WO2018128136A1 - Xenon adsorbent - Google Patents

Xenon adsorbent Download PDF

Info

Publication number
WO2018128136A1
WO2018128136A1 PCT/JP2017/046790 JP2017046790W WO2018128136A1 WO 2018128136 A1 WO2018128136 A1 WO 2018128136A1 JP 2017046790 W JP2017046790 W JP 2017046790W WO 2018128136 A1 WO2018128136 A1 WO 2018128136A1
Authority
WO
WIPO (PCT)
Prior art keywords
xenon
zeolite
silver
adsorbent
kpa
Prior art date
Application number
PCT/JP2017/046790
Other languages
French (fr)
Japanese (ja)
Inventor
平野 茂
敬助 徳永
岡庭 宏
めぐ 福井
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to US16/475,226 priority Critical patent/US11065597B2/en
Priority to KR1020197017088A priority patent/KR102404087B1/en
Priority to CN201780079591.8A priority patent/CN110099745B/en
Publication of WO2018128136A1 publication Critical patent/WO2018128136A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • B01J20/0237Compounds of Cu
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/66Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
    • B01J29/67Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/66Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
    • B01J29/68Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/743CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7476MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • C01B23/0036Physical processing only
    • C01B23/0052Physical processing only by adsorption in solids
    • C01B23/0057Physical processing only by adsorption in solids characterised by the adsorbent
    • C01B23/0068Zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/44Ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0029Obtaining noble gases
    • C01B2210/0037Xenon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data

