WO2018126978A1 - Fish finder, unmanned detection vessel, and unmanned detection system - Google Patents

Fish finder, unmanned detection vessel, and unmanned detection system Download PDF

Info

Publication number
WO2018126978A1
WO2018126978A1 PCT/CN2017/119251 CN2017119251W WO2018126978A1 WO 2018126978 A1 WO2018126978 A1 WO 2018126978A1 CN 2017119251 W CN2017119251 W CN 2017119251W WO 2018126978 A1 WO2018126978 A1 WO 2018126978A1
Authority
WO
WIPO (PCT)
Prior art keywords
vessel
fixing structure
fish finder
unmanned detection
fish
Prior art date
Application number
PCT/CN2017/119251
Other languages
French (fr)
Inventor
Weifeng ZHENG
Hailiang WU
Yang Liu
Jie Tang
Linshan ZHAO
Dezhen Yang
Gang Song
Xu Guo
Zhihui Zhang
Original Assignee
Powervision Tech Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201720008401.0U external-priority patent/CN206481837U/en
Priority claimed from CN201720006599.9U external-priority patent/CN207281283U/en
Priority claimed from CN201720356190.XU external-priority patent/CN206848474U/en
Application filed by Powervision Tech Inc. filed Critical Powervision Tech Inc.
Publication of WO2018126978A1 publication Critical patent/WO2018126978A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/96Sonar systems specially adapted for specific applications for locating fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K97/00Accessories for angling
    • A01K97/02Devices for laying ground-bait, e.g. chum dispensers, e.g. also for throwing ground-bait
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/524Transmitters

Definitions

  • unmanned aerial vehicle unmanned car
  • unmanned underwater vessels etc.
  • unmanned underwater vessels are mostly applied to military purpose such as completing reconnaissance missions or long-distance attacking missions.
  • unmanned underwater vessels are applied in scientific investigation such as maritime data monitoring, maritime experimental sample collection, or the like.
  • unmanned underwater vessels have been utilized for remote underwater equipment maintenance and underwater mining.
  • unmanned underwater vessels focused on civil fishing activities are still very limited. Due to the market demand of civil fishing activities with the aid of unmanned underwater vessels, there is a need to develop unmanned underwater vessels particularly for civil fishing activity purposes.
  • Fish finder is an equipment applying sonar technology on fish finding and underwater landscape detection. By exploiting ultrasound signal emitted by a sonar device and receiving the reflected ultrasound signal, user is able to obtain comprehensible real time information of underwater fish distribution and underwater landscape after data processing. Along with the development of unmanned underwater vessels for civil fishing activity purposes, integration of fish finder with such vessels or systems is of prime interest.
  • FIG. 1 is a schematic diagram of the communication between the vessel and the sonar device, according to some embodiments of the present disclosure.
  • FIG. 2 is a schematic diagram of the communication between the vessel and the water station, according to some embodiments of the present disclosure.
  • FIG. 3 is a schematic diagram of the structure of the user terminal, according to some embodiments of the present disclosure.
  • FIG. 4A is an exploded view of the fish finder, according to some embodiments of the present disclosure.
  • FIG. 4B is a bottom view of the fish finder, according to some embodiments of the present disclosure.
  • FIG. 4C is a perspective view of the fish finder with light transmissive part, according to some embodiments of the present disclosure.
  • FIG. 5A is a cross-sectional view of a fish finder, according to some embodiments of the present disclosure.
  • FIG. 5B is an enlarged cross-sectional view of the fish finder regarding area A of FIG. 5A, according to some embodiments of the present disclosure.
  • FIG. 6 is a partial exploded view of a fish finder, according to some embodiments of the present disclosure.
  • FIG. 7 is a perspective view of a fish finder, according to some embodiments of the present disclosure.
  • FIG. 8A is an exploded view of an upper shell of a fish finder, according to some embodiments of the present disclosure.
  • FIG. 8B is a perspective view of an upper shell of a fish finder, according to some embodiments of the present disclosure.
