WO2018127079A1 - 一种随机接入方法及其网元 - Google Patents

一种随机接入方法及其网元 Download PDF

Info

Publication number
WO2018127079A1
WO2018127079A1 PCT/CN2018/071292 CN2018071292W WO2018127079A1 WO 2018127079 A1 WO2018127079 A1 WO 2018127079A1 CN 2018071292 W CN2018071292 W CN 2018071292W WO 2018127079 A1 WO2018127079 A1 WO 2018127079A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
frequency base
target
terminal
random access
Prior art date
Application number
PCT/CN2018/071292
Other languages
English (en)
French (fr)
Inventor
周凯捷
邓天乐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018127079A1 publication Critical patent/WO2018127079A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a random access method and a network element thereof.
  • the fifth-generation mobile communication technology is the next-generation mobile communication technology that is being developed after the fourth-generation mobile communication technology (fourth-generation, 4G). It is a wireless mobile phone that faces the needs of the future human information society. Communication technology. In order to meet high-speed communication requirements, 5G can transmit using high-frequency (eg, carrier frequency > 6 GHz) signals.
  • high-frequency eg, carrier frequency > 6 GHz
  • beamforming is generally used to improve signal quality when transmitting with high-frequency signals, that is, signals are transmitted using a narrower beam.
  • the signal coverage area of a narrower beam is relatively small, and it is required to transmit signals by using a plurality of narrower beams in different directions to meet the requirement of full cell coverage of the high frequency base station signal. Therefore, the high frequency base station needs to receive/transmit the beamforming signal in various directions in a time division manner, thereby realizing coverage of the whole cell.
  • the high-frequency base station needs to reserve its own random access resources for each possible uplink signal receiving direction, such as a random access channel (Random Access Channel). , RACH) Access slot number and interval, unused random access resources will be wasted. Therefore, how to ensure the quality of the high-frequency base station signal transmission while minimizing the waste of random access resources has become an urgent problem to be solved.
  • a random access channel Random Access Channel
  • the present application provides a random access method and a network element thereof, so as to achieve an improvement in resource utilization.
  • a random access method including:
  • the terminal receives one or more beam reference signals from the target high frequency base station;
  • the terminal sends a random access request to the target high frequency base station by using the random access resource.
  • the terminal transmits the signal quality information of part or all of the beam reference signals of the one or more beam reference signals to the target high frequency base station by the target low frequency base station, and obtains the random access corresponding to the target beam sent by the target high frequency base station.
  • the information of the resource, and the random access resource is used to send a random access request to the target high-frequency base station, and the target high-frequency base station does not need to reserve multiple possible random access resources for terminal selection, thereby improving resource utilization. .
  • the signal quality information may include the identifier information of the one beam reference signal and The signal quality of the beam reference signal may also include only the identification information of the beam reference signal; if the terminal transmits the signal quality information of the selected multiple beam reference signals to the target high frequency base station through the target low frequency base station, the screening
  • the signal quality information of the plurality of beam reference signals may include identification information of the beam reference signal and a signal quality of the beam reference signal, the filtered plurality of beam reference signals being from the one or more beams by the terminal according to quality conditions Filtered out from the reference signal.
  • the signal quality of the part or all of the beam reference signals satisfies a quality condition.
  • the quality condition is N before the signal strength, where N is a natural number greater than or equal to 1.
  • the quality condition is that the signal strength satisfies a threshold range.
  • PUSCH physical uplink shared channel
  • the terminal selects the target low frequency base station according to the correspondence.
  • Receiving, by the terminal, information about the random access resource corresponding to the target beam from the target high frequency base station including:
  • PDSCH physical downlink shared channel
  • the terminal receives a second radio resource control RRC message from the target low frequency base station, where the second RRC message carries the information of the random access resource, where the information of the random access resource is the target low frequency base station Received by the target high frequency base station; or,
  • the terminal receives a broadcast message from the target low frequency base station, where the broadcast message carries information of the random access resource.
  • a random access method including:
  • the target high frequency base station transmits one or more beam reference signals to the terminal;
  • the target high frequency base station selects a target beam according to the signal quality information
  • the target high frequency base station receives signal quality information of some or all of the one or more beam reference signals from the terminal, and selects a target beam according to the signal quality information and allocates a corresponding random connection. Incoming resources, there is no need to reserve multiple possible random access resources for the terminal for terminal selection, thereby improving resource utilization.
  • the target high-frequency base station sends the information about the random access resource corresponding to the target beam to the terminal, including:
  • PDSCH physical downlink shared channel
  • the target high frequency base station sends a broadcast message, where the broadcast message carries information of the random access resource.
  • a random access method including:
  • the target low frequency base station receives signal quality information of part or all of the beam reference signals of the one or more beam reference signals from the terminal;
  • the target low frequency base station transmits the signal quality information to a target high frequency base station.
  • the target low frequency base station forwards the signal quality information of part or all of the one or more beam reference signals sent by the terminal to the target high frequency base station, so that the target high frequency base station allocates random to the terminal.
  • the resource is accessed without the target high frequency base station reserving a plurality of possible random access resources for terminal selection, thereby improving resource utilization.
  • the target low frequency base station receives signal quality information of the part or all of the beam reference signals of the one or more beam reference signals from the terminal, including:
  • the target low frequency base station receives signal quality information of part or all of the beam reference signals of the one or more beam reference signals from the terminal through the physical uplink shared channel PUSCH; or
  • the target low frequency base station receives signal quality information of part or all of the beam reference signals of the one or more beam reference signals from the terminal through the physical uplink control channel PUCCH; or
  • the target low frequency base station receives a message 3msg3 message from the terminal, the message 3msg3 message carrying signal quality information of part or all of the beam reference signals of the one or more beam reference signals; or
  • the target low frequency base station receives a first radio resource control RRC message from the terminal, and the first RRC message carries signal quality information of part or all of the one or more beam reference signals.
  • the target low frequency base station after the target low frequency base station sends the signal quality information to the target high frequency base station, include:
  • the target low frequency base station sends the information of the random access resource to the terminal.
  • the target low frequency base station sends the information about the random access resource to the terminal, including:
  • PDSCH physical downlink shared channel
  • the target low frequency base station sends a second radio resource control RRC message to the terminal, where the second RRC message carries the information of the random access resource;
  • the target low frequency base station sends a broadcast message to the terminal, where the broadcast message carries information of the random access resource.
  • a terminal comprising a transceiver and a processor; the processor is configured to:
  • a high frequency base station comprising a transceiver and a processor, the processor is configured to:
  • a low frequency base station comprising a transceiver and a processor, the processor is configured to:
  • the signal quality information is transmitted to the target high frequency base station by the transceiver.
  • the embodiment of the present invention further provides a communication system, including the high frequency base station of the fifth aspect and the low frequency base station of the sixth aspect.
  • the embodiment of the present invention further provides a computer program product, the program product comprising the instruction for implementing the YY method in the first aspect, the second aspect or the third aspect.
  • the ninth aspect, the embodiment of the present invention further provides a computer readable storage medium, for storing instructions of the computer program of the first aspect, the second aspect or the third aspect.
  • FIG. 1 is a network architecture diagram of a possible communication system according to an embodiment of the present invention.
  • FIG. 2 is a network architecture diagram of another possible communication system according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a random access method according to an embodiment of the present disclosure
  • 3-1 is a schematic diagram of beam emission according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart diagram of another random access method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart diagram of still another random access method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a high frequency base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a low frequency base station according to an embodiment of the present invention.
  • the signal quality information is mainly based on the signal strength, but is not limited to the signal strength, and includes other performance parameters that can be used to indicate signal quality, such as a signal to noise ratio.
  • the present application uses a Physical Downlink Control Channel (PDCCH) to describe a channel for carrying downlink scheduling information, such as channel allocation and control information, and uses a Physical Downlink Shared Channel (PDSCH) to describe a downlink service.
  • the channel of the data, the paging message, etc.; the message 3 (msg3) is used to describe the third message sent by the terminal in the random access process, and may carry a Radio Resource Control (RRC) connection request, control message or service.
  • RRC Radio Resource Control
  • a packet or the like is used to describe the third layer information of the control plane between the terminal and the base station, for example, to support broadcast of upper layer information.
  • the present application does not limit the above names to describe the corresponding functions, and other names may be used to describe the corresponding functions.
  • FIG. 1 is a network architecture diagram of a possible communication system according to an embodiment of the present invention.
  • the base station 1, the base station 2, the base station 3, the base station n (n ⁇ 1, and is a natural number) simultaneously have the functions of a high frequency base station and a low frequency base station, that is, each of the above base stations can transmit/receive high.
  • the frequency signal can also transmit/receive low frequency signals, and information between the high frequency base station function entity and the low frequency base station function entity in the base station can be transmitted through the base station.
  • each base station may periodically broadcast one or more beam reference signals.
  • the terminal A may select one according to the signal strength information of the beam reference signal.
  • the base station serves as a target base station, that is, the terminal A selects a base station that performs random access.
  • the terminal A receives the beam reference signal a broadcasted by the base station 1, the beam reference signals b and c broadcasted by the base station 2, and the beam reference signal d broadcasted by the base station 3, assuming that a preset threshold range of the signal strength is set, according to the beam reference signal
  • the terminal A can select the base station whose signal strength meets the above-mentioned preset threshold range requirement as the target base station.
  • the terminal A sends the quality information of the beam reference signal to the target base station, so that the target base station allocates a suitable random access resource, and the terminal A can use the random access resource to send a random access request to the target base station to implement a random access process.
  • the high-frequency base station functional entity of the base station is described as an independent high-frequency base station
  • the low-frequency base station functional entity of the base station is described as an independent low-frequency base station.
  • FIG. 2 is a network architecture diagram of another possible communication system according to an embodiment of the present invention.
  • the base station s (s ⁇ 1 and is a natural number) is respectively deployed, wherein the high frequency base station transmits/receives a high frequency signal, the low frequency base station transmits/receives a low frequency signal, and the high frequency base station and the low frequency base station can transmit information through the X2 interface.
  • the values of m and s may be the same or different.
  • each high-frequency base station may periodically broadcast one or more beam reference signals.
  • the signal strength may be taken as an example according to the signal quality information of the beam reference signal.
  • a high frequency base station is selected as the target high frequency base station, that is, the terminal A selects a high frequency base station for random access.
  • the terminal A receives the beam reference signal a broadcast by the high frequency base station 1, the beam reference signals b and c broadcasted by the high frequency base station 2, and the beam reference signal d broadcast by the high frequency base station 3, assuming that a preset threshold of the signal strength is set. Range, according to the signal strength of the beam reference signal, the terminal A can select the high frequency base station whose signal strength meets the above preset threshold range requirement as the target high frequency base station.
  • each low frequency base station and each high frequency base station may be one-to-one, one-to-many or many-to-one.
  • Each low frequency base station may periodically broadcast base station matching information, and the base station matching information includes a high frequency base station corresponding to the low frequency base station.
  • the high frequency base station corresponding to the low frequency base station 1 is the high frequency base station 1 and the high frequency base station 2
  • the high frequency base station corresponding to the low frequency base station 2 is the high frequency base station 3
  • the high frequency base station corresponding to the low frequency base station 3 is the high frequency base station 3 and the like.
  • the target high-frequency base station is the high-frequency base station 2, and the terminal selects the low-frequency base station 1 as the target low-frequency base station.
  • the terminal can acquire the corresponding random access resource, and use the random access resource to send a random access request to the target base station to implement a random access process.
  • the embodiments described in the following are mainly for the independent deployment of the high-frequency base station and the low-frequency base station, and can also be applied to the communication system in which the high-frequency base station and the low-frequency base station shown in FIG. 1 are collectively deployed as one base station.
  • FIG. 3 is a schematic flowchart diagram of a random access method according to an embodiment of the present invention. The method is applicable to the foregoing communication system of FIG. 1 and FIG. FIG. 3-1 is a schematic diagram of beam emission according to an embodiment of the present invention. As shown in FIG. 3, the random access method includes steps S101 to S106.
  • the target high frequency base station sends one or more beam reference signals to the terminal.
  • the terminal receives one or more beam reference signals from the target high frequency base station.
  • a high frequency base station can transmit one or more beam reference signals in different directions in a time division manner.
  • the high-frequency base station can transmit beam B1 at time T1 and beam B2 at time T2.
  • the target high-frequency base station refers to a high-frequency base station that pre-implements random access with the terminal, and the target high-frequency base station can be selected by the terminal.
  • the terminal can receive all the beam reference signals sent by the plurality of high frequency base stations, group all the received beam reference signals according to the associated high frequency base station, and select a group of corresponding high frequency base stations with the largest number of beam reference signals as the target height.
  • the frequency base station is either a group of corresponding high-frequency base stations with the highest average signal strength as the target high-frequency base station, or a group corresponding to the highest number of beam reference signals whose signal strength meets a predetermined threshold range.
  • the frequency base station serves as a target high frequency base station.
  • the beam reference signal a broadcasted by the high-frequency base station 1 is received, and its signal strength is -120 dBm, and the beam reference signals b and c broadcasted by the high-frequency base station 2 have signal strengths of -90 dBm and -80 dBm, the beam reference signal d broadcasted by the high-frequency base station 3 has a signal strength of -100 dBm; the signal strengths of the above signals are arranged in descending order, in the order of c, b, d, a.
  • N 1
  • the terminal obtains the signal strength maximum beam reference signal c, and selects the high frequency base station 2 transmitting c as the target base station, and then acquires the signal quality information of c.
  • the terminal can obtain the beam reference signals c and b, and select the high frequency base station 2 transmitting c and b as the target base station, and then acquire the signal quality information of c and the signal quality information of b;
  • N 3
  • the terminal can obtain the beam reference signals c, b and d, and the high frequency base stations transmitting c, b and d have two, the high frequency base station 2 and the high frequency base station 3, and the terminal can be from the high frequency base station 2 and the high frequency base station.
  • One of the three is selected as the target high-frequency base station, or the terminal selects the high-frequency base station 2 having a large number of beam reference signals as the target high-frequency base station, and then acquires the signal quality information of c and the signal quality information of b.
