WO2018126996A1 - 一种数据收发方法、设备、存储介质及程序产品 - Google Patents

一种数据收发方法、设备、存储介质及程序产品 Download PDF

Info

Publication number
WO2018126996A1
WO2018126996A1 PCT/CN2017/119783 CN2017119783W WO2018126996A1 WO 2018126996 A1 WO2018126996 A1 WO 2018126996A1 CN 2017119783 W CN2017119783 W CN 2017119783W WO 2018126996 A1 WO2018126996 A1 WO 2018126996A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
time unit
terminal device
control
control information
Prior art date
Application number
PCT/CN2017/119783
Other languages
English (en)
French (fr)
Inventor
官磊
闫志宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17889944.9A priority Critical patent/EP3554161A4/en
Priority to BR112019013462A priority patent/BR112019013462A2/pt
Publication of WO2018126996A1 publication Critical patent/WO2018126996A1/zh
Priority to US16/460,931 priority patent/US20190327756A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0039Frequency-contiguous, i.e. with no allocation of frequencies for one user or terminal between the frequencies allocated to another
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a data transmission and reception method, device, storage medium, and program product.
  • the base station and the terminal device all pre-arrange the subframes for monitoring signaling and receiving data, and the terminal device only needs to monitor signaling or receive in the agreed subframe.
  • the data is OK, and the base station is not required to indicate to the terminal device to monitor the signaling or receive the subframe of the data.
  • the terminal device can only perform transmission and reception operations in a fixed subframe. Some subframes may be idle, and the terminal device can only continue to wait and can only listen to signaling or send and receive data in the configured subframe. Subframes are a waste of resources.
  • the base station does not perform dynamic scheduling according to the current resource allocation, nor does it indicate to the terminal device in real time, dynamic indication of the monitoring signaling or the subframe in which the data is received. It can be seen that the current fixed monitoring or receiving mechanism is not perfect.
  • the present application provides a data transmission and reception method, device, storage medium, and program product, which can solve the problem that the terminal device can only perform transmission and reception operations in a fixed subframe in the prior art.
  • the first aspect provides a data receiving method.
  • the method is applicable to a terminal device in a new wireless NR system, and the method may include:
  • the terminal device receives the first control information sent by the access network device on the first carrier, where the first control information is used to indicate that the first start symbol of the first data channel is received.
  • the first control information may be carried on the physical downlink control channel PDCCH. Specifically, the receiving control channel and the receiving control information are not distinguished in this application.
  • the terminal device receives the first data channel on the first carrier starting from the first start symbol.
  • the first data channel may refer to the data carried by the first data channel, for example, the downlink data sent by the base station. Specifically, the received data channel and the received data are not distinguished in this application.
  • the terminal device may receive the first control information dynamically sent by the access network device in the first time unit, and then receive the first according to the first start symbol indicated by the first control information.
  • Data channel Through the mechanism, in the process of listening to the channel, the access network device can dynamically perform resource scheduling on the terminal device, so that the terminal device can not be fixed in some subframes to listen to the control channel and receive the data channel, thereby improving the flexibility of data reception.
  • the solution can also combine the mechanism for receiving data in a fixed subframe, and the access network device can schedule the terminal device according to the current resource allocation situation in real time and dynamically, and can also send signaling or data in a fixed subframe. In addition, when it is determined that some subframes are idle, the idle subframes are scheduled to be used by the terminal device, thereby reducing the waiting time of the terminal device, and also improving resource utilization and resource scheduling flexibility, and further improving resources. Scheduling mechanism.
  • the dynamic scheduling of the first start symbol indicates that resources released by other terminal devices in the NR system can be allocated and indicated to the terminal device to improve resource utilization; or The idle resources in the LTE system multiplexed with the first carrier can be allocated and indicated to the terminal device to improve the resource multiplexing rate.
  • the first time unit may be a basic time domain scheduling unit such as a subframe, a time slot, a short time interval TTI, or a short time TTI in the NR system or a short TTI in the LTE system, such as the length of the first time unit.
  • OFDM symbols are 2 or 3 orthogonal frequency division multiplexing.
  • the following application takes a time slot as an example.
  • a time slot includes 7 OFDM symbols, which can configure different subcarrier spacings for terminal devices in the NR system.
  • a time slot of a subcarrier interval of 15 kHz KHz is 0.5 milliseconds.
  • Ms which is 0.25 ms at 30 kHz, the LTE UE can only assume a subcarrier spacing of 15 kHz.
  • the first carrier is a cell or a carrier that serves the terminal device.
  • the carrier and the cell are not distinguished in the present application.
  • the first carrier is a carrier serving the terminal device as an example.
  • the bandwidth of the first carrier may be the carrier bandwidth supported by the LTE system, and the 80 MHz frequency portion is taken as an example.
  • One 20 MHz frequency portion or two 20 MHz frequency portions may respectively support the LTE bandwidth of the terminal device in the LTE system.
  • the first start symbol refers to a start time at which the terminal device receives the first data channel in the time domain.
  • the access network device may notify the terminal device to start monitoring the control channel or receive the data channel in the symbol 3 of a certain subframe, then the terminal The device will listen or receive at the corresponding symbol.
  • the selection rule of the first start symbol may be pre-configured so that the terminal device can correctly monitor signaling and receive data.
  • the following two rules can be configured:
  • the first start symbol is a first candidate symbol, and the first candidate symbol may be ahead of a first start control symbol of the first control information in a time domain.
  • the first candidate symbol may be in the foregoing first time unit
  • the first start symbol may be delayed from the first symbol in the first time unit
  • the terminal device may receive the first time unit in the first time unit.
  • a control information and a first data channel after buffering the first control information and the data carried in the first data channel, obtain correct first control information and data by demodulation, thereby completing correct reception.
  • the first start symbol is a second candidate symbol
  • the second candidate symbol may be aligned with the first start control symbol in the time domain, or the second candidate symbol may lag behind the first time in the time domain Start control symbol.
  • the terminal device may further acquire, from the access network device, a frequency of the control channel corresponding to the first control information.
  • the domain configuration information may include information indicating a control frequency domain region of the control channel corresponding to the first control information.
  • the first control information is further used to indicate receiving a first transmission duration of the first data channel, or indicating to receive an end symbol of the first data channel, where the end symbol is A symbol within the first time unit or a symbol in at least one time unit following the first time unit.
  • the scheduling of the single time slot or the multiple time slots may be performed by the terminal device by referring to the scheduling manner of the first time unit, and performing control information and data channel reception in other time units except the first time unit, thereby implementing multiple time units. Dynamic scheduling.
  • the NR system may schedule and receive based on a time domain scheduling unit, wherein the time domain scheduling unit includes at least two time units, each time unit including at least two symbols, symbols on the time domain
  • the indexes are arranged in ascending order of time domain.
  • multiple time units can be uniformly scheduled, and independent scheduling can be performed in different time units to adapt to dynamic changes in resource allocation or to adapt to state changes of the first carrier.
  • the terminal device may further receive, by using the first carrier, the second control information sent by the access network, similarly, The second control information is used to indicate that the second start symbol of the second data channel is received.
  • first time unit and the second time unit in the present application may be any time unit, and the two may be in the same time domain scheduling unit or in different time domain scheduling units.
  • first time unit may be the first time unit
  • second time unit may be any time unit after the first time unit, for example, the second time unit.
  • the terminal device receives the second data channel on the first carrier starting from the second start symbol.
  • the second time unit satisfies one of the following:
  • the second time unit lags behind the first time unit and belongs to the same time domain scheduling unit as the first time unit, where the time domain scheduling unit is a basic scheduling time unit in the LTE system.
  • the second time unit lags behind the first time unit and belongs to a different time domain scheduling unit from the first time unit.
  • the access network device may configure the first start symbol in the NR system to a certain symbol in the first time unit according to the symbol occupied by the control region in the first time unit in the current LTE system. And avoiding the symbols occupied by the control region in the LTE system, the terminal device only needs to start receiving the control channel at the indicated initial control symbol, and start receiving the data channel at the indicated first start symbol.
  • the NR system In some possible designs, in the same time domain scheduling unit of the LTE system, only the first time unit has a control area, and the subsequent time unit does not have a control area, and when the PDCCH of the LTE system is circumvented, the NR system is Each time unit receives a control channel and a data channel starting from a fixed symbol. Considering the problem of resource reuse, the initial control symbol of the receiving control channel and the scheduling mechanism of the starting symbol of the received data channel can be dynamically indicated by the access network device. The following two aspects are respectively described:
  • the NR system can be configured to receive the control channel from the 4th symbol, but in the second slot. In the LTE system, there is no control area. If the NR system is still configured to receive the control channel from the 4th symbol, the first 3 symbols in the second time slot are not utilized, resulting in waste of resources.
  • the information of the initial reception control channel can be separately configured for the time unit after the first time unit in the NR system.
  • the second start control symbol for receiving the second control information in the second time unit may be separately configured for the terminal device, and the first start control symbol for receiving the first control information is used by the access network device Independent configuration.
  • the second start control symbol may be configured as the first one of the second time units, such that, in the first time unit, the terminal device in the NR system can utilize idle resources that are not utilized in the LTE system. , thereby increasing the resource reuse rate.
  • the PCFICH dynamically indicates that the number of symbols occupied by the control region of the LTE system is 1, if the NR-PDCCH and the NR-PDSCH still follow the previous time domain scheduling unit The configuration is received from the 4th symbol, and the 2nd symbol and the 3rd symbol are wasted. Then, the initial control symbol of the receiving control information can be dynamically changed by the access network device, and the second initial control symbol can be configured as a symbol other than the first symbol in the second time unit, so that the terminal device can be dynamic The change receives the start control symbol of the control information or the start symbol of the received data channel.
  • the access network device can dynamically adjust the initial control symbol of the receiving control channel in the NR system according to the number of symbols dynamically indicated by the PCFICH in the LTE system, and the terminal device can only be broken.
  • the limitation of receiving in a fixed symbol can also improve resource utilization to a certain extent.
  • the NR-PDCCH When the NR-PDCCH indicates the first start symbol, it may be implicitly corresponding to the NR-PDSCH by using a display bit or a state in the NR-PDCCH, or may also be a parameter such as a resource position occupied by the NR-PDCCH. Start symbol.
  • a rule may also be configured: the second start symbol lags behind the second start control symbol in the time domain, or is in the time domain The second initial control symbol is aligned. This rule applies equally to the time unit in each time domain scheduling unit and will not be described again.
  • the first start symbol is at a time domain position of the first time unit
  • the second start symbol is at the second
  • the time domain locations of time units are the same or different.
  • the configuration of the current time unit or the configuration of the subsequent time unit may be dynamically changed. After the configuration is changed, the start symbols of the first data channel received by the terminal device in different time units are different.
  • the initial control symbol for configuring the NR PDCCH in the corresponding NR system is the fourth symbol;
  • the initial control symbol for configuring the NR PDCCH in the corresponding NR system may be the third symbol. It can be seen that through this independently configured scheduling mode, resource utilization can be improved, and scheduling flexibility can also be improved.
  • the activation state of the cell changes, and the activation state change of the cell in the LTE system affects the data reception of the terminal device in the NR system.
  • the cell in the LTE system is in the LTE system.
  • the state is turned on or off, and is always active for terminal devices in the NR system.
  • the influence of the state of the LTE cell on the data reception of the terminal device in the NR system is mainly divided into the following two scenarios:
  • Scenario 1 If the NR UE is in the active state of the LTE UE, the terminal device needs to consider the signal or channel of the LTE system, and further considers the resource reuse problem with the LTE system. Similarly, the activation state described in the scenario 1 can be simply referred to as the first activation state.
  • Scenario 2 If the LTE cell is in the off state and the terminal device is in the active state in the NR system, the terminal device can use the first carrier relatively cleanly, for example, the NR-PDCCH does not need to consider the control region and CRS for evading LTE.
  • the activation state described in the scenario 2 may be simply referred to as the second activation state.
  • the resource allocation on the first carrier changes accordingly, in order to ensure higher resource utilization.
  • the terminal device switches its activation state, it also needs to follow the change of the activation state, and correspondingly change the start control symbol of the control channel and the start symbol of the data channel.
  • the terminal device receives, on the first carrier, third control information that is sent by the access network device, where the third control information is used to indicate that the third data channel is received. The third starting symbol.
  • the terminal device receives the third data channel on the first carrier starting from the third start symbol.
  • the terminal device may determine the first activation state or the second activation state by using the medium access control MAC signaling or the physical layer signaling sent by the access network device, corresponding to the foregoing scenario 1 and scenario 2.
  • the carrier on and off of LTE is implemented by MAC signaling.
  • the resource configuration of the terminal device receiving the control information is different for different activation states.
  • the first control information is received according to the resource configuration, where the resource configuration may include receiving the first start control symbol, the subcarrier spacing, and the rate matching information of the reference signal of the first control information.
  • At least one of the third control information may be received according to another resource configuration, the another resource configuration may include receiving the start control symbol of the third control information, the subcarrier spacing, and the rate matching information of the reference signal At least one.
  • the rate matching information of the foregoing reference signal corresponds to a resource location of a reference signal in an LTE system, such as a cell-specific reference signal in an LTE system, a channel state information measurement reference signal, and the like.
  • the rate matching here refers to that when the access network device sends the control channel or the data channel of the NR, the reference signal needs to be bypassed when the time-frequency resource is mapped, and the NR terminal device receives the control channel or the data channel correspondingly. It is also necessary to circumvent the above reference signals, which are referred to as rate matching and de-rate matching processes.
  • the terminal device changes the start control symbol of the received control channel and the start symbol of the received data channel according to the corresponding resource configuration, to keep smooth. Switching, you can also set the following rules:
  • the terminal device may keep the resource configuration unchanged, that is, the terminal device still uses during the switching of the active state.
  • the current resource configuration performs the reception of the control channel and the data channel, instead of immediately receiving another control resource for the reception of the control channel and the data channel.
  • the foregoing another resource may be configured as a first candidate resource configuration or a second candidate resource configuration, where the first candidate resource configuration corresponds to the first activation state, and the second candidate resource configuration Corresponding to the second activation state.
  • the receiving mode of the partial control channel in the first time unit can be kept not changed according to the change of the activated state, so that the activation state can be implemented. Smooth switching during the change.
  • Rule 2 The frequency domain range of the first carrier indicates that the resource allocation information ensures smooth handover
  • the first control information may further include first resource allocation information of the first data channel
  • the second control information may include second resource allocation information of the second data channel
  • the third control information includes third resource allocation information of the third data channel.
  • the indication of the first resource allocation information is based on a first frequency domain range of the first carrier
  • the indication of the second resource allocation information is based on a second frequency domain range of the first carrier
  • the third The indication of the resource allocation information is based on a third frequency domain range of the first carrier.
  • the first frequency domain range is different from the second frequency domain range, and/or the first frequency domain range is different from the third frequency domain range.
  • the second frequency domain range is a first candidate frequency domain range or a second candidate frequency domain range, where the first candidate frequency domain range corresponds to the first activation state, and the second candidate frequency domain range is The second activation state corresponds to.
  • the foregoing MAC signaling or physical layer signaling may be maintained, and the terminal device does not change the currently used frequency domain range, but after the MAC signaling or physical layer signaling takes effect, according to resource allocation.
  • the indication of the information changes the frequency domain range used.
  • the NR system can only use the first 20M, when deployed on the first carrier. After the cell is closed in the LTE system, the NR system can use the full bandwidth (ie, 40 M) of the first carrier. However, in the LTE system, after the cell is closed, the MAC signaling is notified to the terminal device, and the terminal device continues to use the first 20M, and does not change first. After the MAC signaling takes effect, the full bandwidth is 40M. This ensures smooth switching during bandwidth changes.
  • the terminal device when the terminal device is notified of the change of the activation state by using the MAC signaling or the physical layer signaling, the signaling that the access network device has changed the state may be sent to the terminal.
  • the device does not receive the signaling, but the current scheduling mode and the receiving mode are still maintained.
  • the understanding of the activation state of the first carrier between the access network device and the terminal device is inconsistent.
  • the terminal device by maintaining the currently adopted resource configuration unchanged during the active state switching, the terminal device can continue to maintain the correct reception of the control channel, and the reception of the control channel can be used to schedule the active state.
  • the reception of the data channel during the handover can avoid the problem of the handover unsmoothing caused by the inconsistent understanding of the activation state of the first carrier between the access network device and the terminal device.
  • the LTE system when the LTE system and the NR system are deployed on the first carrier described above, the LTE system may be scheduled based on a short transmission time interval TTI, which may be based on mini-slot scheduling. Since the time granularity of scheduling in the two communication systems multiplexed with the first carrier affects the complexity of the monitoring control channel, on the one hand, in order to ensure that the LTE system and the NR system normally multiplex the first carrier, on the other hand, dynamics are needed. Dispatching idle resources in the LTE system to improve resource utilization.
  • the terminal device may monitor the first control information at equal time interval intervals.
  • the terminal device may be configured to monitor the NR-PDCCH once every two symbols, and in one subframe, perform NR-PDCCH monitoring only on symbols whose symbol index is even.
  • the resource multiplexing of the short TTI scheduling in the NR system and the LTE system is considered, or the NR-PDSCH is prevented from occupying each part of the two LTE short TTIs, that is, the symbols occupied by one NR-PDSCH are in the time domain as much as possible.
  • the terminal device schedules two symbols as one minislot, for example, a symbol with an index of 0 (hereinafter referred to as #0, other similarly) and #1, #1, and #, respectively. 2. #3 and #4 are scheduled for one minislot. And in the NR system, the terminal device monitors the NR-PDCCH with even symbols such as #0, #2, and #4. If #0 and #2 are occupied by the LTE system, the terminal device in the NR system can only start monitoring the NR-PDCCH at #4. If the access network device learns that the number of symbols of the PCFICH dynamic indication in the LTE system changes from 3 to 2, the terminal device in the NR system can start monitoring the NR-PDCCH at #2.
  • the second aspect provides a data sending method.
  • the method is applicable to an access network device that schedules a terminal device in a new wireless NR system, and the method may include:
  • the first time unit sends the first control information to the terminal device on the first carrier, where the first control information is used to indicate that the terminal device is in the first time unit or the Within the time unit following the first time unit, the first data channel is received on the first carrier starting from a first start symbol.
  • the access network device transmits the first data channel on the first carrier starting from the first start symbol.
  • the access network device dynamically indicates to the terminal device in each time unit that the first start symbol of the first data channel is received, so that the terminal device can be not fixed in some subframe monitoring.
  • the control channel and the receive data channel can improve the flexibility of data reception.
  • the access network device can dynamically perform resource scheduling on the terminal device, so that the terminal device can not be fixed in some subframes to listen to the control channel and receive the data channel, thereby improving the flexibility of data reception.
  • the solution can also combine the mechanism for receiving data in a fixed subframe, and the access network device can schedule the terminal device according to the current resource allocation situation in real time and dynamically, and can also send signaling or data in a fixed subframe.
  • the idle subframes are scheduled to be used by the terminal device, thereby reducing the waiting time of the terminal device, and also improving resource utilization and resource scheduling flexibility, and further improving resources. Scheduling mechanism.
  • the first start symbol is a first candidate symbol or a second candidate symbol
  • the first candidate symbol is ahead of a first start control symbol for receiving the first control information in a time domain
  • the second candidate symbol lags the first start control symbol in the time domain or is aligned with the first start control symbol in the time domain.
  • the first candidate symbol is in the first time unit
  • the first start symbol lags behind the first symbol in the first time unit.
  • the first control information is further used to indicate receiving a first transmission duration of the first data channel, or indicating to receive an end symbol of the first data channel, where the end symbol is a symbol within a first time unit to implement scheduling of a single time unit; or the end symbol may also be a symbol in at least one time unit following the first time unit to enable scheduling of multiple time units.
  • the access network device may also separately schedule each time unit. Specifically, in the second time unit, the access network device is on the first carrier to the terminal. The device sends the second control information, where the second control information is used to indicate that the terminal device receives the second data channel on the first carrier from the second start symbol in the second time unit.
  • the second time unit satisfies one of the following:
  • the second time unit lags behind the first time unit, and belongs to the same time scheduling unit as the first time unit, where the time scheduling unit is a basic scheduling time unit in the LTE system;
  • the second time unit lags behind the first time unit and belongs to a different time scheduling unit from the first time unit.
  • the NR system In some possible designs, in the same time domain scheduling unit of the LTE system, only the first time unit has a control area, and the subsequent time unit does not have a control area, and when the PDCCH of the LTE system is circumvented, the NR system is Each time unit receives a control channel and a data channel starting from a fixed symbol.
  • the scheduling mechanism for receiving the start control symbol of the control channel and the start symbol of the received data channel may be dynamically indicated by the access network device, which may be separately after the first time unit in the NR system.
  • the time unit separately configures information for starting to receive the control channel.
  • the access network device may separately configure, for the terminal device, the first start control symbol for receiving the first control information, and configure the second start control symbol for receiving the second control information for the terminal device, visible, the first start control
  • the symbol and the second start control symbol are independently configured by the access network device.
  • the second start control symbol for transmitting the second control information may be the first symbol in the second time unit.
  • the access network device is configurable: the second start symbol lags behind the second start control symbol in the time domain, or The second start control symbols are aligned.
  • the access network device separately configures different time units separately, when the number of symbols indicated by the PCFICH dynamically changes in the LTE system, or the activation state of the cell of the LTE system deployed in the first carrier.
  • the configuration of the current time unit or the configuration of the subsequent time unit can be dynamically changed.
  • the start symbols of the first data channel received by the terminal device in different time units are different.
  • the first start symbol is at a time domain position of the first time unit and a time domain position of the second start symbol at the second time unit.
  • the TE system and the NR system are deployed together in the scenario of the first carrier, and the activation state of the cell in the LTE system may change, and the activation state change of the cell in the LTE system may be in the NR system.
  • the data reception of the terminal device has an influence, for example, in the case where the first carrier may occur, the cell in the LTE system is in an on or off state, and the terminal device in the NR system is always in an active state.
  • the description of the state of the LTE cell on the data reception of the terminal device in the NR system is mainly divided into the scenario 1 and the scenario 2.
  • the descriptions of the scenario 1 and the scenario 2 can be referred to the description in the first aspect of the foregoing section, and details are not described herein again.
  • the access network device may notify the terminal device of the activation state change of the first carrier by using the media access control MAC signaling or the physical layer signaling.
  • the access network device may further send third control information to the terminal device on the first carrier in the first time unit, where the third control information is used to indicate that the terminal device is in the In the first time unit, the third data channel is received on the first carrier starting from the third start symbol.
  • the access network device and the terminal device can also set the first The first and second rules described in the aspects.
  • the access network device before the access network device sends the first control information to the terminal device on the first carrier, the access network device will use the terminal device to receive the first control information.
  • a resource configuration where the resource configuration includes at least one of a first start control symbol, a subcarrier spacing, and rate matching information of the reference signal that the terminal device receives the first control information.
  • the access network device Before the access network device sends the third control information to the terminal device on the first carrier, the access network device sends another resource configuration for the terminal device to receive the third control information to the Said terminal device, said another resource configuration comprising said terminal device receiving at least one of a start control symbol of said third control information, a subcarrier spacing and rate matching information of a reference signal.
  • the resource configuration does not change.