  • FIG. 9A is a perspective view of a vessel body, according to some embodiments of the present disclosure.
  • FIG. 9B is an exploded view of a first fixing structure, according to some embodiments of the present disclosure.
  • FIG. 10 is an exploded view of a first fixing structure and a second fixing structure, according to some embodiments of the present disclosure.
  • FIG. 11 is an exploded view of a first fixing structure and a second fixing structure, according to some embodiments of the present disclosure.
  • FIG. 12A is a perspective view of a first fixing structure and a second fixing structure when the first fixing structure is in an unfurl stage, according to some embodiments of the present disclosure.
  • FIG. 12B is a perspective view of a first fixing structure and a second fixing structure when the first fixing structure is in a furl stage, according to some embodiments of the present disclosure.
  • FIG. 13 is a perspective view of a back side of a base plate, according to some embodiments of the present disclosure.
  • FIG. 14 is a perspective view of a front side of a base plate, according to some embodiments of the present disclosure.
  • FIG. 15 is a cross sectional of scrolling member, according to some embodiments of the present disclosure.
  • FIG. 16 shows a closed groove loop at a front side of a base plate, according to some embodiments of the present disclosure.
  • FIGS. 17A, 17B, and 17C show various shapes of closed groove loops, according to some embodiments of the present disclosure.
  • One objective of the present disclosure is to provide an unmanned detection system allowing fish detection information to be transmitted wirelessly between sonar devices and an unmanned vessel.
  • the sonar devices can accompany the unmanned vessel for underwater detection or perform individual detection separated from the unmanned vessel and float at water surface.
  • One objective of the present disclosure is to provide a fish finder including a plurality of shells to accommodate sonar devices and fish luring lamps in order to detect and lure fish.
  • the fish finder possesses sealing mechanism preventing water seepage into compartment storing electronic devices such as sonar devices.
  • One objective of the present disclosure is to provide an unmanned detection vessel possessing a fixing structure to secure a fish finder on the vessel.
  • Such fixing structure permits user-friendly assembling and disassembling of the fish finder to and from the vessel.
  • the fixing structure can be in forms of a cradle mechanism, claws, or bolted joint, whichever adequate to different applications.
  • an unmanned detection system including: a vessel including a communication module, and a sonar device includes a wireless communication module communicatively connected to the communication module.
  • the sonar device is configured to detect fish and is separable form the vessel when detecting fish.
  • a fish finder including: a shell body, including an upper shell; and a lower shell sealingly connected to the upper shell; a sonar device disposed in the lower shell; and a luring lamp disposed in the lower shell and surrounding the sonar device.
  • an unmanned detection vessel including: a vessel body, a first fixing structure disposed on a bottom surface of the vessel body, and a fish finder including a second fixing structure correspondingly fixed to the first fixing structure.
  • first and second features are formed in direct contact
  • additional features may be formed between the first and second features, such that the first and second features may not be in direct contact
  • present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
  • spatially relative terms such as “beneath, ” “below, ” “lower, ” “above, ” “upper” and the like, may be used herein for ease of description to describe one element or feature’s relationship to another element (s) or feature (s) as illustrated in the figures.
  • the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures.
  • the apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
  • unmanned underwater detection system that can not only detect underwater objects by a sonar device, but also perform long-distance communication between the sonar device to users at shore in achieving transmission of real time information or pictures taken by unmanned underwater vessels. Accordingly, fishing experience will be more entertaining than before and much easier to success.
  • sonar devices are widely used by users. Yet currently, these sonar devices are still performing wire communication with the vessels and thus creating inconvenience or even interference with the unmanned underwater vessels which need to be operated underwater for hours. In some instances, sonar devices are equipped to float at water surface instead of performing underwater detection, rendering rather limited detection information due to small detection range and passive detection activity.
  • fish luring lamps are also widely used by users for luring fish.
  • Fish luring lamps are usually positioned under water to be close to fish.
