블록 타입 2(SIB2)는 공용 채널(Common Channel) 정보 및 공유 채널(Shared Channel) 정보를 포함한다. SIB3 내지 SIB8은 셀 재선택 관련 정보, 셀 외 주파수(Inter-Frequency), 셀 내 주파수(Intra-Frequency) 등의 정보를 포함한다. SIB9는 홈 기지국(HeNB: Home eNodeB)의 이름을 전달하기 위해 사용되며, SIB10-SIB12는 지진, 쓰나미 경고 서비스(ETWS: Earthquake and Tsunami Warning Service) 통지 및 재난 경고 시스템(CMAS: Commercial Mobile Alert System) 경고 메시지를 포함한다. SIB13은 MBMS 관련 제어 정보를 포함한다.
단말은 S710 단계 내지 S730 단계를 수행하면 임의 접속 과정을 수행할 수 있다. 특히, 단말은 상술한 SIB들 중에서 SIB2를 수신하면 PRACH(Physical Random Access Channel) 신호를 송신하기 위한 파라미터들을 획득할 수 있다. 따라서, 단말은 SIB2에 포함된 파라미터들을 이용하여 PRACH 신호를 생성 및 전송함으로써 기지국과 임의 접속 과정을 수행할 수 있다 (S740).
3.2 물리 방송 채널 (PBCH: Physical Broadcast Channel)
LTE/LTE-A 시스템에서는 MIB 전송을 위해서 PBCH를 이용한다. 이하에서는 PBCH를 구성하는 방법에 대해서 설명한다.
비트 블록(
Figure PCTKR2018000015-appb-I000001
)은 변조 전에 셀 특정 시퀀스와 스크램블링되어 스크램블된 비트 블록(
Figure PCTKR2018000015-appb-I000002
)으로 산출된다. 이때, Mbit는 PBCH 상에서 전송되는 비트의 수를 의미하고, 일반 순환 전치(normal cyclic prefix)에 대해서는 1920 비트이고, 확장 순환 전치(extended cyclic prefix)에 대해서는 1728 비트가 사용된다.
다음 수학식 1은 비트 블록을 스크램블링하는 방법 중 하나를 나타낸다.
Figure PCTKR2018000015-appb-M000001
수학식 1에서 c(i)는 스크램블링 시퀀스를 나타낸다. 스크램블링 시퀀스는 nf mode 4 = 0을 만족하는 각 무선 프레임에서
Figure PCTKR2018000015-appb-I000003
와 함께 초기화된다.
스크램블된 비트들의 블록(
Figure PCTKR2018000015-appb-I000004
)은 변조되어 복소값 변조 심볼 블록들(d(0), ..., d(Msymb-1))로 산출된다. 이때, 물리 방송 채널에 대해 적용 가능한 변조 방식은 QPSK(Quadrature Phase Shift Keying)이다.
변조 심볼 블록들(d(0), ..., d(Msymb-1))은 하나 이상의 레이어(layers)들에 매핑된다. 이때, Msymb (0)=Msymb이다. 이후 변조 심볼 블록들은 프리코딩 되어 벡터 블록들(
Figure PCTKR2018000015-appb-I000005
)로 산출된다. 이때, i=0, ..., Msymb-1 이다. 또한, y(p)(i)는 안테나 포트 p에 대한 신호를 나타내고, p=0,...,P-1, 이다. p는 셀 특정 참조 신호에 대한 안테나 포트의 번호를 나타낸다.
각 안테나 포트에 대한 복소값 심볼 블록들(y(p)(0), ..., y(p)(Msymb-1))은 nf mod 4 = 0을 만족하는 무선 프레임들로부터 4개의 연속한 무선 프레임들 동안 전송된다. 또한, 복소값 심볼 블록들은 참조 신호들의 전송을 위해 예약된 자원 요소가 아닌 자원 요소 (k,l)에 대해서 인덱스 k의 첫 번째부터 오름차순으로 매핑되고, 이후 서브프레임 0의 슬롯 1의 인덱스 l에 매핑되고, 마지막으로 무선 프레임 번호에 매핑된다. 자원 요소 인덱스들은 다음 수학식 2와 같이 주어진다.
Figure PCTKR2018000015-appb-M000002
참조 신호들을 위한 자원 요소들은 매핑에서 제외된다. 매핑 동작은 실제 구성과 관계 없이 안테나 포트 0-3에 대한 셀 특정 참조 신호들이 있는 것으로 가정한다. 단말은 참조 신호들이 예약된 것으로 가정되었지만 참조 신호의 전송에 사용되지 않는 자원 요소들을 PDSCH 전송을 위해 사용 가능하지 않은 것으로 가정한다. 단말은 이러한 자원 요소들에 대한 어떠한 다른 가정들도 하지 않는다.
3.3 MIB (Master Information Block)
MIB는 PBCH를 통해 전송되는 시스템 정보이다. 즉, MIB는 BCH를 통해 전송되는 시스템 정보를 포함한다. MIB에 대해서는 시그널링 무선 베어러가 적용되지 않고, RLC-SAP(Radio Link Control-Service Access Point)는 TM(Transparent Mode)이며, 논리채널은 BCCH(Broadcast Control Channel)이고, E-UTRAN에서 UE로 전송된다. 다음 표 2는 MIB 포맷의 일례를 나타낸다.
Figure PCTKR2018000015-appb-T000002
MIB에는 하향링크 대역폭(dl-Bandwidth) 파라미터, PHICH 설정(PHICH-Config) 파리미터, 시스템 프레임 번호(systemFrameNumber) 파라미터 및 여분 비트가 포함된다.
하향링크 대역폭 파라미터는 16개의 서로 다른 전송 대역폭 구성(NRB)을 나타낸다. 예를 들어, n6은 6 자원 블록들에 대응되고, n15는 15 자원 블록들에 대응된다. PHICH 설정 파라미터는 DL-SCH를 수신하기 위해 필요한 PDCCH 상의 제어 신호를 수신하기 위해 필요한 PHICH 설정을 나타낸다. 시스템 프레임 번호(SFN) 파라미터는 SFN의 최상위(MSB) 8개 비트들을 정의한다. 이때, SFN의 최하위 2 비트들은 PBCH의 디코딩을 통해 간접적으로 획득된다. 예를 들어, PBCH TTI의 40ms 타이밍은 LSB 2비트를 지시할 수 있다. 이에 대해서는 다음 도 8을 통해 상세히 설명한다.
도 8은 방송채널 신호를 전송하는 방법 중 하나를 나타내는 도면이다.
도 8을 참조하면, 논리채널인 BCCH를 통해 전송된 MIB는 전송 채널인 BCH을 통해 전달된다. 이때, MIB는 전송블록에 매핑되고, MIB 전송블록에 CRC가 부가되고, 채널 코딩 및 레이트 매칭 과정을 거쳐 물리 채널인 PBCH로 전달된다. 이후, MIB는 스크램블링, 변조과정, 레이어 매핑 및 프리코딩 과정을 거쳐 자원요소(RE)에 매핑된다. 즉, 40ms 주기(즉, 4 프레임)동안 동일한 PBCH 신호가 서로 다른 스크램블링 시퀀스로 스크램블되어 전송된다. 따라서, 단말은 블라인드 디코딩을 통해 40ms 동안의 하나의 PBCH를 검출할 수 있으며, 이를 통해 SFN의 나머지 2비트를 추정할 수 있다.
예를 들어, 40ms의 PBCH TTI에서, PBCH신호가 첫 번째 무선 프레임에서 전송되면 SFN의 LSB는‘00’으로 설정되고, 두 번째 무선 프레임에서 전송되면 LSB는‘01’로 설정되며, 세 번째 무선 프레임에서 전송되면 LSB는 ‘10’으로 설정되고, 마지막 무선 프레임에서 전송되면 LSB는 ‘11’을 의미할 수 있다.
또한, 도 8을 참조하면, PBCH는 각 프레임의 첫 번째 서브프레임(subframe #0)의 두 번째 슬롯 (slot #1)의 처음 네 개의 OFDM 심볼에서 한가운데 72개의 부반송파에 할당될 수 있다. 이때, PBCH가 할당되는 부반송파 영역은 셀 대역폭에 관계없이 항상 가운데 72개 부반송파 영역이다. 이는 단말이 하향링크 셀 대역폭의 크기를 모르는 경우에도 PBCH를 검출할 수 있게 하기 위함이다.
또한, 주 동기신호(PSS)가 전송되는 주동기채널(PSC: Primary Synchronization Channel)은 5ms의 TTI를 가지며 각 프레임에서 서브프레임 #0 및 #5의 첫 번째 슬롯(slot #0)의 마지막 심볼에 할당된다. 부 동기신호(SSS)가 전송되는 부동기채널(SSC: Secondary Synchronization Channel)은 5ms의 TTI를 가지며 동일 슬롯의 마지막에서 두 번째 심볼(즉, PSS 바로 앞 심볼)에 할당된다. 또한, PSC 및 SSC는 셀 대역폭에 관계 없이 항상 가운데 72개의 부반송파를 점유하며, 62개의 부반송파에 할당된다.
3.4 CA 환경 기반의 CoMP 동작
이하에서는 본 발명의 실시예들에 적용될 수 있는 협력적 다중 포인트(CoMP: Cooperative Multi-Point) 전송 동작에 대해서 설명한다.
LTE-A 시스템에서 LTE에서의 CA(carrier aggregation) 기능을 이용하여 CoMP 전송을 구현할 수 있다. 도 9는 CA 환경을 기반으로 동작하는 CoMP 시스템의 개념도이다.
도 9에서, P셀로 동작하는 캐리어와 S셀로 동작하는 캐리어는 주파수 축으로 동일한 주파수 대역을 사용할 수 있으며, 지리적으로 떨어진 두 eNB에 각각 할당된 경우를 가정한다. 이때, UE1의 서빙 eNB를 P셀로 할당하고, 많은 간섭을 주는 인접셀을 S셀로 할당할 수 있다. 즉, 하나의 단말에 대해서 P셀의 기지국과 S셀의 기지국이 서로 JT(Joint Transmission), CS/CB 및 동적 셀 선택(Dynamic cell selection) 등 다양한 DL/UL CoMP 동작을 수행할 수 있다.
도 9는 하나의 단말(e.g., UE1)에 대해 두 개의 eNB들이 관리하는 셀들을 각각 P셀과 S셀로써 결합하는 경우에 대한 예시를 나타낸다. 다만, 다른 예로서 3개 이상의 셀이 결합될 수 있다. 예를 들어, 세 개 이상의 셀들 중 일부 셀들은 동일 주파수 대역에서 하나의 단말에 대해 CoMP 동작을 수행하고, 다른 셀들은 다른 주파수 대역에서 단순 CA 동작을 하도록 구성되는 것도 가능하다. 이때, P셀은 반드시 CoMP 동작에 참여할 필요는 없다.
3.5 참조신호(RS: Reference Signal)
이하에서는 본 발명의 실시예들에서 사용될 수 있는 참조신호들에 대해서 설명한다.
도 10은 본 발명의 실시예들에서 사용될 수 있는 셀 특정 참조 신호(CRS: Cell specific Reference Signal)가 할당된 서브프레임의 일례를 나타내는 도면이다.
도 10에서는 시스템에서 4개 안테나를 지원하는 경우에 CRS의 할당 구조를 나타낸다. 3GPP LTE/LTE-A 시스템에서 CRS는 디코딩 및 채널 상태 측정을 목적으로 사용된다. 따라서, CRS는 PDSCH 전송을 지원하는 셀(cell) 내 모든 하향링크 서브프레임에서 전체 하향링크 대역폭에 걸쳐 전송되며, 기지국(eNB)에 구성된 모든 안테나 포트에서 전송된다.
구체적으로 CRS 시퀀스는 슬롯 ns에서 안테나 포트 p를 위한 참조 심볼들로서 사용되는 복소 변조 심볼(complex-valued modulation symbols)에 맵핑된다.
UE는 CRS를 이용하여 CSI를 측정할 수 있으며, CRS를 이용하여 CRS를 포함하는 서브프레임에서 PDSCH를 통해 수신된 하향링크 데이터 신호를 디코딩할 수 있다. 즉, eNB는 모든 RB에서 각 RB 내 일정한 위치에 CRS를 전송하고 UE는 상기 CRS를 기준으로 채널 추정을 수행한 다음에 PDSCH를 검출하였다. 예를 들어, UE는 CRS RE에서 수신된 신호를 측정한다. UE는 CRS RE별 수신 에너지와 PDSCH이 맵핑된 RE별 수신 에너지에 대한 비를 이용하여 PDSCH가 맵핑된 RE로부터 PDSCH 신호를 검출할 수 있다.
이와 같이, CRS를 기반으로 PDSCH 신호가 전송되는 경우에, eNB는 모든 RB에 대해서 CRS를 전송해야 하므로 불필요한 RS 오버헤드가 발생하게 된다. 이러한 문제점을 해결하기 위하여 3GPP LTE-A 시스템에서는 CRS 외에 UE-특정 RS(이하, UE-RS) 및 채널상태정보 참조신호(CSI-RS: Channel State Information Reference Signal)를 추가로 정의한다. UE-RS는 복조를 위해 사용되고, CSI-RS는 채널 상태 정보를 획득하기(derive) 위해 사용된다.
UE-RS 및 CRS는 복조를 위해 사용되므로 용도의 측면에서 복조용 RS라고 할 수 있다. 즉, UE-RS는 DM-RS(DeModulation Reference Signal)의 일종으로 볼 수 있다. 또한, CSI-RS 및 CRS는 채널 측정 혹은 채널 추정에 사용되므로 용도의 측면에서는 채널 상태 측정용 RS라고 할 수 있다.
도 11은 본 발명의 실시예들에서 사용될 수 있는 CSI-RS가 안테나 포트의 개수에 따라 할당된 서브프레임들의 일례를 나타내는 도면이다.
CSI-RS는 복조 목적이 아니라 무선 채널의 상태 측정을 위해 3GPP LTE-A 시스템에서 도입된 하향링크 참조신호이다. 3GPP LTE-A 시스템은 CSI-RS 전송을 위해 복수의 CSI-RS 설정들을 정의하고 있다. CSI-RS 전송이 구성된 서브프레임들에서 CSI-RS 시퀀스는 안테나 포트 p 상의 참조 심볼들로서 사용되는 복소 변조 심볼들에 따라 맵핑된다.
