WO2018127516A1 - Dispositif et procédé d'extraction d'au moins un gaz dissout dans un liquide - Google Patents

Dispositif et procédé d'extraction d'au moins un gaz dissout dans un liquide Download PDF

Info

Publication number
WO2018127516A1
WO2018127516A1 PCT/EP2018/050141 EP2018050141W WO2018127516A1 WO 2018127516 A1 WO2018127516 A1 WO 2018127516A1 EP 2018050141 W EP2018050141 W EP 2018050141W WO 2018127516 A1 WO2018127516 A1 WO 2018127516A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
membrane
circuit
dissolved
Prior art date
Application number
PCT/EP2018/050141
Other languages
English (en)
Inventor
Jack TRIEST
Jérôme CHAPPELLAZ
Roberto GRILLI
Original Assignee
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique filed Critical Centre National De La Recherche Scientifique
Priority to CA3045452A priority Critical patent/CA3045452A1/fr
Priority to US16/475,958 priority patent/US20190329157A1/en
Priority to EP18700034.4A priority patent/EP3566038A1/fr
Publication of WO2018127516A1 publication Critical patent/WO2018127516A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0031Degasification of liquids by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0063Regulation, control including valves and floats
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4005Concentrating samples by transferring a selected component through a membrane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4055Concentrating samples by solubility techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour
    • G01N7/10Analysing materials by measuring the pressure or volume of a gas or vapour by allowing diffusion of components through a porous wall and measuring a pressure or volume difference
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02872Pressure