  • the terminal A receives the beam reference signal a broadcast by the high-frequency base station 1, and its signal strength is -120 dBm, and the beam reference signals b and c broadcasted by the high-frequency base station 2 have signal strengths of - 90dBm and -80dBm, the beam reference signal d broadcast by the high-frequency base station 3 has a signal strength of -100dBm.
  • the preset threshold range of the signal strength a part of the possible cases are as follows: assuming that the preset threshold range of the signal strength is greater than -100 dBm, the beam reference signals b and c satisfy the above-mentioned preset threshold range requirement, and the terminal A can select the high frequency.
  • the base station 2 serves as the target high-frequency base station, and then acquires the signal quality information of b and the signal quality information of c; if the preset threshold range of the signal strength is greater than -110 dBm, the beam reference signals b, c, and d satisfy the preset threshold range. It is required that the terminal A can select one of the high frequency base station 2 and the high frequency base station 3 as the target high frequency base station, or the terminal selects the high frequency base station 2 with the number of beam reference signals as the target high frequency base station, for example, the high frequency base station. 2, then obtain the signal quality information of b and the signal quality information of c.
  • the terminal may receive one or more beam reference signals sent by the target high frequency base station, and detect signal quality of some or all of the beam reference signals, that is, perform step S102.
  • the terminal sends signal quality information of part or all of the one or more beam reference signals to the target low frequency base station.
  • the target low frequency base station receives signal quality information of part or all of the one or more beam reference signals from the terminal.
  • the terminal may send, to the target low-frequency base station, signal quality information of all beam reference signals in the one or more beam reference signals, or may perform quality conditions from the one or more beam reference signals.
  • a partial beam reference signal is filtered out, and then signal quality information of the partial beam reference signal is transmitted to the target low frequency base station.
  • the quality condition may be sent by the target high frequency base station to the terminal, or may be obtained according to a communication standard convention, and the quality condition may be N before the signal strength is ranked, where N is a natural number greater than or equal to 1, or may be The signal strength satisfies the threshold range. For example, as shown in FIG.
  • the target high-frequency base station is the high-frequency base station 2
  • one or all of the beam reference signals transmitted by the high-frequency base station 2 are b, c, and the signal quality information of b, c can be transmitted to the target.
  • a high frequency base station may also select c from the signal strength ranking first, and send the signal quality information of c to the target high frequency base station; or select beam reference signals b and c from which the signal strength satisfies a preset threshold range, The signal quality information of b and c is then transmitted to the target high frequency base station.
  • the preset threshold range may be sent by the target high frequency base station to the terminal, or may be obtained according to a communication standard convention.
  • the signal quality information of the one beam reference signal may include the identifier of the beam reference signal.
  • the signal quality of the information and beam reference signals may also contain only the identification information of the beam reference signals.
  • the terminal sends the signal quality information of the selected multiple beam reference signals to the target high frequency base station by using the target low frequency base station the signal quality information of the selected multiple beam reference signals may include the identifier of the beam reference signal.
  • the target high frequency base station selects one of the plurality of beam reference signals according to the signal quality of the beam reference signal.
  • the plurality of selected beam reference signals are filtered by the terminal from one or more beam reference signals according to quality conditions.
  • the target low-frequency base station may be determined by the terminal, the terminal acquires a correspondence between the target high-frequency base station and the target low-frequency base station, and then selects the target low-frequency base station according to the correspondence.
  • the specific method for determining the target low-frequency base station is: the terminal acquires base station matching information broadcast by the at least one low-frequency base station, and then selects a low-frequency base station corresponding to the target high-frequency base station as a target according to the base station matching information broadcast by the at least one low-frequency base station.
  • the base station matching information includes at least one high frequency base station corresponding to each low frequency base station.
  • the low frequency base station may periodically broadcast base station matching information, and the terminal acquires base station matching information broadcast by at least one low frequency base station.
  • the high frequency base station corresponding to the low frequency base station 1 is the high frequency base station 1 and the high frequency base station 2
  • the high frequency base station corresponding to the low frequency base station 2 is the high frequency base station 3
  • the high frequency base station corresponding to the low frequency base station 3 is the high frequency base station.
  • Base station 3 If the target high frequency base station is the high frequency base station 1, the terminal selects the low frequency base station 1 as the target low frequency base station; if the target high frequency base station is the high frequency base station 3, the terminal can select one of the low frequency base station 2 and the low frequency base station 3
  • the base station serves as a target low frequency base station.
  • the terminal may send the signal quality information to the target low-frequency base station through the physical uplink shared channel PUSCH, or may use the physical uplink control channel PUCCH to The target low frequency base station transmits the signal quality information. If the terminal does not establish a connection with the target low-frequency base station, the terminal sends a message 3 (msg3) message carrying the signal quality information to the target low-frequency base station, or sends the signal quality information to the target low-frequency base station. First RRC message.
  • msg3 message 3
  • the target low frequency base station sends signal quality information of some or all of the one or more beam reference signals to the target high frequency base station.
  • the target high frequency base station receives signal quality information of part or all of the one or more beam reference signals from the target low frequency base station.
  • the low-frequency base station can transmit the signal quality information to the target high-frequency base station through the base station; if the low-frequency base station and the high-frequency base station are independently deployed, the target The low frequency base station and the target high frequency base station may be connected by an ideal backhaul or a non-ideal backhaul, and the target low frequency base station transmits the signal quality information to the target high frequency base station through an ideal backhaul line or a non-ideal backhaul line.
  • the target high frequency base station selects a target beam according to the signal quality information.
  • the target high frequency base station may select the target beam according to the signal quality information, and the selection rule may be configured according to a communication standard, or may be configured on the target high frequency base station. For example, as shown in FIG. 2, if the target high frequency base station is the high frequency base station 2, and the high frequency base station 2 receives the signal quality information of b and c from the target low frequency base station, the target high frequency base station can according to the signal
  • the quality information selects a target beam that satisfies a preset rule.
  • the preset rule is to select a beam reference signal with the highest signal strength as the target beam. For example, the target high-frequency base station selects the signal with the strongest signal strength as the target beam.
  • the target high-frequency base station determines the beam as the target beam, and the target high-frequency base station may be based on the identification information of the target beam. Obtain a random access resource corresponding to the target beam. If the terminal sends the signal quality information of the multiple beam reference signals to the target high frequency base station, the target high frequency base station may select a beam reference signal as the target beam according to the signal quality in the signal quality information of the target beam, and according to the The identification information of the target beam obtains the random access resource corresponding to the target beam.
  • the random access resource is a random access resource allocated by the target high frequency base station to the terminal.
  • the target high frequency base station sends information about the random access resource corresponding to the target beam to the terminal.
  • the terminal receives information of the random access resource corresponding to the target beam from the target high frequency base station.
  • the information about the random access resource may be configuration information about a frequency domain and/or a time domain of the random access resource, or may be understood as a frequency domain resource and/or a time domain in the random access resource. Resources.
  • the target high-frequency base station may send the information about the random access resource to the terminal by using the physical downlink control channel PDCCH or the physical downlink shared channel (PDSCH), or send a broadcast message to the terminal, where the broadcast message carries the random connection.
  • Information about resources may be used to indicate whether the broadcast message carries the random connection.
  • the target high frequency base station may forward the information of the random access resource to the terminal by using the target low frequency base station. Specifically, the target high frequency base station sends the information of the random access resource to the target low frequency base station. If the target low-frequency base station establishes a communication connection with the terminal, the target low-frequency base station may send the information of the random access resource to the terminal through the physical downlink shared channel PDSCH or the physical downlink control channel PDCCH.
  • the target low-frequency base station may send a second radio resource control RRC message to the terminal, where the second radio resource control RRC message carries the information of the random access resource, or Sending a broadcast message to the terminal, where the broadcast message carries the information of the random access resource, such as carrying a public network temporary identifier (RNTI) in the broadcast message.
  • the broadcast message may be sent through a system information block (SIB) or a master information block (MIB).
  • SIB system information block
  • MIB master information block
  • the terminal sends a random access request to the target high frequency base station by using the random access resource.
  • the target high frequency base station receives the random access request from the terminal.
  • the terminal may find the corresponding frequency domain resource and/or the time domain resource according to the information of the random access resource, and use the frequency domain resource and/or the time domain resource to
  • the target high frequency base station sends a random access request.
  • the target high frequency base station After receiving the random access request, the target high frequency base station sends a random access response (RAR) message to the terminal. If a non-contention based random access method is adopted, then the terminal establishes a communication connection with the target high frequency base station.
  • RAR random access response
  • the terminal After the random access response message is received, the terminal sends a msg3 message to the target high frequency base station, and then the target high frequency base station sends a contention resolution message to the terminal, where The terminal establishes a communication connection with the target high frequency base station.
  • the target high frequency base station sends one or more beam reference signals to the terminal, and then the terminal sends the signal quality information of some or all of the one or more beam reference signals to the target low frequency base station. And transmitting, by the target low-frequency base station, signal quality information of part or all of the one or more beam reference signals to the target high-frequency base station, and selecting, by the target high-frequency base station, the target beam according to the received signal quality information, and The terminal transmits the information of the random access resource corresponding to the target beam, and finally the terminal sends the random access request to the target high-frequency base station by using the random access resource, and the target high-frequency base station selects the target beam by using the signal quality information.
  • the corresponding random access resource is allocated, and the terminal directly uses the random access resource to send a random access request, and the target high-frequency base station does not need to reserve multiple possible random access resources for terminal selection, thereby improving resource utilization.
  • FIG. 4 is a schematic flowchart diagram of another random access method according to an embodiment of the present invention. As shown in FIG. 4, the random access method includes steps S201 to S204.
  • the terminal receives one or more beam reference signals from the target high frequency base station.
  • a high-frequency base station can transmit one or more beam reference signals in different directions in a time-division manner. Please refer to the corresponding explanation in step S101 of the corresponding embodiment in FIG. 3, and details are not described herein again.
  • the terminal may select the target high frequency base station by detecting the signal quality of all the beam reference signals transmitted by the plurality of high frequency base stations, such as the signal strength.
  • the terminal can determine the target high frequency base station according to the signal strength of each beam reference signal and a preset rule.
  • the preset rule may be that the signal strengths of the respective beam reference signals are sorted in order from large to small, and one or the first few beam reference signals with the best signal strength are selected, or may be sent from each high frequency base station.
  • the beam reference signal selects all or part of the beam reference signal whose signal strength meets the preset threshold range requirement.
  • the terminal may select one high-frequency base station from the one or more high-frequency base stations corresponding to the selected beam reference signal as the target high-frequency base station, and acquire the target high-frequency base station. Signal quality information of the beam reference signal transmitted by the base station.
  • the signal quality information of the beam reference signal sent by the target high-frequency base station may be that the terminal selects one or all beam reference signals sent by the target high-frequency base station in the beam reference signal that meets the preset rule. Its corresponding signal quality information.
  • the target high-frequency base station is the high-frequency base station 2
  • one or all of the beam reference signals transmitted by the high-frequency base station 2 are b, c, and the signal quality of the signal with the best signal quality can be selected therefrom.
  • the information is sent to the target high frequency base station, and the signal quality information of b and c can also be selected and sent to the target high frequency base station.
  • the terminal sends signal quality information of part or all of the one or more beam reference signals to the target high frequency base station by using the target low frequency base station.
  • the terminal sends, by using the target low-frequency base station, signal quality information of part or all of the one or more beam reference signals to the target high-frequency base station, and the target high-frequency base station is configured according to the received beam reference signal.
  • the signal quality information allocates a random access resource to the terminal.
  • the terminal receives information about a random access resource corresponding to a target beam from the target high frequency base station.
  • the terminal receives information of a random access resource corresponding to a target beam from the target high frequency base station, where the target beam is obtained based on the signal quality information.
  • the target high-frequency base station may select a target beam according to the signal quality information, and the selection rule may be configured according to a communication standard, or may be configured on a target high-frequency base station, as shown in FIG. 3 . Step S104 of the corresponding embodiment is not described herein again.
  • the target high-frequency base station may send the information about the random access resource to the terminal by using the physical downlink control channel PDCCH or the physical downlink shared channel (PDSCH), or send a broadcast message to the terminal, where the broadcast message carries the random connection.
  • Information about resources The terminal receives information of a random access resource corresponding to the target beam from the target high frequency base station.
  • the target high frequency base station may send the information of the random access resource to the terminal by using the target low frequency base station.
  • the target high frequency base station may send the information of the random access resource to the terminal by using the target low frequency base station.
  • the terminal sends a random access request to the target high frequency base station by using the random access resource.
  • step S204 in the embodiment of the present invention, refer to the detailed description in the step S106 of the corresponding embodiment of FIG. 3, and details are not described herein again.
  • the terminal receives one or more beam reference signals from the target high frequency base station, and then sends some or all of the beam reference signals of the one or more beam reference signals to the target high frequency base station by the target low frequency base station.
  • Signal quality information, and receiving information of the random access resource corresponding to the target beam from the target high frequency base station, and finally transmitting a random access request to the target high frequency base station by using the random access resource, by using the high frequency base station The terminal allocates random access resources according to the signal quality information, and does not need to reserve multiple possible random access resources, thereby improving resource utilization.
  • FIG. 5 is a schematic flowchart diagram of still another random access method according to an embodiment of the present invention. As shown in FIG. 5, the other random access method includes steps S301 to S308.
  • the terminal receives one or more beam reference signals from the target high frequency base station.
  • step S301 for the specific explanation of step S301, refer to the explanation corresponding to step S201 shown in FIG. 4, and details are not described herein again.