도 11(a)는 CSI-RS 구성들 중 2개의 CSI-RS 포트들에 의한 CSI-RS 전송에 이용 가능한 20가지 CSI-RS 구성 0~19를 나타낸 것이고, 도 11(b)는 CSI-RS 구성들 중 4개의 CSI-RS 포트들에 의해 이용 가능한 10가지 CSI-RS 구성 0~9를 나타낸 것이며, 도 11(c)는 CSI-RS 구성 중 8개의 CSI-RS 포트들에 의해 이용 가능한 5가지 CSI-RS 구성 0~4를 도시한 것이다.
여기서 CSI-RS 포트는 CSI-RS 전송을 위해 설정된 안테나 포트를 의미한다. CSI-RS 포트의 개수에 따라 CSI-RS 구성이 달라지므로 CSI-RS 구성 번호가 동일하다고 하더라도 CSI-RS 전송을 위해 구성된 안테나 포트의 개수가 다르면 다른 CSI-RS 구성이 된다.
한편 CSI-RS는 매 서브프레임마다 전송되도록 구성된 CRS와 달리 다수의 서브프레임들에 해당하는 소정 전송 주기마다 전송되도록 설정된다. 따라서, CSI-RS 구성은 자원 블록 쌍 내에서 CSI-RS가 점유하는 RE들의 위치뿐만 아니라 CSI-RS가 설정되는 서브프레임에 따라서도 달라진다.
또한, CSI-RS 구성 번호가 동일하다고 하더라도 CSI-RS 전송을 위한 서브프레임이 다르면 CSI-RS 구성도 다르다고 볼 수 있다. 예를 들어, CSI-RS 전송 주기(TCSI-RS)가 다르거나 일 무선 프레임 내에서 CSI-RS 전송이 구성된 시작 서브프레임(ΔCSI-RS)이 다르면 CSI-RS 구성이 다르다고 볼 수 있다.
이하에서는 (1) CSI-RS 구성 번호가 부여된 CSI-RS 구성과 (2) CSI-RS 구성 번호, CSI-RS 포트의 개수 및/또는 CSI-RS가 구성된 서브프레임에 따라 달라지는 CSI-RS 구성을 구분하기 위하여, 후자 (2)의 구성을 CSI-RS 자원 구성(CSI-RS resource configuration)이라고 칭한다. 전자(1)의 설정은 CSI-RS 구성 또는 CSI-RS 패턴이라고도 칭한다.
eNB는 UE에게 CSI-RS 자원 구성을 알려줄 때 CSI-RS들의 전송을 위해 사용되는 안테나 포트의 개수, CSI-RS 패턴, CSI-RS 서브프레임 구성(CSI-RS subframe configuration) ICSI-RS, CSI 피드백을 위한 참조 PDSCH 전송 전력에 관한 UE 가정 (UE assumption on reference PDSCH transmitted power for CSI feedback) Pc, 제로 파워 CSI-RS 구성 리스트, 제로 파워 CSI-RS 서브프레임 구성 등에 관한 정보를 알려 줄 수 있다.
CSI-RS 서브프레임 구성 인덱스 ICSI-RS는 CSI-RS들의 존재(occurrence)에 대한 서브프레임 구성 주기 TCSI-RS 및 서브프레임 오프셋 ΔCSI-RS을 특정하기 위한 정보이다. 다음 표 3은 TCSI-RS 및 ΔCSI-RS에 따른 CSI-RS 서브프레임 구성 인덱스 ICSI-RS을 예시한 것이다.
CSI-RS-SubframeConfig ICSI-RS CSI-RS periodicity TCSI-RS (subframes) CSI-RS subframe offset ΔCSI-RS (subframes)
0-4 5 ICSI-RS
5-14 10 ICSI-RS - 5
15-34 20 ICSI-RS - 15
35-74 40 ICSI-RS - 35
75-154 80 ICSI-RS - 75
이때, 다음 수학식 3을 만족하는 서브프레임들이 CSI-RS를 포함하는 서브프레임들이 된다.
Figure PCTKR2018000015-appb-M000003
3GPP LTE-A 시스템 이후에 정의된 전송 모드(예를 들어, 전송 모드 9 혹은 그 외 새로이 정의되는 전송 모드)로 설정된 UE는 CSI-RS를 이용하여 채널 측정을 수행하고 UE-RS를 이용하여 PDSCH를 복호할 수 있다.
3GPP LTE-A 시스템 이후에 정의된 전송 모드(예를 들어, 전송 모드 9 혹은 그 외 새로이 정의되는 전송 모드)로 설정된 UE는 CSI-RS를 이용하여 채널 측정을 수행하고 UE-RS를 이용하여 PDSCH를 복호할 수 있다.
3.6 Enhanced PDCCH (EPDCCH)
3GPP LTE/LTE-A 시스템에서 복수의 콤퍼넌트 캐리어(CC: Component Carrier = (serving) cell)에 대한 결합 상황에서의 크로스 캐리어 스케줄링(CCS: Cross Carrier Scheduling) 동작을 정의하면, 하나의 스케줄되는 CC (i.e. scheduled CC)는 다른 하나의 스케줄링 CC (i.e. scheduling CC)로부터만 DL/UL 스케줄링을 받을 수 있도록 (즉, 해당 scheduled CC에 대한 DL/UL grant PDCCH를 수신할 수 있도록) 미리 설정될 수 있다. 이때, 스케줄링 CC는 기본적으로 자기 자신에 대한 DL/UL 스케줄링을 수행할 수 있다. 다시 말해, 상기 CCS 관계에 있는 스케줄링/스케줄되는 CC를 스케줄하는 PDCCH에 대한 서치 스페이스(SS: Search Space)는 모든 스케줄링 CC의 제어채널 영역에 존재할 수 있다.
한편, LTE 시스템에서 FDD DL 캐리어 또는 TDD DL 서브프레임들은 각 서브프레임의 첫 n개(n<=4)의 OFDM 심볼을 각종 제어 정보 전송을 위한 물리 채널인 PDCCH, PHICH 및 PCFICH 등의 전송에 사용하고 나머지 OFDM 심볼들을 PDSCH 전송에 사용하도록 구성된다. 이때, 각 서브프레임에서 제어채널 전송에 사용하는 OFDM 심볼의 개수는 PCFICH 등의 물리 채널을 통해 동적으로 또는 RRC 시그널링을 통한 반 정적인 방식으로 단말에게 전달될 수 있다.
한편, LTE/LTE-A 시스템에서는 DL/UL 스케줄링 및 각종 제어 정보를 전송하기 위한 물리채널인 PDCCH는 제한된 OFDM 심볼들을 통해서 전송되는 등의 한계가 있으므로 PDCCH와 같이 PDSCH와 분리된 OFDM 심볼을 통해 전송되는 제어 채널 대신에 PDSCH와 FDM/TDM 방식으로 조금 더 자유롭게 다중화되는 확장된 PDCCH(i.e. E-PDCCH)를 도입할 수 있다. 도 12는 LTE/LTE-A 시스템에서 사용되는 레가시 PDCCH(Legacy PDCCH), PDSCH 및 E-PDCCH가 다중화되는 일례를 나타내는 도면이다.
LTE 시스템에서의 PBCH 전송
PBCH의 payload는 하향링크 시스템 대역폭, PHICH configuration 정보, system frame number (SFN) 정보로 구성되며, payload에 CRC를 첨가하여 1/3 tail-biting convolutional coding을 수행하여 전송한다. PBCH는 4개의 무선 프레임 단위 (40 ms 단위)로 전송된다. 즉, PBCH는 무선 프레임 #0의 subframe #0의 두 번째 slot의 4개의 OFDM symbol을 통하여 전송된다. 각각의 PBCH 전송 순간에 전송되는 encoded PBCH의 bit는 480 bit이어서, 총 1920 bit의 encoded bit가 4 회에 걸쳐서 전송될 수 있다. 설명의 편의를 위해, 1920 bit의 전체 PBCH encoded bit를 480 bit 크기의 PBCH(0), PBCH(1), PBCH(2), PBCH(3)이 연접되어 구성되는 것으로 가정한다. 여기서, PBCH(k mod 4)는 무선 프레임 #k에서 전송되는 480 bit 크기의 PBCH encoded bit 이다.
폴라 코드(Polar code)
폴라 인코더(polar encoder)의 입력(input)은 정보 데이터가 맵핑되는 bit channel과 그렇지 않은 bit channel로 구분된다. polar code의 이론에 따르면 polar code의 코드워드가 무한대(infinity)로 갈수록 입력 bit channel이 noise free channel 과 noise channel 로 나눌 수 있다. 따라서, noise free bit channel에 정보를 할당하게 되면, channel capacity를 얻을 수 있다. 그러나, 실제로는 무한 길이의 코드워드를 구성할 수 없기 때문에 입력 bit channel의 신뢰도를 계산하여 그 순서대로 데이터 비트를 할당한다. 이때, 데이터 비트를 할당하는 bit channel을 본 발명에서는 “good bit channel”이라 칭한다. 따라서, Good bit channel은 데이터 비트가 매핑되는 입력 bit channel에 해당한다고 할 수 있다. 그리고, 데이터가 맵핑되지 않는 bit channel을 frozen bit channel이라 칭하고, frozen bit channel에는 일반적으로 0 (송수신 단에서 알고 있는 값이면 아무 값이나 가능)으로 하고, 인코딩을 수행한다.
펑처링(Puncturing) 또는 반복 (repetition)을 수행할 때, polar encoding 시 구한 good bit channel에 대한 정보를 활용할 수 있다. 즉, information bit에 할당되지 않는 input bit 위치에 해당되는 codeword bit 위치를 펑처링할 수 있다.
폴라 코드는 binary-input discrete memoryless channel (B-DMC) 에서 채널 용량(channel capacity)를 얻을 수 있는 코드로 알려져 있다. 즉, code block(CB)의 크기 N을 무한히 크게 하면 channel capacity를 얻을 수 있는 코드이다. Polar code의 encoder는 채널 컴바이닝(channel combining)과 채널 channel splitting 두 가지 과정으로 이루어진다.
도 13은 폴라 코딩을 위한 first level 채널 컴바이닝을 예시한 도면이다.
채널 컴바이닝(channel combining)은 B-DMC 채널을 병렬적으로(parallel) 연접하는 과정으로 code block의 크기를 결정하는 과정이다. 도 13은 B-DMC channel, W, 2개를 컴바이닝한 표현한 도면이다. 여기서, u1, u2는 binary-input source bit이며 y1, y2는 output coded bit이다. 이때, 전체 equivalent channel을 W2로 하기로 가정한다. N개의 B-DMC channel을 컴바이닝 할 때, 각각의 channel은 recursive한 형태로 표현할 수 있다. 즉,
Figure PCTKR2018000015-appb-I000006
가 되는 generator matrix GN에 대해서, GN을 다음 수학식 4에서 같이 나타낼 수 있다.
Figure PCTKR2018000015-appb-M000004
상기 수학식 4에서 RN은 bit-reversal interleaver를 나타내고, 입력(input)
Figure PCTKR2018000015-appb-I000007
에 대해서 출력(output)
Figure PCTKR2018000015-appb-I000008
가 되도록 맵핑하는 것이다. 한편, Bit-reversal interleaver는 송신단에 포함되지 않을 수도 있다. 이러한 관계를 도 14에 도시하였다. Code block 크기, N은 2n (n은 자연수) 형태로 제한된다.
도 14는 폴라 코드를 위한 N-th level 채널 컴바이닝을 예시한 도면이다.
N개의 B-DMC 채널을 컴바이닝 한 후 특정 input에 대한 등가 채널(equivalent channel)을 정의하는 과정을 channel splitting이라고 한다. 이는 다음 수학식 5와 같은 채널 전이 확률(channel transition probability)로 표현할 수 있다.
Figure PCTKR2018000015-appb-M000005
채널 컴바이닝과 채널 스플리팅을 거친 경우 다음 표 4와 같은 정리(theorem)를 얻을 수 있다.
Figure PCTKR2018000015-appb-I000009
즉, code block의 크기 N이 무한대가 되면, 특정 입력 비트(input bit)에 대한 등가 채널이 noisy한 채널이 되거나 noise free한 채널로 구분된다. 이는 특정 input bit에 대한 등가 채널의 capacity가 0 또는 I(W) (채널 W의 capacity)로 구분되는 것과 같은 의미이다.
이와 같은 폴라 코드의 디코딩 방식은 successive cancellation (SC) 디코딩 방식이다. SC 디코딩 방식은 채널 전이 확률을 구하여, 이를 input bit에 대한 likelihood ratio (LLR)을 계산하는 방식이다. 이때, 채널 전이 확률은 채널 컴바이닝과 채널 스플리팅 과정이 반복적인(recursive) 형태로 이루어진 특성을 이용하면 반복적인 형태로 계산할 수 있다. 따라서, 최종적으로 LLR 값도 반복적인 형태로 계산할 수 있다. 우선 input bit, ui에 대한 채널 전이 확률,