Definitions

  • the present invention relates to a xenon adsorbent.
  • the xenon adsorbent of the present invention is useful for, for example, applications in which xenon from a mixed gas is selectively adsorbed and recovered.
  • Xenon applications include anesthesia gas, medical images, ion propulsion engine (space), flat panel display (plasma) and high-intensity discharge (HID) light in the medical industry as described in Patent Document 1. Can be mentioned.
  • xenon is also used in the process of manufacturing semiconductor products such as semiconductor integrated circuits, liquid crystal panels, solar battery panels, magnetic disks, etc. as described in Patent Document 2, and in order to perform more advanced processing in recent years. Xenon usage is increasing.
  • xenon is a trace component (87 ppb) of the atmosphere, and in order to obtain it by separation from air, 11,000,000 L of air is required to obtain 1 L of xenon. For this reason, xenon is a very expensive gas.
  • Patent Document 1 mentions alumina, zeolite, silica gel, and activated carbon as the adsorbent having a Xe / N2 selection ratio of less than 65, but no specific adsorbent is exemplified.
  • Patent Document 2 discloses activated carbon, Na-X zeolite, Ca-X zeolite, Ca-A zeolite, and Li-X zeolite as adsorbents that adsorb xenon as an easily adsorbing component. Therefore, it cannot be said that it has sufficient performance as an adsorbent for adsorbing a low concentration of xenon.
  • Patent Document 3 discloses silver ion exchange ZSM5 and Patent Document 4 discloses Ca-X type zeolite or Na-Y type zeolite. As adsorbents that adsorb low concentrations of xenon, It could not be said that it had sufficient performance.
  • Patent Document 5 mentions synthetic zeolite having a pore diameter of 5 mm or more and molecular sieving carbon having a pore diameter of 5 mm or more as a xenon adsorbent, but no specific adsorbent is exemplified.
  • the present invention provides a xenon adsorbent that has a particularly large xenon adsorption amount at a lower concentration than conventional xenon adsorbents and that has high selectivity for nitrogen, which is a kind of air component.
  • the xenon adsorbent of the present invention can efficiently adsorb xenon from a mixed gas.
  • the present inventors are excellent as a xenon adsorbent with a zeolite having a pore diameter in the range of 3.5 to 5 mm and a silica-alumina molar ratio in the range of 10 to 30.
  • the present invention has been found and the present invention has been completed.
  • a xenon adsorbent comprising a zeolite having a pore diameter in the range of 3.5 to 5 mm and a silica-alumina molar ratio in the range of 10 to 30.
  • the metal component contained in the zeolite contains at least one selected from lithium, sodium, potassium, magnesium, calcium, strontium, barium, iron, copper, and silver, as described in [1] above Xenon adsorbent.
  • the metal component is 0.1 to 1.0 equivalent (the value obtained by multiplying the metal / Al molar ratio by the metal valence n for a metal ion having a valence n) with respect to aluminum of the zeolite.
  • the ultraviolet-visible absorption spectrum measured after calcination at 500 ° C. in air has an absorption peak at 290 to 350 nm, and the absorption peak contains silver having a maximum value at 310 to 330 nm.
  • the xenon adsorbent according to any one of [1] to [3] above.
  • the xenon adsorbent of the present invention can efficiently adsorb xenon from a mixed gas even at a low concentration.
  • the xenon adsorbent of the present invention contains a zeolite having a pore diameter in the range of 3.5 to 5 mm and a silica-alumina molar ratio in the range of 10 to 30.
  • the pore diameter refers to the pore diameter described in the zeolite structure data collection “Atlas of Zeolite Framework Types” (Elsevier publication) published by the International Zeolite Association 2007 (where the pores are elliptical).
  • the adsorbed molecule has a short diameter that restricts the shape of the adsorbed molecule).
  • the reason why the xenon adsorption performance of zeolite with a pore size in the range of 3.5 to 5 mm is excellent is not clear, but it may be affected by the fact that the size of the xenon molecule is close to about 4 mm. Even in zeolites having a pore size smaller than 4 mm, the pore size changes due to thermal vibration of the crystal skeleton, so that xenon can be adsorbed. When the pore diameter is less than 3.5 mm, xenon is not adsorbed, and when it exceeds 5 mm, adsorption of other components coexisting with xenon is dominant.
  • the pore diameter is preferably in the range of 3.5 to 4.5 in order to further adsorb xenon.
  • the silica-alumina molar ratio is the SiO 2 / Al 2 O 3 molar ratio, and when it is less than 10, there are many metal components that serve as adsorption points, and the polarities become too strong and other components coexist with xenon. Adsorption becomes dominant, and when it exceeds 30, there are few metal components used as an adsorption point, and it does not have sufficient adsorption performance.
  • the metal component contained in the zeolite used in the xenon adsorbent of the present invention preferably contains at least one selected from lithium, sodium, potassium, magnesium, calcium, strontium, barium, iron, copper, and silver. In particular, it preferably contains at least one selected from sodium and silver.
  • Xenon is a molecule with no polarity because it is a monoatomic molecule. However, when an electric field is applied from the outside, a dipole is induced to become polar and adsorbed on zeolite.
  • the metal component is excellent as a metal component for inducing a dipole.
  • the metal component is 0.1 to 1.0 equivalent to the aluminum of the zeolite (for the metal ion of valence n, the metal valence to the metal / Al molar ratio).
  • a value obtained by multiplying by n is preferable, 0.4 to 1.0 equivalent is more preferable, and 0.5 to 1.0 equivalent is particularly preferable.
  • the silver contained in the xenon adsorbent of the present invention has an absorption peak at 290 to 350 nm in the ultraviolet-visible absorption spectrum measured after firing at 500 ° C. in the air, and the absorption peak has a maximum value at 310 to 330 nm.
  • Firing of the xenon adsorbent for measuring the UV-visible absorption spectrum is performed by blowing dry air in an amount equal to the internal volume of the muffle furnace per 1.0 to 1.2 minutes using a general box-type muffle furnace. The temperature was raised in 1 hour and 40 minutes, and firing was performed at 500 ° C. for 3 hours.
  • the UV-visible absorption spectrum is obtained by measuring the sample fired at 500 ° C. as described above at room temperature by the diffuse reflection method.
  • the xenon adsorbent of the present invention preferably has a silver content of 1 to 20% by weight, more preferably 3 to 18% by weight, and particularly preferably 4 to 15% by weight. preferable.
  • the method for modifying the metal component of zeolite is not particularly limited, and an ion exchange method, an impregnation method, an evaporation to dryness method, or the like can be used.
  • the ion exchange method is achieved by bringing a zeolite and a solution containing desired ions into contact until the amount of ions in the zeolite reaches a desired concentration.
  • General ion exchange methods such as batch method and distribution method can be applied.
  • the modification of the metal component may be either a powder or a molded body of the xenon adsorbent.
  • the xenon adsorbent containing silver can be improved by heat treatment (baking) at a temperature of 300 ° C. to 700 ° C., preferably 400 ° C. to 600 ° C.
  • the firing atmosphere may be an inert atmosphere such as air or nitrogen.
  • the zeolite used for the xenon adsorbent of the present invention preferably includes at least one structure selected from CHA type, FER type, HEU type, and MWW type. Of these, CHA type, FER type, HEU type, and MWW type are preferable, and FER type is most preferable.
  • the FER type has a pore diameter of about 4.2 mm, and since the xenon molecular size and the pore diameter are the closest, it is estimated that the xenon adsorption performance is excellent.
  • Examples of the CHA type zeolite include chabazite and the like, and examples of the FER type zeolite include ferrierite and the like.
  • Examples of the HEU type zeolite include hurlandite and clinoptilolite, and examples of the MWW type zeolite include MCM-22, ITQ-1, SSZ-25, and the like.
  • the zeolite used in the xenon adsorbent of the present invention is a zeolite having a pore diameter in the range of 3.5 to 5 mm and a silica alumina molar ratio in the range of 10 to 30, preferably CHA type, FER type, HEU type, and MWW type.
  • Zeolite can be produced by crystallizing a mixture of a silica source, an alumina source, an alkali source, and, if necessary, a structure directing agent under hydrothermal conditions.
  • silica source for example, colloidal silica, amorphous silica, sodium silicate, tetraethylorthosilicate, aluminosilicate gel, or the like can be used.
  • alumina source for example, aluminum sulfate, sodium aluminate, aluminum hydroxide, aluminum chloride, aluminosilicate gel, metal aluminum, or the like can be used.
  • the silica source and the alumina source are preferably in a form that can be sufficiently uniformly mixed with other raw materials.
  • alkali sources include sodium, potassium, ammonium hydroxide, halides, sulfates, nitrates, carbonates and other salts, aluminates, silicates, alkali components in aluminosilicate gels, etc. Can be used.
  • Structure directing agents can also be used as needed.
  • the structure directing agent for example, amines and the like can be used.
  • the amines include tetramethylammonium hydroxide, tetramethylammonium halide, tetraethylammonium hydroxide, tetraethylammonium halide, tetrapropylammonium water.
  • An autoclave can be used for crystallization of zeolite, and the crystallization temperature is 100 ° C. or higher and 250 ° C. or lower, preferably 110 ° C. or higher and 200 ° C. or lower, more preferably 120 ° C. or higher and 190 ° C. or lower. it can.
  • the crystallization time can be 12 hours or more and 96 hours or less, preferably 14 hours or more and 84 hours or less, more preferably 16 hours or more and 72 hours or less. Crystallization can be performed either standing or stirring.
  • Zeolite produced by the method described above can be used as it is as a xenon adsorbent.
  • zeolite can be mixed with a binder to form a xenon adsorbent for the molded body.
  • the xenon adsorbent of the present invention can be formed into a molded body. When separating the mixed gas, it is easier to handle the molded body.
  • the method for molding is not particularly limited.
  • inorganic type binders such as clay, an alumina, a silica, etc. can be used, for example.
  • an organic auxiliary agent such as cellulose, an inorganic auxiliary agent such as phosphate, and the like can be used as a forming auxiliary agent.
  • the shape of the molded body can be, for example, a spherical shape, a cylindrical shape, a trefoil shape, an elliptical shape, a saddle shape, a ring shape, or the like.
  • the size of the molded body can be 0.5 to 3 mm in diameter.
  • the molded body can be fired in an inert gas such as air or nitrogen at a temperature of about 400 to 650 ° C. to sinter the binder.
  • the amount of adsorption was measured using a constant capacity type adsorption measuring device (BELSORP 28SA: manufactured by Microtrack Bell).
  • BELSORP 28SA manufactured by Microtrack Bell
  • the adsorbent was pretreated at 350 ° C. for 2 hours under a vacuum of 0.01 Pa or less.
  • the adsorption temperature was measured at 25 ° C.
  • the xenon adsorption amount was the adsorption amount at a pressure of 1 kPa
  • the nitrogen adsorption amount was the adsorption amount at 100 kPa.
  • UV-visible absorption spectrum (xenon adsorption amount of 1 kPa / 1 kPa) / (nitrogen adsorption amount of 100 kPa / 100 kPa) (1) ⁇ Measurement of UV-visible absorption spectrum> The measurement of the UV-visible absorption spectrum of the xenon adsorbent containing silver was carried out by raising the temperature in 1 hour and 40 minutes while blowing dry air at a flow rate of 25 L / min into a muffle furnace having an internal volume of 30 L and firing at 500 ° C. for 3 hours.
  • the samples subjected to the above were measured at room temperature by a diffuse reflection method using an ultraviolet-visible spectrophotometer (V-650: manufactured by JASCO Corporation) equipped with an integrating sphere unit. As measurement conditions, the wavelength range of 200 to 400 nm was measured for 2 minutes.
  • V-650 ultraviolet-visible spectrophotometer
  • Example 1 N, N, N-trimethyladamantanammonium hydroxide 25% aqueous solution 7.5 g, pure water 37.0 g, sodium hydroxide 48% aqueous solution 1.0 g, potassium hydroxide 48% aqueous solution 1.4 g, and amorphous alumino 9.3 g of silicate gel was added and mixed well to obtain a raw material composition.
  • the composition of the raw material composition is as follows: molar ratio when SiO 2 is 1, Al 2 O 3 : 0.072, N, N, N-trimethyladamantanammonium hydroxide: 0.065, Na 2 O: 0 0.04, K 2 O: 0.044, H 2 O: 18.
  • This raw material composition was sealed in an 80 cc stainless steel autoclave and heated at 150 ° C. for 70 hours while rotating at 55 rpm.
  • the heated product was subjected to solid-liquid separation, and the obtained solid phase was washed with a sufficient amount of pure water and dried at 110 ° C. to obtain a product.
  • the product was a CHA-type zeolite single phase.
  • the obtained dry powder of CHA-type zeolite was calcined at 600 ° C. for 2 hours under air flow (pore size of CHA-type zeolite: 3.8 mm).
  • the CHA-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 13, a Na / Al ratio of 0.2, and a K / Al ratio of 0.4 (amount of metal (Na + K) to aluminum: 0.6 equivalents). .
  • the xenon adsorption amount of this CHA-type zeolite (xenon adsorbent) at 25 ° C. and 1 kPa was 0.14 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.47 mol / kg.
  • the xenon selectivity was 29.8.
  • Example 2 825 g of pure water, 4.9 g of 48% aqueous solution of sodium hydroxide, 13.5 g of 48% aqueous solution of potassium hydroxide, and 557 g of amorphous aluminosilicate gel were added and mixed well to obtain a raw material composition.
  • the composition of the raw material composition is Al 2 O 3 : 0.051, Na 2 O: 0.071, K 2 O: 0.019, H 2 O: 21 as the molar ratio when SiO 2 is 1. there were.
  • This raw material composition was sealed in a 2000 cc stainless steel autoclave and heated at 180 ° C. for 72 hours with stirring.
  • the heated product was subjected to solid-liquid separation, and the obtained solid phase was washed with a sufficient amount of pure water and dried at 110 ° C. to obtain a product.
  • the product was a single phase of FER type zeolite (pore size: 4.2 mm).
  • the FER type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 18, an Na / Al ratio of 0.3, and a K / Al ratio of 0.7 (amount of metal (Na + K) to aluminum: 1.0 equivalent).
  • FER type zeolite 20 parts by weight of attapulgite clay (Minigel MB: manufactured by Active Minerals), 3 parts by weight of carboxymethyl cellulose, 1 part by weight of rheodol (TWL-120: manufactured by Kao), 110 pure water A part by weight was added and kneaded with a mix muller. The kneaded product was extruded into a cylindrical shape having a diameter of 1.5 mm ⁇ and molded. The molded product was dried at 110 ° C. and then calcined at 650 ° C. for 3 hours in the air to obtain a xenon adsorbent (molded product).
  • the xenon adsorption amount of the obtained xenon adsorbent at 25 ° C. and 1 kPa was 0.34 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.60 mol / kg.
  • the xenon selectivity was 56.7.
  • Example 3 The calcined CHA-type zeolite (pore diameter: 3.8 mm) obtained in Example 1 was subjected to ion exchange with a sodium nitrate solution.
  • the obtained sodium-exchanged CHA-type zeolite has a SiO 2 / Al 2 O 3 molar ratio of 13, Na / Al ratio of 0.8 (amount of metal (Na) to aluminum: 0.8 equivalent), and K is contained. It wasn't.
  • the Na / Al ratio before ion exchange was 0.2, and the K / Al ratio was 0.4.
  • the xenon adsorption amount of this sodium exchanged CHA-type zeolite (xenon adsorbent) at 25 ° C. and 1 kPa was 0.17 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.64 mol / kg.
  • the xenon selectivity was 26.6.
  • Examples 4-7 FER-type zeolite after crystallization obtained in Example 2 (pore diameter: 4.2 mm, powder before molding, Example 6), this FER-type zeolite in a sodium nitrate solution (Examples 4 and 5), Ion exchange was performed with potassium nitrate (Example 7) to prepare four types of FER type zeolites having different Na and K contents (SiO 2 / Al 2 O 3 molar ratio was 18).
  • Table 1 shows the xenon adsorption amount at 25 ° C. and 1 kPa, the nitrogen adsorption amount at 25 ° C. and 100 kPa, and the xenon selectivity.
  • Example 8 Aqueous sodium aluminate (Asada Chemical Co., Al 2 O 3 19.3%, Na 2 O19.6%) and 1.07 g, and a 48% aqueous solution of sodium hydroxide 0.39 g, mixed well pure water 51.6g Then, 2.27 g of hexamethyleneimine and 4.40 g of amorphous silica (Nipsil-VN3: manufactured by Tosoh Silica, SiO 2 90.2%, Al 2 O 3 0.38%, Na 2 O 0.25%) were added. And it mixed further and obtained the raw material composition.
  • the composition of the raw material composition is Al 2 O 3 : 0.033, hexamethyleneimine: 0.35, Na 2 O: 0.09, and H 2 O: 45 as the molar ratio when SiO 2 is 1. there were.
  • This raw material composition was sealed in an 80 cc stainless steel autoclave and heated at 150 ° C. for 7 days while rotating at 55 rpm.
  • the heated product was subjected to solid-liquid separation, and the obtained solid phase was washed with a sufficient amount of pure water, dried at 110 ° C., and further calcined at 600 ° C. for 2 hours under air flow.
  • the product was an MWW-type zeolite (pore size: 4.0 mm). Further, from the X-ray fluorescence analysis, the SiO 2 / Al 2 O 3 molar ratio of the MWW-type zeolite was 20.
  • the obtained MWW-type zeolite fired product was subjected to ion exchange with a sodium nitrate solution.
  • the obtained sodium-exchanged MWW-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 20, and an Na / Al ratio of 0.6 (amount of metal (Na) relative to aluminum: 0.6 equivalent).
  • the xenon adsorption amount of this sodium exchanged MWW-type zeolite (xenon adsorbent) at 25 ° C. and 1 kPa was 0.17 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.47 mol / kg.
  • the xenon selectivity was 36.2.
  • Example 9 The calcined CHA-type zeolite (pore diameter: 3.8 mm) obtained in Example 1 was subjected to ion exchange with a silver nitrate solution.
  • the obtained silver-exchanged CHA-type zeolite has a SiO 2 / Al 2 O 3 molar ratio of 13 and an Ag / Al ratio of 0.6 (amount of metal (Ag) with respect to aluminum: 0.6 equivalents). It did not contain.
  • the ultraviolet-visible absorption spectrum of this silver-exchanged CHA-type zeolite is shown in FIGS. As is apparent from the figure, it had an absorption peak having a peak top at 310 to 330 nm.
  • the xenon adsorption amount of this silver exchanged CHA-type zeolite (xenon adsorbent) at 25 ° C. and 1 kPa was 0.88 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.65 mol / kg.
  • the xenon selectivity was 135.
  • Example 10 The FER type zeolite (pore diameter: 4.2 mm, powder before molding) after crystallization obtained in Example 2 was subjected to ion exchange with a silver nitrate solution.
  • the obtained silver-exchanged FER-type zeolite has a SiO 2 / Al 2 O 3 molar ratio of 18 and an Ag / Al ratio of 0.5 (amount of metal (Ag) to aluminum: 0.5 equivalent). It did not contain.
  • the ultraviolet-visible absorption spectrum of this silver-exchanged FER type zeolite is shown in FIGS. As is apparent from the figure, it had an absorption peak having a peak top at 310 to 330 nm.
  • the xenon adsorption amount of this silver exchanged FER type zeolite (xenon adsorbent) at 25 ° C. and 1 kPa was 0.79 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.63 mol / kg.
  • the xenon selectivity was 125.
  • This silver-exchanged FER type zeolite was calcined at 400, 500, and 600 ° C. for 3 hours in a dry air atmosphere (temperature rising rate: all 5 ° C./min).
  • Table 2 shows the xenon adsorption amount at 25 ° C. and 1 kPa, the nitrogen adsorption amount at 25 ° C. and 100 kPa, and the xenon selectivity of each of the silver-exchanged zeolites after calcination.
  • the amount of xenon adsorbed on the silver-exchanged zeolite increased by firing at 400 ° C to 600 ° C.
  • Example 11 The silver-exchanged FER type zeolite obtained in Example 10 was again ion-exchanged with a silver nitrate solution.
  • the obtained silver-exchanged FER type zeolite has a SiO 2 / Al 2 O 3 molar ratio of 18 and an Ag / Al ratio of 0.8 (amount of metal (Ag) to aluminum: 0.8 equivalent). It did not contain.
  • the ultraviolet-visible absorption spectrum of this silver-exchanged FER type zeolite is shown in FIGS. As is apparent from the figure, it had an absorption peak having a peak top at 310 to 330 nm.
  • the xenon adsorption amount at 25 ° C. and 1 kPa of this silver exchanged FER type zeolite (xenon adsorbent) was 0.98 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.74 mol / kg.
  • the xenon selectivity was 132.
  • This silver-exchanged FER type zeolite was calcined at 500 ° C. for 3 hours in a dry air atmosphere (heating rate: 5 ° C./min for all).
  • Table 2 shows the xenon adsorption amount at 25 ° C. and 1 kPa, the nitrogen adsorption amount at 25 ° C. and 100 kPa, and the xenon selectivity of each of the silver-exchanged zeolites after calcination.
  • the amount of xenon adsorbed by the silver-exchanged zeolite increased by firing at 500 ° C.
  • Example 12 The MWW type zeolite (pore diameter: 4.0 mm) obtained in Example 8 was subjected to ion exchange with a silver nitrate solution.
  • the obtained silver-exchanged MWW-type zeolite has a SiO 2 / Al 2 O 3 molar ratio of 20, an Ag / Al ratio of 0.5 (amount of metal (Ag) to aluminum: 0.5 equivalent), and contains Na. It wasn't.
  • the ultraviolet-visible absorption spectrum of this silver exchanged MWW type zeolite is shown in FIGS. As is apparent from the figure, it had an absorption peak having a peak top at 310 to 330 nm.
  • the xenon adsorption amount of this silver exchanged MWW-type zeolite (xenon adsorbent) at 25 ° C. and 1 kPa was 0.49 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.38 mol / kg.
  • the xenon selectivity was 129.
  • Example 13 The calcined CHA-type zeolite (pore diameter: 3.8 mm) obtained in Example 1 was subjected to ion exchange with a silver nitrate solution.
  • the obtained silver-exchanged CHA-type zeolite has a SiO 2 / Al 2 O 3 molar ratio of 13 and an Ag / Al ratio of 0.5 (amount of metal (Ag) to aluminum: 0.5 equivalent), and Na and K are It did not contain.
  • the ultraviolet-visible absorption spectrum of this silver-exchanged CHA-type zeolite is shown in FIGS. As is apparent from the figure, it had an absorption peak having a peak top at 310 to 330 nm.
  • the xenon adsorption amount of this silver exchanged CHA-type zeolite (xenon adsorbent) at 25 ° C. and 1 kPa was 0.79 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.59 mol / kg.
  • the xenon selectivity was 134.
  • This silver-exchanged CHA-type zeolite was calcined at 400 and 500 ° C. for 3 hours in a dry air atmosphere (temperature increase rate: both 5 ° C./min).
  • Table 2 shows the xenon adsorption amount at 25 ° C. and 1 kPa, the nitrogen adsorption amount at 25 ° C. and 100 kPa, and the xenon selectivity of each of the silver-exchanged zeolites after calcination.
  • the amount of xenon adsorbed on the silver-exchanged zeolite increased by firing at 400 ° C. to 500 ° C.
  • Example 14 The crystallized FER-type zeolite obtained in Example 2 (pore size: 4.2 mm, powder before molding) was ion-exchanged with an ammonium chloride solution, and then ion-exchanged with a calcium nitrate solution. .
  • the obtained calcium exchanged FER type zeolite has a SiO 2 / Al 2 O 3 molar ratio of 18 and a Ca / Al ratio of 0.45 (amount of metal (Ca) to aluminum: 0.90 equivalent), and Na and K are It did not contain.
  • the xenon adsorption amount of this calcium exchanged FER type zeolite (xenon adsorbent) at 25 ° C. and 1 kPa was 0.55 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.70 mol / kg.
  • the xenon selectivity was 78.6.
  • Example 15 The crystallized FER-type zeolite obtained in Example 2 (pore size: 4.2 mm, powder before molding) was ion-exchanged with an ammonium chloride solution, and then ion-exchanged with a magnesium nitrate solution. .
  • the obtained magnesium-exchanged FER type zeolite has a SiO 2 / Al 2 O 3 molar ratio of 18 and an Mg / Al ratio of 0.45 (amount of metal (Mg) to aluminum: 0.90 equivalent), and Na and K are It did not contain.
  • the xenon adsorption amount of this magnesium exchanged FER type zeolite (xenon adsorbent) at 25 ° C. and 1 kPa was 0.36 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.50 mol / kg.
  • the xenon selectivity was 72.0.
  • Example 16 The crystallized FER type zeolite (pore diameter: 4.2 mm, powder before molding) obtained in Example 2 was ion-exchanged with an ammonium chloride solution, and then ion-exchanged with a lithium chloride solution. .
  • the obtained lithium exchanged FER type zeolite has a SiO 2 / Al 2 O 3 molar ratio of 18 and a Li / Al ratio of 1.0 (amount of metal (Li) with respect to aluminum: 1.0 equivalent). It did not contain.
  • the xenon adsorption amount of this lithium exchanged FER type zeolite (xenon adsorbent) at 25 ° C. and 1 kPa was 0.63 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 1.08 mol / kg.
  • the xenon selectivity was 58.3.
  • Comparative Example 1 The amount of xenon adsorbed and the amount of nitrogen adsorbed on a NaX type zeolite compact (Zeoram (registered trademark) F-9HA: manufactured by Tosoh Corporation, zeolite pore size: 7.4 mm, silica alumina molar ratio: 2.5) were measured.
  • the xenon adsorption amount at 25 ° C. and 1 kPa was 0.03 mol / kg
  • the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.43 mol / kg.
  • the xenon selectivity was 7.0.
  • Comparative Example 2 The xenon adsorption amount and nitrogen adsorption amount of a LiLSX type zeolite compact (Zeoram (registered trademark) NSA-700: manufactured by Tosoh Corporation, zeolite pore size: 7.4 mm, silica alumina molar ratio: 2.0) were measured.
  • the xenon adsorption amount at 25 ° C. and 1 kPa was 0.03 mol / kg
  • the nitrogen adsorption amount at 25 ° C. and 100 kPa was 1.13 mol / kg.
  • the xenon selectivity was 2.7.
  • Comparative Example 3 The xenon adsorption amount and the nitrogen adsorption amount of a CaX-type zeolite compact (Zeoram (registered trademark) SA-600A: manufactured by Tosoh Corporation, zeolite pore size: 7.4 mm, silica alumina molar ratio: 2.5) were measured.
  • the xenon adsorption amount at 25 ° C. and 1 kPa was 0.11 mol / kg
  • the nitrogen adsorption amount at 25 ° C. and 100 kPa was 1.14 mol / kg.
  • the xenon selectivity was 9.6.
  • Comparative Example 4 The amount of xenon adsorbed and the amount of nitrogen adsorbed on a CaA type zeolite compact (Zeoram (registered trademark) SA-500A: manufactured by Tosoh Corp., zeolite pore size: 4.1 mm, silica alumina molar ratio: 2.0) were measured.
  • the xenon adsorption amount at 25 ° C. and 1 kPa was 0.05 mol / kg
  • the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.57 mol / kg.
  • the xenon selectivity was 8.8.
  • NaY-type zeolite (HSZ-320NAA: manufactured by Tosoh Corporation, zeolite pore size: 7.4 mm, silica-alumina molar ratio: 5.7) was ion-exchanged with an ammonium chloride solution, and then ion-exchanged with a silver nitrate solution.
  • the obtained silver-exchanged FAU-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 5.7, an Ag / Al ratio of 0.2, and an Na / Al ratio of 0.2.
  • the xenon adsorption amount of this silver exchanged FAU type zeolite (xenon adsorbent) at 25 ° C. and 1 kPa was 0.02 mol / kg.
  • This silver-exchanged FAU type zeolite was calcined at 500 ° C. for 3 hours in a dry air atmosphere (temperature rising rate: 5 ° C./min for all).
  • the xenon adsorption amount at 25 ° C. and 1 kPa of the silver-exchanged zeolite after calcination was 0.02 mol / kg.
  • the calcination at 500 ° C. did not increase the xenon adsorption amount of the silver exchanged zeolite.
  • the xenon adsorbent of the present invention has a large amount of low-concentration xenon adsorption, it can efficiently adsorb xenon from a mixed gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