  • the terminal determines a target high frequency base station according to a beam reference signal sent by each high frequency base station, and acquires signal quality information of a beam reference signal sent by the target high frequency base station.
  • the terminal determines a target high frequency base station according to the beam reference signal sent by each high frequency base station, and acquires signal quality information of part or all of the beam reference signals sent by the target high frequency base station.
  • the terminal receives one or more beam reference signals transmitted by each high frequency base station, and detects signal quality information of the received beam reference signal. Taking the signal strength as an example, the terminal may determine the target high frequency base station according to the detected signal strength, and further obtain the signal quality information of the beam reference signal transmitted by the target high frequency base station.
  • the terminal arranges the signal strengths of the one or more beam reference signals sent by the respective high-frequency base stations in descending order to obtain the first N beam reference signals, where N is greater than or equal to 1.
  • the natural number the terminal selects one high frequency base station as the target high frequency base station from all the high frequency base stations transmitting the first N beam reference signals; the terminal acquires the beam reference signal transmitted by the target high frequency base station according to the first N beam reference signals.
  • Signal quality information of the beam reference signal transmitted by the target high frequency base station For a detailed example, refer to the detailed description in step S101 of the corresponding embodiment of the present invention, and details are not described herein again.
  • the terminal selects, from the beam reference signals sent by the respective high-frequency base stations, all the beam reference signals whose signal strengths meet the preset threshold range; and the terminal transmits all the heights of all the beam reference signals whose signal strengths meet the preset threshold range.
  • a high frequency base station is selected as the target high frequency base station; the terminal obtains the target from the beam reference signal sent by the target high frequency base station in all the beam reference signals whose signal strength meets the preset threshold range.
  • Signal quality information of the beam reference signal transmitted by the high frequency base station For a detailed description, refer to the detailed description in step S101 of the corresponding embodiment in FIG. 3, and details are not described herein again.
  • the terminal acquires base station matching information broadcast by at least one low frequency base station.
  • the target low-frequency base station may be determined by the terminal, the terminal acquires a correspondence between the target high-frequency base station and the target low-frequency base station, and then selects the target low-frequency base station according to the correspondence relationship. .
  • the terminal acquires base station matching information broadcast by at least one low frequency base station.
  • the base station matching information includes at least one high frequency base station corresponding to each low frequency base station.
  • the low frequency base station may periodically broadcast base station matching information, and the terminal acquires base station matching information broadcast by at least one low frequency base station.
  • the base station matching information transmitted by the low frequency base station 1 may be one or more high frequency base stations corresponding to the low frequency base station 1 such as the high frequency base station 1 and the high frequency base station 2.
  • the terminal selects, according to the base station matching information broadcast by the at least one low-frequency base station, a low-frequency base station corresponding to the target high-frequency base station as the target low-frequency base station.
  • the terminal selects a low frequency base station corresponding to the target high frequency base station as the target low frequency base station according to the base station matching information broadcast by the at least one low frequency base station.
  • the high frequency base station corresponding to the low frequency base station 1 is the high frequency base station 1 and the high frequency base station 2
  • the high frequency base station corresponding to the low frequency base station 2 is the high frequency base station 3
  • the low frequency base station 3 corresponds to
  • the high frequency base station is a high frequency base station 3.
  • the terminal selects the low frequency base station 1 as the target low frequency base station; if the target high frequency base station is the high frequency base station 3, the terminal can select one of the low frequency base station 2 and the low frequency base station 3
  • the low frequency base station serves as a target low frequency base station.
  • the terminal determines whether the terminal establishes a communication connection with the target low frequency base station.
  • the terminal If the terminal establishes a communication connection with the target low-frequency base station, the terminal sends an access resource request to the target low-frequency base station by using the PUSCH or the PUCCH, so that the target low-frequency base station sends the target low-frequency base station to the target high-frequency base station. Access resource request.
  • the access resource request carries the signal quality information
  • the signal quality information is used by the target high frequency base station to allocate a random access resource to the terminal.
  • the terminal establishes a communication connection with the target low-frequency base station
  • the terminal sends an access resource request to the target low-frequency base station through the PUSCH or the PUCCH, and the target low-frequency base station forwards the access resource request to the target high-frequency base station.
  • the target high-frequency base station obtains the signal quality information in the access resource request, and may allocate a random access resource to the terminal.
  • the specific process may be: the target high-frequency base station selects one of the signal reference signals from the signal quality.
  • the beam reference signal corresponding to the quality information is used as a target beam, and then the terminal is allocated a random access resource according to the target beam.
  • the signal quality includes quality information of the beam reference signal a, quality information of the beam reference signal b, and quality information of the beam reference signal c, and the target high frequency base station can select a beam reference signal corresponding to the quality information of the beam reference signal a.
  • a is used as a target beam, and then a random access resource is allocated to the terminal according to the target beam.
  • the terminal If the terminal does not establish a communication connection with the target low-frequency base station, the terminal sends an msg3 message or an RRC message carrying the signal quality information to the target low-frequency base station, so that the target low-frequency base station can The target high frequency base station transmits the signal quality information.
  • the terminal sends the signal quality information to the target low-frequency base station by using an msg3 message or an RRC message, where the target low-frequency base station is higher than the target
  • the frequency base station transmits the signal quality information, and the target high frequency base station allocates a random access resource to the terminal according to the signal quality information.
  • the terminal acquires a random access resource allocated by the target high frequency base station, and sends a random access request to the target high frequency base station by using the random access resource.
  • the terminal acquires a random access resource allocated by the target high-frequency base station, and sends a random access request to the target high-frequency base station by using the random access resource.
  • the random access resource may be one or more of a time domain resource, a frequency domain resource, and a spatial dimension resource, such as a beam resource.
  • the target high frequency base station may forward the information of the random access resource to the terminal by using the target low frequency base station.
  • the target high frequency base station sends the information of the random access resource to the target low frequency base station.
  • the terminal can receive the information of the random access resource sent by the target low-frequency base station through the PDCCH, or the terminal can receive the target low-frequency base station to pass The information about the random access resource sent by the PDSCH; secondly, if the target low frequency base station does not establish a communication connection with the terminal, the target low frequency base station may send a second RRC message to the terminal, where the second RRC message carries the The information of the random access resource is sent to the terminal, and the broadcast message carries the information of the random access resource, such as carrying the RNTI in the broadcast message.
  • the broadcast message can be sent through the SIB or the MIB.
  • the terminal may receive information about the random access resource that is sent by the target high frequency base station through the PDCCH or the PDSCH.
  • the terminal may send a broadcast message to the terminal, where the broadcast message carries information about the random access resource, such as carrying the RNTI in the broadcast message.
  • the broadcast message can be sent through the SIB or the MIB.
  • the terminal may receive an access resource message sent by any one of the target high frequency base station or the target low frequency base station, and whether the target high frequency base station or the target low frequency base station is selected may be selected according to a preset rule. For example, if the target high frequency base station priority rule is set, the access resource message can be preferentially transmitted by the target high frequency base station.
  • the terminal receives one or more beam reference signals from the target high frequency base station, and then determines a target high frequency base station according to the beam reference signals sent by the respective high frequency base stations, and acquires a beam reference sent by the target high frequency base station. And determining, by the terminal, the base station matching information broadcasted by the at least one low-frequency base station, selecting a low-frequency base station corresponding to the target high-frequency base station as the target low-frequency base station, and determining whether the terminal has established communication with the target low-frequency base station.
  • the target high-frequency base station sends an access resource request or the signal quality information, and after acquiring the random access resource allocated by the target high-frequency base station, the terminal sends the random access to the target high-frequency base station by using the random access resource.
  • the embodiment of the present invention passes the high frequency base station according to the signal quality Random access resource allocation information for the terminal, the base station need not reserve a plurality of high frequency random access resource may improve resource utilization.
  • FIG. 6 is a description of a terminal involved in an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a terminal 1000 according to an embodiment of the present invention.
  • the terminal may include at least one processor 1001, such as a CPU, at least one transceiver 1002, a memory 1003, and at least one communication bus 1004.
  • Communication bus 1004 is used to implement connection communication between these components.
  • the transceiver 1002 can be used for transmitting and receiving information
  • the memory 1003 may include a high-speed RAM memory, and may also include a non-volatile memory, such as at least one disk storage.
  • the memory 1003 can optionally include at least one storage device located remotely from the aforementioned processor 1001.
  • the memory 1003 may also be built in the processor 1001. Programs stored in the optional memory 1003 can also be programmed in the processor 1001.
  • the processor 1001 calls a program stored in the memory 1003 to perform the following operations:
  • the random access resource is transmitted by the transceiver 1002 to the target high frequency base station using the random access resource.
  • the signal quality of the part or all of the beam reference signals satisfies a quality condition.
  • the quality condition is N before the signal strength, where N is a natural number greater than or equal to 1.
  • the quality condition is that the signal strength meets a threshold range.
  • the processor 1001 invokes a program stored in the memory 1003, and specifically executes:
  • PUSCH physical uplink shared channel
  • the processor 1001 invokes a program stored in the memory 1003, and further performs:
  • the target low frequency base station is selected according to the correspondence.
  • the processor 1001 invokes a program stored in the memory 1003, and specifically executes:
  • the transceiver 1002 Receiving, by the transceiver 1002, the information of the random access resource from the target low frequency base station by using a physical downlink shared channel PDSCH, where the information of the random access resource is received by the target low frequency base station from the target high frequency base station; or,
  • the transceiver 1002 Receiving, by the transceiver 1002, the information of the random access resource from the target low frequency base station by using a physical downlink control channel PDCCH, where the information of the random access resource is received by the target low frequency base station from the target high frequency base station; or,
  • a second radio resource control RRC message from the target low frequency base station, where the second RRC message carries information about the random access resource, where the information of the random access resource is the target low frequency base station Received by the target high frequency base station;
  • a broadcast message is received from the target low frequency base station by the transceiver 1002, and the broadcast message carries information of the random access resource.
  • the terminal shown in the embodiment of the present invention is used to perform the action or the step of the terminal in any embodiment shown in FIG. 6.
  • the technical effects of the terminal are described in detail in the corresponding method embodiments, and are not described herein.
  • FIG. 7 is a description of a high frequency base station involved in an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a high frequency base station 2000 according to an embodiment of the present invention.
  • the high frequency base station may include at least one processor 2001, such as a CPU, at least one transceiver 2002, a memory 2003, and at least one communication bus 2004. Communication bus 2004 is used to implement connection communication between these components.
  • the transceiver 2002 can be used for transmitting and receiving information data
  • the memory 2003 may include a high speed RAM memory, and may also include a non-volatile memory, such as at least one disk memory.
  • the memory 2003 can optionally include at least one storage device located remotely from the aforementioned processor 2001. Alternatively, the memory 2003 may also be built in the processor 2001. Programs stored in the optional memory 2003 can also be programmed in the processor 2001.
  • the processor 2001 is configured to call a program stored in the memory 2003, and performs the following operations:
  • the information of the random access resource corresponding to the target beam is sent to the terminal by the transceiver 2002.
  • the processor 2001 calls a program stored in the memory 2003, and specifically executes:
  • a broadcast message is transmitted by the transceiver 2002, and the broadcast message carries information of the random access resource.
  • the high-frequency base station shown in the embodiment of the present invention is used to perform the action or the step of the high-frequency base station in any embodiment shown in FIG. 7.
  • the technical effect of the high-frequency base station is described in the specific description of the corresponding method embodiment, and is not here. Narration.
  • FIG. 8 is a description of a low frequency base station involved in an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a low frequency base station 3000 according to an embodiment of the present invention.
  • the low frequency base station 3000 can include at least one processor 3001, such as a CPU, at least one transceiver 3002, a memory 3003, and at least one communication bus 3004.
  • Communication bus 3004 is used to implement connection communication between these components.
  • the transceiver 3002 can be used for transmitting and receiving information data
  • the memory 3003 may include a high speed RAM memory, and may also include a non-volatile memory, such as at least one disk memory.
  • the memory 3003 can optionally include at least one storage device located remotely from the aforementioned processor 3001.
  • the memory 3003 may also be built in the processor 3001. Programs stored in the optional memory 3003 can also be programmed in the processor 3001.
  • the processor 3001 is configured to invoke a program stored in the memory 3003 to perform the following operations:
  • the signal quality information is transmitted by the transceiver 3002 to the target high frequency base station.
  • the processor 3001 is configured to invoke a program stored in the memory 3003, and specifically:
  • the transceiver 3002 Receiving, by the transceiver 3002, the signal quality information of part or all of the beam reference signals of the one or more beam reference signals by using the physical uplink shared channel PUSCH; or
  • the transceiver 3002 Receiving, by the transceiver 3002, the signal quality information of part or all of the beam reference signals of the one or more beam reference signals from the terminal by using the physical uplink control channel PUCCH; or
  • a first radio resource control RRC message is received from the terminal by the transceiver 3002, the first RRC message carrying signal quality information of some or all of the beam reference signals of the one or more beam reference signals.
  • the processor 3001 is configured to invoke a program stored in the memory 3003, and further:
  • the information of the random access resource is transmitted to the terminal through the transceiver 3002.
  • the processor 3001 is configured to invoke a program stored in the memory 3003, and specifically:
  • PDSCH physical downlink shared channel
  • a broadcast message is sent to the terminal by the transceiver 3002, where the broadcast message carries information of the random access resource.
  • the low-frequency base station shown in the embodiment of the present invention is used to perform the action or the step of the low-frequency base station in any embodiment shown in FIG. 8.
  • the technical effects of the low-frequency base station are described in detail in the corresponding method embodiments, and are not described herein.
  • the embodiment of the present invention further provides a communication system, including the high frequency base station provided in the corresponding embodiment of FIG. 7 and the low frequency base station provided in the corresponding embodiment of FIG.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种随机接入方法及其网元,其方法包括:从目标高频基站接收一个或多个波束参考信号;通过目标低频基站向所述目标高频基站发送所述一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;从所述目标高频基站接收目标波束对应的随机接入资源的信息,所述目标波束是基于所述信号质量信息获得的;使用所述随机接入资源向所述目标高频基站发送随机接入请求。采用本发明实施例,终端可使用高频基站分配的随机接入资源发送随机接入请求,无需目标高频基站预留多个可能的随机接入资源以供终端选择,提高了资源利用率。