Figure PCTKR2018000015-appb-I000010
는 다음과 같이 구할 수 있다.
Figure PCTKR2018000015-appb-I000011
는 홀수 인덱스(odd index), 짝수 인덱스(even index)로 분리하여,
Figure PCTKR2018000015-appb-I000012
와 같이 표현할 수 있다. 이때, 채널 전이 확률은 다음 수학식 6, 수학식 7과 같이 표현할 수 있다.
Figure PCTKR2018000015-appb-M000006
Figure PCTKR2018000015-appb-M000007
폴라 인코더 및 SC 디코더의 복잡도는 code block 길이 N에 따라 달라지는 데, O(NlogN)의 복잡도를 갖는다고 알려져 있다. 길이 N의 폴라 코드에서 K bit의 input bit를 가정할 때, 코딩율(coding rate)는 N/K가 된다. 이때, 데이터 페이로드 크기 N의 폴라 인코더의 generator matrix를 GN이라 하면, 인코딩된 비트(encoded bit)는
Figure PCTKR2018000015-appb-I000013
과 같이 표현할 수 있으며,
Figure PCTKR2018000015-appb-I000014
중 K 개의 bit는 페이로드 비트에 해당되며, 페이로드 비트에 대응하는 GN의 row index를 I라 하고, 나머지 N-K 개의 bit에 대응하는 GN의 row index를 F라고 가정한다. 이와 같은 폴라 코드의 최소 거리는
Figure PCTKR2018000015-appb-I000015
같이 주어질 수 있다.
다음 표 5는 NR 시스템에서의 초기 접속(initial access) 대한 설명을 기술한 표이다.
NR synchronization signal is based on CP-OFDM. NR defines at least two types of synchronization signals; NR-PSS and NR-SSS. NR-PSS is defined at least for initial symbol boundary synchronization to the NR cell. NR-SSS is defined for detection of NR cell ID or at least part of NR cell ID. The number of NR cell IDs is targeted to be approximately 1000. NR-SSS detection is based on the fixed time/frequency relationship with NR-PSS resource position irrespective of duplex mode and beam operation type at least within a given frequency range and CP overhead. At least, normal CP is supported for NR-PSS/SSS. The raster for NR synchronization signals can be different per frequency range. At least for frequency ranges where NR supports a wider carrier bandwidth and operation in a wider frequency spectrum (e.g. above 6 GHz), the NR synchronization signals raster can be larger than the 100 kHz raster of LTE. When the synchronization signal bandwidth is the same as the minimum system bandwidth for a given frequency band which UE searches, synchronization signal frequency raster is the same as the channel raster. For carrier supporting initial access, for frequency range up to 6 GHz, minimum carrier bandwidth for NR can be either 5 or 10 MHz and is frequency band dependent. For frequency range from 6 GHz to 52.6 GHz, minimum carrier bandwidth for6 GHz to 52.6 GHz, minimum carrier bandwidth for NR can be either 40 or 80 MHz and is frequency band dependent.At least one broadcast channel (NR-PBCH) is defined. NR-PBCH decoding is based on the fixed relationship with NR-PSS and/or NR-SSS resource position irrespective of duplex mode and beam operation type at least within a given frequency range and CP overhead. NR-PBCH is a non-scheduled broadcast channel carrying at least a part of minimum system information with fixed payload size and periodicity predefined in the specification depending on carrier frequency range.In both single beam and multi-beam scenario, time division multiplexing of NR-PSS, NR-SSS, and NR-PBCH is supported. NR-PSS, NR-SSS and/or NR-PBCH can be transmitted within an SS block. For a given frequency band, an synchronization signal (SS) block corresponds to N OFDM symbols based on the default subcarrier spacing, and N is a constant. The signal multiplexing structure is fixed in a specification. UE shall be able to identify at least OFDM symbol index, slot index in a radio frame and radio frame number from an SS block. One or multiple SS block(s) compose an SS burst. One or multiple SS burst(s) further compose an SS burst set where the number of SS bursts within a SS burst set is finite. From physical layer specification perspective, at least one periodicity of SS burst set is supported. From UE perspective, SS burst set transmission is periodic and UE may assume that a given SS block is repeated with a SS burst set periodicity. Note that NR-PBCH contents in a given repeated SS block may change. A single set of possible SS block time locations is specified per frequency band. The maximum number of SS-blocks within SS burst set may be carrier frequency dependent. The position(s) of actual transmitted SS-blocks can be informed for helping CONNECTED/IDLE mode measurement, for helping CONNECTED mode UE to receive DL data/control in unused SS-blocks and potentially for helping IDLE mode UE to receive DL data/control in unused SS-blocks. By default, the UE may neither assume the gNB transmits the same number of physical beam(s), nor the same physical beam(s) across different SS-blocks within an SS burst set. For initial cell selection, UE may assume default SS burst set periodicity which may be frequency band-dependent. At least for multi-beams case, at least the time index of SS-block is indicated to the UE.
다음 표 6은 NR 시스템에서의 셀 검색(initial access) 대한 설명을 기술한 표이다.
Cell search is the procedure by which a UE acquires time and frequency synchronization with a cell and detects the physical layer Cell ID of that cell. A UE receives the following synchronization signals (SS) in order to perform cell search: the primary synchronization signal (PSS) and secondary synchronization signal (SSS) as defined in 3GPP TS 38.211 [3]. A UE shall assume that reception occasions of a physical broadcast channel (PBCH), PSS, and SSS coexist, as defined in 3GPP TS 38.211[3], and form a SS/PBCH block. For carrier frequencies smaller than or equal to 3 GHz, a UE shall assume a maximum of 4 SS/PBCH blocks per half frame. For carrier frequencies larger than 3 GHz and smaller than or equal to 6 GHz, the UE shall assume a maximum of 8 SS/PBCH blocks per half frame. For carrier frequencies larger than 6 GHz, the UE shall assume a maximum of 64 SS/PBCH blocks per half frame. For a half frame and the first 14 OFDM symbols with 15 KHz subcarrier spacing, or the first 28 OFDM symbols with 30 KHz sub-carrier spacing, or the first 28 OFDM symbols with 120 KHz sub-carrier spacing, or the first 56 OFDM symbols with 240 KHz sub-carrier spacing, the number and first OFDM symbol indexes for candidate SS/PBCH blocks are as follows. - 15 KHz sub-carrier spacing: 2 candidate SS/PBCH blocks with respective first OFDM symbol indexes of 2 and 8.- 30 KHz sub-carrier spacing: 4 candidate SS/PBCH blocks with respective first OFDM symbol indexes of 4, 8, 16, and 20.- 30 KHz sub-carrier spacing: 4 candidate SS/PBCH blocks with respective first OFDM symbol indexes of 2, 8, 16, and 22.