Provided is a xenon adsorbent capable of efficiently adsorbing xenon from a mixed gas even at a low concentration. The xenon adsorbent is characterized by having a pore size in the range of 3.5-5 Å and containing a zeolite in which the silica-alumina molar ratio is in the range of 10-30.

Description

キセノン吸着剤Xenon adsorbent
 本発明は、キセノン吸着剤に関する。本発明のキセノン吸着剤は、例えば、混合ガスからのキセノンを選択的に吸着して回収する用途に有用である。 The present invention relates to a xenon adsorbent. The xenon adsorbent of the present invention is useful for, for example, applications in which xenon from a mixed gas is selectively adsorbed and recovered.
 キセノンの用途としては、特許文献1に記載されているような、医療業界での麻酔ガス、医学画像、イオン推進エンジン(宇宙空間)、フラットパネルディスプレイ(プラズマ)及び高輝度放電(HID)ライトが挙げられる。 Xenon applications include anesthesia gas, medical images, ion propulsion engine (space), flat panel display (plasma) and high-intensity discharge (HID) light in the medical industry as described in Patent Document 1. Can be mentioned.
 また、特許文献2に記載されているような、半導体集積回路、液晶パネル、太陽電池パネル、磁気ディスク等の半導体製品を製造する工程でもキセノンは使用され、近年はより高度な処理を行うためにキセノンの使用量が増加している。 In addition, xenon is also used in the process of manufacturing semiconductor products such as semiconductor integrated circuits, liquid crystal panels, solar battery panels, magnetic disks, etc. as described in Patent Document 2, and in order to perform more advanced processing in recent years. Xenon usage is increasing.
 しかし、キセノンは大気の微量成分(87ppb)であり、空気からの分離により得るためには、1Lのキセノンを得るのに11,000,000Lの空気を必要とする。このため、キセノンは非常に高価なガスとなる。 However, xenon is a trace component (87 ppb) of the atmosphere, and in order to obtain it by separation from air, 11,000,000 L of air is required to obtain 1 L of xenon. For this reason, xenon is a very expensive gas.
 このため、キセノンを含む混合ガスからキセノンを吸着回収することが求められる。 Therefore, it is required to adsorb and collect xenon from a mixed gas containing xenon.
 特許文献1には、Xe/N2選択比が65未満の吸着剤として、アルミナ、ゼオライト、シリカゲル及び活性炭が挙げられているが、具体的な吸着剤は例示されていない。 Patent Document 1 mentions alumina, zeolite, silica gel, and activated carbon as the adsorbent having a Xe / N2 selection ratio of less than 65, but no specific adsorbent is exemplified.
 特許文献2には、易吸着成分としてのキセノンを吸着する吸着剤として、活性炭、Na-X型ゼオライト、Ca-X型ゼオライト、Ca-A型ゼオライト、Li-X型ゼオライトが開示されているが、低濃度のキセノンを吸着させる吸着剤としては十分な性能を有しているとは言えなかった。 Patent Document 2 discloses activated carbon, Na-X zeolite, Ca-X zeolite, Ca-A zeolite, and Li-X zeolite as adsorbents that adsorb xenon as an easily adsorbing component. Therefore, it cannot be said that it has sufficient performance as an adsorbent for adsorbing a low concentration of xenon.
 キセノン吸着剤として、特許文献3には銀イオン交換ZSM5が、特許文献4にはCa-X型ゼオライトまたはNa-Y型ゼオライトが開示されているが、低濃度のキセノンを吸着させる吸着剤としては十分な性能を有しているとは言えなかった。 As xenon adsorbents, Patent Document 3 discloses silver ion exchange ZSM5 and Patent Document 4 discloses Ca-X type zeolite or Na-Y type zeolite. As adsorbents that adsorb low concentrations of xenon, It could not be said that it had sufficient performance.
 また、特許文献5にはキセノン吸着剤として細孔径5Å以上の合成ゼオライト、細孔径5Å以上のモレキュラーシービングカーボンが挙げられているが、具体的な吸着剤は例示がない。 Further, Patent Document 5 mentions synthetic zeolite having a pore diameter of 5 mm or more and molecular sieving carbon having a pore diameter of 5 mm or more as a xenon adsorbent, but no specific adsorbent is exemplified.
 いずれの吸着剤も、特に低濃度のキセノンを吸着させる吸着剤としては十分な性能を有しているとは言えなかった。 None of the adsorbents had sufficient performance as adsorbents that adsorb particularly low concentrations of xenon.
日本国特許第5449289号Japanese Patent No. 5449289 日本国特開2006-61831号Japanese Unexamined Patent Publication No. 2006-61831 日本国特許第5392745号Japanese Patent No. 5392745 日本国特許第3824838号Japanese Patent No. 3824838 日本国特開2008-137847号Japanese Unexamined Patent Publication No. 2008-137847
 本発明は、従来のキセノン吸着剤よりも、特に低濃度のキセノン吸着量が大きく、更には空気成分の一種である窒素に対する選択性が高いキセノン吸着剤を提供するものである。本発明のキセノン吸着剤は、混合ガスから効率的にキセノンを吸着させることが可能である。 The present invention provides a xenon adsorbent that has a particularly large xenon adsorption amount at a lower concentration than conventional xenon adsorbents and that has high selectivity for nitrogen, which is a kind of air component. The xenon adsorbent of the present invention can efficiently adsorb xenon from a mixed gas.
 本発明者らは、上記課題を解決するために鋭意検討した結果、キセノン吸着剤として、細孔径が3.5~5Åの範囲で、シリカアルミナモル比が10~30の範囲であるゼオライトが優れることを見出し、本発明を完成したものである。 As a result of intensive studies to solve the above problems, the present inventors are excellent as a xenon adsorbent with a zeolite having a pore diameter in the range of 3.5 to 5 mm and a silica-alumina molar ratio in the range of 10 to 30. The present invention has been found and the present invention has been completed.
 すなわち、本発明は以下の[1]乃至[6]に存する。
[1] 細孔径が3.5~5Åの範囲で、シリカアルミナモル比が10~30の範囲であるゼオライトを含有することを特徴とするキセノン吸着剤。
[2] ゼオライトに含まれる金属成分として、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、鉄、銅、銀から選択される少なくとも1種類を含むことを特徴とする上記[1]に記載のキセノン吸着剤。
[3] 金属成分が、ゼオライトのアルミニウムに対して0.1~1.0当量(価数nの金属イオンについて、金属/Alモル比に金属の価数nを乗じた値)であることを特徴とする上記[1]又は[2]に記載のキセノン吸着剤。
[4] 空気中500℃で焼成後に測定した紫外可視吸光スペクトルが290~350nmに吸光ピークを有し、かつ、該吸光ピークが310~330nmに最大値を有する銀を含有することを特徴とする上記[1]~[3]のいずれかの項に記載のキセノン吸着剤。
[5] ゼオライトが、CHA型、FER型、HEU型、MWW型から選択される少なくとも1種類の構造を含むことを特徴とする上記[1]~[4]のいずれかの項に記載のキセノン吸着剤。
[6] キセノン吸着剤が成形体であることを特徴とする上記[1]~[5]のいずれかの項に記載のキセノン吸着剤。
That is, the present invention resides in the following [1] to [6].
[1] A xenon adsorbent comprising a zeolite having a pore diameter in the range of 3.5 to 5 mm and a silica-alumina molar ratio in the range of 10 to 30.
[2] The metal component contained in the zeolite contains at least one selected from lithium, sodium, potassium, magnesium, calcium, strontium, barium, iron, copper, and silver, as described in [1] above Xenon adsorbent.
[3] The metal component is 0.1 to 1.0 equivalent (the value obtained by multiplying the metal / Al molar ratio by the metal valence n for a metal ion having a valence n) with respect to aluminum of the zeolite. The xenon adsorbent according to [1] or [2], which is characterized in that it is characterized in that
[4] The ultraviolet-visible absorption spectrum measured after calcination at 500 ° C. in air has an absorption peak at 290 to 350 nm, and the absorption peak contains silver having a maximum value at 310 to 330 nm. The xenon adsorbent according to any one of [1] to [3] above.
[5] The xenon according to any one of the above [1] to [4], wherein the zeolite contains at least one structure selected from CHA type, FER type, HEU type, and MWW type Adsorbent.
[6] The xenon adsorbent according to any one of [1] to [5] above, wherein the xenon adsorbent is a molded body.
 本発明のキセノン吸着剤は混合ガスから低濃度でもキセノンを効率よく吸着することができる。 The xenon adsorbent of the present invention can efficiently adsorb xenon from a mixed gas even at a low concentration.
 以下、本発明について説明する。 Hereinafter, the present invention will be described.
 本発明のキセノン吸着剤は、細孔径が3.5~5Åの範囲で、シリカアルミナモル比が10~30の範囲であるゼオライトを含有するものである。 The xenon adsorbent of the present invention contains a zeolite having a pore diameter in the range of 3.5 to 5 mm and a silica-alumina molar ratio in the range of 10 to 30.
 ここに、細孔径とは、国際ゼオライト学会(International Zeolite Association)2007年発行のゼオライト構造データ集「Atlas of Zeolite Framework Types」(Elsevier出版)に記載の細孔径を指す(ただし、細孔が楕円状の場合は吸着分子を形状的に制限する短径とする)。 Here, the pore diameter refers to the pore diameter described in the zeolite structure data collection “Atlas of Zeolite Framework Types” (Elsevier publication) published by the International Zeolite Association 2007 (where the pores are elliptical). In this case, the adsorbed molecule has a short diameter that restricts the shape of the adsorbed molecule).
 細孔径3.5~5Åの範囲のゼオライトのキセノン吸着性能が優れる理由は定かではないが、キセノン分子の大きさである約4Åと近いことが影響している可能性がある。細孔径が4Åより小さいゼオライトでも、結晶骨格の熱振動により細孔径は変化するため、キセノンの吸着は可能となる。細孔径が3.5Å未満の場合は、キセノンが吸着されず、5Åを超える場合はキセノンと共存する他の成分の吸着が優勢となる。細孔径は、キセノンをより吸着させるため、3.5Å以上4.5Å未満の範囲であることが好ましい。 The reason why the xenon adsorption performance of zeolite with a pore size in the range of 3.5 to 5 mm is excellent is not clear, but it may be affected by the fact that the size of the xenon molecule is close to about 4 mm. Even in zeolites having a pore size smaller than 4 mm, the pore size changes due to thermal vibration of the crystal skeleton, so that xenon can be adsorbed. When the pore diameter is less than 3.5 mm, xenon is not adsorbed, and when it exceeds 5 mm, adsorption of other components coexisting with xenon is dominant. The pore diameter is preferably in the range of 3.5 to 4.5 in order to further adsorb xenon.
 シリカアルミナモル比とは、SiO/Alモル比のことであり、10未満の場合は、吸着点となる金属成分が多く、極性が強くなりすぎてキセノンと共存する他の成分の吸着が優勢となり、30を超える場合は吸着点となる金属成分が少なく、十分な吸着性能を有さない。 The silica-alumina molar ratio is the SiO 2 / Al 2 O 3 molar ratio, and when it is less than 10, there are many metal components that serve as adsorption points, and the polarities become too strong and other components coexist with xenon. Adsorption becomes dominant, and when it exceeds 30, there are few metal components used as an adsorption point, and it does not have sufficient adsorption performance.
 本発明のキセノン吸着剤に用いられるゼオライトに含まれる金属成分として、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、鉄、銅、銀から選択される少なくとも1種類を含んでいることが好ましく、特に、ナトリウム、銀から選択される少なくとも1種類を含んでいることが好ましい。キセノンは単原子分子であるため極性を持たない分子であるが、外部から電場を与えることで双極子が誘起され、極性を持つようになり、ゼオライトに吸着するようになる。双極子を誘起する金属成分として前記の金属成分が優れる。 The metal component contained in the zeolite used in the xenon adsorbent of the present invention preferably contains at least one selected from lithium, sodium, potassium, magnesium, calcium, strontium, barium, iron, copper, and silver. In particular, it preferably contains at least one selected from sodium and silver. Xenon is a molecule with no polarity because it is a monoatomic molecule. However, when an electric field is applied from the outside, a dipole is induced to become polar and adsorbed on zeolite. The metal component is excellent as a metal component for inducing a dipole.
 前記の金属成分は、キセノンをより効果的に吸着させるために、ゼオライトのアルミニウムに対して0.1~1.0当量(価数nの金属イオンについて、金属/Alモル比に金属の価数nを乗じた値。以下同じ)が好ましく、0.4~1.0当量がさらに好ましく、0.5~1.0当量が特に好ましい。 In order to more effectively adsorb xenon, the metal component is 0.1 to 1.0 equivalent to the aluminum of the zeolite (for the metal ion of valence n, the metal valence to the metal / Al molar ratio). A value obtained by multiplying by n (the same applies hereinafter) is preferable, 0.4 to 1.0 equivalent is more preferable, and 0.5 to 1.0 equivalent is particularly preferable.
 さらに、本発明のキセノン吸着剤が含有する銀は、空気中500℃で焼成後に測定した紫外可視吸光スペクトルが290~350nmに吸光ピークを有し、かつ、該吸光ピークが310~330nmに最大値を有する特徴がある。紫外可視吸光スペクトルを測定するキセノン吸着剤の焼成は、一般的な箱型のマッフル炉を用いて、1.0~1.2分間当りマッフル炉の内容積と等しい量の乾燥空気を吹き込みながら、1時間40分間で昇温し、500℃で3時間焼成を行った。紫外可視吸光スペクトルは上記のように500℃で焼成した試料を拡散反射法により室温で測定したものである。 Further, the silver contained in the xenon adsorbent of the present invention has an absorption peak at 290 to 350 nm in the ultraviolet-visible absorption spectrum measured after firing at 500 ° C. in the air, and the absorption peak has a maximum value at 310 to 330 nm. There is a feature having. Firing of the xenon adsorbent for measuring the UV-visible absorption spectrum is performed by blowing dry air in an amount equal to the internal volume of the muffle furnace per 1.0 to 1.2 minutes using a general box-type muffle furnace. The temperature was raised in 1 hour and 40 minutes, and firing was performed at 500 ° C. for 3 hours. The UV-visible absorption spectrum is obtained by measuring the sample fired at 500 ° C. as described above at room temperature by the diffuse reflection method.