Definitions

  • the present invention relates to a device and a method for extracting at least one gas dissolved in a liquid.
  • the present invention is particularly dedicated to the analysis of at least one parameter of at least one gas dissolved in a liquid.
  • This patent application relates to a device for detecting a partial pressure and its method of operation.
  • the gas of interest can be extracted from the surrounding liquid by the passage through a membrane and comprises a closed-loop gas circulation circuit at pressure close to atmospheric pressure, for example using a pump , the gas being circulated through an apparatus for detecting at least one parameter of the gas previously dissolved in the surrounding liquid.
  • This device works with a reference gas tank to calibrate the measurement. It is suggested to perform a calibration with a reference gas which circulates in a closed loop through the measuring device without gas exchange with the liquid in contact with the membrane.
  • This device has the major disadvantage of a very long response time.
  • the device described in patent application WO 2015/1 10507 by Franatech is also known.
  • This patent application describes a module for capturing a gas dissolved in a liquid and a measuring device.
  • the sensing module comprises a membrane mounted in a housing for sensing the gas dissolved in the liquid.
  • This device is intended to improve the exchange surface and positions the inlet duct differently so that the gas passing through the membrane is no longer necessarily guided perpendicular thereto and that it can be guided towards a duct. input having an exchange surface with the larger membrane.
  • This device allows in particular to circulate the gas both parallel and perpendicular to the plane of the support element thus improving the flow of gas and the efficiency of the capture module.
  • the response time of the device needs to be improved.
  • the devices known to date have a response time of the order of tens of minutes or more.
  • the patent application US 2006/007052 describes a device for separating a gas for extracting a gas dissolved in a fluid.
  • the device comprises a membrane and a support device of the helical or tubular type weaning of support of a membrane.
  • this application describes the use of a forced circulation of the external fluid adjacent to the tubular membrane on its outer surface.
  • the instruments available on the market only allow very targeted studies on traces of dissolved methane and carbon dioxide in an ocean.
  • the instruments offer no possibility of being able to draw profiles (vertical and horizontal) of these gases in the oceans and are only suitable in practice at high concentrations and can not solve the background noise values.
  • These instruments do not offer a multi-species measurement (several components simultaneously), nor a measurement of the isotopic ratios.
  • the purpose of the present invention is to improve the response time of a device for extracting at least one gas dissolved in a liquid, in particular to enable rapid analysis of at least one parameter of one or more dissolved gases. in the liquid.
  • the present invention aims to provide a device having a response time less than one minute and preferably less than 30 seconds.
  • the invention particularly aims to provide a device for very quickly transfer the dissolved gas or gases extracted from the liquid to an instrument for analyzing at least one of their parameters.
  • the present invention aims to provide a device for extracting at least one gas dissolved in a liquid in order to analyze a trace gas.
  • the present invention also aims to provide a device for extracting at least one dissolved gas having a high resolution and / or sensitivity for measuring a low concentration of gas dissolved in a liquid.
  • the present invention also aims to provide a device for extracting at least one dissolved gas having a high resolution and / or sensitivity for measuring a variable concentration of gas dissolved in a liquid, this concentration may be low as high, and most importantly to optimize the measurement according to the concentration of the gas.
  • the present invention aims to provide an autonomous device for measuring at least one parameter of at least one gas dissolved in a liquid.
  • the present invention also aims to provide a measuring device with high spatial and temporal resolution, preferably with excellent sensitivity, for measuring in particular the concentration of at least one gas dissolved in a liquid.
  • the present invention also aims to provide a device for the analysis or study of at least one parameter of a gas dissolved in a liquid, in particular in the context of an environmental study or monitoring of a industry, for example chemical, biochemical, biological, oil or gas.
  • the present invention makes it possible to meet at least one of the technical problems mentioned above.
  • the present invention makes it possible to improve the response time of a device for extracting at least one gas dissolved in a liquid.
  • the present invention relates in particular to a method for measuring, preferably continuously, the concentration or the partial pressure of at least one gas dissolved in a liquid comprising contacting a gas / liquid separation device comprising at least one membrane with a liquid whose concentration or the partial pressure of at least one dissolved gas is to be measured, the separation of at least one gas dissolved in the liquid through the membrane (s) of the gas / liquid separation device, the measurement diffusion flux and / or permeation through the membrane or membranes, and calculation of the concentration of gas previously dissolved in the liquid from the diffusion flux and / or permeation.
  • the present invention also relates in particular to an extraction device 1, 101 of at least one gas dissolved in a liquid, said device comprising (i) at least one membrane 3, 103 gas-liquid separator, (ii) at least one circuit liquid (CL) 5,105 of at least one liquid (L) comprising a dissolved gas, said liquid circuit (CL) 5,105 being arranged to bring the liquid (L) into contact with at least one gas-liquid separating membrane 3,103, the liquid being in contact with the outer surface 31, 133 of the membrane 3, 103, (iii) a first gaseous circuit (CG1) 10, 1 10 for circulating at least one neutral gas (G n ), the first gaseous circuit (CG1) being in contact with the inner surface 32, 132 of the membrane 3, 103, the first circuit (CG1) 10, 1 10 not including gas (G L ) separated from the liquid (L) upstream of the membrane 3, 103, and (iv) a second gas circuit ( CG2) 20, 120 of circulation of the neutral gas (G n ) and of at least one gas
  • liquid is meant a liquid medium in the broad sense, that is to say, may contain suspended particles and / or one or more undissolved gas, and may include one or more liquid phases.
  • the method according to the present invention is implemented with a device as defined according to the present invention.
  • the method comprises maintaining a zero or negligible concentration of gas whose parameter is to be measured on the surface of the permeate-side membrane (s) and the control and / or measurement of at least one parameter secondary, preferably all secondary parameters, significantly influencing the permeation and / or diffusion through the membrane or membranes.
  • the device may advantageously comprise a device for maintaining a zero or negligible concentration on the surface of the permeate-side membrane (s) and one or more devices for controlling and / or measuring at least one secondary parameter. preferably all the secondary parameters, significantly influencing the permeation and / or diffusion through the membrane or membranes.
  • the response of a device for measuring the concentration of at least one gas dissolved in a liquid is no longer dependent on the achievement of the equilibrium of the concentration, on the contrary it only depends (and is preferably limited only) to the permeation time through the membrane (s) and the time for the sample of gas to be analyzed to reach the measuring device.
  • the concentration gradient between the gas dissolved in the liquid and the gas permeate side of the membrane or membranes represents the force of diffusion and / or main permeation.
  • the measurement of the concentration or the partial pressure of at least one gas dissolved by a measuring device 50, 150 is carried out by subtracting the value of the neutral gas flow from the value of the total flow rate of gas sent to the device. measures 50,150.
  • the device is calibrated vis-à-vis one or more secondary parameters to be controlled or measured. This calibration is preferably carried out before the measurement of the parameter or parameters of interest.
  • a secondary parameter to be monitored or measured is selected from the group consisting of: the liquid flow through the membrane, preferably whose geometry is optimized to maintain a constant flow and boundary layer conditions independent of the conditions of liquid flow around the liquid inlet or outlet; salinity; the temperature of the liquid; the temperature of the membrane; the total pressure on the liquid side of the membrane; and / or the concentration of one or more other dissolved gases or elements present in the liquid (such as, for example, oxygen, iron, etc.).
  • the measurement of the diffusion flux and / or permeation through the membrane (s) is carried out by maintaining a zero or negligible concentration on the surface of the permeate-side membrane (s) by passing a flow of a neutral gas on the surface of the permeate side membrane or membranes, said neutral gas stream flowing in open circuit.
  • the device according to the present invention makes it possible not to wait for equilibrium on either side of the membrane for the parameter to be analyzed, and in particular the equilibrium of the concentration of gas extracted from the liquid.
  • the device according to the present invention has an open circulation of the first gas circuit and / or the second gas circuit.
  • open circulation it is specifically meant that the gas, and more specifically the gas extracted from the liquid, does not circulate in a loop in the circuit under consideration, but is evacuated towards the outside of the device or a storage container, and possibly reprocessing, or directed from the first to the second circuit. If the second circuit comprises a return of neutral gas to the first circuit, any trace of dissolved gas extracted from the liquid must have been trapped, destroyed, eliminated or converted into a suitable device before the neutral gas flow comes into contact with the membrane.
  • the device 1, 101 comprises a return of the neutral gas Gn from the second gas circuit CG2 to the first gas circuit CG1, preferably with a gas trap G L separated from the liquid and of which at least one parameter is to be measured, or a device for separating the gas G L separated from the liquid, and at least one parameter of which is to be measured, neutral gas Gn, preventing or limiting the gas flow G L separated from the liquid and of which at least one parameter is to be measured in the first gas circuit CG1 and especially on the portion of the membrane intended to be in contact only with the neutral gas.
  • the first gaseous circuit may comprise a gas extracted from the liquid which does not significantly interfere with the analysis of the analyzed parameter and which is not the G L gas of which at least one parameter is to be analyzed.
  • the device according to the present invention does not require waiting for the equilibrium of concentrations on either side of the gas-liquid separating membrane.
  • the response time of the device according to the present invention can advantageously be divided by a significant factor compared to previous devices typically by passing from an analysis lasting 10 to 15 minutes, or even more than one hour, according to the prior art. an analysis in seconds or tens of seconds according to the invention.
  • the liquid circuit is in an open loop.
  • the circulation of the liquid is advantageously carried out so as to allow a control of the liquid flow to ensure a constant and optimal extraction of the dissolved gas and to extract, through the gas / liquid separation membrane (s).
  • Optimum means that limit layers and turbulence are limited and that the liquid flow is not influenced by changes in the liquid flow outside the device, such as, for example, the liquid flow or the pressure of the liquid.
  • the liquid circuit comprises a liquid circulation pump.
  • the liquid circulation pump makes it possible to control the flow rate of liquid flow in the liquid circuit.
  • a liquid circulation pump advantageously makes it possible to optimize the diffusion of gas dissolved in the liquid through a gas / liquid separation membrane.
  • the liquid flow is such that the boundary layers are avoided or minimized.
  • the turbulence of the liquid flow is avoided or minimized.
  • the device is liquid-tight in the inner part of the membrane and comprises a gas circulation.
  • a liquid may be under any pressure.
  • the external liquid is under high pressure.
  • the liquid is the liquid of an industrial reactor, for example a chemical reaction and / or involving living matter. Living matter means the presence of one or more living organisms.
  • a bioreactor it may be microorganisms involved in the production of one or more compounds of interest.
  • the liquid flow has a constant flow rate in the liquid circuit.
  • This constant flow rate can be imposed and optionally regulated by a pump.
  • the liquid flow rate may be slaved with respect to the liquid flow entering the device of the invention, which may for example vary according to a current, the displacement of the device in the liquid, or other turbulences. of the liquid environment.
  • the inlet and the outlet are arranged in such a way that a modification of the external liquid flow does not affect the flow through the membrane.
  • the pump is advantageously not influenced by the inlet pressure.
  • the device 1, 101 comprises a reservoir 70, 170 of neutral gas supplying the first gaseous circuit (CG1) 10, 1 10.
  • CG1 first gaseous circuit
  • the reservoir 70, 170 of neutral gas may be internal or external to the device 1, 101, that is to say for example located in the same envelope or outside.
  • the tank 70, 170 is in communication with a non-return valve allowing the tank 70, 170 to be filled under high pressure, generally from 10 to 100 bars, and typically to about 40 bars.
  • the first gaseous circuit comprises only the neutral gas.
  • the neutral gas can be optimized and depends on the measurement to be made.
  • the first gaseous circuit, and in particular the neutral gas does not comprise gas extracted from the liquid.
  • the first gaseous circuit, in particular the neutral gas has no effect on the measured parameter (s) of the gas separated from the liquid.
  • the flow of neutral gas is continuous, preferably during the extraction of the gas from the liquid and the measurement of at least one of its parameters.
  • the flow of neutral gas is advantageously chosen to optimize the extraction of the dissolved gas.
  • the stream of neutral gas advantageously has a non-zero flow, and still advantageously greater than 1.0 Ncm 3 / min, preferably greater than 1.2 Ncm 3 / min and still more preferably greater than 1.5 Ncm 3 / min.
  • the flow of neutral gas is from 1.5 to 3 Ncm 3 / min.
  • the flow of neutral gas ranges from 5 to 20 Ncm 3 / min.
  • the gaseous flow of the first gaseous circuit is optimized as a function of the desired response time or imposed by an instrument for measuring at least one parameter of the gas previously dissolved in the liquid.
  • the flow rate of the neutral gas flow of the first gaseous circuit is a function of the concentration of gas extracted from the liquid in the desired neutral gas.
  • the flow rate of the neutral gas flow is a function of the concentration or the volume of gas dissolved in the liquid.
  • the flow rate of the neutral gas stream is optimized for the detection of at least one parameter of the gas dissolved in the liquid.
  • the flow of neutral gas in the first gaseous circuit makes it possible to control the dilution of the gas extracted from the liquid in the second gaseous circuit.
  • the flow of neutral gas is controlled by a gas flow regulator to control the dilution of the gas sample separated from the liquid and to optimize the measurement of the diffusion flux and / or permeation.
  • the first gaseous circuit is in an open loop and supplies the second gaseous circuit with neutral gas. More precisely, the first gas circuit comprises an inlet opening onto a container of neutral gas, preferably under pressure, that is to say at a pressure greater than the pressure of the neutral gas in the first gas circuit.
  • the neutral gas container is located outside the extraction device.
  • the neutral gas container is located inside the extraction device.
  • the neutral gas container comprises a non-return valve for filling the container with neutral gas easily.
  • the pressure in the neutral gas container is from 10 to 100 bar, for example from 20 to 60 bar and for example from 30 to 50 bar, and still for example is about 40 bar.
  • the first gaseous circuit comprises a pressure reducer.
  • the first gaseous circuit may comprise a gaseous flow control that advantageously controls and regulates the flow rate in the first gaseous circuit, preferably once reduced by the pressure reducer.
  • the neutral gas pressure upstream of the pressure reducer, is between 10 and 100 bar, for example 20 to 60 bar and for example 30 to 50 bar, and for example is about 40 bars.
  • the gas flow rate is controlled after the pressure reducer.
  • the pressure of the neutral gas is lower than the pressure upstream of the pressure reducer, for example in particular for the proper operation of the gas flow regulator of the neutral gas, and for example between 0.01 and 5 bar, for example between 0.01 and 0.5 bar, and for example between 0.02 and 0.1 bar.
  • the flow rate of the gas stream in the first gaseous circuit is typically of the order of 0.1 to 100 Ncm 3 / min (standard cubic centimeters per minute, SCCM - Standard Cubic Centimeters per Minute), and for example from 1 to 10 Ncm 3 / min, and ideally 1 to 5 Ncm 3 / min.
  • the first gaseous circuit 10, 1 10 comprises a regulator of the gas flow 175, for example in the form of a pressure regulator and / or a device for regulating the gas flow, advantageously optimizing the cooling time. response and gas concentration of which at least one parameter is to be measured in the measuring device 50, 150.
  • the regulator of the gas flow 175 controls the dilution of the gas separated from the liquid and optimizes the measurement of the diffusion flux by the measuring device (50, 150).
  • the regulator of the gas flow 175 controls the amount of gas flowing to the inner surface 32, 132 of the membrane (permeate side).
  • the stream of neutral gas flowing in the first gas circuit and in contact with the membrane or membranes 3, 103 makes it possible to create a very low concentration, preferably close to zero, of gas extracted from the liquid, in particular at the inner surface 32. 132 of the separating membrane 3, 103.
  • the gaseous diffusion of the gas extracted from the liquid through the membrane makes it possible to optimize the response time to know the parameter or parameters analyzed.
  • the flow of neutral gas is constant.
  • the neutral gas flow is set or varies to dilute the gas G L separated from the liquid in the flow of the second gas circuit CG2, and in particular to adapt the gas flow rate of the second gas circuit to the operating range of the measuring device 50, 150.
  • the gas flow rate of the second gas circuit is adjusted to optimize the measurement by the measuring device 50, 150.
  • the neutral gas can be a gaseous mixture. Typically it may be air, nitrogen, oxygen, argon, or another neutral gas for the analysis, that is to say which does not disturb the analysis of the parameters analyzed on the gas or gases extracted from the liquid.
  • the flow of neutral gas in contact with the inner surface of the membrane makes it possible to minimize the concentration of gas extracted from the liquid at the inner surface of the membrane and to maximize the diffusion flux through the membrane and to no longer be dependent on the equilibrium of the concentration or partial pressure of the gas extracted on both sides of the membrane.
  • the device according to the present invention allows a response time less than one minute, typically less than 30 seconds, and in particular of the order of 15 seconds.
  • Second gas circuit
  • the second gas circuit is in open circuit.
  • the gas exits the pump 140 it can be stored in a tank or used for further analysis.
  • the second gas circuit is in a closed loop.
  • a closed loop variant may comprise the withdrawal of the gas circuit of which at least one parameter is to be measured, for example for a subsequent analysis or for an autonomous device.
  • the device 1, 101 comprises a return of the neutral gas Gn of the second gas circuit CG2 to the first gas circuit CG1, preferably with a gas trap G L separated from the liquid or a gas separation device G L separated from the liquid of the neutral gas Gn, preventing or limiting the gas flow G L separated from the liquid in the first gas circuit CG1.
  • the gas can be returned to the first gas circuit CG1 downstream of the pressure reducer 171 since it will already be at a reduced pressure with respect to the storage tank 170 of the neutral gas.
  • a device operating at a high temperature (for example 1000 ° C) or cold or a chemical trap can be used to eliminate or trap the unwanted species in the stream of neutral gas, and in particular eliminate or trap the gas or gases at least one parameter is to be measured.
  • the neutral gas is therefore recycled after separation of the species to be analyzed and the reservoir 170 and the pressure reduction device 171 are not used.
  • the gas of the first gaseous circuit is not fed from the tank 170, but in a closed loop.
  • This variant allows continuous use without being dependent on the amount of gas stored in a tank 170 or the storage capacity of the tank 200.
  • the second gas circuit 20, 120 comprises a device for measuring the gas flow 180.
  • the device for measuring the gas flow 180 measures the flow rate of the total flow (CG1 + G L ).
  • the device for measuring the gas flow 180 is preferably positioned between the membrane 3, 103 and the measuring device 50, 150, preferably for measuring the total flow rate of gas, the gas of which is separated from the liquid of interest, collected, typically by subtracting the flow rate. neutral gas at the measured flow rate.
  • the second gas circuit 1, 120 comprises a drive device 140 for the gas separated from the liquid, for example a pump.
  • the second gas circuit 20, 120 comprises a device for measuring the gas flow 180, for example in the form of a pressure measuring device and / or a device for measuring the gas flow, advantageously making it possible to know or to estimating the gas flow rate extracted from at least one parameter to be measured in the measuring device 50, 150.
  • the second gas circuit is arranged so as to route the gas as quickly as possible to the measuring device.
  • the second gas circuit comprises a vacuum pump to create a vacuum downstream of the membrane and preferably downstream of the measuring device 50, 150.
  • the gas flowing in the measuring device 50, 150 is dry.
  • the dry gas makes it possible to limit the humidity in the measuring device 50, 150 and in the pump 140.
  • the gas can be dried by a National® membrane or a silica cartridge 160.
  • the second gas circuit comprises a device for drying the gas contained in the second gas circuit.
  • the device for drying the gas is located upstream of the measuring device.
  • the gas drying device is located downstream of the measuring device and preferably upstream of a possible circulation pump located downstream of the measuring device, for example a vacuum pump.
  • the gas flowing downstream of the drying device in the second gas circuit is dry or substantially dry, that is to say that it contains a limited amount of water in vapor form.
  • the drying device is connected in series with the second gaseous circuit.
  • the gas drying device comprises or consists of a selective permeating membrane for water vapor.
  • the gas drying device comprises or consists of a silica cartridge.
  • the drying system comprises a selective permutating membrane for water vapor, preferably comprising a countercurrent gas flow circuit, for example driving the expired water vapor to a gas tank.
  • the gas after being transmitted to the measuring device 50, 150, the gas is sent to a storage tank 200, which may be outside the device 1, 101, for example for a subsequent discrete analysis or optimize the volume of the device 1, 101.
  • a membrane advantageously makes it possible to separate at least one gas from a liquid.
  • the membrane makes it possible to separate several gases present in a liquid.
  • the membrane is selective for the separation of one or more of several gases present in a liquid.
  • the device 1, 101 comprises at least two membranes (M1; M2) 3, 103 gas-liquid separators arranged facing one another, preferably an inlet of the second gas circuit (CG2) 20, 120 opening on each of the membranes (M1; M2) 3, 103 and / or preferably an inlet of the first gas circuit (CG1) 10, 1 10 opening on each of the membranes (M1; M2) 3, 103.
  • the device 1, 101 comprises at least one membrane 3, 103 tubular separator gas-liquid.
  • the device comprises more than two gas-liquid separating membranes.
  • the device comprises four gas-liquid separating membranes, for example arranged facing each other in pairs.
  • the device comprises one or more tubular membranes.
  • the internal geometry of the device is designed so as to avoid the appearance of recirculation loop and the creation of "dead zones", in particular in the zone comprising the membrane and the element for maintaining the membrane in position, typically constituted by a sintered metal element, if it is present.
  • a chamfer is made on the membrane support, said chamfer being disposed opposite the inlet and outlet orifice of the neutral gas passing from the permeate side of the membrane, in particular so as to dispense the neutral gas of homogeneous way on the surface of the membrane, permeate side.
  • the membrane is held in position by a holding element.
  • the membrane 3, 103 may comprise an active material such as, for example, of the silicone type.
  • the membrane may comprise one or more layers of gas-liquid separator material.
  • the membrane may be supported on a sintered support 8,108, which may be for example stainless steel or bronze.
  • the membrane support has a chamfer at its periphery at the face opposite to that in contact with the membrane.
  • the chamfer allows the neutral gas from the first gas circuit CG1 arriving to the inlet port 12 to be homogeneously distributed on the surface of the support.
  • This variant makes it possible to ensure that the concentration of neutral gas on the entire surface 32, 132 on the permeate side of the separation membrane.
  • the support 8, 108 is a porous support.
  • the membrane 3, 103 is solidarized (stuck, deposited, etc.) with the support 8, 108.
  • the first gas circuit 10, 1 10 and the second gas circuit 20, 120 are arranged in a liquid-tight enclosure (L), preferably withstands a pressure of at least 60 MPa.
  • the measuring device 50, 150 is contained in a sealed envelope, and preferably in the liquid-tight envelope containing the first and the second gaseous circuit.
  • the tank 170 of neutral gas may be inside or outside the envelope.
  • the entire device is liquid-tight, and preferably a liquid under pressure.
  • the device is designed to withstand deployment in deep waters such as for example the bottoms of an ocean, a sea or a lake.
  • the device according to the present invention is autonomous.
  • autonomous is meant that it comprises all the elements necessary to analyze at least one parameter of at least one gas extracted from a liquid.
  • the elements necessary for analyzing this parameter are the device or devices for separating at least one gas dissolved in a liquid, the liquid circulation circuit, the first and second gaseous circulation circuits, and the analysis instrument ( or measurement).
  • the sealed envelope comprises only the device 1 for extracting the gas with the membrane and the first gas circuit 10, 1 10 and the second gas circuit 20, 120 are arranged partly out of the liquid-tight envelope (L) containing the membrane.
  • the device 1, 101 comprises a positioning instrument for determining the geographical position of the device.
  • the autonomous device comprises a spatial and / or temporal positioning probe.
  • a spatial positioning means may be for example a water positioning radar or a set of accelerometers calculating the relative position of the last known position.
  • the device of the invention comprises a probe for measuring or positioning the depth in the liquid. It is typically a probe determining the depth in an ocean a sea or a lake, as for example a pressure sensor.
  • the device of the invention may be coupled with a sonar, for example to determine the relative position of the device to a ship.
  • the autonomous device may comprise a motorization capable of moving the device.
  • the device is autonomous to be deployed in a terrestrial aqueous fluid, such as an ocean, a lake, a sea.
  • a terrestrial aqueous fluid such as an ocean, a lake, a sea.
  • the device of the invention is in continuous or discontinuous communication with a ship.
  • the device 1, 101 comprises an instrument for transmitting the measured data to a remote electronic device, for example located on a ship or a land station, and / or an instrument for receiving orders from a device remote electronics, for example located on a ship or land station.
  • the extraction device of the invention may comprise an isotope storage container, such as for example radioactive carbon, for an immediate or subsequent measurement.