- 120 KHz sub-carrier spacing: 4 candidate SS/PBCH blocks with respective first OFDM symbol indexes of 4, 8, 16, and 20.- 240 KHz sub-carrier spacing: 8 candidate SS/PBCH blocks with respective first OFDM symbol indexes of 8, 12, 16, 20, 33, 37, 41, and 45.For subcarrier spacing of 15 KHz and 4 SS/PBCH blocks per half frame, 2 SS/PBCH blocks are located in each of the first and second consecutive and non-overlapping blocks of 14 OFDM symbols per half frame.For subcarrier spacing of 15 KHz and 8 SS/PBCH blocks per half frame, 2 SS/PBCH blocks are located in each of the first, second, third, and fourth consecutive and non-overlapping blocks of 14 OFDM symbols per half frame.For subcarrier spacing of 30 KHz and 4 SS/PBCH blocks per half frame, 2 SS/PBCH blocks are located in each of the first and second consecutive and non-overlapping blocks of 14 OFDM symbols per half frame.For subcarrier spacing of 30 KHz and 8 SS/PBCH blocks per half frame, 2 SS/PBCH blocks are located in each of the first, second, third, and fourth consecutive and non-overlapping blocks of 14 OFDM symbols per half frame.For subcarrier spacing of 120 KHz and 64 SS/PBCH blocks per half frame, 2 SS/PBCH blocks are located in each consecutive and non-overlapping blocks of 14 OFDM symbols per half frame except for the 5th, 10th, 15th, 20th, 25th, 30th, 35th, and 40th blocks.For subcarrier spacing of 240 KHz and 64 SS/PBCH blocks per half frame, 4 SS/PBCH blocks are located in each consecutive non-overlapping blocks of 28 OFDM symbols in the first half of the half frame except for the 5th, 10th, 15th, and 20th blocks.SS/PBCH blocks in a half frame are indexed [in an ascending order in time]. A UE shall determine the 3 [LSB] bits of a SS/PBCH block index per half frame from the sequence of the DMRS transmitted in the PBCH.A UE can be configured [per serving cell] by higher layer parameter blocks_period a periodicity of the half frames for receptions of SS/PBCH blocks per serving cell. If the UE is not configured a periodicity of the half frames for receptions of SS/PBCH blocks, the UE shall assume a periodicity of half frame. For initial cell search, a UE may assume that half frames with SS/PBCH blocks occur with a periodicity of 2 frames
단말(UE)가 특정 셀에 초기 접속을 수행할 경우, 단말은 해당 셀을 운용/제어하는 기지국(eNodeB)로부터 물리 방송 채널(physical broadcast channel, PBCH)를 통하여 해당 셀에 대한 MIB(Master Information Block)를 수신하고, PDSCH를 통하여 SIB (System Information Block) 정보와 RRC (radio resource control) parameter들을 수신하게 된다. 본 발명에서는 폴라 코드를 이용하여 PBCH 인코딩을 수행하여 전송하는 방법을 제안한다.
전송 방식은 LTE 시스템에서와 같이 4개의 서브프레임에 encoded bit 1920 bit를 전송하는 것을 가정하고, 4개의 서브프레임 단위로 동일한 데이터가 전송되는 것을 가정한다. PBCH 페이로드 크기는 30 bits 또는 40 bits로 가정한다. 30 bit의 페이로드 크기일 경우 유효 코딩율(effective coding rate)는 30/1920=1/64이 되며, 40 bit 페이로드 크기일 경우는 유효 코딩율(effective coding rate)는 40/1920=1/48이 된다. 설명의 편의상, 30 bits 페이로드 크기를 가정하여 PBCH 전송 방식을 제안한다.
방법 1 ( 1920 bit의 인코딩된 비트 및 N=2048의 폴라 인코더)
1920 bit의 encoded bit를 생성하기 위해서 N=2048인 폴라 인코더를 구성하고, 폴라 인코더에 30 bit를 정보 비트(information bit)에 배치하고, 2018 bit를 frozen bit에 배치하여 폴라 인코딩이 수행되도록 할 수 있다. 폴라 인코더는 인코딩된 2048 bit 중 128 bit를 펑처링(puncturing)하여 1920 bit를 생성한다. 폴라 인코더는 생성된 1920 bit를 4 등분하여 480 bit를 해당 서브프레임에 각각 전송한다. 이때, 각 서브프레임에 전송되는 480 bit block은 동일하지 않은 block이 되도록 하는 것이 바람직하다. 즉, PBCH = PBCH_sub(1) + PBCH_sub(2) + PBCH_sub(3) + PBCH_sub(4)로 표현(PBCH는 4개 서브프레임에서 각각 전송됨)할 때, PBCH_sub(k), k=1, 2, 3, 4는 480 bit 크기로 구성된 인코딩된 데이터 블록(encoded data block)으로 4개의 서브프레임에 전송될 수 있다.
방법 2 ( 1920 bit의 인코딩된 비트 및 N=1024의 폴라 인코더)
1920 bit의 encoded bit를 생성하기 위해서 N=1024인 폴라 인코더를 구성하고, 폴라 인코더에 30 bit를 information bit에 배치하고, 994 bit를 frozen bit에 배치하여 폴라 인코딩이 수행되도록 할 수 있다. 폴라 인코더는 인코딩된 1024 bit 중 64 bit는 펑처링되어 960 bit가 생성되고, 960 bit를 한 번 반복하여 1920 bit를 생성한다. 폴라 인코더는 생성된 1920 bit를 4 등분하여 480 bit를 해당 서브프레임에 각각 전송한다. 즉, PBCH = PBCH_sub(1) + PBCH_sub(2) + PBCH_sub(3) + PBCH_sub(4)로 표현할 때, PBCH_sub(k), k=1, 2, 3, 4는 480 bit로 구성된 인코딩된 데이터 블록으로 4 개의 서브프레임에 전송될 수 있다.
방법 2의 구체적인 방법으로서, PBCH_sub(k), k=1,2,3,4가 240 bit씩 반복된 인코딩된 데이터 블록으로 구성되는 방법 2-1을 제안한다. 방법 2-2로서, PBCH_sub(k) = PBCH_sub(l), PBCH_sub(m) = PBCH_sub(n), (k, l, m, n은 서로 같지 않음)의 관계를 만족하도록 인코딩된 데이터 블록을 구성할 수 있다.
방법 2a
1920 bit의 encoded bit를 생성하기 위해서 N=1024인 폴라 인코더를 구성하고, 폴라 인코더에 30 bit를 information bit에 배치하고, 994 bit를 frozen bit에 배치하여 폴라 인코딩이 수행되도록 할 수 있다. 폴라 인코더는 인코딩된 1024 bit 중 128 bit를 펑처링하여 896 bit를 생성하고, 1024 bit와 896 bit를 연접하여 1920 bit를 생성한다. 폴라 인코더는 생성된 1920 bit를 4 등분하여 480 bit를 해당 서브프레임에 각각 전송한다. 즉, PBCH = PBCH_sub(1) + PBCH_sub(2) + PBCH_sub(3) + PBCH_sub(4)로 표현할 때, PBCH_sub(k), k=1, 2, 3, 4는 480 bit로 구성된 인코딩된 데이터 블록으로 4 개의 서브프레임에 전달될 수 있다.
방법 3 ( 1920 bit의 인코딩된 비트 및 N=512의 폴라 인코더)
1920 bit의 encoded bit를 생성하기 위해서 N=512인 폴라 인코더를 구성하고, 폴라 인코더에 30 bit를 information bit에 배치하고, 482 bit를 frozen bit에 배치하여 폴라 인코딩이 수행되도록 할 수 있다. 폴라 인코더는 인코딩된 512 bit 중 32 bit를 펑처링하여 480 bit를 생성하고, 480 bit를 4 번 반복하여 1920 bit를 생성한다. 폴라 인코더는 생성된 1920 bit를 4 등분하여 480 bit를 해당 서브프레임에 각각 전송한다. 즉, PBCH = PBCH_sub(1) + PBCH_sub(2) + PBCH_sub(3) + PBCH_sub(4) 로 표현할 때, PBCH_sub(k), k=1, 2, 3, 4는 480 bit로 구성된 인코딩된 데이터 블록으로 4개의 서브프레임에 전송될 수 있다. PBCH_sub(k)가 모두 동일하도록 구성할 수 있다.
방법 3a
1920 bit의 encoded bit를 생성하기 위해서 N=512인 폴라 인코더를 구성하고, 폴라 인코더에 30 bit를 information bit에 배치하고, 482 bit를 frozen bit에 배치하여 폴라 코딩이 수행되도록 할 수 있다. 폴라 인코더는 인코딩된 512 bit 중 64 bit를 펑처링하여 448 bit를 생성하고, 512 bit와 448 bit를 연접하여 960 bit를 생성하고 이를 한 번 반복하여 1920 bit를 생성한다. 폴라 인코더는 생성된 1920 bit를 4 등분하여 480 bit를 해당 서브프레임에 각각 전송한다. 즉, PBCH = PBCH_sub(1) + PBCH_sub(2) + PBCH_sub(3) + PBCH_sub(4)로 표현할 때, PBCH_sub(k), k=1, 2, 3, 4는 480 bit로 구성된 인코딩된 데이터 블록으로 4개의 서브프레임에 전송될 수 있다.
방법 3b
1920 bit의 encoded bit를 생성하기 위해서 N=512인 폴라 인코더를 구성하고, 폴라 인코더에 30 bit를 information bit에 배치하고, 482 bit를 frozen bit에 배치하여 폴라 인코딩이 수행되도록 할 수 있다. 폴라 인코더는 인코딩된 512 bit 중 128 bit를 펑처링하여 384 bit를 생성하고, 512 bit를 3번 반복한 1536 bit와 384 bit를 연접하여 1920 bit를 생성한다. 폴라 인코더는 생성된 1920 bit를 4 등분하여 480 bit를 해당 subframe에 각각 전송한다. 즉, PBCH = PBCH_sub(1) + PBCH_sub(2) + PBCH_sub(3) + PBCH_sub(4) 로 표현할 때, PBCH_sub(k), k=1, 2, 3, 4는 480 bit로 구성된 인코딩된 데이터 블록으로 4개의 서브프레임에 전송될 수 있다.
방법 4 ( 1920 bit의 인코딩된 비트 및 N=256의 폴라 인코더)
1920 bit의 encoded bit를 생성하기 위해서 N=256인 폴라 인코더를 구성하고, 폴라 인코더에 30 bit를 information bit에 배치하고, 226 bit를 frozen bit에 배치하여 폴라 인코딩이 수행되도록 할 수 있다. 폴라 인코더는 인코딩된 256 bit 중 16 bit를 puncturing하여 240 bit를 생성하고, 240 bit를 8 번 반복하여 1920 bit를 생성한다. 폴라 인코더는 생성된 1920 bit를 4 등분하여 480 bit를 해당 subframe에 각각 전송한다. 즉, PBCH = PBCH_sub(1) + PBCH_sub(2) + PBCH_sub(3) + PBCH_sub(4) 로 표현할 때, PBCH_sub(k), k=1, 2, 3, 4는 480 bit로 구성된 인코딩된 데이터 블록으로 4개의 서브프레임에 전송될 수 있다. PBCH_sub(k), k=1,2,3,4는 모두 동일하고, 240 bit의 인코딩된 데이터 블록이 반복되도록 구성할 수 있다.