 本発明のキセノン吸着剤は、より高いキセノン吸着量を得るために、銀の含有量が1~20重量%であることが好ましく、3~18重量%がさらに好ましく、4~15重量%が特に好ましい。 In order to obtain a higher xenon adsorption amount, the xenon adsorbent of the present invention preferably has a silver content of 1 to 20% by weight, more preferably 3 to 18% by weight, and particularly preferably 4 to 15% by weight. preferable.
 ゼオライトに金属成分を修飾する方法は特に限定されず、イオン交換法、含浸法、蒸発乾固法などが使用できる。イオン交換法としては、ゼオライトと所望のイオンを含有する溶液とをゼオライト中のイオン量が所望の濃度になるまで接触させることにより達成される。回分法、流通法など一般的なイオン交換法が適用可能である。なお、金属成分の修飾は、キセノン吸着剤が粉末であっても、成形体であってもよく、いずれでも可能である。成形体のキセノン吸着剤を製造する際には、ゼオライト粉末を金属修飾した後に成形体とすることも、ゼオライト粉末を成形体とした後に金属修飾を行うことも、何れでも可能である。さらに、銀を含有するキセノン吸着剤は300℃から700℃、好ましくは400℃から600℃の温度で熱処理(焼成)することによりキセノンの吸着性能を向上させることができる。焼成雰囲気は空気、窒素などの不活性雰囲気のいずれでもよい。 The method for modifying the metal component of zeolite is not particularly limited, and an ion exchange method, an impregnation method, an evaporation to dryness method, or the like can be used. The ion exchange method is achieved by bringing a zeolite and a solution containing desired ions into contact until the amount of ions in the zeolite reaches a desired concentration. General ion exchange methods such as batch method and distribution method can be applied. The modification of the metal component may be either a powder or a molded body of the xenon adsorbent. When producing a xenon adsorbent of a compact, it is possible to either form a compact after the zeolite powder is metal-modified, or perform a metal modification after the zeolite powder is compacted. Further, the xenon adsorbent containing silver can be improved by heat treatment (baking) at a temperature of 300 ° C. to 700 ° C., preferably 400 ° C. to 600 ° C. The firing atmosphere may be an inert atmosphere such as air or nitrogen.
 本発明のキセノン吸着剤に用いられるゼオライトとしては、CHA型、FER型、HEU型、MWW型から選択される少なくとも1種類の構造を含むことが好ましい。中でもCHA型、FER型、HEU型、MWW型が好ましく、FER型が最も好ましい。FER型は細孔径が4.2Å程度であり、キセノン分子サイズと細孔径が最も近いため、キセノン吸着性能が優れるものと推測される。CHA型のゼオライトとしては、例えば、チャバサイト等があげられ、FER型のゼオライトとしては、例えば、フェリエライト等があげられ。HEU型のゼオライトとしては、例えば、ヒューランダイト、クリノプチロライト等があげられ、MWW型のゼオライトとしては、例えば、MCM-22、ITQ-1、SSZ-25等があげられる。 The zeolite used for the xenon adsorbent of the present invention preferably includes at least one structure selected from CHA type, FER type, HEU type, and MWW type. Of these, CHA type, FER type, HEU type, and MWW type are preferable, and FER type is most preferable. The FER type has a pore diameter of about 4.2 mm, and since the xenon molecular size and the pore diameter are the closest, it is estimated that the xenon adsorption performance is excellent. Examples of the CHA type zeolite include chabazite and the like, and examples of the FER type zeolite include ferrierite and the like. Examples of the HEU type zeolite include hurlandite and clinoptilolite, and examples of the MWW type zeolite include MCM-22, ITQ-1, SSZ-25, and the like.
 本発明のキセノン吸着剤に用いられる細孔径が3.5~5Åの範囲で、シリカアルミナモル比が10~30の範囲のゼオライトであり、好ましくはCHA型、FER型、HEU型、MWW型のゼオライトは、シリカ源、アルミナ源、アルカリ源、必要に応じて構造指向剤の混合物を水熱下で結晶化することで製造することができる。 The zeolite used in the xenon adsorbent of the present invention is a zeolite having a pore diameter in the range of 3.5 to 5 mm and a silica alumina molar ratio in the range of 10 to 30, preferably CHA type, FER type, HEU type, and MWW type. Zeolite can be produced by crystallizing a mixture of a silica source, an alumina source, an alkali source, and, if necessary, a structure directing agent under hydrothermal conditions.
 シリカ源は、例えば、コロイダルシリカ、無定型シリカ、珪酸ナトリウム、テトラエチルオルトシリケート、アルミノシリケートゲル等を使用することができる。 As the silica source, for example, colloidal silica, amorphous silica, sodium silicate, tetraethylorthosilicate, aluminosilicate gel, or the like can be used.
 アルミナ源は、例えば、硫酸アルミニウム、アルミン酸ナトリウム、水酸化アルミニウム、塩化アルミニウム、アルミノシリケートゲル、金属アルミニウム等を用いることができる。シリカ源及びアルミナ源は、他の原料と十分均一に混合できる形態のものが好ましい。 As the alumina source, for example, aluminum sulfate, sodium aluminate, aluminum hydroxide, aluminum chloride, aluminosilicate gel, metal aluminum, or the like can be used. The silica source and the alumina source are preferably in a form that can be sufficiently uniformly mixed with other raw materials.
 アルカリ源は、例えば、ナトリウム、カリウム、アンモニウムの水酸化物、ハロゲン化物、硫酸塩、硝酸塩、炭酸塩などの各種の塩、アルミン酸塩中、珪酸塩中、アルミノシリケートゲル中のアルカリ成分等を用いることができる。 Examples of alkali sources include sodium, potassium, ammonium hydroxide, halides, sulfates, nitrates, carbonates and other salts, aluminates, silicates, alkali components in aluminosilicate gels, etc. Can be used.
 構造指向剤も必要に応じて使用することができる。構造指向剤としては、例えば、アミン類等が使用でき、アミン類としては、例えば、テトラメチルアンモニウム水酸化物、テトラメチルアンモニウムハロゲン化物、テトラエチルアンモニウム水酸化物、テトラエチルアンモニウムハロゲン化物、テトラプロピルアンモニウム水酸化物、テトラプロピルアンモニウムハロゲン化物、N,N,N-トリメチルアダマンタンアンモニウム水酸化物、N,N,N-トリメチルアダマンタンアンモニウムハロゲン化物、N,N,N-トリメチルアダマンタンアンモニウム炭酸塩、N,N,N-トリメチルアダマンタンアンモニウムメチルカーボネート塩、N,N,N-トリメチルアダマンタンアンモニウム硫酸塩などから選ばれる少なくとも1種類を含んで使用することができる。 Structure directing agents can also be used as needed. As the structure directing agent, for example, amines and the like can be used. Examples of the amines include tetramethylammonium hydroxide, tetramethylammonium halide, tetraethylammonium hydroxide, tetraethylammonium halide, tetrapropylammonium water. Oxide, tetrapropylammonium halide, N, N, N-trimethyladamantanammonium hydroxide, N, N, N-trimethyladamantanammonium halide, N, N, N-trimethyladamantanammonium carbonate, N, N, At least one selected from N-trimethyladamantane ammonium methyl carbonate salt, N, N, N-trimethyladamantane ammonium sulfate and the like can be used.
 ゼオライトの結晶化はオートクレーブを使用することができ、結晶化の温度は100℃以上、250℃以下、好ましくは110℃以上、200℃以下、更に好ましくは120℃以上、190℃以下とすることができる。結晶化時間は12時間以上、96時間以内、好ましくは14時間以上、84時間以内、更に好ましくは16時間以上、72時間以内とすることができる。結晶化は静置、撹拌下のいずれでも行うことができる。 An autoclave can be used for crystallization of zeolite, and the crystallization temperature is 100 ° C. or higher and 250 ° C. or lower, preferably 110 ° C. or higher and 200 ° C. or lower, more preferably 120 ° C. or higher and 190 ° C. or lower. it can. The crystallization time can be 12 hours or more and 96 hours or less, preferably 14 hours or more and 84 hours or less, more preferably 16 hours or more and 72 hours or less. Crystallization can be performed either standing or stirring.
 結晶化終了後は、固液分離を行い、余剰のアルカリ溶液を純水、温水などで洗浄することができる。洗浄後は乾燥することができる。乾燥温度は80℃以上、200℃以下であればよい。構造指向剤を含む場合は、乾燥後に熱分解処理によって除去することができる。 After completion of crystallization, solid-liquid separation is performed, and the excess alkaline solution can be washed with pure water, warm water, or the like. After washing, it can be dried. The drying temperature should just be 80 degreeC or more and 200 degrees C or less. When a structure directing agent is included, it can be removed by thermal decomposition after drying.
 上に記載した方法で製造されたゼオライトは、そのままでキセノン吸着剤とすることができる。また、ゼオライトをバインダーと混合して成形体のキセノン吸着剤とすることもできる。 Zeolite produced by the method described above can be used as it is as a xenon adsorbent. Alternatively, zeolite can be mixed with a binder to form a xenon adsorbent for the molded body.
 本発明のキセノン吸着剤は成形体とすることができる。混合ガスを分離する時は成形体とする方が扱いやすい。成形する方法は特に限定されない。成形に使用されるバインダーとしては、例えば、粘土、アルミナ、シリカなどの無機系バインダー等が使用できる。また成形する時には成形助剤としてセルロースなどの有機系助剤、リン酸塩などの無機系助剤等を使用することができる。成形体の形状は、例えば、球状、円柱状、三つ葉型、楕円状、俵型、リング状等とすることができる。成形体の大きさは、直径として0.5~3mmの大きさとすることができる。成形体はバインダーを焼結させるために400~650℃程度の温度で、空気、窒素などの不活性ガス中で焼成することができる。 The xenon adsorbent of the present invention can be formed into a molded body. When separating the mixed gas, it is easier to handle the molded body. The method for molding is not particularly limited. As a binder used for shaping | molding, inorganic type binders, such as clay, an alumina, a silica, etc. can be used, for example. In molding, an organic auxiliary agent such as cellulose, an inorganic auxiliary agent such as phosphate, and the like can be used as a forming auxiliary agent. The shape of the molded body can be, for example, a spherical shape, a cylindrical shape, a trefoil shape, an elliptical shape, a saddle shape, a ring shape, or the like. The size of the molded body can be 0.5 to 3 mm in diameter. The molded body can be fired in an inert gas such as air or nitrogen at a temperature of about 400 to 650 ° C. to sinter the binder.
銀を含有するキセノン吸着剤の紫外可視吸光スペクトルである。It is an ultraviolet visible absorption spectrum of the xenon adsorbent containing silver. 図1の320nm付近の吸光ピークを拡大したものである。This is an enlarged view of the absorption peak near 320 nm in FIG.
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
 <キセノン吸着量及び窒素吸着量の測定>
 吸着量の測定は、定容量式吸着測定装置(BELSORP 28SA:マイクロトラックベル社製)を使用した。吸着剤は350℃で2時間、0.01Pa以下の真空下で前処理した。吸着温度は25℃で測定した。キセノン吸着量は圧力1kPaの時の吸着量、窒素吸着量は100kPaの時の吸着量を求めた。
<Measurement of xenon adsorption and nitrogen adsorption>
The amount of adsorption was measured using a constant capacity type adsorption measuring device (BELSORP 28SA: manufactured by Microtrack Bell). The adsorbent was pretreated at 350 ° C. for 2 hours under a vacuum of 0.01 Pa or less. The adsorption temperature was measured at 25 ° C. The xenon adsorption amount was the adsorption amount at a pressure of 1 kPa, and the nitrogen adsorption amount was the adsorption amount at 100 kPa.
 <キセノン選択性>
 キセノン選択性は式(1)で算出した。
<Xenon selectivity>
Xenon selectivity was calculated by equation (1).
 キセノン選択性=(1kPaのキセノン吸着量/1kPa)/(100kPaの窒素吸着量/100kPa)    (1)
 <紫外可視吸光スペクトルの測定>
 銀を含有するキセノン吸着剤の紫外可視吸光スペクトルの測定は、内容積30Lのマッフル炉に25L/minの流量で乾燥空気を吹き込みながら、1時間40分間で昇温し、500℃で3時間焼成を行った試料を、積分球ユニットを備えた紫外可視分光光度計(V-650:日本分光社製)を使用して拡散反射法により室温で測定した。測定条件は、200~400nmの波長範囲を2分間で測定を行った。
Xenon selectivity = (xenon adsorption amount of 1 kPa / 1 kPa) / (nitrogen adsorption amount of 100 kPa / 100 kPa) (1)
<Measurement of UV-visible absorption spectrum>
The measurement of the UV-visible absorption spectrum of the xenon adsorbent containing silver was carried out by raising the temperature in 1 hour and 40 minutes while blowing dry air at a flow rate of 25 L / min into a muffle furnace having an internal volume of 30 L and firing at 500 ° C. for 3 hours. The samples subjected to the above were measured at room temperature by a diffuse reflection method using an ultraviolet-visible spectrophotometer (V-650: manufactured by JASCO Corporation) equipped with an integrating sphere unit. As measurement conditions, the wavelength range of 200 to 400 nm was measured for 2 minutes.
 実施例1
 N,N,N-トリメチルアダマンタンアンモニウム水酸化物25%水溶液7.5g、純水37.0g、水酸化ナトリウム48%水溶液1.0g、水酸化カリウム48%水溶液1.4g、及び、無定形アルミノシリケートゲル9.3gを加え、よく混合して原料組成物を得た。原料組成物の組成は、SiOを1とした場合のモル比として、Al:0.072、N,N,N-トリメチルアダマンタンアンモニウム水酸化物:0.065、NaO:0.044、KO:0.044、HO:18であった。
Example 1
N, N, N-trimethyladamantanammonium hydroxide 25% aqueous solution 7.5 g, pure water 37.0 g, sodium hydroxide 48% aqueous solution 1.0 g, potassium hydroxide 48% aqueous solution 1.4 g, and amorphous alumino 9.3 g of silicate gel was added and mixed well to obtain a raw material composition. The composition of the raw material composition is as follows: molar ratio when SiO 2 is 1, Al 2 O 3 : 0.072, N, N, N-trimethyladamantanammonium hydroxide: 0.065, Na 2 O: 0 0.04, K 2 O: 0.044, H 2 O: 18.
