WO2017063482A1 - 一种通信的方法、设备及系统 - Google Patents

一种通信的方法、设备及系统 Download PDF

Info

Publication number
WO2017063482A1
WO2017063482A1 PCT/CN2016/099454 CN2016099454W WO2017063482A1 WO 2017063482 A1 WO2017063482 A1 WO 2017063482A1 CN 2016099454 W CN2016099454 W CN 2016099454W WO 2017063482 A1 WO2017063482 A1 WO 2017063482A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
band
subband
reconfiguration
user equipment
Prior art date
Application number
PCT/CN2016/099454
Other languages
English (en)
French (fr)
Inventor
谢勇
陈磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16854864.2A priority Critical patent/EP3355638B1/en
Publication of WO2017063482A1 publication Critical patent/WO2017063482A1/zh
Priority to US15/951,643 priority patent/US11096077B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a communication method, device, and system.
  • a carrier In the existing cellular communication, a carrier generally contains only one waveform and physical layer basic parameters, and a set of physical layer basic parameters are used on all frequency bandwidths included in one carrier.
  • Basic parameters of the physical layer usually include: Transmission Time Interval (TTI), subcarrier spacing, Cyclic Prefix (CP) length, and so on. If different physical layer basic parameters are used in different frequency bands in one carrier, it is easy to cause interference between these resources with different parameters, which leads to system performance degradation.
  • TTI Transmission Time Interval
  • CP Cyclic Prefix
  • the embodiment of the present invention provides a communication method, and the network device can configure the sub-band configuration information of the basic parameters of different physical layers.
  • the device is sent to the user equipment, and the network device and the user equipment can communicate through different sub-bands to meet the diversified needs of the communication service.
  • the embodiments of the present invention also provide corresponding devices and systems.
  • a first aspect of the present invention provides a method of communication, including:
  • the network device determines the first sub-band and the second sub-band
  • the network device sends the configuration information of the second sub-band to the user equipment on the first sub-band, the configuration information of the second sub-band includes the identification information of the second sub-band, and the second The identification information of the sub-band is used by the user equipment to determine a physical layer basic parameter of the second sub-band, where a physical layer basic parameter of the first sub-band and a physical layer basic parameter of the second sub-band are different;
  • the network device communicates with the user equipment via the second sub-band.
  • the configuration information further includes a location, a bandwidth, a physical layer basic parameter, a frequency range, a frequency center point, a load status, and a supported service of the second subband. At least one of type identification and priority.
  • the physical layer basic parameters include at least one of a subcarrier bandwidth, a transmission time interval TTI, a symbol length, a symbol number, and a cyclic prefix CP length.
  • the determining, by the network device, the first sub-band and the second sub-band includes:
  • the network device determines the first sub-band according to the type of the service environment, and determines the second sub-band according to the type of the service.
  • the method further includes:
  • the network device sends configuration information of the third sub-band on the first sub-band
  • the third sub-band is a downlink sub-band
  • the second sub-band is a downlink sub-band
  • the third sub-band is an uplink sub-band
  • the method further includes:
  • the network device sends, on the first subband, information about an uplink subband corresponding to the first subband, the uplink subband corresponding to the first subband, and the first subband TTI matches.
  • the method further includes:
  • the network device sends, on the first sub-band, information of an uplink sub-band corresponding to the second sub-band, where the second sub-band Corresponding uplink subbands and TTIs of the second subbands are matched;
  • the network device sends, on the first sub-band, information about a downlink sub-band corresponding to the second sub-band, where the second sub-band The corresponding downlink sub-band matches the TTI of the second sub-band.
  • the method further includes:
  • the network device determines that sub-band reconfiguration is required, and obtains configuration information of each sub-band after reconfiguration;
  • the method further includes:
  • the network device modifies the state value of the reconfiguration flag to a state of preparing the subband reconfiguration at a preset time before the start of the reconfiguration period, At the beginning of the reconfiguration period, the network device modifies the status value of the reconfiguration slot to the completed reconfiguration state.
  • a second aspect of the present invention provides a method of communication, including:
  • the user equipment receives the configuration information of the second sub-band from the first sub-band, and the configuration information of the second sub-band includes the identification information of the second sub-band;
  • the user equipment communicates with the network device through the second sub-band.
  • the configuration information further includes at least one of a location, a bandwidth, a physical layer basic parameter, a frequency range, a frequency center point, a load condition, a type identifier of the supported service, and a priority of the second sub-band.
  • the physical layer basic parameters include at least one of a subcarrier bandwidth, a transmission time interval TTI, a symbol length, a symbol number, and a cyclic prefix CP length.
  • the method further includes:
  • the third sub-band is a downlink sub-band
  • the second sub-band is a downlink sub-band
  • the third sub-band is an uplink sub-band
  • the method further includes:
  • any one of the first to fourth possible implementation manners of the second aspect in a fifth possible implementation manner,
  • the user equipment receives, from the first sub-band, information about an uplink sub-band corresponding to the second sub-band, where the second sub-band Corresponding uplink subbands and TTIs of the second subbands are matched;
  • the user equipment receives, from the first sub-band, information about a downlink sub-band corresponding to the second sub-band, and the second sub-band The corresponding downlink sub-band matches the TTI of the second sub-band.
  • any one of the first to fifth possible implementation manners of the second aspect in a sixth possible implementation manner,
  • the user equipment After the sub-band reconfiguration, the user equipment receives configuration information of each sub-band after reconfiguration from the first sub-band.
  • any one of the first to fifth possible implementation manners of the second aspect in a seventh possible implementation manner,
  • the connected The second sub-band is a downlink sub-band
  • configuration information of each subband after reconfiguration is received from the first subband.
  • the user equipment stops accessing the second sub-band when it recognizes that the status value of the sub-band reconfiguration flag bit is in a state of preparing a sub-band reconfiguration.
  • a third aspect of the present invention provides a network device, including:
  • a processing unit configured to determine a first sub-band and a second sub-band
  • a transceiver unit configured to send configuration information of the second sub-band to the user equipment on the first sub-band, and communicate with the user equipment by using the second sub-band; wherein the second sub-band
  • the configuration information includes the identification information of the second sub-band, and the identifier information of the second sub-band is used by the user equipment to determine a physical layer basic parameter of the second sub-band, the physicality of the first sub-band
  • the layer basic parameters are different from the physical layer basic parameters of the second sub-band.
  • the configuration information further includes at least one of a location, a bandwidth, a physical layer basic parameter, a frequency range, a frequency center point, a load condition, a type identifier of the supported service, and a priority of the second sub-band.
  • the physical layer basic parameters include at least one of a subcarrier bandwidth, a transmission time interval TTI, a symbol length, a symbol number, and a cyclic prefix CP length.
  • the processing unit is specifically configured to determine a first sub-band according to a type of the service environment, and determine a second sub-band according to the type of the service.
  • the transceiver unit is further configured to send configuration information of the third sub-band on the first sub-band, where the third sub-band is a downlink sub-band when the second sub-band is an uplink sub-band When the second sub-band is a downlink sub-band, the third sub-band is an uplink sub-band.
  • any one of the first to fourth possible implementation manners of the third aspect in a fifth possible implementation manner,
  • the transceiver unit is further configured to send, on the first subband, information about an uplink subband corresponding to the first subband, the uplink subband corresponding to the first subband, and the first The TTI of a sub-band matches.
  • any one of the first to fifth possible implementation manners of the third aspect in a sixth possible implementation manner,
  • the transceiver unit is further configured to:
  • the second sub-band is a downlink sub-band
  • information of an uplink sub-band corresponding to the second sub-band is sent on the first sub-band, and the uplink sub-corresponding to the second sub-band
  • the strap matches the TTI of the second sub-band
  • the second sub-band is an uplink sub-band
  • the band matches the TTI of the second sub-band.
  • any one of the first to sixth possible implementation manners of the third aspect in a seventh possible implementation manner,
  • the processing unit is further configured to: determine that sub-band reconfiguration is required, and obtain configuration information of each sub-band after reconfiguration;
  • the transceiver unit is further configured to send, by using the first sub-band, configuration information of each sub-band after reconfiguration; or, by using the first sub-band, to send the re-allocated to a user equipment that is in an idle state.
  • the configuration information of each subband transmits, by the second subband, configuration information of each subband after the reconfiguration to a user equipment that has a service transmission on the second subband.
  • the processing unit is further configured to: when the subband reconfiguration is periodic reconfiguration, the network device modifies the state value of the reconfiguration flag to the preparation subband at a preset time before the start of the reconfiguration period The reconfigured state, at the beginning of the reconfiguration period, the network device modifies the status value of the reconfiguration slot to the completed reconfiguration state.
  • a fourth aspect of the present invention provides a user equipment, including:
  • a transceiver unit configured to receive configuration information of the second sub-band from the first sub-band, where configuration information of the second sub-band includes identification information of the second sub-band;
  • a processing unit configured to determine, according to the identifier information of the second subband received by the receiving unit, a physical layer basic parameter of the second subband, a physical layer basic parameter of the first subband, and the second The basic parameters of the physical layer of the subband are different;
  • the transceiver unit is further configured to communicate with the network device by using the second sub-band.
  • the configuration information further includes at least one of a location, a bandwidth, a physical layer basic parameter, a frequency range, a frequency center point, a load condition, a type identifier of the supported service, and a priority of the second sub-band.
  • the physical layer basic parameters include at least one of a subcarrier bandwidth, a transmission time interval TTI, a symbol length, a symbol number, and a cyclic prefix CP length.
  • the transceiver unit is further configured to receive configuration information of the third sub-band from the first sub-band; wherein, when the second sub-band is an uplink sub-band, the third sub-band is a downlink sub-band When the second sub-band is a downlink sub-band, the third sub-band is an uplink sub-band.
  • any one of the first to third possible implementation manners of the fourth aspect in a fourth possible implementation manner,
  • the transceiver unit is further configured to receive, from the first subband, information about an uplink subband corresponding to the first subband, the uplink subband corresponding to the first subband, and the first The TTI of a sub-band matches.
  • any one of the first to fourth possible implementation manners of the fourth aspect in a fifth possible implementation manner,
  • the transceiver unit is further configured to:
  • the second sub-band is a downlink sub-band
  • information of an uplink sub-band corresponding to the second sub-band is received from the first sub-band, and the uplink sub-corresponding to the second sub-band
  • the strap matches the TTI of the second sub-band
  • the downlink subband corresponding to the second subband matches the TTI of the second subband.
  • any one of the first to fifth possible implementation manners of the fourth aspect in a sixth possible implementation manner,
  • the transceiver unit is further configured to receive, after the subband reconfiguration, configuration information of each subband after reconfiguration from the first subband.
  • the transceiver unit is further configured to:
  • the connected The second sub-band is a downlink sub-band
  • configuration information of each subband after reconfiguration is received from the first subband.
  • the processing unit is further configured to stop accessing the second sub-band when the state value of the sub-band reconfiguration flag bit is determined to be in a state of preparing a sub-band reconfiguration.
  • a fifth aspect of the present invention provides a wireless communication system, including: a network device and a user equipment,
  • the network device is the network device described in any of the foregoing third aspect or the third aspect;
  • the user equipment is the user equipment described in any of the foregoing fourth aspect or the fourth aspect.
  • the network device can configure the sub-band configuration information of the basic parameters of different physical layers.
  • the device is sent to the user equipment, and the network device and the user equipment can communicate through different sub-bands to meet the diversified needs of the communication service.
  • FIG. 1 is a schematic block diagram of a filtered orthogonal frequency division multiplexing F-OFDM processing procedure
  • FIG. 2 is a schematic diagram of an embodiment of a communication method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a division of a downlink sub-band in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a division of an uplink subband in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a correspondence relationship between uplink and downlink subbands in an FDD system according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a correspondence relationship between uplink and downlink subbands in a TDD system according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a reconfiguration of a sub-band in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an embodiment of a network device according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an embodiment of a user equipment according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an embodiment of a network device/user equipment according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of another embodiment of a network device according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of another embodiment of a user equipment according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of an embodiment of a wireless communication system according to an embodiment of the present invention.
  • the embodiment of the present invention provides a communication method, where a network device can send configuration information of subbands of basic parameters of different physical layers to a user equipment, and the network device and the user equipment can communicate through different subbands, thereby satisfying various communication services. Demand.
  • the embodiments of the present invention also provide corresponding devices and systems. The details are described below separately.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system applied in the embodiment of the present invention includes a user equipment and a network equipment.
  • the user equipment can communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the user equipment can refer to (User Equipment, referred to as “UE”), access user equipment, subscriber unit, and subscriber station. , mobile station, mobile station, remote station, remote user equipment, mobile device, wireless communication device, user agent or user device.
  • the access user equipment can be a cellular phone, a cordless phone, a Session Initiation Protocol ("SSIP”) phone, a Wireless Local Loop (WLL) station, and a personal digital processing (Personal).
  • SSIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • Personal Personal digital processing
  • PDA Digital Assistant
  • a handheld device with wireless communication capabilities a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, a user device in a future 5G network, and the like.
  • the network device may be a device for communicating with the user equipment, for example, may be a GSM system or a network device in a CDMA system (Base Transceiver Station, abbreviated as "BTS”), or may be a network device in a WCDMA system (NodeB, Abbreviated as "NB"), which may also be an evolved network device (Evolutional Node B, "eNB” or “eNodeB”) in the LTE system, or the network device may be a relay station, an access point, an in-vehicle device, or Wearable devices and network side devices in future 5G networks or network devices in future evolved PLMN networks.
  • GSM Global System
  • CDMA Code Division Multiple Access
  • NB Wideband Code Division Multiple Access
  • eNB evolved network device
  • eNodeB evolved network device
  • the network device may be a relay station, an access point, an in-vehicle device, or Wearable devices and network side devices in future 5G networks or network devices in future evolved PLMN networks
  • F-OFDM Filtered Orthogonal Frequency Division Multiplex
  • OFDM Orthogonal Frequency Division Multiplexing
  • FIG. 1 is a simplified block diagram of the F-OFDM processing.
  • a carrier is divided into N subbands, each subband occupies a certain bandwidth, the data of each subband is processed independently, and the configuration information of each subband can be different. Finally, each subband is separately filtered and superimposed. Together, launch in the air.
  • the physical layer numerology of different subbands may be the same or different.
  • the basic parameters of the physical layer of the subband include the subcarrier bandwidth, the transmission time interval ("TTI") length, the symbol length, the number of symbols, and the length of the cyclic prefix (Cyclic Prefix, "CP"). At least one of them.
  • TTI transmission time interval
  • CP Cyclic Prefix
  • the basic parameters of the physical layer of the subband can be pre-configured or flexibly adapted according to the traffic load and the like.
  • Subbands configured with basic parameters of different physical layers are usually suitable for different service types.
  • the basic parameters of the physical layer of the subband in the embodiment of the present invention may be a subcarrier bandwidth, a transmission time interval ("TTI") length, a symbol length, a symbol number, and a cyclic prefix (Cyclic Prefix, referred to as There is one difference or a plurality of different parameters such as "CP") length, for example, different sub-bands have different TTIs.
  • TTI transmission time interval
  • CP cyclic prefix
  • the configuration information of the subband is used by the user equipment or the network device to locate the subband and use the subband, and the configuration information of the subband may include a location of a subband currently configured by the system.
  • the bandwidth may include the physical layer basic parameters of the subband or may not include the physical layer basic parameters of the subband.
  • the configuration information may include the identification information of the sub-band, and the physical layer basic parameters of the sub-band are determined in the pre-configured physical layer basic parameters by using the identifier information of the sub-band, if the physical layer of the sub-band is included in the configuration information. parameter.
  • the configuration information of the subband may further include a frequency range of the subband, a frequency center point of the subband, a load condition or an idle condition of the subband, a coverage condition or a power level of the subband, a service type identifier, The priority of the subband, the correspondence between the uplink and downlink subbands, and so on.
  • F-OFDM can filter the sub-bands so that the sub-bands do not affect each other, so that different physical layer basic parameters can be configured for the sub-bands to adapt to the characteristics of different services and environments, and the services with different characteristics are placed at the most. Transfer in a suitable sub-band to improve the performance of the entire system. There will be no significant interference between the sub-bands, affecting the performance of the system or sub-bands.
  • a method for subband division, configuration, and reconfiguration is designed in the embodiment of the present invention, and a related scheme of how the subband information is notified to the user equipment.
  • an embodiment of a method for communication provided by an embodiment of the present invention includes:
  • the network device acquires configuration information of the first subband and configuration information of the second subband, where the The configuration information of the second sub-band includes the identification information of the second sub-band, and the identifier information of the second sub-band is used by the user equipment to determine a physical layer basic parameter of the second sub-band, the first sub-band
  • the physical layer basic parameters are different from the physical layer basic parameters of the second sub-band.
  • the second sub-band may have one or more.
  • the manners of obtaining the configuration information of the first sub-band and the configuration information of the second sub-band may be various, for example, reading the configuration information of the first sub-band in the preset file and the configuration information of the second sub-band.
  • the configuration information further includes at least one of a location, a bandwidth, a physical layer basic parameter, a frequency range, a frequency center point, a load condition, a type identifier of the supported service, and a priority of the second subband.
  • the physical layer basic parameter includes at least one of a subcarrier bandwidth, a transmission time interval TTI, a symbol length, a symbol number, and a cyclic prefix CP length.
  • the network device determines the first subband and the second subband.
  • the determining, by the network device, the first subband and the second subband may include:
  • the network device determines the first sub-band according to the type of the service environment, and determines the second sub-band according to the type of the service.
  • the type of the service environment refers to the service environment in which the network device is located, for example, when the network device is compatible with the Long Term Evolution (LTE) system, the type of the service environment. It is the type of LTE. When it is compatible with other 2G or 3G communication systems, the type of the service environment is the type of other 2G or 3G communication systems.
  • LTE Long Term Evolution
  • the downlink sub-band in the downlink carrier bandwidth is divided according to the downlink service requirement, and the uplink sub-band in the uplink carrier bandwidth is divided according to the uplink service requirement, where the downlink service requirement and the uplink service requirement are not At the same time, the division of the downlink subband and the division of the uplink subband are also different.
  • the network device sends configuration information of the second subband on the first subband.
  • the user equipment After receiving the configuration information of the second subband sent by the network device, the user equipment communicates with the network device by using the second subband.
  • the network device can basically different physical layers.