방법 4a
1920 bit의 encoded bit를 생성하기 위해서 N=256인 폴라 인코더를 구성하고, 폴라 인코더에 30 bit를 information bit에 배치하고, 226 bit를 frozen bit에 배치하여 폴라 인코딩이 수행되도록 할 수 있다. Encoding된 256 bit 중 32 bit를 puncturing하여 224 bit를 생성하고, 256 bit와 224 bit를 연접하여 480 bit를 생성한 후 4 번 반복하여 1920 bit를 생성한다. 생성된 1920 bit를 4 등분하여 480 bit를 해당 subframe에 각각 전송한다. 즉, PBCH = PBCH_sub(1) + PBCH_sub(2) + PBCH_sub(3) + PBCH_sub(4) 로 표현할 때, PBCH_sub(k), k=1, 2, 3, 4는 480 bit로 구성된 인코딩된 데이터 블록으로 4 개의 subframe에 전송될 수 있다.
방법 4b
1920 bit의 encoded bit를 생성하기 위해서 N=256인 폴라 인코더를 구성하고, 폴라 인코더에 30 bit를 information bit에 배치하고, 226 bit를 frozen bit에 배치하여 폴라 인코딩을 수행하도록 할 수 있다. 폴라 인코더는 인코딩된 256 bit 중 128 bit를 펑처링하여 128 bit를 생성하고, 256 bit를 7번 반복한 1792 bit와 128 bit를 연접하여 1920 bit를 생성한다. 폴라 인코더는 생성된 1920 bit를 4 등분하여 480 bit를 해당 서브프레임에 각각 전송한다. 즉, PBCH = PBCH_sub(1) + PBCH_sub(2) + PBCH_sub(3) + PBCH_sub(4)로 표현할 때, PBCH_sub(k), k=1, 2, 3, 4는 480 bit로 구성된 인코딩된 데이터 블록으로 4개의 서브프레임에 전송될 수 있다.
방법 5 ( 1920 bit의 인코딩된 비트 및 N=128의 폴라 인코더)
1920 bit의 encoded bit를 생성하기 위해서 N=128인 폴라 인코더를 구성하고, 폴라 인코더에 30 bit를 information bit에 배치하고, 98 bit를 frozen bit에 배치하여 폴라 인코딩이 수행되도록 할 수 있다. 폴라 인코더는 인코딩된 120 bit 중 8 bit를 puncturing하여 120 bit를 생성하고, 120 bit를 16 번 반복하여 1920 bit를 생성한다. 폴라 인코더는 생성된 1920 bit를 4 등분하여 480 bit를 해당 서브프레임에 각각 전송한다. 즉, PBCH = PBCH_sub(1) + PBCH_sub(2) + PBCH_sub(3) + PBCH_sub(4) 로 표현할 때, PBCH_sub(k), k=1, 2, 3, 4는 480 bit로 구성된 인코딩된 데이터 블록으로 4 개의 subframe에 전송될 수 있다. PBCH_sub(k), k=1,2,3,4는 모두 동일하고, 120 bit의 인코딩된 데이터 블록이 반복되도록 구성할 수 있다.
방법 5a
1920 bit의 encoded bit를 생성하기 위해서 N=128인 폴라 인코더를 구성하고, 30 bit를 information bit에 배치하고, 98 bit를 frozen bit에 배치하여 폴라 인코딩이 수행되도록 할 수 있다. 폴라 인코더는 인코딩된 128 bit 중 16 bit를 펑처링하여 112 bit를 생성하고, 128 bit와 112 bit를 연접하여 240 bit를 생성한 후 8번 반복하여 1920 bit를 생성한다. 폴라 인코더는 생성된 1920 bit를 4 등분하여 480 bit를 해당 서브프레임에 각각 전송한다. 즉, PBCH = PBCH_sub(1) + PBCH_sub(2) + PBCH_sub(3) + PBCH_sub(4) 로 표현할 때, PBCH_sub(k), k=1, 2, 3, 4는 480 bit로 구성된 인코딩된 데이터 블록으로 4개의 서브프레임에 전송될 수 있다.
방법 5b
1920 bit의 encoded bit를 생성하기 위해서 N=128인 폴라 인코더를 구성하고, 폴라 인코더에 30 bit를 information bit에 배치하고, 98 bit를 frozen bit에 배치하여 폴라 인코딩이 수행되도록 할 수 있다. 인코딩된 128 bit를 15번 반복하여 1920 bit를 생성한다. 폴라 인코더는 생성된 1920 bit를 4 등분하여 480 bit를 해당 서브프레임에 각각 전송한다. 즉, PBCH = PBCH_sub(1) + PBCH_sub(2) + PBCH_sub(3) + PBCH_sub(4) 로 표현할 때, PBCH_sub(k), k=1, 2, 3, 4는 480 bit로 구성된 인코딩된 데이터 블록으로 4개의 서브프레임에 전송될 수 있다.
방법 6
폴라 인코더의 mother code size를 N이라 하고, PBCH = PBCH_sub(1) + PBCH_sub(2) + PBCH_sub(3) + PBCH_sub(4)로 표현할 때, PBCH_sub(k), k=1, 2, 3, 4를 모두 동일하게 하여 전송할 수 있다. 각각의 PBCH_sub(k)는 PBCH의 정보 크기 및 N에 따라서 레이트 매칭(rate matching) (예를 들어, 펑처링 또는 반복)하여 생성한다. 예를 들어, PBCH 코딩된 bit를 3072 bit라 가정하고, N=512, 정보 크기를 64라 하면, 각각의 PBCH_sub(k)에서 768 bit가 전송되게 되고, 512 bit와 그 중에서 256 bit를 선택한 후 연접시켜 생성된 768 bit가 전송될 수 있다.
방법 6-1
PBCH 전송을 위해 2개의 OFDM 심볼을 이용할 때, 서브프레임 k에서 전송되는 PBCH (PBCH_sub(k))는 각각의 OFDM 심볼에 동일하도록 생성하여 전송할 수 있다. 예를 들어, PBCH coded bit를 3072 bit라 가정하고, N=512, 정보 크기를 64라 가정하면, 각각의 PBCH_sub(k)에서 768 bit가 전송되게 되는데, 두 OFDM 심볼에서 각각 384 bit를 전송함에 있어서, 통신 장치는 512 bit에서 128 bit를 펑처링하여 384 bit를 생성한 후 각각의 OFDM 심볼에서 전송할 수 있다.
방법 6-2
PBCH 전송을 위해 2개의 OFDM 심볼을 이용할 때, PBCH_sub(k)는 각각의 OFDM 심볼에 동일하지 않도록 생성하여 전송할 수 있다. PBCH coded bit를 3072 bit라 가정하고, N=512, 정보 크기를 64라고 가정하면, 각각의 PBCH_sub(k)에서 768 bit가 전송되게 되는 데, 두 OFDM 심볼에서 각각 384 bit를 전송함에 있어서, 통신 장치는 512 bit와 그 중에서 256 bit를 선택한 후 연접시켜서 768 bit를 생성하여 전송할 수 있다.
방법 7
폴라 인코더의 mother code size를 N이라 하고, PBCH = PBCH_sub(1) + PBCH_sub(2) + PBCH_sub(3) + PBCH_sub(4) 로 표현할 때, 통신 장치는 PBCH_sub(k) (k=1, 2, 3, 4)에서 적어도 2개의 동일하지 않은 PBCH_sub(k)가 되도록 생성하여 PBCH를 전송할 수 있다. 예를 들어, PBCH coded bit를 3072 bit라 가정하고, N=512, 정보 크기를 64라 가정하면, 각각의 PBCH_sub(k)에서 768 bit가 전송되게 되고, 통신 장치는 512 bit와 그 중에서 256 bit를 선택한 후 연접시켜서 768 bit를 생성하여 전송할 수 있다. PBCH_sub(k+1)에서 768 bit를 전송하게 되는 데, 통신 장치는 512 bit와 PBCH_sub(k) 생성 시에 선택하지 않았던 256 bit를 선택하여 연접시켜서 768 bit를 생성하여 전송할 수 있다.
요약하면, PBCH= PBCH_sub(1) + PBCH_sub(2) + PBCH_sub(3) + PBCH_sub(4)로 표현하고 PBCH_sub(k), k=1,2,3,4 (여기서 '+'는 연접을 의미한다). PBCH_sub(k)를 전송하는 OFDM 심볼에 전송되는 PBCH coded bit를 PBCH_sub(k_m), k_m=0, 1이라 하면 다음과 같은 전송 방식을 고려할 수 있다.
전송 방식 1: PBCH_sub(k)는 동일하고, PBCH_sub(k_m)은 동일한 PBCH 전송 방식.
전송 방식 2: PBCH_sub(k)는 동일하고, PBCH_sub(k_m)은 동일하지 않은 PBCH 전송 방식.
전송 방식 3: PBCH_sub(k)는 적어도 2개 이상 동일하지 않고, PBCH_sub(k_m)은 동일한 PBCH 전송 방식.
전송 방식 4: PBCH_sub(k)는 적어도 2개 이상 동일하지 않고, PBCH_sub(k_m)은 동일하지 않은 PBCH 전송 방식.
도 15는 상기 방법 1 내지 방법 5에 따른 성능을 비교한 도면이다.
도 15를 참조하면, 방법 1과 방법 2의 성능이 유사함을 알 수 있다. 방법 2가 폴라 인코더의 mother code size가 작기 때문에 디코더의 복잡도 측면에서 방법 1에 보다 유리하다. 따라서, 방법 1과 같이 PBCH를 전송하는 방식이 성능 및 복잡도 측면에서 유리할 수 있다.
도 16은 NR(New RAT) 시스템에서의 동기 신호를 전송 방식을 도시한 도면이다.
도 16을 참조하면, NR 시스템에서 PBCH는 SS (Synchronization Signal or Synchronization Sequence) burst 내의 SS block 내에 전송될 수 있다. 이때, SS burst 내에는 다수 개의 SS block이 존재할 수 있고, 각각의 SS block은 특정 빔에 한정될 수 있다. 이때, 단말은 PBCH가 SS burst 내의 어느 SS block에 속하는 지에 대한 정보 (예를 들어, SS block 인덱스)를 검출하여야 한다. 단말이 두 빔들의 경계에 위치하는 경우 SS block을 컴바이닝(combining)하게 되면 PBCH의 검출 성능을 향상시킬 수 있다. 다만, 기지국은 단말이 PBCH를 수신할 수 있도록 하기 위하여 단말에게 SS block 인덱스를 지시해 줄 수 있다. SS block 인덱스를 지시하는 방법은 다음과 같다.
방법 8
기지국은 SS block 인덱스 해당하는 정보와 스크램블링 시퀀스(scrambling sequence)를 맵핑하여 PBCH encoded bit에 스크램블링하여 전송할 수 있다. 단말은 수신된 PBCH에 특정 SS block 인덱스를 가정하여 생성된 스크램블링 시퀀스를 이용하여 디스크램블링(descrambling) 한 후 PBCH 디코딩을 수행하여 CRC를 이용하여 오류 여부를 확인한다. 만약, 오류가 발생하였다면 단말은 이전과 다른 SS block 인덱스를 가정한 스크램블링 시퀀스로 다시 디스크램블링 후 디코딩을 수행하여 오류 여부를 확인할 수 있다. 이와 같은 동작은 모든 SS block 인덱스에 대한 스크램블링 시퀀스로 디스크램블링 후 디코딩을 수행하는데, 오류가 발생하지 않을 때까지 계속한다. 단말은 디스크램블링을 수행하게 되면 SS block에 전송되는 신호의 정보 데이터가 동일한 경우의 encoded bit에 해당하기 때문에 컴바이닝(combining)이 가능할 수 있다.
방법 9
기지국은 SS block 인덱스에 해당하는 정보와 다른 PBCH 정보를 함께 폴라 인코딩을 수행한다. 단말은 아래와 같은 동작을 통하여 컴바이닝을 포함한 디코딩을 수행할 수 있다. PBCH를 폴라 인코딩할 때 CRC를 포함시키는 것을 가정한다.
Step 1: SS block 인덱스 및/또는 CRC (SS block 인덱스만을 이용하여 생성)를 information bit으로 가정하고 폴라 인코딩이 수행될 수 있다.
Step 2: 단말은 Step 1에서 생성한 encoded bit와 수신한 encoded bit에 대해서 XOR 연산 동작을 수행한다. Bipolar 신호를 가정하면 step 1에서 생성한 encoded bit와 수신한 신호가 동일한 부호이면 수신한 encoded bit의 부호만 음수로 바꾸고, 동일하지 않은 부호이면 수신한 신호의 부호만 양수로 바꾼다. 상기 XOR 동작을 수행하게 되면 SS block 인덱스에 의한 encoded bit 영향이 없어지게 되므로 단말은 디코딩을 통하여 SS block 인덱스를 제외한 나머지 information bit를 획득할 수 있다.
Step 3: 단말은 Step 2에서 동작을 수행한 후 얻은 신호에 대해서 폴라 디코딩을 수행할 수 있다. 단말은 디코딩을 수행한 후, CRC를 이용하여 오류 여부를 확인한다.