 この原料組成物を80ccのステンレス製オートクレーブに密閉し、55rpmで回転させながら150℃で70時間加熱した。加熱後の生成物を固液分離し、得られた固相を十分量の純水で洗浄し、110℃で乾燥して生成物を得た。粉末X線回折と蛍光X線分析から、生成物はCHA型ゼオライト単相であった。得られたCHA型ゼオライトの乾燥粉末を空気流通下600℃で2時間焼成した(CHA型ゼオライトの細孔径:3.8Å)。CHA型ゼオライトのSiO/Alモル比は13、Na/Al比は0.2、K/Al比は0.4であった(アルミニウムに対する金属(Na+K)量:0.6当量)。 This raw material composition was sealed in an 80 cc stainless steel autoclave and heated at 150 ° C. for 70 hours while rotating at 55 rpm. The heated product was subjected to solid-liquid separation, and the obtained solid phase was washed with a sufficient amount of pure water and dried at 110 ° C. to obtain a product. From the powder X-ray diffraction and fluorescent X-ray analysis, the product was a CHA-type zeolite single phase. The obtained dry powder of CHA-type zeolite was calcined at 600 ° C. for 2 hours under air flow (pore size of CHA-type zeolite: 3.8 mm). The CHA-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 13, a Na / Al ratio of 0.2, and a K / Al ratio of 0.4 (amount of metal (Na + K) to aluminum: 0.6 equivalents). .
 このCHA型ゼオライト(キセノン吸着剤)の25℃、1kPaにおけるキセノン吸着量は0.14mol/kgで、25℃、100kPaにおける窒素吸着量は0.47mol/kgであった。また、キセノン選択性は29.8であった。 The xenon adsorption amount of this CHA-type zeolite (xenon adsorbent) at 25 ° C. and 1 kPa was 0.14 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.47 mol / kg. The xenon selectivity was 29.8.
 実施例2
 純水825g、水酸化ナトリウム48%水溶液4.9g、水酸化カリウム48%水溶液13.5g、及び、無定形アルミノシリケートゲル557gを加え、よく混合して原料組成物を得た。原料組成物の組成は、SiOを1とした場合のモル比として、Al:0.051、NaO:0.071、KO:0.019、HO:21であった。
Example 2
825 g of pure water, 4.9 g of 48% aqueous solution of sodium hydroxide, 13.5 g of 48% aqueous solution of potassium hydroxide, and 557 g of amorphous aluminosilicate gel were added and mixed well to obtain a raw material composition. The composition of the raw material composition is Al 2 O 3 : 0.051, Na 2 O: 0.071, K 2 O: 0.019, H 2 O: 21 as the molar ratio when SiO 2 is 1. there were.
 この原料組成物を2000ccのステンレス製オートクレーブに密閉し、撹拌しながら180℃で72時間加熱した。加熱後の生成物を固液分離し、得られた固相を十分量の純水で洗浄し、110℃で乾燥して生成物を得た。粉末X線回折と蛍光X線分析から、生成物はFER型ゼオライト(細孔径:4.2Å)単相であった。FER型ゼオライトのSiO/Alモル比は18、Na/Al比は0.3、K/Al比は0.7であった(アルミニウムに対する金属(Na+K)量:1.0当量)。 This raw material composition was sealed in a 2000 cc stainless steel autoclave and heated at 180 ° C. for 72 hours with stirring. The heated product was subjected to solid-liquid separation, and the obtained solid phase was washed with a sufficient amount of pure water and dried at 110 ° C. to obtain a product. From the powder X-ray diffraction and fluorescent X-ray analysis, the product was a single phase of FER type zeolite (pore size: 4.2 mm). The FER type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 18, an Na / Al ratio of 0.3, and a K / Al ratio of 0.7 (amount of metal (Na + K) to aluminum: 1.0 equivalent). .
 得られたFER型ゼオライト100重量部に対して、アタパルジャイト粘土(ミニゲルMB:アクティブミネラルズ製)20重量部、カルボキシメチルセルロース3重量部、レオドール(TWL-120:花王製)1重量部、純水110重量部を添加して、ミックスマラーで混練した。混練物を直径1.5mmφの円柱状に押出し、成形した。成形物を110℃で乾燥した後、650℃で3時間を空気下で焼成し、キセノン吸着剤(成形体)を得た。 With respect to 100 parts by weight of the obtained FER type zeolite, 20 parts by weight of attapulgite clay (Minigel MB: manufactured by Active Minerals), 3 parts by weight of carboxymethyl cellulose, 1 part by weight of rheodol (TWL-120: manufactured by Kao), 110 pure water A part by weight was added and kneaded with a mix muller. The kneaded product was extruded into a cylindrical shape having a diameter of 1.5 mmφ and molded. The molded product was dried at 110 ° C. and then calcined at 650 ° C. for 3 hours in the air to obtain a xenon adsorbent (molded product).
 得られたキセノン吸着剤の25℃、1kPaにおけるキセノン吸着量は0.34mol/kgで、25℃、100kPaにおける窒素吸着量は0.60mol/kgであった。また、キセノン選択性は56.7であった。 The xenon adsorption amount of the obtained xenon adsorbent at 25 ° C. and 1 kPa was 0.34 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.60 mol / kg. The xenon selectivity was 56.7.
 実施例3
 実施例1で得られた焼成後のCHA型ゼオライト(細孔径:3.8Å)を硝酸ナトリウム溶液でイオン交換を行った。得られたナトリウム交換CHA型ゼオライトのSiO/Alモル比は13で、Na/Al比は0.8(アルミニウムに対する金属(Na)量:0.8当量)で、Kは含有していなかった。なお、イオン交換前のNa/Al比は0.2、K/Al比は0.4であった。
Example 3
The calcined CHA-type zeolite (pore diameter: 3.8 mm) obtained in Example 1 was subjected to ion exchange with a sodium nitrate solution. The obtained sodium-exchanged CHA-type zeolite has a SiO 2 / Al 2 O 3 molar ratio of 13, Na / Al ratio of 0.8 (amount of metal (Na) to aluminum: 0.8 equivalent), and K is contained. It wasn't. The Na / Al ratio before ion exchange was 0.2, and the K / Al ratio was 0.4.
 このナトリウム交換CHA型ゼオライト(キセノン吸着剤)の25℃、1kPaにおけるキセノン吸着量は0.17mol/kgで、25℃、100kPaにおける窒素吸着量は0.64mol/kgであった。また、キセノン選択性は26.6であった。 The xenon adsorption amount of this sodium exchanged CHA-type zeolite (xenon adsorbent) at 25 ° C. and 1 kPa was 0.17 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.64 mol / kg. The xenon selectivity was 26.6.
 実施例4~7
 実施例2で得られた結晶化後のFER型ゼオライト(細孔径:4.2Å、成形する前の粉体、実施例6)、このFER型ゼオライトを硝酸ナトリウム溶液(実施例4、5)、硝酸カリウム(実施例7)でイオン交換を行って、Na、K含有量の異なる4種のFER型ゼオライトを調製した(SiO/Alモル比は18)。それぞれの25℃、1kPaにおけるキセノン吸着量、25℃、100kPaにおける窒素吸着量、キセノン選択性を表1に記す。
Examples 4-7
FER-type zeolite after crystallization obtained in Example 2 (pore diameter: 4.2 mm, powder before molding, Example 6), this FER-type zeolite in a sodium nitrate solution (Examples 4 and 5), Ion exchange was performed with potassium nitrate (Example 7) to prepare four types of FER type zeolites having different Na and K contents (SiO 2 / Al 2 O 3 molar ratio was 18). Table 1 shows the xenon adsorption amount at 25 ° C. and 1 kPa, the nitrogen adsorption amount at 25 ° C. and 100 kPa, and the xenon selectivity.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、ナトリウム交換量が多いほどキセノン吸着量が多く、またキセノン選択性に優れていた。 As shown in Table 1, the greater the sodium exchange amount, the greater the xenon adsorption amount and the better the xenon selectivity.
 実施例8
 アルミン酸ナトリウム水溶液(浅田化学製、Al19.3%、NaO19.6%)1.07gと、48%水酸化ナトリウム水溶液0.39gと、純水51.6gをよく混合し、これにヘキサメチレンイミン2.27g、無定形シリカ(Nipsil-VN3:東ソーシリカ製、SiO90.2%、Al0.38%、NaO0.25%)4.40gを添加して、さらによく混合して原料組成物を得た。原料組成物の組成は、SiOを1とした場合のモル比として、Al:0.033、ヘキサメチレンイミン:0.35、NaO:0.09、HO:45であった。
Example 8
Aqueous sodium aluminate (Asada Chemical Co., Al 2 O 3 19.3%, Na 2 O19.6%) and 1.07 g, and a 48% aqueous solution of sodium hydroxide 0.39 g, mixed well pure water 51.6g Then, 2.27 g of hexamethyleneimine and 4.40 g of amorphous silica (Nipsil-VN3: manufactured by Tosoh Silica, SiO 2 90.2%, Al 2 O 3 0.38%, Na 2 O 0.25%) were added. And it mixed further and obtained the raw material composition. The composition of the raw material composition is Al 2 O 3 : 0.033, hexamethyleneimine: 0.35, Na 2 O: 0.09, and H 2 O: 45 as the molar ratio when SiO 2 is 1. there were.
 この原料組成物を80ccのステンレス製オートクレーブに密封し、55rpmで回転させながら150℃で7日間加熱した。加熱後の生成物を固液分離し、得られた固相を十分量の純水で洗浄し、110℃で乾燥し、さらに空気流通下600℃で2時間焼成した。粉末X線回折から生成物はMWW型ゼオライト(細孔径:4.0Å)であった。また、蛍光X線分析から、MWW型ゼオライトのSiO/Alモル比は20であった。 This raw material composition was sealed in an 80 cc stainless steel autoclave and heated at 150 ° C. for 7 days while rotating at 55 rpm. The heated product was subjected to solid-liquid separation, and the obtained solid phase was washed with a sufficient amount of pure water, dried at 110 ° C., and further calcined at 600 ° C. for 2 hours under air flow. From powder X-ray diffraction, the product was an MWW-type zeolite (pore size: 4.0 mm). Further, from the X-ray fluorescence analysis, the SiO 2 / Al 2 O 3 molar ratio of the MWW-type zeolite was 20.
 得られたMWW型ゼオライト焼成品を硝酸ナトリウム溶液でイオン交換を行った。得られたナトリウム交換MWW型ゼオライトのSiO/Alモル比は20で、Na/Al比は0.6(アルミニウムに対する金属(Na)量:0.6当量)であった。 The obtained MWW-type zeolite fired product was subjected to ion exchange with a sodium nitrate solution. The obtained sodium-exchanged MWW-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 20, and an Na / Al ratio of 0.6 (amount of metal (Na) relative to aluminum: 0.6 equivalent).
 このナトリウム交換MWW型ゼオライト(キセノン吸着剤)の25℃、1kPaにおけるキセノン吸着量は0.17mol/kgで、25℃、100kPaにおける窒素吸着量は0.47mol/kgであった。また、キセノン選択性は36.2であった。 The xenon adsorption amount of this sodium exchanged MWW-type zeolite (xenon adsorbent) at 25 ° C. and 1 kPa was 0.17 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.47 mol / kg. The xenon selectivity was 36.2.
 実施例9
 実施例1で得られた焼成後のCHA型ゼオライト(細孔径:3.8Å)を硝酸銀溶液でイオン交換を行った。得られた銀交換CHA型ゼオライトのSiO/Alモル比は13で、Ag/Al比は0.6(アルミニウムに対する金属(Ag)量:0.6当量)で、Na、Kは含有していなかった。この銀交換CHA型ゼオライトの紫外可視吸光スペクトルを図1と図2に示した。図から明らかなように310~330nmにピークトップを有する吸光ピークを有していた。
Example 9
The calcined CHA-type zeolite (pore diameter: 3.8 mm) obtained in Example 1 was subjected to ion exchange with a silver nitrate solution. The obtained silver-exchanged CHA-type zeolite has a SiO 2 / Al 2 O 3 molar ratio of 13 and an Ag / Al ratio of 0.6 (amount of metal (Ag) with respect to aluminum: 0.6 equivalents). It did not contain. The ultraviolet-visible absorption spectrum of this silver-exchanged CHA-type zeolite is shown in FIGS. As is apparent from the figure, it had an absorption peak having a peak top at 310 to 330 nm.
 この銀交換CHA型ゼオライト(キセノン吸着剤)の25℃、1kPaにおけるキセノン吸着量は0.88mol/kgで、25℃、100kPaにおける窒素吸着量は0.65mol/kgであった。また、キセノン選択性は135であった。 The xenon adsorption amount of this silver exchanged CHA-type zeolite (xenon adsorbent) at 25 ° C. and 1 kPa was 0.88 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.65 mol / kg. The xenon selectivity was 135.
 実施例10
 実施例2で得られた結晶化後のFER型ゼオライト(細孔径:4.2Å、成形する前の粉体)を硝酸銀溶液でイオン交換を行った。得られた銀交換FER型ゼオライトのSiO/Alモル比は18で、Ag/Al比は0.5(アルミニウムに対する金属(Ag)量:0.5当量)で、Na、Kは含有していなかった。この銀交換FER型ゼオライトの紫外可視吸光スペクトルを図1と図2に示した。図から明らかなように310~330nmにピークトップを有する吸光ピークを有していた。
Example 10
The FER type zeolite (pore diameter: 4.2 mm, powder before molding) after crystallization obtained in Example 2 was subjected to ion exchange with a silver nitrate solution. The obtained silver-exchanged FER-type zeolite has a SiO 2 / Al 2 O 3 molar ratio of 18 and an Ag / Al ratio of 0.5 (amount of metal (Ag) to aluminum: 0.5 equivalent). It did not contain. The ultraviolet-visible absorption spectrum of this silver-exchanged FER type zeolite is shown in FIGS. As is apparent from the figure, it had an absorption peak having a peak top at 310 to 330 nm.
 この銀交換FER型ゼオライト(キセノン吸着剤)の25℃、1kPaにおけるキセノン吸着量は0.79mol/kgで、25℃、100kPaにおける窒素吸着量は0.63mol/kgであった。また、キセノン選択性は125であった。 The xenon adsorption amount of this silver exchanged FER type zeolite (xenon adsorbent) at 25 ° C. and 1 kPa was 0.79 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.63 mol / kg. The xenon selectivity was 125.
 この銀交換FER型ゼオライトを乾燥空気雰囲気で400、500、600℃で3時間焼成を行った(昇温速度:何れも5℃/min)。焼成後の銀交換ゼオライトそれぞれの25℃、1kPaにおけるキセノン吸着量、25℃、100kPaにおける窒素吸着量、キセノン選択性を表2に記す。 This silver-exchanged FER type zeolite was calcined at 400, 500, and 600 ° C. for 3 hours in a dry air atmosphere (temperature rising rate: all 5 ° C./min). Table 2 shows the xenon adsorption amount at 25 ° C. and 1 kPa, the nitrogen adsorption amount at 25 ° C. and 100 kPa, and the xenon selectivity of each of the silver-exchanged zeolites after calcination.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、400℃から600℃の焼成により、銀交換ゼオライトのキセノン吸着量は増加した。 As shown in Table 2, the amount of xenon adsorbed on the silver-exchanged zeolite increased by firing at 400 ° C to 600 ° C.
 実施例11
 実施例10で得られた銀交換FER型ゼオライトを再度硝酸銀溶液でイオン交換を行った。得られた銀交換FER型ゼオライトのSiO/Alモル比は18で、Ag/Al比は0.8(アルミニウムに対する金属(Ag)量:0.8当量)で、Na、Kは含有していなかった。この銀交換FER型ゼオライトの紫外可視吸光スペクトルを図1と図2に示した。図から明らかなように310~330nmにピークトップを有する吸光ピークを有していた。
Example 11
The silver-exchanged FER type zeolite obtained in Example 10 was again ion-exchanged with a silver nitrate solution. The obtained silver-exchanged FER type zeolite has a SiO 2 / Al 2 O 3 molar ratio of 18 and an Ag / Al ratio of 0.8 (amount of metal (Ag) to aluminum: 0.8 equivalent). It did not contain. The ultraviolet-visible absorption spectrum of this silver-exchanged FER type zeolite is shown in FIGS. As is apparent from the figure, it had an absorption peak having a peak top at 310 to 330 nm.