  • current fish luring lamps do not provide real time feedback, for example, the quantity of fish, the size of fish, or the particular location of fish, etc., to the users such that fail to further enhance the fishing experience.
  • Some fish finders integrate sonar devices with a wiring mechanism in a same compartment of a fish finder.
  • the wiring mechanism is configured to connect to one end of a wire, and with the other end of the wire controlled by users. Water seepage is an issue to such fish finder because water can easily enter through any slots on an outer shell of such fish finder to the compartment accommodating sonar devices, causing failure to such sonar devices.
  • present disclosure provides an unmanned detection system, particularly an unmanned underwater detection system, which can be used to detect objects under water such as fish, shrimp, seaweed, or other aquatic plants, even sunken objects or underwater geomorphic features are also detectable.
  • This system realizes wireless communication between sonar devices and an unmanned detection vessel.
  • the sonar devices are allowed to accompany the unmanned detection vessel for underwater detection or perform individual detection separated from the unmanned vessel and float at water surface.
  • FIG. 1 shows a schematic diagram according to some embodiments of the present disclosure.
  • the structure of an unmanned detection system according to the present disclosure includes a vessel 1, a communication module 10, a sonar device 2, and a wireless communication module 20.
  • the vessel 1 includes the communication module 10
  • the sonar device 2 includes the wireless communication module 20 which is communicatively connected to the communication module 10 on the vessel 1.
  • the vessel 1 is an underwater robot and also can be called an aquatic unmanned vessel which is available to be active in the water or on water surface.
  • the sonar device 2 is configured to detect fish and is separable form the vessel 1 when detecting fish, which means the sonar device 2 can either be sunken into water with the vessel 1 or to execute detection alone on water surface.
  • the sonar device 2 may wirelessly communicate with the vessel 1 without the hassle of wire communication.
  • due to the separable design for the vessel 1 and the sonar device 2 it is much easier to conduct maintenance on each of the vessel 1 and the sonar device 2, and hence the reliability and convenience of the unmanned detection system can be ensured.
  • the vessel 1 is sealed and can be a neutral buoyancy vessel with a density essentially identical or at least close to surrounding waters.
  • the sonar device 2 is disposed at a bottom of the vessel 1.
  • the sonar device 2 may include at least three snaps corresponding to the same number of slops at the bottom of the vessel 1. The sonar device 2 thus can be fixed under the vessel 1 through these corresponding snaps and slops.
  • the sonar device 2 also may be connected to the vessel 1 through a bolted joint, for example, secured with the mating of screw threads.
  • sonar device 2 may further include a sealing ring compressed by abovementioned screw threads between the vessel 1 and the sonar device 2, thereby evacuating air from the connection region and obtaining better sealing effect.
  • the sonar device 2 is capable of sinking into the water with the vessel 1 within a certain depth.
  • the wireless communication module 20 of the sonar device 2 may be a Wi-Fi module and the communication module 10 of the vessel 1 includes an internet access module 101 and a power line communication (PLC) module 102, as illustrated in FIG. 2.
  • the wireless communication module 20 is communicatively connected to an input 101a of the internet access module 101, and the PLC module 102 is connected to an output 101b of the internet access module 101.
  • the data received by the sonar device 2 can be transmitted to the internet access module 101 via Wi-Fi signals and then be transmitted to another device via the PLC module 102.
  • users can communicate with the sonar device 2 through the Wi-Fi module.
  • the unmanned detection system in the present disclosure can further include a water station 30 and a user terminal 31 such as a remote control designated to vessel 1 or an integrated mobile platform.
  • the user terminal 31 is communicatively connected to the vessel 1 via the water station 30.
  • the water station 30 is connected to the vessel 1 via a cable, and the user terminal 31 is wirelessly connected to the water station 30.
  • the vessel 1 may transmits the data it acquired to the user terminal 31, and users may remotely control the vessel 1 according to the data which users have received.
  • the cable connecting the water station 30 and the vessel 1 may be a neutral buoyancy cable, which has a density essentially identical or at least close to water. Thus, the cable can float easily in the water and the reliability of the unmanned detection system is improved as well.