  • the device of the invention is an unmanned vessel (ROV for "Remotely Operated Vehicles” in English), or remotely controlled or with an autonomous control to accomplish a specific program such as a glider or a robot under Autonomous Underwater Vehicle (AUV).
  • ROV Remote Operated Vehicles
  • UAV Autonomous Underwater Vehicle
  • the device of the invention is a device arranged in fluid communication with a fluid of an industrial reactor.
  • the measuring device is located in the same casing as the extraction device.
  • the invention relates to a device, comprising at least one extraction device as defined according to the invention, and at least one measuring device 50, 150.
  • the measuring device is not located in the envelope of the extraction device.
  • the invention relates to a device, comprising at least one extraction device as defined according to the invention, and not including the measuring device. The measuring device can then be located in a laboratory, for example.
  • the measuring device or instrument may be any type of instrument for measuring at least one parameter of at least one gas, and in particular gas G L.
  • the analysis can relate to several types of gases G L separated from the liquid.
  • the measuring device is able to measure the partial pressure or the concentration of a gas contained in the gas flow entering the device.
  • it is a device for measuring the partial pressure of, for example, an alkane compound that can be dissolved in a liquid solution, and more specifically in water, such as, for example, methane, ethane, any of their isotopes, any of their hydrates, or CO2, carbon monoxide, hydrogen sulphide (H2S), ammonia (NH3), hydrochloric acid (HCI), hydrofluoric acid (HF), H2, O2, N2O, NO, SO2, SO3, COS, etc.
  • the measuring device is an optical spectrometer.
  • the measuring device is a multi-gas IR laser analyzer (OFCEAS for example - "Optical Feedback Cavity Enhanced Spectroscopy").
  • the measuring device 50, 150 and for example a
  • the measuring device is an OFCEAS spectrometer (Optical Feedback Spectroscopy).
  • Spectroscopy Such a spectrometer allows the analysis of multiple gases at the same time (for example methane CH4 and ethane C2H6).
  • the measuring instrument allows the analysis of several gases simultaneously, and for example their concentration.
  • the instrument measures one or more methane parameters, and / or two or more isotopes of water.
  • the measuring device analyzes the presence and / or quantification of isotopes of the gas dissolved and separated from the liquid (G L ).
  • an inlet of the liquid circuit (CL) 5, 105 and an inlet of the first gas circuit 10, 1 10 are positioned to maximize the contact surface of the neutral gas with the membrane 3, 103.
  • the liquid is advantageously pumped at constant flux by a liquid pump and preferably the liquid flow is not affected by the pressure variation.
  • the liquid flow is controlled so that the boundary layers and turbulence on the surface of the membrane 33, 133 are minimal.
  • the measuring device comprises a temperature control system.
  • the measuring device performs the measurement under vacuum, in particular under the vacuum created by a vacuum pump located downstream of the measuring device.
  • the cell of the measuring device typically a spectrometer having an optical cavity, be maintained at low pressure (pressure of a few tens of millibars).
  • the measuring instrument may be in communication with an on-board computer or not 190 collecting the analyzed or measured data.
  • the measuring device is controlled by a computer 190.
  • the flow rate CG1 is subtracted from the flow rate CG2, for example by the computer 190 to determine the concentration or the quantity of dissolved gas separately.
  • the result of the analysis device 50,150 is processed by the computer 190 to obtain the knowledge of the parameter to be measured.
  • the computer includes a program for recording, processing and viewing the received data.
  • the storage of the analyzed or measured data can also be realized in the autonomous device. This communication can be achieved for example by means of electromagnetic waves or the displacement of electric current.
  • a computer 190 controls the gas circuits, the measuring device, the storage of data, especially those collected, etc.
  • a computer communicates the data on the surface (using, for example, communication protocols of the ADSL, SHDSL type or via a coaxial cable, twisted pair, or optical fiber.
  • the results are produced in real time, stored and / or sent to a recipient device.
  • the device of the invention collects the data necessary for a four-dimensional visualization of the parameter (s) of the desired dissolved gas (s).
  • a four-dimensional visualization can be represented by the evolution of one or more parameters, for example the concentration, a dissolved gas as a function of time, and its position in a liquid (x, y, z).
  • the present invention also relates to a 4D graph (x, y, z, parameter analyzed, typically the concentration) obtained by a device according to the present invention.
  • the present invention relates to a method for measuring at least one parameter, such as, for example, the concentration of at least one gas dissolved in a liquid, for example a terrestrial aqueous fluid, said method implementing a device according to the invention for obtaining a measurement of at least one parameter of a gas dissolved in the liquid.
  • a parameter such as, for example, the concentration of at least one gas dissolved in a liquid, for example a terrestrial aqueous fluid
  • the present invention relates to a method for measuring, preferably continuously, the concentration or the partial pressure of at least one gas dissolved in a liquid, said method comprising contacting a gas / liquid separation device comprising at least a membrane with a liquid whose concentration of at least one dissolved gas is to be measured, the separation of at least one gas dissolved in the liquid through the membrane (s) of the gas / liquid separation device, the measurement of the flow of diffusion and / or permeation through the membrane or membranes, and the calculation of the concentration or partial pressure of gas previously dissolved in the liquid from the diffusion flux and / or permeation.
  • the concentration gradient between the gas dissolved in the liquid and the permeate gas of the membrane or membranes represents the main diffusion and / or permeation force.
  • the present invention relates more specifically to a method for the study of the concentration of a dissolved gas such as methane, carbon dioxide or other species, their isotopes or their hydrates, for example of an ocean floor, for the study of cold seeps and / or hydrothermal vents in an ocean floor, for the study of localized oceanic dynamics by atmospheric tracers dissolved in water, for the geochemical characterization of the origin of hydrocarbons, for example at the sediment-ocean interface, for the follow-up environmental monitoring of offshore oil installations, for the exploration of new oil and / or gas zones on the ocean floor and / or groundwater, for the study of pollution in dissolved hydrocarbons in a water table.
  • a dissolved gas such as methane, carbon dioxide or other species, their isotopes or their hydrates
  • the present invention relates to a method implemented with a device as defined according to the invention.
  • the neutral gas stream imposed by the first gaseous circulation circuit 10, 1 has the advantage that the concentration of gas extracted from the liquid is theoretically zero or as low as possible at the inner surface 32, 132 of the membrane 3, 103 ( permeate side).
  • the device of the invention makes it possible, for example, to access the concentration of gas extracted from the liquid.
  • the concentration gradient between the gas dissolved in the liquid and the inner surface gas 32, 132 of the membrane 3, 103 is the main driving force for diffusion or permeation.
  • the device according to the invention makes it possible to determine the concentration of gas dissolved in the liquid.
  • the response time of the device of the invention is no longer dependent on the equilibrium on either side of the membrane, but is advantageously determined and limited by the permeation time through the membrane and the time at the gas sample to flow in the second gas circuit 20,120 up to the measuring instrument 50,150.
  • one or more, preferably all, secondary parameters of the gas extracted from the measured and / or controlled liquid are selected from the group consisting of: the liquid flow in contact with the membrane 3,103, the salinity of the liquid, the temperature of the liquid, the temperature of the membrane, the total pressure, the concentration of one or more other dissolved gases (such as, for example, another gas dissolved in the liquid, for example oxygen) or one or more elements dissolved in the liquid (such as for example ions such as iron) in the liquid and which may have an influence on the permeation flow to be analyzed, the surface of the membrane, the composition of the neutral gas, the flow of neutral gas.
  • the concentration of one or more other dissolved gases such as, for example, another gas dissolved in the liquid, for example oxygen
  • elements dissolved in the liquid such as for example ions such as iron
  • the use of the neutral gas flowing in the first gas circuit 10, 10, whose flow is advantageously controlled by a flow controller provides a control of the dilution of the sample to be analyzed in order to optimize the measurement range. the sensitivity of the measuring instrument 50,150, or avoid saturation of the measuring instrument 50,150.
  • the use of the neutral gas flowing in the first gas circuit 10.1 dilutes the concentration of water vapor when the gas is extracted from this liquid (water).
  • the method and the device according to the present invention make it possible to collect the gas extracted from the analyzed liquid to collect a gaseous sample in one or more tanks.
  • the gaseous sample (s) contained in the reservoir (s) may then be analyzed later, together or separately.
  • the volume of gas passing through the measuring instrument and the liquid volume in contact with the membrane 3,103 are measured or controlled.
  • the neutral gas flow rate is controlled by a flow controller, the total gas flow (gas extracted from the liquid and neutral gas) is measured with a flow meter.
  • the liquid flow is advantageously controlled because it affects the amount of gas passing through the membrane. Prior techniques do not specifically control liquid flow because it does not directly affect the measurement since the prior devices are waiting for equilibrium.
  • the device of the present invention it is possible to meet the needs of the academic world and the industrial world for example to measure at high spatial and temporal resolution with excellent sensitivity, the concentration of methane or other dissolved gases.
  • the technology can be applied in particular to the study of gas of interest for the oil or gas industry, such as ethane or isotopes of methane.
  • the device according to the present invention can also be applied to the measurement of the concentration of gas-trace in the oceans, seas or lakes.
  • the device of the invention can be used for the study of methane hydrate degassing at the bottom of the oceans, the fate of methane in a water column and / or its contribution to the acidification of the oceans, for example.
  • the device according to the present invention is useful for the study of cold seeps and hydrothermal vents in the ocean floor.
  • the device according to the invention is useful for the study of ocean dynamics using atmospheric tracers dissolved in water, and in particular for the realization of spatial maps of the evolution of these atmospheric tracers dissolved in water.
  • the device according to the present invention is useful for the geochemical characterization of the origin of hydrocarbons at the sediment-ocean interface.
  • the device according to the present invention is also useful for environmental monitoring for example related to the risk of leakage on off-shore oil or gas facilities.
  • the device according to the invention is also useful for the prospection of new gas oil zones, for example on the ocean floor.
  • the device according to the present invention is also useful in the study of groundwater, and in particular their pollution in dissolved hydrocarbons.
  • the device according to the present invention is particularly useful for measuring the concentration of gas dissolved in an ocean by deploying the device in situ. It provides real-time data sought.
  • the measurement of the concentration or the partial pressure of at least one dissolved gas is carried out as part of an industrial process, for example an industrial treatment or chemical reaction process and / or involving living matter.
  • an industrial treatment or chemical reaction process and / or involving living matter.
  • the invention relates to a treatment device or chemical reaction and / or involving living material comprising the extraction device defined according to the present invention.
  • the device according to the present invention is more particularly useful for measuring the concentration of dissolved gas in an industrial reactor.
  • the device according to the present invention is more particularly useful for measuring the concentration of dissolved gas in a bioreactor.
  • Figure 1 shows schematically an embodiment of the invention having a double membrane.
  • FIG. 2 represents a longitudinal section along section AA of the membrane represented in FIG.
  • FIG. 3 represents a longitudinal section along the section BB of the membrane represented in FIG.
  • FIG. 4 diagrammatically represents an embodiment more specifically presenting gas circuits implementing two membranes in the form of disks.
  • Figure 5 shows schematically an embodiment having a tubular membrane.
  • FIG. 6 schematically represents an embodiment more specifically presenting the gas circuits implementing a tubular membrane.
  • FIG. 7 represents a graph of the evolution of the concentration of methane over time comparing the measurements obtained with a prior art probe ("PRIOR ART” in English) and the device of the invention "INVENTION".
  • FIG. 8 represents a graph of the evolution of the concentration of methane over time as a function of the liquid flow (water).
  • FIG. 9 represents the effect of the variation of the neutral gas flow on the measurement of the methane concentration as a function of the total gas flow.
  • Figure 10 shows a schematic view of the input information and output results of a computer or a microprocessor according to an exemplary embodiment of the invention.
  • FIG. 1 shows a body 1 having, for example, a fixed part 15, a removable part 14 and at least two housings 2 for membranes 3 arranged facing one another.
  • a device according to the present invention may comprise 1, 2, 3, 4 or more membranes. Referring to Figure 1, more specifically describes the arrangement of a membrane, the arrangement of a second membrane being substantially identical, the second membrane being located on the opposite side of the body 1 for housing the membrane.
  • the housing 2 can be made in the form of a recess of the part of the fixed and / or removable body 14.
  • the removable part 14 has at least one inlet orifice 5 of a liquid, preferably the liquid being located outside the device and at least one outlet orifice 6 of this liquid.
  • a seal 7 seals the inner cavity to the surrounding liquid.
  • the liquid flowing in the liquid circulation circuit (CL) remains confined to the outside of the membrane 3.
  • the liquid is in contact with the outer surface 31 of the membrane.
  • the membrane 3 is able to separate at least one gas dissolved in the liquid during the contact of the liquid with the outer surface 31 of the membrane 3.
  • the liquid flow flows in a plane substantially parallel to the outer longitudinal surface of the membrane 3.
  • the circulation of the liquid (L) 30 may be carried out for example by a pump.
  • the inlet and outlet orifices 6 and 6 of the liquid circulation circuit are arranged so as to avoid the presence of gas bubbles such as, for example, air in contact with the outer surface 31 of the membrane 3.
  • the inlet port 5 when the device is placed in a liquid volume, the inlet port 5 is located in a lower part to the outlet port 6 of the liquid circuit. According to one embodiment, the inlet and outlet orifices 6 are arranged diametrically opposite or on opposite edges of the membrane 3.
  • the membrane 3 may be placed in contact with a holding element 8 of the membrane 3, maintaining the membrane 3 in position and being resistant to the pressure of the liquid.
  • the membrane 3 is placed in contact with a holding element 8 that withstands a high pressure of liquid, such as when the device is deployed in a volume of deep water.
  • the holding element 8 of the membrane 3 resists a pressure of at least 40 MPa, preferably 60 MPa.
  • the holding element 8 comprises or consists of a sintered metal.
  • the holding element 8 has a shape similar to the shape of the membrane 3.
  • the holding element 8 is in contact with the internal surface
  • the holding element 8 is porous to the gas extracted from the liquid and the neutral gas (Gn) and does not affect the gas extracted from the liquid of which at least one parameter is to be measured.
  • the device comprises a first circulation circuit 10 of neutral gas (G n ) in contact with the inner surface 32 of the membrane 3.
  • the first circulation circuit 10 has a duct 1 1 opening on the element 8 holding solid membrane 3 so that the neutral gas (G n ) flowing in the first flow conduit 10 flows through the holding member 8.
  • the conduit 1 1 opening on the holding element 8 is positioned substantially at the periphery of the surface of the holding element 8.
  • the pipe 1 1 comprises an orifice 12 in contact with the holding element 8.
  • the port 12 is located opposite the orifice 6 of the liquid outlet.
  • the first circulation circuit 10 allows the circulation of neutral gas substantially over the entire inner surface 32 of the membrane 3.
  • the holding element 8 has a periphery chamfered, for example bevelled, so as to distribute the gas flow of the neutral gas over the entire periphery of the membrane 3 and thus create a gaseous flow of neutral gas from the periphery of the membrane 3 (on the inner surface 32) to the second circulation circuit 20.
  • the second circulation circuit 20 will allow the evacuation of the neutral gas mixed with the gas extracted from the liquid through the membrane 3. The gas dissolved in the liquid therefore passes from the liquid circuit through the of the membrane 3, the extracted gas being driven by a pressure difference (for example created by a vacuum pump in the second circulation circuit) towards the second circulation circuit 20.
  • the second circulation circuit 20 has a conduit 21 opening on the solid element 8 for holding the membrane 3 so that the neutral gas and the gas extracted in contact with the membrane are directed towards the second gas circuit 20.
  • the conduit 21 opening on the holding member 8 is positioned substantially in the central portion of the holding member 8.
  • the orifice 22 of the second gas circuit is substantially disposed in the center.
  • the conduit 1 1 of the first gas circuit 10 and the conduit 21 of the second gas circuit 20 has as many orifices as the device comprises membranes.
  • the conduit 1 1 and the conduit 21 have two orifices.
  • the second gaseous circuit 20 is in communication with an apparatus for analyzing at least one parameter of at least one dissolved gas contained in the gaseous flow flowing in the second gaseous conduit 20.
  • the entire device can be secured by fastening means 9, such as for example screws, nuts / bolts, now solidarily fixed portion 15 and the removable portion 14 of the body 1.
  • FIG. 2 represents the section AA of an embodiment according to FIG. This section makes it possible to identify more specifically the housing 2 of the body 1 receiving the membrane 3 and the holding element 8.
  • the membrane 3 is disposed on the surface of the holding element 8.
  • the element 8 is positioned in a recess of the fixed portion 15 of the body 1 and the membrane 3 is positioned on the surface of the holding element 8 and facing a recess of the removable portion 14 of the body 1, which are secured by fixing elements 9.
  • the liquid flow circulates substantially parallel to the surface of the membrane 3 so that the entire surface of the membrane is in contact with the liquid flowing in the liquid circuit 30.
  • the two holding elements 8 are in connection with the second gas circuit 20 for conveying the gas extracted from the liquid to a measuring device 50 not shown.
  • the conduit 21 opens through the orifices 22 on the holding elements 8.
  • the seal 7 may be for example an O-ring housed in a recess of the removable portion 14 or fixed 15.
  • the device may comprise a gas seal 17.
  • the device operates at a pressure lower than that of the surrounding medium and requires a complete sealing of the gas circuits.
  • the gaseous circuits must be isolated from contact with a gas external to the device.
  • Figure 3 shows the section B-B of the device shown in Figure 1.
  • first gas circuit 10 and the second circulation circuit 20 which respectively comprise a pipe 1 1, 21 and orifices 12, 22 opening onto the holding elements 8.
  • the liquid circuit 130 comprising a liquid inlet is shown through an orifice 105 and a liquid outlet via an orifice 106.
  • the liquid flow in the liquid circuit 130 is in contact with a gas / liquid separation device comprising or consisting of a membrane 103 disposed on a holding member 108.
  • the liquid flow in the liquid circuit 130 is more particularly in contact with the outer surface 133 of the membrane 103.
  • a pump 102 is used to maintain a constant liquid flow.
  • the first gas circuit 1 10 comprises a conduit 1 1 1 opening through the orifice 1 12 on the holding member 108, porous to the neutral gas contained in the first gas circuit 1 10 so that the stream of neutral gas sweeps the inner surface 132 of the membrane 103, and preferably on a maximum surface of the inner surface 132 of the membrane.
  • the neutral gas may be contained in a tank 170, situated for example outside or inside the body 101 schematized here by dotted lines.
  • the neutral gas can be circulated advantageously by a pump or a pressure tank, for example the tank 170.
  • the pressure can be for example 30 to 40 bar.
  • the first gas circuit 1 10 comprises a pressure reducer 171, for example reducing the pressure to approximately 1.5 bar (a) (absolute pressure).
  • the pressure of the neutral gas Gn is reduced by a pressure reducer 171 to an operating pressure of the flow regulator 175.
  • the first gaseous circuit 1 10 comprises a gaseous flow controller 175 for controlling the flow rate of the gaseous flow in the first gaseous circuit 1 10.
  • the second gaseous circuit 120 advantageously comprises a vacuum pump 140 making it possible to ensure the circulation of the gaseous flow comprising the gas extracted from the liquid in the second gaseous circuit 120.
  • the gas is pumped through the measuring device 150 and stored in a tank 200.
  • the gas is pumped through the measuring device 150 and purified in a purification device 201 of the neutral gas and returned to the first gas circuit CG1.
  • Figure 5 shows a different embodiment of Figure 1 implementing a membrane 103 of tubular form.
  • the device comprises a liquid pump 160, typically a water pump, remote from the body 101 advantageously forming housing of at least one measuring instrument 150 of at least one parameter of at least one gas to be analyzed and to extract liquid .
  • the liquid pump 160 is housed in the receptacle comprising one or more orifices 105 for entering a liquid flow.
  • the liquid pump 160 circulates the liquid in the liquid circuit 1 10, the liquid circuit 1 10 opens on an outlet port 106 ejecting the liquid from the device body 101.
  • the outlet orifice 106 is placed opposite to the inlet orifice 105, and preferably close to the internal diameter of the membrane seal so that the contact surface of the liquid flow with the surface of the membrane 33, 133 is maximized for a gas extraction dissolved through the membrane.
  • the outlet orifice 106 is arranged and positioned to minimize a pressure change on the flow rate of the flow passing through the membrane 133.
  • a tubular membrane 3 is held in place by one or more fastening elements 109.
  • the tubular membrane 103 may be deposited on a holding member 108 porous gas to extract liquid, typically made of sintered metal.
  • the device has a container 170 of neutral gas remote from the body 101 allowing the circulation of neutral gas in the first gas circuit 120.
  • Figure 5 does not detail the gas circulation circuit. An example of a gas circulation circuit can be seen more precisely in FIG.
  • FIG. 6 shows the liquid circuit 130 comprising a liquid inlet via an orifice 105 and a liquid outlet via an orifice 106.
  • the liquid flow in the liquid circuit 130 is in contact with a gas / liquid separation device comprising a membrane 103 disposed on a holding member 108 which is fixed by a fixing member 109.
  • the liquid flow in the liquid circuit 130 is more particularly in contact with the outer surface 133 of the membrane 103.
  • the first gas circuit 1 10 comprises a duct 1 1 1 opening through the orifice 1 12 on the holding element 108, porous to the neutral gas contained in the first gas circuit 1 10 so that the stream of neutral gas sweeps the inner surface 132 of the membrane 103, and advantageously on a maximum surface of the inner surface 132 of the membrane.
  • the neutral gas may be contained in a tank 170, situated for example outside or inside the body 101.
  • the neutral gas can be circulated advantageously by a pump or a pressure tank, for example the tank 170.
  • the pressure can be for example 30 to 40 bar.
  • the first gas circuit 1 10 comprises a pressure reducer 171, for example reducing the pressure to approximately 1.5 bar (a).
  • the first gaseous circuit 1 10 comprises a gaseous flow controller 175 for controlling the flow rate of the gaseous flow in the first gaseous circuit 1 10.
  • the second gas circuit 120 comprises a device for measuring the gas flow 180.
  • the second gas circuit 120 advantageously comprises a vacuum pump 140 making it possible to ensure the circulation of the gas flow in the second gas circuit 120.
  • the gas of the second gas circuit CG2 is purified in a purification device 201 and the neutral gas Gn present in the second gas circuit CG2 is returned to the first gas circuit CG1.
  • the device for measuring the gas flow 180 is in communication with at least one measuring instrument 150.
  • the measuring instrument 150 is a spectrometer.
  • the measuring instrument 150 is a gas analyzer, for example based on an infrared laser absorption spectroscopy technique.
  • Example 1 Analysis of the concentration of methane in an ocean
  • FIG. 7 represents comparative results obtained with the device of the invention and a device according to the prior art.
  • the instruments were both placed in a water tank of about 15 L with an atmospheric concentration of dissolved methane of about 2 ppm (parts per million). At about 18:30 a lot of water (about 500ml) enriched with methane was added to the water tank.
  • the instrument according to the invention makes it possible to deliver a response on the methane concentration almost immediately (approximately 15 seconds of response time) unlike the probe of the prior art ("PRIOR ART"). which requires more than 40 minutes without being able to provide the actual measurement of the methane content.
  • the signal in fact, is smoothed by the long response time of the instrument. Thus according to the prior art, it is not possible to know the initial maximum concentration of methane in water.
  • the effect of the water flow on the analysis carried out for example by a device described above with reference to FIG. 1 has been studied.
  • the inlet of the liquid, in this case water, containing dissolved methane has been placed in communication with a reservoir containing the water and the dissolved gas to suck the liquid through the device of the invention.
  • FIG. 9 represents an example of the effect of the variation of the flow of neutral gas on the measurement of the concentration of methane as a function of the total flow of gas.
  • the measurement is carried out for a liquid comprising a concentration of 15 ppm of methane.
  • This diagram shows that the flow rate of the gas flow needs to be well controlled and accurately measured. When the spite of the neutral gas is zero, the concentration of the methane can not be obtained. When the flow rate of the neutral gas increases, the concentration of the methane can be measured.
  • the flow rate of gas analyzed by the measuring device can vary by adjusting the flow rate of neutral gas. The higher the flow of the neutral gas, the more the methane is diluted in the total gas stream.
  • Example 4 block diagram of processing by a computer
  • FIG. 10 represents an example of a block diagram of processing by a computer or a microprocessor in which information as input information is for example:
  • the material of the membrane the tea material (membrane support), the configuration of the membrane, the type of carrier gas;
  • the analysis parameters such as, for example, the gas concentration (ppm), the gas pressure (mbar), the gas temperature (° C), the water vapor concentration (%);
  • the parameters of the liquid such as, for example, the liquid flow rate (ml / min), the total liquid pressure (MPa), the liquid temperature (° C), the membrane temperature (° C), the salinity (g / kg), the presence of other gases, elements or compounds;
  • the parameters of the gas flow such as the spite of the carrier gas (Ncm 3 / min), the flow rate of the total gas (Ncm 3 / min);
  • equations such as, for example, solubility equations, the calibration parameters and any corrections;
  • the computer provides output, such as:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