  • the another candidate resource is configured as a first candidate resource configuration or a second candidate resource configuration, where the first candidate resource configuration corresponds to the first activation state, and the second candidate resource configuration corresponds to the second activation state .
  • the first control information includes first resource allocation information of the first data channel
  • the second control information includes second resource allocation information of the second data channel
  • the third control information includes third resource allocation information of the third data channel
  • the indication of the first resource allocation information is based on a first frequency domain range of the first carrier, and the indication of the second resource allocation information is based on a second frequency domain range of the first carrier, the third resource allocation The indication of the information is based on a third frequency domain range of the first carrier.
  • the first frequency domain range is different from the second frequency domain range, and/or the first frequency domain range is different from the third frequency domain range.
  • the first frequency domain range when the state of the first carrier is switched between the first active state and the second active state, the first frequency domain range is unchanged; the second frequency domain range The first candidate frequency domain range or the second candidate frequency domain range, where the first candidate frequency domain range corresponds to the first activation state, and the second candidate frequency domain range corresponds to the second activation state.
  • a third aspect of the present application provides a terminal device having a function of implementing a data receiving method corresponding to the above first aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above, which may be software and/or hardware.
  • the terminal device belongs to a new wireless NR system, and the terminal device includes a processing module and a transceiver module, and the processing module is configured to control the transceiver operation of the transceiver module.
  • the receiving module is configured to receive first control information sent by the access network device on the first carrier in the first time unit, where the first control information is used to indicate that the first start symbol of the first data channel is received ;
  • the first start symbol is a first candidate symbol or a second candidate symbol
  • the first candidate symbol is ahead of a first start control symbol for receiving the first control information in a time domain
  • the second candidate symbol lags the first start control symbol in the time domain or is aligned with the first start control symbol in the time domain.
  • the transceiver module Before receiving the first control information on the first carrier, the transceiver module is further configured to:
  • frequency domain configuration information of the control channel corresponding to the first control information where the frequency domain configuration information includes information indicating a control frequency domain region of the control channel corresponding to the first control information.
  • the first candidate symbol is in the first time unit
  • the first start symbol lags behind the first symbol in the first time unit.
  • the first control information is further used to indicate receiving a first transmission duration of the first data channel, or indicating to receive an end symbol of the first data channel, where the end symbol is A symbol within the first time unit or a symbol in at least one time unit following the first time unit.
  • the transceiver module is further configured to:
  • the second time unit satisfies one of the following:
  • the second time unit lags behind the first time unit, and belongs to the same time scheduling unit as the first time unit, where the time scheduling unit is a basic scheduling time unit in the LTE system;
  • the second time unit lags behind the first time unit and belongs to a different time scheduling unit from the first time unit.
  • the second start control symbol that receives the second control information and the first start control symbol that receives the first control information are independently configured by the access network device.
  • the second start symbol lags the second start control symbol in the time domain or is aligned with the second start control symbol in the time domain.
  • the first start symbol is in a time domain position of the first time unit
  • the second start symbol is in a time domain position of the second time unit.
  • the transceiver module is further configured to:
  • the first control information is received according to a resource configuration
  • the third control information is received according to another resource configuration.
  • the resource configuration includes receiving at least one of a first start control symbol, a subcarrier spacing, and rate matching information of the reference signal of the first control information, and the another resource configuration includes receiving the third control At least one of an initial control symbol of information, a subcarrier spacing, and rate matching information of a reference signal.
  • the resource configuration does not change when the state of the first carrier is switched between a first active state and a second active state.
  • the another resource configuration is configured as a first candidate resource configuration or a second candidate resource configuration, where the first candidate resource configuration corresponds to the first activation state, and the second candidate resource configuration and the second activation The status corresponds.
  • the first activation state or the second activation state is sent to the terminal device by medium access control MAC signaling or physical layer signaling.
  • the first control information includes first resource allocation information of the first data channel
  • the second control information includes second resource allocation information of the second data channel
  • the third control information includes third resource allocation information of the third data channel
  • the indication of the first resource allocation information is based on a first frequency domain range of the first carrier, and the indication of the second resource allocation information is based on a second frequency domain range of the first carrier, the third resource allocation The indication of the information is based on a third frequency domain range of the first carrier.
  • the first frequency domain range is different from the second frequency domain range, and/or the first frequency domain range is different from the third frequency domain range.
  • the first frequency domain range when the state of the first carrier is switched between the first active state and the second active state, the first frequency domain range is unchanged; the second frequency domain range is first a candidate frequency domain range or a second candidate frequency domain range, where the first candidate frequency domain range corresponds to the first activation state, and the second candidate frequency domain range corresponds to the second activation state.
  • the transceiver module is specifically configured to:
  • the non-contiguous symbol in the time domain monitors the control channel corresponding to the first control information, for example, the control channel corresponding to the first control information may be monitored at equal time interval intervals.
  • the terminal device includes:
  • At least one processor, transceiver, and memory At least one processor, transceiver, and memory;
  • the memory is used to store program code
  • the processor is configured to invoke program code in the memory to execute the technical solution described in the first aspect.
  • a fourth aspect of the present application provides an access network device, which has a function of implementing a data transmission method corresponding to the second aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above, which may be software and/or hardware.
  • the access network device belongs to a new wireless NR system, which can be used to schedule terminal devices in the NR system.
  • the access network device includes a processing module and a transceiver module, and the processing module is configured to control a transceiver operation of the transceiver module.
  • the processing module is configured to generate first control information
  • the transceiver module is configured to send the first control information generated by the processing module to the terminal device on the first carrier in the first time unit, where the first control information is used to indicate that the terminal device is in the Receiving, by the first time unit or the time unit after the first time unit, the first data channel on the first carrier from a first start symbol;
  • the first start symbol is a first candidate symbol or a second candidate symbol
  • the first candidate symbol is advanced in time domain by a first start control symbol that receives the first control information, where The second candidate symbol lags behind the first start control symbol in the time domain or is aligned with the first start control symbol in the time domain.
  • the first candidate symbol is in the first time unit
  • the first start symbol lags behind the first symbol in the first time unit.
  • the first control information is further used to indicate that a first transmission duration of the first data channel is received, or an end symbol of the first data channel is received, and the end symbol is the A symbol within a time unit or a symbol in at least one time unit following the first time unit.
  • the transceiver module is also used to:
  • the second time unit satisfies one of the following:
  • the second time unit lags behind the first time unit, and belongs to the same time scheduling unit as the first time unit, where the time scheduling unit is a basic scheduling time unit in the LTE system;
  • the second time unit lags behind the first time unit and belongs to a different time scheduling unit from the first time unit.
  • the second start control symbol for transmitting the second control information and the first start control symbol for receiving the first control information are independently configured by the access network device.
  • the second start symbol lags the second start control symbol in the time domain or is aligned with the second start control symbol in the time domain.
  • the first start symbol is in a time domain position of the first time unit, and the second start symbol is different in a time domain position of the second time unit.
  • the transceiver module is also used to:
  • the third start symbol begins to receive a third data channel on the first carrier.
  • the transceiver module is further configured to: before the access network device sends the first control information to the terminal device on the first carrier,
  • a resource configuration that is used by the terminal device to receive the first control information, where the resource configuration includes a rate matching of a first start control symbol, a subcarrier spacing, and a reference signal of the terminal device receiving the first control information. At least one of the information.
  • the transceiver module is further configured to: before the access network device sends the third control information to the terminal device on the first carrier,
  • the transceiver module is also used to:
  • the another candidate resource is configured as a first candidate resource configuration or a second candidate resource configuration, where the first candidate resource configuration corresponds to the first activation state, and the second candidate resource configuration corresponds to the second activation state .
  • the first control information includes first resource allocation information of the first data channel, and the second control information includes second resource allocation information of the second data channel, the third Control information includes third resource allocation information of the third data channel;
  • the indication of the first resource allocation information is based on a first frequency domain range of the first carrier, and the indication of the second resource allocation information is based on a second frequency domain range of the first carrier, the third resource allocation The indication of the information is based on a third frequency domain range of the first carrier.
  • the first frequency domain range is different from the second frequency domain range, and/or the first frequency domain range is different from the third frequency domain range.
  • the first frequency domain range when the state of the first carrier is switched between the first active state and the second active state, the first frequency domain range is unchanged; the second frequency domain range is the first candidate a frequency range or a second candidate frequency range, where the first candidate frequency range corresponds to the first activation state, and the second candidate frequency range corresponds to the second activation state.
  • the access network device includes:
  • At least one processor, transceiver, and memory At least one processor, transceiver, and memory;
  • the memory is used to store program code
  • the processor is configured to invoke program code in the memory to perform the technical solution described in the second aspect.
  • Yet another aspect of the present application provides a computer readable storage medium comprising instructions which, when executed on a computer, cause the computer to perform the methods described in the various aspects above.
  • Yet another aspect of the present application provides a computer storage medium comprising instructions, when executed on a computer, causing a computer to perform operations performed by a terminal device in the above aspects, or performing an access network device in the above aspects The action taken.
  • Yet another aspect of the present application provides a computer program product that, when run on a computer, causes the computer to perform operations performed by the terminal device in the various aspects described above, or to perform operations performed by the access network device.
  • the access network device dynamically indicates to the terminal device in each time unit that the first start symbol of the first data channel is received, so that the terminal device can be not fixed in some
  • the subframe monitors the control channel and receives the data channel, which can improve the flexibility of data reception.
  • 1-1 is a schematic structural diagram of a time slot in an embodiment of the present application.
  • 1-2 is a schematic structural diagram of a time unit in an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a data sending and receiving method in an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of each time unit when an NR system and an LTE system coexist in a first carrier according to an embodiment of the present application;
  • 4-1 is another schematic structural diagram of each time unit when the NR system and the LTE system coexist in the first carrier in the embodiment of the present application;
  • FIG. 4-2 is another schematic structural diagram of each time unit when the NR system and the LTE system coexist in the first carrier according to the embodiment of the present application;
  • FIG. 5 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an access network device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a physical device for performing data transmission and reception in an embodiment of the present application.
  • the terms “comprises” and “comprises” and “the” and “the” are intended to cover a non-exclusive inclusion, for example, a process, method, system, product, or device that comprises a series of steps or modules is not necessarily limited to Those steps or modules, but may include other steps or modules not explicitly listed or inherent to such processes, methods, products or devices, the division of the modules presented herein is merely a logical division. There may be additional divisions in the implementation of the actual application, for example, multiple modules may be combined or integrated into another system, or some features may be ignored, or not executed, and the displayed or discussed mutual coupling.
  • the direct coupling or the communication connection may be through some interfaces, and the indirect coupling or communication connection between the modules may be electrical or the like, which is not limited herein.
  • the modules or sub-modules described as separate components may or may not be physically separated, may not be physical modules, or may be distributed to multiple circuit modules, and some or all of them may be selected according to actual needs.
  • the module implements the purpose of the solution of the embodiments of the present application.
  • the present application provides a data transmission and reception method, device, storage medium, and program product, which can be used in an NR system, and can also be used in a scenario where an NR system and an LTE system are deployed together with the same carrier.
  • the time domain scheduling unit in the present application is used to indicate a unit for scheduling time domain resources, and one time domain scheduling unit includes at least two time units (for example, the first time unit and the second time unit described in the present application), each The time unit includes at least two symbols in the time domain, and the indices of the symbols are arranged from small to large in time domain increment.
  • the time unit may be other time units such as a subframe, a time slot, a micro time slot, and a short time interval (English name: Transmission Time Interval, English abbreviation: TTI).
  • Figure 1-1 shows the structure of a time slot.
  • Each block in Figure 1-1 represents an Orthogonal Frequency Division Multiplexing (OFDM) symbol in the time domain. To identify its symbol index, the symbol with index 0 can be simply referred to as #0, and other symbols are similar.
  • OFDM Orthogonal Frequency Division Multiplexing
  • a time domain scheduling unit can include a control area and a data area in the time domain.
  • the control area can be used to carry the physical downlink control channel (English name: Physical Downlink Control Channel, English abbreviation: PDCCH).
  • PDCCH Physical Downlink Control Channel
  • Information the control region occupies the first n OFDM symbols of the time unit, and n is a positive integer.
  • the PDCCH may transmit control information, and the control information may be used to schedule scheduling information of the transport block in the data channel.
  • the data channel includes a physical downlink shared channel (English full name: Physical Downlink Shared Channel, English abbreviation: PDSCH) and a physical uplink shared channel (English full name: Physical Uplink Shared Channel, English abbreviation: PDSCH), and the scheduling information may include an indication for the PDSCH.
  • PUSCH-related format resource allocation information, hybrid automatic repeat retransmission information (English name: Hybrid Automatic Repeat reQuest, English abbreviation: HARQ), its first n OFDM symbols in the time unit, and modulation and coding methods.
  • the data area can be used to carry the PDSCH or the PUSCH, and the terminal device can monitor the control channel in the corresponding time unit, and then perform data transmission and reception in the data channel according to the control information.
  • Each time unit is composed of symbols in the time domain, and the number of symbols included in each time unit is not limited in the present invention.
  • the maximum number of symbols included in the control area and the data area is related to the partition structure of the time unit in the time domain, specifically for the division of the control unit and the data area in the time domain in a time unit, the time unit, and the present application does not limited.
  • the access network device dynamically indicates to the terminal device to receive the first start symbol of the first data channel in each time unit, so that the terminal device can not be fixed in some subframes to monitor the control channel and receive the data channel, thereby improving data reception. Flexibility.
  • the access network device can also dynamically indicate that the terminal device in the NR system receives the start symbol of the control channel and the data channel according to the control region in the LTE system, that is, two When the system coexists in the first carrier, the terminal devices of the two do not conflict in resource allocation and do not affect the performance of the respective systems. It is also possible to dynamically indicate to the terminal device the start symbol of the control channel and the data channel according to the dynamic change of the number of symbols of the control region in the LTE system, or the change of the activation state of the first carrier.
  • the terminal device can be flexibly indicated to receive the start symbol of the control channel and the data channel, and the resource utilization rate and the resource multiplexing rate can be improved.
  • the access network device involved in the present application is a device for accessing a terminal device to a wireless network, and is also referred to as a base station, including but not limited to: an evolved Node B (English name: evolved Node Base, English abbreviation: eNB), radio network controller (English full name: Radio Network Controller, English abbreviation: RNC), node B (English full name: Node B, English abbreviation: NB), base station controller (English full name: Base Station Controller, English abbreviation: BSC), base transceiver station (English full name: Base Transceiver Station, English abbreviation: BTS), home base station (for example, Home evolved NodeB, or Home Node B, English abbreviation: HNB), baseband unit (English full name: BaseBand Unit, English abbreviation: BBU).
  • an evolved Node B English name: evolved Node Base, English abbreviation: eNB
  • radio network controller English full name: Radio Network Controller, English abbreviation: RNC
  • the terminal device referred to in the present application may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the terminal device can communicate with one or more core networks via a radio access network (English name: Radio Access Network, English abbreviation: RAN), and the terminal device can be a mobile terminal, such as a mobile phone (or "cellular" phone).
  • a computer having a mobile terminal for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • a wireless terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, or an access point.
  • Remote Terminal Access Terminal, User Terminal, Terminal Device, User Agent, User Device, or User Equipment.
  • the data transmission and reception method (including the data transmission method and the data reception method) in the embodiment of the present application is exemplified, and the method is applicable to the terminal device in the new wireless NR system, and is also applicable to being deployed in the same manner as the LTE system.
  • the terminal device in the NR system on the first carrier.
  • the NR system can schedule and receive based on the time domain scheduling unit.
  • a time unit is taken as an example.
  • the other time units may refer to the scheduling manner configured in the embodiment of the present application, for example, starting symbols for the control area or the data area in the first subframe.
  • an embodiment of the present application includes:
  • the access network device sends the first control information to the terminal device in the first time unit.
  • the access network device may first determine the idle resource on the first carrier, and then generate the corresponding first control information, and then send the signal to the terminal device by using the first control channel.
  • the first control information can be used to indicate that the first start symbol of the first data channel is received.
  • the first control information is carried in a new radio physical downlink control channel (English name: New Radio-Physical Downlink Control Channel, English abbreviation: NR-PDCCH).
  • NR-PDCCH New Radio-Physical Downlink Control Channel
  • the first time unit may be a basic time domain scheduling unit such as a subframe, a time slot, or a short TTI, or may be a mini-slot in the NR system or a short TTI in the LTE system.
  • the length of the first time unit is 2 or 3 orthogonal frequency division multiplexing OFDM symbols.
  • a time slot is taken as an example.
  • a time slot includes 7 OFDM symbols, and different subcarrier spacings can be configured for the terminal device in the NR system, for example, 15 kHz (English name: KiloHertz, English abbreviation: KHz)
  • One slot under the subcarrier spacing is 0.5 milliseconds (English name: millisecond, English abbreviation: ms), and 0.25 ms at 30 kHz.
  • the LTE UE can only assume a subcarrier spacing of 15 kHz.
  • the first carrier is a cell or a carrier that serves the terminal device.
  • the carrier and the cell are not distinguished in the present application.
  • the first carrier is a carrier serving the terminal device as an example.
  • the NR system can be deployed on the first carrier, and the LTE system can also be deployed.
  • the bandwidth of the first carrier may be a carrier bandwidth supported by the LTE system, such as 1.4 MHz (English full name: MegaHertz, English abbreviation: MHz), 3 MHz, 5 MHz, 10 MHz, 15 MHz, or 20 MHz, etc.; or may be greater than 20 MHz.
  • the NR carrier such as 40 MHz or even 80 MHz, is exemplified by 80 MHz.
  • One of the 20 MHz frequency parts or the two 20 MHz frequency parts may respectively support the LTE bandwidth of the terminal equipment in the LTE system.
  • the first start symbol refers to a start time at which the terminal device receives the first data channel in the time domain.
  • the access network device can notify the terminal device to start monitoring the control channel or receive the data channel in the symbol 3 of a certain subframe, and then the terminal device monitors or receives the corresponding symbol.
  • the first device receives the first control information sent by the access network device on the first carrier in the first time unit.
  • the access network device sends the first data channel on the first carrier from the first start symbol in a time unit after the first time unit or the first time unit. .
  • the terminal device receives the first data channel on the first carrier from the first start symbol in a time unit after the first time unit or the first time unit.
  • the first data channel refers to the data carried by the first data channel, for example, the downlink data sent by the base station.
  • the received data channel and the received data are not distinguished in this application.
  • the first control information sent in the foregoing step 201 is further used to indicate that the first transmission duration of the first data channel is received, or that the first data channel is received.
  • the terminal device may refer to the scheduling manner of the first time unit, and perform control information and data channel reception in other time units except the first time unit to implement dynamic scheduling of multiple time units.
  • the access network device Compared with the existing mechanism, in the embodiment of the present application, the access network device generates the first control information according to the current resource allocation situation, and then sends the first control information to the terminal device in the first time unit.
  • the terminal device may receive the first control information dynamically sent by the access network device in the first time unit, and then receive the first data channel according to the first start symbol indicated by the first control information.
  • the access network device can dynamically perform resource scheduling on the terminal device, so that the terminal device can not be fixed in some subframes to listen to the control channel and receive the data channel, thereby improving the flexibility of data reception. .
  • the solution can also combine the mechanism for receiving data in a fixed subframe, and the access network device can schedule the terminal device according to the current resource allocation situation in real time and dynamically, and can also send signaling or data in a fixed subframe.
  • the idle subframes are scheduled to be used by the terminal device, thereby reducing the waiting time of the terminal device, and also improving resource utilization and resource scheduling flexibility, and further improving resources. Scheduling mechanism.
  • the dynamic scheduling of the first start symbol indicates that the resources released by other terminal devices in the NR system can be allocated and indicated to the terminal device to improve resource utilization; or The idle resources in the LTE system multiplexed with the first carrier are allocated and indicated to the terminal device to improve the resource multiplexing rate.
  • the selection rule of the first start symbol may be pre-configured, so that the terminal device can correctly monitor signaling and receive data, and the following two rules may be configured according to the application scenario:
  • the first start symbol is a first candidate symbol, and the first candidate symbol may be ahead of a first start control symbol of the first control information in a time domain.
  • the first candidate symbol may be in the foregoing first time unit
  • the first start symbol may be delayed from the first symbol in the first time unit
  • the terminal device may receive the first time unit in the first time unit.
  • a control information and a first data channel after buffering the first control information and the data carried in the first data channel, obtain correct first control information and data by demodulation, thereby completing correct reception.
  • the LTE control area is dynamically configured with a smaller number of symbols, for example, the value of the PCFICH notification is 1, and the first control channel of the NR is configured in the first time domain unit.
  • the initial control symbol is symbol 3
  • the first data channel of the notification NR is started from the symbol 1, and the time domain symbols not used in the LTE control region can be fully utilized to improve the system resource utilization.
  • the first start symbol is a second candidate symbol
  • the second candidate symbol may be aligned with the first start control symbol in the time domain, or the second candidate symbol may lag behind the first time in the time domain Start control symbol.
  • the LTE control area is dynamically configured with a large number of symbols, for example, the value of the PCFICH notification is 3, and the first control channel of the NR is configured in the first time domain unit.
  • the initial control symbol is symbol 3
  • the first data channel of the notification NR is started from symbol 3 or symbol 4.
  • the LTE control region can be avoided to avoid interference to the LTE control channel.
  • the terminal device may further acquire the first control information from the access network device.
  • the frequency domain configuration information of the corresponding control channel where the frequency domain configuration information may include information indicating a control frequency domain region of the control channel corresponding to the first control information.
  • the control frequency domain area of the first control channel of the NR may occupy the full bandwidth like the control channel in the LTE system, or may be configured to occupy part of the bandwidth in the first carrier. This configuration may be compared to LTE.
  • the frequency domain resource location of the control channel of the NR can be flexibly configured to avoid the transmission frequency of the full bandwidth signal, and the NR system and the LTE system or the NR system that continues to evolve in the future can be less affected.
  • multiple time units may be uniformly scheduled, or independent scheduling may be performed in different time units to adapt to current resource allocation and improvement.
  • the flexibility of resource allocation or can also adapt to the state change of the first carrier.
  • the terminal device may further receive, by using the first carrier, the second control information sent by the access network, similarly, The second control information is used to indicate that the second start symbol of the second data channel is received.
  • the first time unit and the second time unit in the present application may be any time unit, and the two may be in the same time domain scheduling unit or in different time domain scheduling units.