  • the water station 30 can be placed elsewhere other than the water surface.
  • the water station 30 can be placed at the shore of the water or be placed on a coastal object, such as a tree or a car. In other embodiments, the water station 30 can be placed on a boat on which the user locates.
  • the wireless PLC modem 301 and the power management board 3011 of the water station 30, or the equivalents thereof can be integrated on user terminal 31 when the vessel 1 is floated on the water surface.
  • no cable is connected between the water station 30 and the vessel 1 when the vessel 1 is floated on the water surface.
  • no water station 30 is required when the vessel 1 is floated on the water surface and the vessel 1 is communicating directly to user terminal 31.
  • the problems regarding the decay of electromagnetic waves in water and the impact of waterflow can be solved at the same time by utilizing neutral buoyancy cable as previously described.
  • the water station 30 includes a wireless PLC modem 301 and a power management board 3011 electrically connected to the wireless PLC modem 301.
  • the wireless PLC modem 301 is configured to wireless communication with the user terminal 31.
  • the power management board 3011 is configured to supply power to the water station 30.
  • the wireless PLC modem 301 further includes a PLC unit 3012 and a wireless access point (AP) unit 3013.
  • the PLC unit 3012 is connected to the PLC module 102 via a cable and the wireless AP unit 3013 is wirelessly connected to the user terminal 31.
  • the user terminal 31 may be a smart phone, tablets, computer, VR glasses, or the like, and an applicable unmanned vessel application software may be installed at the user terminal 31.
  • the sonar device 2 firstly transmits the data such as the species of fish, the size of fish, or the coordinate of fish to the internet access module 101 of the vessel 1, then the internet access module 101 transmits the data to the PLC module 102, and then the PLC module 102 transmits the data to the wireless PLC modem 301 of the water station 30 via the neutral buoyancy cable, and finally, the water station 30 transmits the data to the user terminal 31 via Wi-Fi signals generated by the wireless AP unit 3013.
  • the data such as the species of fish, the size of fish, or the coordinate of fish
  • the internet access module 101 transmits the data to the PLC module 102
  • the PLC module 102 transmits the data to the wireless PLC modem 301 of the water station 30 via the neutral buoyancy cable
  • the water station 30 transmits the data to the user terminal 31 via Wi-Fi signals generated by the wireless AP unit 3013.
  • user terminal 31 includes a CPU 311, an input module 312, a display module 313, a wireless communication module 314, and a storage module 315.
  • the input module 312, the display module 313, the wireless communication module 314, and the storage module 315 are connected to the CPU 311.
  • the CPU 311 is used to generate control commands to the vessel 1 via the wireless communication module 314.
  • the input module 312 may be a joystick, keyboard, touch panel, voice input, gesture input, or a combination thereof, and is used to input external commands to the CPU 311.
  • the display module 313 is used to display the image data, sonar data, GPS data, navigation date, and the sensor data received from the vessel 1.
  • the wireless communication module 314 is used to transmit and/or to receive the signals to/from the vessel 1.
  • the wireless communication module 314 may be selected from Wi-Fi, Bluetooth, Radio frequency (RF) , and optical communication.
  • the storage module 315 is used to storage the image data, the sonar data, the GPS data, the navigation data, and the sensor data received from the vessel 1, or the information inputted by users, or the pre-stored automotive navigation information and navigation modes.
  • the sonar device 2 detects the information regarding the distribution, the size, and the location of fish, and also the geographic information; meanwhile, the display module 313 displays the information in real time.
  • the vessel 1 may further include an image capturing module 11 connected to the internet access module 101 and configured to take pictures or record videos of underwater objects detected by the sonar device 2. The pictures or the videos may be transmitted to the user terminal 31 and be displayed.
  • the image capturing module 11 may include an auxiliary light to ensure the quality of the pictures and the videos when the vessel 1 is in dark water.