 この銀交換FER型ゼオライト(キセノン吸着剤)の25℃、1kPaにおけるキセノン吸着量は0.98mol/kgで、25℃、100kPaにおける窒素吸着量は0.74mol/kgであった。また、キセノン選択性は132であった。 The xenon adsorption amount at 25 ° C. and 1 kPa of this silver exchanged FER type zeolite (xenon adsorbent) was 0.98 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.74 mol / kg. The xenon selectivity was 132.
 この銀交換FER型ゼオライトを乾燥空気雰囲気で500℃で3時間焼成を行った(昇温速度:何れも5℃/min)。焼成後の銀交換ゼオライトそれぞれの25℃、1kPaにおけるキセノン吸着量、25℃、100kPaにおける窒素吸着量、キセノン選択性を表2に記す。 This silver-exchanged FER type zeolite was calcined at 500 ° C. for 3 hours in a dry air atmosphere (heating rate: 5 ° C./min for all). Table 2 shows the xenon adsorption amount at 25 ° C. and 1 kPa, the nitrogen adsorption amount at 25 ° C. and 100 kPa, and the xenon selectivity of each of the silver-exchanged zeolites after calcination.
 表2に示すように、500℃の焼成により、銀交換ゼオライトのキセノン吸着量は増加した。 As shown in Table 2, the amount of xenon adsorbed by the silver-exchanged zeolite increased by firing at 500 ° C.
 実施例12
 実施例8で得られたMWW型ゼオライト(細孔径:4.0Å)を硝酸銀溶液でイオン交換を行った。得られた銀交換MWW型ゼオライトのSiO/Alモル比は20で、Ag/Al比は0.5(アルミニウムに対する金属(Ag)量:0.5当量)で、Naは含有していなかった。この銀交換MWW型ゼオライトの紫外可視吸光スペクトルを図1と図2に示した。図から明らかなように310~330nmにピークトップを有する吸光ピークを有していた。
Example 12
The MWW type zeolite (pore diameter: 4.0 mm) obtained in Example 8 was subjected to ion exchange with a silver nitrate solution. The obtained silver-exchanged MWW-type zeolite has a SiO 2 / Al 2 O 3 molar ratio of 20, an Ag / Al ratio of 0.5 (amount of metal (Ag) to aluminum: 0.5 equivalent), and contains Na. It wasn't. The ultraviolet-visible absorption spectrum of this silver exchanged MWW type zeolite is shown in FIGS. As is apparent from the figure, it had an absorption peak having a peak top at 310 to 330 nm.
 この銀交換MWW型ゼオライト(キセノン吸着剤)の25℃、1kPaにおけるキセノン吸着量は0.49mol/kgで、25℃、100kPaにおける窒素吸着量は0.38mol/kgであった。また、キセノン選択性は129であった。 The xenon adsorption amount of this silver exchanged MWW-type zeolite (xenon adsorbent) at 25 ° C. and 1 kPa was 0.49 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.38 mol / kg. The xenon selectivity was 129.
 実施例13
 実施例1で得られた焼成後のCHA型ゼオライト(細孔径:3.8Å)を硝酸銀溶液でイオン交換を行った。得られた銀交換CHA型ゼオライトのSiO/Alモル比は13で、Ag/Al比は0.5(アルミニウムに対する金属(Ag)量:0.5当量)で、Na、Kは含有していなかった。この銀交換CHA型ゼオライトの紫外可視吸光スペクトルを図1と図2に示した。図から明らかなように310~330nmにピークトップを有する吸光ピークを有していた。
Example 13
The calcined CHA-type zeolite (pore diameter: 3.8 mm) obtained in Example 1 was subjected to ion exchange with a silver nitrate solution. The obtained silver-exchanged CHA-type zeolite has a SiO 2 / Al 2 O 3 molar ratio of 13 and an Ag / Al ratio of 0.5 (amount of metal (Ag) to aluminum: 0.5 equivalent), and Na and K are It did not contain. The ultraviolet-visible absorption spectrum of this silver-exchanged CHA-type zeolite is shown in FIGS. As is apparent from the figure, it had an absorption peak having a peak top at 310 to 330 nm.
 この銀交換CHA型ゼオライト(キセノン吸着剤)の25℃、1kPaにおけるキセノン吸着量は0.79mol/kgで、25℃、100kPaにおける窒素吸着量は0.59mol/kgであった。また、キセノン選択性は134であった。 The xenon adsorption amount of this silver exchanged CHA-type zeolite (xenon adsorbent) at 25 ° C. and 1 kPa was 0.79 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.59 mol / kg. The xenon selectivity was 134.
 この銀交換CHA型ゼオライトを乾燥空気雰囲気で400、500℃で3時間焼成を行った(昇温速度:何れも5℃/min)。焼成後の銀交換ゼオライトそれぞれの25℃、1kPaにおけるキセノン吸着量、25℃、100kPaにおける窒素吸着量、キセノン選択性を表2に記す。 This silver-exchanged CHA-type zeolite was calcined at 400 and 500 ° C. for 3 hours in a dry air atmosphere (temperature increase rate: both 5 ° C./min). Table 2 shows the xenon adsorption amount at 25 ° C. and 1 kPa, the nitrogen adsorption amount at 25 ° C. and 100 kPa, and the xenon selectivity of each of the silver-exchanged zeolites after calcination.
 表2に示すように、400℃から500℃の焼成により、銀交換ゼオライトのキセノン吸着量は増加した。 As shown in Table 2, the amount of xenon adsorbed on the silver-exchanged zeolite increased by firing at 400 ° C. to 500 ° C.
 実施例14
 実施例2で得られた結晶化後のFER型ゼオライト(細孔径:4.2Å、成形する前の粉体)を塩化アンモニウム溶液でイオン交換を行い、続いて硝酸カルシウム溶液でイオン交換を行った。得られたカルシウム交換FER型ゼオライトのSiO/Alモル比は18で、Ca/Al比は0.45(アルミニウムに対する金属(Ca)量:0.90当量)で、Na、Kは含有していなかった。
Example 14
The crystallized FER-type zeolite obtained in Example 2 (pore size: 4.2 mm, powder before molding) was ion-exchanged with an ammonium chloride solution, and then ion-exchanged with a calcium nitrate solution. . The obtained calcium exchanged FER type zeolite has a SiO 2 / Al 2 O 3 molar ratio of 18 and a Ca / Al ratio of 0.45 (amount of metal (Ca) to aluminum: 0.90 equivalent), and Na and K are It did not contain.
 このカルシウム交換FER型ゼオライト(キセノン吸着剤)の25℃、1kPaにおけるキセノン吸着量は0.55mol/kgで、25℃、100kPaにおける窒素吸着量は0.70mol/kgであった。また、キセノン選択性は78.6であった。 The xenon adsorption amount of this calcium exchanged FER type zeolite (xenon adsorbent) at 25 ° C. and 1 kPa was 0.55 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.70 mol / kg. The xenon selectivity was 78.6.
 実施例15
 実施例2で得られた結晶化後のFER型ゼオライト(細孔径:4.2Å、成形する前の粉体)を塩化アンモニウム溶液でイオン交換を行い、続いて硝酸マグネシウム溶液でイオン交換を行った。得られたマグネシウム交換FER型ゼオライトのSiO/Alモル比は18で、Mg/Al比は0.45(アルミニウムに対する金属(Mg)量:0.90当量)で、Na、Kは含有していなかった。
Example 15
The crystallized FER-type zeolite obtained in Example 2 (pore size: 4.2 mm, powder before molding) was ion-exchanged with an ammonium chloride solution, and then ion-exchanged with a magnesium nitrate solution. . The obtained magnesium-exchanged FER type zeolite has a SiO 2 / Al 2 O 3 molar ratio of 18 and an Mg / Al ratio of 0.45 (amount of metal (Mg) to aluminum: 0.90 equivalent), and Na and K are It did not contain.
 このマグネシウム交換FER型ゼオライト(キセノン吸着剤)の25℃、1kPaにおけるキセノン吸着量は0.36mol/kgで、25℃、100kPaにおける窒素吸着量は0.50mol/kgであった。また、キセノン選択性は72.0であった。 The xenon adsorption amount of this magnesium exchanged FER type zeolite (xenon adsorbent) at 25 ° C. and 1 kPa was 0.36 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.50 mol / kg. The xenon selectivity was 72.0.
 実施例16
 実施例2で得られた結晶化後のFER型ゼオライト(細孔径:4.2Å、成形する前の粉体)を塩化アンモニウム溶液でイオン交換を行い、続いて塩化リチウム溶液でイオン交換を行った。得られたリチウム交換FER型ゼオライトのSiO/Alモル比は18で、Li/Al比は1.0(アルミニウムに対する金属(Li)量:1.0当量)で、Na、Kは含有していなかった。
Example 16
The crystallized FER type zeolite (pore diameter: 4.2 mm, powder before molding) obtained in Example 2 was ion-exchanged with an ammonium chloride solution, and then ion-exchanged with a lithium chloride solution. . The obtained lithium exchanged FER type zeolite has a SiO 2 / Al 2 O 3 molar ratio of 18 and a Li / Al ratio of 1.0 (amount of metal (Li) with respect to aluminum: 1.0 equivalent). It did not contain.
 このリチウム交換FER型ゼオライト(キセノン吸着剤)の25℃、1kPaにおけるキセノン吸着量は0.63mol/kgで、25℃、100kPaにおける窒素吸着量は1.08mol/kgであった。また、キセノン選択性は58.3であった。 The xenon adsorption amount of this lithium exchanged FER type zeolite (xenon adsorbent) at 25 ° C. and 1 kPa was 0.63 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 1.08 mol / kg. The xenon selectivity was 58.3.
 比較例1
 NaX型ゼオライト成形体(ゼオラム(登録商標)F-9HA:東ソー製、ゼオライトの細孔径:7.4Å、シリカアルミナモル比:2.5)のキセノン吸着量と窒素吸着量を測定した。25℃、1kPaにおけるキセノン吸着量は0.03mol/kgで、25℃、100kPaにおける窒素吸着量は0.43mol/kgであった。また、キセノン選択性は7.0であった。
Comparative Example 1
The amount of xenon adsorbed and the amount of nitrogen adsorbed on a NaX type zeolite compact (Zeoram (registered trademark) F-9HA: manufactured by Tosoh Corporation, zeolite pore size: 7.4 mm, silica alumina molar ratio: 2.5) were measured. The xenon adsorption amount at 25 ° C. and 1 kPa was 0.03 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.43 mol / kg. The xenon selectivity was 7.0.
 比較例2
 LiLSX型ゼオライト成形体(ゼオラム(登録商標)NSA-700:東ソー製、ゼオライトの細孔径:7.4Å、シリカアルミナモル比:2.0)のキセノン吸着量と窒素吸着量を測定した。25℃、1kPaにおけるキセノン吸着量は0.03mol/kgで、25℃、100kPaにおける窒素吸着量は1.13mol/kgであった。また、キセノン選択性は2.7であった。
Comparative Example 2
The xenon adsorption amount and nitrogen adsorption amount of a LiLSX type zeolite compact (Zeoram (registered trademark) NSA-700: manufactured by Tosoh Corporation, zeolite pore size: 7.4 mm, silica alumina molar ratio: 2.0) were measured. The xenon adsorption amount at 25 ° C. and 1 kPa was 0.03 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 1.13 mol / kg. The xenon selectivity was 2.7.
 比較例3
 CaX型ゼオライト成形体(ゼオラム(登録商標)SA-600A:東ソー製、ゼオライトの細孔径:7.4Å、シリカアルミナモル比:2.5)のキセノン吸着量と窒素吸着量を測定した。25℃、1kPaにおけるキセノン吸着量は0.11mol/kgで、25℃、100kPaにおける窒素吸着量は1.14mol/kgであった。また、キセノン選択性は9.6であった。
Comparative Example 3
The xenon adsorption amount and the nitrogen adsorption amount of a CaX-type zeolite compact (Zeoram (registered trademark) SA-600A: manufactured by Tosoh Corporation, zeolite pore size: 7.4 mm, silica alumina molar ratio: 2.5) were measured. The xenon adsorption amount at 25 ° C. and 1 kPa was 0.11 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 1.14 mol / kg. The xenon selectivity was 9.6.
 比較例4
 CaA型ゼオライト成形体(ゼオラム(登録商標)SA-500A:東ソー製、ゼオライトの細孔径:4.1Å、シリカアルミナモル比:2.0)のキセノン吸着量と窒素吸着量を測定した。25℃、1kPaにおけるキセノン吸着量は0.05mol/kgで、25℃、100kPaにおける窒素吸着量は0.57mol/kgであった。また、キセノン選択性は8.8であった。
Comparative Example 4
The amount of xenon adsorbed and the amount of nitrogen adsorbed on a CaA type zeolite compact (Zeoram (registered trademark) SA-500A: manufactured by Tosoh Corp., zeolite pore size: 4.1 mm, silica alumina molar ratio: 2.0) were measured. The xenon adsorption amount at 25 ° C. and 1 kPa was 0.05 mol / kg, and the nitrogen adsorption amount at 25 ° C. and 100 kPa was 0.57 mol / kg. The xenon selectivity was 8.8.
 比較例5
 NaY型ゼオライト(HSZ-320NAA:東ソー製、ゼオライトの細孔径:7.4Å、シリカアルミナモル比:5.7)を塩化アンモニウム溶液でイオン交換を行い、続いて硝酸銀溶液でイオン交換を行った。得られた銀交換FAU型ゼオライトのSiO/Alモル比は5.7、Ag/Al比は0.2、Na/Al比は0.2であった。
Comparative Example 5
NaY-type zeolite (HSZ-320NAA: manufactured by Tosoh Corporation, zeolite pore size: 7.4 mm, silica-alumina molar ratio: 5.7) was ion-exchanged with an ammonium chloride solution, and then ion-exchanged with a silver nitrate solution. The obtained silver-exchanged FAU-type zeolite had a SiO 2 / Al 2 O 3 molar ratio of 5.7, an Ag / Al ratio of 0.2, and an Na / Al ratio of 0.2.
 この銀交換FAU型ゼオライト(キセノン吸着剤)の25℃、1kPaにおけるキセノン吸着量は0.02mol/kgであった。 The xenon adsorption amount of this silver exchanged FAU type zeolite (xenon adsorbent) at 25 ° C. and 1 kPa was 0.02 mol / kg.
 この銀交換FAU型ゼオライトを乾燥空気雰囲気で500℃で3時間焼成を行った(昇温速度:何れも5℃/min)。焼成後の銀交換ゼオライトの25℃、1kPaにおけるキセノン吸着量は0.02mol/kgであった。500℃の焼成により、銀交換ゼオライトのキセノン吸着量は増加しなかった。 This silver-exchanged FAU type zeolite was calcined at 500 ° C. for 3 hours in a dry air atmosphere (temperature rising rate: 5 ° C./min for all). The xenon adsorption amount at 25 ° C. and 1 kPa of the silver-exchanged zeolite after calcination was 0.02 mol / kg. The calcination at 500 ° C. did not increase the xenon adsorption amount of the silver exchanged zeolite.
 なお、2017年1月6日に出願された日本特許出願2017-1299号、2017年6月28日に出願された日本特許出願2017-125856号、2017年11月14日に出願された日本特許出願2017-218780号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 Japanese Patent Application No. 2017-1299 filed on January 6, 2017, Japanese Patent Application No. 2017-125856 filed on June 28, 2017, Japanese Patent Application filed on November 14, 2017 The entire contents of application 2017-218780, claims, drawings and abstract are hereby incorporated by reference as the disclosure of the specification of the present invention.
 本発明のキセノン吸着剤は、低濃度のキセノン吸着量が多いため、混合ガスから効率的にキセノンを吸着することができる。 Since the xenon adsorbent of the present invention has a large amount of low-concentration xenon adsorption, it can efficiently adsorb xenon from a mixed gas.