  • the first time unit may be the first time unit
  • the second time unit may be any time unit after the first time unit, for example, the second time unit.
  • the terminal device receives the second data channel on the first carrier starting from the second start symbol.
  • the second time unit satisfies one of the following items:
  • the second time unit lags behind the first time unit and belongs to the same time domain scheduling unit as the first time unit, where the time domain scheduling unit is a basic scheduling time unit in the LTE system.
  • the network device may re-instruct the terminal device of the new received data channel and the start symbol of the control channel in the second time unit, so that resources not occupied by the LTE system in the second time unit can be effectively utilized.
  • the second time unit lags behind the first time unit and belongs to a different time domain scheduling unit from the first time unit.
  • the first time unit is the first time unit or the non-first time unit
  • the first time unit and the second time unit belong to different time domain scheduling units
  • the PCFICH dynamically indicates the second time unit in the LTE system
  • the number of symbols occupied by the control region changes.
  • the access network device can dynamically adjust the start symbols of the control channel and the data channel in the NR system according to the changed number.
  • the access network device may indicate that the start symbol of the control channel and the data channel in the NR system is the third symbol of the first time unit, if in the first In the two-time unit, the number of PCFICH indicator symbols is three, and the access network device may indicate that the start symbol of the control channel and the data channel in the NR system is the fourth symbol of the first time unit.
  • the access network device may indicate that the start symbol of the control channel and the data channel in the NR system is the fourth symbol of the first time unit, if in the first In the two-time unit, the number of PCFICH indicator symbols is 1, the access network device may indicate that the start symbol of the control channel and the data channel in the NR system is the second symbol of the first time unit.
  • the second time unit in the present application is not limited to one, and the dynamic indication of other time units may also refer to the description in the present application for the second time unit.
  • the LTE system shares the foregoing first carrier with the NR
  • the first n symbols of the first time unit are occupied as the control area.
  • the control area is used to carry the LTE PDCCH.
  • the LTE system and the NR system on the first carrier when configuring the NR system, it is necessary to avoid signals or channels of the LTE system.
  • the first time unit has a control area, and the subsequent time unit does not have a control area, and when PDCCH of the LTE system is circumvented, the NR system is in each time unit.
  • the control channel and data channel are received starting from a fixed symbol.
  • the initial control symbol of the receiving control channel and the scheduling mechanism of the starting symbol of the received data channel can be dynamically indicated by the access network device. The following two aspects are respectively described:
  • the NR system can be configured to receive the control channel from the 4th symbol, but in the second slot. In the LTE system, there is no control area. If the NR system is still configured to receive the control channel from the 4th symbol, the first 3 symbols in the second time slot are not utilized, resulting in waste of resources.
  • the initially received information can be separately configured for the time unit after the first time unit in the NR system.
  • the access network device may separately configure, for the terminal device, the first start control symbol for receiving the first control information, and configure the second start control symbol for receiving the second control information for the terminal device, visible, the first start control
  • the symbol and the second start control symbol are independently configured by the access network device.
  • a second start control symbol that receives the second control information can be configured as the first symbol in the second time unit.
  • the PCFICH indicates that the control region of the LTE system occupies 3, and the access is The network device will instruct the terminal device to start receiving the control channel at the 4th symbol (#3) in the first time unit.
  • the access network device can dynamically indicate to the terminal device a new second start symbol or a new start control symbol of the received control channel.
  • the access network device dynamically configures the second start control symbol as a symbol other than the first one of the second time units, so that the terminal device can dynamically change the initial control symbol or receive the received control information.
  • the starting symbol of the data channel For example, as shown in (b) of FIG. 3, the initial control symbol of the receiving control channel is configured to start receiving from #2, and of course, it can also be configured to start receiving from #1, thereby achieving the use of unused # in the LTE system. 2, improve resource utilization.
  • the access network device can dynamically adjust the NR according to the number of symbols dynamically indicated by the PCFICH in the LTE system.
  • the initial control symbol of the control channel is received in the system, which breaks through the limitation that the terminal device can only receive in a fixed symbol, and can also improve the resource utilization to a certain extent.
  • the NR-PDCCH When the NR-PDCCH indicates the first start symbol, it may be implicitly corresponding to the NR-PDSCH by using a display bit or a state in the NR-PDCCH, or may also be a parameter such as a resource position occupied by the NR-PDCCH. Start symbol.
  • the following rule may also be configured: the second start symbol lags behind the second start control symbol in the time domain, or Aligned with the second start control symbol in the time domain.
  • This rule applies equally to the time unit in each time domain scheduling unit and will not be described again.
  • the first start symbol is in a time domain position of the first time unit
  • the second start may be The symbols are the same or different in the time domain position of the second time unit.
  • the configuration of the current time unit or the configuration of the subsequent time unit may be dynamically changed. After the configuration is changed, the start symbols of the first data channel received by the terminal device in different time units are different.
  • the initial control symbol for configuring the NR PDCCH in the corresponding NR system is the fourth symbol;
  • the initial control symbol for configuring the NR PDCCH in the corresponding NR system may be the third symbol. It can be seen that through this independently configured scheduling mode, resource utilization can be improved, and scheduling flexibility can also be improved.
  • the LTE system and the NR system are jointly deployed on the first carrier.
  • the activation state of the cell in the LTE system changes. Since the activation state change of the cell in the LTE system affects the data reception of the terminal device in the NR system, for example, in the case of the first carrier, the cell in the LTE system is in an on or off state, and in the NR system, The terminal device is always in an active state.
  • the influence of the state of the LTE cell on the data reception of the terminal device in the NR system is mainly divided into the following two scenarios:
  • Scenario 1 If the NR UE is in the active state of the LTE UE, the terminal device needs to consider the signal or channel of the LTE system, and further considers the resource reuse problem with the LTE system. Similarly, the activation state described in the scenario 1 can be simply referred to as the first activation state.
  • Scenario 2 If the LTE cell is in the off state and the terminal device is in the active state in the NR system, the terminal device can use the first carrier relatively cleanly, for example, the NR-PDCCH does not need to consider the control region and CRS for evading LTE.
  • the activation state described in the scenario 2 may be simply referred to as the second activation state.
  • the resource allocation on the first carrier changes accordingly, in order to ensure higher resource utilization.
  • the terminal device switches its activation state, it also needs to follow the change of the activation state, and correspondingly change the start control symbol of the control channel and the start symbol of the data channel.
  • the terminal device receives, on the first carrier, third control information that is sent by the access network device, where the third control information is used to indicate that the third data channel is received. The third starting symbol.
  • the terminal device receives the third data channel on the first carrier starting from the third start symbol.
  • the terminal device may determine, by using media access control MAC signaling or physical layer signaling sent by the access network device, the first activation state or the first Two activation states.
  • the resource configuration of the terminal device receiving the control information is different for different activation states.
  • the first control information is received according to the resource configuration, where the resource configuration may include receiving the first start control symbol, the subcarrier spacing, and the rate matching information of the reference signal of the first control information.
  • At least one of the third control information may be received according to another resource configuration, the another resource configuration may include receiving the start control symbol of the third control information, the subcarrier spacing, and the rate matching information of the reference signal At least one.
  • the terminal device changes the start control symbol of the received control channel and the start symbol of the received data channel according to the corresponding resource configuration, to keep smooth. Switching, you can also set the following rules:
  • the terminal device may keep the resource configuration unchanged, that is, the terminal device still uses during the switching of the active state.
  • the current resource configuration performs the reception of the control channel and the data channel, instead of immediately receiving another control resource for the reception of the control channel and the data channel.
  • the foregoing another resource may be configured as a first candidate resource configuration or a second candidate resource configuration, where the first candidate resource configuration corresponds to the first activation state, and the second candidate resource configuration Corresponding to the second activation state.
  • the receiving mode of the partial control channel in the first time unit can be kept not changed according to the change of the activated state, so that the activation state can be implemented. Smooth switching during the change.
  • Rule 2 The frequency domain range of the first carrier indicates that the resource allocation information ensures smooth handover
  • the first control information may further include first resource allocation information of the first data channel
  • the second control information may include second resource allocation information of the second data channel
  • the third control information includes third resource allocation information of the third data channel.
  • the indication of the first resource allocation information is based on a first frequency domain range of the first carrier
  • the indication of the second resource allocation information is based on a second frequency domain range of the first carrier
  • the third The indication of the resource allocation information is based on a third frequency domain range of the first carrier.
  • the first frequency domain range is different from the second frequency domain range, and/or the first frequency domain range is different from the third frequency domain range.
  • the second frequency domain range is a first candidate frequency domain range or a second candidate frequency domain range, where the first candidate frequency domain range corresponds to the first activation state, and the second candidate frequency domain range is The second activation state corresponds to.
  • the foregoing MAC signaling or physical layer signaling may be maintained, and the terminal device does not change the currently used frequency domain range, but after the MAC signaling or physical layer signaling takes effect, according to resource allocation.
  • the indication of the information changes the frequency domain range used.
  • the NR system can only use the first 20M, when deployed on the first carrier. After the cell is closed in the LTE system, the NR system can use the full bandwidth (ie, 40 M) of the first carrier. However, in the LTE system, after the cell is closed, the MAC signaling is notified to the terminal device, and the terminal device continues to use the first 20M, and does not change first. After the MAC signaling takes effect, the full bandwidth is 40M. This ensures smooth switching during bandwidth changes.
  • the access network device may change the state.
  • the signaling is sent to the terminal device, but the terminal device does not receive the sent signaling, and still maintains the current scheduling mode and the receiving mode, resulting in the activation state of the first carrier between the access network device and the terminal device.
  • the terminal device can continue to maintain the correct reception of the control channel, and the reception of the control channel can be used to schedule the active state.
  • the reception of the data channel during the handover can avoid the problem of the handover unsmoothing caused by the inconsistent understanding of the activation state of the first carrier between the access network device and the terminal device.
  • the LTE system when the LTE system and the NR system are deployed on the first carrier, the LTE system may be scheduled based on a short transmission time interval TTI, and the NR system may be based on a minislot. Scheduling. Since the time granularity of scheduling in the two communication systems multiplexed with the first carrier affects the complexity of the monitoring control channel, on the one hand, in order to ensure that the LTE system and the NR system normally multiplex the first carrier, on the other hand, dynamics are needed.
  • the idle resources in the LTE system are scheduled to improve resource utilization, and the LTE-PDCCH is avoided in the first time slot, and the first symbol in the second time slot is used as the initial control symbol for receiving the NR-PDCCH. As shown in Figure 4-1, the #3 in the first slot starts receiving the NR-PDCCH, starting with the first symbol (#0) of the slot after the second slot and the second slot. Receive NR-PDCCH.
  • the terminal device may monitor the first control information at equal time interval intervals.
  • the terminal device may be configured to monitor the NR-PDCCH once every two symbols, and in one subframe, perform NR-PDCCH monitoring only on symbols whose symbol index is even.
  • the resource multiplexing of the short TTI scheduling in the NR system and the LTE system is considered, or the NR-PDSCH is prevented from occupying each part of the two LTE short TTIs, that is, the symbols occupied by one NR-PDSCH are in the time domain as much as possible.
  • Aligning with an LTE short TTI and making full use of the unused resources in the LTE system when the number of symbols dynamically indicated by the PCFICH can be further defined:
  • the first start symbol of the NR-PDSCH is earlier than the first start control symbol of its corresponding NR-PDCCH, for example, as shown in FIG. 4-2, one LTE short TTI occupies two symbols (including #7 and #8), at # 9 and #10 receive the NR-PDSCH, and receive the NR-PDSCH at #11 and #12. It can be seen that one NR-PDSCH occupies only 2 symbols in the time domain, and the number is equal to one LTE short TTI.
  • NR-PDDCH is monitored at #10, NR-PDDCH is monitored at #12, and NR-PDDCH is monitored for equal symbol intervals.
  • the terminal device schedules two symbols as one minislot, for example, a symbol with an index of 0 (hereinafter referred to as #0, other similarly) and #1, #1, and #, respectively. 2. #3 and #4 are scheduled for one minislot. And in the NR system, the terminal device monitors the NR-PDCCH with even symbols such as #0, #2, and #4. If #0 and #2 are occupied by the LTE system, the terminal device in the NR system can only start monitoring the NR-PDCCH at #4. If the access network device learns that the number of symbols of the PCFICH dynamic indication in the LTE system changes from 3 to 2, the terminal device in the NR system can start monitoring the NR-PDCCH at #2.
  • the data transmission and reception method in the embodiment of the present application is described above.
  • the following describes the terminal device and the access network device that perform the foregoing methods.
  • the terminal device 50 is described.
  • the terminal device 90 belongs to the NR system.
  • the terminal device 50 includes a processing module 501 and a transceiver module 502.
  • the processing module 501 is configured to control the transceiver operation of the transceiver module 502.
  • the receiving module 502 is configured to perform the method in the embodiment corresponding to FIG. 2: receiving, in a first time unit, first control information sent by an access network device on a first carrier, where the first control information is used by Instructing to receive a first start symbol of the first data channel;
  • the transceiver module 502 can receive the first control information dynamically sent by the access network device in the first time unit, and then receive the first start symbol according to the first start symbol indicated by the first control information.
  • a data channel Through this mechanism, in the process of listening to the channel, the terminal device may not be fixed in some subframes to listen to the control channel and receive the data channel, which can improve the flexibility of data reception.
  • the first start symbol is a first candidate symbol or a second candidate symbol
  • the first candidate symbol is ahead of a first start control of receiving the first control information in a time domain. a symbol that the second candidate symbol lags behind the first start control symbol in the time domain or is aligned with the first start control symbol in the time domain.
  • the transceiver module 502 is further configured to: before receiving the first control information on the first carrier,
  • frequency domain configuration information of the control channel corresponding to the first control information where the frequency domain configuration information includes information indicating a control frequency domain region of the control channel corresponding to the first control information.
  • the first candidate symbol is in the first time unit
  • the first start symbol lags behind the first symbol in the first time unit.
  • the first control information is further used to indicate receiving a first transmission duration of the first data channel, or indicating to receive an end symbol of the first data channel, where the end symbol is a symbol in the first time unit or a symbol in at least one time unit following the first time unit.
  • the transceiver module 502 is further configured to:
  • the second time unit satisfies one of the following:
  • the second time unit lags behind the first time unit, and belongs to the same time scheduling unit as the first time unit, where the time scheduling unit is a basic scheduling time unit in the LTE system;
  • the second time unit lags behind the first time unit and belongs to a different time scheduling unit from the first time unit.
  • the second start control symbol that receives the second control information and the first start control symbol that receives the first control information are independently configured by the access network device.
  • the second start symbol lags the second start control symbol in the time domain or is aligned with the second start control symbol in the time domain.
  • the first start symbol is in a time domain position of the first time unit and a time domain position of the second start symbol in the second time unit.
  • the transceiver module 502 is further configured to:
  • the first control information is received according to a resource configuration
  • the third control information is received according to another resource configuration.
  • the resource configuration includes receiving at least one of a first start control symbol, a subcarrier spacing, and rate matching information of the reference signal of the first control information, and the another resource configuration includes receiving the third control At least one of an initial control symbol of information, a subcarrier spacing, and rate matching information of a reference signal.
  • the resource configuration is unchanged when a state of the first carrier is switched between a first active state and a second activated state.
  • the another resource configuration is configured as a first candidate resource configuration or a second candidate resource configuration, where the first candidate resource configuration corresponds to the first activation state, and the second candidate resource configuration and the second activation The status corresponds.
  • the first activation state or the second activation state is sent to the terminal device by using medium access control MAC signaling or physical layer signaling.
  • the first control information includes first resource allocation information of the first data channel
  • the second control information includes second resource allocation information of the second data channel
  • the third control information includes third resource allocation information of the third data channel
  • the indication of the first resource allocation information is based on a first frequency domain range of the first carrier, and the indication of the second resource allocation information is based on a second frequency domain range of the first carrier, the third resource allocation The indication of the information is based on a third frequency domain range of the first carrier.
  • the first frequency domain range is different from the second frequency domain range, and/or the first frequency domain range is different from the third frequency domain range.
  • the first frequency domain range when the state of the first carrier is switched between a first active state and a second active state, the first frequency domain range is unchanged; the second frequency domain range is a first candidate frequency domain range or a second candidate frequency domain range, where the first candidate frequency domain range corresponds to the first activation state, and the second candidate frequency domain range corresponds to the second activation state.
  • the transceiver module 502 is specifically configured to:
  • the non-contiguous symbol in the time domain monitors the control channel corresponding to the first control information, for example, the control channel corresponding to the first control information may be monitored at equal time interval intervals.
  • the access network device 60 is described with reference to FIG. 6.
  • the access network device belongs to a new wireless NR system, and the access network device 60 can be used to schedule a terminal device in the NR system.
  • the access network device 60 includes a processing module 601 and a transceiver module 602, and the processing module 601 is configured to control the transceiver operation of the transceiver module.
  • the processing module 601 is configured to generate first control information.
  • the transceiver module 602 is configured to send the first control information generated by the processing module 601 to the terminal device on the first carrier in the first time unit, where the first control information is used to indicate that the terminal device is Receiving, by the first time unit or a time unit after the first time unit, the first data channel on the first carrier from a first start symbol;
  • the transceiver module 602 dynamically indicates to the terminal device in each time unit that the first start symbol of the first data channel is received, so that the terminal device can The control channel and the receive data channel may not be fixed in some subframes, which can improve the flexibility of data reception.
  • the access network device can dynamically perform resource scheduling on the terminal device, so that the terminal device can not be fixed in some subframes to listen to the control channel and receive the data channel, thereby improving the flexibility of data reception. .
  • the solution can also combine the mechanism for receiving data in a fixed subframe, and the access network device can schedule the terminal device according to the current resource allocation situation in real time and dynamically, and can also send signaling or data in a fixed subframe.
  • the idle subframes are scheduled to be used by the terminal device, thereby reducing the waiting time of the terminal device, and also improving resource utilization and resource scheduling flexibility, and further improving resources. Scheduling mechanism.
  • the first start symbol is a first candidate symbol or a second candidate symbol
  • the first candidate symbol is ahead of a first start control of receiving the first control information in a time domain. a symbol that the second candidate symbol lags behind the first start control symbol in the time domain or is aligned with the first start control symbol in the time domain.
  • the first candidate symbol is within the first time unit
  • the first start symbol lags behind the first symbol in the first time unit.
  • the first control information is further used to indicate receiving a first transmission duration of the first data channel, or indicating to receive an end symbol of the first data channel, where the end symbol is a symbol in the first time unit or a symbol in at least one time unit following the first time unit.
  • the transceiver module 602 is further configured to:
  • the second time unit satisfies one of the following:
  • the second time unit lags behind the first time unit, and belongs to the same time scheduling unit as the first time unit, where the time scheduling unit is a basic scheduling time unit in the LTE system;
  • the second time unit lags behind the first time unit and belongs to a different time scheduling unit from the first time unit.
  • the second start control symbol for transmitting the second control information and the first start control symbol for receiving the first control information are independently configured by the access network device.
  • the second start symbol lags the second start control symbol in the time domain or is aligned with the second start control symbol in the time domain.
  • the first start symbol is in a time domain position of the first time unit and a time domain position of the second start symbol in the second time unit.
  • the transceiver module 602 is further configured to:
  • the third start symbol begins to receive a third data channel on the first carrier.
  • the transceiver module 602 is further configured to: before the access network device sends the first control information to the terminal device on the first carrier,
  • a resource configuration that is used by the terminal device to receive the first control information, where the resource configuration includes a rate matching of a first start control symbol, a subcarrier spacing, and a reference signal of the terminal device receiving the first control information. At least one of the information.
  • the transceiver module 602 is further configured to: before the access network device sends the third control information to the terminal device on the first carrier,
  • the transceiver module 602 is further configured to:
  • the another candidate resource is configured as a first candidate resource configuration or a second candidate resource configuration, where the first candidate resource configuration corresponds to the first activation state, and the second candidate resource configuration corresponds to the second activation state .
  • the first control information includes first resource allocation information of the first data channel
  • the second control information includes second resource allocation information of the second data channel
  • the third control information includes third resource allocation information of the third data channel
  • the indication of the first resource allocation information is based on a first frequency domain range of the first carrier, and the indication of the second resource allocation information is based on a second frequency domain range of the first carrier, the third resource allocation The indication of the information is based on a third frequency domain range of the first carrier.
  • the first frequency domain range is different from the second frequency domain range, and/or the first frequency domain range is different from the third frequency domain range.
  • the transceiver module 602 is further configured to:
  • the first frequency domain range is unchanged;
  • the second frequency domain range is a first candidate frequency domain range or a second a candidate frequency domain range, where the first candidate frequency domain range corresponds to the first activation state, and the second candidate frequency domain range corresponds to the second activation state.
  • the first carrier the first start symbol, the first start control symbol, the data channel, the control channel, the first resource configuration, the second resource configuration, and the third resource configuration, the first frequency domain range
  • the first frequency domain range Definition of technical features such as the second frequency domain range, the third frequency domain range, the first activation state, the second activation state, the first resource allocation information, the second resource allocation information, the third resource allocation information, and the rate matching information of the reference signal
  • the communication device in the embodiment of the present application can perform the foregoing method embodiments (including the embodiments shown in FIG. 2 to FIG. 4-2). Any of the contents described herein will not be described here.
  • all the physical devices corresponding to the transceiver modules may be transceivers (including receivers and Transmitter), all physical devices corresponding to the processing module can be processors.
  • the apparatus shown in FIG. 5 or FIG. 6 may have a structure as shown in FIG. 7.
  • the processor and the transceiver in FIG. 7 implement the device implementation of the corresponding device.
  • the processing module and the transceiver module provided by the example have the same or similar functions, and the memory storage processor in FIG. 7 needs to call the program code when executing the above data transmission and reception method.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules is only a logical function division.
  • there may be another division manner for example, multiple modules or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or module, and may be electrical, mechanical or otherwise.
  • the modules described as separate components may or may not be physically separated.
  • the components displayed as modules may or may not be physical modules, that is, may be located in one place, or may be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional module in each embodiment of the embodiments of the present application may be integrated into one processing module, or each module may exist physically separately, or two or more modules may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules if implemented in the form of software functional modules and sold or used as separate products, may be stored in a computer readable storage medium.
  • the medium includes a number of instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory (English full name: Read-Only Memory, English abbreviation: ROM), a random access memory (English full name: Random Access Memory, English abbreviation: RAM), magnetic A variety of media that can store program code, such as a disc or a disc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据收发方法、设备、存储介质及程序产品,其中,数据接收方法应用于新无线NR系统中的终端设备,数据接收方法可包括:在第一时间单元内,终端设备在第一载波上接收接入网设备发送的第一控制信息,第一控制信息用于指示接收第一数据信道的第一起始符号;在第一时间单元或者第一时间单元之后的时间单元内,终端设备从第一起始符号开始在第一载波上接收第一数据信道。终端设备可以不固定在某些子帧监听控制信道和接收数据信道,能够提高数据接收的灵活性。