Description

一种随机接入方法及其网元 技术领域
本发明涉及通信技术领域,尤其涉及一种随机接入方法及其网元。
背景技术
第五代移动通信技术(fifth-generation,5G),是继第四代移动通信技术(fourth-generation,4G)之后正在研发的下一代移动通信技术,是面对未来人类信息社会需求的无线移动通信技术。为了满足高速率的通信要求,5G可以采用高频(例如:载波频率>6GHz)信号进行传输。
为了减小高频信号传输的损耗,采用高频信号进行传输时一般采用波束赋形(beam forming)技术提升信号质量,即采用较窄的波束发送信号。较窄的波束的信号覆盖面积相对较小,需要利用不同方向的多个较窄的波束发送信号才能满足高频基站信号全小区覆盖的需求。因此,高频基站需要以时分的方式在各个方向接收/发射波束赋形信号,从而实现全小区的覆盖。由于难以确定哪个方向的终端会向该高频基站发起随机接入请求,高频基站需要为各个可能的上行信号接收的方向预留各自的随机接入资源,如随机接入信道(Random Access Channel,RACH)接入时隙数量和间隔,未被使用的随机接入资源会被浪费。因此,如何确保高频基站信号传输质量的同时尽可能减小随机接入资源的浪费,成为当前亟需解决的问题。
发明内容
本申请提供了一种随机接入方法及其网元,以期实现资源利用率的提高。
第一方面,提供了一种随机接入方法,包括:
终端从目标高频基站接收一个或多个波束参考信号;
所述终端通过目标低频基站向所述目标高频基站发送所述一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;
所述终端从所述目标高频基站接收目标波束对应的随机接入资源的信息,所述目标波束是基于所述信号质量信息获得的;
所述终端使用所述随机接入资源向所述目标高频基站发送随机接入请求。
在第一方面中,终端通过目标低频基站向目标高频基站发送一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息,获得目标高频基站发送的目标波束对应的随机接入资源的信息,并使用所述随机接入资源向所述目标高频基站发送随机接入请求,无需目标高频基站预留多个可能的随机接入资源以供终端选择,提高了资源利用率。
在第一方面中,若所述终端通过目标低频基站向所述目标高频基站发送所述一个波束参考信号的信号质量信息,则所述信号质量信息可以包含这一个波束参考信号的标识信息和波束参考信号的信号质量,也可以只包含波束参考信号的标识信息;若所述终端通过目 标低频基站向所述目标高频基站发送所筛选的多个波束参考信号的信号质量信息,该筛选出的多个波束参考信号的信号质量信息可以包含波束参考信号的标识信息和波束参考信号的信号质量,所述所筛选的多个波束参考信号是由所述终端按照质量条件从一个或多个波束参考信号中筛选出的。
结合第一方面,在第一方面的第一种可能的实施方式中,所述部分或者全部波束参考信号的信号质量满足质量条件。
结合第一方面的第一种可能的实施方式,在第一方面的第二种可能的实施方式中,所述质量条件为信号强度排名前N,其中,N为大于或等于1的自然数。
结合第一方面的第一种可能的实施方式,在第一方面的第三种可能的实施方式中,所述质量条件为信号强度满足阈值范围。
结合第一方面或第一方面的第一种可能的实施方式至第三种可能的实施方种的任意一种可能的实施方式,在第一方面的第四种可能的实施方式中,所述终端通过目标低频基站向所述目标高频基站发送所述一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息,包括:
所述终端通过物理上行共享信道PUSCH向所述目标低频基站发送所述信号质量信息,以使所述目标低频基站向所述目标高频基站发送所述信号质量信息;或,
所述终端通过物理上行控制信道PUCCH向所述目标低频基站发送所述信号质量信息,以使所述目标低频基站向所述目标高频基站发送所述信号质量信息;或,
所述终端向所述目标低频基站发送携带所述信号质量信息的消息3msg3消息,以使所述目标低频基站向所述目标高频基站发送所述信号质量信息;或,
所述终端向所述目标低频基站发送携带所述信号质量信息的第一无线资源控制RRC消息,以使所述目标低频基站向所述目标高频基站发送所述信号质量信息。
结合第一方面或第一方面的第一种可能的实施方式至第四种可能的实施方种的任意一种可能的实施方式,在第一方面的第五种可能的实施方式中,还包括:
所述终端获取所述目标高频基站与所述目标低频基站的对应关系;
所述终端根据所述对应关系选择所述目标低频基站。
结合第一方面或第一方面的第一种可能的实施方式至第五种可能的实施方种的任意一种可能的实施方式,在第一方面的第六种可能的实施方式中,所述终端从所述目标高频基站接收目标波束对应的随机接入资源的信息,包括:
所述终端通过物理下行控制信道PDCCH从所述目标高频基站接收所述随机接入资源的信息;或,
所述终端通过物理下行共享信道PDSCH从所述目标高频基站接收所述随机接入资源的信息;或,
所述终端从所述目标高频基站接收广播消息,所述广播消息包括所述随机接入资源的信息;或,
所述终端通过物理下行共享信道PDSCH从所述目标低频基站接收所述随机接入资源的信息,所述随机接入资源的信息是所述目标低频基站从所述目标高频基站接收的;或,
所述终端通过物理下行控制信道PDCCH从所述目标低频基站接收所述随机接入资源的 信息,所述随机接入资源的信息是所述目标低频基站从所述目标高频基站接收的;或,
所述终端从所述目标低频基站接收第二无线资源控制RRC消息,所述第二RRC消息携带所述随机接入资源的信息,所述随机接入资源的信息是所述目标低频基站从所述目标高频基站接收的;或,
所述终端从所述目标低频基站接收广播消息,所述广播消息携带所述随机接入资源的信息。
第二方面,提供了一种随机接入方法,包括:
目标高频基站向终端发送一个或多个波束参考信号;
所述目标高频基站从所述终端接收所述一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;
所述目标高频基站根据所述信号质量信息选择目标波束;
所述目标高频基站向所述终端发送所述目标波束对应的随机接入资源的信息。
在第二方面中,目标高频基站从终端接收所述一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息,并根据所述信号质量信息选择目标波束以及分配相应的随机接入资源,无需再为终端预留多个可能的随机接入资源以供终端选择,提高了资源利用率。
结合第二方面,在第二方面的第一种可能的实施方式中,所述目标高频基站向所述终端发送所述目标波束对应的随机接入资源的信息,包括:
所述目标高频基站通过物理下行控制信道PDCCH向所述用户终端发送所述目标波束对应的随机接入资源的信息;或,
所述目标高频基站通过物理下行共享信道PDSCH向所述用户终端发送所述目标波束对应的随机接入资源的信息;或,
所述目标高频基站发送广播消息,所述广播消息携带所述随机接入资源的信息。
第三方面,提供了一种随机接入方法,包括:
目标低频基站从终端接收一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;
所述目标低频基站向目标高频基站发送所述信号质量信息。
在第三方面中,目标低频基站通过将终端发送的一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息转发给目标高频基站,以使目标高频基站为该终端分配随机接入资源,而无需目标高频基站预留多个可能的随机接入资源以供终端选择,提高了资源利用率。
结合第三方面,在第三方面的第一种可能的实施方式中,所述目标低频基站从终端接收一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息,包括:
目标低频基站通过物理上行共享信道PUSCH从终端接收一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;或,
目标低频基站通过物理上行控制信道PUCCH从终端接收一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;或,
目标低频基站从终端接收消息3msg3消息,所述消息3msg3消息携带一个或多个波束 参考信号中部分或者全部波束参考信号的信号质量信息;或,
目标低频基站从终端接收第一无线资源控制RRC消息,所述第一RRC消息携带一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息。
结合第三方面或第三方面的第一种可能的实施方式,在第三方面的第二种可能的实施方式中,所述目标低频基站向目标高频基站发送所述信号质量信息之后,还包括:
所述目标低频基站从高频基站接收目标波束对应的随机接入资源的信息,所述目标波束是基于所述信号质量信息获得的;
所述目标低频基站向终端发送所述随机接入资源的信息。
结合第三方面或第三方面的第二种可能的实施方式,在第三方面的第三种可能的实施方式中,所述目标低频基站向终端发送所述随机接入资源的信息,包括:
所述目标低频基站通过物理下行共享信道PDSCH向终端发送所述随机接入资源的信息;或,
所述目标低频基站通过物理下行控制信道PDCCH向终端发送所述随机接入资源的信息;或,
所述目标低频基站向终端发送第二无线资源控制RRC消息,所述第二RRC消息携带所述随机接入资源的信息;或,
所述目标低频基站向终端发送广播消息,所述广播消息携带所述随机接入资源的信息。
第四方面,提供了一种终端,所述终端包括收发机和处理器;所述处理器用于:
通过所述收发机从目标高频基站接收一个或多个波束参考信号;
通过所述收发机利用目标低频基站向所述目标高频基站发送所述一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;
通过所述收发机从所述目标高频基站接收目标波束对应的随机接入资源的信息,所述目标波束是基于所述信号质量信息获得的;
通过所述收发机使用所述随机接入资源向所述目标高频基站发送随机接入请求。
第五方面,提供了一种高频基站,所述高频基站包括收发机和处理器,所述处理器用于:
通过所述收发机向终端发送一个或多个波束参考信号;
通过所述收发机从所述终端接收所述一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;
根据所述信号质量信息选择目标波束;
通过所述收发机向所述终端发送所述目标波束对应的随机接入资源的信息。
第六方面,提供了一种低频基站,所述低频基站包括收发机和处理器,所述处理器用于:
通过所述收发机从终端接收一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;
通过所述收发机向目标高频基站发送所述信号质量信息。
第七方面,本发明实施例还提供一种通信系统,包括第五方面的高频基站和第六方面的低频基站。
第八方面,本发明实施例还提供一种计算机程序产品,该程序产品包括实现第一方面、第二方面或第三方面中YY方法的指令。
第九方面,本发明实施例还提供一种计算机可读存储介质,用于存储第一方面、第二方面或第三方面的计算机程序的指令。
附图说明
图1为本发明实施例提供的一种可能的通信系统的网络架构图;
图2为本发明实施例提供的另一种可能的通信系统的网络架构图;
图3为本发明实施例提供的一种随机接入方法的流程示意图;
图3-1为本发明实施例提供的一种波束发射示意图;
图4为本发明实施例提供的另一种随机接入方法的流程示意图;
图5为本发明实施例提供的又一种随机接入方法的流程示意图;
图6为本发明实施例提供的一种终端的结构示意图;
图7为本发明实施例提供的一种高频基站的结构示意图;
图8为本发明实施例提供的一种低频基站的结构示意图。
具体实施方式
下面将结合附图,对本发明的实施例进行描述。
需要说明的是,本申请中,信号质量信息主要以信号强度为例,但不限定于信号强度,还以包括信噪比等其它的可用于表示信号质量的性能参数。本申请采用物理下行信道(Physical Downlink Control Channel,PDCCH)来描述用于承载下行调度信息,如信道分配和控制信息的信道;采用物理下行共享信道(Physical Downlink Shared Channel,PDSCH)来描述承载下行业务数据、寻呼消息等的信道;采用消息3(msg3)来描述随机接入过程中由终端发出的第三条消息,可以携带无线资源控制(Radio Resource Control,RRC)连接请求、控制消息或业务数据包等;采用RRC消息来描述终端与基站之间控制面的第三层信息,例如支持上层信息的广播等。实际上,本申请不限制上述名称来描述相应的功能,也可以采用其它名称来描述上述相应的功能。
请参见图1,图1为本发明的一个实施例提供的一种可能的通信系统的网络架构图。
如图1所示,基站1,基站2,基站3……基站n(n≥1,且为自然数)同时兼具高频基站和低频基站的功能,即上述每个基站均可以发送/接收高频信号,也可以发送/接收低频信号,基站中高频基站功能实体和低频基站功能实体之间的信息可以通过基站内部传递。当终端A需要进行高频随机接入时,首先需要先确定终端A应选择与哪个基站进行随机接入。
本发明实施例中,各个基站可以周期性地广播一个或多个波束参考信号,当终端A接收到该波束参考信号时,可以根据波束参考信号的信号质量信息,以信号强度为例,选择一个基站作为目标基站,即终端A选择进行随机接入的基站。例如,终端A接收到基站1 广播的波束参考信号a,基站2广播的波束参考信号b和c,基站3广播的波束参考信号d,假设已设置信号强度的预设阈值范围,根据波束参考信号的信号强度,则终端A可以选择信号强度满足上述预设阈值范围要求的基站作为目标基站。终端A将波束参考信号的质量信息发送给目标基站,以使目标基站分配合适的随机接入资源,终端A可使用该随机接入资源向该目标基站发送随机接入请求,实现随机接入过程。后续发明实施例中,将基站的高频基站功能实体作为独立的高频基站来描述,将基站的低频基站功能实体作为独立的低频基站来描述。
请参见图2,图2为本发明的一个实施例提供的另一种可能的通信系统的网络架构图。如图2所示,高频基站1、高频基站2、高频基站3……高频基站m(m≥1,且为自然数)和低频基站1、低频基站2、低频基站3……低频基站s(s≥1,且为自然数)分别部署,其中,高频基站发送/接收高频信号,低频基站发送/接收低频信号,高频基站与低频基站之间可以通过X2接口进行信息传递,m和s的值可以相同,也可以不同。当终端A需要进行高频随机接入时,首先需要先确定终端A应选择与哪个高频基站进行随机接入。
本发明实施例中,各个高频基站可以周期性地广播一个或多个波束参考信号,当终端A接收到该波束参考信号时,可以根据波束参考信号的信号质量信息,以信号强度为例,选择一个高频基站作为目标高频基站,即终端A选择进行随机接入的高频基站。例如,终端A接收到高频基站1广播的波束参考信号a,高频基站2广播的波束参考信号b和c,高频基站3广播的波束参考信号d,假设已设置信号强度的预设阈值范围,根据波束参考信号的信号强度,则终端A可以选择信号强度满足上述预设阈值范围要求的高频基站作为目标高频基站。
各个低频基站与各个高频基站之间的对应关系可以为一对一,一对多或多对一。各个低频基站可以周期性地广播基站匹配信息,基站匹配信息包括该低频基站所对应的高频基站。例如,低频基站1对应的高频基站为高频基站1和高频基站2,低频基站2对应的高频基站为高频基站3,低频基站3对应的高频基站为高频基站3等。当终端A确定了目标高频基站之后,可以根据目标高频基站确定该低频基站,例如目标高频基站为高频基站2,则终端会选择低频基站1为目标低频基站。根据终端A,目标低频基站和目标高频基站之间的信息交互,终端可获取相应的随机接入资源,并使用该随机接入资源向该目标基站发送随机接入请求,实现随机接入过程。后续所描述的实施例主要以高频基站和低频基站独立部署为例,也可以适用于图1所示的高频基站和低频基站合一部署为一个基站的通信系统。