  • the image capturing module 11 is electrically connected to a main controller 12 of the vessel 1.
  • the CPU 311 of the user terminal 31 analyses the data received by the wireless communication module 314 and displays the results to users through the display module 313.
  • the results may be displayed as a 3D image and the users can adjust the angles of observation through the display module 313. Accordingly, the present disclosure may offer an omnidirectional observation and the users may control the vessel 1 easily.
  • present disclosure provides a fish finder including a plurality of shells to accommodate sonar devices and fish luring lamps in order to detect and lure fish.
  • the fish finder possesses sealing mechanism preventing water seepage into compartment storing electronic devices such as sonar devices.
  • a sonar device may be carried by a fish finder.
  • the fish finder can be connected to the vessel through a fixing structure including a claw or a part of a bolted joint.
  • the fish finder 4 includes a shell body 40, a sonar device 41, and a luring lamp 42.
  • the shell body 40 includes an upper shell 401 and a lower shell 402 sealingly connected to the upper shell 401.
  • the sonar device 41 is disposed in the lower shell 402
  • the luring lamp 42 is disposed in the lower shell 402 and surrounding the sonar device 41.
  • the fixing structures may be set on the upper shell 401 or at a proximal end of the lower shell 402 side according to various embodiments described herein.
  • the shape of the fish finder 4 can be a sphere, a quasi-sphere, or an egg-shaped depends on the design of the shell body 40.
  • the present disclosure not only combines the functions of sonar device and luring lamp into a fish finder but also allows the fish finder to be fixed on other equipment such as an underwater robot vessel, so that the fish finder can detect and lure fish with the navigation of the underwater robot vessel. In other words, the fish finder may detect and lure fish actively, and the applicable range of the fish finder is thus expanded significantly.
  • the lower shell 402 defines a chamber 402a accommodating the sonar device 41 and the luring lamp 42.
  • the luring lamp 42 is disposed at a bottom of the chamber 402a.
  • the fish finder 4 may include a power supply 43 and a main controller 44.
  • the power supply 43 is disposed over the sonar device 41, and the main controller 44 is disposed over the power supply 43.
  • the stacking order of the power supply 43, the main controller 44, and the sonar device 41 is not limited herein. Any suitable stacking orders as long as effectively connected are within the contemplated scope of present disclosure.
  • the power supply 43 is configured to supply power to the sonar device 41 and the luring lamp 42.
  • the main controller 44 is configured to control the sonar device 41 in order to emit ultrasound within different frequency ranges and receive reflected ultrasound signal via a receptor.
  • the main controller 44 is configured to control the luring lamp 42 for light emission.
  • a main PCB 45 can be optionally disposed in the fish finder 4.
  • the sonar device 41, the luring lamp 42, the power supply 43, and the main controller 44 are electrically connected to the main PCB 45.
  • the main PCB 45 includes a plurality of sockets corresponding to those connected electronic components, such that the abovementioned electronic components are capable to converge to the main PCB 45.
  • a wireless module may be disposed in the lower shell 402 and electrically connected to the main controller 44 instead of disposing a wireless communication module in the sonar device 41.
  • the sonar device 41 may include a transducer 46, for example, an acoustic transducer.
  • the transducer 46 emits ultrasounds in different frequency ranges corresponding to different underwater detection distances.
  • the transducer 46 emits ultrasounds in two different frequency ranges, for example, a first working frequency range falls within 100 kHz to 400 kHz and a second working frequency range falls within 40 kHz to 100 kHz.
  • the first frequency range is designed for close distance underwater detection
  • the second frequency range is designed for long distance underwater detection.
  • the preferred first working frequency is 120 kHz and the preferred second working frequency is 80 kHz.
  • the fish finder 4 may use the second working frequency to detect fish and geomorphic features underwater, and changes to use the first working frequency to detect fish precisely when approaching targets.
  • the luring lamp 42 may include several LEDs 422 coupled to a lamp board 421.
  • the LEDs 422 emit visible light, including at least red light, green light, and blue light.