Description

一种数据收发方法、设备、存储介质及程序产品
本申请要求于2017年1月6日提交中国专利局、申请号为201710011327.2、发明名称为“一种数据收发方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种数据收发方法、设备、存储介质及程序产品。
背景技术
在新无线(英文全称:New Radio,英文简称:NR)系统中,基站和终端设备都预先约定监听信令和接收数据的子帧,终端设备只需要在约定的子帧去监听信令或者接收数据即可,后期不需要基站去向终端设备指示监听信令或接收数据的子帧。
但终端设备只能在固定的子帧进行收发操作,可能会出现有些子帧处于空闲,而终端设备只能继续等待且只能在配置的子帧去监听信令或收发数据,可见这些空闲的子帧属于资源浪费。而基站没有根据当前的资源分配进行动态调度,也未向终端设备实时的、动态的指示监听信令或接收数据的子帧。可见,目前的这种固定监听或接收机制并不完善。
发明内容
本申请提供了一种数据收发方法、设备、存储介质及程序产品,能够解决现有技术中终端设备只能在固定的子帧进行收发操作的问题。
第一方面提供一种数据接收方法,本方法中,所述方法可应用于新无线NR系统中的终端设备,该方法可包括:
在第一时间单元内,所述终端设备在第一载波上接收接入网设备发送的第一控制信息,所述第一控制信息用于指示接收第一数据信道的第一起始符号。该第一控制信息可承载于物理下行控制信道PDCCH,具体本申请中不对接收控制信道和接收控制信息进行区分。
在所述第一时间单元或者所述第一时间单元之后的时间单元内,所述终端设备从所述第一起始符号开始在所述第一载波上接收所述第一数据信道。其中第一数据信道可以是指该第一数据信道承载的数据,例如基站下发的下行数据,具体本申请中不对接收数据信道和接收数据进行区分。
与现有机制相比,本申请中,终端设备可以在第一时间单元内接收接入网设备动态下发的第一控制信息,然后根据第一控制信息指示的第一起始符号去接收第一数据信道。通过该机制,在监听信道过程中,接入网设备能够动态的对终端设备进行资源调度,使得终端设备可以不固定在某些子帧监听控制信道和接收数据信道,能够提高数据接收的灵活性。本方案还可结合在固定子帧接收数据的机制,接入网设备即可实时的、动态的根据当前的资源分配情况对终端设备进行调度,又可以在固定的子帧发送信令或数据的基础上,当确定某些子帧空闲时,将这些空闲的子帧调度给该终端设备使用,从而减少终端设备的等待时长,也能够提高资源的利用率和资源调度的灵活性,进一步完善资源调度机制。
在一些可能的设计中,通过这种动态的指示第一起始符号的调度机制,既能够将NR系统中其他终端设备释放的资源分配并指示给上述终端设备,以提高资源利用率;或者,还 能够将复用第一载波的LTE系统中空闲的资源分配并指示给上述终端设备,以提高资源复用率。
其中,第一时间单元可以为子帧、时隙、短时间间隔TTI等基本时域调度单位,也可以为NR系统中的微时隙或LTE系统中的短TTI,比如第一时间单元的长度为2或3个正交频分复用OFDM符号。以下本申请以时隙为例,比如一个时隙包括7个OFDM符号,可为NR系统中终端设备配置不同的子载波间隔,比如15千赫兹KHz的子载波间隔下的一个时隙为0.5毫秒ms,30KHz下的为0.25ms,LTE UE只能假设15KHz的子载波间隔。
第一载波是指服务于上述终端设备的小区或载波,在本申请中可不区分载波和小区,本申请中可以第一载波为服务于上述终端设备的载波为例。该第一载波的带宽可以为LTE系统所支持的载波带宽,以80兆赫兹MHz为例,其中的一个20MHz频率部分或两个20MHz的频率部分可以分别为支持LTE系统中终端设备的LTE带宽。
第一起始符号是指终端设备在时域上接收第一数据信道的起始时刻,例如接入网设备可通知终端设备在某个子帧的符号3开始监听控制信道或者接收数据信道,那么,终端设备便会在相应的符号监听或接收。
在一些可能的设计中,还可预先配置第一起始符号的选取规则,以便于终端设备能够正确监听信令和接收数据,根据应用场景主要可配置下述两种规则:
(1)、所述第一起始符号为第一候选符号,所述第一候选符号在时域上可提前于接收所述第一控制信息的第一起始控制符号。
可选的,该第一候选符号可在上述第一时间单元内,所述第一起始符号可滞后于所述第一时间单元中的第一个符号,终端设备可在第一时间单元接收第一控制信息和第一数据信道,在缓存完第一控制信息和第一数据信道中承载的数据后,通过解调得到正确的第一控制信息和数据,从而完成正确的接收。
(2)、所述第一起始符号为第二候选符号,所述第二候选符号在时域上可与第一起始控制符号对齐,或者第二候选符号在时域上可滞后于该第一起始控制符号。
在一些可能的设计中,在所述终端设备在所述第一载波上接收第一控制信息之前,所述终端设备还可以从接入网设备获取所述第一控制信息对应的控制信道的频域配置信息,所述频域配置信息可包括指示所述第一控制信息对应的控制信道的控制频域区域的信息。
在一些可能的设计中,所述第一控制信息还用于指示接收所述第一数据信道的第一传输时长,或者指示接收所述第一数据信道的结束符号,所述结束符号为所述第一时间单元内的符号或者所述第一时间单元之后的至少一个时间单元中的符号。通过单时隙或多时隙的调度,终端设备可参考第一时间单元的调度方式,在第一时间单元之外的其他时间单元内进行控制信息和数据信道的接收,实现对多个时间单元的动态调度。
在一些可能的设计中,NR系统可基于时域调度单元进行调度和接收,其中,所述时域调度单元包括至少两个时间单元,每个时间单元在时域上包括至少两个符号,符号的索引按照时域增序从小至大排列。本申请中,即可对多个时间单元进行统一调度,还可在不同的时间单元内进行独立的调度,以适应资源分配的动态变化或者适应第一载波的状态变化。具体来说,在对第一时间单元进行调度之后的第二时间单元内,所述终端设备还可在所述第一载波上接收所述接入网发送的第二控制信息,同理,所述第二控制信息用于指示接收 第二数据信道的第二起始符号。需要说明的是,本申请中的第一时间单元和第二时间单元可以是任意时间单元,二者可以在相同的时域调度单元内,也可以在不同的时域调度单元内。可选的,第一时间单元可以是第一个时间单元,第二时间单元可以是第一个时间单元之后的任一时间单元,例如为第二个时间单元。
在所述第二时间单元内,所述终端设备从所述第二起始符号开始在所述第一载波上接收所述第二数据信道。
通过单独配置每个时间单元的起始符号,能够实现独立的调度,且根据当前的资源分配情况,进行动态的调度和接收,有效提高资源的利用率和资源调度的灵活性。
在一些可能的设计中,所述第二时间单元满足以下项之一:
所述第二时间单元滞后于所述第一时间单元,且与所述第一时间单元同属一个时域调度单元,所述时域调度单元为LTE系统中的基本调度时间单位。
或者,所述第二时间单元滞后于所述第一时间单元,且与所述第一时间单元属于不同时域调度单元。
在一些可能的设计中,例如LTE系统与NR共用上述第一载波的场景下,由于LTE系统中的小区开启时,会占用第一时间单元的前n个符号为控制区域,该控制区域用于承载LTE PDCCH。为实现LTE系统和NR系统在第一载波共存的目的,在配置NR系统时,则需要规避LTE系统的信号或信道。在规避LTE系统时,接入网设备可根据当前LTE系统中在第一时间单元内的控制区域所占据的符号,将NR系统中的第一起始符号配置到第一时间单元内的某个符号,并避开LTE系统中的控制区域所占据的符号,终端设备只需要在指示的起始控制符号开始接收控制信道,以及在指示的第一起始符号开始接收数据信道。
在一些可能的设计中,由于LTE系统的同一个时域调度单元中,仅有第一时间单元有控制区域,后面的时间单元不存在控制区域,而在规避LTE系统的PDCCH时,NR系统在每个时间单元都从固定的符号开始接收控制信道和数据信道。考虑到资源复用的问题,还可结合接入网设备动态指示接收控制信道的起始控制符号和接收数据信道的起始符号的调度机制,下面主要分下述两方面分别进行说明:
一方面中,若LTE系统中配置了在第一个时隙中的控制区域占据前3个符号,那么,NR系统可以配置为从第4个符号开始接收控制信道,但在第二个时隙中,由于LTE系统并不存在控制区域,如果NR系统仍然配置为从第4个符号开始接收控制信道,那么,第二个时隙中的前3个符号未得到利用,从而造成资源浪费。
由此,考虑到资源利用率,可单独为NR系统中第一个时间单元之后的时间单元单独配置起始接收控制信道的信息。例如可单独为终端设备配置在第二时间单元中接收所述第二控制信息的第二起始控制符号,与接收所述第一控制信息的第一起始控制符号均由所述接入网设备独立配置。第二起始控制符号可以配置为所述第二时间单元中的第一个符号,这样,在第一时间单元内时,NR系统中的终端设备就能够利用LTE系统中未利用到的空闲资源,从而提高资源复用率。
另一方面中,LTE系统中,在某些时域调度单元中,PCFICH动态指示LTE系统的控制区域所占符号数为1时,如果NR-PDCCH和NR-PDSCH依然按照之前的时域调度单元的配置从第4个符号起始接收,那么会浪费第2个符号和第3个符号。那么,可由接入网设备动 态改变接收控制信息的起始控制符号,可将第二起始控制符号配置为所述第二时间单元中的第一个符号之外的符号,使得终端设备可以动态的改变接收控制信息的起始控制符号或者接收数据信道的起始符号。例如,在LTE系统与NR系统在第一载波共存时,接入网设备可根据LTE系统中PCFICH动态指示的符号个数动态调整NR系统中接收控制信道的起始控制符号,突破终端设备只能在固定的符号进行接收的限制,一定程度上也能提高资源利用率。
其中,在NR-PDCCH指示第一起始符号时,具体可以通过NR-PDCCH中的显示比特或状态,或者也可以通过NR-PDCCH所占的资源位置等参数来隐式的对应NR-PDSCH的起始符号。
在一些可能的设计中,与第一时间单元同理,也可配置如下规则:所述第二起始符号在时域上滞后于所述第二起始控制符号,或者在时域上与所述第二起始控制符号对齐。对于每个时域调度单元中的时间单元,该规则同样适用,不再赘述。
在一些可能的设计中,通过分别对不同的时间单元进行单独配置,所述第一起始符号在所述第一时间单元的时域位置,可与所述第二起始符号在所述第二时间单元的时域位置相同或不同。当LTE系统中PCFICH指示的符号个数动态变化时,或者部署在第一载波的LTE系统的小区的激活状态变化时,都可动态改变当前的时间单元的配置或者后续的时间单元的配置,动态改变配置后,终端设备在不同的时间单元接收第一数据信道的起始符号则会不同。
例如,在第一个时隙内,LTE系统中PCFICH指示LTE PDCCH的符号数为3时,对应的NR系统中配置NR PDCCH的起始控制符号为第4个符号;在第二个时隙内LTE系统中PCFICH指示LTE PDCCH的符号数为2时,对应的NR系统中配置NR PDCCH的起始控制符号可为第3个符号。由此可见,通过这种独立配置的调度方式,能够提高资源利用率,也能提高调度的灵活性。
在一些可能的设计中,即使在第一时间单元内配置了相应的第一起始符号和第一起始控制符号,但考虑到LTE系统和NR系统共同部署于上述第一载波的场景,可能会出现LTE系统中小区的激活状态变化的情况,而LTE系统中小区的激活状态变化会对NR系统中的终端设备的数据接收产生影响,例如,可能会出现第一载波而言,LTE系统中小区处于开启或关闭状态,而对于NR系统中的终端设备而言总是处于激活状态的情况。LTE小区的状态对NR系统中的终端设备的数据接收的影响主要分为下述两种场景:
场景一:如果处于LTE UE开启状态的NR UE的激活态,那么上述终端设备需要考虑规避LTE系统的信号或信道,还可以进一步考虑与LTE系统的资源复用问题。同理,可将场景一中描述的激活状态简称为第一激活状态。
场景二:如果LTE小区处于关闭状态且NR系统中终端设备处于激活状态,那么上述终端设备可以较为干净的使用该第一载波,比如NR-PDCCH不需要考虑规避LTE的控制区域和CRS等。为便于描述,可将场景二中描述的激活状态简称为第二激活状态。
在上述场景一和场景二中,第一载波上的资源分配会相应发生变化,为了保证更高的资源利用率。上述终端设备在切换其激活状态时,同样需要跟随激活状态的变化,相应的改变接收控制信道的起始控制符号和数据信道的起始符号。那么,在所述第一时间单元内,所述终端设备在所述第一载波上接收所述接入网设备发送的第三控制信息,所述第三控制 信息用于指示接收第三数据信道的第三起始符号。然后,所述终端设备从所述第三起始符号开始在所述第一载波上接收所述第三数据信道。
在一些可能的设计中,对应上述场景一和场景二,终端设备可通过接入网设备发送的媒体接入控制MAC信令或者物理层信令确定第一激活状态或第二激活状态,原因是考虑这个信令的生效时间至少要跟得上LTE载波开启和关闭的切换时间,而LTE的载波开启和关闭是通过MAC信令来实现的。针对不同的激活状态,终端设备接收控制信息的资源配置不同。具体来说,在第一时间单元内,第一控制信息根据资源配置接收,该资源配置可包括接收所述第一控制信息的第一起始控制符号、子载波间距和参考信号的速率匹配信息中的至少一种;第三控制信息可根据另一资源配置接收,所述另一资源配置可包括接收所述第三控制信息的起始控制符号、子载波间距和参考信号的速率匹配信息中的至少一种。
具体的,上述参考信号的速率匹配信息均对应于LTE系统中的参考信号的资源位置,比如LTE系统中的小区特定参考信号,信道状态信息测量参考信号等等。这里的速率匹配指的是,接入网设备发送NR的控制信道或数据信道时,需要在映射时频资源时绕开上述参考信号,而NR终端设备在接收上述控制信道或数据信道时相应的也需要绕开上述参考信号,这种绕开的操作称为为速率匹配和解速率匹配过程。
在上述MAC信令或这物理层信令生效期间即状态切换过程中,上述终端设备会根据相应的资源配置改变接收的控制信道的起始控制符号和接收数据信道的起始符号,为保持平滑的切换,还可设置如下规则:
规则一:在激活状态切换期间,保持当前使用的资源配置不变。
具体来说,当所述第一载波的状态在第一激活状态和第二激活状态之间切换时,终端设备可保持所述资源配置不变,即终端设备在激活状态的切换期间,仍然使用当前的资源配置进行控制信道和数据信道的接收,而不是在切换时,立即采用另一资源配置进行控制信道和数据信道的接收。
可选的,还可为前述另一资源配置为第一候选资源配置或第二候选资源配置,其中,所述第一候选资源配置与所述第一激活状态对应,所述第二候选资源配置与所述第二激活状态对应。
通过设置上述规则一,终端设备在从第一激活状态切换到第二激活状态时,可保持第一时间单元内的部分控制信道的接收方式不随着上述激活状态变化而变化,从而可以实现激活状态变化期间的平滑切换。
规则二:基于第一载波的频域范围指示资源分配信息保证平滑切换
在一些可能的设计中,所述第一控制信息还可包括所述第一数据信道的第一资源分配信息,所述第二控制信息可包括所述第二数据信道的第二资源分配信息,所述第三控制信息包括所述第三数据信道的第三资源分配信息。其中,所述第一资源分配信息的指示基于所述第一载波的第一频域范围,所述第二资源分配信息的指示基于所述第一载波的第二频域范围,所述第三资源分配信息的指示基于第一载波的第三频域范围。
其中,所述第一频域范围与所述第二频域范围不同,和/或,所述第一频域范围与所述第三频域范围不同。
当所述第一载波的状态在第一激活状态和第二激活状态之间切换时,所述第一频域范 围不变,即终端设备在激活状态切换期间,继续使用当前的第一频域范围,而不是在切换时,立即使用新的频域范围进行控制信道和数据信道的接收。其中,所述第二频域范围为第一候选频域范围或第二候选频域范围,所述第一候选频域范围与所述第一激活状态对应,所述第二候选频域范围与所述第二激活状态对应。
通过设置规则二,可保持上述MAC信令或物理层信令在生效期间内,终端设备不改变当前使用的频域范围,而是在上述MAC信令或物理层信令生效后,根据资源分配信息的指示改变使用的频域范围。使得终端设备在从第一激活状态切换到第二激活状态时,可保持第一时间单元内的部分控制信道的资源分配方式不随着上述激活状态变化而变化,从而可以实现激活状态变化期间的平滑切换。例如,总带宽为40兆M,原来分配给NR系统的带宽是40M,分配给LTE系统的是20M,当前LTE系统占用后20M时,NR系统只能用前20M,当在第一载波部署的LTE系统中小区关闭后,NR系统就可以使用该第一载波的全带宽(即40M)。但在LTE系统中小区关闭后,MAC信令通知到上述终端设备的过程中,上述终端设备仍然继续使用前20M,先不变化,待该MAC信令生效后,再使用全带宽40M。这样就能保证带宽变化期间的平滑切换。
在一些可能的设计中,本申请中,考虑到通过MAC信令或物理层信令向终端设备通知激活状态的变化时,可能会存在接入网设备已经将状态变化的信令下发给终端设备,而终端设备却未收到下发的信令,依然继续保持当前的调度方式和接收方式,导致接入网设备与终端设备之间的对第一载波的激活状态理解不一致。为解决该问题,上述规则一中,通过在激活状态切换期间保持当前采用的资源配置不变,可以继续保持终端设备对控制信道的正确接收,而对控制信道的接收能够用来调度在激活状态切换期间对数据信道的接收,从而可以避免由于接入网设备与终端设备之间的对第一载波的激活状态理解不一致而导致的切换不平滑问题。
在一些可能的设计中,当在上述第一载波上部署LTE系统和NR系统时,所述LTE系统可基于短传输时间间隔TTI调度,所述NR系统可基于微时隙调度。由于复用第一载波的上述两个通信系统中调度的时间粒度会影响监测控制信道的复杂度,一方面为了保证LTE系统和NR系统正常的复用第一载波,另一方面,还需要动态的调度LTE系统中空闲的资源以提高资源的利用率。那么,在LTE系统基于TTI调度,NR系统基于微时隙调度时,为了降低NR系统中终端设备的监测控制信道的复杂度,所述终端设备可以以等时域间隔监测所述第一控制信息对应的控制信道。例如,可以设定上述终端设备每隔2个符号监测一次NR-PDCCH,在一个子帧中,只在符号索引为偶数的符号进行NR-PDCCH的监测。
本申请中,考虑到NR系统与LTE系统中短TTI调度的资源复用,或者说避免一个NR-PDSCH占用两个LTE短TTI的各一部分,即使得一个NR-PDSCH占用的符号尽量在时域上与一个LTE短TTI对齐,以及充分利用PCFICH动态指示的符号个数变化时LTE系统中未利用的资源,还可以进一步定义:NR-PDSCH的第一起始符号早于其对应的NR-PDCCH的第一起始控制符号。
举例来说,定义NR系统中,终端设备以两个符号为一个微时隙进行调度,例如分别以索引为0的符号(以下简称为#0,其他同理)和#1、#1和#2、#3和#4等为一个微时隙进行调度。并定义NR系统中,终端设备在#0、#2、#4等偶数符号对NR-PDCCH进行监测。若#0和#2被LTE系统占用,那么NR系统中的该终端设备则只能在#4开始监测NR-PDCCH。若 接入网设备获知LTE系统中PCFICH动态指示的符号个数从3变化2,那么,上述NR系统中的终端设备则可在#2开始监测NR-PDCCH。这样能够充分的利用LTE系统中未利用到的资源,也能够达到高效的资源复用。由此可见,通过动态的指示上述第一起始符号以及等间隔的监测控制信道,能够同时做到NR系统与LTE系统的正常子帧调度以及短TTI调度的灵活资源复用。
第二方面提供一种数据发送方法,本方法中,所述方法可应用于调度新无线NR系统中的终端设备的接入网设备,该方法可包括:
在第一时间单元内,所述接入网设备在第一载波上向终端设备发送第一控制信息,所述第一控制信息用于指示所述终端设备在所述第一时间单元或者所述第一时间单元之后的时间单元内,从第一起始符号开始在所述第一载波上接收所述第一数据信道。
之后,在所述第一时间单元内,所述接入网设备从所述第一起始符号开始在所述第一载波上发送所述第一数据信道。