请参见图3,图3为本发明的一个实施例提供的一种随机接入方法的流程示意图,该方法适用于上述图1和图2的通信系统。图3-1为本发明的一个实施例提供的一种波束发射示意图。如图3所示,所述随机接入方法包括步骤S101~S106。
S101,目标高频基站向终端发送一个或多个波束参考信号。
相应的,所述终端从所述目标高频基站接收一个或多个波束参考信号。
具体的,一个高频基站可以时分的方式发送一个或多个不同方向的波束参考信号。例 如,如图3-1所示,高频基站在T1时刻可以发射波束B1,在T2时刻可以发射波束B2。本发明实施例中,目标高频基站是指与终端预实现随机接入的高频基站,该目标高频基站可以由终端进行选择。终端可以接收多个高频基站发送的所有波束参考信号,对接收到的所有波束参考信号按照所属的高频基站进行分组,选择波束参考信号个数最多的一组对应的高频基站作为目标高频基站,或者是选择信号强度平均值最大的一组对应的高频基站作为目标高频基站,或者是选择信号强度满足某预设阈值范围要求的波束参考信号个数最多的一组对应的高频基站,作为目标高频基站。
例如,如图2所示,接收到高频基站1广播的波束参考信号a,其信号强度为-120dBm,,高频基站2广播的波束参考信号b和c,其信号强度分别为-90dBm和-80dBm,高频基站3广播的波束参考信号d,其信号强度为-100dBm;将上述各信号的信号强度按照由大到小的顺序进行排列,顺序为:c、b、d、a。这里根据N的不同取值列举部分可能的情况如下:假设N=1,即终端获得信号强度最大波束参考信号c,并选择发送c的高频基站2作为目标基站,然后获取c的信号质量信息;假设N=2,则终端可获得波束参考信号c和b,并选择发送c和b的高频基站2作为目标基站,然后获取c的信号质量信息和b的信号质量信息;假设N=3,则终端可获得波束参考信号c、b和d,发送c、b和d的高频基站有2个,高频基站2和高频基站3,则终端可以从高频基站2和高频基站3中任选一个作为目标高频基站,或者终端选择波束参考信号个数多的高频基站2作为目标高频基站,然后获取c的信号质量信息和b的信号质量信息。
又如,如图2所示,终端A接收到高频基站1广播的波束参考信号a,其信号强度为-120dBm,高频基站2广播的波束参考信号b和c,其信号强度分别为-90dBm和-80dBm,高频基站3广播的波束参考信号d,其信号强度为-100dBm。这里根据信号强度的预设阈值范围列举部分可能的情况如下:假设信号强度的预设阈值范围为大于-100dBm,则波束参考信号b和c满足上述预设阈值范围要求,终端A可以选择高频基站2作为目标高频基站,然后获取b的信号质量信息和c的信号质量信息;假设信号强度的预设阈值范围为大于-110dBm,则波束参考信号b、c和d满足上述预设阈值范围要求,终端A可以从高频基站2和高频基站3中任选其一作为目标高频基站,或者终端选择波束参考信号个数多的高频基站2作为目标高频基站,例如高频基站2,然后获取b的信号质量信息和c的信号质量信息。
终端可以接收该目标高频基站发送的一个或多个波束参考信号,并检测其中的部分或全部波束参考信号的信号质量,即执行步骤S102。
S102,所述终端向所述目标低频基站发送所述一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息。
相应的,所述目标低频基站从所述终端接收所述一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息。
具体的,所述终端可以向所述目标低频基站发送所述一个或多个波束参考信号中全部波束参考信号的信号质量信息,也可以从所述一个或多个波束参考信号中按照质量条件,筛选出部分波束参考信号,然后向所述目标低频基站发送所述部分波束参考信号的信号质量信息。其中,质量条件可以由目标高频基站发送给终端,也可以是根据通信标准约定所 获得,且该质量条件可以为信号强度排名前N,其中,N为大于或等于1的自然数,也可以为信号强度满足阈值范围。例如,如图2所示,目标高频基站为高频基站2,由高频基站2所发送的一个或全部波束参考信号为b,c,则可以将b,c的信号质量信息发送给目标高频基站;也可以从中选择信号强度排名第一的c,并将c的信号质量信息发送给目标高频基站;或者是从中选择信号强度满足预设的阈值范围的波束参考信号b和c,然后将b和c的信号质量信息发送给目标高频基站。其中,预设的阈值范围可以是由目标高频基站发送给终端,也可以根据通信标准约定所获得。本发明实施例中,若所述终端通过目标低频基站向所述目标高频基站发送所述一个波束参考信号的信号质量信息,则这一个波束参考信号的信号质量信息可以包含波束参考信号的标识信息和波束参考信号的信号质量,也可以只包含波束参考信号的标识信息。若所述终端通过目标低频基站向所述目标高频基站发送所筛选的多个波束参考信号的信号质量信息,则该筛选出的多个波束参考信号的信号质量信息可以包含波束参考信号的标识信息和波束参考信号的信号质量,以便于目标低频基站将该信号质量信息转发给目标高频基站之后,由目标高频基站根据该波束参考信号的信号质量从这多个波束参考信号中选择一个作为目标波束。其中,所述所筛选的多个波束参考信号是由所述终端按照质量条件从一个或多个波束参考信号中筛选出的。
本发明实施例中,目标低频基站可以由终端来确定,所述终端获取所述目标高频基站与所述目标低频基站的对应关系,然后根据所述对应关系选择所述目标低频基站。目标低频基站的具体确定方法为:终端获取至少一个低频基站广播的基站匹配信息,然后根据所述至少一个低频基站广播的基站匹配信息,选择与所述目标高频基站对应的一个低频基站作为目标低频基站。其中,所述基站匹配信息包括与各个低频基站对应的至少一个高频基站。低频基站可以周期性地广播基站匹配信息,终端获取到至少一个低频基站广播的基站匹配信息。如图2所示,低频基站1对应的高频基站为高频基站1和高频基站2,低频基站2对应的高频基站为高频基站3,低频基站3对应的高频基站为高频基站3。若目标高频基站为高频基站1,则终端会选择低频基站1作为目标低频基站;若目标高频基站为高频基站3,则终端可以从低频基站2和低频基站3中选择其中一个低频基站作为目标低频基站。
本发明实施例中,若目标低频基站与终端已经建立通信连接,所述终端可以通过物理上行共享信道PUSCH向所述目标低频基站发送所述信号质量信息,或者,可以通过物理上行控制信道PUCCH向所述目标低频基站发送所述信号质量信息。若终端与目标低频基站未建立连接,所述终端向所述目标低频基站发送携带所述信号质量信息的消息3(msg3)消息,或者,向所述目标低频基站发送携带所述信号质量信息的第一RRC消息。
S103,所述目标低频基站向所述目标高频基站发送所述一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息。
相应的,所述目标高频基站从所述目标低频基站接收所述一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息。
具体的,若目标低频基站与目标高频基站合一部署,则低频基站可以通过基站内部传递,向该目标高频基站发送该信号质量信息;若低频基站和高频基站独立部署,则该目标低频基站和该目标高频基站之间可以通过理想回程线路(backhaul)或非理想backhaul连 接,该目标低频基站通过理想回程线路或非理想回程线路向该目标高频基站发送该信号质量信息。
S104,所述目标高频基站根据所述信号质量信息选择目标波束。
具体的,目标高频基站可以根据所述信号质量信息选择目标波束,该选择规则可以基于通信标准所规定,也可以是配置在目标高频基站上的。例如,如图2所示,若目标高频基站是高频基站2,且高频基站2从所述目标低频基站接收到b和c的信号质量信息,则目标高频基站可以根据所述信号质量信息选择满足预设规则的目标波束,该预设规则为选择信号强度最大的波束参考信号作为目标波束,例如,目标高频基站选择信号强度最大的c作为目标波束。本发明实施例中,若该终端向目标高频基站发送一个波束参考信号的信号质量信息,则目标高频基站将该波束确定为目标波束,该目标高频基站可根据该目标波束的标识信息获得该目标波束对应的随机接入资源。若该终端向目标高频基站发送多个波束参考信号的信号质量信息,则该目标高频基站可根据该目标波束的信号质量信息中的信号质量选择一个波束参考信号作为目标波束,并根据该目标波束的标识信息获得该目标波束对应的随机接入资源。其中,该随机接入资源为该目标高频基站为该终端分配的随机接入资源。
S105,所述目标高频基站向所述终端发送所述目标波束对应的随机接入资源的信息。
相应的,所述终端从所述目标高频基站接收所述目标波束对应的随机接入资源的信息。
具体的,该随机接入资源的信息可以是随机接入资源的有关频域和/或时域方面的配置信息,或者可理解为,该随机接入资源中的频域资源和/或时域资源。
可选的,所述目标高频基站可以通过物理下行控制信道PDCCH或者是物理下行共享信道PDSCH向终端发送该随机接入资源的信息,或者是向终端发送广播消息,该广播消息携带该随机接入资源的信息。
可选的,该目标高频基站可以通过目标低频基站将该随机接入资源的信息转发给该终端。具体的,目标高频基站向目标低频基站发送该随机接入资源的信息。若该目标低频基站与该终端建立了通信连接,则该目标低频基站可以通过物理下行共享信道PDSCH或物理下行控制信道PDCCH向终端发送该随机接入资源的信息。若该目标低频基站与该终端未建立通信连接,则该目标低频基站可以向终端发送第二无线资源控制RRC消息,该第二无线资源控制RRC消息携带所述随机接入资源的信息,或者是向终端发送广播消息,该广播消息携带该随机接入资源的信息,如在广播消息中携带公共无线网络临时标识(RadioNetwork Tempory Identity,RNTI)。其中,该广播消息可以通过系统消息块(systeminformation system information block,SIB)或主信息块(master information block,MIB)进行发送。
S106,所述终端使用所述随机接入资源向所述目标高频基站发送随机接入请求。
相应的,所述目标高频基站从所述终端接收所述随机接入请求。
具体的,终端获取到随机接入资源的信息之后,可以根据该随机接入资源的信息寻找到对应的频域资源和/或时域资源,并通过该频域资源和/或时域资源向该目标高频基站发送随机接入请求。该目标高频基站接收到该随机接入请求之后,会向该终端发送随机接入响应(Random Access Response,RAR)消息。若采用基于非竞争的随机接入方式,则这时该 终端和目标高频基站建立了通信连接。若采用基于竞争的随机接入的方式,该终端接收到随机接入响应消息之后,向该目标高频基站发送msg3消息,然后由该目标高频基站向该终端发送竞争解决消息,这时该终端和目标高频基站建立了通信连接。
本发明实施例中,目标高频基站向终端发送一个或多个波束参考信号,然后终端向所述目标低频基站发送所述一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息,目标低频基站向所述目标高频基站发送所述一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息,目标高频基站根据接收的信号质量信息选择目标波束,并向所述终端发送所述目标波束对应的随机接入资源的信息,最后终端使用所述随机接入资源向所述目标高频基站发送随机接入请求,目标高频基站通过信号质量信息选择目标波束并分配相应的随机接入资源,终端直接使用该随机接入资源发送随机接入请求,无需目标高频基站预留多个可能的随机接入资源以供终端选择,提高了资源利用率。
请参见图4,图4为本发明的一个实施例提供的另一种随机接入方法的流程示意图。如图4所示,所述随机接入方法包括步骤S201~S204。
S201,终端从目标高频基站接收一个或多个波束参考信号。
具体的,本发明实施例中,一个高频基站可以时分的方式发送一个或多个不同方向的波束参考信号,请参见图3相应实施例的步骤S101的相应解释,在此不再赘述。终端可以通过检测接收到的多个高频基站发送的所有波束参考信号的信号质量如信号强度,选择目标高频基站。
例如,该终端可以依据各个波束参考信号的信号强度和预设规则来确定目标高频基站。其中,预设规则可以是按照从大到小的顺序对各个波束参考信号的信号强度进行排序,选择出信号强度最佳的一个或前几个波束参考信号,也可以是从各个高频基站发送的波束参考信号中选择信号强度满足预设阈值范围要求的所有或者部分波束参考信号。终端根据信号强度选择出满足预设规则的波束参考信号后,可以从发送所选择的波束参考信号对应一个或多个高频基站中选择一个高频基站作为目标高频基站,并获取目标高频基站发送的波束参考信号的信号质量信息。
本发明实施例中,目标高频基站发送的波束参考信号的信号质量信息,可以是终端在满足预设规则的波束参考信号中,选择由目标高频基站所发送的一个或全部波束参考信号,其所对应的信号质量信息。例如,如图2所示,目标高频基站为高频基站2,由高频基站2所发送的一个或全部波束参考信号为b,c,则可以从中选择信号质量最佳的c的信号质量信息发送给目标高频基站,也可以选择b和c的信号质量信息发送给目标高频基站。
S202,所述终端通过目标低频基站向所述目标高频基站发送所述一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息。
具体的,所述终端通过目标低频基站向所述目标高频基站发送所述一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息,目标高频基站根据接收到的波束参考信号的信号质量信息为该终端分配随机接入资源。目标低频基站的具体确定方法以及终端通过目标低频基站向所述目标高频基站发送该信号质量信息的具体过程,请参见图3对应的实施例步骤S102-S103的相应解释,在此不再赘述。
S203,所述终端从所述目标高频基站接收目标波束对应的随机接入资源的信息。
具体的,所述终端从所述目标高频基站接收目标波束对应的随机接入资源的信息,所述目标波束是基于所述信号质量信息获得的。本发明实施例中,该目标高频基站可以根据所述信号质量信息选择目标波束,该选择规则可以基于通信标准所规定,也可以是配置在目标高频基站上的,具体解释请参见图3相应实施例的步骤S104,在此不再赘述。
可选的,所述目标高频基站可以通过物理下行控制信道PDCCH或者是物理下行共享信道PDSCH向终端发送该随机接入资源的信息,或者是向终端发送广播消息,该广播消息携带该随机接入资源的信息。所述终端从所述目标高频基站接收目标波束对应的随机接入资源的信息。
可选的,该目标高频基站可以通过该目标低频基站向该终端发送该随机接入资源的信息。具体解释请参见图3相应的实施例步骤S105中的详细描述,在此不再赘述。
S204,所述终端使用所述随机接入资源向所述目标高频基站发送随机接入请求。
本发明实施例中,步骤S204的具体解释请参见图3相应的实施例步骤S106中的详细描述,在此不再赘述。
本发明实施例中,终端从目标高频基站接收一个或多个波束参考信号,然后通过目标低频基站向所述目标高频基站发送所述一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息,并从所述目标高频基站接收目标波束对应的随机接入资源的信息,最后使用所述随机接入资源向所述目标高频基站发送随机接入请求,通过高频基站根据信号质量信息为终端分配随机接入资源,无需预留多个可能的随机接入资源,提高了资源利用率。
请参见图5,图5为本发明的一个实施例提供的又一种随机接入方法的流程示意图。如图5所示,所述另一种随机接入方法包括步骤S301~S308。
S301,终端从目标高频基站接收一个或多个波束参考信号。
具体的,本发明实施例中,步骤S301的具体解释请参考图4所示的步骤S201对应的解释,在此不再赘述。
S302,所述终端根据各个高频基站发送的波束参考信号确定目标高频基站,并获取所述目标高频基站发送的波束参考信号的信号质量信息。
具体的,所述终端根据各个高频基站发送的波束参考信号确定目标高频基站,并获取所述目标高频基站发送的部分或者全部波束参考信号的信号质量信息。终端接收各个高频基站发送的1个或多个波束参考信号,并检测接收到的波束参考信号的信号质量信息。以信号强度为例,终端可以根据检测到的信号强度来确定目标高频基站,并进一步获取目标高频基站发送的波束参考信号的信号质量信息。