Step 4: 오류가 발생하지 않았을 경우에는 단말은 PBCH 디코딩을 성공적으로 수행한 것으로 가정하고, 오류가 발생한 경우, 다음과 같은 동작을 고려할 수 있다.
Step 4-1: 단말은 다른 SS block 인덱스를 가정하고, step 1부터 다시 동작을 반복한다.
Step 4-2: 단말은 다른 SS block 인덱스를 가정하고, step 1부터 반복하되 Step 3의 디코딩 수행 전에 이전의 SS block 인덱스에 대한 step 2 동작 수행 후 얻은 수신 신호와 컴바이닝을 수행한 뒤 디코딩을 수행할 수 있다.
방법 9에서 SS block 인덱스와 다른 PBCH 정보에 대해서 SS block 인덱스 정보는 다른 PBCH 정보에 비해 신뢰도(reliability)가 떨어지는 information bit location에 위치시킨 후 폴라 인코딩을 수행할 수 있다. 상기 방법 9의 step 3에서 얻은 수신 신호는 SS block 인덱스에 대한 정보가 제거된 상태이기 때문에, 단말은 디코딩시 해당 정보는 이미 알고 있는 정보로 간주하여 디코딩을 수행할 수 있다. 따라서, 다른 PBCH information bit를 reliability가 좋은 bit 위치부터 순차적으로 배치한 후, SS block 인덱스 정보를 배치하게 되면, 최적의 성능을 얻을 수 있다. 실제로 단말은 SS block 인덱스에 대한 정보는 step 2에서 가정하여, step 3의 디코딩시 이미 알고 있는 정보로 간주하여 디코딩을 수행할 수 있다.
PBCH의 한 전송 주기 내에서 전송 방식은 주파수 대역 및 subcarrier spacing에 따라 다를 수 있다. 예를 들어, 3 GHz 이하의 주파수 대역에서는 4번의 PBCH 전송 기회를 가질 수 있고, 3 GHz에서 6 GHz 사이의 주파수 대역에서는 8번의 PBCH 전송 기회를 가질 수 있고, 6 GHz 이상의 주파수 대역에서는 64번의 PBCH 전송 기회를 가질 수 있다. 4번의 전송 기회를 갖는 경우는 앞서 언급한 방법 1에서 방법 7까지의 전송 방식을 채용할 수 있다. 8번의 전송 기회를 갖는 경우 다음과 같은 방법을 고려할 수 있다.
방법 10
방법 10은 3GHz와 동일한 4개의 리던던시 버전(redundancy version)을 가정하는 방법이다. 즉, PBCH = PBCH_sub(1) + PBCH_sub(2) + … + PBCH_sub(7) + PBCH_sub(8)이다. 이때, PBCH_sub(k) (k=1,..,8)는 k번째 PBCH 전송 순간에 전송되는 encoded bit를 나타낸다.
방법 10-1
방법 10-1은 PBCH_sub(k) = PBCH_sub((k+4) mod 4)의 관계를 만족하도록 전송하는 방법이다. 즉, PBCH_sub(1), PBCH_sub(2), PBCH_sub(3), PBCH_sub(4), PBCH_sub(1), PBCH_sub(2), PBCH_sub(3), PBCH_sub(4)의 순서로 전송되는 방법이다.
방법 10-2
방법 10-2는 PBCH_sub(k)를 2번씩 연달아서 반복하여 PBCH coded bit를 전송하는 방법이다. 즉, PBCH_sub(1), PBCH_sub(1), PBCH_sub(2), PBCH_sub(2), PBCH_sub(3), PBCH_sub(3), PBCH_sub(4), PBCH_sub(4)의 순서로 전송되는 방법이다.
방법 11
방법 11은 PBCH_sub(k) = PBCH_sub(1)의 관계를 만족하도록 전송하는 방법이다. 방법 11에 따르면, PBCH_sub(1)가 8번 전송된다.
한편, 64번의 전송 기회를 갖는 경우 다음과 같은 방식을 고려할 수 있다.
방법 12
방법 12는 3GHz와 동일한 4개의 리던던시 버전을 가정하는 방법이다. 즉, PBCH = PBCH_sub(1) + PBCH_sub(2) + PBCH_sub(3) + PBCH_sub(64). 이때, PBCH_sub(k) (k=1,..,8)는 k번째 PBCH 전송 순간에 전송되는 encoded bit이다.
방법 12-1
기지국은 PBCH_sub(1), PBCH_sub(2), PBCH_sub(3), PBCH_sub(4)를 각각 16번씩 연달아서 반복하여 PBCH coded bit가 전송되도록 할 수 있다. 예를 들어, 기지국은 PBCH_sub(1),…, PBCH_sub(1), PBCH_sub(2), …, PBCH_sub(2), PBCH_sub(3), …., PBCH_sub(3), PBCH_sub(4),…., PBCH_sub(4)의 순서로 전송하는 것이다.
방법 12-2
기지국은 PBCH_sub(1), PBCH_sub(2), PBCH_sub(3), PBCH_sub(4)를 각각 8번씩 연달아서 반복하여 PBCH coded bit를 전송한 후 같은 순서로 다시 한번 반복 전송할 수 있다. 예를 들어, 기지국은 PBCH_sub(1),…, PBCH_sub(1), PBCH_sub(2), …, PBCH_sub(2), PBCH_sub(3), …., PBCH_sub(3), PBCH_sub(4),…., PBCH_sub(4)의 순서로 전송한 후 같은 순서로 한 번 더 반복 전송할 수 있다.
방법 12-3
기지국은 PBCH_sub(1), PBCH_sub(2), PBCH_sub(3), PBCH_sub(4)를 각각 4번씩 연달아서 반복하여 PBCH coded bit를 전송한 후 같은 순서로 다시 3회 반복 전송할 수 있다. 예를 들어, 기지국은 PBCH_sub(1),…, PBCH_sub(1), PBCH_sub(2), …, PBCH_sub(2), PBCH_sub(3), …., PBCH_sub(3), PBCH_sub(4),…., PBCH_sub(4)의 순서로 순서로 전송한 후 같은 순서로 3회 더 반복 전송할 수 있다.
방법 12-4
기지국은 PBCH_sub(1), PBCH_sub(2), PBCH_sub(3), PBCH_sub(4)를 각각 2번씩 연달아서 반복하여 PBCH coded bit를 전송한 후 같은 순서로 다시 7회 반복 전송할 수 있다. 예를 들어, 기지국은 PBCH_sub(1),…, PBCH_sub(1), PBCH_sub(2), …, PBCH_sub(2), PBCH_sub(3), …., PBCH_sub(3), PBCH_sub(4),…., PBCH_sub(4)의 순서로 전송한 후 같은 순서로 7회 더 반복 전송할 수 있다.
방법 12-5
기지국은 PBCH_sub(1), PBCH_sub(2), PBCH_sub(3), PBCH_sub(4)를 순서대로 모두 전송한 후, 같은 순서로 15회 더 전송할 수 있다. 예를 들어, 기지국은 PBCH_sub(1), PBCH_sub(2), PBCH_sub(3), PBCH_sub(4), PBCH_sub(1), PBCH_sub(2), PBCH_sub(3), PBCH_sub(4)의 순서로 16회 전송할 수 있다.
방법 13
기지국은 PBCH_sub(k) = PBCH_sub(1)의 관계를 만족하도록 PBCH를 전송할 수 있다. 즉, 기지국은 PBCH_sub(1)를 64번 전송할 수 있다.
실시 예로서, PBCH 정보 블록 크기(CRC 길이 포함)를 48 bit, 폴라 코드의 mother code rate를 1/8, 폴라 코드의 mother code size를 512, 한 SS/PBCH block에서 전송 가능한 RE(Resource Element)의 수를 384로 가정하면, QPSK 변조 방식을 적용했을 때, 기지국은 하나의 SS/PBCH block에서 768 bit를 전송할 수 있다. 기지국은 PBCH 정보 블록에 대해서 1/8 폴라 코딩을 수행하여 48*8=384 bit를 생성할 수 있는데, mother code size에서 128 bit를 펑처링하여 얻을 수 있다. 그러나, 하나의 PBCH 전송 시점에 768 bit를 전송할 수 있기 때문에 다음 도 17과 같이 768 bit를 생성할 수 있다.
도 17a 및 도 17b는 4번의 전송 기회를 가질 경우 PBCH 전송 방식의 실시예를 도시한 도면이고, 도 18a, 도 18b 및 도 18c는 8번의 전송 기회를 가질 때, PBCH 전송 방식의 실시예를 나타낸 도면이다.
도 17a 및 도 17b에서 해칭 모양으로 구분된 셀은 128 bit 길이의 coded bit의 일부를 나타내며, PBCH_sub(k) (k=1, 2, 3, 4)는 4번의 PBCH 전송 시점에 전송되는 coded bit를 나타낸다.
폴라 인코더는 특성 상 encoded code block의 크기가 2n(n은 자연수)으로 제한되어 있어서, 시스템의 transmission numerology에 따라서 펑처링 또는 반복의 레이트 매칭 동작이 필요하게 된다. 상위 레이어에서 생성되는 데이터 페이로드 (CRC 포함)에 대해서 인코딩한 코드워드의 크기가 2n<N <2n+1의 관계를 만족한다고 가정한다. 상위 레이어 데이터 뿐만 아니라 제어 채널을 통해서 전송되는 페이로드(예를 들어, DCI, UCI) 에도 동일한 방식이 적용될 수 있다.
이때, 코드워드 크기의 임계 값(THR1)이 존재하여 그 값 보다 크게 되는 경우, 2n+1 크기의 mother polar encoder로 인코딩을 수행한 후, 2n+1-N bit 만큼 펑처링을 통하여 코드워드 크기 N의 encoded bit 열을 만든다. 이때, 데이터 페이로드 크기 K > 2n의 관계를 만족하는 것이 바람직하다. 한편, 데이터 페이로드의 크기가 임계값(THR2)보다 작게 되는 경우, 2n 크기의 mother polar encoder로 인코딩을 수행한 후, N-2n bit 만큼 반복(repetition)을 통하여 encoded code block 크기 N의 encoded bit 열을 만든다. 이때, 데이터 페이로드 크기 K < 2n의 관계를 만족하는 것이 바람직하다.
THR1과 THR2는 서로 다른 값일 수 있다. 이때, THR1/THR2와 같은 임계값은 n에 따라서 서로 다른 값일 수 있다. 예를 들어, 코드워드 길이 200인 경우, 27 < 200 < 28의 관계를 만족하므로 폴라 인코더는 길이 128의 폴라 코드로부터 반복을 하거나 길이 256의 폴라 코드로부터 펑처링을 하여 길이 200인 코드워드를 생성할 수 있다. 그런데, THR1=THR2=192로 가정하면 200 > 192이므로 폴라 인코더는 길이 256의 폴라 코드로부터 펑처링하여 길이 200인 코드워드를 생성할 수 있다.
다른 방법으로, n≤nc 일 때는 폴라 인코더는 항상 2n+1 크기의 mother code에서 펑처링으로 코드워드를 생성하고, n > nc 일 때는 위의 THR1/THR2와 같은 임계값에 따라서 펑처링 또는 반복을 이용하여 코드워드를 생성할 수도 있다.
도 19에서 설명하는 장치는 도 1 내지 도 18에서 설명한 방법들이 구현될 수 있는 수단이다.
단말은 상향링크에서는 송신 측으로 동작하고, 하향링크에서는 수신 측으로 동작할 수 있다. 또한, 기지국은 상향링크에서는 수신 측으로 동작하고, 하향링크에서는 송신 측으로 동작할 수 있다.
즉, 단말 및 기지국은 정보, 데이터 및/또는 메시지의 전송 및 수신을 제어하기 위해 각각 송신기(1540, 1550) 및 수신기(1550, 1570)를 포함할 수 있으며, 정보, 데이터 및/또는 메시지를 송수신하기 위한 안테나(1500, 1510) 등을 포함할 수 있다.
또한, 단말 및 기지국은 각각 상술한 본 발명의 실시예들을 수행하고 제어하기 위한 프로세서(1520, 1530)와 프로세서의 처리 과정을 임시적으로 또는 지속적으로 저장할 수 있는 메모리(1580, 1590)를 각각 포함할 수 있다.
프로세서(1520, 1530)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(155, 180)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(1520, 1530)에 구비될 수 있다.
한편, 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(1520, 1530) 내에 구비되거나 메모리(1580, 1590)에 저장되어 프로세서(1520, 1530)에 의해 구동될 수 있다.
본 명세서에서 단말의 프로세서(1520)와 기지국의 프로세서(1530)는 각각 단말 및 기지국이 신호를 수신하거나 송신하는 기능 및 저장 기능 등을 제외하고, 신호 및 데이터를 처리하는 동작을 수행하지만, 설명의 편의를 위하여 특별히 프로세서(1520, 1530)를 언급하지 않는다. 특별히 프로세서(1520, 1530)의 언급이 없었더라도 신호를 수신하거나 송신하는 기능 및 저장 기능이 아닌 데이터 처리 등의 일련의 동작들을 수행한다고 할 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
PBCH 인코딩 및 전송을 위한 방법과 이를 위한 통신 장치는 3GPP LTE/LTE-A 시스템, 5G 통신 시스템 등과 같은 다양한 무선통신 시스템에서 산업상으로 이용이 가능하다.