L'invention concerne un dispositif d'extraction (1, 101) d'au moins un gaz dissout dans un liquide, ledit dispositif comprenant (i) au moins une membrane (3, 103) séparatrice gaz-liquide; et une méthode de mesure continue de la concentration ou la pression partielle d'au moins un gaz dissout dans un liquide, ladite méthode comprenant la mise en contact d'un dispositif de séparation gaz/liquide comprenant au moins une membrane avec un liquide dont la concentration d'au moins un gaz dissout est à mesurer, la séparation d'au moins un gaz dissout dans le liquide au travers la ou les membranes du dispositif de séparation gaz/liquide, la mesure du flux de diffusion et/ou de perméation au travers la ou les membranes, et le calcul de la concentration ou de la pression partielle de gaz préalablement dissout dans le liquide à partir du flux de diffusion et/ou de perméation.

Description

Dispositif et procédé d'extraction d'au moins un gaz dissout dans un liquide
La présente invention concerne un dispositif et un procédé d'extraction d'au moins un gaz dissout dans un liquide. La présente invention est particulièrement dédiée à l'analyse d'au moins un paramètre d'au moins un gaz dissout dans un liquide.
Il est déjà connu d'extraire des gaz dissouts d'un liquide, en particulier dans le but d'analyser au moins l'un des paramètres du gaz dissout. Ce type d'extraction est particulièrement mis en œuvre pour connaître un ou plusieurs paramètres d'un gaz dissout dans un milieu aqueux, comme par exemple un lac, une mer ou un océan. On recherche généralement la concentration d'au moins un gaz dissout d'intérêt. Typiquement, on cherche à déterminer l'influence par exemple de la pollution sur l'environnement ou à surveiller une installation pétrolière ou gazière offshore en évaluant la concentration du ou des gaz d'intérêt comme par exemple le méthane, l'éthane ou le dioxyde de carbone.
Dans ce but, il est déjà connu différent dispositifs dont notamment le dispositif décrit dans la demande de brevet EP 2629082 de la société Contros Sytems & Solutions GmbH. Cette demande de brevet est relative à un dispositif pour la détection d'une pression partielle et sa méthode de fonctionnement. Le gaz d'intérêt peut-être extrait du liquide environnant par le passage au travers d'une membrane et comprend un circuit de circulation du gaz en boucle fermé à pression proche de la pression atmosphérique, par exemple à l'aide d'une pompe, le gaz étant mis en circulation au travers d'un appareillage de détection d'au moins un paramètre du gaz préalablement dissout dans le liquide environnant. Ce dispositif fonctionne avec un réservoir de gaz de référence permettant d'étalonner la mesure. Il est suggéré de réaliser une calibration avec un gaz de référence lequel circule en boucle fermée au travers du dispositif de mesure sans échange gazeux avec le liquide en contact avec la membrane. Cependant ce dispositif présente l'inconvénient majeur d'un temps de réponse très long. On connaît également le dispositif décrit dans la demande de brevet WO 2015/1 10507 de la société Franatech. Cette demande de brevet décrit un module de captage d'un gaz dissout dans un liquide et un dispositif de mesure. Le module de captage comprend une membrane montée dans un logement afin de capter le gaz dissout dans le liquide. Ce dispositif a pour but d'améliorer la surface d'échange et positionne différemment le conduit d'entrée de sorte que le gaz traversant la membrane ne soit plus nécessairement guidé perpendiculairement à celle-ci et qu'il puisse être guidé vers un conduit d'entrée en ayant une surface d'échange avec la membrane plus importante. Ce dispositif permet en particulier de faire circuler le gaz à la fois parallèlement et perpendiculairement au plan de l'élément de support permettant ainsi d'améliorer la circulation du gaz et l'efficacité du module de captage. Cependant, là encore le temps de réponse du dispositif demande à être amélioré.
Les dispositifs connus à ce jour présentent un temps de réponse de l'ordre de dizaines de minutes, voire plus.
La demande de brevet US 2006/0070525, de la société Pro-Oceanus, décrit un dispositif de séparation d'un gaz pour l'extraction d'un gaz dissout dans un fluide. Le dispositif comprend une membrane et un dispositif support du type hélicoïdal ou tubulaire sevrant de support d'une membrane. Afin d'améliorer la vitesse d'équilibre à l'interface gaz/liquide, cette demande décrit l'utilisation d'une circulation forcée du fluide externe adjacent à la membrane tubulaire à sa surface extérieure.
Les instruments disponibles sur le marché ne permettent que des études très ciblées sur les traces de méthane et dioxyde de carbone dissouts dans un océan. Les instruments n'offrent aucune possibilité de pouvoir tracer des profils (verticaux et horizontaux) de ces gaz dans les océans et ne sont adaptés en pratique qu'à des fortes concentrations et ne peuvent pas résoudre les valeurs de bruit de fond. Ces instruments n'offrent pas une mesure multi-espèce (plusieurs composants simultanément), ni une mesure des rapports isotopiques.
II existe également une demande dans le milieu industriel, en particulier pour l'industrie chimique, biochimique, biologique, pétrolière ou gazière, de connaître la concentration d'un ou plusieurs gaz dissout dans un liquide.
Ainsi la présente invention a pour but d'améliorer le temps de réponse d'un dispositif d'extraction d'au moins un gaz dissout dans un liquide pour permettre notamment une analyse rapide d'au moins un paramètre d'un ou plusieurs gaz dissouts dans le liquide.
Plus particulièrement la présente invention a pour but de fournir un dispositif présentant un temps de réponse inférieur à la minute et de préférence inférieur à 30 secondes. L'invention a notamment pour but de fournir un dispositif permettant de transférer très rapidement le ou les gaz dissouts extraits du liquide vers un instrument d'analyse d'au moins l'un de leurs paramètres.
La présente invention a pour but de fournir un dispositif d'extraction d'au moins un gaz dissout dans un liquide afin d'analyser un gaz trace.
Ainsi la présente invention également pour but de fournir un dispositif d'extraction d'au moins un gaz dissout présentant une forte résolution et/ou sensibilité pour mesurer une faible concentration de gaz dissout dans un liquide. La présente invention également pour but de fournir un dispositif d'extraction d'au moins un gaz dissout présentant une forte résolution et/ou sensibilité pour mesurer une concentration variable de gaz dissout dans un liquide, cette concentration pouvant être faible comme élevée, et surtout d'optimiser la mesure en fonction de la concentration du gaz.
La présente invention a pour but de fournir un dispositif autonome pour la mesure d'au moins un paramètre d'au moins un gaz dissout dans un liquide.
La présente invention a encore pour but de fournir un dispositif de mesure à haute résolution spatiale et temporelle, de préférence avec une excellente sensibilité, pour mesurer notamment la concentration d'au moins un gaz dissout dans un liquide.
La présente invention a également pour but de fournir un dispositif permettant l'analyse ou l'étude d'au moins un paramètre d'un gaz dissout dans un liquide, en particulier dans le cadre d'une étude environnementale ou de surveillance d'une industrie, par exemple chimique, biochimie, biologique, pétrolière ou gazière.
Description de l'invention
Il a été découvert par les présents inventeurs qu'une méthode ou un dispositif tel que décrit selon la présente invention permettait de répondre à au moins un des problèmes techniques mentionnés ci-dessus. En particulier la présente invention permet d'améliorer le temps de réponse d'un dispositif d'extraction d'au moins un gaz dissout dans un liquide.
La présente invention concerne notamment une méthode de mesure, de préférence continue, de la concentration ou de la pression partielle d'au moins un gaz dissout dans un liquide comprenant la mise en contact d'un dispositif de séparation gaz/liquide comprenant au moins une membrane avec un liquide dont la concentration ou la pression partielle d'au moins un gaz dissout est à mesurer, la séparation d'au moins un gaz dissout dans le liquide au travers la ou les membranes du dispositif de séparation gaz/liquide, la mesure du flux de diffusion et/ou de perméation au travers la ou les membranes, et le calcul de la concentration de gaz préalablement dissout dans le liquide à partir du flux de diffusion et/ou de perméation.
La présente invention concerne notamment également un dispositif d'extraction 1 , 101 d'au moins un gaz dissout dans un liquide, ledit dispositif comprenant (i) au moins une membrane 3, 103 séparatrice gaz-liquide, (ii) au moins un circuit liquide (CL) 5,105 d'au moins un liquide (L) comprenant un gaz dissout, ledit circuit liquide (CL) 5,105 étant agencé pour mettre en contact le liquide (L) avec au moins une membrane 3, 103 séparatrice gaz-liquide, le liquide étant en contact avec la surface externe 31 , 133 de la membrane 3, 103, (iii) un premier circuit gazeux (CG1 ) 10, 1 10 de circulation d'au moins un gaz neutre (Gn), le premier circuit gazeux (CG1 ) étant en contact avec la surface interne 32, 132 de la membrane 3, 103, le premier circuit (CG1 ) 10, 1 10 ne comprenant pas de gaz (GL) séparé du liquide (L) en amont de la membrane 3, 103, et (iv) un second circuit gazeux (CG2) 20, 120 de circulation du gaz neutre (Gn) et d'au moins un gaz (GL) séparé du liquide (L), le second circuit (CG2) 20, 120 étant en contact avec la surface interne 32, 132 de la membrane (3, 103) et communiquant avec le premier circuit gazeux (CG1 ) 10, 1 10, le second circuit gazeux (CG2) 20, 120 faisant circuler au moins un gaz (GL) séparé du liquide vers un dispositif de mesure 50, 150 d'au moins un paramètre du gaz (GL) séparé du liquide, ledit second circuit gazeux 20, 120 étant en communication avec au moins un dispositif de mesure (50, 150) d'au moins un paramètre du gaz (GL) séparé du liquide.
Par « liquide » il faut entendre un milieu liquide au sens large, c'est-à-dire pouvant contenir des particules en suspension et/ou un ou plusieurs gaz non dissout, et pouvant comprendre une ou plusieurs phases liquides.
Avantageusement, la méthode selon la présente invention est mise en œuvre avec un dispositif tel que défini selon la présente invention.
Selon un mode de réalisation, la méthode comprend le maintien d'une concentration nulle ou négligeable en gaz dont le paramètre est à mesurer à la surface de la ou des membranes côté perméat et le contrôle et/ou la mesure d'au moins un paramètre secondaire, de préférence de l'ensemble des paramètres secondaires, influençant significativement la perméation et/ou la diffusion au travers la ou les membranes. De manière similaire, le dispositif peut comprendre avantageusement un dispositif de maintien d'une concentration nulle ou négligeable à la surface de la ou des membranes côté perméat et un ou plusieurs dispositifs de contrôle et/ou de mesure d'au moins un paramètre secondaire, de préférence de l'ensemble des paramètres secondaires, influençant significativement la perméation et/ou la diffusion au travers la ou les membranes.
Avantageusement, en maintenant une concentration nulle ou négligeable, la réponse d'un dispositif de mesure de la concentration d'au moins un gaz dissout dans un liquide n'est plus dépendante de l'atteinte de l'équilibre de la concentration, au contraire il dépend uniquement (et est limité de préférence uniquement) au temps de perméation au travers la ou les membranes et au temps pour l'échantillon de gaz à analyser à rejoindre le dispositif de mesure. Avantageusement, selon une variante, le gradient de concentration entre le gaz dissout dans le liquide et le gaz côté perméat de la ou les membranes représente la force de diffusion et/ou de perméation principale.
Selon une variante, la mesure de la concentration ou la pression partielle d'au moins un gaz dissout par un dispositif de mesure 50,150 est réalisée en soustrayant la valeur du débit de gaz neutre de la valeur du débit total de gaz envoyé vers le dispositif de mesure 50,150.
Avantageusement, selon une variante on calibre le dispositif vis-à-vis d'un ou plusieurs paramètres secondaires à contrôler ou à mesurer. De préférence on réalise cette calibration avant la mesure du ou des paramètres d'intérêt.
De préférence, un paramètre secondaire à contrôler ou mesurer est choisi parmi le groupe consistant en : le flux liquide traversant la membrane, de préférence dont la géométrie est optimisée pour maintenir un flux constant et des conditions de couches limites indépendantes des conditions de flux liquide autour de l'entrée ou de la sortie liquide ; la salinité ; la température du liquide ; la température de la membrane ; la pression totale côté liquide de la membrane ; et/ou la concentration d'un ou plusieurs autres gaz dissouts ou éléments présents dans le liquide (comme par exemple de l'oxygène, du fer etc.).
Selon un mode de réalisation spécifique, la mesure du flux de diffusion et/ou de perméation au travers la ou les membranes est réalisée en maintenant une concentration nulle ou négligeable à la surface de la ou des membranes côté perméat en faisant passer un flux d'un gaz neutre sur la surface de la ou les membranes côté perméat, ledit flux de gaz neutre circulant en circuit ouvert.
Avantageusement, le dispositif selon la présente invention permet de ne pas attendre l'équilibre de part et d'autre de la membrane pour le paramètre à analyser, et en particulier l'équilibre de la concentration en gaz extrait du liquide.
Avantageusement, le dispositif selon la présente invention présente une circulation ouverte du premier circuit gazeux et/ou du second circuit gazeux. Par « circulation ouverte » on entend spécifiquement que le gaz, et plus spécifiquement que le gaz extrait du liquide, ne circule pas en boucle dans le circuit considéré, mais est évacué vers l'extérieur du dispositif ou un récipient de stockage, et éventuellement de retraitement, ou dirigé du premier vers le second circuit. Si le second circuit comprend un retour de gaz neutre vers le premier circuit, toute trace de gaz dissout extrait du liquide doit avoir été piégé, détruit, éliminé ou transformé dans un dispositif adapté avant l'entrée en contact du flux de gaz neutre avec la membrane. Ainsi, selon une variante, le dispositif 1 , 101 comprend un retour du gaz neutre Gn du second circuit gazeux CG2 vers le premier circuit gazeux CG1 , de préférence avec un piège du gaz GL séparé du liquide et dont au moins un paramètre est à mesurer, ou un dispositif de séparation du gaz GL séparé du liquide, et dont au moins un paramètre est à mesurer, du gaz neutre Gn, prévenant ou limitant la circulation de gaz GL séparé du liquide et dont au moins un paramètre est à mesurer dans le premier circuit gazeux CG1 et surtout sur la partie de la membrane destinée à être en contact uniquement avec le gaz neutre. Le premier circuit gazeux peut comprendre un gaz extrait du liquide qui n'interfère pas de manière sensible sur l'analyse du paramètre analysé et qui ne soit pas le gaz GL dont au moins un paramètre est à analyser.
Avantageusement, le dispositif selon la présente invention ne requiert pas l'attente de l'équilibre des concentrations de part et d'autre de la membrane séparatrice gaz- liquide. Le temps de réponse du dispositif selon la présente invention peut être avantageusement divisé par un facteur important par rapport à des dispositifs antérieurs typiquement en passant d'une analyse durant de 10 à 15 minutes, voire plus d'une heure, selon l'art antérieur à une analyse en quelques secondes ou dizaines de secondes selon l'invention.
Circuit liquide
Selon un mode de réalisation préféré, le circuit liquide est en boucle ouverte. La circulation du liquide est réalisée avantageusement de manière à permettre un contrôle du flux liquide pour assurer une extraction constante et optimale du gaz dissout et à extraire, au travers la ou les membranes de séparation gaz/liquide. Par optimale on entend qu'on limite les couches limites et les turbulences et que le flux liquide n'est pas influencé par les changements de flux liquide extérieurs au dispositif, tel que par exemple le courant du liquide ou à la pression du liquide.
Avantageusement, selon un mode de réalisation, le circuit liquide comprend une pompe de circulation liquide. Avantageusement la pompe de circulation liquide permet de contrôler le débit de flux liquide dans le circuit liquide. En particulier, une pompe de circulation liquide permet avantageusement d'optimiser la diffusion de gaz dissout dans le liquide au travers une membrane de séparation gaz/liquide. Le flux liquide est tel que les couches limites sont évitées ou minimisées. Avantageusement, la turbulence du flux liquide est évitée ou minimisée.
Avantageusement, le dispositif est étanche au liquide dans la partie interne à la membrane et comprenant une circulation gazeuse. Avantageusement, seule la partie externe de la membrane est en contact avec un liquide. Le liquide extérieur peut être sous une pression quelconque. Selon un mode de réalisation, le liquide extérieur est sous haute pression. Typiquement il peut s'agir d'une huile ou d'une solution aqueuse d'eau profonde, comme par exemple du fond d'un océan, d'une mer ou d'un lac, ou un extrait huileux du sol terrestre ou subaquatique. Selon une variante, le liquide est le liquide d'un réacteur industriel, par exemple d'une réaction chimique et/ou impliquant de la matière vivante. Par matière vivante on entend la présence d'un ou plusieurs organismes vivants. Typiquement dans un bioréacteur, il peut s'agir de microorganismes impliqué dans la production d'un ou plusieurs composés d'intérêt.
Selon une variante préférée, afin d'éviter les perturbations et les fluctuations de mesures, le flux liquide présente un débit constant dans le circuit liquide. Ce débit constant peut être imposé et éventuellement régulé par une pompe.
Selon une variante, le débit de flux liquide peut être asservi par rapport au flux liquide entrant dans le dispositif de l'invention qui peut par exemple varier en fonction d'un courant, du déplacement du dispositif dans le liquide, ou d'autres turbulences de l'environnement liquide. L'entrée et la sortie sont agencées de telle manière qu'une modification du flux liquide externe n'affecte pas le flux traversant la membrane. La pompe n'est avantageusement pas influencée par la pression d'entrée.