与现有机制相比,本申请中,接入网设备在每个时间单元内动态向终端设备指示接收第一数据信道的第一起始符号,使得终端设备能够可以不固定在某些子帧监听控制信道和接收数据信道,能够提高数据接收的灵活性。通过该机制,在监听信道过程中,接入网设备能够动态的对终端设备进行资源调度,使得终端设备可以不固定在某些子帧监听控制信道和接收数据信道,能够提高数据接收的灵活性。本方案还可结合在固定子帧接收数据的机制,接入网设备即可实时的、动态的根据当前的资源分配情况对终端设备进行调度,又可以在固定的子帧发送信令或数据的基础上,当确定某些子帧空闲时,将这些空闲的子帧调度给该终端设备使用,从而减少终端设备的等待时长,也能够提高资源的利用率和资源调度的灵活性,进一步完善资源调度机制。
在一些可能的设计中,所述第一起始符号为第一候选符号或第二候选符号,所述第一候选符号在时域上提前于接收所述第一控制信息的第一起始控制符号,所述第二候选符号在时域上滞后于所述第一起始控制符号,或者在时域上与所述第一起始控制符号对齐。
可选的,所述第一候选符号在所述第一时间单元内;
所述第一起始符号滞后于所述第一时间单元中的第一个符号。
在一些可能的设计中,所述第一控制信息还用于指示接收所述第一数据信道的第一传输时长,或者指示接收所述第一数据信道的结束符号,所述结束符号为所述第一时间单元内的符号,以实现单个时间单元的调度;或者所述结束符号还可以是所述第一时间单元之后的至少一个时间单元中的符号,以实现多时间单元的调度。
在一些可能的设计中,接入网设备还可单独对每个时间单元进行调度,具体来说,在第二时间单元内,所述接入网设备在所述第一载波上向所述终端设备发送第二控制信息,所述第二控制信息用于指示所述终端设备在所述第二时间单元内,从第二起始符号开始在所述第一载波上接收第二数据信道。
由此可见,通过单独配置每个时间单元的起始符号,能够实现独立的调度,且根据当前的资源分配情况,进行动态的调度和接收,有效提高资源的利用率和资源调度的灵活性。
在一些可能的设计中,所述第二时间单元满足以下项之一:
所述第二时间单元滞后于所述第一时间单元,且与所述第一时间单元同属一个时间调度单元,所述时间调度单元为LTE系统中的基本调度时间单位;
或者,所述第二时间单元滞后于所述第一时间单元,且与所述第一时间单元属于不同时间调度单元。
在一些可能的设计中,由于LTE系统的同一个时域调度单元中,仅有第一时间单元有控制区域,后面的时间单元不存在控制区域,而在规避LTE系统的PDCCH时,NR系统在每个时间单元都从固定的符号开始接收控制信道和数据信道。考虑到资源复用的问题,还可结合接入网设备动态指示接收控制信道的起始控制符号和接收数据信道的起始符号的调度机制,可单独为NR系统中第一个时间单元之后的时间单元单独配置起始接收控制信道的信息。接入网设备可分别为终端设备配置接收所述第一控制信息的第一起始控制符号,以及为终端设备配置接收所述第二控制信息的第二起始控制符号,可见,第一起始控制符号和第二起始控制符号由所述接入网设备独立配置。对于接入网设备,发送所述第二控制信息的第二起始控制符号可以为所述第二时间单元中的第一个符号。
在一些可能的设计中,与第一时间单元同理,接入网设备可配置:所述第二起始符号在时域上滞后于所述第二起始控制符号,或者在时域上与所述第二起始控制符号对齐。
在一些可能的设计中,由于接入网设备分别对不同的时间单元进行单独配置,在LTE系统中PCFICH指示的符号个数动态变化时,或者部署在第一载波的LTE系统的小区的激活状态变化时,都可动态改变当前的时间单元的配置或者后续的时间单元的配置,动态改变配置后,终端设备在不同的时间单元接收第一数据信道的起始符号则会不同。换句话说,所述第一起始符号在所述第一时间单元的时域位置,与所述第二起始符号在所述第二时间单元的时域位置不同。通过这种独立配置的调度方式,能够提高资源利用率,也能提高调度的灵活性。
在一些可能的设计中,TE系统和NR系统共同部署于上述第一载波的场景,可能会出现LTE系统中小区的激活状态变化的情况,而LTE系统中小区的激活状态变化会对NR系统中的终端设备的数据接收产生影响,例如,可能会出现第一载波而言,LTE系统中小区处于开启或关闭状态,而对于NR系统中的终端设备而言总是处于激活状态的情况。LTE小区的状态对NR系统中的终端设备的数据接收的影响主要分为场景一和场景二,场景一和场景二的说明可以参考前述部分第一方面中的描述,此处不再赘述。
在上述场景一和场景二中,第一载波上的资源分配发生变化时,为了保证更高的资源利用率。接入网设备可通过媒体接入控制MAC信令或者物理层信令向终端设备通知第一载波的激活状态变化。之后,接入网设备还可在所述第一时间单元内,在所述第一载波上向所述终端设备发送第三控制信息,所述第三控制信息用于指示所述终端设备在所述第一时间单元内,从第三起始符号开始在所述第一载波上接收第三数据信道。
为减弱上述终端设备在切换其激活状态时,过快的改变接收控制信道的起始控制符号和数据信道的起始符号导致的切换不平滑问题,接入网设备与终端设备同样可设置第一方面所描述的规则一和规则二。
在一些可能的设计中,在所述接入网设备在第一载波上向终端设备发送第一控制信息之前,所述接入网设备将用于所述终端设备接收所述第一控制信息的资源配置,所述资源 配置包括所述终端设备接收所述第一控制信息的第一起始控制符号、子载波间距和参考信号的速率匹配信息中的至少一种。
在所述接入网设备在第一载波上向终端设备发送第三控制信息之前,所述接入网设备将用于所述终端设备接收所述第三控制信息的另一资源配置发送给所述终端设备,所述另一资源配置包括所述终端设备接收所述第三控制信息的起始控制符号、子载波间距和参考信号的速率匹配信息中的至少一种。
由第一方面描述的规则一可知,当所述第一载波的状态在所述第一激活状态和所述第二激活状态之间切换时,所述资源配置不变。
所述另一资源配置为第一候选资源配置或第二候选资源配置,所述第一候选资源配置与所述第一激活状态对应,所述第二候选资源配置与所述第二激活状态对应。可见,通过规则一,终端设备在从第一激活状态切换到第二激活状态时,可保持第一时间单元内的部分控制信道的接收方式不随着上述激活状态变化而变化,从而可以实现激活状态变化期间的平滑切换。
在一些可能的设计中,所述第一控制信息包括所述第一数据信道的第一资源分配信息,所述第二控制信息包括所述第二数据信道的第二资源分配信息,所述第三控制信息包括所述第三数据信道的第三资源分配信息。
所述第一资源分配信息的指示基于所述第一载波的第一频域范围,所述第二资源分配信息的指示基于所述第一载波的第二频域范围,所述第三资源分配信息的指示基于第一载波的第三频域范围。
可选的,所述第一频域范围与所述第二频域范围不同,和/或,所述第一频域范围与所述第三频域范围不同。
由第一方面描述的规则二可知,当所述第一载波的状态在第一激活状态和第二激活状态之间切换时,所述第一频域范围不变;所述第二频域范围为第一候选频域范围或第二候选频域范围,所述第一候选频域范围与所述第一激活状态对应,所述第二候选频域范围与所述第二激活状态对应。可见,通过规则二,终端设备在从第一激活状态切换到第二激活状态时,可保持第一时间单元内的部分控制信道的资源分配方式不随着上述激活状态变化而变化,从而可以实现激活状态变化期间的平滑切换。
本申请第三方面提供一种终端设备,具有实现对应于上述第一方面提供的数据接收方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块,所述模块可以是软件和/或硬件。
一种可能的设计中,终端设备属于新无线NR系统,所述终端设备包括处理模块和收发模块,所述处理模块用于控制所述收发模块的收发操作。
所述接收模块,用于在第一时间单元内,在第一载波上接收接入网设备发送的第一控制信息,所述第一控制信息用于指示接收第一数据信道的第一起始符号;
以及在所述第一时间单元或者所述第一时间单元之后的时间单元内,从所述第一起始符号开始在所述第一载波上接收所述第一数据信道。
在一些可能的设计中,所述第一起始符号为第一候选符号或第二候选符号,所述第一 候选符号在时域上提前于接收所述第一控制信息的第一起始控制符号,所述第二候选符号在时域上滞后于所述第一起始控制符号,或者在时域上与所述第一起始控制符号对齐。
所述收发模块在所述第一载波上接收第一控制信息之前,还用于:
获取所述第一控制信息对应的控制信道的频域配置信息,所述频域配置信息包括指示所述第一控制信息对应的控制信道的控制频域区域的信息。
所述第一候选符号在所述第一时间单元内;
所述第一起始符号滞后于所述第一时间单元中的第一个符号。
在一些可能的设计中,所述第一控制信息还用于指示接收所述第一数据信道的第一传输时长,或者指示接收所述第一数据信道的结束符号,所述结束符号为所述第一时间单元内的符号或者所述第一时间单元之后的至少一个时间单元中的符号。
在一些可能的设计中,所述收发模块还用于:
在第二时间单元内,在所述第一载波上接收所述接入网发送的第二控制信息,所述第二控制信息用于指示接收第二数据信道的第二起始符号;
在所述第二时间单元内,从所述第二起始符号开始在所述第一载波上接收所述第二数据信道。
在一些可能的设计中,所述第二时间单元满足以下项之一:
所述第二时间单元滞后于所述第一时间单元,且与所述第一时间单元同属一个时间调度单元,所述时间调度单元为LTE系统中的基本调度时间单位;
或者,所述第二时间单元滞后于所述第一时间单元,且与所述第一时间单元属于不同时间调度单元。
在一些可能的设计中,接收所述第二控制信息的第二起始控制符号与接收所述第一控制信息的第一起始控制符号均由所述接入网设备独立配置。
在一些可能的设计中,所述第二起始符号在时域上滞后于所述第二起始控制符号,或者在时域上与所述第二起始控制符号对齐。
在一些可能的设计中,所述第一起始符号在所述第一时间单元的时域位置,与所述第二起始符号在所述第二时间单元的时域位置不同。
在一些可能的设计中,所述收发模块还用于:
在所述第一时间单元内,在所述第一载波上接收所述接入网设备发送的第三控制信息,所述第三控制信息用于指示接收第三数据信道的第三起始符号,以及从所述第三起始符号开始在所述第一载波上接收所述第三数据信道。
在一些可能的设计中,所述第一控制信息根据资源配置接收,所述第三控制信息根据另一资源配置接收。
其中,所述资源配置包括接收所述第一控制信息的第一起始控制符号、子载波间距和参考信号的速率匹配信息中的至少一种;所述另一资源配置包括接收所述第三控制信息的起始控制符号、子载波间距和参考信号的速率匹配信息中的至少一种。
在一些可能的设计中,当所述第一载波的状态在第一激活状态和第二激活状态之间切换时,所述资源配置不变。
其中,所述另一资源配置为第一候选资源配置或第二候选资源配置,所述第一候选资 源配置与所述第一激活状态对应,所述第二候选资源配置与所述第二激活状态对应。
在一些可能的设计中,所述第一激活状态或所述第二激活状态通过媒体接入控制MAC信令或者物理层信令发送给所述终端设备。
在一些可能的设计中,所述第一控制信息包括所述第一数据信道的第一资源分配信息,所述第二控制信息包括所述第二数据信道的第二资源分配信息,所述第三控制信息包括所述第三数据信道的第三资源分配信息。
所述第一资源分配信息的指示基于所述第一载波的第一频域范围,所述第二资源分配信息的指示基于所述第一载波的第二频域范围,所述第三资源分配信息的指示基于第一载波的第三频域范围。
可选的,所述第一频域范围与所述第二频域范围不同,和/或,所述第一频域范围与所述第三频域范围不同。
在一些可能的设计中,当所述第一载波的状态在第一激活状态和第二激活状态之间切换时,所述第一频域范围不变;所述第二频域范围为第一候选频域范围或第二候选频域范围,所述第一候选频域范围与所述第一激活状态对应,所述第二候选频域范围与所述第二激活状态对应。
在一些可能的设计中,所述NR系统基于微时隙调度时,所述收发模块具体用于:
在时域上非连续的符号监测所述第一控制信息对应的控制信道,例如,可以以等时域间隔监测所述第一控制信息对应的控制信道。
一种可能的设计中,所述终端设备包括:
至少一个处理器、收发器和存储器;
其中,所述存储器用于存储程序代码,所述处理器用于调用所述存储器中的程序代码来执行第一方面所述的技术方案。
本申请第四方面提供一种接入网设备,具有实现对应于上述第二方面提供的数据发送方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块,所述模块可以是软件和/或硬件。
一种可能的设计中,接入网设备属于新无线NR系统,所述接入网设备可用于调度NR系统中的终端设备。所述接入网设备包括处理模块和收发模块,所述处理模块用于控制所述收发模块的收发操作。
所述处理模块,用于生成第一控制信息;
所述收发模块,用于在第一时间单元内,在第一载波上向终端设备发送所述处理模块生成的第一控制信息,所述第一控制信息用于指示所述终端设备在所述第一时间单元或者所述第一时间单元之后的时间单元内,从第一起始符号开始在所述第一载波上接收所述第一数据信道;
以及在所述第一时间单元内,从所述第一起始符号开始在所述第一载波上发送所述第一数据信道。
一些可能的设计中,所述第一起始符号为第一候选符号或第二候选符号,所述第一候选符号在时域上提前于接收所述第一控制信息的第一起始控制符号,所述第二候选符号在时域上滞后于所述第一起始控制符号,或者在时域上与所述第一起始控制符号对齐。
一些可能的设计中,所述第一候选符号在所述第一时间单元内;
所述第一起始符号滞后于所述第一时间单元中的第一个符号。
一些可能的设计中,所述第一控制信息还用于指示接收所述第一数据信道的第一传输时长,或者指示接收所述第一数据信道的结束符号,所述结束符号为所述第一时间单元内的符号或者所述第一时间单元之后的至少一个时间单元中的符号。
一些可能的设计中,所述收发模块还用于:
在第二时间单元内,在所述第一载波上向所述终端设备发送第二控制信息,所述第二控制信息用于指示所述终端设备在所述第二时间单元内,从第二起始符号开始在所述第一载波上接收第二数据信道。
一些可能的设计中,所述第二时间单元满足以下项之一:
所述第二时间单元滞后于所述第一时间单元,且与所述第一时间单元同属一个时间调度单元,所述时间调度单元为LTE系统中的基本调度时间单位;
或者,所述第二时间单元滞后于所述第一时间单元,且与所述第一时间单元属于不同时间调度单元。
一些可能的设计中,发送所述第二控制信息的第二起始控制符号与接收所述第一控制信息的第一起始控制符号均由所述接入网设备独立配置。
一些可能的设计中,所述第二起始符号在时域上滞后于所述第二起始控制符号,或者在时域上与所述第二起始控制符号对齐。
一些可能的设计中,所述第一起始符号在所述第一时间单元的时域位置,与所述第二起始符号在所述第二时间单元的时域位置不同。
一些可能的设计中,所述收发模块还用于:
在所述第一时间单元内,在所述第一载波上向所述终端设备发送第三控制信息,所述第三控制信息用于指示所述终端设备在所述第一时间单元内,从第三起始符号开始在所述第一载波上接收第三数据信道。
一些可能的设计中,所述收发模块在所述接入网设备在第一载波上向终端设备发送第一控制信息之前,还用于:
将用于所述终端设备接收所述第一控制信息的资源配置,所述资源配置包括所述终端设备接收所述第一控制信息的第一起始控制符号、子载波间距和参考信号的速率匹配信息中的至少一种。
一些可能的设计中,所述收发模块在所述接入网设备在第一载波上向终端设备发送第三控制信息之前,还用于:
将用于所述终端设备接收所述第三控制信息的另一资源配置发送给所述终端设备,所述另一资源配置包括所述终端设备接收所述第三控制信息的起始控制符号、子载波间距和参考信号的速率匹配信息中的至少一种。
一些可能的设计中,所述收发模块还用于:
在所述第一时间单元内,通过媒体接入控制MAC信令或者物理层信令向所述终端设备通知第一激活状态或第二激活状态;
当所述第一载波的状态在所述第一激活状态和所述第二激活状态之间切换时,所述资 源配置不变;
所述另一资源配置为第一候选资源配置或第二候选资源配置,所述第一候选资源配置与所述第一激活状态对应,所述第二候选资源配置与所述第二激活状态对应。
一些可能的设计中,所述第一控制信息包括所述第一数据信道的第一资源分配信息,所述第二控制信息包括所述第二数据信道的第二资源分配信息,所述第三控制信息包括所述第三数据信道的第三资源分配信息;
所述第一资源分配信息的指示基于所述第一载波的第一频域范围,所述第二资源分配信息的指示基于所述第一载波的第二频域范围,所述第三资源分配信息的指示基于第一载波的第三频域范围。
一些可能的设计中,所述第一频域范围与所述第二频域范围不同,和/或,所述第一频域范围与所述第三频域范围不同。
一些可能的设计中,当所述第一载波的状态在第一激活状态和第二激活状态之间切换时,所述第一频域范围不变;所述第二频域范围为第一候选频域范围或第二候选频域范围,所述第一候选频域范围与所述第一激活状态对应,所述第二候选频域范围与所述第二激活状态对应。
一种可能的设计中,所述接入网设备包括:
至少一个处理器、收发器和存储器;
其中,所述存储器用于存储程序代码,所述处理器用于调用所述存储器中的程序代码来执行第二方面所述的技术方案。
本申请又一方面提供了一种计算机可读存储介质,其包含指令,当其在计算机上运行时,使得计算机执行上述各方面中所述的方法。
本申请又一方面提供一种计算机存储介质,其包括指令,当其在计算机上运行时,使得计算机执行上述各方面中由终端设备所执行的操作,或者执行上述各方面中由接入网设备所执行的操作。
本申请又一方面提供一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面中由终端设备所执行的操作,或者执行由接入网设备所执行的操作。
相较于现有技术,本申请提供的方案中,接入网设备在每个时间单元内动态向终端设备指示接收第一数据信道的第一起始符号,使得终端设备能够可以不固定在某些子帧监听控制信道和接收数据信道,能够提高数据接收的灵活性。
附图说明
图1-1为本申请实施例中时隙的一种结构示意图;
图1-2为本申请实施例中时间单元的一种结构示意图;
图2为本申请实施例中数据收发方法的一种流程示意图;
图3为本申请实施例中NR系统与LTE系统共存于第一载波时,各时间单元的一种结构示意图;
图4-1为本申请实施例中NR系统与LTE系统共存于第一载波时,各时间单元的另一种结构示意图;
图4-2为本申请实施例中NR系统与LTE系统共存于第一载波时,各时间单元的另一种结构示意图;
图5为本申请实施例中终端设备的一种结构示意图;
图6为本申请实施例中接入网设备的一种结构示意图;
图7为本申请实施例中执行数据收发方法的实体装置的一种结构示意图。
具体实施方式
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块,本文中所出现的模块的划分,仅仅是一种逻辑上的划分,实际应用中实现时可以有另外的划分方式,例如多个模块可以结合成或集成在另一个系统中,或一些特征可以忽略,或不执行,另外,所显示的或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,模块之间的间接耦合或通信连接可以是电性或其他类似的形式,本文中均不作限定。并且,作为分离部件说明的模块或子模块可以是也可以不是物理上的分离,可以是也可以不是物理模块,或者可以分布到多个电路模块中,可以根据实际的需要选择其中的部分或全部模块来实现本申请实施例方案的目的。
本申请提供了一种数据收发方法、设备、存储介质及程序产品,可用于NR系统,也可用于NR系统与LTE系统共同部署与相同载波的场景。