  • the LEDs 422 can flash the light to lure fish.
  • the LEDs 422 can emit invisible light, including at least infrared light, which can be sensed by fish.
  • the main controller 44 may control the color and the luminance of the LEDs 422. For example, the main controller 44 may enhance the luminance of the LEDs 422 or change to emit the type of light having a better penetration in water while the fish or target are still distant from the fish finder 4.
  • the fish finder 4 may further includes a switch module 47 disposed at a bottom of the lower shell 402 and electrically connected to the main controller 44.
  • the switch module 47 includes a plurality of pins 470.
  • the switch module 47 includes two pins 470 connected to the main PCB 45, respectively. In case of the two pins 470 are immersed in water, they can be electrically connected via water and an electrical pathway is thus formed. Similarly, when the pins 470 are not immersed in water, for example, when the fish finder 4 is removed from wafer, the electrical pathway would be cut off.
  • a soaking detector is disposed in the chamber 402a and electrically connected to the main controller 44 and the pins 470. This soaking detector is configured to transmit the condition of the electrical pathway to the main controller 44.
  • the switch module 47 includes two pins 470. One end of the pin 470 is electrically connected to main controller 44, and the other end of the pin 470 extends outside the lower shell 402. In some embodiments, the pins 470 are closely sealed with the lower shell 402 to avoid wafer seepage from occurring in the chamber 402a. In some embodiments, the pins 470 are disposed at the bottom of the fish finder 4, such that when the fish finder 4 is floating on water surface, the pins 470 could first in contact with water and be electrified, then transmit the signal to main controller 44.
  • the bottom of the fish finder includes a flat surface 402b which is perpendicular to the gravity axis of the fish finder 4.
  • the fish finder 4 may stands stably when be stored independently by using the flat surface 402b. Also, it is easier to dispose the sonar device 41 and the luring lamp 42 in the chamber 402a where the structure is flat.
  • the switch module 47 includes three pins 470 for electrifying and/or charging the power supply.
  • two of the three pins 470 may be paired up to form electrical pathway when in contact with water, and another two of the three pins 470 may be paired up to charge the power supply.
  • the number of the pins 470 is not limited.
  • the switch module 47 may include two, three, or four pins.
  • the lower shell 402 including a light transmissive part 402c disposed correspondingly to the luring lamp.
  • the light transmissive part 402c is a transparent or semi-transparent lamp shade. The light emitted from the LEDs can penetrate through the light transmissive part 402c to lure fish.
  • the material of the light transmissive part 402c may choose from most of the solid transparent materials such as PMMA, PP, and glass.
  • the upper shell 401 and the lower shell 402 may be sealingly connected by threaded connection or further include a sealing ring 48 to ensure the sealing effect.
  • the sealing ring 48 wraps around the seam at an interface where the upper shell 401 and the lower shell 402 engage to prevent undesired water seepage into the chamber of the fish finder 4.
  • the sealing ring 48 may be set in a corresponding groove which excavated at the contact surface of the upper shell 401 and the lower shell 402.
  • an open end of the lower shell 402 can further include a screw thread at either an outer surface or an inner surface in proximity to the opening.
  • the screw thread on the lower shell 402 may be used to connect with an underwater robot vessel which has a mating screw thread.
  • the lower shell 402 may be connected to the underwater robot vessel independently without the upper shell 401.
  • the upper shell 401 and the lower shell 402 may be sealingly connected by a serrated structure at the open end of the lower shell 402 and the sealing ring 48.
  • the serrated structure at the lower shell 402 may engage with the corresponding serrated structure at an inner surface of the sealing ring 48, and the outer surface of the sealing ring 48 can be a wedge surface 480 contacted with the upper shell 401.
  • the upper shell 401 and the lower shell 402 may be sealingly connected by engaging the inner surface of the sealing ring 48 with the lower shell 402 and compressing the outer surface of the sealing ring 48 with the upper shell 401, respectively, through a tightening process of the upper shell 401 and the lower shell 402.