Premier circuit gazeux
Selon une variante, le dispositif 1 , 101 comprend un réservoir 70, 170 de gaz neutre alimentant le premier circuit gazeux (CG1 ) 10, 1 10.
Le réservoir 70, 170 de gaz neutre peut être interne ou externe au dispositif 1 ,101 , c'est-à-dire par exemple situé dans la même enveloppe ou à l'extérieur.
Selon une variante, le réservoir 70,170 est en communication avec un clapet antiretour permettant le remplissage du réservoir 70,170 sous haute pression, en général de 10 à 100 bars, et typiquement à environ 40 bars.
Selon une variante préférée, le premier circuit gazeux comprend uniquement le gaz neutre. Le gaz neutre peut être optimisé et dépend de la mesure à réaliser.
Plus précisément, et avantageusement, le premier circuit gazeux, et en particulier le gaz neutre, ne comprend pas de gaz extrait du liquide. Avantageusement encore, le premier circuit gazeux, en particulier le gaz neutre, n'a pas d'effet sur le ou les paramètres mesurés du gaz séparé du liquide.
Avantageusement, le flux de gaz neutre est continu, de préférence durant l'extraction du gaz du liquide et de la mesure d'au moins un de ses paramètres.
Le flux de gaz neutre est avantageusement choisi pour optimiser l'extraction du gaz dissout. Le flux de gaz neutre présente avantageusement un débit non nul, et encore avantageusement supérieur à 1 ,0 Ncm3/mn, de préférence supérieur à 1 ,2 Ncm3/mn et encore de préférence supérieur à 1 ,5 Ncm3/mn. Selon un mode de réalisation particulier, le flux de gaz neutre va de 1 ,5 à 3 Ncm3/mn. Selon un mode de réalisation particulier, le flux de gaz neutre va de 5 à 20 Ncm3/mn.
Le flux gazeux du premier circuit gazeux est optimisé en fonction du temps de réponse souhaité ou imposé par un instrument de mesure d'au moins un paramètre du gaz préalablement dissout dans le liquide. Selon un mode de réalisation avantageux, le débit du flux gazeux neutre du premier circuit gazeux est fonction de la concentration de gaz extrait du liquide dans le gaz neutre souhaité. Ainsi, selon une variante le débit du flux de gaz neutre est fonction de la concentration ou du volume de gaz dissout dans le liquide. Avantageusement, le débit du flux de gaz neutre est optimisé pour la détection d'au moins un paramètre du gaz dissout dans le liquide. Il a été découvert de manière fortuite qu'un tel débit du flux de gaz neutre permet de diminuer très significativement le temps de réponse d'un instrument de mesure d'au moins un paramètre du gaz dissout dans le liquide traversant la membrane séparatrice. La concentration du gaz extrait est proche d'une concentration nulle à la surface interne 32, 132 de la membrane. Ainsi, il n'est plus nécessaire d'attendre l'équilibre. Ceci permet avantageusement de faire fonctionner le dispositif quel que soit la concentration de gaz dissout dans le liquide.
Selon un mode de réalisation particulier, le débit de gaz neutre dans le premier circuit gazeux permet de contrôler la dilution du gaz extrait du liquide dans le second circuit gazeux.
Ainsi, avantageusement, dans la méthode de l'invention, le flux de gaz neutre est contrôlé par un régulateur de débit gazeux pour contrôler la dilution de l'échantillon de gaz séparé du liquide et optimiser la mesure du flux de diffusion et/ou de perméation.
Selon un mode de réalisation préférée, le premier circuit gazeux est en boucle ouverte et alimente le second circuit gazeux en gaz neutre. Plus précisément le premier circuit gazeux comprend une entrée débouchant sur un récipient de gaz neutre, de préférence sous pression, c'est-à-dire à une pression supérieure à la pression du gaz neutre dans le premier circuit gazeux.
Selon une variante le récipient de gaz neutre est situé à l'extérieur du dispositif d'extraction.
Selon une variante le récipient de gaz neutre est situé à l'intérieur du dispositif d'extraction.
Avantageusement, le récipient de gaz neutre comprend un clapet anti-retour pour remplir le récipient en gaz neutre facilement. Selon un mode de réalisation, la pression dans le récipient de gaz neutre va de 10 à 100 bars, par exemple de 20 à 60 bars et par exemple de 30 à 50 bars, et encore par exemple est d'environ 40 bars.
Avantageusement, le premier circuit gazeux comprend un réducteur de pression. En particulier, le premier circuit gazeux peut comprendre un contrôleur du flux gazeux contrôlant et régulant avantageusement le débit dans le premier circuit gazeux, de préférence une fois réduite par le réducteur de pression.
Selon un mode de réalisation, en amont du réducteur de pression, la pression de gaz neutre est comprise entre 10 et 100 bars, par exemple de 20 à 60 bars et par exemple de 30 à 50 bars, et encore par exemple est d'environ 40 bars. De préférence, le débit gazeux est contrôlé après le réducteur de pression.
Selon un mode de réalisation, en aval du réducteur de pression, la pression du gaz neutre est inférieure à la pression en amont du réducteur de pression, par exemple en particulier pour le bon fonctionnement du régulateur de débit gazeux du gaz neutre, et par exemple comprise entre 0,01 et 5 bars, par exemple entre 0,01 et 0,5 bars, et par exemple entre 0,02 et 0,1 bar.
Le débit du flux gazeux dans le premier circuit gazeux est typiquement de l'ordre de 0,1 à 100 Ncm3/mn (centimètres cube normalisés par minute ; SCCM - « Standard Cubic Centimeters per Minute »), et par exemple de 1 à 10 Ncm3/mn, et idéalement de 1 à 5 Ncm3/mn.
Selon une variante avantageuse, le premier circuit gazeux 10, 1 10 comprend un régulateur du flux gazeux 175, par exemple sous la forme d'un régulateur de pression et/ou d'un dispositif de régulation du débit gazeux, avantageusement optimisant le temps de réponse et la concentration du gaz dont au moins un paramètre est à mesurer dans le dispositif de mesure 50, 150.
Avantageusement, le régulateur du flux gazeux 175 contrôle la dilution du gaz séparé du liquide et optimise la mesure du flux de diffusion par le dispositif de mesure (50, 150).
Avantageusement, le régulateur du flux gazeux 175 contrôle la quantité de gaz circulant à la surface interne 32, 132 de la membrane (côté perméat).
Avantageusement, le flux de gaz neutre circulant dans le premier circuit gazeux et en contact avec la ou les membranes 3, 103 permet de créer une concentration très faible, de préférence proche de zéro en gaz extrait du liquide en particulier à la surface intérieure 32, 132 de la membrane séparatrice 3, 103. Avantageusement la diffusion gazeuse du gaz extrait du liquide au travers à la membrane permet d'optimiser le temps de réponse pour connaître le ou les paramètres analysés. Selon une variante, le flux de gaz neutre est constant.
Selon une variante, le flux de gaz neutre est fixé ou varie pour diluer le gaz GL séparé du liquide dans le flux du second circuit gazeux CG2, et en particulier pour adapter le débit de gaz du second circuit gazeux à la plage de fonctionnement du dispositif de mesure 50, 150.
Avantageusement, le débit de gaz du second circuit gazeux est réglé pour optimiser la mesure par le dispositif de mesure 50, 150.
Le gaz neutre peut être un mélange gazeux. Typiquement il peut s'agir d'air, d'azote, d'oxygène, d'argon, ou d'un autre gaz neutre pour l'analyse, c'est-à-dire qui ne perturbe pas l'analyse du ou des paramètres analysés sur le ou les gaz extraits du liquide.
Avantageusement le flux de gaz neutre en contact avec la surface interne de la membrane permet de minimiser la concentration de gaz extrait du liquide à la surface interne de la membrane et maximiser le flux de diffusion au travers la membrane et ne plus être dépendant de l'équilibre de la concentration ou pression partielle du gaz extrait de part et d'autre de la membrane.
Avantageusement, le dispositif selon la présente invention permet un temps de réponse inférieur à la minute, typiquement inférieur à 30 secondes, et en particulier de l'ordre de 15 secondes. Second circuit gazeux
Selon un mode de réalisation, le second circuit gazeux est en circuit ouvert. Selon une variante, quand le gaz sort de la pompe 140, il peut être stocké dans un réservoir ou utilisé pour une analyse ultérieure.
Selon un mode de réalisation, le second circuit gazeux est en boucle fermée. Une telle variante en boucle fermée peut comprendre le retrait du circuit du gaz dont au moins un paramètre est à mesurer, par exemple pour une analyse ultérieure ou pour un dispositif autonome. Selon une variante spécifique, le dispositif 1 , 101 comprend un retour du gaz neutre Gn du second circuit gazeux CG2 vers le premier circuit gazeux CG1 , de préférence avec un piège du gaz GL séparé du liquide ou un dispositif de séparation du gaz GL séparé du liquide du gaz neutre Gn, prévenant ou limitant la circulation de gaz GL séparé du liquide dans le premier circuit gazeux CG1 . Selon un mode de réalisation, le retour du gaz peut se faire au niveau du premier circuit gazeux CG1 en aval du réducteur de pression 171 puisqu'il sera déjà à pression réduite par rapport au réservoir de 170 stockage du gaz neutre. On peut utiliser un dispositif fonctionnant à haute température (par exemple 1000°C) ou à froid ou un piège chimique pour éliminer ou piéger les espèces non désirées dans le flux de gaz neutre, et en particulier éliminer ou piéger le ou les gaz dont au moins un paramètre est à mesurer.
Selon une variante, le gaz neutre est donc recyclé après séparation des espèces à analyser et le réservoir 170 et le dispositif de réduction de la pression 171 ne sont pas utilisés.
Selon une variante, le gaz du premier circuit gazeux n'est donc pas alimenté du réservoir 170, mais en boucle fermé. Cette variante permet une utilisation en continue sans être dépendante de la quantité de gaz stockée dans un réservoir 170 ou de la capacité de stockage du réservoir 200.
Selon un mode de réalisation le second circuit gazeux 20, 120 comprend un dispositif de mesure du flux gazeux 180. Avantageusement, le dispositif de mesure du flux gazeux 180 mesure le débit du flux total (CG1 +GL). Le dispositif de mesure du flux gazeux 180 est positionné de préférence entre la membrane 3,103 et le dispositif de mesure 50,150, de préférence pour mesurer le débit total de gaz dont le gaz séparé du liquide d'intérêt, collecté, typiquement en soustrayant le débit de gaz neutre au débit mesuré. Selon une variante, le second circuit gazeux 1 , 120 comprend un dispositif d'entraînement 140 du gaz séparé du liquide, par exemple une pompe.
Avantageusement, le second circuit gazeux 20,120 comprend un dispositif de mesure du flux gazeux 180, par exemple sous la forme d'un dispositif de mesure de pression et/ou d'un dispositif de mesure du débit gazeux, avantageusement permettant de connaître ou d'estimer le débit de gaz extrait d'au moins un paramètre à mesurer dans le dispositif de mesure 50, 150.
Selon une variante préférée, le second circuit gazeux est agencé de manière à acheminer le gaz le plus rapidement vers le dispositif de mesure.
Selon un mode de réalisation, le second circuit gazeux comprend une pompe à vide pour créer une dépression en aval de la membrane et de préférence en aval du dispositif de mesure 50, 150.
Selon une variante, le gaz circulant dans le dispositif de mesure 50, 150 est sec.
Avantageusement, le gaz sec permet de limiter l'humidité dans le dispositif de mesure 50,150 et dans la pompe 140.
A titre d'exemple, le gaz peut être séché par une membrane Nation® ou une cartouche de silice 160.
Avantageusement, le second circuit gazeux comprend un dispositif de séchage du gaz contenu dans le second circuit gazeux. Selon une variante le dispositif de séchage du gaz est situé en amont du dispositif de mesure. Selon une autre variante, le dispositif de séchage du gaz est situé en aval du dispositif de mesure et de préférence en amont d'une éventuelle pompe de circulation située en aval du dispositif de mesure, par exemple une pompe à vide. Ainsi, avantageusement, le gaz circulant en aval du dispositif de séchage dans le second circuit gazeux est sec ou sensiblement sec, c'est-à-dire qu'il contient une quantité limitée d'eau sous forme vapeur. Selon une variante, le dispositif de séchage est monté en série sur le second circuit gazeux.
Selon une variante, le dispositif de séchage du gaz comprend ou est constitué une membrane perméatrice sélective pour la vapeur d'eau. Selon une variante, le dispositif de séchage du gaz comprend ou est constitué d'une cartouche de silice.
Selon une variante, le système de séchage comprend une membrane perméatrice sélective pour la vapeur d'eau, de préférence comprenant un circuit de flux gazeux à contre-courant, entraînant par exemple la vapeur d'eau périmée vers un réservoir de gaz.
Selon un mode de réalisation, après avoir été transmis au dispositif de mesure 50, 150, le gaz est envoyé vers un réservoir de stockage 200, qui peut être à l'extérieur du dispositif 1 , 101 , par exemple pour un analyse discrète ultérieure ou optimiser le volume du dispositif 1 , 101 .
Membrane
Une membrane permet avantageusement de séparer au moins un gaz d'un liquide. Selon une variante, la membrane permet de séparer plusieurs gaz présents dans un liquide. Selon une variante, la membrane est sélective de la séparation d'un ou plusieurs parmi plusieurs gaz présents dans un liquide.
Selon une variante, le dispositif 1 , 101 comprend au moins deux membranes (M1 ; M2) 3, 103 séparatrices gaz-liquide disposées en regard l'une de l'autre, de préférence une entrée du second circuit gazeux (CG2) 20, 120 débouchant sur chacune des membranes (M1 ; M2) 3, 103 et/ou de préférence une entrée du premier circuit gazeux (CG1 ) 10, 1 10 débouchant sur chacune des membranes (M1 ; M2) 3, 103.
Selon une variante, le dispositif 1 , 101 comprend au moins une membrane 3, 103 tubulaire séparatrice gaz-liquide.
Selon une variante, le dispositif comprend plus de deux membranes séparatrices gaz-liquide. Selon une variante le dispositif comprend quatre membranes séparatrices gaz-liquide par exemple disposées en regard deux à deux.
Selon une variante, le dispositif comprend une ou plusieurs membranes tubulaires. Avantageusement, la géométrie interne du dispositif est conçue de manière à éviter l'apparition de boucle de recirculation et la création de « zones mortes », en particulier dans la zone comprenant la membrane et l'élément de maintien de la membrane en position, constituées typiquement par un élément en métal fritté, si celui-ci est présent.
Selon une variante avantageuse, un chanfrein est réalisé sur le support de membrane, ledit chanfrein étant dispose en regard de l'orifice d'entrée et de sortie du gaz neutre passant du côté perméat de la membrane de manière notamment à distribuer le gaz neutre de manière homogène à la surface de la membrane, côté perméat.
Selon une variante, la membrane est maintenue en position par un élément de maintien.
L'utilisation de plusieurs membranes et en particulier d'au moins deux membranes permet d'augmenter la surface totale de séparation.
La membrane 3,103 peut comprendre un matériau actif comme par exemple du type silicone. La membrane peut comprendre une ou plusieurs couches de matériau séparateur gaz-liquide.
A titre d'exemple, la membrane peut être supportée sur un support fritté 8,108, qui peut être par exemple en acier inoxydable ou en bronze. Selon une variante le support de membrane présente un chanfrein à sa périphérie au niveau de la face opposée à celle en contact avec la membrane.
Avantageusement, le chanfrein permet au gaz neutre en provenance du premier circuit gazeux CG1 arrivant vers l'orifice d'entrée 12 d'être distribué de manière homogène à la surface du support. Cette variante permet d'assurer que la concentration de gaz neutre sur la totalité de la surface 32,132 côté perméat de la membrane de séparation.
Selon une variante, le support 8,108 est un support poreux.
Selon une variante, la membrane 3,103 est solidarisée (colée, déposée;, etc.) avec le support 8,108.
Enveloppe étanche
Selon une variante, le premier circuit gazeux 10, 1 10 et le second circuit gazeux 20, 120 sont disposés dans une enveloppe étanche au liquide (L), de préférence résistant à une pression d'au moins 60 MPa.
Selon une variante, le dispositif de mesure 50, 150 est contenu dans une enveloppe étanche, et de préférence dans l'enveloppe étanche au liquide contenant le premier et le second circuit gazeux.
Selon une variante, le réservoir 170 de gaz neutre peut être à l'intérieur ou à l'extérieur de l'enveloppe. Avantageusement, l'ensemble du dispositif est étanche au liquide, et de préférence à un liquide sous pression. Typiquement le dispositif est conçu pour résister à un déploiement dans des eaux profondes telles que par exemple les fonds d'un océan, d'une mer ou d'un lac.
Selon un mode de réalisation, le dispositif selon la présente invention est autonome. Par autonome on entend qu'il comprend l'ensemble des éléments nécessaires à analyser au moins un paramètre d'au moins un gaz extrait d'un liquide. En particulier les éléments nécessaires à analyser ce paramètre sont le ou les dispositifs de séparation d'au moins un gaz dissout dans un liquide, le circuit de circulation liquide, le premier et second circuits de circulation gazeux, et l'instrument d'analyse (ou de mesure).
Selon une variante, l'enveloppe étanche comprend uniquement le dispositif 1 d'extraction du gaz avec la membrane et le premier circuit gazeux 10, 1 10 et le second circuit gazeux 20, 120 sont disposés en partie hors de l'enveloppe étanche au liquide (L) contenant la membrane.
Avantageusement, le dispositif 1 , 101 comprend un instrument de positionnement pour déterminer la position géographique du dispositif.
Selon une variante, le dispositif autonome comprend une sonde de positionnement spatial et/ou temporel. Un moyen de positionnement spatial peut être par exemple un radar de positionnement dans l'eau ou un ensemble d'accéléromètres calculant la position relative de la dernière position connue. Selon un mode de réalisation particulier, le dispositif de l'invention comprend une sonde de mesure ou de positionnement de la profondeur dans le liquide. Il s'agit typiquement d'une sonde déterminant la profondeur dans un océan une mer ou un lac, comme par exemple a capteur de pression.