本申请中的时域调度单元用于表示调度时域资源的单位,一个时域调度单元包括至少两个时间单元(例如本申请中所述的第一时间单元和第二时间单元),每个时间单元在时域上包括至少两个符号,符号的索引按照时域增序从小至大排列。时间单元可以子帧、时隙、微时隙、短时间间隔(英文全称:Transmission Time Interval,英文简称:TTI)等其他时间单元。图1-1为一个时隙的结构示意图,图1-1中每个方框表示时域上的一个正交频分复用(英文全称:Orthogonal Frequency Division Multiplexing,英文简称:OFDM)符号,0标识其符号索引,可将索引为0的符号简称为#0,其他符号同理。
如图1-2所示,一个时域调度单元在时域上可包括控制区域和数据区域,控制区域可用于承载物理下行控制信道(英文全称:Physical Downlink Control Channel,英文简称:PDCCH)的配置信息,控制区域占据时间单元的前n个OFDM符号,n为正整数。PDCCH可传输控制信息,控制信息可用于调度数据信道中传输块的调度信息。
数据信道包括物理下行共享信道(英文全称:Physical Downlink Shared Channel,英文简称:PDSCH)和物理上行共享信道(英文全称:Physical Uplink Shared Channel,英文简称:PDSCH),该调度信息可包括用于指示PDSCH和PUSCH相关的格式、资源分配信息、混合自动重传信息(英文全称:Hybrid Automatic Repeat reQuest,英文简称:HARQ)、其位于时间单元的前n个OFDM符号以及调制编码方式等信息。
数据区域可用于承载PDSCH或PUSCH,终端设备可在对应的时间单元监测控制信道,然 后根据控制信息进行数据信道中数据的收发。
每个时间单元在时域上都是由符号组成,具体的每个时间单元所包含的符号个数划分本发明不作限定。控制区域和数据区域所包括的最大符号个数与时间单元在时域上的划分结构相关,具体针对于一个时间单元、时间单元中的控制区域和数据区域在时域上的划分,本申请不作限定。
为解决上述技术问题,本申请中提供以下技术方案:
接入网设备在每个时间单元内动态向终端设备指示接收第一数据信道的第一起始符号,使得终端设备能够可以不固定在某些子帧监听控制信道和接收数据信道,能够提高数据接收的灵活性。
在LTE系统与NR系统共存于第一载波时,接入网设备还可根据LTE系统中控制区域来动态指示NR系统中的终端设备接收控制信道和数据信道的起始符号,即可达到两个系统共存于第一载波时,二者的终端设备在资源分配上不冲突,不影响各自系统的性能。还可以根据LTE系统中控制区域的符号个数的动态变化,或者第一载波的激活状态变化等,动态向终端设备指示接收控制信道和数据信道的起始符号。
由此可见,通过以上技术方案,能够灵活的向终端设备指示接收控制信道和数据信道的起始符号,还能提高资源的利用率以及资源复用率。
需要说明的是,本申请涉及的接入网设备为一种将终端设备接入到无线网络的设备,又称之为基站,包括但不限于:演进型节点B(英文全称:evolved Node Base,英文简称:eNB)、无线网络控制器(英文全称:Radio Network Controller,英文简称:RNC)、节点B(英文全称:Node B,英文简称:NB)、基站控制器(英文全称:Base Station Controller,英文简称:BSC)、基站收发台(英文全称:Base Transceiver Station,英文简称:BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,英文简称:HNB)、基带单元(英文全称:BaseBand Unit,英文简称:BBU)。
本申请涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。终端设备可以经无线接入网(英文全称:Radio Access Network,英文简称:RAN)与一个或多个核心网进行通信,终端设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(英文全称:Personal Communication Service,英文简称:PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(Wireless Local Loop,英文简称:WLL)站、个人数字助理(英文全称:Personal Digital Assistant,英文简称:PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、终端设备、用户代理(User Agent)、用户设备(User Device)、或用户装备(User Equipment)。
下面针对本申请实施例中的数据收发方法(包括数据发送方法和数据接收方法)进行举例说明,所述方法可应用于新无线NR系统中的终端设备,还可应用于与LTE系统部署在 相同的第一载波上的NR系统中的终端设备。NR系统可基于时域调度单元进行调度和接收。本申请实施例中以一个时间单元为例进行举例,其他的时间单元均可参考本申请实施例中所配置的调度方式,例如针对第一个子帧中的控制区域或数据区域进行起始符号的配置,其他子帧的接收控制区域和数据区域的起始符号的配置即可完全复制第一个子帧的定义,从而实现多子帧的调度。当然,其他子帧也可单独配置控制区域和数据区域各自的起始符号,实现子帧间的独立调度和动态调度。参考图2,本申请实施例包括:
201、接入网设备在第一时间单元内向终端设备发送第一控制信息。
接入网设备可先确定第一载波上空闲的资源,然后生成相应的第一控制信息,然后承载于第一控制信道发送给终端设备。该第一控制信息可用于指示接收第一数据信道的第一起始符号。该第一控制信息承载于新无线物理下行控制信道(英文全称:New Radio-Physical Downlink Control Channel,英文简称:NR-PDCCH)。本申请中不对接收控制信道和接收控制信息进行区分。
其中,第一时间单元可以为子帧、时隙、短TTI等基本时域调度单位,也可以为NR系统中的微时隙或LTE系统中的短TTI。比如第一时间单元的长度为2或3个正交频分复用OFDM符号。本申请实施例中以时隙为例,比如一个时隙包括7个OFDM符号,可为NR系统中终端设备配置不同的子载波间隔,比如15千赫兹(英文全称:KiloHertz,英文简称:KHz)的子载波间隔下的一个时隙为0.5毫秒(英文全称:millisecond,英文简称:ms),30KHz下的为0.25ms,LTE UE只能假设15KHz的子载波间隔。
第一载波是指服务于上述终端设备的小区或载波,在本申请中可不区分载波和小区,本申请中可以第一载波为服务于上述终端设备的载波为例。该第一载波上既可以部署NR系统,还可部署LTE系统。该第一载波的带宽可以为LTE系统所支持的载波带宽,比如1.4兆赫兹(英文全称:MegaHertz,英文简称:MHz)、3MHz、5MHz、10MHz、15MHz、或20MHz等;也可以为大于20MHz的NR载波,比如40MHz甚至80MHz,以80MHz为例,其中的一个20MHz频率部分或两个20MHz的频率部分可以分别为支持LTE系统中终端设备的LTE带宽。
第一起始符号是指终端设备在时域上接收第一数据信道的起始时刻。例如接入网设备可通知终端设备在某个子帧的符号3开始监听控制信道或者接收数据信道,那么,终端设备便会在相应的符号监听或接收。
202、在第一时间单元内,所述终端设备在第一载波上接收接入网设备发送的第一控制信息。
203、在所述第一时间单元或者所述第一时间单元之后的时间单元内,所述接入网设备从所述第一起始符号开始在所述第一载波上发送所述第一数据信道。
204、在所述第一时间单元或者所述第一时间单元之后的时间单元内,所述终端设备从所述第一起始符号开始在所述第一载波上接收所述第一数据信道。
其中第一数据信道是指该第一数据信道承载的数据,例如基站下发的下行数据,本申请中不对接收数据信道和接收数据进行区分。
可选的,在本申请的一些实施例中,上述步骤201中发送的第一控制信息还用于指示接收所述第一数据信道的第一传输时长,或者指示接收所述第一数据信道的结束符号,所述结束符号为所述第一时间单元内的符号,以实现单时隙的调度,或者所述第一时间单元 之后的至少一个时间单元中的符号,以实现多时隙的调度。终端设备可参考第一时间单元的调度方式,在第一时间单元之外的其他时间单元内进行控制信息和数据信道的接收,实现对多个时间单元的动态调度。
与现有机制相比,本申请实施例中,接入网设备根据当前的资源分配情况生成上述第一控制信息,然后在第一时间单位内下发给终端设备。之后终端设备可以在第一时间单元内接收接入网设备动态下发的第一控制信息,然后根据第一控制信息指示的第一起始符号去接收第一数据信道。通过该机制,在监听信道过程中,接入网设备能够动态的对终端设备进行资源调度,使得终端设备可以不固定在某些子帧监听控制信道和接收数据信道,能够提高数据接收的灵活性。本方案还可结合在固定子帧接收数据的机制,接入网设备即可实时的、动态的根据当前的资源分配情况对终端设备进行调度,又可以在固定的子帧发送信令或数据的基础上,当确定某些子帧空闲时,将这些空闲的子帧调度给该终端设备使用,从而减少终端设备的等待时长,也能够提高资源的利用率和资源调度的灵活性,进一步完善资源调度机制。
由以上技术方案可知,通过这种动态的指示第一起始符号的调度机制,既能够将NR系统中其他终端设备释放的资源分配并指示给上述终端设备,以提高资源利用率;或者,还能够将复用第一载波的LTE系统中空闲的资源分配并指示给上述终端设备,以提高资源复用率。
可选的,在本申请的一些实施例中,还可预先配置第一起始符号的选取规则,以便于终端设备能够正确监听信令和接收数据,根据应用场景主要可配置下述两种规则:
(1)、所述第一起始符号为第一候选符号,所述第一候选符号在时域上可提前于接收所述第一控制信息的第一起始控制符号。
可选的,该第一候选符号可在上述第一时间单元内,所述第一起始符号可滞后于所述第一时间单元中的第一个符号,终端设备可在第一时间单元接收第一控制信息和第一数据信道,在缓存完第一控制信息和第一数据信道中承载的数据后,通过解调得到正确的第一控制信息和数据,从而完成正确的接收。此配置情况,主要用于LTE控制区域被动态配置了较少的符号数,比如PCFICH通知的取值为1,而此时NR的第一控制信道在该第一时域单元内被配置的第一起始控制符号为符号3时,此时通知NR的第一数据信道从符号1起始,可以充分利用LTE控制区域没有用到的时域符号,提高系统资源利用率。
(2)、所述第一起始符号为第二候选符号,所述第二候选符号在时域上可与第一起始控制符号对齐,或者第二候选符号在时域上可滞后于该第一起始控制符号。此配置情况,主要用于LTE控制区域被动态配置了较大的符号数,比如PCFICH通知的取值为3,而此时NR的第一控制信道在该第一时域单元内被配置的第一起始控制符号为符号3时,此时通知NR的第一数据信道从符号3或符号4起始,此时可以避开LTE控制区域,避免对LTE控制信道造成干扰。
可选的,在本申请的一些实施例中,在所述终端设备在所述第一载波上接收第一控制信息之前,所述终端设备还可以从接入网设备获取所述第一控制信息对应的控制信道的频域配置信息,所述频域配置信息可包括指示所述第一控制信息对应的控制信道的控制频域区域的信息。具体的,NR的第一控制信道的控制频域区域可以类似LTE系统中的控制信道 一样占用全带宽,也可以被配置占用第一载波中的部分带宽,此种配置相比于LTE来说可以灵活配置NR的控制信道的频域资源位置,尽量避免全带宽信号的发送频率,对NR系统与LTE系统或将来继续演进的NR系统可以做到影响较小。
可选的,在本申请的一些实施例中,本申请中,既可对多个时间单元进行统一调度,也可在不同的时间单元内分别进行独立的调度,以适应当前的资源分配和提高资源分配的灵活性,或者还可以适应第一载波的状态变化。。具体来说,在对第一时间单元进行调度之后的第二时间单元内,所述终端设备还可在所述第一载波上接收所述接入网发送的第二控制信息,同理,所述第二控制信息用于指示接收第二数据信道的第二起始符号。需要说明的是,本申请中的第一时间单元和第二时间单元可以是任意时间单元,二者可以在相同的时域调度单元内,也可以在不同的时域调度单元内。可选的,第一时间单元可以是第一个时间单元,第二时间单元可以是第一个时间单元之后的任一时间单元,例如为第二个时间单元。
在所述第二时间单元内,所述终端设备从所述第二起始符号开始在所述第一载波上接收所述第二数据信道。
通过单独配置每个时间单元的起始符号,能够实现独立的调度,且根据当前的资源分配情况,进行动态的调度和接收,有效提高资源的利用率和资源调度的灵活性。
可选的,在本申请的一些实施例中,所述第二时间单元满足以下项之一:
所述第二时间单元滞后于所述第一时间单元,且与所述第一时间单元同属一个时域调度单元,所述时域调度单元为LTE系统中的基本调度时间单位。
在第一时间单元为第一个时间单元,且当第一时间单元与第二时间单元同属一个时域调度单元时,由于LTE系统仅在第一个时间单元内有控制区域,那么,接入网设备可以向终端设备重新指示在第二时间单元内新的接收数据信道和控制信道的起始符号,这样可以有效的利用第二时间单元内未被LTE系统占据的资源。
或者,所述第二时间单元滞后于所述第一时间单元,且与所述第一时间单元属于不同时域调度单元。在第一时间单元为第一个时间单元或者非第一个时间单元,且当第一时间单元与第二时间单元属于不同的时域调度单元时,若LTE系统中PCFICH动态指示第二时间单元内LTE系统中控制区域所占符号个数变化,那么,接入网设备可根据变化的个数动态的调整NR系统中接收控制信道和数据信道的起始符号。
若在第一时间单元内,PCFICH指示符号个数为2,那么接入网设备可以指示NR系统中接收控制信道和数据信道的起始符号为第一时间单元的第三个符号,若在第二时间单元内,PCFICH指示符号个数为3,那么接入网设备可以指示NR系统中接收控制信道和数据信道的起始符号为第一时间单元的第四个符号。
若在第一时间单元内,PCFICH指示符号个数为3,那么接入网设备可以指示NR系统中接收控制信道和数据信道的起始符号为第一时间单元的第四个符号,若在第二时间单元内,PCFICH指示符号个数为1,那么接入网设备可以指示NR系统中接收控制信道和数据信道的起始符号为第一时间单元的第二个符号。
需要说明的是,本申请中的第二时间单元不限于一个,其他时间单元的动态指示也可参考本申请中针对第二时间单元的说明。
可选的,在本申请的一些实施例中,例如LTE系统与NR共用上述第一载波的场景下,由于LTE系统中的小区开启时,会占用第一时间单元的前n个符号为控制区域,该控制区域用于承载LTE PDCCH。为实现LTE系统和NR系统在第一载波共存的目的,在配置NR系统时,则需要避开LTE系统的信号或信道。并且,由于LTE系统的同一个时域调度单元中,仅有第一时间单元有控制区域,后面的时间单元不存在控制区域,而在规避LTE系统的PDCCH时,NR系统在每个时间单元都从固定的符号开始接收控制信道和数据信道。考虑到资源复用的问题,还可结合接入网设备动态指示接收控制信道的起始控制符号和接收数据信道的起始符号的调度机制,下面主要分下述两方面分别进行说明:
一方面中,若LTE系统中配置了在第一个时隙中的控制区域占据前3个符号,那么,NR系统可以配置为从第4个符号开始接收控制信道,但在第二个时隙中,由于LTE系统并不存在控制区域,如果NR系统仍然配置为从第4个符号开始接收控制信道,那么,第二个时隙中的前3个符号未得到利用,从而造成资源浪费。
由此,考虑到资源利用率,可单独为NR系统中第一个时间单元之后的时间单元单独配置起始接收的信息。接入网设备可分别为终端设备配置接收所述第一控制信息的第一起始控制符号,以及为终端设备配置接收所述第二控制信息的第二起始控制符号,可见,第一起始控制符号和第二起始控制符号由所述接入网设备独立配置。例如可将接收所述第二控制信息的第二起始控制符号配置为所述第二时间单元中的第一个符号。这样,在第一时间单元内时,NR系统中的终端设备就能够利用LTE系统中未利用到的空闲资源,从而提高资源复用率。
另一方面中,如图3的(a)所示,在LTE系统的某些时域调度单元中,在第一时间单元时,PCFICH指示LTE系统的控制区域所占符号数为3,接入网设备会指示终端设备在第一时间单元内在第4个符号(#3)开始接收控制信道。但在第二时间单元时,若PCFICH动态指示LTE系统的控制区域所占符号数为1(CFI=1),如果NR-PDCCH和NR-PDSCH依然按照之前的时域调度单元的配置从#3起始接收,那么会浪费两个符号(包括#1和#2)。
那么,接入网设备可以动态向终端设备指示新的第二起始符号或者新的接收控制信道的起始控制符号。例如接入网设备动态可将第二起始控制符号配置为所述第二时间单元中的第一个符号之外的符号,使得终端设备可以动态的改变接收控制信息的起始控制符号或者接收数据信道的起始符号。例如图3中的(b)所示,将接收控制信道的起始控制符号配置为从#2开始接收,当然也可以配置为从#1开始接收,从而达到利用LTE系统中未利用到的#2,提高了资源利用率。通过单独配置每个时间单元的配置信息结合PCFICH的动态指示,能够使得在LTE系统与NR系统在第一载波共存时,接入网设备可根据LTE系统中PCFICH动态指示的符号个数动态调整NR系统中接收控制信道的起始控制符号,突破终端设备只能在固定的符号进行接收的限制,一定程度上也能提高资源利用率。
其中,在NR-PDCCH指示第一起始符号时,具体可以通过NR-PDCCH中的显示比特或状态,或者也可以通过NR-PDCCH所占的资源位置等参数来隐式的对应NR-PDSCH的起始符号。
可选的,在本申请的一些实施例中,与第一时间单元同理,也可配置如下规则:所述第二起始符号在时域上滞后于所述第二起始控制符号,或者在时域上与所述第二起始控制符号对齐。对于每个时域调度单元中的时间单元,该规则同样适用,不再赘述。
可选的,在本申请的一些实施例中,通过分别对不同的时间单元进行单独配置,所述第一起始符号在所述第一时间单元的时域位置,可与所述第二起始符号在所述第二时间单元的时域位置相同或不同。当LTE系统中PCFICH指示的符号个数动态变化时,或者部署在第一载波的LTE系统的小区的激活状态变化时,都可动态改变当前的时间单元的配置或者后续的时间单元的配置,动态改变配置后,终端设备在不同的时间单元接收第一数据信道的起始符号则会不同。
例如,在第一个时隙内,LTE系统中PCFICH指示LTE PDCCH的符号数为3时,对应的NR系统中配置NR PDCCH的起始控制符号为第4个符号;在第二个时隙内LTE系统中PCFICH指示LTE PDCCH的符号数为2时,对应的NR系统中配置NR PDCCH的起始控制符号可为第3个符号。由此可见,通过这种独立配置的调度方式,能够提高资源利用率,也能提高调度的灵活性。
可选的,在本申请的一些实施例中,即使在第一时间单元内配置了相应的第一起始符号和第一起始控制符号,但考虑到LTE系统和NR系统共同部署于上述第一载波的场景,可能会出现LTE系统中小区的激活状态变化的情况。由于LTE系统中小区的激活状态变化会对NR系统中的终端设备的数据接收产生影响,例如,可能会出现第一载波而言,LTE系统中小区处于开启或关闭状态,而对于NR系统中的终端设备而言总是处于激活状态的情况。LTE小区的状态对NR系统中的终端设备的数据接收的影响主要分为下述两种场景:
场景一:如果处于LTE UE开启状态的NR UE的激活态,那么上述终端设备需要考虑规避LTE系统的信号或信道,还可以进一步考虑与LTE系统的资源复用问题。同理,可将场景一中描述的激活状态简称为第一激活状态。
场景二:如果LTE小区处于关闭状态且NR系统中终端设备处于激活状态,那么上述终端设备可以较为干净的使用该第一载波,比如NR-PDCCH不需要考虑规避LTE的控制区域和CRS等。为便于描述,可将场景二中描述的激活状态简称为第二激活状态。