  • the configuration information of the sub-band of the parameter is sent to the user equipment, and the network device and the user equipment can communicate through different sub-bands, thereby satisfying the diversified requirements of the communication service.
  • the method further includes:
  • the network device sends configuration information of the third sub-band on the first sub-band
  • the third sub-band is a downlink sub-band
  • the second sub-band is a downlink sub-band
  • the third sub-band is an uplink sub-band
  • the method further includes: when the user equipment accesses from the first sub-band, the network device further switches the user equipment to the service according to a service type of the user equipment.
  • the type corresponds to the second subband.
  • the communication system generally includes a frequency division duplex (“FDD”) system and a time division duplex (“TDD”) system, and the FDD system uplink and downlink frequency resources.
  • FDD frequency division duplex
  • TDD time division duplex
  • the spectrum range is different, and the uplink and downlink data transmission can be performed simultaneously.
  • the spectrum range of the uplink and downlink frequency resources of the TDD system is the same, but the time is different.
  • the uplink and downlink alternately use the spectrum resources in the range.
  • the FDD system is an uplink and downlink frequency division system.
  • the design of the whole system does not lead to too complicated design of other necessary functions, such as Hybrid Automatic Repeat request (Hybrid Automatic Repeat request, Referred to as "HARQ"), synchronization, broadcasting, and scheduling, etc., we must also consider and meet the diversity requirements of future services.
  • HARQ Hybrid Automatic Repeat request
  • the sub-band division of F-OFDM is designed as shown in Figure 3 and Figure 4.
  • FIG. 3 is a schematic diagram of downlink subband division of an FDD system
  • FIG. 4 is a schematic diagram of uplink subband division of an FDD system.
  • a primary subband and a plurality of secondary subbands may be defined in the downlink subband, and the downlink primary subband is mainly used for transmitting system messages and transmitting configuration information of the subbands.
  • the downlink slave subband is mainly used for the transmission of downlink service data.
  • the first sub-band can be understood as the downlink main sub-band
  • the second sub-band 1 to the second sub-band 5 can be understood as the downlink sub-band.
  • the uplink sub-band may also have an uplink primary sub-band and an uplink secondary sub-band.
  • the uplink primary sub-band carries a response message of the message received from the downlink primary sub-band, and the uplink primary band is mainly used for the transmission of the uplink service data.
  • the third sub-band can be understood as an uplink main sub-band
  • the fourth sub-band 1 to the fourth sub-band 3 can be understood as an uplink sub-band.
  • the second sub-band, the third sub-band and the fourth sub-band in FIG. 3 and FIG. 4 are only the serial numbers in the scene for convenience of explanation, and do not limit the second sub-described in the weight phase.
  • the belt and the third sub-band must be the second sub-band and the third sub-band in Figures 3 and 4.
  • the second sub-band in the weight phase can be understood as the second sub-band 1 to the second sub-band 5 in FIG. 3
  • the third sub-band in the weight phase can be understood as The third sub-band and the fourth sub-band 1 to the fourth sub-band 3 in FIG.
  • the downlink carrier or the uplink carrier When the downlink carrier or the uplink carrier is divided in subbands, it may be divided into multiple subbands of the same or different bandwidth. Any subband occupies at least one radio frame in the time domain, that is, the subband does not change within one radio frame.
  • the user equipment first receives system information through the first sub-band, and learns configuration information of the second sub-band and the uplink sub-band.
  • the location of the first subband is usually set at the center point of the carrier frequency band, and the initial bandwidth and related parameters may be set according to the default service environment in which the network device is located; of course, the location of the first subband may not be located at the center point of the frequency band. This embodiment of the present invention does not specifically limit this.
  • the first sub-band must be set and the bandwidth it occupies can be adjusted.
  • the basic parameters of the physical layer of the first subband can be set to typical parameters of the LTE system, for example, the TTI size is 1 ms, and the waveform is a typical OFDM, subcarrier.
  • the interval is 15 kHz.
  • the network device sends configuration information of the second sub-band and the uplink sub-band to the user equipment in the coverage area in the first sub-band.
  • the user equipment When the user equipment is initially accessed, the user equipment is first accessed from the first sub-band. After the access, the network equipment can switch the user equipment to work on the corresponding second sub-band according to the service characteristics of the user equipment. Since the user equipment can perform different services at the same time, the user equipment can work in multiple second sub-bands at the same time.
  • the network device also configures a correspondence between the downlink sub-band and the uplink sub-band, and sends the corresponding relationship to the user equipment by using the first sub-band, where the corresponding relationship is used to indicate that the user equipment is uplinked from the corresponding relationship.
  • the subband carries feedback response data that is made for data received from the downlink subband of the corresponding relationship.
  • the correspondence includes: the second sub-band 1 and the third sub-band 3. The data received by the user equipment from the second sub-band 1 needs to feed back response data to the network device on the third sub-band 3.
  • the method further includes:
  • the uplink sub-band corresponding to the first sub-band matches the TTI of the first sub-band.
  • the expression of the information of the uplink sub-band corresponding to the first sub-band may be represented by a form of a corresponding relationship, and the information of the uplink sub-band corresponding to the first sub-band may be pre-configured, It can be dynamically configured by the network device.
  • the method further includes:
  • the network device When the second sub-band is a downlink sub-band, the network device sends information about an uplink sub-band corresponding to the second sub-band on the first sub-band;
  • the user equipment receives information of an uplink sub-band corresponding to the second sub-band from the first sub-band;
  • the uplink sub-band corresponding to the second sub-band and the TTI of the second sub-band match.
  • the network device sends, on the first sub-band, information about a downlink sub-band corresponding to the second sub-band;
  • the user equipment receives information about a downlink sub-band corresponding to the second sub-band from the first sub-band;
  • the downlink sub-band corresponding to the second sub-band and the TTI of the second sub-band match.
  • the second sub-band is a downlink sub-band
  • the corresponding downlink sub-band can be Therefore, it is pre-configured, or it can be dynamically configured by the network device.
  • the user equipment receives the downlink data from the second sub-band according to the uplink sub-band information corresponding to the second sub-band, and the The at least one uplink subband corresponding to the two subbands feeds back response data to the network device.
  • the user equipment feeds back the response data from the second sub-band after receiving data from the downlink sub-band corresponding to the second sub-band.
  • the downlink service occupies one band of bandwidth and the uplink service occupies another band.
  • the upper and lower subbands usually need to have a corresponding relationship. Only in the special case of the downlink subband does not need the associated uplink subband. For example, some sub-bands that do broadcast services may have no associated uplink sub-bands.
  • FIG. 5 is a schematic diagram of association between uplink and downlink subbands in an FDD system.
  • the downlink sub-band includes a first sub-band and a second sub-band 1 to a second sub-band 5 and the uplink sub-band includes a third sub-band and a fourth sub-band 1 to a fourth sub-band 3.
  • the first sub-band and the third sub-band have the corresponding relationship described above. This correspondence is described later as a correspondence.
  • the second sub-band 1 corresponds to the fourth sub-band 2
  • the second sub-band 2 corresponds to the fourth sub-band 1
  • the second sub-band 3 corresponds to the fourth sub-band 2
  • the second sub-band 5 has no corresponding uplink sub-band.
  • the correspondence between the uplink and downlink sub-bands is asymmetric regardless of the bandwidth or the relative position in the carrier, and the correspondence between the uplink and downlink sub-bands is performed according to the uplink and downlink service requirements.
  • the corresponding relationship between the uplink and downlink sub-bands is not one-to-one. Of course, it may be one-to-one, or one-to-many, or many-to-one, or many-to-many relationships. That is, the uplink sub-bands corresponding to the two or more downlink sub-bands may be the same; or a downlink sub-band may correspond to multiple uplink sub-bands.
  • the correspondence between the uplink and downlink sub-bands can be set at the time of system initialization, or can be dynamically adjusted as needed during the system operation to adapt to dynamic changes of the service scene.
  • the second sub-band 3 and the second sub-band 1 of the downlink correspond to the fourth sub-band 2 of the uplink; the second sub-band 5 has no corresponding uplink sub-band, indicating that the second sub-band 5 of the downlink does not have a corresponding
  • the second sub-band 5 may be a sub-band for the broadcast service.
  • the uplink and downlink sub-bands are independent in division. Downstream subband and uplink sub
  • the configuration is also independent of the configuration information. Since the uplink and downlink are different in service characteristics, the uplink and downlink subbands require independent configuration information in order to better transmit their respective services. For example, the typical uplink and downlink traffic is asymmetric, then the downlink The bandwidth of the uplink sub-band corresponding to the sub-band can be configured differently; for example, different waveforms are used for the uplink and downlink, which is also a typical setting.
  • the carrier bandwidth of the uplink and downlink may be different from the entire carrier, and is adjusted according to uplink and downlink services and available bandwidth.
  • the TTIs of the uplink and downlink sub-bands in the corresponding relationship are generally matched, that is, the same TTI length is used, or the TTI of the downlink sub-band is required to be an integer multiple of the TTI of the uplink sub-band to ensure HARQ.
  • the feedback can be timely.
  • the user equipment can also access directly from the corresponding sub-band. There can be some special sub-bands.
  • Special sub-band Special access sub-band for user equipment of a special scene or single function to meet scene restrictions or functional restrictions
  • a special sub-band such as a sub-band of Machine Type Communication (MTC) for the Internet of Things.
  • MTC Machine Type Communication
  • the MTC service is a basic service that the 5G network needs to support. Due to the special requirements of cost or power consumption, the MTC user equipment needs to support the user equipment of the MTC service in the system design, and can directly access the sub-band supporting the MTC service.
  • the MTC sub-band provides fast access to preset parameters, reducing the time for MTC user equipment network searches, and capability requirements.
  • Special sub-bands such as sub-bands for high-speed mobile user equipment access, high-speed access sub-bands for user equipments at high speed, because the first sub-band is designed for user equipment access for ordinary low- and medium-speed mobile
  • the high-speed mobile user equipment will be difficult to access on the first sub-band, and special access must be set for high-speed mobile user equipment.
  • Special sub-bands such as sub-bands for broadcasting, broadcast sub-bands are generally downlink sub-bands, and broadcast sub-bands are generally used for broadcasting services for the entire coverage area, and broadcast sub-bands are generally not associated with dedicated uplink sub-bands.
  • the uplink data is just some signaling transmission or simple Single feedback, in which case the broadcast subband can be randomly associated with any of the uplink subbands.
  • Special sub-bands such as empty sub-bands: In order to reduce system interference and energy consumption, if the traffic is low and the corresponding bandwidth resources are not needed for the service, the excess bandwidth resources can be vacated to form a null sub-band.
  • the empty subband is a subband that does not send any information, and does not transmit the configuration information of the empty subband in the subband broadcast message of the first subband.
  • the position of the null subband can occur anywhere in the band of the network device except the first subband. Sometimes if the system suddenly has some narrow-band interference, the interference position can be reconfigured as an empty sub-band to avoid the influence of interference.
  • the null sub-band can also be used to coordinate the spectrum allocation at the cell edge and reduce the co-channel interference problem at the cell edge.
  • a priority may be set for each second sub-band, and a priority may be set for each uplink sub-band.
  • the sub-band priority is set to distinguish users or services of different priorities, so that high-priority Users or businesses can obtain corresponding service resources to ensure their satisfaction.
  • a sub-band or user device does not set a priority, it defaults to a certain priority.
  • Subband hopping Since a 5G single carrier can reach hundreds of megabits of bandwidth, multiple subbands of different bandwidths can be divided into the bandwidth of each carrier. In order to be able to utilize such a large bandwidth frequency diversity gain, the subband can be frequency hopped.
  • subband hopping There are several ways of subband hopping: fixed mode hopping: several fixed hopping modes can be set; dynamic frequency hopping is performed according to the estimation result of frequency diversity gain.
  • the frequency hopping method broadcasts in the system message or notifies the connected user equipment by unicast.
  • the uplink and downlink of the TDD system are differentiated by time. That is to say, the uplink and downlink services of the system occupy the same carrier bandwidth, and are used for downlink services for a period of time and for uplink services for a period of time.
  • Figure 6 is a schematic diagram of a typical TDD system subband division:
  • the carrier bandwidth is divided into multiple sub-bands in each time period of uplink and downlink transmission, each sub-band occupies a certain bandwidth; sub-band division in the uplink time and sub-banding in the downlink time Points are independent.
  • the downlink sub-band includes a first sub-band and a second sub-band 1 to a second sub-band 5
  • the uplink sub-band includes a third sub-band and a fourth sub-band.
  • the first sub-band and the third sub-band have the corresponding relationship described above. This correspondence is described later as a correspondence.
  • the second sub-band 1 corresponds to the fourth sub-band 2
  • the second sub-band 2 corresponds to the fourth sub-band 1
  • the second sub-band 3 corresponds to the fourth sub-band 2
  • the second sub-band 4 and the fourth sub-band 2 Corresponding to the fourth sub-band 3
  • the second sub-band 5 corresponds to the fourth sub-band 3.
  • the existing sub-bands of the system may not be able to adapt to the new service or environment.
  • the sub-band needs to be re-adjusted and the configuration information is re-issued to the adjusted sub-band.
  • the business requirements or communication environment of the adaptation system This involves the reconfiguration of subbands.
  • the network device determines that sub-band reconfiguration is required, and obtains configuration information of each sub-band after reconfiguration;
  • the user equipment After the sub-band reconfiguration, the user equipment receives configuration information of each sub-band after reconfiguration from the first sub-band.
  • the connected The second sub-band is a downlink sub-band
  • configuration information of each subband after reconfiguration is received from the first subband.
  • the configuration information of the sub-bands changes correspondingly, and the user equipment has no use value to obtain the original configuration information, so when the network device is ready to be reconfigured,
  • the re-matching flag bit is sent through the first sub-band, and the re-matching flag bit can be Issued in the interest rate.
  • the network device modifies the state value of the reconfiguration flag to the state of preparing the subband reconfiguration at a preset time before the start of the reconfiguration period. And at the beginning of the reconfiguration period, the network device modifies the status value of the reconfiguration slot to the completed reconfiguration state.
  • the user equipment stops accessing the second sub-band when it recognizes that the status value of the sub-band reconfiguration flag bit is in a state of preparing a sub-band reconfiguration.
  • Figure 7 is a schematic diagram of sub-band reconfiguration.
  • the system will set a sub-band reconfiguration period. When the reconfiguration period comes, the system will re-match the sub-bands. During the re-matching period, the sub-band will not change. of.
  • the downstream sub-band before reconfiguration includes a first sub-band and a second sub-band 1 to a second sub-band 5.
  • the downlink sub-band after reconfiguration includes a first sub-band and a second sub-band 1 to a second sub-band 3.
  • the second sub-band 1, the second sub-band 2, and the second sub-band 3 before and after re-matching are different.
  • Subband reconfiguration is caused by changes in the service or wireless environment. For example, if a certain amount of traffic is increased, the sub-band resources corresponding to the transmission need to be increased to meet the service requirements. On the contrary, the sub-band bandwidth can be reduced, and the resources are reserved for other services with requirements. In addition, changes in the wireless environment may also result in sub-band reconfiguration to accommodate changes in the environment.
  • the reconfiguration period is an integer multiple of a radio frame and is a fraction of a period of a system frame number.
  • the subband reconfiguration must be at the end of the subband reconfiguration period, and the system operates at the beginning of the next subband reconfiguration period at the newly configured subband.
  • the subband reconfiguration period is an integer multiple of the radio frame length, a radio frame is usually 10 ms, and is a fractional multiple of the system frame number period, and a system frame number period usually includes 2048 radio frames, of course, as demand
  • the value added can also be extended to 4096 wireless frames.
  • the subband reconfiguration period can be set to 2048 radio frames, or 1024 radio frames. Or 512 radio frames, or 256 radio frames, for example, set to 512 radio frames, then when the system frame number can be divided by 512, it is the starting position of the next reconfiguration period.
  • the first sub-band typically changes bandwidth only during reconfiguration, and other information in the configuration information usually remains unchanged.
  • the second sub-band and the uplink sub-band are reconfigured, the service with no UE on the sub-band is required to be running, that is, the sub-band is unloaded.
  • the principle of subband reconfiguration is to try not to affect the existing user equipment in the subband. On the business.
  • the notification message is re-allocated by the first subband broadcast subband, and the relocation flag of the subband is set, and the relocation flag position bit indicates the next reconfiguration period.
  • the subband is to be reconfigured.
  • the network device starts to broadcast the sub-band reconfiguration notification message through the first sub-band, and the re-allocation notification message carries the re-allocation flag to indicate the next re-matching period.
  • the subband is to be reconfigured.
  • the unicast message can be used to notify the user equipment of the sub-band reconfiguration configuration information; or the sub-band reconfiguration configuration information can be notified by broadcast.
  • unicasting it is possible to tell the connected user equipment which sub-band re-matching, on which sub-band or sub-bands to receive the corresponding service. If it is a broadcast mode, the user equipment that receives the service under the sub-band can be notified to uniformly receive the corresponding service on the sub-band after the reconfiguration; if both the unicast and the multicast modes exist, then the specific device User equipment, subject to unicast notification.
  • the user equipment For the user equipment in the idle state, the user equipment directly receives the broadcast information from the first subband at the beginning of the reconfiguration period, and obtains the configuration information of the reconfigured subband.
  • the subband reconfiguration flag is cleared, indicating that the system is not currently performing subband reconfiguration.
  • a user equipment has services on at least two sub-bands, it is only necessary to notify the user equipment of the sub-band reconfiguration information on one of the sub-bands.
  • the UE can only receive one subband at the same time; the other is that the UE can receive multiple subbands at the same time.
  • the UE can only receive one subband at the same time:
  • the system adopts a two-level broadcasting scheme: broadcasting, by using the first subband, configuration information of the second subband and the uplink subband, and globally applicable broadcast information, and broadcast information related to the first subband itself;
  • the network device may send the reconfigured configuration information on the second sub-band sub-band, and the UE receives on the second sub-band. So the UE does not need to Switch to the first sub-band to receive updated system messages.
  • the second sub-band broadcasts a message that the main system message is updated. After receiving the message, the UE switches to the first sub-band to receive the system message update information. After completing the system message update, switch to the slave subband.
  • the UE can receive at least 2 subbands at the same time:
  • the UE when the UE performs the service in a certain sub-band, the UE can also receive the broadcast message of the first sub-band; therefore, the update of the first sub-band broadcast message does not need to be sent again from the sub-band;
  • the UE itself performs services on multiple sub-bands, and has no redundant capability to receive broadcast information on the first sub-band.
  • the UE is required to temporarily stop the service on a certain sub-band. Receive an update of the broadcast message on the first subband.
  • the present invention is directed to the standardization of the F-OFDM technology, and provides a coordinated design scheme that the wireless communication system needs to carry out. Through this scheme, the technical value of the F-OFDM can be effectively utilized, and the 5G system can be flexibly adapted to different services and application scenarios. ability.
  • an embodiment of a network device 30 includes:
  • the processing unit 301 is configured to determine a first sub-band and a second sub-band
  • the transceiver unit 302 is configured to send configuration information of the second sub-band to the user equipment on the first sub-band determined by the processing unit 301, and communicate with the user equipment by using the second sub-band;
  • the configuration information of the second sub-band includes the identifier information of the second sub-band, and the identifier information of the second sub-band is used by the user equipment to determine a physical layer basic parameter of the second sub-band,
  • the physical layer basic parameters of the first sub-band are different from the physical layer basic parameters of the second sub-band.
  • the network device provided by the embodiment of the present invention can send the configuration information of the sub-bands of the basic parameters of different physical layers to the user equipment, as compared with the basic parameters of the physical layer in the prior art.
  • Network devices and user devices can communicate through different sub-bands to meet the diverse needs of communication services.