  • the sealing effect is improved and the sealing ring 48 cannot be visualized from outside of the fish finder 4 as an advanced design for aesthetic purpose.
  • the upper shell 401 includes a first shell portion 401a and a second shell portion 401b.
  • the first shell portion 401a includes an anti-shedding cap 403 and a winding column 404 connected to the anti-shedding cap 403 and extending to the second shell portion 401b.
  • the first shell portion 401a and a second shell portion 401b appears to be an umbrella-shape.
  • the winding column 404 is separable with the first shell portion 401a and may be threadly connected to the first shell portion 401a.
  • the anti-shedding cap 403 has a rounded arc structure that can splice with the upper shell 401 smoothly.
  • the second shell portion 401b is a shell portion with a receiving hole 406 facing the first shell portion 401a.
  • the receiving hole 406 is configured to correspondingly engage with the winding column 404 and thus the first shell portion 401a and the second shell portion 401b are connected.
  • a spring 407 is compressively set on a guide post at the bottom of the receiving hole 406 in order to prevent the winding column 404 from being loose.
  • the anti-shedding cap 403 includes a notch 403a connecting its top surface and bottom surface, allowing the wire to be pull out from the first shell portion 401a. The distance between the anti-shedding cap 403 and the second shell portion 401b can be tuned by screwing the winding column 404, so that the diameter of wires be used in this embodiment is not limited to a fixed size.
  • the upper shell 401 includes an open end 401c connected to the lower shell 402, and a flat surface end 401d opposite to the open end 401c, which including a plurality of claws 409 distributed around a center of the flat surface end 401d.
  • the lower shell 402 is connected to an underwater vessel to lure fish through the plurality of claws 409 on the flat surface end 401d of the upper shell 401.
  • the fish finder 4 is connected to underwater vessel such as an unmanned robot through fixing structures.
  • the fish finder includes an upper shell 501 and a lower shell 502.
  • the upper shell 501 of the fish finder further includes a first shell portion 501a and a second shell portion 501b.
  • the first shell portion 501a includes an appending fixing structure 51 corresponding to the fixing structure 52
  • the second shell portion 501b includes the fixing structure 52
  • the first shell portion 501a and the second shell portion 501b are configured to be connected by the appending fixing structure 51 and the fixing structure 52.
  • an unmanned detection vessel which includes a vessel body and the aforesaid fish finder, or its essential equivalents configured to be connected to the vessel body.
  • the vessel body has a first fixing structure at a bottom surface thereof.
  • the fish finder includes a second fixing structure configured to be correspondingly fixed to the bottom surface of the vessel body via the first fixing structure.
  • present disclosure provides an unmanned detection vessel possessing a fixing structure to secure a fish finder on the vessel.
  • Such fixing structure permits user-friendly assembling and disassembling of the fish finder to and from the vessel.
  • the fixing structure can be in forms of a cradle mechanism, claws, or bolted joint, whichever adequate to different applications.
  • the vessel body 6 includes a fitting recess 60 at the bottom surface thereof for accommodating the first fixing structure.
  • the first fixing structure includes a cradle mechanism separably connected to the bottom surface and configured to rotate the fish finder with respect to a first axis 61a.
  • the first fixing structure 61 is a 2-axis cradle mechanism separably connected to the bottom surface and configured to rotate the fish finder 4 with respect to the first axis 61a and a second axis 61b perpendicular to the first axis 61a.
  • the first axis 61a is parallel to a traveling direction of the vessel body 6.
  • the first fixing structure 61 includes a first cradle head 611 and a second cradle head 612.
  • a first end 6111 of the first cradle head 611 is being connected to the fish finder 4, and a second end 6112 opposite to the first end 6110 of the first cradle head 611 is being connected to a first end 6121 of the second cradle head 612.
  • a second end 6122 opposite to the first end 6121 of the second cradle head 612 is fixed to the bottom surface of the vessel body 6 in the fixing recess 60 via a fixture unit 63.