Claims (6)

  1. 細孔径が3.5~5Åの範囲で、シリカアルミナモル比が10~30の範囲であるゼオライトを含有することを特徴とするキセノン吸着剤。 A xenon adsorbent comprising a zeolite having a pore size in the range of 3.5 to 5 mm and a silica-alumina molar ratio in the range of 10 to 30.
  2. ゼオライトに含まれる金属成分として、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、鉄、銅、銀から選択される少なくとも1種類を含むことを特徴とする請求項1に記載のキセノン吸着剤。 The xenon adsorbent according to claim 1, wherein the metal component contained in the zeolite contains at least one selected from lithium, sodium, potassium, magnesium, calcium, strontium, barium, iron, copper, and silver. .
  3. 金属成分が、ゼオライトのアルミニウムに対して0.1~1.0当量(価数nの金属イオンについて、金属/Alモル比に金属の価数nを乗じた値)であることを特徴とする請求項1又は請求項2に記載のキセノン吸着剤。 The metal component is 0.1 to 1.0 equivalent to the aluminum of the zeolite (for a metal ion with a valence of n, a value obtained by multiplying the metal / Al molar ratio by the valence of the metal n). The xenon adsorbent according to claim 1 or 2.
  4. 空気中500℃で焼成後に測定した紫外可視吸光スペクトルが290~350nmに吸光ピークを有し、かつ、該吸光ピークが310~330nmに最大値を有する銀を含有することを特徴とする請求項1~請求項3のいずれかの項に記載のキセノン吸着剤。 The ultraviolet-visible light absorption spectrum measured after calcination at 500 ° C. in air has an absorption peak at 290 to 350 nm, and the absorption peak contains silver having a maximum value at 310 to 330 nm. The xenon adsorbent according to any one of claims 3 to 4.
  5. ゼオライトが、CHA型、FER型、HEU型、MWW型から選択される少なくとも1種類の構造を含むことを特徴とする請求項1~請求項4のいずれかの項に記載のキセノン吸着剤。 The xenon adsorbent according to any one of claims 1 to 4, wherein the zeolite contains at least one structure selected from a CHA type, a FER type, a HEU type, and an MWW type.
  6. キセノン吸着剤が成形体であることを特徴とする請求項1~請求項5のいずれかの項に記載のキセノン吸着剤。 The xenon adsorbent according to any one of claims 1 to 5, wherein the xenon adsorbent is a molded body.
PCT/JP2017/046790 2017-01-06 2017-12-26 Xenon adsorbent WO2018128136A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/475,226 US11065597B2 (en) 2017-01-06 2017-12-26 Xenon adsorbent
KR1020197017088A KR102404087B1 (en) 2017-01-06 2017-12-26 xenon adsorbent
CN201780079591.8A CN110099745B (en) 2017-01-06 2017-12-26 Xenon adsorbent