在上述场景一和场景二中,第一载波上的资源分配会相应发生变化,为了保证更高的资源利用率。上述终端设备在切换其激活状态时,同样需要跟随激活状态的变化,相应的改变接收控制信道的起始控制符号和数据信道的起始符号。那么,在所述第一时间单元内,所述终端设备在所述第一载波上接收所述接入网设备发送的第三控制信息,所述第三控制信息用于指示接收第三数据信道的第三起始符号。然后,所述终端设备从所述第三起始符号开始在所述第一载波上接收所述第三数据信道。
可选的,在本申请的一些实施例中,对应上述场景一和场景二,终端设备可通过接入网设备发送的媒体接入控制MAC信令或者物理层信令确定第一激活状态或第二激活状态。针对不同的激活状态,终端设备接收控制信息的资源配置不同。具体来说,在第一时间单元内,第一控制信息根据资源配置接收,该资源配置可包括接收所述第一控制信息的第一起始控制符号、子载波间距和参考信号的速率匹配信息中的至少一种;第三控制信息可根据另一资源配置接收,所述另一资源配置可包括接收所述第三控制信息的起始控制符号、子载波间距和参考信号的速率匹配信息中的至少一种。
在上述MAC信令或这物理层信令生效期间即状态切换过程中,上述终端设备会根据相应的资源配置改变接收的控制信道的起始控制符号和接收数据信道的起始符号,为保持平 滑的切换,还可设置如下规则:
规则一:在激活状态切换期间,保持当前使用的资源配置不变。
具体来说,当所述第一载波的状态在第一激活状态和第二激活状态之间切换时,终端设备可保持所述资源配置不变,即终端设备在激活状态的切换期间,仍然使用当前的资源配置进行控制信道和数据信道的接收,而不是在切换时,立即采用另一资源配置进行控制信道和数据信道的接收。
可选的,还可为前述另一资源配置为第一候选资源配置或第二候选资源配置,其中,所述第一候选资源配置与所述第一激活状态对应,所述第二候选资源配置与所述第二激活状态对应。
通过设置上述规则一,终端设备在从第一激活状态切换到第二激活状态时,可保持第一时间单元内的部分控制信道的接收方式不随着上述激活状态变化而变化,从而可以实现激活状态变化期间的平滑切换。
规则二:基于第一载波的频域范围指示资源分配信息保证平滑切换
具体来说,所述第一控制信息还可包括所述第一数据信道的第一资源分配信息,所述第二控制信息可包括所述第二数据信道的第二资源分配信息,所述第三控制信息包括所述第三数据信道的第三资源分配信息。其中,所述第一资源分配信息的指示基于所述第一载波的第一频域范围,所述第二资源分配信息的指示基于所述第一载波的第二频域范围,所述第三资源分配信息的指示基于第一载波的第三频域范围。
其中,所述第一频域范围与所述第二频域范围不同,和/或,所述第一频域范围与所述第三频域范围不同。
可以定义:当所述第一载波的状态在第一激活状态和第二激活状态之间切换时,所述第一频域范围不变,即终端设备在激活状态切换期间,继续使用当前的第一频域范围,而不是在切换时,立即使用新的频域范围进行控制信道和数据信道的接收。其中,所述第二频域范围为第一候选频域范围或第二候选频域范围,所述第一候选频域范围与所述第一激活状态对应,所述第二候选频域范围与所述第二激活状态对应。
通过设置规则二,可保持上述MAC信令或物理层信令在生效期间内,终端设备不改变当前使用的频域范围,而是在上述MAC信令或物理层信令生效后,根据资源分配信息的指示改变使用的频域范围。使得终端设备在从第一激活状态切换到第二激活状态时,可保持第一时间单元内的部分控制信道的资源分配方式不随着上述激活状态变化而变化,从而可以实现激活状态变化期间的平滑切换。例如,总带宽为40兆M,原来分配给NR系统的带宽是40M,分配给LTE系统的是20M,当前LTE系统占用后20M时,NR系统只能用前20M,当在第一载波部署的LTE系统中小区关闭后,NR系统就可以使用该第一载波的全带宽(即40M)。但在LTE系统中小区关闭后,MAC信令通知到上述终端设备的过程中,上述终端设备仍然继续使用前20M,先不变化,待该MAC信令生效后,再使用全带宽40M。这样就能保证带宽变化期间的平滑切换。
可选的,在本申请的一些实施例中,本申请中,考虑到通过MAC信令或物理层信令向终端设备通知激活状态的变化时,可能会存在接入网设备已经将状态变化的信令下发给终端设备,而终端设备却未收到下发的信令,依然继续保持当前的调度方式和接收方式,导 致接入网设备与终端设备之间的对第一载波的激活状态理解不一致。为解决该问题,上述规则一中,通过在激活状态切换期间保持当前采用的资源配置不变,可以继续保持终端设备对控制信道的正确接收,而对控制信道的接收能够用来调度在激活状态切换期间对数据信道的接收,从而可以避免由于接入网设备与终端设备之间的对第一载波的激活状态理解不一致而导致的切换不平滑问题。
可选的,在本申请的一些实施例中,当在上述第一载波上部署LTE系统和NR系统时,所述LTE系统可基于短传输时间间隔TTI调度,所述NR系统可基于微时隙调度。由于复用第一载波的上述两个通信系统中调度的时间粒度会影响监测控制信道的复杂度,一方面为了保证LTE系统和NR系统正常的复用第一载波,另一方面,还需要动态的调度LTE系统中空闲的资源以提高资源的利用率,在第一个时隙中避开LTE-PDCCH,在第二个时隙的第一个符号作为接收NR-PDCCH的起始控制符号。如图4-1所示,在第一个时隙中的#3开始接收NR-PDCCH,在第二个时隙以及第二个时隙之后的时隙的第一个符号(#0)开始接收NR-PDCCH。
那么,在LTE系统基于TTI调度,NR系统基于微时隙调度时,为了降低NR系统中终端设备的监测控制信道的复杂度,所述终端设备可以以等时域间隔监测所述第一控制信息对应的控制信道。例如,可以设定上述终端设备每隔2个符号监测一次NR-PDCCH,在一个子帧中,只在符号索引为偶数的符号进行NR-PDCCH的监测。
本申请中,考虑到NR系统与LTE系统中短TTI调度的资源复用,或者说避免一个NR-PDSCH占用两个LTE短TTI的各一部分,即使得一个NR-PDSCH占用的符号尽量在时域上与一个LTE短TTI对齐,以及充分利用PCFICH动态指示的符号个数变化时LTE系统中未利用的资源,还可以进一步定义:
NR-PDSCH的第一起始符号早于其对应的NR-PDCCH的第一起始控制符号,例如图4-2所示,一个LTE短TTI占用两个符号(包括#7和#8),在#9和#10接收NR-PDSCH,以及在#11和#12接收NR-PDSCH,可见,一个NR-PDSCH在时域上仅占用2个符号,数量与一个LTE短TTI相等。在#10监测NR-PDDCH,在#12监测NR-PDDCH,等符号间隔的监测NR-PDDCH。
举例来说,定义NR系统中,终端设备以两个符号为一个微时隙进行调度,例如分别以索引为0的符号(以下简称为#0,其他同理)和#1、#1和#2、#3和#4等为一个微时隙进行调度。并定义NR系统中,终端设备在#0、#2、#4等偶数符号对NR-PDCCH进行监测。若#0和#2被LTE系统占用,那么NR系统中的该终端设备则只能在#4开始监测NR-PDCCH。若接入网设备获知LTE系统中PCFICH动态指示的符号个数从3变化2,那么,上述NR系统中的终端设备则可在#2开始监测NR-PDCCH。这样能够充分的利用LTE系统中未利用到的资源,也能够达到高效的资源复用。由此可见,通过动态的指示上述第一起始符号以及等间隔的监测控制信道,能够同时做到NR系统与LTE系统的正常子帧调度以及短TTI调度的灵活资源复用。
以上对本申请实施例中一种数据收发方法进行说明,以下对执行上述方法的终端设备和接入网设备分别进行描述。
一、参照图5,对终端设备50进行说明,终端设备90属于NR系统,终端设备50包括处理模块501和收发模块502,所述处理模块501用于控制所述收发模块502的收发操 作。
所述接收模块502用于执行图2对应的实施例中的方法:在第一时间单元内,在第一载波上接收接入网设备发送的第一控制信息,所述第一控制信息用于指示接收第一数据信道的第一起始符号;
以及在所述第一时间单元或者所述第一时间单元之后的时间单元内,从所述第一起始符号开始在所述第一载波上接收所述第一数据信道。
与现有机制相比,本申请中,收发模块502可以在第一时间单元内接收接入网设备动态下发的第一控制信息,然后根据第一控制信息指示的第一起始符号去接收第一数据信道。通过该机制,在监听信道过程中,终端设备可以不固定在某些子帧监听控制信道和接收数据信道,能够提高数据接收的灵活性。
在本申请的一些实施例中,所述第一起始符号为第一候选符号或第二候选符号,所述第一候选符号在时域上提前于接收所述第一控制信息的第一起始控制符号,所述第二候选符号在时域上滞后于所述第一起始控制符号,或者在时域上与所述第一起始控制符号对齐。
所述收发模块502在所述第一载波上接收第一控制信息之前,还用于:
获取所述第一控制信息对应的控制信道的频域配置信息,所述频域配置信息包括指示所述第一控制信息对应的控制信道的控制频域区域的信息。
所述第一候选符号在所述第一时间单元内;
所述第一起始符号滞后于所述第一时间单元中的第一个符号。
在本申请的一些实施例中,所述第一控制信息还用于指示接收所述第一数据信道的第一传输时长,或者指示接收所述第一数据信道的结束符号,所述结束符号为所述第一时间单元内的符号或者所述第一时间单元之后的至少一个时间单元中的符号。
在本申请的一些实施例中,所述收发模块502还用于:
在第二时间单元内,在所述第一载波上接收所述接入网发送的第二控制信息,所述第二控制信息用于指示接收第二数据信道的第二起始符号;
在所述第二时间单元内,从所述第二起始符号开始在所述第一载波上接收所述第二数据信道。
在本申请的一些实施例中,所述第二时间单元满足以下项之一:
所述第二时间单元滞后于所述第一时间单元,且与所述第一时间单元同属一个时间调度单元,所述时间调度单元为LTE系统中的基本调度时间单位;
或者,所述第二时间单元滞后于所述第一时间单元,且与所述第一时间单元属于不同时间调度单元。
在本申请的一些实施例中,接收所述第二控制信息的第二起始控制符号与接收所述第一控制信息的第一起始控制符号均由所述接入网设备独立配置。
在本申请的一些实施例中,所述第二起始符号在时域上滞后于所述第二起始控制符号,或者在时域上与所述第二起始控制符号对齐。
在本申请的一些实施例中,所述第一起始符号在所述第一时间单元的时域位置,与所述第二起始符号在所述第二时间单元的时域位置不同。
在本申请的一些实施例中,所述收发模块502还用于:
在所述第一时间单元内,在所述第一载波上接收所述接入网设备发送的第三控制信息,所述第三控制信息用于指示接收第三数据信道的第三起始符号,以及从所述第三起始符号开始在所述第一载波上接收所述第三数据信道。
在本申请的一些实施例中,所述第一控制信息根据资源配置接收,所述第三控制信息根据另一资源配置接收。
其中,所述资源配置包括接收所述第一控制信息的第一起始控制符号、子载波间距和参考信号的速率匹配信息中的至少一种;所述另一资源配置包括接收所述第三控制信息的起始控制符号、子载波间距和参考信号的速率匹配信息中的至少一种。
在本申请的一些实施例中,当所述第一载波的状态在第一激活状态和第二激活状态之间切换时,所述资源配置不变。
其中,所述另一资源配置为第一候选资源配置或第二候选资源配置,所述第一候选资源配置与所述第一激活状态对应,所述第二候选资源配置与所述第二激活状态对应。
在本申请的一些实施例中,所述第一激活状态或所述第二激活状态通过媒体接入控制MAC信令或者物理层信令发送给所述终端设备。
在本申请的一些实施例中,所述第一控制信息包括所述第一数据信道的第一资源分配信息,所述第二控制信息包括所述第二数据信道的第二资源分配信息,所述第三控制信息包括所述第三数据信道的第三资源分配信息。
所述第一资源分配信息的指示基于所述第一载波的第一频域范围,所述第二资源分配信息的指示基于所述第一载波的第二频域范围,所述第三资源分配信息的指示基于第一载波的第三频域范围。
可选的,所述第一频域范围与所述第二频域范围不同,和/或,所述第一频域范围与所述第三频域范围不同。
在本申请的一些实施例中,当所述第一载波的状态在第一激活状态和第二激活状态之间切换时,所述第一频域范围不变;所述第二频域范围为第一候选频域范围或第二候选频域范围,所述第一候选频域范围与所述第一激活状态对应,所述第二候选频域范围与所述第二激活状态对应。
在本申请的一些实施例中,所述NR系统基于微时隙调度时,所述收发模块502具体用于:
在时域上非连续的符号监测所述第一控制信息对应的控制信道,例如,可以以等时域间隔监测所述第一控制信息对应的控制信道。
二、参照图6,对接入网设备60进行说明,接入网设备属于新无线NR系统,所述接入网设备60可用于调度NR系统中的终端设备。所述接入网设备60包括处理模块601和收发模块602,所述处理模块601用于控制所述收发模块的收发操作。
所述处理模块601用于生成第一控制信息。
所述收发模块602,用于在第一时间单元内,在第一载波上向终端设备发送所述处理模块601生成的第一控制信息,所述第一控制信息用于指示所述终端设备在所述第一时间单元或者所述第一时间单元之后的时间单元内,从第一起始符号开始在所述第一载波上接收所述第一数据信道;
以及在所述第一时间单元内,从所述第一起始符号开始在所述第一载波上发送所述第一数据信道。
与现有机制相比,本申请中,处理模块在生成第一控制信息后,收发模块602在每个时间单元内动态向终端设备指示接收第一数据信道的第一起始符号,使得终端设备能够可以不固定在某些子帧监听控制信道和接收数据信道,能够提高数据接收的灵活性。通过该机制,在监听信道过程中,接入网设备能够动态的对终端设备进行资源调度,使得终端设备可以不固定在某些子帧监听控制信道和接收数据信道,能够提高数据接收的灵活性。本方案还可结合在固定子帧接收数据的机制,接入网设备即可实时的、动态的根据当前的资源分配情况对终端设备进行调度,又可以在固定的子帧发送信令或数据的基础上,当确定某些子帧空闲时,将这些空闲的子帧调度给该终端设备使用,从而减少终端设备的等待时长,也能够提高资源的利用率和资源调度的灵活性,进一步完善资源调度机制。
在本申请的一些实施例中,所述第一起始符号为第一候选符号或第二候选符号,所述第一候选符号在时域上提前于接收所述第一控制信息的第一起始控制符号,所述第二候选符号在时域上滞后于所述第一起始控制符号,或者在时域上与所述第一起始控制符号对齐。
在本申请的一些实施例中,所述第一候选符号在所述第一时间单元内;
所述第一起始符号滞后于所述第一时间单元中的第一个符号。
在本申请的一些实施例中,所述第一控制信息还用于指示接收所述第一数据信道的第一传输时长,或者指示接收所述第一数据信道的结束符号,所述结束符号为所述第一时间单元内的符号或者所述第一时间单元之后的至少一个时间单元中的符号。
在本申请的一些实施例中,所述收发模块602还用于:
在第二时间单元内,在所述第一载波上向所述终端设备发送第二控制信息,所述第二控制信息用于指示所述终端设备在所述第二时间单元内,从第二起始符号开始在所述第一载波上接收第二数据信道。
在本申请的一些实施例中,所述第二时间单元满足以下项之一:
所述第二时间单元滞后于所述第一时间单元,且与所述第一时间单元同属一个时间调度单元,所述时间调度单元为LTE系统中的基本调度时间单位;
或者,所述第二时间单元滞后于所述第一时间单元,且与所述第一时间单元属于不同时间调度单元。
在本申请的一些实施例中,发送所述第二控制信息的第二起始控制符号与接收所述第一控制信息的第一起始控制符号均由所述接入网设备独立配置。
在本申请的一些实施例中,所述第二起始符号在时域上滞后于所述第二起始控制符号,或者在时域上与所述第二起始控制符号对齐。
在本申请的一些实施例中,所述第一起始符号在所述第一时间单元的时域位置,与所述第二起始符号在所述第二时间单元的时域位置不同。
在本申请的一些实施例中,所述收发模块602还用于:
在所述第一时间单元内,在所述第一载波上向所述终端设备发送第三控制信息,所述第三控制信息用于指示所述终端设备在所述第一时间单元内,从第三起始符号开始在所述第一载波上接收第三数据信道。
在本申请的一些实施例中,所述收发模块602在所述接入网设备在第一载波上向终端设备发送第一控制信息之前,还用于:
将用于所述终端设备接收所述第一控制信息的资源配置,所述资源配置包括所述终端设备接收所述第一控制信息的第一起始控制符号、子载波间距和参考信号的速率匹配信息中的至少一种。
在本申请的一些实施例中,所述收发模块602在所述接入网设备在第一载波上向终端设备发送第三控制信息之前,还用于:
将用于所述终端设备接收所述第三控制信息的另一资源配置发送给所述终端设备,所述另一资源配置包括所述终端设备接收所述第三控制信息的起始控制符号、子载波间距和参考信号的速率匹配信息中的至少一种。
在本申请的一些实施例中,所述收发模块602还用于:
在所述第一时间单元内,通过媒体接入控制MAC信令或者物理层信令向所述终端设备通知第一激活状态或第二激活状态;
当所述第一载波的状态在所述第一激活状态和所述第二激活状态之间切换时,所述资源配置不变;
所述另一资源配置为第一候选资源配置或第二候选资源配置,所述第一候选资源配置与所述第一激活状态对应,所述第二候选资源配置与所述第二激活状态对应。
在本申请的一些实施例中,所述第一控制信息包括所述第一数据信道的第一资源分配信息,所述第二控制信息包括所述第二数据信道的第二资源分配信息,所述第三控制信息包括所述第三数据信道的第三资源分配信息;
所述第一资源分配信息的指示基于所述第一载波的第一频域范围,所述第二资源分配信息的指示基于所述第一载波的第二频域范围,所述第三资源分配信息的指示基于第一载波的第三频域范围。
在本申请的一些实施例中,所述第一频域范围与所述第二频域范围不同,和/或,所述第一频域范围与所述第三频域范围不同。
一些可能的设计中,所述收发模块602还用于:
当所述第一载波的状态在第一激活状态和第二激活状态之间切换时,所述第一频域范围不变;所述第二频域范围为第一候选频域范围或第二候选频域范围,所述第一候选频域范围与所述第一激活状态对应,所述第二候选频域范围与所述第二激活状态对应。
需要说明的是,关于针对第一载波、第一起始符号、第一起始控制符号、数据信道、控制信道、第一资源配置、第二资源配置、第三资源配置,第一频域范围、第二频域范围、第三频域范围、第一激活状态、第二激活状态、第一资源分配信息、第二资源分配信息、第三资源分配信息及参考信号的速率匹配信息等技术特征的定义,均可参考前述图2-图4-2所对应的方法实施例,且本申请实施例中的通信设备能够执行前述各方法实施例(包括图2至图4-2所示的实施例)中任一所描述的内容,此处不再赘述。
需要说明的是,上述发明实施例(包括上述图5和图6所对应的实施例)中所有的收发模块(包括接收模块和发送模块)对应的实体设备均可以为收发器(包括接收器和发送器),所有的处理模块对应的实体设备均可以为处理器。图5或图6所示的装置可以具有如 图7所示的结构,当有一种装置具有如图7所示的结构时,图7中的处理器和收发器实现前述对应该装置的装置实施例提供的处理模块和收发模块相同或相似的功能,图7中的存储器存储处理器执行上述数据收发方法时需要调用的程序代码。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请实施例的各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明的各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(英文全称:Read-Only Memory,英文简称:ROM)、随机存取存储器(英文全称:Random Access Memory,英文简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上对本申请实施例所提供的技术方案进行了详细介绍,本申请中应用了具体个例对本申请实施例的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请实施例的限制。