  • the configuration information further includes at least one of a location, a bandwidth, a physical layer basic parameter, a frequency range, a frequency center point, a load condition, a type identifier of the supported service, and a priority of the second subband.
  • the physical layer basic parameters include a subcarrier bandwidth, a transmission time interval TTI, and a symbol. At least one of a length, a symbol number, and a cyclic prefix CP length.
  • the processing unit 301 is specifically configured to determine a first sub-band according to a type of the service environment, and determine a second sub-band according to the type of the service.
  • the downlink sub-band in the downlink carrier bandwidth is divided according to the downlink service requirement, and the uplink sub-band in the uplink carrier bandwidth is divided according to the uplink service requirement, where the downlink service requirement and the uplink service requirement are not At the same time, the division of the downlink subband and the division of the uplink subband are also different.
  • the transceiver unit 302 is further configured to send configuration information of the third sub-band on the first sub-band, where the third sub-band is an uplink sub-band, the third sub- The band is a downlink sub-band, and when the second sub-band is a downlink sub-band, the third sub-band is an uplink sub-band.
  • the transceiver unit 302 is further configured to send, on the first subband, information about an uplink subband corresponding to the first subband, where the uplink subroutine corresponding to the first subband The band matches the TTI of the first sub-band.
  • the transceiver unit 302 is further configured to:
  • the second sub-band is a downlink sub-band
  • information of an uplink sub-band corresponding to the second sub-band is sent on the first sub-band, and the uplink sub-corresponding to the second sub-band
  • the strap matches the TTI of the second sub-band
  • the second sub-band is an uplink sub-band
  • the band matches the TTI of the second sub-band.
  • processing unit 301 is further configured to: determine that sub-band reconfiguration is required, and obtain configuration information of each sub-band after reconfiguration;
  • the transceiver unit 302 is further configured to send, by using the first sub-band, configuration information of each sub-band after reconfiguration; or, after the first sub-band sends the re-matching to the user equipment in an idle state,
  • the configuration information of each subband is sent by the second subband to the configuration information of the reconfigured subbands to the user equipment having the service transmission on the second subband.
  • the processing unit 301 is further configured to: when the sub-band reconfiguration is periodic reconfiguration, the network device re-allocates the status value of the flag bit at a preset time before the start of the re-matching period Modify to preparation The status of the subband reconfiguration, at the beginning of the reconfiguration period, the network device modifies the status value of the reconfiguration slot to the completed reconfiguration state.
  • the reconfiguration period is an integer multiple of a radio frame and is a fraction of a period of a system frame number.
  • the transceiver unit may be an input/output device, such as a network card, and the processing unit may be a processor.
  • an embodiment of the user equipment 40 provided by the embodiment of the present invention includes:
  • the transceiver unit 401 is configured to receive configuration information of the second sub-band from the first sub-band, where configuration information of the second sub-band includes identification information of the second sub-band;
  • the processing unit 402 is configured to determine, according to the identifier information of the second subband received by the receiving unit 401, a physical layer basic parameter of the second subband, a physical layer basic parameter of the first subband, and the The basic parameters of the physical layer of the second sub-band are different;
  • the transceiver unit 401 is further configured to communicate with the network device by using the second sub-band.
  • the user equipment and the network equipment can communicate through different sub-bands, so as to satisfy the diversification of the communication service, compared with the basic parameters of the waveform and the physical layer of one carrier in the prior art. demand.
  • the configuration information further includes at least one of a location, a bandwidth, a physical layer basic parameter, a frequency range, a frequency center point, a load condition, a type identifier of the supported service, and a priority of the second subband.
  • the physical layer basic parameter includes at least one of a subcarrier bandwidth, a transmission time interval TTI, a symbol length, a symbol number, and a cyclic prefix CP length.
  • the transceiver unit 401 is further configured to receive configuration information of the third subband from the first subband; wherein, when the second subband is an uplink subband, the third sub The band is a downlink sub-band, and when the second sub-band is a downlink sub-band, the third sub-band is an uplink sub-band.
  • the transceiver unit 401 is further configured to receive information about an uplink subband corresponding to the first subband from the first subband, and the uplink subroutine corresponding to the first subband The band matches the TTI of the first sub-band.
  • the transceiver unit 401 is further configured to:
  • the second sub-band is a downlink sub-band
  • information of an uplink sub-band corresponding to the second sub-band is received from the first sub-band, and the uplink sub-corresponding to the second sub-band
  • the strap matches the TTI of the second sub-band
  • the second sub-band is an uplink sub-band
  • receiving information about a downlink sub-band corresponding to the second sub-band from the first sub-band, and the downlink sub-sub- The band matches the TTI of the second sub-band.
  • the transceiver unit 401 is further configured to: after sub-band reconfiguration, receive configuration information of each sub-band after reconfiguration from the first sub-band.
  • the transceiver unit 401 is further configured to:
  • the connected The second sub-band is a downlink sub-band
  • configuration information of each subband after reconfiguration is received from the first subband.
  • the processing unit 402 is further configured to stop accessing the second sub-band when the state value of the sub-band reconfiguration flag bit is determined to be in a state of preparing a sub-band reconfiguration.
  • the transceiver unit may be an input/output device, such as a network card, and the processing unit may be a processor.
  • the transceiver unit may be implemented by an input/output I/O device (such as a network card), and the processing unit may be processed by
  • the program is implemented by a program or an instruction in a memory (in other words, by a processor and a special instruction in a memory coupled to the processor); in another implementation, the transceiver unit can be input.
  • the output unit can be implemented by an I/O device (such as a network card), and the processing unit can also be implemented by a dedicated circuit.
  • the transceiver unit may be Implemented by input/output I/O devices (such as network cards),
  • the processing unit can also be implemented by a Field-Programmable Gate Array (FPGA).
  • FPGA Field-Programmable Gate Array
  • This embodiment provides a hardware structure of a network device/user device.
  • the hardware structure of a network device/user device may include:
  • Transceiver device software device and hardware device
  • the transceiver device is a hardware circuit for completing packet transmission and reception
  • Hardware devices can also be called “hardware processing modules", or simpler, or simply “hardware”. Hardware devices mainly include dedicated hardware circuits based on FPGAs, ASICs (and other supporting devices, such as memory). The hardware circuits of certain functions are often processed much faster than general-purpose processors, but once the functions are customized, they are difficult to change. Therefore, they are not flexible to implement and are usually used to handle some fixed functions. It should be noted that the hardware device may also include an MCU (microprocessor, such as a single chip microcomputer) or a processor such as a CPU in practical applications, but the main function of these processors is not to complete the processing of big data, but mainly used for processing. Some control is performed. In this application scenario, the system that is paired with these devices is a hardware device.
  • MCU microprocessor, such as a single chip microcomputer
  • Software devices mainly include general-purpose processors (such as CPU) and some supporting devices (such as memory, hard disk and other storage devices), which can be programmed to let the processor have the corresponding processing functions.
  • general-purpose processors such as CPU
  • some supporting devices such as memory, hard disk and other storage devices
  • the processed data can be sent through the transceiver device through the hardware device, or the processed data can be sent to the transceiver device through an interface connected to the transceiver device.
  • the transceiver device is configured to send configuration information or receive configuration information.
  • the transceiving may be implemented by an input/output I/O device (such as a network card), and the processing unit may be a technical solution that can be implemented by a processor executing a program or an instruction in the memory.
  • an input/output I/O device such as a network card
  • the processing unit may be a technical solution that can be implemented by a processor executing a program or an instruction in the memory.
  • FIG. 11 is a schematic structural diagram of a network device 50 according to an embodiment of the present invention.
  • the network device 50 includes a processor 510, a memory 550, and an input/output I/O device 530, which may include read only memory and random access memory, and provides operational instructions and data to the processor 510.
  • a portion of the memory 550 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 550 stores elements, executable modules or data structures, or a subset thereof, or their extension set:
  • the operation instruction can be stored in the operating system
  • configuration information of the second sub-band to the user equipment on the first sub-band, where configuration information of the second sub-band includes identification information of the second sub-band,
  • the identification information of the second sub-band is used by the user equipment to determine a physical layer basic parameter of the second sub-band, where physical layer basic parameters of the first sub-band and basic physical parameters of the second sub-band are different ;
  • the network device provided by the embodiment of the present invention can send the configuration information of the sub-bands of the basic parameters of different physical layers to the user equipment, as compared with the basic parameters of the physical layer in the prior art.
  • Network devices and user devices can communicate through different sub-bands to meet the diverse needs of communication services.
  • the processor 510 controls the operation of the network device 50, which may also be referred to as a CPU (Central Processing Unit).
  • Memory 550 can include read only memory and random access memory and provides instructions and data to processor 510. A portion of the memory 550 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the specific components of the network device 50 are coupled together by a bus system 520 in a specific application.
  • the bus system 520 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 520 in the figure.
  • Processor 510 may be an integrated circuit chip with signal processing capabilities. Implemented In the process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 510 or an instruction in a form of software.
  • the processor 510 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or discrete hardware. Component.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 550, and the processor 510 reads the information in the memory 550 and performs the steps of the above method in combination with its hardware.
  • the configuration information further includes at least one of a location, a bandwidth, a physical layer basic parameter, a frequency range, a frequency center point, a load condition, a type identifier of the supported service, and a priority of the second subband.
  • the physical layer basic parameter includes at least one of a subcarrier bandwidth, a transmission time interval TTI, a symbol length, a symbol number, and a cyclic prefix CP length.
  • the downlink sub-band in the downlink carrier bandwidth is divided according to the downlink service requirement, and the uplink sub-band in the uplink carrier bandwidth is divided according to the uplink service requirement, where the downlink service requirement and the uplink service requirement are not At the same time, the division of the downlink subband and the division of the uplink subband are also different.
  • the processor 510 is specifically configured to determine the first subband according to the type of the service environment, and determine the second subband according to the type of the service.
  • the I/O device 530 is further configured to send configuration information of the third sub-band on the first sub-band;
  • the third sub-band is a downlink sub-band
  • the second sub-band is a downlink sub-band
  • the third sub-band is an uplink sub-band
  • the I/O device 530 is further configured to send, on the first subband, information about an uplink subband corresponding to the first subband, where the uplink subband corresponding to the first subband Matching the TTI of the first sub-band.
  • I/O device 530 is also used to:
  • the network device sends, on the first sub-band, information of an uplink sub-band corresponding to the second sub-band, where the second sub-band Corresponding uplink subbands and TTIs of the second subbands are matched;
  • the network device sends, on the first sub-band, information about a downlink sub-band corresponding to the second sub-band, where the second sub-band The corresponding downlink sub-band matches the TTI of the second sub-band.
  • the processor 510 is further configured to: determine that sub-band reconfiguration is required, and obtain configuration information of each sub-band after reconfiguration;
  • the I/O device 530 is configured to send, by using the first subband, configuration information of each subband after reconfiguration; or, by using the first subband, send the reconfigured to each user equipment that is in an idle state.
  • the configuration information of the subband transmits, by the second subband, configuration information of each subband after the reconfiguration to a user equipment that has a service transmission on the second subband.
  • the processor 510 is further configured to: when the sub-band reconfiguration is periodic reconfiguration, at a preset time before the start of the reconfiguration period, the network device modifies the status value of the reconfiguration flag to the preparation The status of the subband reconfiguration, at the beginning of the reconfiguration period, the network device modifies the status value of the reconfiguration slot to the completed reconfiguration state.
  • the reconfiguration period is an integer multiple of a radio frame and is a fraction of a period of a system frame number.
  • FIG. 12 is a block diagram showing a partial structure of a user equipment 60 provided by an embodiment of the present invention.
  • the user equipment includes components such as a radio frequency circuit 610, a memory 620, an input unit 630, a display unit 640, a sensor 650, an audio circuit 660, a WiFi module 670, a processor 680, and a power source 690.
  • the structure of the user equipment shown in FIG. 12 does not constitute a limitation on the user equipment, and may include more or less components than those illustrated, or combine some components, or different component arrangements.
  • the user equipment in the embodiment of the present invention may be a mobile terminal device.
  • the radio frequency circuit 610 is configured to receive configuration information of the second subband sent by the network device.
  • the memory 620 can be used to store software programs and modules, and the processor 680 runs the storage The software programs and modules in the memory 620 thereby perform various functional applications and data processing of the user equipment.
  • the memory 620 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of user equipment (such as audio data, phone book, etc.).
  • memory 620 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 630 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the user device 60.
  • the input unit 630 may include a touch panel 631 and other input devices 632.
  • the touch panel 631 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 631 or near the touch panel 631. Operation), and drive the corresponding connected user equipment according to a preset program.
  • the touch panel 631 can include two parts: a touch detection user device and a touch controller.
  • the touch detection user equipment detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits a signal to the touch controller; the touch controller receives the touch information from the touch detection user equipment, and converts the touch information into contact coordinates. And then sent to the processor 680, and can receive the command sent by the processor 680 and execute it.
  • the touch panel 631 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 630 may also include other input devices 632.
  • other input devices 632 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 640 can be used to display information input by the user or information provided to the user as well as various menus of the user device.
  • the indicator unit 640 can include an indicator light 641.
  • the indicator light 641 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch panel 631 can cover the indicator light 641. When the touch panel 631 detects a touch operation on or near the touch panel 631, it transmits to the processor 680 to determine the type of the touch event, and then the processor 680 according to the touch event. The type provides a corresponding visual output on the indicator light 641.
  • touch panel 631 and the indicator light 641 are used as two independent components to implement input and input functions of the user equipment, but in some embodiments, the touch panel 631 and the indicator light 641 can be integrated to implement input of the user equipment. And output function.
  • User device 60 may also include at least one type of sensor 650.
  • An audio circuit 660, a speaker 661, and a microphone 662 can provide an audio interface between the user and the user device.
  • the audio circuit 660 can transmit the converted electrical data of the received audio data to the speaker 661 for conversion to the sound signal output by the speaker 661; on the other hand, the microphone 662 converts the collected sound signal into an electrical signal by the audio circuit 660. After receiving, it is converted into audio data, processed by the audio data output processor 680, transmitted to the, for example, another user equipment via the RF circuit 610, or outputted to the memory 620 for further processing.
  • the processor 680 is a control center for the user equipment, connecting various portions of the entire user equipment using various interfaces and lines, by running or executing software programs and/or modules stored in the memory 620, and recalling data stored in the memory 620.
  • the user equipment is subjected to various functions and processing data to perform overall monitoring of the user equipment.
  • the processor 680 may include one or more processing units; preferably, the processor 680 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 680.
  • the radio frequency circuit 610 is configured to receive configuration information of the second sub-band from the first sub-band, where configuration information of the second sub-band includes identification information of the second sub-band;
  • the processor 680 is configured to determine a physical layer basic parameter of the second sub-band according to the identifier information of the second sub-band, and communicate with the network device by using the second sub-band, where the first sub-band The physical layer basic parameters are different from the physical layer basic parameters of the second sub-band.
  • the user equipment 60 also includes a power source 690 (such as a battery) that supplies power to the various components.
  • a power source 690 such as a battery
  • the power source can be logically coupled to the processor 680 through a power management system to manage functions such as charging, discharging, and power management through the power management system. .
  • the user equipment 60 may also include a camera, a Bluetooth module, etc., not here. Let me repeat.
  • the configuration information further includes at least one of a location, a bandwidth, a physical layer basic parameter, a frequency range, a frequency center point, a load condition, a type identifier of the supported service, and a priority of the second subband.
  • the physical layer basic parameter includes at least one of a subcarrier bandwidth, a transmission time interval TTI, a symbol length, a symbol number, and a cyclic prefix CP length.
  • the radio frequency circuit 610 is further configured to receive configuration information of the third sub-band from the first sub-band;
  • the third sub-band is a downlink sub-band
  • the second sub-band is a downlink sub-band
  • the third sub-band is an uplink sub-band
  • the radio frequency circuit 610 is further configured to receive information about an uplink subband corresponding to the first subband from the first subband, and the uplink subband and the location corresponding to the first subband The TTIs of the first sub-bands match.
  • the radio frequency circuit 610 is further configured to:
  • the user equipment receives, from the first sub-band, information about an uplink sub-band corresponding to the second sub-band, where the second sub-band Corresponding uplink subbands and TTIs of the second subbands are matched;
  • the user equipment receives, from the first sub-band, information about a downlink sub-band corresponding to the second sub-band, and the second sub-band The corresponding downlink sub-band matches the TTI of the second sub-band.
  • the radio frequency circuit 610 is further configured to receive configuration information of each subband after reconfiguration from the first subband after subband reconfiguration.
  • the radio frequency circuit 610 is further configured to:
  • the connected The second sub-band is a downlink sub-band
  • configuration information of each subband after reconfiguration is received from the first subband.
  • the processor 680 is further configured to stop accessing the second sub-band when the status value of the sub-band reconfiguration flag is identified to be in a state of preparing sub-band reconfiguration.
  • an embodiment of a wireless communication system includes: a network device 30 and a user equipment 40;
  • the network device 30 is configured to determine a first sub-band and a second sub-band, where the configuration information of the second sub-band is sent to the user equipment, where the configuration information of the second sub-band includes the Identification information of the second sub-band, the identifier information of the second sub-band is used by the user equipment to determine a physical layer basic parameter of the second sub-band, a physical layer basic parameter of the first sub-band, and the The basic parameters of the physical layer of the second sub-band are different;
  • the user equipment 40 is configured to receive configuration information of the second sub-band from the first sub-band, where the configuration information of the second sub-band includes the identification information of the second sub-band, and the identification information according to the second sub-band Determining a physical layer basic parameter of the second sub-band, and communicating with the network device by the second sub-band.
  • the network device can configure the sub-band configuration information of the basic parameters of different physical layers, as compared with the prior art, where only one waveform and physical layer basic parameters can be adapted to the multi-service requirement.
  • the device is sent to the user equipment, and the network device and the user equipment can communicate through different sub-bands to meet the diversified needs of the communication service.
  • FIG. 1 to FIG. 7 can be used as an optional implementation manner of the wireless communication system of the present invention, and details are not repeatedly described herein.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: ROM, RAM, disk or CD.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种通信的方法,包括:网络设备确定第一子带和第二子带,在所述第一子带上向用户设备发送所述第二子带的配置信息,所述第二子带的配置信息包括所述第二子带的标识信息,所述第二子带的标识信息用于所述用户设备确定所述第二子带的物理层基本参数,所述第一子带的物理层基本参数和所述第二子带的物理层基本参数不同,所述网络设备通过所述第二子带与所述用户设备通信。本发明实施例提供的通信的方法,网络设备可以将不同物理层基本参数的子带的配置信息发送给用户设备,网络设备和用户设备可以通过不同的子带进行通信,从而满足通信业务多样化的需求。