可选的,终端将各个高频基站发送的1个或多个波束参考信号的信号强度按照由大到小的顺序进行排列,获得前N个波束参考信号,其中,N为大于或等于1的自然数;终端从发送前N个波束参考信号的所有高频基站中,选择一个高频基站作为目标高频基站;终端根据前N个波束参考信号中由目标高频基站发送的波束参考信号,获取目标高频基站发送的波束参考信号的信号质量信息。具体示例详见图3相应的实施例步骤S101中的详细描 述,在此不再赘述。
可选的,终端从各个高频基站发送的波束参考信号中选择信号强度满足预设阈值范围的所有波束参考信号;终端从发送所述信号强度满足预设阈值范围的所有波束参考信号的所有高频基站中,选择一个高频基站作为目标高频基站;终端将所述信号强度满足预设阈值范围的所有波束参考信号中,由所述目标高频基站发送的波束参考信号,获取所述目标高频基站发送的波束参考信号的信号质量信息。具体示例详见图3相应的实施例步骤S101中的详细描述,在此不再赘述。
S303,所述终端获取至少一个低频基站广播的基站匹配信息。
具体的,本发明实施例中,目标低频基站可以由终端来确定,所述终端获取所述目标高频基站与所述目标低频基站的对应关系,然后根据所述对应关系选择所述目标低频基站。所述终端获取至少一个低频基站广播的基站匹配信息。本发明实施例中,所述基站匹配信息包括与各个低频基站对应的至少一个高频基站。低频基站可以周期性地广播基站匹配信息,终端获取到至少一个低频基站广播的基站匹配信息。如图2所示,低频基站1发送的基站匹配信息可以是与该低频基站1所对应的一个或多个高频基站如高频基站1和高频基站2。
S304,所述终端根据所述至少一个低频基站广播的基站匹配信息,选择与所述目标高频基站对应的一个低频基站作为目标低频基站。
具体的,所述终端根据所述至少一个低频基站广播的基站匹配信息,选择与所述目标高频基站对应的一个低频基站作为目标低频基站。本发明实施例中,如图2所示,例如低频基站1对应的高频基站为高频基站1和高频基站2,低频基站2对应的高频基站为高频基站3,低频基站3对应的高频基站为高频基站3。若目标高频基站为高频基站1,则终端会选择低频基站1作为目标低频基站;若目标高频基站为高频基站3,则终端可以从低频基站2和低频基站3中,选择其中一个低频基站作为目标低频基站。
S305,所述终端判断所述终端与目标低频基站是否建立通信连接。
S306,若所述终端与目标低频基站已建立通信连接,则所述终端通过PUSCH或PUCCH向所述目标低频基站发送接入资源请求,以便于所述目标低频基站向所述目标高频基站发送接入资源请求。
具体的,在本发明实施例中,接入资源请求携带所述信号质量信息,所述信号质量信息被所述目标高频基站用于为所述终端分配随机接入资源。若终端与目标低频基站已建立通信连接,则终端通过PUSCH或PUCCH向所述目标低频基站发送接入资源请求,目标低频基站会将该接入资源请求转发给目标高频基站。目标高频基站获得接入资源请求中的所述信号质量信息,可以为该终端分配随机接入资源,具体过程可以为:目标高频基站从所述信号质量中选择其中一个波束参考信号的信号质量信息对应的波束参考信号作为目标波束,然后根据目标波束为所述终端分配随机接入资源。例如,所述信号质量包括波束参考信号a的质量信息,波束参考信号b的质量信息和波束参考信号c的质量信息,目标高频基站可以从中选择波束参考信号a的质量信息对应的波束参考信号a作为目标波束,然后根据该目标波束为终端分配随机接入资源。
S307,若所述终端未与目标低频基站未建立通信连接,则所述终端向所述目标低频基 站发送携带所述信号质量信息的msg3消息或RRC消息,以便于所述目标低频基站向所述目标高频基站发送所述信号质量信息。
具体的,若所述终端未与目标低频基站未建立通信连接,则所述终端通过msg3消息或RRC消息向所述目标低频基站发送所述信号质量信息,所述目标低频基站向所述目标高频基站发送所述信号质量信息,所述目标高频基站根据所述信号质量信息为所述终端分配随机接入资源。
S308,所述终端获取所述目标高频基站分配的随机接入资源,并使用所述随机接入资源向所述目标高频基站发送随机接入请求。
具体的,所述终端获取所述目标高频基站分配的随机接入资源,并采用所述随机接入资源向所述目标高频基站发送随机接入请求。其中,随机接入资源可以是时域资源、频域资源和空间维度资源(如哪一个beam资源)中的一种或多种。
可选的,该目标高频基站可以通过目标低频基站将该随机接入资源的信息转发给该终端。具体的,目标高频基站向目标低频基站发送该随机接入资源的信息。这里包含两种情况:第一种,若该目标低频基站与该终端建立了通信连接,终端可以接收目标低频基站通过PDCCH发送的该随机接入资源的信息,或者,终端可以接收目标低频基站通过PDSCH发送的该随机接入资源的信息;第二种,若该目标低频基站与该终端未建立通信连接,则该目标低频基站可以向终端发送第二RRC消息,该第二RRC消息携带所述随机接入资源的信息,或者是向终端发送广播消息,该广播消息携带该随机接入资源的信息,如在广播消息中携带RNTI。其中,该广播消息可以通过SIB或MIB进行发送。
可选的,该终端可以接收目标高频基站通过PDCCH或PDSCH发送的该随机接入资源的信息。
可选的,该终端可以向终端发送广播消息,该广播消息携带该随机接入资源的信息,如在广播消息中携带RNTI。其中,该广播消息可以通过SIB或MIB进行发送。
需要说明的是,终端可以接收该目标高频基站或该目标低频基站中的任意一个所发送的接入资源消息,究竟选择目标高频基站或目标低频基站可以按照预先设定的规则来选择,例如设定目标高频基站优先规则,则可以优先由目标高频基站来发送接入资源消息。
本发明实施例中,终端从目标高频基站接收一个或多个波束参考信号,然后根据各个高频基站发送的波束参考信号确定目标高频基站,并获取所述目标高频基站发送的波束参考信号的信号质量信息,终端通过获取至少一个低频基站广播的基站匹配信息,选择与所述目标高频基站对应的一个低频基站作为目标低频基站,通过判断所述终端是否与目标低频基站已建立通信连接,选择通过PUSCH或PUCCH向所述目标低频基站发送接入资源请求,或是向所述目标低频基站发送携带所述信号质量信息的msg3消息或RRC消息,以便于所述目标低频基站向所述目标高频基站发送接入资源请求或所述信号质量信息,终端获取所述目标高频基站分配的随机接入资源后,使用所述随机接入资源向所述目标高频基站发送随机接入请求,本发明实施例,通过高频基站根据该信号质量信息为终端分配随机接入资源,无需高频基站预留多个可能的随机接入资源,提高了资源利用率。
请参见图6,图6为本发明的一个实施例中涉及的终端进行描述。请参阅图6。图6是 本发明实施例公开的一种终端1000的结构示意图。如图6所示,所述终端可以包括至少一个处理器1001,例如CPU,至少一个收发机1002,存储器1003,至少一个通信总线1004。通信总线1004用于实现这些组件之间的连接通信。其中,收发机1002可以用于信息的发送和接收,存储器1003可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。存储器1003可选的可以包含至少一个位于远离前述处理器1001的存储装置。可选的,存储器1003也可以内置于处理器1001中。可选的存储器1003中存储的程序也可以烧录在处理器1001中。
具体地,处理器1001调用存储器1003中存储的程序,执行以下操作:
通过收发机1002从目标高频基站接收一个或多个波束参考信号;
通过收发机1002利用目标低频基站向所述目标高频基站发送所述一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;
通过收发机1002从所述目标高频基站接收目标波束对应的随机接入资源的信息,所述目标波束是基于所述信号质量信息获得的;
通过收发机1002使用所述随机接入资源向所述目标高频基站发送随机接入请求。
在一种可能的实施方式中,所述部分或者全部波束参考信号的信号质量满足质量条件。
在一种可能的实施方式中,所述质量条件为信号强度排名前N,其中,N为大于或等于1的自然数。
在一种可能的实施方式中,所述质量条件为信号强度满足阈值范围。
在一种可能的实施方式中,所述处理器1001调用存储器1003中存储的程序,具体执行:
通过收发机1002利用物理上行共享信道PUSCH向所述目标低频基站发送所述信号质量信息,以使所述目标低频基站向所述目标高频基站发送所述信号质量信息;或,
通过收发机1002利用物理上行控制信道PUCCH向所述目标低频基站发送所述信号质量信息,以使所述目标低频基站向所述目标高频基站发送所述信号质量信息;或,
通过收发机1002向所述目标低频基站发送携带所述信号质量信息的消息3msg3消息,以使所述目标低频基站向所述目标高频基站发送所述信号质量信息;或,
通过收发机1002利用向所述目标低频基站发送携带所述信号质量信息的第一无线资源控制RRC消息,以使所述目标低频基站向所述目标高频基站发送所述信号质量信息。
在一种可能的实施方式中,所述处理器1001调用存储器1003中存储的程序,还执行:
获取所述目标高频基站和所述目标低频基站的对应关系;
根据所述对应关系选择所述目标低频基站。
在一种可能的实施方式中,所述处理器1001调用存储器1003中存储的程序,具体执行:
通过收发机1002利用物理下行控制信道PDCCH从所述目标高频基站接收所述随机接入资源的信息;或,
通过收发机1002利用物理下行共享信道PDSCH从所述目标高频基站接收所述随机接入资源的信息;或,
通过收发机1002所述目标高频基站接收广播消息,所述广播消息携带所述随机接入资 源的信息;或,
通过收发机1002利用物理下行共享信道PDSCH从所述目标低频基站接收所述随机接入资源的信息,所述随机接入资源的信息是所述目标低频基站从所述目标高频基站接收的;或,
通过收发机1002利用物理下行控制信道PDCCH从所述目标低频基站接收所述随机接入资源的信息,所述随机接入资源的信息是所述目标低频基站从所述目标高频基站接收的;或,
通过收发机1002从所述目标低频基站接收第二无线资源控制RRC消息,所述第二RRC消息携带所述随机接入资源的信息,所述随机接入资源的信息是所述目标低频基站从所述目标高频基站接收的;或,
通过收发机1002从所述目标低频基站接收广播消息,所述广播消息携带所述随机接入资源的信息。
本发明实施例所示的终端用于执行图6所示任一实施例中终端的动作或步骤,该终端带来的技术效果参见相应方法实施例的具体描述,在此不在赘述。
请参见图7,图7为本发明的一个实施例中涉及的高频基站进行描述。请参阅图7,图7是本发明实施例公开的一种高频基站2000的结构示意图。如图7所示,所述高频基站可以包括至少一个处理器2001,例如CPU,至少一个收发机2002,存储器2003,至少一个通信总线2004。通信总线2004用于实现这些组件之间的连接通信。其中,收发机2002可以用于信息数据的发送和接收,存储器2003可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。存储器2003可选的可以包含至少一个位于远离前述处理器2001的存储装置。可选的,存储器2003也可以内置于处理器2001中。可选的存储器2003中存储的程序也可以烧录在处理器2001中。
具体地,处理器2001用于调用存储器2003中存储的程序,执行以下操作:
通过收发机2002向终端发送一个或多个波束参考信号;
通过收发机2002从所述终端接收所述一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;
根据所述信号质量信息选择目标波束;
通过收发机2002向所述终端发送所述目标波束对应的随机接入资源的信息。
在一种可能的实施方式中,所述处理器2001调用存储器2003中存储的程序,具体执行:
通过收发机2002利用物理下行控制信道PDCCH向所述用户终端发送所述目标波束对应的随机接入资源的信息;或,
通过收发机2002利用物理下行共享信道PDSCH向所述用户终端发送所述目标波束对应的随机接入资源的信息;或,
通过收发机2002发送广播消息,所述广播消息携带所述随机接入资源的信息。
本发明实施例所示的高频基站用于执行图7所示任一实施例中高频基站的动作或步骤,该高频基站带来的技术效果参见相应方法实施例的具体描述,在此不在赘述。
请参见图8,图8为本发明的一个实施例中涉及的低频基站进行描述。请参阅图8,图8是本发明实施例公开的一种低频基站3000的结构示意图。如图8所示,所述低频基站3000可以包括至少一个处理器3001,例如CPU,至少一个收发机3002,存储器3003,至少一个通信总线3004。通信总线3004用于实现这些组件之间的连接通信。其中,收发机3002可以用于信息数据的发送和接收,存储器3003可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。存储器3003可选的可以包含至少一个位于远离前述处理器3001的存储装置。可选的,存储器3003也可以内置于处理器3001中。可选的存储器3003中存储的程序也可以烧录在处理器3001中。
具体地,处理器3001用于调用存储器3003中存储的程序,执行以下操作:
通过收发机3002从终端接收一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;
通过收发机3002向目标高频基站发送所述信号质量信息。
在一种可能的实施方式中,处理器3001用于调用存储器3003中存储的程序,具体执行:
通过收发机3002利用物理上行共享信道PUSCH从终端接收一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;或,
通过收发机3002利用物理上行控制信道PUCCH从终端接收一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;或,
通过收发机3002从终端接收消息3msg3消息,所述消息3msg3消息携带一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;或,
通过收发机3002从终端接收第一无线资源控制RRC消息,所述第一RRC消息携带一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息。
在一种可能的实施方式中,处理器3001用于调用存储器3003中存储的程序,还执行:
通过收发机3002从高频基站接收目标波束对应的随机接入资源的信息,所述目标波束是基于所述信号质量信息获得的;
通过收发机3002向终端发送所述随机接入资源的信息。
在一种可能的实施方式中,处理器3001用于调用存储器3003中存储的程序,具体执行:
通过收发机3002利用物理下行共享信道PDSCH向终端发送所述随机接入资源的信息;或,
通过收发机3002利用物理下行控制信道PDCCH向终端发送所述随机接入资源的信息;或,
通过收发机3002向终端发送第二无线资源控制RRC消息,所述第二RRC消息携带所述随机接入资源的信息;或,
通过收发机3002向终端发送广播消息,所述广播消息携带所述随机接入资源的信息。
本发明实施例所示的低频基站用于执行图8所示任一实施例中低频基站的动作或步骤,该低频基站带来的技术效果参见相应方法实施例的具体描述,在此不在赘述。
本发明实施例还提供一种通信系统,包括如上图7相应实施例提供的高频基站和图8相应实施例提供的低频基站。
本发明实施例装置中的单元可以根据实际需要进行合并、划分和删减。本领域的技术人员可以将本说明书中描述的不同实施例以及不同实施例的特征进行结合或组合。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述,仅为本发明较佳的具体实现,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (26)