Claims (38)

  1. 一种数据接收方法,其特征在于,所述方法应用于新无线NR系统中的终端设备,所述方法包括:
    在第一时间单元内,所述终端设备在第一载波上接收接入网设备发送的第一控制信息,所述第一控制信息用于指示接收第一数据信道的第一起始符号;
    在所述第一时间单元或者所述第一时间单元之后的时间单元内,所述终端设备从所述第一起始符号开始在所述第一载波上接收所述第一数据信道。
  2. 根据权利要求1所述的方法,其特征在于,所述第一起始符号为第一候选符号或第二候选符号,所述第一候选符号在时域上提前于接收所述第一控制信息的第一起始控制符号,所述第二候选符号在时域上滞后于所述第一起始控制符号,或者在时域上与所述第一起始控制符号对齐。
  3. 根据权利要求1或2所述的方法,其特征在于,在所述终端设备在所述第一载波上接收第一控制信息之前,所述方法还包括:
    所述终端设备获取所述第一控制信息对应的控制信道的频域配置信息,所述频域配置信息包括指示所述第一控制信息对应的控制信道的控制频域区域的信息。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一候选符号在所述第一时间单元内;
    所述第一起始符号滞后于所述第一时间单元中的第一个符号。
  5. 根据权利要求1所述的方法,其特征在于,所述第一控制信息还用于指示接收所述第一数据信道的第一传输时长,或者指示接收所述第一数据信道的结束符号,所述结束符号为所述第一时间单元内的符号或者所述第一时间单元之后的至少一个时间单元中的符号。
  6. 根据权利要求1-5任一所述的方法,其特征在于,所述方法还包括:
    在第二时间单元内,所述终端设备在所述第一载波上接收所述接入网发送的第二控制信息,所述第二控制信息用于指示接收第二数据信道的第二起始符号;
    在所述第二时间单元内,所述终端设备从所述第二起始符号开始在所述第一载波上接收所述第二数据信道。
  7. 根据权利要求6所述的方法,其特征在于,所述第二时间单元满足以下项之一:
    所述第二时间单元滞后于所述第一时间单元,且与所述第一时间单元同属一个时间调度单元,所述时间调度单元为LTE系统中的基本调度时间单位;
    或者,所述第二时间单元滞后于所述第一时间单元,且与所述第一时间单元属于不同时间调度单元。
  8. 根据权利要求6或7所述的方法,其特征在于,接收所述第二控制信息的第二起始控制符号与接收所述第一控制信息的第一起始控制符号均由所述接入网设备独立配置。
  9. 根据权利要求8所述的方法,其特征在于,所述第二起始符号在时域上滞后于所述第二起始控制符号,或者在时域上与所述第二起始控制符号对齐。
  10. 根据权利要求6-9任一所述的方法,其特征在于,所述第一起始符号在所述第一时间单元的时域位置,与所述第二起始符号在所述第二时间单元的时域位置不同。
  11. 根据权利要求1-10任一所述的方法,其特征在于,所述方法还包括:
    在所述第一时间单元内,所述终端设备在所述第一载波上接收所述接入网设备发送的第三控制信息,所述第三控制信息用于指示接收第三数据信道的第三起始符号;
    所述终端设备从所述第三起始符号开始在所述第一载波上接收所述第三数据信道。
  12. 根据权利要求11所述的方法,其特征在于,所述第一控制信息根据资源配置接收,所述第三控制信息根据另一资源配置接收;
    其中,所述资源配置包括接收所述第一控制信息的第一起始控制符号、子载波间距和参考信号的速率匹配信息中的至少一种;所述另一资源配置包括接收所述第三控制信息的起始控制符号、子载波间距和参考信号的速率匹配信息中的至少一种。
  13. 根据权利要求12所述的方法,其特征在于,当所述第一载波的状态在第一激活状态和第二激活状态之间切换时,所述资源配置不变;
    所述另一资源配置为第一候选资源配置或第二候选资源配置,所述第一候选资源配置与所述第一激活状态对应,所述第二候选资源配置与所述第二激活状态对应。
  14. 根据权利要求13所述的方法,其特征在于,所述第一激活状态或所述第二激活状态通过媒体接入控制MAC信令或者物理层信令发送给所述终端设备。
  15. 根据权利要求11-14任一所述的方法,其特征在于,所述第一控制信息包括所述第一数据信道的第一资源分配信息,所述第二控制信息包括所述第二数据信道的第二资源分配信息,所述第三控制信息包括所述第三数据信道的第三资源分配信息;
    所述第一资源分配信息的指示基于所述第一载波的第一频域范围,所述第二资源分配信息的指示基于所述第一载波的第二频域范围,所述第三资源分配信息的指示基于第一载波的第三频域范围。
  16. 根据权利要求15所述的方法,其特征在于,所述第一频域范围与所述第二频域范围不同,和/或,所述第一频域范围与所述第三频域范围不同。
  17. 根据权利要求16所述的方法,其特征在于,当所述第一载波的状态在第一激活状态和第二激活状态之间切换时,所述第一频域范围不变;所述第二频域范围为第一候选频域范围或第二候选频域范围,所述第一候选频域范围与所述第一激活状态对应,所述第二候选频域范围与所述第二激活状态对应。
  18. 根据权利要求2所述的方法,其特征在于,所述NR系统基于微时隙调度时,所述终端设备在所述第一载波上接收第一控制信息,包括:
    所述终端设备在时域上非连续的符号监测所述第一控制信息对应的控制信道。
  19. 一种数据发送方法,其特征在于,所述方法可应用于调度新无线NR系统中的终端设备的接入网设备,该方法可包括:
    在第一时间单元内,所述接入网设备在第一载波上向终端设备发送第一控制信息,所述第一控制信息用于指示所述终端设备在所述第一时间单元或者所述第一时间单元之后的时间单元内,从第一起始符号开始在所述第一载波上接收所述第一数据信道;
    在所述第一时间单元内,所述接入网设备从所述第一起始符号开始在所述第一载波上发送所述第一数据信道。
  20. 根据权利要求19所述的方法,其特征在于,所述第一起始符号为第一候选符号或 第二候选符号,所述第一候选符号在时域上提前于接收所述第一控制信息的第一起始控制符号,所述第二候选符号在时域上滞后于所述第一起始控制符号,或者在时域上与所述第一起始控制符号对齐。
  21. 根据权利要求20所述的方法,其特征在于,所述第一候选符号在所述第一时间单元内;
    所述第一起始符号滞后于所述第一时间单元中的第一个符号。
  22. 根据权利要求19所述的方法,其特征在于,所述第一控制信息还用于指示接收所述第一数据信道的第一传输时长,或者指示接收所述第一数据信道的结束符号,所述结束符号为所述第一时间单元内的符号或者所述第一时间单元之后的至少一个时间单元中的符号。
  23. 根据权利要求19-22任一所述的方法,其特征在于,所述方法还包括:
    在第二时间单元内,所述接入网设备在所述第一载波上向所述终端设备发送第二控制信息,所述第二控制信息用于指示所述终端设备在所述第二时间单元内,从第二起始符号开始在所述第一载波上接收第二数据信道。
  24. 根据权利要求23所述的方法,其特征在于,所述第二时间单元满足以下项之一:
    所述第二时间单元滞后于所述第一时间单元,且与所述第一时间单元同属一个时间调度单元,所述时间调度单元为LTE系统中的基本调度时间单位;
    或者,所述第二时间单元滞后于所述第一时间单元,且与所述第一时间单元属于不同时间调度单元。
  25. 根据权利要求23或24所述的方法,其特征在于,所述接入网设备向所述终端设备独立配置发送所述第二控制信息的第二起始控制符号与发送所述第一控制信息的第一起始控制符号。
  26. 根据权利要求25所述的方法,其特征在于,所述第二起始符号在时域上滞后于所述第二起始控制符号,或者在时域上与所述第二起始控制符号对齐。
  27. 根据权利要求23-26任一所述的方法,其特征在于,所述第一起始符号在所述第一时间单元的时域位置,与所述第二起始符号在所述第二时间单元的时域位置不同。
  28. 根据权利要求19-27任一所述的方法,其特征在于,所述方法还包括:
    在所述第一时间单元内,所述接入网设备在所述第一载波上向所述终端设备发送第三控制信息,所述第三控制信息用于指示所述终端设备在所述第一时间单元内,从第三起始符号开始在所述第一载波上接收第三数据信道。
  29. 根据权利要求28所述的方法,其特征在于,在所述接入网设备在第一载波上向终端设备发送第一控制信息之前,所述方法还包括:
    所述接入网设备将用于所述终端设备接收所述第一控制信息的资源配置发送给所述终端设备,所述资源配置包括所述终端设备接收所述第一控制信息的第一起始控制符号、子载波间距和参考信号的速率匹配信息中的至少一种。
  30. 根据权利要求28或29所述的方法,其特征在于,在所述接入网设备在第一载波上向终端设备发送第三控制信息之前,所述方法还包括:
    所述接入网设备将用于所述终端设备接收所述第三控制信息的另一资源配置发送给所 述终端设备,所述另一资源配置包括所述终端设备接收所述第三控制信息的起始控制符号、子载波间距和参考信号的速率匹配信息中的至少一种。
  31. 根据权利要求30所述的方法,其特征在于,所述方法还包括:
    所述接入网设备通过媒体接入控制MAC信令或者物理层信令向所述终端设备通知第一激活状态或第二激活状态;
    当所述第一载波的状态在所述第一激活状态和所述第二激活状态之间切换时,所述资源配置不变;
    所述另一资源配置为第一候选资源配置或第二候选资源配置,所述第一候选资源配置与所述第一激活状态对应,所述第二候选资源配置与所述第二激活状态对应。
  32. 根据权利要求28所述的方法,其特征在于,所述第一控制信息包括所述第一数据信道的第一资源分配信息,所述第二控制信息包括所述第二数据信道的第二资源分配信息,所述第三控制信息包括所述第三数据信道的第三资源分配信息;
    所述第一资源分配信息的指示基于所述第一载波的第一频域范围,所述第二资源分配信息的指示基于所述第一载波的第二频域范围,所述第三资源分配信息的指示基于第一载波的第三频域范围。
  33. 根据权利要求32所述的方法,其特征在于,所述第一频域范围与所述第二频域范围不同,和/或,所述第一频域范围与所述第三频域范围不同。
  34. 根据权利要求33所述的方法,其特征在于,所述方法还包括:
    当所述第一载波的状态在第一激活状态和第二激活状态之间切换时,所述第一频域范围不变;所述第二频域范围为第一候选频域范围或第二候选频域范围,所述第一候选频域范围与所述第一激活状态对应,所述第二候选频域范围与所述第二激活状态对应。
  35. 一种终端设备,其特征在于,所述终端设备包括处理器、收发器和存储器;
    所述存储器用于存储指令,所述处理器用于根据执行所述存储器存储的指令,并控制所述收发器进行信号接收和信号发送,当所述处理器执行所述存储器存储的指令时,所述通信设备用于执行如权利要求1-18中任一所述的方法。
  36. 一种接入网设备,其特征在于,所述接入网设备包括处理器、收发器和存储器;
    所述存储器用于存储指令,所述处理器用于根据执行所述存储器存储的指令,并控制所述收发器进行信号接收和信号发送,当所述处理器执行所述存储器存储的指令时,所述通信设备用于执行如权利要求19-34中任一所述的方法。
  37. 一种计算机存储介质,其特征在于,其包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-18中任一所述的方法,或者执行如权利要求19-34中任一所述的方法。
  38. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求1-18中任一所述的方法,或者执行如权利要求19-34中任一所述的方法。
PCT/CN2017/119783 2017-01-06 2017-12-29 一种数据收发方法、设备、存储介质及程序产品 WO2018126996A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17889944.9A EP3554161A4 (en) 2017-01-06 2017-12-29 DATA TRANSMISSION - / - RECEIVING METHOD AND APPARATUS, STORAGE MEDIUM AND PROGRAM PRODUCT
BR112019013462A BR112019013462A2 (pt) 2017-01-06 2017-12-29 método de recebimento/transmisão de dados, dispositivo, mídia de armazenamento e produto de programa
US16/460,931 US20190327756A1 (en) 2017-01-06 2019-07-02 Data receiving/transmitting method, device, storage medium, and program product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710011327.2A CN108282875B (zh) 2017-01-06 2017-01-06 一种数据收发方法及设备
CN201710011327.2 2017-01-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/460,931 Continuation US20190327756A1 (en) 2017-01-06 2019-07-02 Data receiving/transmitting method, device, storage medium, and program product

Publications (1)

Publication Number Publication Date
WO2018126996A1 true WO2018126996A1 (zh) 2018-07-12

Family

ID=62789144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119783 WO2018126996A1 (zh) 2017-01-06 2017-12-29 一种数据收发方法、设备、存储介质及程序产品

Country Status (5)

Country Link
US (1) US20190327756A1 (zh)
EP (1) EP3554161A4 (zh)
CN (1) CN108282875B (zh)
BR (1) BR112019013462A2 (zh)
WO (1) WO2018126996A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020220228A1 (zh) * 2019-04-29 2020-11-05 北京小米移动软件有限公司 下行数据传输方法、装置及存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110492969B (zh) * 2018-05-11 2022-04-29 中兴通讯股份有限公司 信号发送、接收方法及装置
CN110831187B (zh) * 2018-08-10 2022-04-22 成都华为技术有限公司 一种资源配置的方法及装置
WO2020056751A1 (zh) * 2018-09-21 2020-03-26 北京小米移动软件有限公司 传输配置方法、装置、设备、系统及存储介质
CN113490259B (zh) * 2018-12-26 2022-12-02 华为技术有限公司 一种通信方法及设备
CN113170324B (zh) * 2019-02-02 2023-01-10 Oppo广东移动通信有限公司 用于非授权频谱的无线通信方法、网络设备和终端设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102469048A (zh) * 2010-11-18 2012-05-23 中兴通讯股份有限公司 一种确定下行控制信道搜索空间的方法及系统
WO2016144002A1 (ko) * 2015-03-09 2016-09-15 엘지전자 주식회사 비면허 주파수에 의해 점유된 서브프레임을 통한 통신 방법 및 장치
CN106063152A (zh) * 2014-02-12 2016-10-26 Lg电子株式会社 无线通信系统中用于发送和接收信号的方法及其装置
CN106255210A (zh) * 2015-06-12 2016-12-21 华硕电脑股份有限公司 在无线通信系统中使用配置资源的方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9831989B2 (en) * 2011-10-09 2017-11-28 Lg Electronics Inc. Method for setting starting position of data channel in wireless communication system and device using method
CN104661309A (zh) * 2013-11-22 2015-05-27 中兴通讯股份有限公司 Lte系统中多点协作网络的下行资源指示方法、装置及系统
WO2016039681A1 (en) * 2014-09-10 2016-03-17 Telefonaktiebolaget L M Ericsson (Publ) Radio access node, communication terminal and methods performed therein

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102469048A (zh) * 2010-11-18 2012-05-23 中兴通讯股份有限公司 一种确定下行控制信道搜索空间的方法及系统
CN106063152A (zh) * 2014-02-12 2016-10-26 Lg电子株式会社 无线通信系统中用于发送和接收信号的方法及其装置
WO2016144002A1 (ko) * 2015-03-09 2016-09-15 엘지전자 주식회사 비면허 주파수에 의해 점유된 서브프레임을 통한 통신 방법 및 장치
CN106255210A (zh) * 2015-06-12 2016-12-21 华硕电脑股份有限公司 在无线通信系统中使用配置资源的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3554161A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020220228A1 (zh) * 2019-04-29 2020-11-05 北京小米移动软件有限公司 下行数据传输方法、装置及存储介质
US11991725B2 (en) 2019-04-29 2024-05-21 Beijing Xiaomi Mobile Software Co., Ltd. Downlink data transmission method and device, and storage medium

Also Published As

Publication number Publication date
CN108282875A (zh) 2018-07-13
EP3554161A1 (en) 2019-10-16
CN108282875B (zh) 2022-04-29
EP3554161A4 (en) 2019-12-04
US20190327756A1 (en) 2019-10-24
BR112019013462A2 (pt) 2019-12-31

Similar Documents

Publication Publication Date Title
JP7227679B2 (ja) 時分割複信ワイヤレス通信システム
WO2018126996A1 (zh) 一种数据收发方法、设备、存储介质及程序产品
CN109937562B (zh) 用于混合参数集载波的信道接入
CA2823749C (en) Channel quality indicator reporting
KR102282754B1 (ko) 데이터 전송 방법, 무선 네트워크 장치, 및 통신 시스템
US10892868B2 (en) Data transmission method and apparatus
JP7304412B2 (ja) Nr-uにおける広帯域キャリア動作のためのレートマッチング
US10506624B2 (en) Scheduling method and device in UE and base station
CN110831187B (zh) 一种资源配置的方法及装置
AU2015226655A1 (en) Signal processing method, base station and terminal
WO2019095332A1 (zh) 数据传输方法、终端设备和网络设备
WO2013166941A1 (zh) 一种基站及新载波中主辅同步信号的传输方法
JP2018500821A (ja) ネストされたシステム動作
CN112399585B (zh) 一种资源复用方法及装置
CN110839284B (zh) 一种调度请求资源确定及配置方法、设备及装置
WO2014101671A1 (zh) 一种信息传输的方法、系统和设备
WO2021062918A1 (zh) 一种资源的动态指示方法及装置
US20210084676A1 (en) Scheduling information transmission method and apparatus
EP3021627B1 (en) Carrier configuration with mixed nct and backwards compatible subframes
EP3031263A1 (en) Methods and apparatus for device to device communication
WO2013123894A1 (zh) 一种确定同步小区的方法和设备
WO2017063482A1 (zh) 一种通信的方法、设备及系统
WO2022127900A1 (zh) 资源配置方法、装置、网络节点和存储介质
CN114095981B (zh) 一种小区状态切换方法及装置
WO2018202027A1 (zh) 子载波间隔类型的确定方法、装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019013462

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017889944

Country of ref document: EP

Effective date: 20190708

ENP Entry into the national phase

Ref document number: 112019013462

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190627