Description

一种通信的方法、设备及系统
本申请要求于2015年10月13日提交中国专利局、申请号为201510670364.5、发明名称为“一种通信的方法、设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,具体涉及一种通信的方法、设备及系统。
背景技术
在现有的蜂窝通信中,一个载波一般只包含一种波形和物理层基本参数,在一个载波所包含的所有频率带宽上,都采用一套物理层基本参数。物理层基本参数通常包括:传输时间间隔(Transmission Time Interval,TTI),子载波间隔,循环前缀(Cyclic Prefix,CP)长度等等。如果在一个载波内,不同的频段带宽上,采用不同的物理层基本参数,极容易导致这些采用不同参数的资源间产生干扰,从而使得系统性能降低。在现有的蜂窝系统中,基本上都是采用这种物理层基本参数固定的模式,选择一种认为普遍适用的折中参数。但这种固定的模式无法适用于未来业务环境多样化,通信环境更加多样化的无线通信需求。
发明内容
为解决现有技术中载波的物理层基本参数固定,无法更好的适应多业务的需求,本发明实施例提供一种通信的方法,网络设备可以将不同物理层基本参数的子带的配置信息发送给用户设备,网络设备和用户设备可以通过不同的子带进行通信,从而满足通信业务多样化的需求。本发明实施例还提供了相应的设备及系统。
本发明第一方面提供一种通信的方法,包括:
网络设备确定第一子带和第二子带;
所述网络设备在所述第一子带上向用户设备发送所述第二子带的配置信息,所述第二子带的配置信息包括所述第二子带的标识信息,所述第二子带的标识信息用于所述用户设备确定所述第二子带的物理层基本参数,所述第一子带的物理层基本参数和所述第二子带的物理层基本参数不同;
所述网络设备通过所述第二子带与所述用户设备通信。
结合第一方面,在第一种可能的实现方式中,所述配置信息还包括所述第二子带的位置、带宽、物理层基本参数、频率范围、频率中心点、负载情况、所支持业务的类型标识和优先级中的至少一个。
结合第一方面或第一方面第一种可能的实现方式,在第二种可能的实现方式中,
所述物理层基本参数包括子载波带宽、传输时间间隔TTI、符号长度、符号数和循环前缀CP长度中的至少一个。
结合第一方面、第一方面第一种或第二种可能的实现方式,在第三种可能的实现方式中,所述网络设备确定第一子带和第二子带,包括:
所述网络设备根据业务环境的类型确定第一子带,根据业务的类型确定第二子带。
结合第一方面、第一方面第一种至第三种任一可能的实现方式,在第四种可能的实现方式中,所述方法还包括:
所述网络设备在所述第一子带上发送第三子带的配置信息;
其中,当所述第二子带为上行子带时,所述第三子带为下行子带,当所述第二子带为下行子带时,所述第三子带为上行子带。
结合第一方面、第一方面第一种至第四种任一可能的实现方式,在第五种可能的实现方式中,所述方法还包括:
所述网络设备在所述第一子带上发送与所述第一子带对应的上行子带的信息,所述与所述第一子带对应的上行子带和所述第一子带的TTI相匹配。
结合第一方面、第一方面第一种至第五种任一可能的实现方式,在第六种可能的实现方式中,所述方法还包括:
当所述第二子带为下行子带时,所述网络设备在所述第一子带上发送与所述第二子带对应的上行子带的信息,所述与所述第二子带对应的上行子带和所述第二子带的TTI相匹配;
当所述第二子带为上行子带时,所述网络设备在所述第一子带上发送与所述第二子带对应的下行子带的信息,所述与所述第二子带对应的下行子带和所述第二子带的TTI相匹配。
结合第一方面、第一方面第一种至第六种任一可能的实现方式,在第七种可能的实现方式中,所述方法还包括:
所述网络设备确定需要进行子带重配,则获取重配后的各子带的配置信息;
所述网络设备通过所述第一子带发送重配后的各子带的配置信息;或者,
所述网络设备通过所述第一子带向处于空闲态的用户设备发送所述重配后的各子带的配置信息,通过所述第二子带向在所述第二子带上有业务传输的用户设备发送所述重配后的各子带的配置信息。
结合第一方面第七种可能的实现方式,在第八种可能的实现方式中,所述方法还包括:
当子带重配是周期性重配时,在所述重配周期开始前的预置时刻,所述网络设备将重配标志位的状态值修改到准备子带重配的状态,在所述重配周期开始时,所述网络设备将所述重配志位的状态值修改到已完成重配状态。
本发明第二方面提供一种通信的方法,包括:
用户设备从第一子带上接收第二子带的配置信息,所述第二子带的配置信息包括所述第二子带的标识信息;
所述用户设备根据所述第二子带的标识信息确定所述第二子带的物理层基本参数,所述第一子带的物理层基本参数和所述第二子带的物理层基本参数不同;
所述用户设备通过所述第二子带与所述网络设备通信。
结合第二方面,在第一种可能的实现方式中,
所述配置信息还包括所述第二子带的位置、带宽、物理层基本参数、频率范围、频率中心点、负载情况、所支持业务的类型标识和优先级中的至少一个。
结合第二方面或第二方面第一种可能的实现方式,在第二种可能的实现方式中,
所述物理层基本参数包括子载波带宽、传输时间间隔TTI、符号长度、符号数和循环前缀CP长度中的至少一个。
结合第二方面、第二方面第一种或第二种可能的实现方式,在第三种可能 的实现方式中,所述方法还包括:
所述用户设备从所述第一子带上接收第三子带的配置信息;
其中,当所述第二子带为上行子带时,所述第三子带为下行子带,当所述第二子带为下行子带时,所述第三子带为上行子带。
结合第二方面、第二方面第一种至第三种任一可能的实现方式,在第四种可能的实现方式中,所述方法还包括:
所述用户设备从所述第一子带上接收与所述第一子带对应的上行子带的信息,所述与所述第一子带对应的上行子带和所述第一子带的TTI相匹配。
结合第二方面、第二方面第一种至第四种任一可能的实现方式,在第五种可能的实现方式中,
当所述第二子带为下行子带时,所述用户设备从所述第一子带上接收与所述第二子带对应的上行子带的信息,所述与所述第二子带对应的上行子带和所述第二子带的TTI相匹配;
当所述第二子带为上行子带时,所述用户设备从所述第一子带上接收与所述第二子带对应的下行子带的信息,所述与所述第二子带对应的下行子带和所述第二子带的TTI相匹配。
结合第二方面、第二方面第一种至第五种任一可能的实现方式,在第六种可能的实现方式中,
所述用户设备在子带重配后,从所述第一子带上接收重配后的各子带的配置信息。
结合第二方面、第二方面第一种至第五种任一可能的实现方式,在第七种可能的实现方式中,
在子带重配后,当所述用户设备正在使用所述第二子带传输业务时,从所连接的第二子带上接收重配后的各子带的配置信息,所述所连接的第二子带为下行子带;
在子带重配后,当所述用户设备处于空闲态时,从所述第一子带上接收重配后的各子带的配置信息。
结合第二方面第六种或第七种可能的实现方式,在第八种可能的实现方式 中,
所述用户设备当识别所述子带重配标志位的状态值处于准备子带重配的状态时,停止接入所述第二子带。
本发明第三方面提供一种网络设备,包括:
处理单元,用于确定第一子带和第二子带;
收发单元,用于在所述第一子带上向用户设备发送所述第二子带的配置信息,并通过所述第二子带与所述用户设备通信;其中,所述第二子带的配置信息包括所述第二子带的标识信息,所述第二子带的标识信息用于所述用户设备确定所述第二子带的物理层基本参数,所述第一子带的物理层基本参数和所述第二子带的物理层基本参数不同。
结合第三方面,在第一种可能的实现方式中,
所述配置信息还包括所述第二子带的位置、带宽、物理层基本参数、频率范围、频率中心点、负载情况、所支持业务的类型标识和优先级中的至少一个。
结合第三方面或第三方面第一种可能的实现方式,在第二种可能的实现方式中,
所述物理层基本参数包括子载波带宽、传输时间间隔TTI、符号长度、符号数和循环前缀CP长度中的至少一个。
结合第三方面、第三方面第一种或第二种可能的实现方式,在第三种可能的实现方式中,
所述处理单元,具体用于根据业务环境的类型确定第一子带,根据业务的类型确定第二子带。
结合第三方面、第三方面第一种至第三种任一可能的实现方式,在第四种可能的实现方式中,
所述收发单元,还用于在所述第一子带上发送第三子带的配置信息,其中,当所述第二子带为上行子带时,所述第三子带为下行子带,当所述第二子带为下行子带时,所述第三子带为上行子带。
结合第三方面、第三方面第一种至第四种任一可能的实现方式,在第五种可能的实现方式中,
所述收发单元,还用于在所述第一子带上发送与所述第一子带对应的上行子带的信息,所述与所述第一子带对应的上行子带和所述第一子带的TTI相匹配。
结合第三方面、第三方面第一种至第五种任一可能的实现方式,在第六种可能的实现方式中,
所述收发单元还用于:
当所述第二子带为下行子带时,在所述第一子带上发送与所述第二子带对应的上行子带的信息,所述与所述第二子带对应的上行子带和所述第二子带的TTI相匹配;
当所述第二子带为上行子带时,在所述第一子带上发送与所述第二子带对应的下行子带的信息,所述与所述第二子带对应的下行子带和所述第二子带的TTI相匹配。
结合第三方面、第三方面第一种至第六种任一可能的实现方式,在第七种可能的实现方式中,
所述处理单元,还用于确定需要进行子带重配,则获取重配后的各子带的配置信息;
所述收发单元,还用于通过所述第一子带发送重配后的各子带的配置信息;或者,通过所述第一子带向处于空闲态的用户设备发送所述重配后的各子带的配置信息,通过所述第二子带向在所述第二子带上有业务传输的用户设备发送所述重配后的各子带的配置信息。
结合第三方面第七种可能的实现方式,在第八种可能的实现方式中,
所述处理单元,还用于当子带重配是周期性重配时,在所述重配周期开始前的预置时刻,所述网络设备将重配标志位的状态值修改到准备子带重配的状态,在所述重配周期开始时,所述网络设备将所述重配志位的状态值修改到已完成重配状态。
本发明第四方面提供一种用户设备,包括:
收发单元,用于从第一子带上接收第二子带的配置信息,所述第二子带的配置信息包括所述第二子带的标识信息;
处理单元,用于根据所述接收单元接收的所述第二子带的标识信息确定所述第二子带的物理层基本参数,所述第一子带的物理层基本参数和所述第二子带的物理层基本参数不同;
所述收发单元,还用于通过所述第二子带与所述网络设备通信。
结合第四方面,在第一种可能的实现方式中,
所述配置信息还包括所述第二子带的位置、带宽、物理层基本参数、频率范围、频率中心点、负载情况、所支持业务的类型标识和优先级中的至少一个。
结合第四方面或第四方面第一种可能的实现方式,在第二种可能的实现方式中,
所述物理层基本参数包括子载波带宽、传输时间间隔TTI、符号长度、符号数和循环前缀CP长度中的至少一个。
结合第四方面、第四方面第一种或第二种可能的实现方式,在第三种可能的实现方式中,
所述收发单元,还用于从所述第一子带上接收第三子带的配置信息;其中,当所述第二子带为上行子带时,所述第三子带为下行子带,当所述第二子带为下行子带时,所述第三子带为上行子带。
结合第四方面、第四方面第一种至第三种任一可能的实现方式,在第四种可能的实现方式中,
所述收发单元,还用于从所述第一子带上接收与所述第一子带对应的上行子带的信息,所述与所述第一子带对应的上行子带和所述第一子带的TTI相匹配。
结合第四方面、第四方面第一种至第四种任一可能的实现方式,在第五种可能的实现方式中,
所述收发单元还用于:
当所述第二子带为下行子带时,从所述第一子带上接收与所述第二子带对应的上行子带的信息,所述与所述第二子带对应的上行子带和所述第二子带的TTI相匹配;
当所述第二子带为上行子带时,从所述第一子带上接收与所述第二子带对 应的下行子带的信息,所述与所述第二子带对应的下行子带和所述第二子带的TTI相匹配。
结合第四方面、第四方面第一种至第五种任一可能的实现方式,在第六种可能的实现方式中,
所述收发单元,还用于在子带重配后,从所述第一子带上接收重配后的各子带的配置信息。
结合第四方面、第四方面第一种至第五种任一可能的实现方式,在第七种可能的实现方式中,所述收发单元还用于:
在子带重配后,当所述用户设备正在使用所述第二子带传输业务时,从所连接的第二子带上接收重配后的各子带的配置信息,所述所连接的第二子带为下行子带;
在子带重配后,当所述用户设备处于空闲态时,从所述第一子带上接收重配后的各子带的配置信息。
结合第四方面第六种或第七种可能的实现方式,在第八种可能的实现方式中,
所述处理单元,还用于当识别所述子带重配标志位的状态值处于准备子带重配的状态时,停止接入所述第二子带。
本发明第五方面提供一种无线通信系统,包括:网络设备和用户设备,
所述网络设备为上述第三方面或第三方面任一可能实现方式所述的网络设备;
所述用户设备为上述第四方面或第四方面任一可能实现方式所述的用户设备。
与现有技术中一个载波只有一种波形和物理层基本参数,无法适应多业务需求相比,本发明实施例提供的通信的方法,网络设备可以将不同物理层基本参数的子带的配置信息发送给用户设备,网络设备和用户设备可以通过不同的子带进行通信,从而满足通信业务多样化的需求。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所 需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是滤波的正交频分复用F-OFDM处理过程的简略框图;
图2是本发明实施例中通信方法的一实施例示意图;
图3是本发明实施例中下行子带的一划分示意图;
图4是本发明实施例中上行子带的一划分示意图;
图5是本发明实施例FDD系统中上下行子带的一对应关系示意图;
图6是本发明实施例TDD系统中上下行子带的一对应关系示意图;
图7是本发明实施例中子带的一重配示意图;
图8是本发明实施例中网络设备的一实施例示意图;
图9是本发明实施例中用户设备的一实施例示意图;
图10是本发明实施例中网络设备/用户设备的一实施例示意图;
图11是本发明实施例中网络设备的另一实施例示意图;
图12是本发明实施例中用户设备的另一实施例示意图;
图13是本发明实施例中无线通信系统的一实施例示意图。
具体实施方式
本发明实施例提供一种通信的方法,网络设备可以将不同物理层基本参数的子带的配置信息发送给用户设备,网络设备和用户设备可以通过不同的子带进行通信,从而满足通信业务多样化的需求。本发明实施例还提供了相应的设备及系统。以下分别进行详细说明。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,简称为“GSM”)系统、码分多址(Code Division Multiple Access,简称为“CDMA”)系统、宽带码分 多址(Wideband Code Division Multiple Access,简称为“WCDMA”)通用分组无线业务(General Packet Radio Service,简称为“GPRS”)系统、长期演进(Long Term Evolution,简称为“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time Division Duplex,简称为“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称为“UMTS”)、全球互联微波接入(Worldwide Interoperability for Microwave Access,简称为“WiMAX”)通信系统,以及未来的5G通信系统等。
本发明实施例应用的通信系统中包括用户设备和网络设备。
用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备可以指(User Equipment,简称为“UE”)、接入用户设备、用户单元、用户站、移动站、移动台、远方站、远程用户设备、移动设备、无线通信设备、用户代理或用户装置。接入用户设备可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称为“SIP”)电话、无线本地环路(Wireless Local Loop,简称为“WLL”)站、个人数字处理(Personal Digital Assistant,简称为“PDA”)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的用户设备等。
网络设备可以是用于与用户设备进行通信的设备,例如,可以是GSM系统或CDMA中的网络设备(Base Transceiver Station,简称为“BTS”),也可以是WCDMA系统中的网络设备(NodeB,简称为“NB”),还可以是LTE系统中的演进型网络设备(Evolutional Node B,简称为“eNB”或“eNodeB”),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络侧设备或未来演进的PLMN网络中的网络设备等。
滤波的正交频分复用(Filtered Orthogonal Frequency Division Multiplex,简称为“F-OFDM”)是一种改进的正交频分复用技术,其基本原理是,通过把一个载波,划分成不同的子带,对每个子带进行滤波,并在子带边缘预留一定的保护带,从而使得子带和子带之间是不相关的,子带与子带之间互不影响。各子带的带宽可以不相同,子带的带宽根据业务需求来确定。
图1为F-OFDM处理过程的简略框图。如图1所示,一个载波被划分为N个子带,每个子带占用一定的带宽,每个子带的数据独立处理,每个子带的配置信息可以不同,最后对每个子带单独滤波后,叠加在一起,在空口发射。不同子带的物理层基本参数(numerology)可以相同,也可以不同。子带的物理层基本参数包括子载波带宽、传输时间间隔(Transmission Time Interval,简称为“TTI”)长度、符号长度、符号数,以及循环前缀(Cyclic Prefix,简称为“CP”)长度等参数中的至少一个。子带的物理层基本参数可以是预先配置好的,也可以根据业务负载等情况灵活的适配。通常不同物理层基本参数配置的子带适合于不同的业务类型。本发明实施例中子带的物理层基本参数不同可以是子载波带宽、传输时间间隔(Transmission Time Interval,简称为“TTI”)长度、符号长度、符号数,以及循环前缀(Cyclic Prefix,简称为“CP”)长度等参数中有一个不同或者有多个不同,例如:不同子带的TTI不同。
本发明实施例中,子带的配置信息用于所述用户设备或者网络设备定位所述子带并使用所述子带,所述子带的配置信息可以包括系统当前配置的子带的位置和带宽,可以包括子带的物理层基本参数,也可以不包括子带的物理层基本参数。在配置信息中可以包括子带的标识信息,需要通过子带的标识信息在预先配置的物理层基本参数中确定该子带的物理层基本参数,如果在配置信息中包括子带的物理层基本参数。另外,可选地,子带的配置信息中还可以包括子带的频率范围、子带的频率中心点、子带的负载情况或空闲情况、子带的覆盖情况或功率等级,业务类型标识、子带的优先级,上下行子带的对应关系等。
F-OFDM由于能够对子带进行滤波,使得子带之间相互不影响,从而能够对子带配置不同的物理层基本参数,以适应不同业务和环境的特性,把不同特性的业务放到最适合的子带中传输,提高整个系统的性能。而不会出现子带之间出现明显的干扰,影响系统或子带的性能。
为了达到以上目的,本发明实施例中设计了子带划分、配置和重配置的方法,以及子带信息如何通知到用户设备的相关方案。
参阅图2,本发明实施例提供的通信的方法的一实施例包括:
S101、网络设备获取第一子带的配置信息和第二子带的配置信息,所述第 二子带的配置信息包括所述第二子带的标识信息,所述第二子带的标识信息用于所述用户设备确定所述第二子带的物理层基本参数,所述第一子带的物理层基本参数和所述第二子带的物理层基本参数不同。