  1. 一种随机接入方法,其特征在于,所述方法包括:
    终端从目标高频基站接收一个或多个波束参考信号;
    所述终端通过目标低频基站向所述目标高频基站发送所述一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;
    所述终端从所述目标高频基站接收目标波束对应的随机接入资源的信息,所述目标波束是基于所述信号质量信息获得的;
    所述终端使用所述随机接入资源向所述目标高频基站发送随机接入请求。
  2. 根据权利要求1所述的方法,其特征在于,所述部分或者全部波束参考信号的信号质量满足质量条件。
  3. 根据权利要求2所述的方法,其特征在于,所述质量条件为信号强度排名前N,其中,N为大于或等于1的自然数。
  4. 根据权利要求2所述的方法,其特征在于,所述质量条件为信号强度满足阈值范围。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述终端通过目标低频基站向所述目标高频基站发送所述一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息,包括:
    所述终端通过物理上行共享信道PUSCH向所述目标低频基站发送所述信号质量信息,以使所述目标低频基站向所述目标高频基站发送所述信号质量信息;或,
    所述终端通过物理上行控制信道PUCCH向所述目标低频基站发送所述信号质量信息,以使所述目标低频基站向所述目标高频基站发送所述信号质量信息;或,
    所述终端向所述目标低频基站发送携带所述信号质量信息的消息3msg3消息,以使所述目标低频基站向所述目标高频基站发送所述信号质量信息;或,
    所述终端向所述目标低频基站发送携带所述信号质量信息的第一无线资源控制RRC消息,以使所述目标低频基站向所述目标高频基站发送所述信号质量信息。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,还包括:
    所述终端获取所述目标高频基站与所述目标低频基站的对应关系;
    所述终端根据所述对应关系选择所述目标低频基站。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述终端从所述目标高频基站接收目标波束对应的随机接入资源的信息,包括:
    所述终端通过物理下行控制信道PDCCH从所述目标高频基站接收所述随机接入资源的信息;或,
    所述终端通过物理下行共享信道PDSCH从所述目标高频基站接收所述随机接入资源的信息;或,
    所述终端从所述目标高频基站接收广播消息,所述广播消息包括所述随机接入资源的信息;或,
    所述终端通过物理下行共享信道PDSCH从所述目标低频基站接收所述随机接入资源的信息,所述随机接入资源的信息是所述目标低频基站从所述目标高频基站接收的;或,
    所述终端通过物理下行控制信道PDCCH从所述目标低频基站接收所述随机接入资源的信息,所述随机接入资源的信息是所述目标低频基站从所述目标高频基站接收的;或,
    所述终端从所述目标低频基站接收第二无线资源控制RRC消息,所述第二RRC消息携带所述随机接入资源的信息,所述随机接入资源的信息是所述目标低频基站从所述目标高频基站接收的;或,
    所述终端从所述目标低频基站接收广播消息,所述广播消息携带所述随机接入资源的信息。
  8. 一种随机接入方法,其特征在于,所述方法包括:
    目标高频基站向终端发送一个或多个波束参考信号;
    所述目标高频基站从所述终端接收所述一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;
    所述目标高频基站根据所述信号质量信息选择目标波束;
    所述目标高频基站向所述终端发送所述目标波束对应的随机接入资源的信息。
  9. 根据权利要求8所述的方法,其特征在于,所述目标高频基站向所述终端发送所述目标波束对应的随机接入资源的信息,包括:
    所述目标高频基站通过物理下行控制信道PDCCH向所述用户终端发送所述目标波束对应的随机接入资源的信息;或,
    所述目标高频基站通过物理下行共享信道PDSCH向所述用户终端发送所述目标波束对应的随机接入资源的信息;或,
    所述目标高频基站发送广播消息,所述广播消息携带所述随机接入资源的信息。
  10. 一种随机接入方法,其特征在于,所述方法包括:
    目标低频基站从终端接收一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;
    所述目标低频基站向目标高频基站发送所述信号质量信息。
  11. 根据权利要求10所述的方法,其特征在于,所述目标低频基站从终端接收一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息,包括:
    目标低频基站通过物理上行共享信道PUSCH从终端接收一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;或,
    目标低频基站通过物理上行控制信道PUCCH从终端接收一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;或,
    目标低频基站从终端接收消息3msg3消息,所述消息3msg3消息携带一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;或,
    目标低频基站从终端接收第一无线资源控制RRC消息,所述第一RRC消息携带一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息。
  12. 根据权利要求10或11所述的方法,其特征在于,所述目标低频基站向目标高频基站发送所述信号质量信息之后,还包括:
    所述目标低频基站从高频基站接收目标波束对应的随机接入资源的信息,所述目标波束是基于所述信号质量信息获得的;
    所述目标低频基站向终端发送所述随机接入资源的信息。
  13. 根据权利要求12所述的方法,其特征在于,所述目标低频基站向终端发送所述随机接入资源的信息,包括:
    所述目标低频基站通过物理下行共享信道PDSCH向终端发送所述随机接入资源的信息;或,
    所述目标低频基站通过物理下行控制信道PDCCH向终端发送所述随机接入资源的信息;或,
    所述目标低频基站向终端发送第二无线资源控制RRC消息,所述第二RRC消息携带所述随机接入资源的信息;或,
    所述目标低频基站向终端发送广播消息,所述广播消息携带所述随机接入资源的信息。
  14. 一种终端,其特征在于,所述终端包括收发机和处理器;所述处理器用于:
    通过所述收发机从目标高频基站接收一个或多个波束参考信号;
    通过所述收发机利用目标低频基站向所述目标高频基站发送所述一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;
    通过所述收发机从所述目标高频基站接收目标波束对应的随机接入资源的信息,所述目标波束是基于所述信号质量信息获得的;
    通过所述收发机使用所述随机接入资源向所述目标高频基站发送随机接入请求。
  15. 根据权利要求14所述的终端,其特征在于,所述部分或者全部波束参考信号的信号质量满足质量条件。
  16. 根据权利要求15所述的终端,其特征在于,所述质量条件为信号强度排名前N,其中,N为大于或等于1的自然数。
  17. 根据权利要求15所述的终端,其特征在于,所述质量条件为信号强度满足阈值范 围。
  18. 根据权利要求14-17任一项所述的终端,其特征在于,所述处理器具体用于:
    通过所述收发机利用物理上行共享信道PUSCH向所述目标低频基站发送所述信号质量信息,以使所述目标低频基站向所述目标高频基站发送所述信号质量信息;或,
    通过所述收发机利用物理上行控制信道PUCCH向所述目标低频基站发送所述信号质量信息,以使所述目标低频基站向所述目标高频基站发送所述信号质量信息;或,
    通过所述收发机向所述目标低频基站发送携带所述信号质量信息的消息3msg3消息,以使所述目标低频基站向所述目标高频基站发送所述信号质量信息;或,
    通过所述收发机利用向所述目标低频基站发送携带所述信号质量信息的第一无线资源控制RRC消息,以使所述目标低频基站向所述目标高频基站发送所述信号质量信息。
  19. 根据权利要求14-18任一项所述的终端,其特征在于,所述处理器还用于:
    获取所述目标高频基站和所述目标低频基站的对应关系;
    根据所述对应关系选择所述目标低频基站。
  20. 根据权利要求14-19任一项所述的终端,其特征在于,所述处理器具体用于:
    通过所述收发机利用物理下行控制信道PDCCH从所述目标高频基站接收所述随机接入资源的信息;或,
    通过所述收发机利用物理下行共享信道PDSCH从所述目标高频基站接收所述随机接入资源的信息;或,
    通过所述收发机所述目标高频基站接收广播消息,所述广播消息携带所述随机接入资源的信息;或,
    通过所述收发机利用物理下行共享信道PDSCH从所述目标低频基站接收所述随机接入资源的信息,所述随机接入资源的信息是所述目标低频基站从所述目标高频基站接收的;或,
    通过所述收发机利用物理下行控制信道PDCCH从所述目标低频基站接收所述随机接入资源的信息,所述随机接入资源的信息是所述目标低频基站从所述目标高频基站接收的;或,
    通过所述收发机从所述目标低频基站接收第二无线资源控制RRC消息,所述第二RRC消息携带所述随机接入资源的信息,所述随机接入资源的信息是所述目标低频基站从所述目标高频基站接收的;或,
    通过所述收发机从所述目标低频基站接收广播消息,所述广播消息携带所述随机接入资源的信息。
  21. 一种高频基站,其特征在于,所述高频基站包括收发机和处理器,所述处理器用于:
    通过所述收发机向终端发送一个或多个波束参考信号;
    通过所述收发机从所述终端接收所述一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;
    根据所述信号质量信息选择目标波束;
    通过所述收发机向所述终端发送所述目标波束对应的随机接入资源的信息。
  22. 根据权利要求21所述的高频基站,其特征在于,所述处理器具体用于:
    通过所述收发机利用物理下行控制信道PDCCH向所述用户终端发送所述目标波束对应的随机接入资源的信息;或,
    通过所述收发机利用物理下行共享信道PDSCH向所述用户终端发送所述目标波束对应的随机接入资源的信息;或,
    通过所述收发机发送广播消息,所述广播消息携带所述随机接入资源的信息。
  23. 一种低频基站,其特征在于,所述低频基站包括收发机和处理器,所述处理器用于:
    通过所述收发机从终端接收一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;
    通过所述收发机向目标高频基站发送所述信号质量信息。
  24. 根据权利要求23所述的低频基站,其特征在于,所述处理器具体用于:
    通过所述收发机利用物理上行共享信道PUSCH从终端接收一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;或,
    通过所述收发机利用物理上行控制信道PUCCH从终端接收一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;或,
    通过所述收发机从终端接收消息3msg3消息,所述消息3msg3消息携带一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息;或,
    通过所述收发机从终端接收第一无线资源控制RRC消息,所述第一RRC消息携带一个或多个波束参考信号中部分或者全部波束参考信号的信号质量信息。
  25. 根据权利要求23或24所述的低频基站,其特征在于,所述处理器还用于:
    通过所述收发机从高频基站接收目标波束对应的随机接入资源的信息,所述目标波束是基于所述信号质量信息获得的;
    通过所述收发机向终端发送所述随机接入资源的信息。
  26. 根据权利要求25所述的低频基站,其特征在于,所述处理器具体用于:
    通过所述收发机利用物理下行共享信道PDSCH向终端发送所述随机接入资源的信息;或,
    通过所述收发机利用物理下行控制信道PDCCH向终端发送所述随机接入资源的信息;或,
    通过所述收发机向终端发送第二无线资源控制RRC消息,所述第二RRC消息携带所述随机接入资源的信息;或,
    通过所述收发机向终端发送广播消息,所述广播消息携带所述随机接入资源的信息。
PCT/CN2018/071292 2017-01-06 2018-01-04 一种随机接入方法及其网元 WO2018127079A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710010981.1A CN108282905B (zh) 2017-01-06 2017-01-06 一种随机接入方法及其网元
CN201710010981.1 2017-01-06