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-001299 2017-01-06
JP2017001299 2017-01-06
JP2017125856 2017-06-28
JP2017-125856 2017-06-28
JP2017-218780 2017-11-14
JP2017218780 2017-11-14

Publications (1)

Publication Number Publication Date
WO2018128136A1 true WO2018128136A1 (en) 2018-07-12

Family

ID=62789342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046790 WO2018128136A1 (en) 2017-01-06 2017-12-26 Xenon adsorbent

Country Status (5)

Country Link
US (1) US11065597B2 (en)
JP (1) JP7135319B2 (en)
KR (1) KR102404087B1 (en)
CN (1) CN110099745B (en)
WO (1) WO2018128136A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020163343A (en) * 2019-03-29 2020-10-08 東ソー株式会社 Krypton adsorbent

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110099745B (en) * 2017-01-06 2022-12-16 东曹株式会社 Xenon adsorbent
US11650010B2 (en) * 2018-01-11 2023-05-16 Praxair Technology, Inc. Adsorptive xenon recovery process from a gas or liquid stream at cryogenic temperature

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026814A (en) * 1988-02-11 1990-01-11 L'air Liquide Gas separation
WO2003045536A1 (en) * 2001-11-27 2003-06-05 Nippon Sanso Corporation Gas separation method and device
JP2003221212A (en) * 2001-11-19 2003-08-05 Air Products & Chemicals Inc Method for recovering krypton and/or xenon and adsorption apparatus
JP2010042381A (en) * 2008-08-18 2010-02-25 Taiyo Nippon Sanso Corp Xenon sorbent, method for enriching xenon, xenon concentrator, and air liquefaction separation apparatus
WO2016005227A1 (en) * 2014-07-08 2016-01-14 Clariant International Ltd Adsorption material for the adsorption of noble gases, use thereof and method for the adsorption of noble gases

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8005645A (en) * 1980-10-13 1982-05-03 Euratom METHOD FOR REVERSIBLE STORAGE OF GASES OR VAPORS IN A NATURAL OR SYNTHETIC ZEOLITE
US4849575A (en) * 1987-11-25 1989-07-18 Uop Production of olefins
DE69717321T2 (en) * 1996-12-05 2003-04-03 Toray Industries Process for the isomerization of halogenated ethylbenzenes
JP3824838B2 (en) 2000-03-29 2006-09-20 エア・ウォーター株式会社 Noble gas recovery method
US6658894B2 (en) 2001-11-19 2003-12-09 Air Products And Chemicals, Inc. Process and adsorbent for the recovery of krypton and xenon from a gas or liquid stream
AU2003239922A1 (en) * 2002-05-31 2003-12-19 Praxair Technology, Inc. Production of high purity and ultra-high purity gas
JP4898194B2 (en) 2005-11-14 2012-03-14 大陽日酸株式会社 Pressure fluctuation adsorption gas separation method and separation apparatus
JP4481112B2 (en) 2004-08-26 2010-06-16 大陽日酸株式会社 Pressure fluctuation adsorption type gas separation method and apparatus
US8232221B2 (en) * 2006-07-14 2012-07-31 Governors Of The University Of Alberta Zeolite supported metallic nanodots
JP5202836B2 (en) 2006-12-01 2013-06-05 日本エア・リキード株式会社 Xenon recovery system and recovery device
KR101448271B1 (en) * 2007-02-21 2014-10-07 토소가부시키가이샤 Agent for rendering halogen-containing gas harmless, and method of rendering halogen-containing gas harmless using same
US8535414B2 (en) 2010-09-30 2013-09-17 Air Products And Chemicals, Inc. Recovering of xenon by adsorption process
WO2012091046A1 (en) * 2010-12-28 2012-07-05 東ソー株式会社 Zeolite having copper and alkali earth metal supported thereon
CN103043682B (en) * 2011-10-17 2015-07-22 中国石油化工股份有限公司 Sodium-potassium-hydrogen type ferrierite and method for preparing same
CN103041849B (en) * 2011-10-17 2014-12-31 中国石油化工股份有限公司 Alkali earth metal modified ferrierite, and preparation method and application thereof
KR102028777B1 (en) * 2011-12-20 2019-10-04 도소 가부시키가이샤 Strontium-exchanged clinoptilolite
CN110099745B (en) * 2017-01-06 2022-12-16 东曹株式会社 Xenon adsorbent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026814A (en) * 1988-02-11 1990-01-11 L'air Liquide Gas separation
JP2003221212A (en) * 2001-11-19 2003-08-05 Air Products & Chemicals Inc Method for recovering krypton and/or xenon and adsorption apparatus
WO2003045536A1 (en) * 2001-11-27 2003-06-05 Nippon Sanso Corporation Gas separation method and device
JP2010042381A (en) * 2008-08-18 2010-02-25 Taiyo Nippon Sanso Corp Xenon sorbent, method for enriching xenon, xenon concentrator, and air liquefaction separation apparatus
WO2016005227A1 (en) * 2014-07-08 2016-01-14 Clariant International Ltd Adsorption material for the adsorption of noble gases, use thereof and method for the adsorption of noble gases

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020163343A (en) * 2019-03-29 2020-10-08 東ソー株式会社 Krypton adsorbent
JP7243394B2 (en) 2019-03-29 2023-03-22 東ソー株式会社 krypton adsorbent

Also Published As

Publication number Publication date
KR20190104522A (en) 2019-09-10
US11065597B2 (en) 2021-07-20
CN110099745A (en) 2019-08-06
US20190336938A1 (en) 2019-11-07
JP7135319B2 (en) 2022-09-13
JP2019077603A (en) 2019-05-23
CN110099745B (en) 2022-12-16
KR102404087B1 (en) 2022-05-31

Similar Documents

Publication Publication Date Title
ES2905405T3 (en) Zeolitic adsorbents and their uses
ES2928974T3 (en) Zeolite adsorbents with raised external surface comprising barium and/or potassium and their use
US10029247B2 (en) Chabazite-type zeolite and process for producing the same
ES2871076T3 (en) Use of zeolitic adsorbents with a high external surface area
WO2018128136A1 (en) Xenon adsorbent
US5567407A (en) Li-exchanged low silica EMT-containing metallosilicates
US8124038B2 (en) IM-16 crystallised solid and process for the preparation thereof
Jon et al. Synthesis and thermal stability of beta zeolite using ammonium fluoride
US8101154B2 (en) IM-15 crystallized solid and its process for preparation
US8372377B2 (en) IM-18 crystalline solid and process for its preparation
US5573745A (en) High micropore volume low silica EMT-containing metallosilicates
US8361436B2 (en) IM-17 crystalline solid and process for its preparation
US8372376B2 (en) IM-13 crystallized solid and its process for preparation
JP7243394B2 (en) krypton adsorbent
JPH11130426A (en) Zinc aluminosilicate
JP2001347123A (en) Adsorptive separation method for carbon dioxide
JP2002018226A (en) Method for adsorptive separation of carbon dioxide
JP2021080132A (en) Hydrophobic zeolite and method for producing the same
KR101155980B1 (en) Process for Producing Zeolite Molecular Sieves for Oxygen Production
Pavlova et al. Synthesis and physicochemical properties of NaK, K, Na, and Li forms of LSX zeolite
JP2015107450A (en) Carbon dioxide adsorbent
JPH10101326A (en) Zeolite bead formed body having low wearing property and its production
JP2021020211A (en) Hydrophobic zeolite, and method for producing the same
Wang et al. Synthesis of zeolites from a low-grade Chinese natural clinoptilolite for adsorption of CO2
JP6123178B2 (en) Methane adsorbent and methane adsorption removal method using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197017088

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890470

Country of ref document: EP

Kind code of ref document: A1