本发明实施例中,第二子带可以有一个,也可以有多个。
获取第一子带的配置信息和第二子带的配置信息的方式可以有多种,例如:读取预置文件中第一子带的配置信息和第二子带的配置信息。
可选地,所述配置信息还包括所述第二子带的位置、带宽、物理层基本参数、频率范围、频率中心点、负载情况、所支持业务的类型标识和优先级中的至少一个。
可选地,所述物理层基本参数包括子载波带宽、传输时间间隔TTI、符号长度、符号数和循环前缀CP长度中的至少一个。
S102、网络设备确定第一子带和第二子带。
可选地,所述网络设备确定第一子带和第二子带,可以包括:
所述网络设备根据业务环境的类型确定第一子带,根据业务的类型确定第二子带。
本发明实施例中,业务环境的类型指的是网络设备所处的业务环境,例如:当网络设备同时兼容长期演进(Long Term Evolution,简称为“LTE”)系统时,则该业务环境的类型就是LTE的类型,当要兼容其他2G或3G通信系统时,则该业务环境的类型就是其他2G或3G通信系统的类型。
可选地,所述下行载波带宽中的下行子带是依据下行业务需求进行划分的,上行载波带宽中的上行子带是依据上行业务需求进行划分的,所述下行业务需求与上行业务需求不同时,所述下行子带的划分和所述上行子带的划分也不同。
S103、网络设备在所述第一子带上发送所述第二子带的配置信息。
S104、用户设备接收所述网络设备发送的第二子带的配置信息后,通过所述第二子带与网络设备通信。
与现有技术中一个载波只有一种波形和物理层基本参数,无法适应多业务需求相比,本发明实施例提供的通信的方法,网络设备可以将不同物理层基本 参数的子带的配置信息发送给用户设备,网络设备和用户设备可以通过不同的子带进行通信,从而满足通信业务多样化的需求。
可选地,所述方法还包括:
所述网络设备在所述第一子带上发送第三子带的配置信息;
所述用户设备从所述第一子带上接收第三子带的配置信息;
其中,当所述第二子带为上行子带时,所述第三子带为下行子带,当所述第二子带为下行子带时,所述第三子带为上行子带。
可选地,所述方法还包括:当所述用户设备从第一子带上接入时,所述网络设备还根据所述用户设备的业务类型,将所述用户设备切换到与所述业务类型对应的第二子带上。
本发明实施例中,通信系统通常包括频分双工(Frequency Division Duplex,简称为“FDD”)系统和时分双工(Time Division Duplex,简称为“TDD”)系统,FDD系统上下行频率资源的频谱范围是不同的,可以同时进行上下行的数据传输。TDD系统上下行频率资源的频谱范围是相同的,只是时间上不同,上下行交替使用该范围内的频谱资源。
FDD系统为上下行频分系统,为简化F-OFDM波形技术应用到实际系统的设计,从整个系统考虑,不导致其他必要功能的设计过于复杂,比如混合自动重传请求(Hybrid Automatic Repeat request,简称为“HARQ”)、同步、广播、和调度等,同时也要考虑并满足未来业务的多样性要求,对F-OFDM的子带划分做了如图3和图4所示的设计。
图3是FDD系统下行子带划分示意图,图4是FDD系统上行子带划分示意图。
子带的数量可以有多个,并不是一定是图3和图4中所示的几个,可以是n个(n>=1),子带的带宽,可以根据需要进行配置。
在下行子带中可以定义一个主子带和多个从子带,下行主子带主要用于传输系统消息、传输从子带的配置信息。下行从子带主要用于下行业务数据的传输。例如:图3中,第一子带可以理解为是下行主子带,第二子带1至第二子带5可以理解为下行从子带。
实际上,上行子带中也可以有上行主子带和上行从子带,上行主子带主要用户传输从下行主子带上接收的消息的响应消息,上行从主带主要用于上行业务数据的传输。例如:图4中,第三子带可以理解为是上行主子带,第四子带1至第四子带3可以理解为是上行从子带。
需要说明的是,图3和图4中的第二子带、第三子带和第四子带只是在该场景中为了便于说明而标的序号,并不限定权相中所描述的第二子带和第三子带一定是图3和图4中的第二子带和第三子带。
作为一种可能的实施方式,可以将权相中的第二子带理解为是图3中的第二子带1至第二子带5,可以将权相中的第三子带理解为是图4中的第三子带和第四子带1至第四子带3。
下行载波或上行载波在子带划分时,可以划分为多个相同或者不同带宽的子带。任何一个子带在时域上占用至少一个无线帧,也就是子带在一个无线帧内不变。
通常情况下,用户设备首先通过第一子带接收系统信息,并获知第二子带和上行子带的配置信息。
第一子带的位置通常设置在载波频带的中心点,初始带宽和相关参数可以根据网络设备所处的默认业务环境进行设定;当然第一子带的位置也可以不位于频带的中心点,本发明实施例中对此不做具体限定。
第一子带必须设置,其所占用的带宽可以调整。为了与长期演进(Long Term Evolution,简称为“LTE”)系统兼容,第一子带的物理层基本参数可以设置为LTE系统的典型参数,比如TTI大小为1ms,waveform为典型的OFDM,子载波间隔为15kHz。
网络设备在第一子带上下发第二子带和上行子带的配置信息给覆盖范围内的用户设备。
一般用户设备在初始接入时,首先从第一子带接入;接入之后,根据用户设备的业务特性,网络设备可以把用户设备切换到对应的第二子带上工作。因为用户设备可以同时进行不同的业务,所以用户设备可以同时工作在多个第二子带。
本发明实施例中,网络设备还会为下行子带和上行子带配置对应关系,并通过第一子带向用户设备发送该对应关系,该对应关系用于指示用户设备从对应关系中的上行子带上反馈响应数据,该响应数据是针对从所述对应关系的下行子带上接收的数据做出的。例如:该对应关系中包括:第二子带1和第三子带3,则用户设备从第二子带1上接收的数据需要在第三子带3上向网络设备反馈响应数据。
可选地,所述方法还包括:
所述网络设备在所述第一子带上发送与所述第一子带对应的上行子带的信息;
所述用户设备从所述第一子带上接收与所述第一子带对应的上行子带的信息;
所述与所述第一子带对应的上行子带和所述第一子带的TTI相匹配。
与所述第一子带对应的上行子带的信息的表达形式可以是通过对应关系的形式来表示的,与所述第一子带对应的上行子带的信息可以是预先配置好的,也可以是网络设备动态配置的。
可选地,所述方法还包括:
当所述第二子带为下行子带时,所述网络设备在所述第一子带上发送与所述第二子带对应的上行子带的信息;
当所述第二子带为下行子带时,所述用户设备从所述第一子带上接收与所述第二子带对应的上行子带的信息;
所述与所述第二子带对应的上行子带和所述第二子带的TTI相匹配。
当所述第二子带为上行子带时,所述网络设备在所述第一子带上发送与所述第二子带对应的下行子带的信息;
当所述第二子带为上行子带时,所述用户设备从所述第一子带上接收与所述第二子带对应的下行子带的信息;
所述与所述第二子带对应的下行子带和所述第二子带的TTI相匹配。
当所述第二子带为下行子带时,与所述第二子带对应的下行子带的信息,或者,当所述第二子带为上行子带时,与所述第二子带对应的下行子带的信可 以是预先配置好的,也可以是网络设备动态配置的。
当所述第二子带为下行子带时,所述用户设备根据所述与第二子带对应的上行子带信息,从所述第二子带上接收下行数据后,从与所述第二子带对应的所述至少一个上行子带上向所述网络设备反馈应答数据。
当所述第二子带为上行子带时,所述用户设备从与该第二子带对应的下行子带上接收数据后,从该第二子带反馈应答数据。
上述实施例中上下行子带之间的对应,都可以用对应关系来表达。
在FDD系统中一般情况是下行业务占据一个频段带宽,上行业务占据另一个频段带宽。上下行子带通常都需要有一个对应关系。只有在特殊的情况下的下行子带才不需要与之关联的上行子带。例如:某些做广播业务的子带,可以没有关联的上行子带。
图5是FDD系统上下行子带关联示意图。
如图5所示,下行子带包括第一子带和第二子带1至第二子带5,上行子带包括第三子带和第四子带1至第四子带3。第一子带与第三子带存在前述所描述的对应关系。这种对应关系后面都描述为对应。第二子带1与第四子带2对应,第二子带2与第四子带1对应,第二子带3与第四子带2对应,第二子带4与第四子带3对应,第二子带5没有对应的上行子带。
从图5中可以看出,无论是带宽还是在载波中的相对位置,上下行子带之间的对应关系是不对称的,上下行子带之间的对应关系是根据上下行的业务需求进行配置的;上下行子带的对应关系也不是一对一的,当然,也可以是一对一,还可以是一对多,或多对一,或多对多的关系。也就是两个或多个下行子带对应的上行子带可以是同一个;或者某个下行子带,可以对应多个上行子带。这种上下行子带的对应关系,可以在系统初始化时设定,也可以在系统运行过程中根据需要动态的调整,以适应业务场景的动态变化。
例如:下行的第二子带3和第二子带1都与上行的第四子带2对应;第二子带子带5没有对应的上行子带,说明下行的第二子带5没有对应的上行业务,该第二子带5可能是用于广播业务的子带。
另外,需要说明的是,上下行子带在划分上是独立的。下行子带和上行子 带在配置信息的配置上也是各自独立的。由于上下行在业务特性上本身是有区别的,所以,上下行子带为了更好的传输各自的业务,本身也要求独立的配置信息,比如典型的上下行业务量是不对称的,那么下行子带对应的上行子带的带宽是可以配置不同的;又比如,上下行使用不同的waveform,也是一种典型的设置。
另外,从整个载波来说,上下行的载波带宽也可以不同,根据上下行业务和可用带宽来调整。
为了简化系统设计,一般要求上述对应关系中的上下行子带的TTI相匹配,也就是说,采用相同的TTI长度,或者要求下行子带的TTI是上行子带的TTI整数倍,以保证HARQ的反馈能够及时。
对于一些特殊的应用场景或业务,用户设备也可以直接从对应的从子带接入。可以有一些特殊的子带。
特殊子带:针对某种特殊场景或单一功能的用户设备的特殊接入子带,以满足场景限制或功能限制
特殊子带,比如用于物联网的机器对机器通信(Machine Type Communication,简称为“MTC”)的子带,MTC业务是5G网络需要支持的基本业务。MTC的用户设备由于成本或耗电的特殊要求,在系统设计上需要支持MTC业务的用户设备,能够直接接入到支持MTC业务的子带。MTC子带提供预设参数的快速接入,减少MTC用户设备网络搜索的时间,以及能力要求。
特殊子带,比如用于高速移动的用户设备接入的子带,高速接入子带对于处于高速运动的用户设备,由于第一子带的设计是用于普通中低速移动的用户设备接入的;高速移动的用户设备在第一子带上将难以接入,必须设置专门的用于高速移动用户设备的接入。
特殊子带,比如用于广播的子带,广播子带一般是下行子带,广播子带一般用于面向整个覆盖范围内进行广播业务,广播子带一般不用关联专门的上行子带。
但在使用蜂窝网络进行大范围的广播业务时,也可能存在需要用户设备反馈或接入广播业务的诉求。这种情况下,因为上行数据只是一些信令传输或简 单反馈,这中情况下可以将广播子带随机关联到任意一个上行子带上。
特殊子带,比如空子带:为了减少系统干扰和能耗,如果业务量较低,并不需要相应的带宽资源来进行业务,那么多余的带宽资源就可以空出来,形成空子带。空子带,顾名思义,就是不发送任何信息的子带,在第一子带的子带广播消息中也不发送空子带的配置信息。
空子带的位置,可以在除第一子带外,网络设备频带范围内的任何位置出现。有时系统如果突然出现一些窄带干扰,也可以把干扰位置重配为空子带,以避开干扰的影响。
在同频组网的情况下,空子带也可以用来协调小区边缘的频谱分配,降低小区边缘的同频干扰问题。
本发明实施例中,可以为各第二子带设置优先级,还可以为各上行子带设置优先级,子带优先级的设置是为了区分不同优先级的用户或业务,使得高优先级的用户或业务能够获得相应的服务资源,保障其满意度。
这样针对某些高优先级的子带只有优先级较高的用户才能接入,有利于保障重要用户的业务质量。
不是所有用户设备或子带都需要设置优先级,子带或用户设备如果不设置优先级,就默认为某个优先级。
子带跳频:由于5G单个载波可以达到数百兆的带宽,每个载波的带宽内可以划分出多个不同带宽的子带。为了能够利用这么大带宽的频率分集增益,可以对子带进行跳频。
子带跳频有多种方式:固定模式跳频:可以设置几种固定跳频模式;根据频率分集增益的预估结果,进行动态跳频。跳频的方式在系统消息中进行广播或通过单播通知连接态的用户设备。
TDD系统上下行是通过时间区分的,也就是说,系统上下行业务占用同样的载波带宽,在一段时间用于下行业务,一段时间用于上行业务,这样交替进行。图6是一个典型的TDD系统子带划分示意图:
图6中可以看出,在上下行发射的各自时间内,载波带宽被划分成多个子带,每个子带占用一定的带宽;上行时间内的子带划分和下行时间内的子带划 分是独立的。
在TDD系统中,上下行子带之间也是存在对应关系的,下行子带包括第一子带和第二子带1至第二子带5,上行子带包括第三子带和第四子带1至第四子带3。第一子带与第三子带存在前述所描述的对应关系。这种对应关系后面都描述为对应。第二子带1与第四子带2对应,第二子带2与第四子带1对应,第二子带3与第四子带2对应,第二子带4与第四子带2和第四子带3对应,第二子带5与第四子带3对应。
对应关系的描述可以参阅FDD系统中的相关描述进行理解,本处不做过多赘述。
由于业务或通信环境的变化,系统现有的子带,可能不能最好的适配新的业务或环境,需要重新调整子带,并对调整后的子带重新下发配置信息,来最佳的适配系统的业务需求或通信环境情况。这就涉及到子带的重配。
可选地,所述网络设备确定需要进行子带重配,则获取重配后的各子带的配置信息;
所述网络设备通过所述第一子带发送重配后的各子带的配置信息;或者,
所述网络设备通过所述第一子带向处于空闲态的用户设备发送所述重配后的各子带的配置信息,通过所述第二子带向在所述第二子带上有业务传输的用户设备发送所述重配后的各子带的配置信息。
所述用户设备在子带重配后,从所述第一子带上接收重配后的各子带的配置信息。
在子带重配后,当所述用户设备正在使用所述第二子带传输业务时,从所连接的第二子带上接收重配后的各子带的配置信息,所述所连接的第二子带为下行子带;
在子带重配后,当所述用户设备处于空闲态时,从所述第一子带上接收重配后的各子带的配置信息。
本发明实施例中,因为子带在重配后,子带的配置信息都相应的发生了变化,用户设备再去获取原来的配置信息已经没有使用价值了,所以网络设备在准备重配时,会通过第一子带下发重配标志位,该重配标志位可以是在系统消 息中下发的。
可选地,当子带重配是周期性重配时,在所述重配周期开始前的预置时刻,所述网络设备将重配标志位的状态值修改到准备子带重配的状态,在所述重配周期开始时,所述网络设备将所述重配志位的状态值修改到已完成重配状态。
所述用户设备当识别所述子带重配标志位的状态值处于准备子带重配的状态时,停止接入所述第二子带。
图7是子带重配示意图。如图7所示,一般情况下,系统会设置一个子带的重配周期,在重配周期到来的时候,系统才会重配子带,在重配周期内,子带是不会发生任何变化的。从图7中可以看出,从下一个重配周期的第一个帧开始,系统就开始使用重配后的子带。重配前的下行子带包括第一子带和第二子带1至第二子带5。重配后的下行子带包括第一子带和第二子带1至第二子带3。重配前后的第二子带1、第二子带2和第二子带3是不相同的。
子带重配是由业务或无线环境变化引起的。比如,某种业务量增加了,其对应传输的子带资源就需要增加以满足业务需求,相反,就可以减少子带带宽,把资源留给其他有需求的业务。另外,无线环境的变化也可能导致子带的重配,以适应环境的变化。
所述重配周期为无线帧的整数倍,且为系统帧号的周期的分数倍。
子带重配必须在该子带重配周期结束的时刻,系统在下一个的子带重配周期开始时按新配置的子带运行。子带重配周期为无线帧长的整数倍,一个无线帧通常为10ms,且为系统帧号的周期的分数倍,一个系统帧号的周期通常包括2048个无线帧,当然,随着需求的增值,也可以扩展为4096个无线帧。
例如:系统帧号的周期为2048个无线帧(也就是系统帧号为0,1,---2047),那么子带重配周期,可以设置为2048个无线帧,或1024个无线帧,或512个无线帧,或256个无线帧,比如设置为512个无线帧,那么在系统帧号能整除512时,为下一个重配周期的开始位置。
第一子带在重配时变化的通常只有带宽,配置信息中的其他信息通常都保持不变。第二子带和上行子带在重配时,要求子带上没有UE的业务在运行,也就是这个子带是空载的。子带重配的原则是尽量不影响现有用户设备在子带 上的业务。
在子带的下一个重配周期到来前,通过所述第一子带广播子带重配通知消息,并将子带的重配标志位置位,重配标志位置位表示下一个重配周期,子带要进行重配。
在每个子带重配周期结束前的几个无线帧,网络设备通过第一子带开始广播子带重配通知消息,在重配通知消息中携带重配标识位,表示下一个重配周期,子带要进行重配。
对于连接态的用户设备,可以通过单播消息通知用户设备子带重配后的配置信息;也可以通过广播通知子带重配后的配置信息。通过单播的话,可以告诉连接态的用户设备,在子带重配后,它在哪一个或几个子带上去接收对应的业务。如果是广播方式,那么可以通知在本子带下接收业务的用户设备,统一都到指定的重配后的子带上去接收对应的业务;如果单播和多播方式都存在,那么对具体的某个用户设备,以单播通知的方式为准。
对于空闲态的用户设备,用户设备直接在重配周期开始的时候从第一子带接收广播信息,获取重配后的子带的配置信息。
在新的子带重配周期开始时,将所述子带的重配标志位清除,表示系统现在没有进行子带重配了。
若某个用户设备在至少两个子带上有业务,那只需在其中一个子带上向该用户设备通知子带的重配信息。
系统广播是为了让用户设备快速正确的了解当前系统的信息,用于其快速准确的接入无线通信系统,并顺利开展各种系统支持的业务。
分两种情况,一种是UE只能同时接收一个子带;一种是UE可以同时接收多个子带。
UE只能同时接收一个子带的情况:
系统采用两级广播方案:通过第一子带广播第二子带和上行子带的配置信息和全局适用的广播信息,以及本第一子带自身相关的广播信息;
如果第二子带上的UE处于连接态(ACTIVE态),网络设备则可以在第二子带子带上发送重配后的配置信息,UE在第二子带上接收。这样UE就不需要再 切换到第一子带上去接收更新的系统消息了。
如果第二子带上的UE处于非连接态的,第二子带上会广播主系统消息有更新的消息,UE收到这个消息后,就切换到第一子带上去接收系统消息更新信息,完成系统消息更新后,再切换到从子带上。
UE能同时接收至少2个子带的情况:
那么UE在某个子带进行业务的时候,还能够接收第一子带的广播消息;因此,第一子带广播消息的更新,不需要再从子带上再次发送;
另外,还有一种情况是,UE本身在多个子带上进行业务,没有多余的能力再接收第一子带上的广播信息;这种情况下,要求UE暂时停止某个子带上的业务,去接收第一子带上广播消息的更新。
本发明针对F-OFDM技术的标准化,提供了无线通信系统需要在进行的配合设计方案,通过本方案,能够有效利用F-OFDM的技术价值,提供5G系统灵活的适配不同业务和应用场景的能力。
如图8所示,本发明实施例提供的网络设备30的一实施例包括:
处理单元301,用于确定第一子带和第二子带;
收发单元302,用于在所述处理单元301确定的第一子带上向用户设备发送所述第二子带的配置信息,并通过所述第二子带与所述用户设备通信;其中,所述第二子带的配置信息包括所述第二子带的标识信息,所述第二子带的标识信息用于所述用户设备确定所述第二子带的物理层基本参数,所述第一子带的物理层基本参数和所述第二子带的物理层基本参数不同。
与现有技术中一个载波只有一种波形和物理层基本参数,无法适应多业务需求相比,本发明实施例提供的网络设备可以将不同物理层基本参数的子带的配置信息发送给用户设备,网络设备和用户设备可以通过不同的子带进行通信,从而满足通信业务多样化的需求。