Publications (1)

Publication Number Publication Date
WO2018127079A1 true WO2018127079A1 (zh) 2018-07-12

Family

ID=62789267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071292 WO2018127079A1 (zh) 2017-01-06 2018-01-04 一种随机接入方法及其网元

Country Status (2)

Country Link
CN (1) CN108282905B (zh)
WO (1) WO2018127079A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110572863A (zh) * 2019-09-02 2019-12-13 深圳职业技术学院 一种高频物联网的系统接入方法
CN110602797A (zh) * 2019-09-02 2019-12-20 深圳职业技术学院 一种物联网中的接入方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111200847A (zh) * 2018-11-16 2020-05-26 华为技术有限公司 通信方法及装置
CN109548158B (zh) * 2019-01-09 2023-04-07 武汉虹信科技发展有限责任公司 高频段波束管理方法与无线通信系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104412519A (zh) * 2012-07-03 2015-03-11 三星电子株式会社 在使用波束成形的无线通信系统中进行随机接入的装置和方法
CN104735685A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种信息处理方法、装置和系统
CN105490719A (zh) * 2014-09-17 2016-04-13 中兴通讯股份有限公司 一种上行同步方法、装置和系统
CN106171011A (zh) * 2016-06-30 2016-11-30 北京小米移动软件有限公司 系统信息传输方法及装置
CN106304120A (zh) * 2015-06-08 2017-01-04 中兴通讯股份有限公司 一种波束识别方法、系统和网络节点

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102209391A (zh) * 2010-03-29 2011-10-05 华为技术有限公司 随机接入资源的分配方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104412519A (zh) * 2012-07-03 2015-03-11 三星电子株式会社 在使用波束成形的无线通信系统中进行随机接入的装置和方法
CN104735685A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种信息处理方法、装置和系统
CN105490719A (zh) * 2014-09-17 2016-04-13 中兴通讯股份有限公司 一种上行同步方法、装置和系统
CN106304120A (zh) * 2015-06-08 2017-01-04 中兴通讯股份有限公司 一种波束识别方法、系统和网络节点
CN106171011A (zh) * 2016-06-30 2016-11-30 北京小米移动软件有限公司 系统信息传输方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110572863A (zh) * 2019-09-02 2019-12-13 深圳职业技术学院 一种高频物联网的系统接入方法
CN110602797A (zh) * 2019-09-02 2019-12-20 深圳职业技术学院 一种物联网中的接入方法
CN110602797B (zh) * 2019-09-02 2021-04-09 深圳职业技术学院 一种物联网中的接入方法
CN110572863B (zh) * 2019-09-02 2021-05-11 深圳职业技术学院 一种高频物联网的系统接入方法

Also Published As

Publication number Publication date
CN108282905B (zh) 2020-04-21
CN108282905A (zh) 2018-07-13

Similar Documents

Publication Publication Date Title
US11706763B2 (en) D2D resource configuration or allocation methods and apparatuses
US11412429B2 (en) Method for measurement report event operation and network signaling in UE autonomous handover
JP6733727B2 (ja) 無線通信システム、基地局側とユーザー機器側の装置及び方法
US11304094B2 (en) Multi-user wireless communication method and wireless communication terminal using same
KR101033689B1 (ko) 이동 통신 시스템에서의 프리앰블 할당 방법 및 임의 접속방법
WO2017195398A1 (ja) 無線端末、基地局、及びこれらの方法
US9258813B2 (en) Channel access method and apparatus using the same in wireless local area network system
WO2018171643A1 (zh) 信息传输方法、装置及系统
EP3310113B1 (en) Random access methods
WO2018127079A1 (zh) 一种随机接入方法及其网元
JP6652636B2 (ja) 通信を制御する方法、ユーザ機器、及び基地局
US11647489B2 (en) Wireless communication method and terminal for multi-user uplink transmission
US10701741B2 (en) Method for establishing direct connection link, and method and node for realizing data transmission thereby
KR20190055682A (ko) 무선 통신 시스템에서 무선 자원을 결정하기 위한 장치 및 방법
TW202015481A (zh) 用於下一代wi-fi 通道的掃瞄增強
US20150110071A1 (en) Apparatus and method for handover in wireless communication system
WO2017177818A1 (zh) 随机接入方法、装置及系统、基站和用户设备ue
CN114449675B (zh) 信息传输方法及相关产品
WO2018176634A1 (zh) 基于非授权载波的上行调度方法和装置
WO2014082444A1 (zh) 一种集群通信中组资源调度方法和系统
JP6410060B2 (ja) データ送信処理方法および装置
KR101756637B1 (ko) 무선 구성 파라미터들의 동기화
CN109644496B (zh) 接入控制方法及相关产品
WO2017118297A1 (zh) 数据传输的方法、装置及计算机存储介质
WO2021056222A1 (zh) 一种资源调度方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18736410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18736410

Country of ref document: EP

Kind code of ref document: A1