Selon une variante, le dispositif de l'invention peut-être couplé avec un sonar, par exemple pour déterminer la position relative du dispositif à un navire.
Selon une variante, le dispositif autonome peut comprendre une motorisation apte à déplacer le dispositif.
Ainsi selon une variante, le dispositif est autonome pour être déployé dans un fluide aqueux terrestre, comme par exemple un océan, un lac, une mer.
Selon une variante, le dispositif de l'invention est en communication continue ou discontinue avec un navire.
Ainsi selon une variante, le dispositif 1 , 101 comprend un instrument de transmission des données mesurées à un dispositif électronique à distance, par exemple situé sur un navire ou une station terrestre, et/ou un instrument de réception d'ordres d'un dispositif électronique à distance, par exemple situé sur un navire ou une station terrestre. Selon une variante, le dispositif d'extraction de l'invention peut comprendre un récipient de stockage d'isotopes, comme par exemple de carbone radioactif, pour une mesure immédiate ou ultérieure.
Selon une variante avantageuse, le dispositif de l'invention est un navire sans pilote (ROV pour « Remotely Operated Vehicles » en anglais ), ou piloté à distance ou avec un contrôle autonome pour accomplir un programme déterminé comme un 'planeur ou un robot sous-marin autonome (AUV, pour « Autonomous Underwater Vehicle » en anglais).
Selon une variante avantageuse, le dispositif de l'invention est un dispositif agencé en communication fluide avec un fluide d'un réacteur industriel.
Instruments de mesure
Selon une variante, le dispositif de mesure est localisé dans la même enveloppe que le dispositif d'extraction. Ainsi selon une variante, l'invention concerne un dispositif, comprenant au moins un dispositif d'extraction tel que défini selon l'invention, et au moins un dispositif de mesure 50, 150.
Selon une variante, le dispositif de mesure n'est pas localisé dans l'enveloppe du dispositif d'extraction. Ainsi selon une variante, l'invention concerne un dispositif, comprenant au moins un dispositif d'extraction tel que défini selon l'invention, et ne comprenant pas le dispositif de mesure. Le dispositif de mesure peut alors être localisé dans un laboratoire, par exemple.
Le dispositif ou instrument de mesure peut être n'importe quel type d'instrument de mesure d'au moins un paramètre d'au moins un gaz, et en particulier du gaz GL. L'analyse peut porter sur plusieurs types de gaz GL séparé du liquide.
Typiquement il s'agit d'un spectromètre.
Selon un mode de réalisation, le dispositif de mesure est apte à mesurer la pression partielle ou la concentration d'un gaz contenu dans le flux gazeux entrant dans le dispositif. Typiquement, il s'agit d'un dispositif de mesure de la pression partielle par exemple d'un composé alcane susceptible d'être dissous dans une solution liquide, et plus précisément dans l'eau, comme par exemple du méthane, de l'éthane, l'un quelconque de leurs isotopes, l'un quelconque de leurs hydrates, ou encore du C02, du monoxyde de carbone, du sulfure d'hydrogène (H2S), de l'ammoniaque (NH3), de l'acide chlorhydrique (HCI), de l'acide fluorhydrique (HF), H2, 02, N20, NO, S02, S03, COS, etc.
Selon une variante, le dispositif de mesure est un spectromètre optique. Selon une variante spécifique, le dispositif de mesure est un analyseur laser IR multigaz (OFCEAS par exemple - « Optical Feedback Cavity Enhanced Spectroscopy »).
Selon une variante, le dispositif de mesure 50, 150, et par exemple un
spectromètre à amplification résonnante d'absorption, éventuellement agencé avec un régulateur de température et/ou une pompe à vide. Selon une variante, le dispositif de mesure est un spectromètre OFCEAS (Spectroscopie Optique à feedback par
Amplification Résonnante d'Absorption ; Optical Feedback Cavity Enhanced
Spectroscopy). Un tel spectromètre permet l'analyse de gaz multiples en même temps (par exemple le méthane CH4 et l'éthane C2H6).
Selon une variante avantageuse, l'instrument de mesure permet l'analyse de plusieurs gaz simultanément, et par exemple de leur concentration.
Selon une variante, l'instrument mesure un ou plusieurs paramètres du méthane, et/ou des deux ou plus isotopes de l'eau.
Selon une variante, le dispositif de mesure analyse la présence et/ou quantifie des isotopes du gaz dissout et séparé du liquide (GL).
Selon une variante, une entrée du circuit liquide (CL) 5,105 et une entrée du premier circuit gazeux 10, 1 10 sont positionnées pour maximiser la surface de contact du gaz neutre avec la membrane 3, 103.
Le liquide est avantageusement pompé à flux constant par une pompe à liquide et de préférence le débit liquide n'est pas affecté par la variation de pression. Avantageusement, le débit liquide est contrôlé de manière à ce que les couches limites et les turbulences à la surface de la membrane 33, 133 soient minimales.
Avantageusement, le dispositif de mesure comprend un système de régulation de température.
Avantageusement, le dispositif de mesure réalise la mesure sous vide, en particulier sous le vide crée par une pompe à vide située en aval du dispositif de mesure.
On préfère que la cellule du dispositif de mesure, typiquement un spectromètre présentant une cavité optique, soit maintenu à basse pression (pression de quelques dizaines de millibars).
L'instrument de mesure peut être en communication avec un ordinateur embarqué ou non 190 collectant les données analysées ou mesurées. Ainsi, selon une variante, le dispositif de mesure est contrôlé par un ordinateur 190. Avantageusement, le débit de flux CG1 est soustrait du débit de flux CG2, par exemple par l'ordinateur 190 pour déterminer la concentration ou la quantité de gaz dissout séparé du liquide GL. Le résultat du dispositif d'analyse 50,150 est traité par l'ordinateur 190 pour obtenir la connaissance du paramètre à mesurer. Typiquement l'ordinateur comprend un programme d'enregistrement, traitement et de visualisation des données reçues. Le stockage des données analysées ou mesurées peut également se réaliser dans le dispositif autonome. Cette communication peut se réaliser par exemple par l'intermédiaire d'ondes électromagnétiques ou le déplacement de courant électrique. Typiquement, un ordinateur 190 contrôle les circuits de gaz, le dispositif de mesure, le stockage des données, notamment celles collectées, etc. Typiquement, lorsque le dispositif selon l'invention est utilisé sous l'eau, un ordinateur communique les données en surface (utilisant par exemple des protocoles de communication du type ADSL, SHDSL ou via un câble coaxial, paire torsadée, ou fibre optique.
Selon une variante, les résultats sont produits en temps réel, conservées et/ou envoyées vers un dispositif receveur.
Selon une variante avantageuse, le dispositif de l'invention collecte les données nécessaires à une visualisation en quatre dimensions du ou des paramètres du ou des gaz dissout recherchés. Une visualisation en quatre dimensions peut être représentée par l'évolution d'un ou plusieurs paramètres, par exemple de la concentration, d'un gaz dissout en fonction du temps, et de sa position dans un liquide (x,y,z).
Ainsi la présente invention concerne également un graphique 4D (x,y,z, paramètre analysé, typiquement la concentration) obtenu par un dispositif selon la présente invention.
Méthode de mesure
Selon un autre aspect, la présente invention concerne une méthode de mesure d'au moins un paramètre, comme par exemple la concentration, d'au moins un gaz dissout dans un liquide, comme par exemple un fluide aqueux terrestre, ladite méthode mettant en œuvre un dispositif selon l'invention pour obtenir une mesure d'au moins un paramètre d'un gaz dissout dans le liquide.
La présente invention concerne une méthode de mesure, de préférence continue, de la concentration ou la pression partielle d'au moins un gaz dissout dans un liquide, ladite méthode comprenant la mise en contact d'un dispositif de séparation gaz/liquide comprenant au moins une membrane avec un liquide dont la concentration d'au moins un gaz dissout est à mesurer, la séparation d'au moins un gaz dissout dans le liquide au travers la ou les membranes du dispositif de séparation gaz/liquide, la mesure du flux de diffusion et/ou de perméation au travers la ou les membranes, et le calcul de la concentration ou de la pression partielle de gaz préalablement dissout dans le liquide à partir du flux de diffusion et/ou de perméation. Selon un mode de réalisation, le gradient de concentration entre le gaz dissout dans le liquide et le gaz côté perméat de la ou les membranes représente la force de diffusion et/ou de perméation principale.
La présente invention concerne plus spécifiquement une méthode pour l'étude de la concentration d'un gaz dissout comme le méthane, le dioxyde de carbone ou autres espèces, leur isotopes ou leur hydrates, par exemple d'un fond océanique, pour l'étude de zone de suintement froid et/ou de sources hydrothermales dans un fond océanique, pour l'étude de la dynamique océanique localisée par des traceurs atmosphériques dissout dans l'eau, pour la caractérisation géochimique de l'origine d'hydrocarbures, par exemple à l'interface sédiment-océan, pour la surveillance environnementale de suite d'installations pétrolières offshore, pour la prospection de nouvelles zones pétrolifères et/ou gazières en fond océanique et/ou de nappes phréatiques, pour l'étude de la pollution en hydrocarbures dissouts dans une nappe phréatique.
La présente invention concerne une méthode mise en œuvre avec un dispositif tel que défini selon l'invention.
Plus particulièrement, le courant de gaz neutre imposé par le premier circuit de circulation gazeux 10,1 10 présente l'avantage que la concentration de gaz extrait du liquide est théoriquement nulle ou aussi faible que possible à la surface interne 32,132 de la membrane 3,103 (côté perméat). En contrôlant et/ou mesurant au moins un paramètre secondaire qui influence la perméation ou la diffusion, le dispositif de l'invention permet d'accéder par exemple à la concentration de gaz extrait du liquide. Le gradient de concentration entre le gaz dissout dans le liquide et le gaz côté surface interne 32,132 de la membrane 3,103 est la principale force motrice pour la diffusion ou la perméation. En conservant la concentration de gaz extrait du liquide du côté de la surface interne 32,132 de la membrane 3,103 à une valeur théorique de zéro ou aussi faible que possible, et en contrôlant et/ou mesurant au moins un paramètre secondaire relatif au gaz considéré, le dispositif selon l'invention permet de déterminer la concentration de gaz dissout dans le liquide. Le temps de réponse du dispositif de l'invention n'est plus dépendant de l'équilibre de part et d'autre de la membrane, mais est avantageusement déterminée et limitée par le temps de perméation au travers la membrane et le temps à l'échantillon de gaz de circuler dans le second circuit gazeux 20,120 jusqu'à l'instrument de mesure 50,150.
À titre d'exemple, un ou plusieurs, de préférence l'ensemble, des paramètres secondaires du gaz extrait du liquide mesuré et/ou contrôlé, notamment dans le cadre de l'analyse de la concentration d'un gaz dissout dans l'une eau saline, sont choisis parmi le groupe consistant en : le flux liquide en contact avec la membrane 3,103, la salinité du liquide, la température du liquide, la température de la membrane, la pression totale, la concentration d'un ou plusieurs autres gaz dissouts (comme par exemple un autre gaz dissout dans le liquide, par exemple de l'oxygène) ou un ou plusieurs éléments dissout dans le liquide (comme par exemple des ions comme par exemple du fer) dans le liquide et qui peuvent avoir une influence sur le flux de perméation qui doit être analysé, la surface de la membrane, la composition du gaz neutre, le débit de gaz neutre.
Avantageusement, l'utilisation du gaz neutre circulant dans le premier circuit gazeux 10,1 10, dont le flux est avantageusement contrôlé par un contrôleur de flux, fournit un contrôle de la dilution de l'échantillon à analyser pour optimiser la plage de mesure a la sensibilité de l'instrument de mesure 50,150, ou éviter une saturation de l'instrument de mesure 50,150.
Avantageusement, l'utilisation du gaz neutre circulant dans le premier circuit gazeux 10,1 10 dilue la concentration de vapeur d'eau lorsque le gaz est extrait de ce liquide (l'eau).
Selon une variante, la méthode et le dispositif selon la présente invention permettent de collecter le gaz extrait du liquide analysé pour collecter un échantillon gazeux dans un ou plusieurs réservoirs. Le ou les échantillons gazeux contenus dans le ou les réservoirs peuvent ensuite être analysés ultérieurement, ensemble ou séparément.
Typiquement, le volume de gaz passant dans l'instrument de mesure et le volume liquide en contact avec la membrane 3,103 sont mesurés ou contrôlés. Le débit de gaz neutre est contrôlé par un contrôleur de débit, le débit total du gaz (gaz extrait du liquide et gaz neutre) est mesuré avec un dispositif de mesure du débit. Le flux liquide est avantageusement contrôlé car il affecte la quantité de gaz traversant la membrane. Les techniques antérieures ne contrôlent pas spécifiquement le débit liquide car il n'affecte pas directement la mesure puisque les dispositifs antérieurs attendent l'équilibre.
Grâce au dispositif de la présente invention, il est possible de répondre aux besoins du monde académique et du monde industriel pour par exemple mesurer à haute résolution spatiale et temporelle avec une excellente sensibilité, la concentration de méthane ou d'autres gaz dissouts. La technologie peut être en particulier appliquée à l'étude de gaz d'intérêt pour l'industrie pétrolière ou gazière, comme l'éthane ou les isotopes du méthane.
Le dispositif selon la présente invention peut être également appliqué à la mesure de la concentration de gaz-trace dans les océans, mers ou lacs.
Le dispositif de l'invention peut être utilisé pour l'étude de dégazages d'hydrate de méthane au fond des océans, le devenir du méthane dans une colonne d'eau et/ou sa contribution à l'acidification des océans, par exemple. Le dispositif selon la présente invention est utile pour l'étude des zones de suintement froid et de sources hydrothermales dans les fonds océaniques.
Le dispositif selon l'invention est utile pour l'étude de la dynamique océanique en utilisant des traceurs atmosphériques dissouts dans l'eau, et en particulier pour la réalisation de cartes spatiales de l'évolution de ces traceurs atmosphériques dissouts dans l'eau.
Le dispositif selon la présente invention est utile pour la caractérisation géochimique de l'origine d'hydrocarbures à l'interface sédiment-océans.
Le dispositif selon la présente invention est également utile pour la surveillance environnementale par exemple liée au risque de fuite sur des installations off-shore pétrolières ou gazières.
Le dispositif selon l'invention est également utile pour la prospection de nouvelles zones pétrolières gazières, par exemple en fond océanique.
Le dispositif selon la présente invention est également utile dans l'étude des nappes phréatiques, et notamment leur pollution en hydrocarbures dissout.
Le dispositif selon la présente invention est plus particulièrement utile pour mesurer la concentration de gaz dissout dans un océan en déployant le dispositif in situ. Il permet de fournir en temps réel les données recherchées.
Typiquement, la mesure de la concentration ou la pression partielle d'au moins un gaz dissout est réalisée dans le cadre d'un procédé industriel, par exemple d'un procédé industriel de traitement ou de réaction chimique et/ou impliquant de la matière vivante. Ainsi l'invention concerne un dispositif de traitement ou de réaction chimique et/ou impliquant de la matière vivante comprenant le dispositif d'extraction défini selon la présente invention.
Ainsi, le dispositif selon la présente invention est plus particulièrement utile pour mesurer la concentration de gaz dissout dans un réacteur industriel. En particulier, le dispositif selon la présente invention est plus particulièrement utile pour mesurer la concentration de gaz dissout dans un bioréacteur.
L'invention est détaillée ci-après au regard de mode de réalisations spécifiques qui ne sont nullement limitatifs de la portée de l'invention.
Sur les figures :
La figure 1 représente schématiquement un mode de réalisation de l'invention présentant une double membrane.
La figure 2 représente une section longitudinale selon la section A-A de la membrane représentée à la figure 1 . La figure 3 représente une section longitudinale selon la section B-B de la membrane représentée à la figure 1 .
La figure 4 représente schématiquement un mode de réalisation présentant plus spécifiquement les circuits gazeux mettant en œuvre deux membranes sous forme de disques.
La figure 5 représente schématiquement un mode de réalisation présentant une membrane tubulaire.
La figure 6 représente schématiquement un mode de réalisation présentant plus spécifiquement les circuits gazeux mettant en œuvre une membrane tubulaire.
La figure 7 représente un graphique de l'évolution de la concentration de méthane dans le temps comparant les mesures obtenues avec une sonde art antérieur (« PRIOR ART » en anglais) et le dispositif de l'invention « INVENTION ».
La figure 8 représente un graphique de l'évolution de la concentration de méthane dans le temps en fonction du débit liquide (eau).
La figure 9 représente l'effet de la variation du débit de gaz neutre sur la mesure de la concentration en méthane en fonction du débit total de gaz.
La figure 10 représente un vue schématique des informations en entrée et des résultats en sortie d'un ordinateur ou un microprocesseur selon un exemple de réalisation de l'invention.
Description détaillée de l'invention