可选地,所述配置信息还包括所述第二子带的位置、带宽、物理层基本参数、频率范围、频率中心点、负载情况、所支持业务的类型标识和优先级中的至少一个。
可选地,所述物理层基本参数包括子载波带宽、传输时间间隔TTI、符号 长度、符号数和循环前缀CP长度中的至少一个。
所述处理单元301,具体用于根据业务环境的类型确定第一子带,根据业务的类型确定第二子带。
可选地,所述下行载波带宽中的下行子带是依据下行业务需求进行划分的,上行载波带宽中的上行子带是依据上行业务需求进行划分的,所述下行业务需求与上行业务需求不同时,所述下行子带的划分和所述上行子带的划分也不同。
可选地,所述收发单元302,还用于在所述第一子带上发送第三子带的配置信息,其中,当所述第二子带为上行子带时,所述第三子带为下行子带,当所述第二子带为下行子带时,所述第三子带为上行子带。
可选地,所述收发单元302,还用于在所述第一子带上发送与所述第一子带对应的上行子带的信息,所述与所述第一子带对应的上行子带和所述第一子带的TTI相匹配。
可选地,所述收发单元302还用于:
当所述第二子带为下行子带时,在所述第一子带上发送与所述第二子带对应的上行子带的信息,所述与所述第二子带对应的上行子带和所述第二子带的TTI相匹配;
当所述第二子带为上行子带时,在所述第一子带上发送与所述第二子带对应的下行子带的信息,所述与所述第二子带对应的下行子带和所述第二子带的TTI相匹配。
可选地,所所述处理单元301,还用于确定需要进行子带重配,则获取重配后的各子带的配置信息;
所述收发单元302,还用于通过所述第一子带发送重配后的各子带的配置信息;或者,通过所述第一子带向处于空闲态的用户设备发送所述重配后的各子带的配置信息,通过所述第二子带向在所述第二子带上有业务传输的用户设备发送所述重配后的各子带的配置信息。
可选地,所述处理单元301,还用于当子带重配是周期性重配时,在所述重配周期开始前的预置时刻,所述网络设备将重配标志位的状态值修改到准备 子带重配的状态,在所述重配周期开始时,所述网络设备将所述重配志位的状态值修改到已完成重配状态。
可选地,所述重配周期为无线帧的整数倍,且为系统帧号的周期的分数倍。
以上网络设备的实施例或任一可选实施例,都可以参阅图1至图7部分的相关描述进行理解,本处不做过多赘述。
以上多个实施例中,收发单元可以是输入/输出设备,例如:网卡,处理单元可以是处理器。
如图9所示,本发明实施例提供的用户设备40的一实施例包括:
收发单元401,用于从第一子带上接收第二子带的配置信息,所述第二子带的配置信息包括所述第二子带的标识信息;
处理单元402,用于根据所述接收单元401接收的所述第二子带的标识信息确定所述第二子带的物理层基本参数,所述第一子带的物理层基本参数和所述第二子带的物理层基本参数不同;
所述收发单元401,还用于通过所述第二子带与所述网络设备通信。
与现有技术中一个载波只有一种波形和物理层基本参数,无法适应多业务需求相比,本发明实施例用户设备和网络设备可以通过不同的子带进行通信,从而满足通信业务多样化的需求。
可选地,所述配置信息还包括所述第二子带的位置、带宽、物理层基本参数、频率范围、频率中心点、负载情况、所支持业务的类型标识和优先级中的至少一个。
可选地,所述物理层基本参数包括子载波带宽、传输时间间隔TTI、符号长度、符号数和循环前缀CP长度中的至少一个。
可选地,所述收发单元401,还用于从所述第一子带上接收第三子带的配置信息;其中,当所述第二子带为上行子带时,所述第三子带为下行子带,当所述第二子带为下行子带时,所述第三子带为上行子带。
可选地,所述收发单元401,还用于从所述第一子带上接收与所述第一子带对应的上行子带的信息,所述与所述第一子带对应的上行子带和所述第一子带的TTI相匹配。
可选地,所述收发单元401还用于:
当所述第二子带为下行子带时,从所述第一子带上接收与所述第二子带对应的上行子带的信息,所述与所述第二子带对应的上行子带和所述第二子带的TTI相匹配;
当所述第二子带为上行子带时,从所述第一子带上接收与所述第二子带对应的下行子带的信息,所述与所述第二子带对应的下行子带和所述第二子带的TTI相匹配。
可选地,所述收发单元401,还用于在子带重配后,从所述第一子带上接收重配后的各子带的配置信息。
可选地,所述收发单元401还用于:
在子带重配后,当所述用户设备正在使用所述第二子带传输业务时,从所连接的第二子带上接收重配后的各子带的配置信息,所述所连接的第二子带为下行子带;
在子带重配后,当所述用户设备处于空闲态时,从所述第一子带上接收重配后的各子带的配置信息。
可选地,所述处理单元402,还用于当识别所述子带重配标志位的状态值处于准备子带重配的状态时,停止接入所述第二子带。
以上用户设备的实施例或任一可选实施例,都可以参阅图1至图7部分的相关描述进行理解,本处不做过多赘述。
以上多个实施例中,收发单元可以是输入/输出设备,例如:网卡,处理单元可以是处理器。
在上述网络设备/用户设备的多个实施例中,应当理解的是,在一种实现方式下,收发单元可以是由输入/输出I/O设备(比如网卡)来实现,处理单元可以由处理器执行存储器中的程序或指令来实现的(换言之,即由处理器以及与所述处理器耦合的存储器中的特殊指令相互配合来实现);在另一种实现方式下收发单元可以是由输入/输出I/O设备(比如网卡)来实现,处理单元也可以分别通过专有电路来实现,具体实现方式参见现有技术,这里不再赘述;在再一种实现方式下,收发单元可以是由输入/输出I/O设备(比如网卡)来实现, 处理单元也可以通过现场可编程门阵列(FPGA,Field-Programmable Gate Array)来实现,具体实现方式参见现有技术,这里不再赘述,本发明包括但不限于前述实现方式,应当理解的是,只要按照本发明的思想实现的方案,都落入本发明实施例所保护的范围。
本实施例提供了一种网络设备/用户设备的硬件结构,参见图10所示,一种网络设备/用户设备的硬件结构可以包括:
收发器件、软件器件以及硬件器件三部分;
收发器件为用于完成包收发的硬件电路;
硬件器件也可称“硬件处理模块”,或者更简单的,也可简称为“硬件”,硬件器件主要包括基于FPGA、ASIC之类专用硬件电路(也会配合其他配套器件,如存储器)来实现某些特定功能的硬件电路,其处理速度相比通用处理器往往要快很多,但功能一经定制,便很难更改,因此,实现起来并不灵活,通常用来处理一些固定的功能。需要说明的是,硬件器件在实际应用中,也可以包括MCU(微处理器,如单片机)、或者CPU等处理器,但这些处理器的主要功能并不是完成大数据的处理,而主要用于进行一些控制,在这种应用场景下,由这些器件搭配的系统为硬件器件。
软件器件(或者也简单“软件”)主要包括通用的处理器(例如CPU)及其一些配套的器件(如内存、硬盘等存储设备),可以通过编程来让处理器具备相应的处理功能,用软件来实现时,可以根据业务灵活配置,但往往速度相比硬件器件来说要慢。软件处理完后,可以通过硬件器件将处理完的数据通过收发器件进行发送,也可以通过一个与收发器件相连的接口向收发器件发送处理完的数据。
本实施例中,收发器件用于发送配置信息或者接收配置信息。
硬件器件及软件器件的其他功能在前述实施例中已经详细论述,这里不再赘述。
下面结合附图就收发可以是由输入/输出I/O设备(比如网卡)来实现,处理单元可以是可以由处理器执行存储器中的程序或指令来实现的技术方案来做详细的介绍:
图11是本发明实施例提供的网络设备50的结构示意图。所述网络设备50包括处理器510、存储器550和输入/输出I/O设备530,存储器550可以包括只读存储器和随机存取存储器,并向处理器510提供操作指令和数据。存储器550的一部分还可以包括非易失性随机存取存储器(NVRAM)。
在一些实施方式中,存储器550存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:
在本发明实施例中,通过调用存储器550存储的操作指令(该操作指令可存储在操作系统中),
确定第一子带和第二子带;
通过I/O设备530在所述第一子带上向用户设备发送所述第二子带的配置信息,所述第二子带的配置信息包括所述第二子带的标识信息,所述第二子带的标识信息用于所述用户设备确定所述第二子带的物理层基本参数,所述第一子带的物理层基本参数和所述第二子带的物理层基本参数不同;
通过所述第二子带与所述用户设备通信。
与现有技术中一个载波只有一种波形和物理层基本参数,无法适应多业务需求相比,本发明实施例提供的网络设备可以将不同物理层基本参数的子带的配置信息发送给用户设备,网络设备和用户设备可以通过不同的子带进行通信,从而满足通信业务多样化的需求。
处理器510控制网络设备50的操作,处理器510还可以称为CPU(Central Processing Unit,中央处理单元)。存储器550可以包括只读存储器和随机存取存储器,并向处理器510提供指令和数据。存储器550的一部分还可以包括非易失性随机存取存储器(NVRAM)。具体的应用中网络设备50的各个组件通过总线系统520耦合在一起,其中总线系统520除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统520。
上述本发明实施例揭示的方法可以应用于处理器510中,或者由处理器510实现。处理器510可能是一种集成电路芯片,具有信号的处理能力。在实现过 程中,上述方法的各步骤可以通过处理器510中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器510可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器550,处理器510读取存储器550中的信息,结合其硬件完成上述方法的步骤。
可选地,所述配置信息还包括所述第二子带的位置、带宽、物理层基本参数、频率范围、频率中心点、负载情况、所支持业务的类型标识和优先级中的至少一个。
可选地,所述物理层基本参数包括子载波带宽、传输时间间隔TTI、符号长度、符号数和循环前缀CP长度中的至少一个。
可选地,所述下行载波带宽中的下行子带是依据下行业务需求进行划分的,上行载波带宽中的上行子带是依据上行业务需求进行划分的,所述下行业务需求与上行业务需求不同时,所述下行子带的划分和所述上行子带的划分也不同。
可选地,处理器510具体用于根据业务环境的类型确定第一子带,根据业务的类型确定第二子带。
可选地,I/O设备530还用于在所述第一子带上发送第三子带的配置信息;
其中,当所述第二子带为上行子带时,所述第三子带为下行子带,当所述第二子带为下行子带时,所述第三子带为上行子带。
可选地,I/O设备530还用于在所述第一子带上发送与所述第一子带对应的上行子带的信息,所述与所述第一子带对应的上行子带和所述第一子带的TTI相匹配。
可选地,I/O设备530还用于:
当所述第二子带为下行子带时,所述网络设备在所述第一子带上发送与所述第二子带对应的上行子带的信息,所述与所述第二子带对应的上行子带和所述第二子带的TTI相匹配;
当所述第二子带为上行子带时,所述网络设备在所述第一子带上发送与所述第二子带对应的下行子带的信息,所述与所述第二子带对应的下行子带和所述第二子带的TTI相匹配。
可选地,处理器510还用于:确定需要进行子带重配,则获取重配后的各子带的配置信息;
I/O设备530用于通过所述第一子带发送重配后的各子带的配置信息;或者,通过所述第一子带向处于空闲态的用户设备发送所述重配后的各子带的配置信息,通过所述第二子带向在所述第二子带上有业务传输的用户设备发送所述重配后的各子带的配置信息。
可选地,处理器510还用于当子带重配是周期性重配时,在所述重配周期开始前的预置时刻,所述网络设备将重配标志位的状态值修改到准备子带重配的状态,在所述重配周期开始时,所述网络设备将所述重配志位的状态值修改到已完成重配状态。
可选地,所述重配周期为无线帧的整数倍,且为系统帧号的周期的分数倍。
图12示出的是与本发明实施例提供的用户设备60的部分结构的框图。参考图12,用户设备包括:射频电路610、存储器620、输入单元630、显示单元640、传感器650、音频电路660、WiFi模块670、处理器680、以及电源690等部件。本领域技术人员可以理解,图12中示出的用户设备的结构并不构成对用户设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。本发明实施例中的用户设备可以是手机登终端设备。
下面结合图12对用户设备的各个构成部件进行具体的介绍:
射频电路610可用于接收网络设备发送的第二子带的配置信息;
存储器620可用于存储软件程序以及模块,处理器680通过运行存储 在存储器620的软件程序以及模块,从而执行用户设备的各种功能应用以及数据处理。存储器620可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据用户设备的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器620可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元630可用于接收输入的数字或字符信息,以及产生与用户设备60的用户设置以及功能控制有关的键信号输入。具体地,输入单元630可包括触控面板631以及其他输入设备632。触控面板631,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板631上或在触控面板631附近的操作),并根据预先设定的程式驱动相应的连接用户设备。可选的,触控面板631可包括触摸检测用户设备和触摸控制器两个部分。其中,触摸检测用户设备检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测用户设备上接收触摸信息,并将它转换成触点坐标,再送给处理器680,并能接收处理器680发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板631。除了触控面板631,输入单元630还可以包括其他输入设备632。具体地,其他输入设备632可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元640可用于显示由用户输入的信息或提供给用户的信息以及用户设备的各种菜单。显示单元640可包括指示灯641,可选的,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置指示灯641。进一步的,触控面板631可覆盖指示灯641,当触控面板631检测到在其上或附近的触摸操作后,传送给处理器680以确定触摸事件的类型,随后处理器680根据触摸事件的类型在指示灯641上提供相应的视觉输出。虽然在图12中, 触控面板631与指示灯641是作为两个独立的部件来实现用户设备的输入和输入功能,但是在某些实施例中,可以将触控面板631与指示灯641集成而实现用户设备的输入和输出功能。
用户设备60还可包括至少一种传感器650。
音频电路660、扬声器661,传声器662可提供用户与用户设备之间的音频接口。音频电路660可将接收到的音频数据转换后的电信号,传输到扬声器661,由扬声器661转换为声音信号输出;另一方面,传声器662将收集的声音信号转换为电信号,由音频电路660接收后转换为音频数据,再将音频数据输出处理器680处理后,经射频电路610以发送给比如另一用户设备,或者将音频数据输出至存储器620以便进一步处理。
处理器680是用户设备的控制中心,利用各种接口和线路连接整个用户设备的各个部分,通过运行或执行存储在存储器620内的软件程序和/或模块,以及调用存储在存储器620内的数据,执行用户设备的各种功能和处理数据,从而对用户设备进行整体监控。可选的,处理器680可包括一个或多个处理单元;优选的,处理器680可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器680中。
本发明实施例中:
射频电路610用于从第一子带上接收第二子带的配置信息,所述第二子带的配置信息包括所述第二子带的标识信息;
处理器680用于根据所述第二子带的标识信息确定所述第二子带的物理层基本参数,并通过所述第二子带与所述网络设备通信,所述第一子带的物理层基本参数和所述第二子带的物理层基本参数不同。
用户设备60还包括给各个部件供电的电源690(比如电池),优选的,电源可以通过电源管理系统与处理器680逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管未示出,用户设备60还可以包括摄像头、蓝牙模块等,在此不 再赘述。
本发明实施例中还可以包括:
可选地,所述配置信息还包括所述第二子带的位置、带宽、物理层基本参数、频率范围、频率中心点、负载情况、所支持业务的类型标识和优先级中的至少一个。
可选地,所述物理层基本参数包括子载波带宽、传输时间间隔TTI、符号长度、符号数和循环前缀CP长度中的至少一个。
可选地,射频电路610还用于从所述第一子带上接收第三子带的配置信息;
其中,当所述第二子带为上行子带时,所述第三子带为下行子带,当所述第二子带为下行子带时,所述第三子带为上行子带。
可选地,射频电路610还用于从所述第一子带上接收与所述第一子带对应的上行子带的信息,所述与所述第一子带对应的上行子带和所述第一子带的TTI相匹配。
可选地,射频电路610还用于:
当所述第二子带为下行子带时,所述用户设备从所述第一子带上接收与所述第二子带对应的上行子带的信息,所述与所述第二子带对应的上行子带和所述第二子带的TTI相匹配;
当所述第二子带为上行子带时,所述用户设备从所述第一子带上接收与所述第二子带对应的下行子带的信息,所述与所述第二子带对应的下行子带和所述第二子带的TTI相匹配。
可选地,射频电路610还用于在子带重配后,从所述第一子带上接收重配后的各子带的配置信息。
可选地,射频电路610还用于:
在子带重配后,当所述用户设备正在使用所述第二子带传输业务时,从所连接的第二子带上接收重配后的各子带的配置信息,所述所连接的第二子带为下行子带;
在子带重配后,当所述用户设备处于空闲态时,从所述第一子带上接收重配后的各子带的配置信息。
可选地,处理器680还用于当识别所述子带重配标志位的状态值处于准备子带重配的状态时,停止接入所述第二子带。
参阅图13,本发明实施例提供的无线通信系统的一实施例包括:网络设备30和用户设备40;
网络设备30用于确定第一子带和第二子带,在所述第一子带上向用户设备发送所述第二子带的配置信息,所述第二子带的配置信息包括所述第二子带的标识信息,所述第二子带的标识信息用于所述用户设备确定所述第二子带的物理层基本参数,所述第一子带的物理层基本参数和所述第二子带的物理层基本参数不同;
用户设备40用于从第一子带上接收第二子带的配置信息,所述第二子带的配置信息包括所述第二子带的标识信息;根据所述第二子带的标识信息确定所述第二子带的物理层基本参数,通过所述第二子带与所述网络设备通信。
与现有技术中一个载波只有一种波形和物理层基本参数,无法适应多业务需求相比,本发明实施例提供的通信的系统,网络设备可以将不同物理层基本参数的子带的配置信息发送给用户设备,网络设备和用户设备可以通过不同的子带进行通信,从而满足通信业务多样化的需求。
可选地,上述图1至图7的多个可选实施例都可以作为本发明无线通信系统的可选实施方式,本处不再重复赘述。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:ROM、RAM、磁盘或光盘等。
以上对本发明实施例所提供的通信的方法、设备以及系统进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (37)