Claims (10)

  1. 기지국이 물리 방송 채널(Physcial Broadcast CHannel, PBCH)를 전송하는 방법에 있어서,
    폴라 코드(pola code)를 이용하여 PBCH 전송을 위한 소정 서브프레임의 2개의 심볼 각각에 대해 동일한 인코딩된 데이터 비트를 생성하는 단계; 및
    상기 생성된 동일한 인코딩된 데이터 비트를 상기 소정 서브프레임의 2개의 심볼 각각에서 상기 PBCH를 통해 전송하는 단계를 포함하는, PBCH 전송 방법.
  2. 제 1항에 있어서,
    상기 생성 단계는 상기 PBCH의 정보 크기와 폴라 인코더의 마더 코드 크기(mother code size)의 크기에 기초하여 상기 동일한 인코딩된 데이터 비트를 생성하는 단계를 포함하는, PBCH 전송 방법.
  3. 제 1항에 있어서,
    상기 생성 단계는,
    폴라 인코더의 마더 코드 크기가 상기 2개의 심볼 각각에서 전송된 동일한 인코딩된 데이트 비트의 크기 보다 큰 경우에, 상기 마더 코드 크기의 생성된 인코딩된 데이터 비트에서 상기 마더 코드 크기와 상기 동일한 인코딩된 데이터 비트의 크기 간의 차이에 해당하는 크기만큼의 비트를 펑처링(puncturing)하여 상기 동일한 인코딩된 데이터 비트를 생성하는 단계를 포함하는, PBCH 전송 방법.
  4. 제 2항에 있어서,
    상기 폴라 인코더의 마더 코드 크기는 512이고, 상기 동일한 인코딩된 데이트 비트의 크기는 384인, PBCH 전송 방법.
  5. 단말이 물리 방송 채널(Physcial Broadcast CHannel, PBCH)를 수신하는 방법에 있어서,
    생성된 동일한 인코딩된 데이터 비트를 소정 서브프레임의 2개의 심볼 각각에서 상기 PBCH를 통해 수신하는 단계를 포함하되,
    상기 생성된 인코딩된 데이터 비트는 폴라 코드(pola code)를 이용하여 PBCH 전송을 위한 상기 소정 서브프레임의 2개의 심볼 각각에 대해 생성된 것인, PBCH 수신 방법.
  6. 물리 방송 채널(Physcial Broadcast CHannel, PBCH)를 전송하기 위한 기지국에 있어서,
    폴라 코드(pola code)를 이용하여 PBCH 전송을 위한 소정 서브프레임의 2개의 심볼 각각에 대해 동일한 인코딩된 데이터 비트를 생성하도록 구성된 폴라 인코더; 및
    상기 생성된 동일한 인코딩된 데이터 비트를 상기 소정 서브프레임의 2개의 심볼 각각에서 상기 PBCH를 통해 전송하도록 구성된 송신기를 포함하는, 기지국.
  7. 제 6항에 있어서,
    상기 폴라 인코더는 상기 PBCH의 정보 크기와 폴라 인코더의 마더 코드 크기(mother code size)의 크기에 기초하여 상기 동일한 인코딩된 데이터 비트를 생성하도록 구성되는, 기지국.
  8. 제 6항에 있어서,
    상기 폴라 인코더의 마더 코드 크기가 상기 2개의 심볼 각각에서 전송된 동일한 인코딩된 데이트 비트의 크기 보다 큰 경우에, 상기 폴라 인코더는 상기 마더 코드 크기의 생성된 인코딩된 데이터 비트에서 상기 마더 코드 크기와 상기 동일한 인코딩된 데이터 비트의 크기 간의 차이에 해당하는 크기만큼의 비트를 펑처링(puncturing)하여 상기 동일한 인코딩된 데이터 비트를 생성하도록 구성되는, 기지국.
  9. 제 7항에 있어서,
    상기 폴라 인코더의 마더 코드 크기는 512이고, 상기 동일한 인코딩된 데이트 비트의 크기는 384인, 기지국.
  10. 단말이 물리 방송 채널(Physcial Broadcast CHannel, PBCH)를 수신하는 방법에 있어서,
    수신기; 및
    상기 수신기가 생성된 동일한 인코딩된 데이터 비트를 소정 서브프레임의 2개의 심볼 각각에서 상기 PBCH를 통해 수신하도록 제어하는 프로세서를 포함하되,
    상기 생성된 인코딩된 데이터 비트는 폴라 코드(pola code)를 이용하여 PBCH 전송을 위한 상기 소정 서브프레임의 2개의 심볼 각각에 대해 생성된 것인, 단말.
PCT/KR2018/000015 2017-01-03 2018-01-02 Pbch 인코딩 및 전송을 위한 방법과 이를 위한 통신 장치 WO2018128341A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/475,625 US10931311B2 (en) 2017-01-03 2018-01-02 Method for encoding and transmitting PBCH and communication device therefor