La figure 1 montre un corps 1 présentant, par exemple, une partie fixe 15, une partie amovible 14 et au moins deux logements 2 pour des membranes 3 disposées en regard l'une de l'autre. Un dispositif selon la présente invention peut comprendre 1 , 2, 3, 4 ou plus de membranes. En référence à la figure 1 , on décrit plus spécifiquement l'agencement d'une membrane, l'agencement d'une seconde membrane étant sensiblement identique, la seconde membrane étant située sur la face opposée du corps 1 permettant le logement de la membrane. Le logement 2 peut être réalisé sous la forme d'un évidement de la partie du corps fixe 15 et/ou amovible 14. Selon un mode de réalisation, la partie amovible 14 présente au moins un orifice d'entrée 5 d'un liquide, de préférence le liquide étant situé à l'extérieur du dispositif et au moins un orifice de sortie 6 de ce liquide. Un joint d'étanchéité 7 assure l'étanchéité de la cavité intérieure au liquide environnant. Ainsi le liquide circulant dans le circuit de circulation liquide (CL) reste confiné à l'extérieur de la membrane 3. Le liquide est en contact avec la surface externe 31 de la membrane. La membrane 3 est apte à séparer au moins un gaz dissout dans le liquide lors du contact du liquide avec la surface extérieure 31 de la membrane 3. Avantageusement, le flux liquide s'écoule selon un plan sensiblement parallèle à la surface longitudinale extérieure de la membrane 3. La circulation du liquide (L) 30 peut être réalisée par exemple par une pompe. Avantageusement, les orifices d'entrée 5 et de sortie 6 du circuit de circulation liquide sont disposés de manière à éviter la présence de bulles de gaz tel que par exemple de l'air en contact avec la surface extérieure 31 de la membrane 3. Selon un mode de réalisation, lorsque le dispositif est placé dans un volume liquide, l'orifice d'entrée 5 est situé dans une partie inférieure à l'orifice de sortie 6 du circuit liquide. Selon un mode de réalisation, les orifices d'entrée 5 et de sortie 6 sont disposés de manière diamétralement opposée ou sur des bords opposés de la membrane 3.
Selon un mode de réalisation, la membrane 3 peut être disposée en contact avec un élément de maintien 8 de la membrane 3, maintenant en position la membrane 3 et résistant à la pression du liquide. Selon une variante, la membrane 3 est disposée en contact avec un élément de maintien 8 résistant une pression élevée de liquide, comme par exemple lorsque le dispositif est déployé dans un volume d'eau profond. Typiquement l'élément de maintien 8 de la membrane 3 résiste à une pression d'au moins 40 MPa, de préférence de 60MPa. Selon une variante, l'élément de maintien 8 comprend ou est constituée d'un métal fritté. Avantageusement, l'élément de maintien 8 présente une forme similaire à la forme de la membrane 3.
Selon une variante, l'élément de maintien 8 est en contact avec la surface interne
32 de la membrane 3.
Avantageusement, l'élément de maintien 8 est poreux au(x) gaz extrait(s) du liquide et au gaz neutre (Gn) et n'affecte pas le gaz extrait du liquide dont au moins un paramètre est à mesurer.
Le dispositif comprend un premier circuit de circulation 10 de gaz neutre (Gn) en contact avec la surface interne 32 de la membrane 3. Selon un mode de réalisation, le premier circuit de circulation 10 présente un conduit 1 1 débouchant sur l'élément solide 8 de maintien de la membrane 3 de manière à ce que le gaz neutre (Gn) circulant dans le premier conduit de circulation 10 circule au travers de la élément de maintien 8. Selon un mode de réalisation, le conduit 1 1 débouchant sur l'élément de maintien 8 est positionné sensiblement à la périphérie de la surface de l'élément de maintien 8. Typiquement le conduit 1 1 comprend un orifice 12 en contact avec l'élément de maintien 8. Selon un mode de réalisation, l'orifice 12 est situé en regard de l'orifice 6 de sortie du liquide.
Avantageusement, le premier circuit de circulation 10 permet la circulation de gaz neutre sensiblement sur la totalité de la surface interne 32 de la membrane 3. Selon un mode de réalisation avantageux, l'élément de maintien 8 présente une périphérie biseautée, par exemple chanfreinée, de manière à répartir le flux gazeux du gaz neutre sur l'ensemble de la périphérie de la membrane 3 et ainsi créer un flux gazeux de gaz neutre de la périphérie de la membrane 3 (sur la surface intérieure 32) vers le second circuit de circulation 20. Le second circuit de circulation 20 va permettre l'évacuation du gaz neutre en mélange avec le gaz extrait du liquide au travers de la membrane 3. Le gaz dissout dans le liquide passe donc du circuit liquide au travers de la membrane 3, le gaz extrait étant entraîné par une différence de pression (par exemple créée par une pompe à vide dans le second circuit de circulation) vers le second circuit de circulation 20.
Selon un mode de réalisation le second circuit de circulation 20 présente un conduit 21 débouchant sur l'élément solide 8 de maintien de la membrane 3 de manière à ce que le gaz neutre et le gaz extrait en contact avec la membrane soient dirigés vers le second circuit gazeux 20. Selon un mode de réalisation, le conduit 21 débouchant sur l'élément de maintien 8 est positionné sensiblement dans la partie centrale de l'élément de maintien 8. Typiquement lorsque que la membrane 3 et l'élément de maintien 8 présentent une périphérie circulaire, l'orifice 22 du second circuit gazeux est sensiblement disposé au centre.
Selon un mode de réalisation, le conduit 1 1 du premier circuit gazeux 10 et le conduit 21 du second circuit gazeux 20 présente autant d'orifices que le dispositif comprend de membranes. Dans un dispositif comprenant deux membranes, le conduit 1 1 et le conduit 21 présentent deux orifices.
Avantageusement, le second circuit gazeux 20 est en communication avec un appareillage d'analyse d'au moins un paramètre d'au moins un gaz dissout contenu dans le flux gazeux circulant dans le second conduit gazeux 20.
L'ensemble du dispositif peut être solidarisé par des moyens de fixation 9, tels que par exemple des vis, écrous/boulons, maintenant solidairement la partie fixe 15 et la partie amovible 14 du corps 1 .
La figure 2 représente la section A-A d'un mode de réalisation selon la figure 1 . Cette coupe permet d'identifier plus spécifiquement le logement 2 du corps 1 recevant la membrane 3 et l'élément de maintien 8. La membrane 3 est disposée en surface de l'élément de maintien 8. Selon un mode de réalisation, l'élément de maintien 8 est positionné dans un évidement de la partie fixe 15 du corps 1 et la membrane 3 est positionnée à la surface de l'élément de maintien 8 et faisant face à un évidement de la partie amovible 14 du corps 1 , lesquels sont solidarisés par des éléments de fixation 9. Sur la figure 2 on distingue un espace 13 formant espace de circulation 30 du liquide entre l'orifice d'entrée 5 et de sortie 6. Ainsi le flux liquide circule sensiblement parallèlement à la surface de la membrane 3 de sorte que l'ensemble de la surface de la membrane est en contact avec le liquide circulant dans le circuit liquide 30. Selon ce mode de réalisation, les deux éléments de maintien 8 sont en connexion avec le second circuit gazeux 20 permettant d'acheminer le gaz extrait du liquide vers un dispositif de mesure 50 non représenté. Selon ce mode de réalisation, le conduit 21 débouche par les orifices 22 sur les éléments de maintien 8. Le joint d'étanchéité 7 peut être par exemple un joint torique logé dans un évidement de la partie amovible 14 ou fixe 15.
Selon un mode de réalisation avantageux, le dispositif peut comprendre un joint d'étanchéité 17 aux gaz. Avantageusement, le dispositif fonctionne sous une pression inférieure à celle du milieu environnant et nécessitent une totale étanchéité des circuits gazeux. Avantageusement, les circuits gazeux doivent être isolés du contact avec un gaz extérieur au dispositif.
La figure 3 représente la section B-B du dispositif représenté sur la figure 1 . On distingue en particulier le premier circuit gazeux 10 et le second circuit de circulation 20, lesquels comprennent respectivement un conduit 1 1 ,21 et des orifices 12,22 débouchant sur les éléments de maintien 8.
Sur la figure 4, on visualise le circuit liquide 130 comprenant une entrée liquide par un orifice 105 et une sortie liquide par un orifice 106. Le flux liquide dans le circuit liquide 130 est en contact avec un dispositif de séparation gaz/liquide comprenant ou consistant d'une membrane 103 disposée sur un élément de maintien 108. Le flux liquide dans le circuit liquide 130 est plus particulièrement en contact avec la surface extérieure 133 de la membrane 103. Par exemple une pompe 102 est utilisée pour maintenir un débit liquide constant. Le premier circuit gazeux 1 10 comprend un conduit 1 1 1 débouchant par l'orifice 1 12 sur l'élément de maintien 108, poreux au gaz neutre contenu dans le premier circuit gazeux 1 10 de manière à ce que le flux de gaz neutre balaye la surface intérieure 132 de la membrane 103, et avantageusement sur une surface maximale de la surface intérieure 132 de la membrane. Selon un mode de réalisation le gaz neutre peut être contenu dans un réservoir 170, situé par exemple à l'extérieur ou à l'intérieur du corps 101 schématisé ici par des pointillés. Le gaz neutre peut être mis en circulation avantageusement par une pompe ou un réservoir sous pression, par exemple le réservoir 170. La pression peut être par exemple de 30 à 40 bars. Avantageusement le premier circuit gazeux 1 10 comprend un réducteur de pression 171 , ramenant par exemple la pression à environ 1 ,5 bar(a) (pression absolue). La pression du gaz neutre Gn est réduite par un réducteur de pression 171 à une pression de fonctionnement du régulateur de débit 175.
Selon un mode de réalisation avantageux, le premier circuit gazeux 1 10 comprend un contrôleur du flux gazeux 175 permettant de contrôler le débit du flux gazeux dans le premier circuit gazeux 1 10. Le second circuit gazeux 120 comprend avantageusement une pompe à vide 140 permettant d'assurer la circulation du flux gazeux comprenant le gaz extrait du liquide dans le second circuit gazeux 120. Selon une variante, le gaz est pompé au travers le dispositif de mesure 150 et stocké dans un réservoir 200. Selon une variante, le gaz est pompé au travers le dispositif de mesure 150 et purifié dans un dispositif de purification 201 du gaz neutre et retourné vers le premier circuit gazeux CG1 .
La figure 5 représente un mode de réalisation différent de la figure 1 mettant en œuvre une membrane 103 de forme tubulaire. Le dispositif comprend une pompe à liquide 160, typiquement une pompe à eau, déportée du corps 101 formant avantageusement logement d'au moins un instrument de mesure 150 d'au moins un paramètre d'au moins un gaz à analyser et à extraire du liquide. La pompe à liquide 160 est logée dans le réceptacle comprenant un ou plusieurs orifices 105 d'entrée d'un flux liquide. La pompe à liquide 160 fait circuler le liquide dans le circuit liquide 1 10, le circuit liquide 1 10 débouche sur un orifice de sortie 106 éjectant le liquide du corps dispositif 101 . Selon un mode de réalisation, l'orifice de sortie 106 est placé de manière opposée à l'orifice d'entrée 105, et de préférence proche du diamètre interne du joint de membrane de manière à ce que la surface de contact du flux liquide avec la surface de la membrane 33, 133 soit maximisée pour une extraction de gaz dissout au travers la membrane. Avantageusement, l'orifice de sortie 106 est agencé et positionné afin de minimiser un changement de pression sur le débit du flux passant au travers de la membrane 133.
Une membrane 3 tubulaire est maintenue en place par un ou plusieurs éléments de fixation 109. La membrane tubulaire 103 peut être déposée sur un élément de maintien 108 poreux au gaz à extraire du liquide, typiquement réalisé en métal fritté.
Le dispositif présente un récipient 170 de gaz neutre déporté du corps 101 permettant la circulation de gaz neutre dans le premier circuit gazeux 120. La figure 5 ne détaille pas le circuit de circulation gazeux. Un exemple de circuit de circulation gazeux peuvent être visualisé plus précisément sur la figure 6.
Sur la figure 6, on visualise le circuit liquide 130 comprenant une entrée liquide par un orifice 105 et une sortie liquide par un orifice 106. Le flux liquide dans le circuit liquide 130 est en contact avec un dispositif de séparation gaz/liquide comprenant une membrane 103 disposée sur un élément de maintien 108 lequel est fixé par un élément de fixation 109. Le flux liquide dans le circuit liquide 130 est plus particulièrement en contact avec la surface extérieure 133 de la membrane 103. Le premier circuit gazeux 1 10 comprend un conduit 1 1 1 débouchant par l'orifice 1 12 sur l'élément de maintien 108, poreux au gaz neutre contenu dans le premier circuit gazeux 1 10 de manière à ce que le flux de gaz neutre balaye la surface intérieure 132 de la membrane 103, et avantageusement sur une surface maximale de la surface intérieure 132 de la membrane. Selon un mode de réalisation le gaz neutre peut être contenu dans un réservoir 170, situé par exemple à l'extérieur ou à l'intérieur du corps 101 . Le gaz neutre peut être mis en circulation avantageusement par une pompe ou un réservoir sous pression, par exemple le réservoir 170. La pression peut être par exemple de 30 à 40 bars. Avantageusement le premier circuit gazeux 1 10 comprend un réducteur de pression 171 , ramenant par exemple la pression à environ 1 ,5 bar(a). Selon un mode de réalisation avantageux, le premier circuit gazeux 1 10 comprend un contrôleur du flux gazeux 175 permettant de contrôler le débit du flux gazeux dans le premier circuit gazeux 1 10.
Selon un mode de réalisation le second circuit gazeux 120 comprend un dispositif de mesure du flux gazeux 180. Le second circuit gazeux 120 comprend avantageusement une pompe à vide 140 permettant d'assurer la circulation du flux gazeux dans le second circuit gazeux 120. Selon une variante, le gaz du second circuit gazeux CG2 est purifié dans un dispositif de purification 201 et le gaz neutre Gn présent dans le second circuit gazeux CG2 est retourné vers le premier circuit gazeux CG1 .
Avantageusement, le dispositif de mesure du flux gazeux 180 est en communication avec au moins un instrument de mesure 150. Typiquement, l'instrument de mesure 150 est un spectromètre. Selon un mode de réalisation particulier, l'instrument de mesure 150 est un analyseur gazeux par exemple basé sur une technique de spectroscopie d'absorption laser dans l'infrarouge.
Les exemples suivants permettent présente des modes de réalisation de la présente invention : Exemple 1 : Analyse de la concentration de méthane dans un océan
La figure 7 représente des résultats comparatifs obtenus avec le dispositif de l'invention et un dispositif selon l'art antérieur. Les instruments ont tous les deux été placés dans un réservoir d'eau d'environ 15 L avec une concentration atmosphérique de méthane dissous d'environ 2ppm (parts per million). A environ 18h30 un lot d'eau (environ 500ml) enrichi en méthane a été rajouté au réservoir d'eau. Sur la figure 7 on constate que l'instrument selon l'invention permet de délivrer une réponse sur la concentration de méthane quasiment immédiatement (environ 15 secondes de temps de réponse) contrairement à la sonde de l'art antérieur (« PRIOR ART ») qui nécessite plus de 40 minutes sans pouvoir fournir la mesure réel de la teneur en méthane. Le signal, en fait, est lissé par le long temps de réponse de l'instrument. Ainsi selon le dispositif antérieur, il n'est pas possible de connaître la concentration maximale initiale de méthane dans l'eau.
Exemple 2 : effet du débit d'eau
L'effet du débit d'eau sur l'analyse réalisée par exemple par un dispositif décrit ci-dessus en référence à la figure 1 a été étudié. L'entrée du liquide, ici de l'eau, contenant du méthane dissout a été mise en communication avec un réservoir contentant l'eau et le gaz dissout pour aspirer le liquide au travers du dispositif de l'invention.
Le tableau 1 ci-dessous et la figure 8 reprennent les données et les résultats obtenus.
Figure imgf000030_0001
Les concentrations (Conc) sont exprimées en ppm et les débits en Ncm3/mn.
Exemple 3 : effet du débit de gaz neutre
La figure 9 représente un exemple d'effet de la variation du débit de gaz neutre sur la mesure de la concentration en méthane en fonction du débit total de gaz. La mesure est réalisée pour un liquide comprenant une concentration de 15 ppm de méthane. Ce schéma montre que le débit du flux gazeux a besoin d'être bien contrôlé et mesuré précisément. Lorsque le dépit du gaz neutre est nul, on ne peut pas obtenir la concentration du méthane. Lorsque le débit du gaz neutre augmente, on peut mesurer la concentration du méthane. Le débit de gaz analysé par le dispositif de mesure peut varier par ajustement du débit de gaz neutre. Plus le débit du gaz neutre est important plus le méthane est dilué dans le flux gazeux total. On voit ici l'intérêt de diluer un échantillon gazeux par le gaz neutre. Par exemple, si la concentration du gaz à mesurer (ici le méthane) était de 1000 ppm dans le liquide, il serait nécessaire de diluer ce gaz par le gaz neutre pour ne pas saturer le dispositif de mesure.
Concentration de Méthane dans le réservoir: 15 ppm
Débit d'eau: 280ml/min
Débit de gaz extrait (approx.): 0,2 Ncm3/mn
Tableau 2
Figure imgf000031_0001
Exemple 4 : diagramme bloc de traitement par un ordinateur
La figure 10 représente un exemple de diagramme bloc de traitement par un ordinateur ou un microprocesseur dans lequel on renseigne par exemple comme information d'entrée:
- le matériau de la membrane, le matériau du thé (support de la membrane), la configuration de la membrane, le type de gaz vecteur ;
- les paramètres d'analyse, comme par exemple la concentration du gaz (ppm), la pression du gaz (mbar), la température du gaz (°C), la concentration de vapeur d'eau (%) ;
- les paramètres du liquide, comme par exemple le débit liquide (ml/min), la pression totale du liquide (MPa), la température du liquide (°C), la température de la membrane (°C), la salinité (g/kg), la présence d'autres gaz, éléments ou composés ;
- Les paramètres du débit gazeux, comme par exemple le dépit du gaz vecteur (Ncm3/mn), le débit du gaz total (Ncm3/mn);
- des informations générales, comme par exemple la position de l'instrument, la date et l'heure, toutes données additionnelles d'intérêt ;
- les équations, comme par exemple des équations de solubilité, les paramètres de calibration et des éventuelles corrections ;
L'ordinateur procure en sortie des résultats, comme par exemple :
- le flux au travers de la membrane ;
- la solubilité ;
- les facteurs de correction ;
- la concentration du gaz séparé du liquide (ppm ou nmol/kg).