  1. 一种通信的方法,其特征在于,包括:
    网络设备确定第一子带和第二子带;
    所述网络设备在所述第一子带上向用户设备发送所述第二子带的配置信息,所述第二子带的配置信息包括所述第二子带的标识信息,所述第二子带的标识信息用于所述用户设备确定所述第二子带的物理层基本参数,所述第一子带的物理层基本参数和所述第二子带的物理层基本参数不同;
    所述网络设备通过所述第二子带与所述用户设备通信。
  2. 根据权利要求1所述的方法,其特征在于,
    所述配置信息还包括所述第二子带的位置、带宽、物理层基本参数、频率范围、频率中心点、负载情况、所支持业务的类型标识和优先级中的至少一个。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述物理层基本参数包括子载波带宽、传输时间间隔TTI、符号长度、符号数和循环前缀CP长度中的至少一个。
  4. 根据权利要求1-3任一所述的方法,其特征在于,所述网络设备确定第一子带和第二子带,包括:
    所述网络设备根据业务环境的类型确定第一子带,根据业务的类型确定第二子带。
  5. 根据权利要求1-4任一所述的方法,其特征在于,所述方法还包括:
    所述网络设备在所述第一子带上发送第三子带的配置信息;
    其中,当所述第二子带为上行子带时,所述第三子带为下行子带,当所述第二子带为下行子带时,所述第三子带为上行子带。
  6. 根据权利要求1-5任一所述的方法,其特征在于,所述方法还包括:
    所述网络设备在所述第一子带上发送与所述第一子带对应的上行子带的信息,所述与所述第一子带对应的上行子带和所述第一子带的TTI相匹配。
  7. 根据权利要求1-6任一所述的方法,其特征在于,所述方法还包括:
    当所述第二子带为下行子带时,所述网络设备在所述第一子带上发送与所述第二子带对应的上行子带的信息,所述与所述第二子带对应的上行子带和所 述第二子带的TTI相匹配;
    当所述第二子带为上行子带时,所述网络设备在所述第一子带上发送与所述第二子带对应的下行子带的信息,所述与所述第二子带对应的下行子带和所述第二子带的TTI相匹配。
  8. 根据权利要求1-7任一所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定需要进行子带重配,则获取重配后的各子带的配置信息;
    所述网络设备通过所述第一子带发送重配后的各子带的配置信息;或者,
    所述网络设备通过所述第一子带向处于空闲态的用户设备发送所述重配后的各子带的配置信息,通过所述第二子带向在所述第二子带上有业务传输的用户设备发送所述重配后的各子带的配置信息。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    当子带重配是周期性重配时,在所述重配周期开始前的预置时刻,所述网络设备将重配标志位的状态值修改到准备子带重配的状态,在所述重配周期开始时,所述网络设备将所述重配志位的状态值修改到已完成重配状态。
  10. 一种通信的方法,其特征在于,包括:
    用户设备从第一子带上接收第二子带的配置信息,所述第二子带的配置信息包括所述第二子带的标识信息;
    所述用户设备根据所述第二子带的标识信息确定所述第二子带的物理层基本参数,所述第一子带的物理层基本参数和所述第二子带的物理层基本参数不同;
    所述用户设备通过所述第二子带与所述网络设备通信。
  11. 根据权利要求10所述的方法,其特征在于,
    所述配置信息还包括所述第二子带的位置、带宽、物理层基本参数、频率范围、频率中心点、负载情况、所支持业务的类型标识和优先级中的至少一个。
  12. 根据权利要求10或11所述的方法,其特征在于,
    所述物理层基本参数包括子载波带宽、传输时间间隔TTI、符号长度、符号数和循环前缀CP长度中的至少一个。
  13. 根据权利要求10-12任一所述的方法,其特征在于,所述方法还包括:
    所述用户设备从所述第一子带上接收第三子带的配置信息;
    其中,当所述第二子带为上行子带时,所述第三子带为下行子带,当所述第二子带为下行子带时,所述第三子带为上行子带。
  14. 根据权利要求10-13任一所述的方法,其特征在于,所述方法还包括:
    所述用户设备从所述第一子带上接收与所述第一子带对应的上行子带的信息,所述与所述第一子带对应的上行子带和所述第一子带的TTI相匹配。
  15. 根据权利要求10-14任一所述的方法,其特征在于,
    当所述第二子带为下行子带时,所述用户设备从所述第一子带上接收与所述第二子带对应的上行子带的信息,所述与所述第二子带对应的上行子带和所述第二子带的TTI相匹配;
    当所述第二子带为上行子带时,所述用户设备从所述第一子带上接收与所述第二子带对应的下行子带的信息,所述与所述第二子带对应的下行子带和所述第二子带的TTI相匹配。
  16. 根据权利要求10-15任一所述的方法,其特征在于,
    所述用户设备在子带重配后,从所述第一子带上接收重配后的各子带的配置信息。
  17. 根据权利要求10-15任一所述的方法,其特征在于,
    在子带重配后,当所述用户设备正在使用所述第二子带传输业务时,从所连接的第二子带上接收重配后的各子带的配置信息,所述所连接的第二子带为下行子带;
    在子带重配后,当所述用户设备处于空闲态时,从所述第一子带上接收重配后的各子带的配置信息。
  18. 根据权利要求16或17所述的方法,其特征在于,所述方法还包括:
    所述用户设备当识别所述子带重配标志位的状态值处于准备子带重配的状态时,停止接入所述第二子带。
  19. 一种网络设备,其特征在于,包括:
    处理单元,用于确定第一子带和第二子带;
    收发单元,用于在所述处理单元确定的第一子带上向用户设备发送所述第二子带的配置信息,并通过所述第二子带与所述用户设备通信;其中,所述第二子带的配置信息包括所述第二子带的标识信息,所述第二子带的标识信息用于所述用户设备确定所述第二子带的物理层基本参数,所述第一子带的物理层基本参数和所述第二子带的物理层基本参数不同。
  20. 根据权利要求19所述的网络设备,其特征在于,
    所述配置信息还包括所述第二子带的位置、带宽、物理层基本参数、频率范围、频率中心点、负载情况、所支持业务的类型标识和优先级中的至少一个。
  21. 根据权利要求19或20所述的网络设备,其特征在于,
    所述物理层基本参数包括子载波带宽、传输时间间隔TTI、符号长度、符号数和循环前缀CP长度中的至少一个。
  22. 根据权利要求19-21任一所述的网络设备,其特征在于,
    所述处理单元,具体用于根据业务环境的类型确定第一子带,根据业务的类型确定第二子带。
  23. 根据权利要求19-22任一所述的网络设备,其特征在于,
    所述收发单元,还用于在所述第一子带上发送第三子带的配置信息,其中,当所述第二子带为上行子带时,所述第三子带为下行子带,当所述第二子带为下行子带时,所述第三子带为上行子带。
  24. 根据权利要求19-23任一所述的网络设备,其特征在于,
    所述收发单元,还用于在所述第一子带上发送与所述第一子带对应的上行子带的信息,所述与所述第一子带对应的上行子带和所述第一子带的TTI相匹配。
  25. 根据权利要求19-24任一所述的网络设备,其特征在于,
    所述收发单元还用于:
    当所述第二子带为下行子带时,在所述第一子带上发送与所述第二子带对应的上行子带的信息,所述与所述第二子带对应的上行子带和所述第二子带的TTI相匹配;
    当所述第二子带为上行子带时,在所述第一子带上发送与所述第二子带对 应的下行子带的信息,所述与所述第二子带对应的下行子带和所述第二子带的TTI相匹配。
  26. 根据权利要求19-25任一所述的网络设备,其特征在于,
    所述处理单元,还用于确定需要进行子带重配,则获取重配后的各子带的配置信息;
    所述收发单元,还用于通过所述第一子带发送重配后的各子带的配置信息;或者,通过所述第一子带向处于空闲态的用户设备发送所述重配后的各子带的配置信息,通过所述第二子带向在所述第二子带上有业务传输的用户设备发送所述重配后的各子带的配置信息。
  27. 根据权利要求26所述的网络设备,其特征在于,
    所述处理单元,还用于当子带重配是周期性重配时,在所述重配周期开始前的预置时刻,所述网络设备将重配标志位的状态值修改到准备子带重配的状态,在所述重配周期开始时,所述网络设备将所述重配志位的状态值修改到已完成重配状态。
  28. 一种用户设备,其特征在于,包括:
    收发单元,用于从第一子带上接收第二子带的配置信息,所述第二子带的配置信息包括所述第二子带的标识信息;
    处理单元,用于根据所述接收单元接收的所述第二子带的标识信息确定所述第二子带的物理层基本参数,所述第一子带的物理层基本参数和所述第二子带的物理层基本参数不同;
    所述收发单元,还用于通过所述第二子带与所述网络设备通信。
  29. 根据权利要求28所述的用户设备,其特征在于,
    所述配置信息还包括所述第二子带的位置、带宽、物理层基本参数、频率范围、频率中心点、负载情况、所支持业务的类型标识和优先级中的至少一个。
  30. 根据权利要求28或29所述的用户设备,其特征在于,
    所述物理层基本参数包括子载波带宽、传输时间间隔TTI、符号长度、符号数和循环前缀CP长度中的至少一个。
  31. 根据权利要求28-30任一所述的用户设备,其特征在于,
    所述收发单元,还用于从所述第一子带上接收第三子带的配置信息;其中,当所述第二子带为上行子带时,所述第三子带为下行子带,当所述第二子带为下行子带时,所述第三子带为上行子带。
  32. 根据权利要求28-31任一所述的用户设备,其特征在于,
    所述收发单元,还用于从所述第一子带上接收与所述第一子带对应的上行子带的信息,所述与所述第一子带对应的上行子带和所述第一子带的TTI相匹配。
  33. 根据权利要求28-32任一所述的用户设备,其特征在于,
    所述收发单元还用于:
    当所述第二子带为下行子带时,从所述第一子带上接收与所述第二子带对应的上行子带的信息,所述与所述第二子带对应的上行子带和所述第二子带的TTI相匹配;
    当所述第二子带为上行子带时,从所述第一子带上接收与所述第二子带对应的下行子带的信息,所述与所述第二子带对应的下行子带和所述第二子带的TTI相匹配。
  34. 根据权利要求28-33任一所述的用户设备,其特征在于,
    所述收发单元,还用于在子带重配后,从所述第一子带上接收重配后的各子带的配置信息。
  35. 根据权利要求28-33任一所述的用户设备,其特征在于,
    所述收发单元还用于:
    在子带重配后,当所述用户设备正在使用所述第二子带传输业务时,从所连接的第二子带上接收重配后的各子带的配置信息,所述所连接的第二子带为下行子带;
    在子带重配后,当所述用户设备处于空闲态时,从所述第一子带上接收重配后的各子带的配置信息。
  36. 根据权利要求34或35所述的用户设备,其特征在于,
    所述处理单元,还用于当识别所述子带重配标志位的状态值处于准备子带重配的状态时,停止接入所述第二子带。
  37. 一种无线通信系统,其特征在于,包括:网络设备和用户设备,
    所述网络设备为上述权利要求19-27任一所述的网络设备;
    所述用户设备为上述权利要求28-36任一所述的用户设备。
PCT/CN2016/099454 2015-10-13 2016-09-20 一种通信的方法、设备及系统 WO2017063482A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16854864.2A EP3355638B1 (en) 2015-10-13 2016-09-20 Communications method, device and system
US15/951,643 US11096077B2 (en) 2015-10-13 2018-04-12 Communication method, device and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510670364.5A CN106572538B (zh) 2015-10-13 2015-10-13 一种通信的方法、设备及系统
CN201510670364.5 2015-10-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/951,643 Continuation US11096077B2 (en) 2015-10-13 2018-04-12 Communication method, device and system