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201762441595P 2017-01-03 2017-01-03
US62/441,595 2017-01-03
US201762479407P 2017-03-31 2017-03-31
US62/479,407 2017-03-31
US201762518526P 2017-06-12 2017-06-12
US62/518,526 2017-06-12
US201762538049P 2017-07-28 2017-07-28
US62/538,049 2017-07-28

Publications (1)

Publication Number Publication Date
WO2018128341A1 true WO2018128341A1 (ko) 2018-07-12

Family

ID=62789528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000015 WO2018128341A1 (ko) 2017-01-03 2018-01-02 Pbch 인코딩 및 전송을 위한 방법과 이를 위한 통신 장치

Country Status (2)

Country Link
US (1) US10931311B2 (ko)
WO (1) WO2018128341A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831171A (zh) * 2018-08-09 2020-02-21 中国移动通信有限公司研究院 传输资源确定方法及装置、电子设备及存储介质

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11356202B2 (en) * 2016-09-28 2022-06-07 Idac Holdings, Inc. Efficient broadcast channel in beamformed systems for NR
EP3566372A1 (en) * 2017-01-06 2019-11-13 IDAC Holdings, Inc. Physical broadcast channel, initial uplink transmission and system acquisition associated with new radio
JP6802296B2 (ja) 2017-02-03 2020-12-16 株式会社Nttドコモ 端末、無線通信方法及び基地局
CN116390235A (zh) 2017-02-07 2023-07-04 创新技术实验室株式会社 用于通信系统的广播信道配置和广播信道传输和接收的方法和装置
KR20180107686A (ko) * 2017-03-22 2018-10-02 삼성전자주식회사 무선 셀룰라 통신 시스템에서 상향 제어 채널 전송 방법 및 장치
CN108809393A (zh) * 2017-04-27 2018-11-13 电信科学技术研究院 一种波束控制方法和装置
US11160050B2 (en) * 2018-03-28 2021-10-26 Samsung Electronics Co., Ltd. Method and apparatus for supporting large subcarrier spacing for SS/PBCH block
US11395270B2 (en) * 2018-04-27 2022-07-19 Qualcomm Incorporated Uplink control information payload size
US10959202B2 (en) * 2019-05-17 2021-03-23 Qualcomm Incorporated Fast timing acquisition for discontinuous reception (DRX)
US11496924B2 (en) * 2019-07-02 2022-11-08 Qualcomm Incorporated Medium access control (MAC) protocol data unit (MPDU) and codeword alignment and validation
CN115695123A (zh) * 2021-07-23 2023-02-03 华为技术有限公司 一种广播方法以及通信设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140077492A (ko) * 2012-12-14 2014-06-24 삼성전자주식회사 Crc 부호와 극 부호에 의한 부호화 방법 및 장치
KR20160054490A (ko) * 2013-10-22 2016-05-16 엘지전자 주식회사 기계타입통신을 지원하는 무선접속시스템에서 방송채널 송신 방법 및 이를 지원하는 장치
US20160182187A1 (en) * 2013-08-20 2016-06-23 Lg Electronics Inc. Method for transmitting data by using polar coding in wireless access system
US20160241357A1 (en) * 2015-02-13 2016-08-18 Samsung Electronics Co., Ltd. Transmitter and additional parity generating method thereof
US20160248547A1 (en) * 2013-11-04 2016-08-25 Huawei Technologies Co., Ltd. Rate matching method and apparatus for polar codes, and wireless communication device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10666397B2 (en) * 2016-04-01 2020-05-26 Mediatek Inc. Method and apparatus for control signaling
US10432234B2 (en) * 2016-07-19 2019-10-01 Mediatek Inc. Low complexity rate matching for polar codes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140077492A (ko) * 2012-12-14 2014-06-24 삼성전자주식회사 Crc 부호와 극 부호에 의한 부호화 방법 및 장치
US20160182187A1 (en) * 2013-08-20 2016-06-23 Lg Electronics Inc. Method for transmitting data by using polar coding in wireless access system
KR20160054490A (ko) * 2013-10-22 2016-05-16 엘지전자 주식회사 기계타입통신을 지원하는 무선접속시스템에서 방송채널 송신 방법 및 이를 지원하는 장치
US20160248547A1 (en) * 2013-11-04 2016-08-25 Huawei Technologies Co., Ltd. Rate matching method and apparatus for polar codes, and wireless communication device
US20160241357A1 (en) * 2015-02-13 2016-08-18 Samsung Electronics Co., Ltd. Transmitter and additional parity generating method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831171A (zh) * 2018-08-09 2020-02-21 中国移动通信有限公司研究院 传输资源确定方法及装置、电子设备及存储介质

Also Published As

Publication number Publication date
US20190326934A1 (en) 2019-10-24
US10931311B2 (en) 2021-02-23

Similar Documents

Publication Publication Date Title
WO2018128341A1 (ko) Pbch 인코딩 및 전송을 위한 방법과 이를 위한 통신 장치
WO2017043878A1 (ko) 협대역 사물인터넷을 지원하는 무선 접속 시스템에서 하향링크 물리 방송 채널 수신 방법 및 장치
WO2016122268A1 (ko) 협대역 사물인터넷을 지원하는 무선 접속 시스템에서 공용 제어 메시지를 송수신하는 방법 및 장치
WO2017160100A2 (ko) 무선 통신 시스템에서 제어 정보를 송수신 하는 방법 및 이를 위한 장치
WO2017057984A1 (ko) 협대역 사물인터넷을 지원하는 무선 접속 시스템에서 주동기신호 송수신 방법 및 장치
WO2016114626A1 (ko) 기계타입통신을 지원하는 무선접속시스템에서 공용 제어 메시지를 송수신하는 방법 및 장치
WO2017018761A1 (ko) 제어 정보 수신 방법 및 사용자기기와, 제어 정보 수신 방법 및 기지국
WO2016182274A1 (ko) 기계타입통신을 지원하는 무선 접속 시스템에서 기계타입통신 단말을 위해 정의되는 전송블록크기를 이용한 데이터를 송수신하는 방법 및 장치
WO2017135696A1 (ko) 무선 통신 시스템에서의 단말의 데이터 수신 방법
WO2016163802A1 (ko) 비면허 대역을 지원하는 무선접속시스템에서 cca를 수행하는 방법 및 이를 지원하는 장치
WO2017052199A1 (en) Method and user equipment for receiving downlink control information, and method and base station for transmitting downlink control information
WO2016018079A1 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2014185673A1 (ko) 캐리어 타입을 고려한 통신 방법 및 이를 위한 장치
WO2014051254A1 (ko) 상향링크 전송 방법 및 장치
WO2017057986A1 (ko) 협대역 사물인터넷을 지원하는 무선 접속 시스템에서 부동기신호 송수신 방법 및 장치
WO2016018125A1 (ko) 비면허대역을 지원하는 무선접속시스템에서 전송 기회 구간을 설정하는 방법 및 장치
WO2016036097A1 (ko) 비면허대역을 지원하는 무선접속시스템에서 채널상태측정 및 보고 방법
WO2015102281A1 (ko) 복수의 파라미터 조합에 따른 랜덤 액세스 절차를 수행하는 방법 및 mtc 기기
WO2016129900A1 (ko) 기계타입통신을 지원하는 무선접속시스템에서 물리방송채널을 송수신하는 방법 및 장치
WO2015083997A1 (ko) 커버리지 확장을 위한 랜덤 액세스 절차를 수행하는 방법 및 mtc 기기
WO2014123379A1 (ko) 신호의 송수신 방법 및 이를 위한 장치
WO2013180521A1 (ko) 제어 신호 송수신 방법 및 이를 위한 장치
WO2019160363A1 (ko) 하향링크 데이터 채널을 송수신하는 방법 및 이를 위한 장치
WO2013043024A1 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
WO2016126142A1 (ko) 시스템 정보를 수신하는 방법 및 사용자기기와, 시스템 정보를 전송하는 방법 및 기지국

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18736441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18736441

Country of ref document: EP

Kind code of ref document: A1