Claims

REVENDICATIONS
1 . - Dispositif d'extraction (1 , 101 ) d'au moins un gaz dissout dans un liquide, ledit dispositif comprenant (i) au moins une membrane (3, 103) séparatrice gaz- liquide, (ii) au moins un circuit liquide (CL) (5,105) d'au moins un liquide (L) comprenant un gaz dissout, ledit circuit liquide (CL) (5,105) étant agencé pour mettre en contact le liquide (L) avec au moins une membrane (3, 103) séparatrice gaz-liquide, le liquide étant en contact avec la surface externe (31 , 133) de la membrane (3, 103), (iii) un premier circuit gazeux (CG1 ) (10, 1 10) de circulation d'au moins un gaz neutre (Gn), le premier circuit gazeux (CG1 ) étant en contact avec la surface interne (32, 132) de la membrane (3, 103), le premier circuit (CG1 ) (10, 1 10) ne comprenant pas de gaz (GL) séparé du liquide (L) en amont de la membrane (3, 103), et (iv) un second circuit gazeux (CG2) (20, 120) de circulation du gaz neutre (Gn) et d'au moins un gaz (GL) séparé du liquide (L), le second circuit (CG2) (20, 120) étant en contact avec la surface interne (32, 132) de la membrane (3, 103) et communiquant avec le premier circuit gazeux (CG1 ) (10, 1 10), le second circuit gazeux (CG2) (20, 120) faisant circuler au moins un gaz (GL) séparé du liquide vers un dispositif de mesure (50, 150) d'au moins un paramètre du gaz (GL) séparé du liquide.
2. - Dispositif, selon la revendication 1 , caractérisé en ce que le premier circuit gazeux (10, 1 10) comprend un régulateur du flux gazeux (175), par exemple sous la forme d'un régulateur de pression et/ou d'un dispositif de régulation du débit gazeux, avantageusement optimisant le temps de réponse et la concentration du gaz (GL) séparé du liquide (L) dont au moins un paramètre est à mesurer dans le dispositif de mesure (50, 150).
3. - Dispositif, selon l'une quelconque des revendications précédentes, caractérisé en ce que le second circuit gazeux (20, 120) comprend un dispositif de mesure du flux gazeux (180), par exemple sous la forme d'un dispositif de mesure de pression et/ou d'un dispositif de mesure du débit gazeux, avantageusement permettant de connaître ou d'estimer le débit de gaz extrait d'au moins un paramètre à mesurer dans le dispositif de mesure (50, 150).
4.- Dispositif, selon l'une quelconque des revendications précédentes, caractérisé en ce que le second circuit gazeux (1 , 120) comprend un dispositif d'entraînement (140) du gaz (GL) séparé du liquide, par exemple une pompe.
5. - Dispositif, selon l'une quelconque des revendications précédentes, caractérisé en ce que le dispositif (1 , 101 ) comprend au moins deux membranes (M1 ; M2) (3, 103) séparatrices gaz-liquide disposées en regard l'une de l'autre, de préférence une entrée du second circuit gazeux (CG2) (20, 120) débouchant sur chacune des membranes (M1 ; M2) (3, 103) et/ou de préférence une entrée du premier circuit gazeux (CG1 ) (10, 1 10) débouchant sur chacune des membranes (M1 ; M2) (3, 103), ou en ce que le dispositif (1 , 101 ) comprend au moins une membrane (3, 103) tubulaire séparatrice gaz-liquide.
6. - Dispositif, selon l'une quelconque des revendications précédentes, caractérisé en ce que le dispositif (1 , 101 ) comprend un retour du gaz neutre (Gn) du second circuit gazeux (CG2) vers le premier circuit gazeux (CG1 ), de préférence avec un piège du gaz (GL) séparé du liquide ou un dispositif de séparation du gaz (GL) séparé du liquide du gaz neutre (Gn), prévenant ou limitant la circulation de gaz (GL) séparé du liquide dans le premier circuit gazeux (CG1 ).
7. - Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend un dispositif de maintien d'une concentration nulle ou négligeable à la surface de la ou des membranes côté perméat et un ou plusieurs dispositifs de contrôle et/ou de mesure d'au moins un paramètre secondaire, de préférence de l'ensemble des paramètres secondaires, influençant significativement la perméation et/ou la diffusion au travers la ou les membranes.
8.- Dispositif, caractérisé en ce qu'il comprend au moins un dispositif d'extraction tel que défini selon l'une quelconque des revendications 1 à 7, et en ce qu'il comprend au moins un dispositif de mesure (50, 150), et par exemple un spectromètre à amplification résonnante d'absorption, éventuellement agencé avec un régulateur de température et/ou une pompe à vide.
9.- Dispositif, selon l'une quelconque des revendications précédentes, caractérisé en ce que le dispositif (1 , 101 ) est autonome pour être déployé dans un fluide aqueux terrestre, comme par exemple un océan, un lac, une mer.
10. - Dispositif, selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le dispositif (1 , 101 ) comprend un instrument de positionnement pour déterminer la position géographique du dispositif.
1 1 . - Dispositif, selon l'une quelconque des revendications 1 à 10, caractérisé en ce que le dispositif (1 , 101 ) comprend un instrument de transmission des données mesurées à un dispositif électronique à distance, par exemple situé sur un navire ou une station terrestre, et/ou un instrument de réception d'ordres d'un dispositif électronique à distance, par exemple situé sur un navire ou une station terrestre.
12. - Méthode de mesure, de préférence continue, de la concentration ou la pression partielle d'au moins un gaz dissout dans un liquide, ladite méthode comprenant la mise en contact d'un dispositif de séparation gaz/liquide comprenant au moins une membrane avec un liquide dont la concentration d'au moins un gaz dissout est à mesurer, la séparation d'au moins un gaz dissout dans le liquide au travers la ou les membranes du dispositif de séparation gaz/liquide, la mesure du flux de diffusion et/ou de perméation au travers la ou les membranes, et le calcul de la concentration ou de la pression partielle de gaz préalablement dissout dans le liquide à partir du flux de diffusion et/ou de perméation.
13. - Méthode selon la revendication 12, caractérisée en ce que la méthode est mise en œuvre avec un dispositif tel que défini selon l'une quelconque des revendications 1 à 1 1 .
14. - Méthode, selon l'une quelconque des revendications 12 à 13, caractérisée en ce que la mesure du flux de diffusion et/ou de perméation au travers la ou les membranes est réalisée en maintenant une concentration nulle ou négligeable à la surface de la ou des membranes côté perméat en faisant passer un flux d'un gaz neutre sur la surface de la ou les membranes côté perméat, ledit flux de gaz neutre circulant en circuit ouvert.
15. - Méthode, selon l'une quelconque des revendications 12 à 14, caractérisée en ce que la mesure de la concentration ou la pression partielle d'au moins un gaz dissout par un dispositif de mesure (50,150) est réalisée en soustrayant la valeur du débit de gaz neutre de la valeur du débit total de gaz envoyé vers le dispositif de mesure (50,150).
16.- Utilisation d'une méthode, selon l'une quelconque des revendications 12 à 15 pour l'étude de la concentration d'un gaz dissout, par exemple d'un fond océanique, pour l'étude de zone de suintement froid et/ou de sources hydrothermales dans un fond océanique, pour l'étude de la dynamique océanique localisée par des traceurs atmosphériques dissout dans l'eau, pour la caractérisation géochimique de l'origine d'hydrocarbures, par exemple à l'interface sédiment-océan, pour la surveillance environnementale de suite d'installations pétrolières offshore, pour la prospection de nouvelles zones pétrolifères et/ou gazières en fond océanique et/ou de nappes phréatiques, pour l'étude de la pollution en hydrocarbures dissouts dans une nappe phréatique, ou dans le cadre d'un procédé industriel, par exemple de d'un procédé industriel de traitement ou de réaction chimique et/ou impliquant de la matière vivante.
PCT/EP2018/050141 2017-01-04 2018-01-03 Dispositif et procédé d'extraction d'au moins un gaz dissout dans un liquide WO2018127516A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3045452A CA3045452A1 (fr) 2017-01-04 2018-01-03 Dispositif et procede d'extraction d'au moins un gaz dissout dans un liquide
US16/475,958 US20190329157A1 (en) 2017-01-04 2018-01-03 Device and method for extracting at least one gas dissolved in a liquid
EP18700034.4A EP3566038A1 (fr) 2017-01-04 2018-01-03 Dispositif et procédé d'extraction d'au moins un gaz dissout dans un liquide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1750063A FR3061551A1 (fr) 2017-01-04 2017-01-04 Dispositif et procede d'extraction d'au moins un gaz dissous dans un liquide
FR1750063 2017-01-04

Publications (1)

Publication Number Publication Date
WO2018127516A1 true WO2018127516A1 (fr) 2018-07-12

Family

ID=59859132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/050141 WO2018127516A1 (fr) 2017-01-04 2018-01-03 Dispositif et procédé d'extraction d'au moins un gaz dissout dans un liquide

Country Status (5)

Country Link
US (1) US20190329157A1 (fr)
EP (1) EP3566038A1 (fr)
CA (1) CA3045452A1 (fr)
FR (1) FR3061551A1 (fr)
WO (1) WO2018127516A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113842729B (zh) * 2021-09-24 2022-11-25 南京利卡维智能科技有限公司 一种多轴研磨机用真空抽取机构及其真空研磨方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3691818A (en) * 1970-03-27 1972-09-19 Us Interior Method for determination of impurities in helium gas
US4468948A (en) * 1981-03-11 1984-09-04 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Method and apparatus for measuring the concentration of a gaseous or volatile substance in a liquid
EP0617274A1 (fr) * 1993-03-24 1994-09-28 Praxair Technology, Inc. Méthode et spectromètre d'émission pour gaz
WO2004027677A1 (fr) * 2002-09-23 2004-04-01 Columbia Technologies, Llc Systeme, procede et produit de programme informatique de detection et d'analyse de contamination de subsurface
US20060070525A1 (en) 2004-10-01 2006-04-06 Bruce Johnson System for the transfer and detection of gas dissolved in fluid under pressure
EP2629082A2 (fr) 2012-02-17 2013-08-21 Contros Systems & Solutions GmbH Dispositif de détection d'une pression partielle et procédé de fonctionnement de celui-ci
EP2894469A1 (fr) * 2012-09-04 2015-07-15 Atonarp Inc. Unité d'échange à membrane et systèmes avec unités d'échange à membrane
WO2015110507A1 (fr) 2014-01-24 2015-07-30 Franatech As Module de captage d'un gaz dissous dans un liquide et dispositif de mesure
WO2016075208A1 (fr) * 2014-11-14 2016-05-19 Danmarks Tekniske Universitet Dispositif d'extraction d'espèces volatiles d'un liquide

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3691818A (en) * 1970-03-27 1972-09-19 Us Interior Method for determination of impurities in helium gas
US4468948A (en) * 1981-03-11 1984-09-04 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Method and apparatus for measuring the concentration of a gaseous or volatile substance in a liquid
EP0617274A1 (fr) * 1993-03-24 1994-09-28 Praxair Technology, Inc. Méthode et spectromètre d'émission pour gaz
WO2004027677A1 (fr) * 2002-09-23 2004-04-01 Columbia Technologies, Llc Systeme, procede et produit de programme informatique de detection et d'analyse de contamination de subsurface
US20060070525A1 (en) 2004-10-01 2006-04-06 Bruce Johnson System for the transfer and detection of gas dissolved in fluid under pressure
EP2629082A2 (fr) 2012-02-17 2013-08-21 Contros Systems & Solutions GmbH Dispositif de détection d'une pression partielle et procédé de fonctionnement de celui-ci
EP2894469A1 (fr) * 2012-09-04 2015-07-15 Atonarp Inc. Unité d'échange à membrane et systèmes avec unités d'échange à membrane
WO2015110507A1 (fr) 2014-01-24 2015-07-30 Franatech As Module de captage d'un gaz dissous dans un liquide et dispositif de mesure
WO2016075208A1 (fr) * 2014-11-14 2016-05-19 Danmarks Tekniske Universitet Dispositif d'extraction d'espèces volatiles d'un liquide

Also Published As

Publication number Publication date
CA3045452A1 (fr) 2018-07-12
EP3566038A1 (fr) 2019-11-13
FR3061551A1 (fr) 2018-07-06
US20190329157A1 (en) 2019-10-31

Similar Documents

Publication Publication Date Title
US20190064062A1 (en) System and Method to Measure Dissolved Gases in Liquid
EP2321624B1 (fr) Procede et dispositif de detection de fuites dans une conduite de liquide souterraine, notamment une conduite d'eau
Chua et al. A review of the emerging field of underwater mass spectrometry
US10067111B2 (en) System and method to measure dissolved gases in liquid
Jannasch et al. Continuous chemical monitoring with osmotically pumped water samplers: OsmoSampler design and applications
Grilli et al. SUB-OCEAN: subsea dissolved methane measurements using an embedded laser spectrometer technology
Schlüter et al. Application of membrane inlet mass spectrometry for online and in situ analysis of methane in aquatic environments
US8077311B1 (en) Spectrophotometric system for simultaneous flow-through measurements of dissolved inorganic carbon, pH and CO2 fugacity
Nicholson et al. Rapid mapping of dissolved methane and carbon dioxide in coastal ecosystems using the ChemYak autonomous surface vehicle
Grand et al. Developing autonomous observing systems for micronutrient trace metals
CN110514621A (zh) 海洋原位pCO2传感器
EP2897714A1 (fr) Procede et dispositif de test sous-marin de systeme de filtration
CN110954503A (zh) 一种海水溶解气体激光光谱的原位在线探测装置
Nakano et al. Simultaneous vertical measurements of in situ pH and CO 2 in the sea using spectrophotometric profilers
WO2018127516A1 (fr) Dispositif et procédé d'extraction d'au moins un gaz dissout dans un liquide
CN112362613B (zh) 一种低功耗小体积长期值守深海痕量气体原位测量仪
Gentz et al. Underwater cryotrap‐membrane inlet system (CT‐MIS) for improved in situ analysis of gases
Grilli et al. Continuous in situ measurement of dissolved methane in Lake Kivu using a membrane inlet laser spectrometer
Zhang et al. Seconds-scale response sensor for in situ oceanic carbon dioxide detection
Troncoso et al. Toward high-resolution vertical measurements of dissolved greenhouse gases (nitrous oxide and methane) and nutrients in the eastern South Pacific
US11406947B2 (en) Equilibrator for rapid and continuous detection of a gas in a liquid
FR2984510A1 (fr) Installation et methode de determination du co2 d'origine profonde
Chan et al. Aqueous mesocosm techniques enabling the real-time measurement of the chemical and isotopic kinetics of dissolved methane and carbon dioxide
JP5300668B2 (ja) 液体試料中のベンゼン濃度及びトルエン濃度の特定方法
FR3068787B1 (fr) Dispositif et methode d'analyse en continu de la concentration du carbone inorganique dissous (dic) et de ses compositions isotopiques en carbone et oxygene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18700034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3045452

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018700034

Country of ref document: EP

Effective date: 20190805