Publications (1)

Publication Number Publication Date
WO2017063482A1 true WO2017063482A1 (zh) 2017-04-20

Family

ID=58508441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099454 WO2017063482A1 (zh) 2015-10-13 2016-09-20 一种通信的方法、设备及系统

Country Status (4)

Country Link
US (1) US11096077B2 (zh)
EP (1) EP3355638B1 (zh)
CN (1) CN106572538B (zh)
WO (1) WO2017063482A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108738146B (zh) 2017-04-24 2024-01-05 中兴通讯股份有限公司 无线资源和功率的配置方法、以及节点
CN107886884A (zh) * 2017-12-11 2018-04-06 苏州广林达电子科技有限公司 Oled面板画面调节机构
KR20200128716A (ko) 2018-03-07 2020-11-16 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 대역폭 부분에서 데이터를 전송하는 방법, 단말기 및 네트워크 기기
US11206705B2 (en) * 2018-07-23 2021-12-21 At&T Mobility Ii Llc Flexible carrier downlink and uplink pairing for advanced networks
CN110933718A (zh) * 2018-09-20 2020-03-27 展讯通信(上海)有限公司 Prach资源的确定方法及装置、存储介质、终端
EP3873156B1 (en) * 2018-10-30 2023-07-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission methods and apparatuses

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841866A (zh) * 2010-02-05 2010-09-22 北京创毅视讯科技有限公司 一种改进带宽配置实现lte在物联网应用的方法及系统
CN103220796A (zh) * 2012-01-21 2013-07-24 电信科学技术研究院 一种下行数据传输方法及其设备
WO2013122384A1 (ko) * 2012-02-14 2013-08-22 엘지전자 주식회사 장치 대 장치 통신 방법 및 이를 수행하기 위한 장치

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020178362A1 (en) * 2001-05-10 2002-11-28 Kwon Oh-Jin Method fo embedding hidden digital watermark into subband-decomposed image for identification of copyrighter
CN102143534B (zh) 2010-12-31 2014-03-12 华为技术有限公司 带宽控制的处理方法、设备及系统
FR2978889B1 (fr) * 2011-08-04 2013-09-20 Centre Nat Etd Spatiales Systeme et procede de gestion multiple de ressources de transmission d'un systeme spatial de radiocommunication multicellulaire.
WO2014015517A1 (en) * 2012-07-27 2014-01-30 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for interference control
CN105830396A (zh) * 2013-12-18 2016-08-03 汤姆逊许可公司 用于机顶盒的前端多工器拓扑
US10862634B2 (en) * 2014-03-07 2020-12-08 Huawei Technologies Co., Ltd. Systems and methods for OFDM with flexible sub-carrier spacing and symbol duration
WO2016064048A1 (en) * 2014-10-21 2016-04-28 Lg Electronics Inc. Method for monitoring downlink control channel in wireless communication system and apparatus for the same
US9985760B2 (en) * 2015-03-31 2018-05-29 Huawei Technologies Co., Ltd. System and method for an adaptive frame structure with filtered OFDM
EP3300304B1 (en) * 2015-09-16 2023-12-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for adjusting communication parameters
DE102015115754A1 (de) * 2015-09-18 2017-03-23 Intel IP Corporation Funkempfänger und Verfahren zum Verarbeiten eines Uplink-Transportblocks
US20180279373A1 (en) * 2015-09-23 2018-09-27 Lg Electronics Inc. Method and apparatus for performing random access procedure
CN112469127B (zh) * 2017-03-20 2024-03-19 华为技术有限公司 一种通信方法、终端及网络设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841866A (zh) * 2010-02-05 2010-09-22 北京创毅视讯科技有限公司 一种改进带宽配置实现lte在物联网应用的方法及系统
CN103220796A (zh) * 2012-01-21 2013-07-24 电信科学技术研究院 一种下行数据传输方法及其设备
WO2013122384A1 (ko) * 2012-02-14 2013-08-22 엘지전자 주식회사 장치 대 장치 통신 방법 및 이를 수행하기 위한 장치

Also Published As

Publication number Publication date
CN106572538B (zh) 2020-10-23
US20180234872A1 (en) 2018-08-16
CN106572538A (zh) 2017-04-19
EP3355638A4 (en) 2018-10-31
US11096077B2 (en) 2021-08-17
EP3355638B1 (en) 2020-04-29
EP3355638A1 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
EP4007356A1 (en) Resource configuration method, information transmission method, and related equipment
WO2017063482A1 (zh) 一种通信的方法、设备及系统
US11398885B2 (en) Signal transmission method and apparatus
WO2019242511A1 (zh) 一种参数配置方法及装置
EP3355508B1 (en) Method and device for creating medium access control entity
EP3846571B1 (en) Communication method and apparatus
US11032142B2 (en) Switching method, base station and terminal
EP3547587A1 (en) Data transmission method, network equipment, and terminal equipment
EP3627733A1 (en) Communication method, network device and terminal device
US11265903B2 (en) Uplink transmission method and apparatus
CN108282875B (zh) 一种数据收发方法及设备
US10873430B2 (en) Signal sending method and apparatus
CN109302718B (zh) 一种数据传输方法及装置
EP4150841A1 (en) Method and apparatus for the selective decoding of physical downlink control candidates based on a determined frequency location and frequency hopping
US20220400482A1 (en) Method and device for processing sidelink operation
CN115442901A (zh) 一种通信方法和装置
CN113473638A (zh) 传输带宽的确定方法、设备及存储介质
US20220015147A1 (en) Control information transmission method and apparatus
WO2020156024A1 (zh) 用于传输下行控制信道的方法、终端设备和网络设备
WO2020164392A1 (zh) 一种通信方法及装置
WO2020143490A1 (zh) 通信方法及装置
WO2016176843A1 (zh) 数据发送、接收方法、基站和用户设备
WO2022242474A1 (zh) 一种资源指示方法及相关设备
WO2022257828A1 (zh) 信息传输、指示方法、装置及通信设备
CN117546569A (zh) 用于冲突解决的方法、设备和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16854864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016854864

Country of ref document: EP