  • the fixture unit 63 is mounted on a surface of the fitting recess 60, for example, a side surface of the fitting recess 60, so that the first fixing structure 61 may be better contained in the fixing recess 60 and still allowed to rotate the fish finder 4 along with the first axis 61a and the second axis 61b in a certain range without clashing to the vessel body 6.
  • the navigation range of the fish finder 4 is not constrained by the location of vessel body 6 anymore.
  • the fish finder 4 may detect and lure fish in a wider range even though the vessel body 6 is staying at a fixed location.
  • the applicable range of the fish finder 4 is expanded with the implementation of the cradle mechanism.
  • the 2-axis cradle mechanism is controlled by the main controller of the vessel, and each of the first cradle head 611 and the second cradle head 612 includes a motor 611a, 612a and a rotating arm 611b, 612b, respectively, in order to independently drive the first cradle head 611 and the second cradle head 612.
  • the first cradle head 611 and the second cradle head 612 can be move in a same speed of different speeds, or stayed at a same angle of different angles with respect to the first axis 61a and the second axis 61b.
  • Gaining independent control over the 2-axis cradle mechanism effectively expand the navigation and detection range of the fish finder 4.
  • 1-axis or more than 2-axis cradle mechanism can be used in present disclosure adapting for various navigation and detection range demands.
  • the fish finder 4 may connect to the first end 6111 of the first cradle head 611 via a fixing column 64.
  • the fixing column 64 may be a column for fixing the fish finder 4 to the first end 6111.
  • the fixing column 64 may be defined as a part of the second fixing structure 62.
  • the fixing column 64 may possess various lengths suitable for various navigation and detection range demands.
  • the first fixing structure and the second fixing structure are connected to prevent relative rotation of the vessel body 6 and the fish finder 4.
  • Undesirable rotation of the fish finder 4 may lead to twisted wires or cables electrically coupling the vessel body 6 and the fish finder 4 and hence deteriorating the performance of electronic signal transmission.
  • the first fixing structure 61 includes a wire socket 613 and a first fixing pillar 614 adjacent to the wire socket 613.
  • the second fixing structure 62 includes a wire plug 623 and a second fixing pillar 624 adjacent to the wire plug 623.
  • the wire socket 613 and the first fixing pillar 614 are correspondingly positioned with respect to the wire plug 623 and the second fixing pillar 624.
  • the fish finder 4 is electrically connected with the vessel 1 via a cable or wire (not shown) passing through at least the wire socket 613 and the wire plug 623 in order to fix the fish finder 4 at a vessel bottom 1.
  • the vessel bottom 1 is a smooth surface.
  • the wire plug 623 is plugged into the wire socket 613.
  • a sealing nut 625 is fixed to a top of the second fixing pillar 624 by a sealing screw 626 and a washer 627.
  • the sealing nut 625 is configured to sheath the first fixing pillar 614, for example, the first fixing pillar 614 possesses outer screw threads configured to mate with inner screw threads of the sealing nut 625. Therefore, in some embodiments, the sealing screw 626 is a part of a screw-lock design which fixes the sealing nut 625 to the top of the second fixing pillar 624 to an extent that the sealing nut 625 is still capable of a threading move corresponding to the first fixing pillar 614. In some embodiments, users have the degree of freedom to tightly thread or loosely thread the sealing nut 625 to the first fixing pillar 614 as a way to tightly or loosely secure the first fixing structure 61 to the second fixing structure 62.
  • the connection mechanism of the screw-lock design is not limited herein. Any connection mechanism preventing relative rotation of the vessel body 6 shall be contemplated within the scope of present disclosure.
  • the fish finder 4 may communicates with the vessel via wire or cable which is protected by the plug/socket structure. Meanwhile, the fish finder 4 is fixed under the vessel bottom 1 by the pair of fixing pillars.
  • the first fixing structure 81 and the second fixing structure 82 are designed to render a user-friendly process of assembling the fish finder 4 to the unmanned detection vessel or disassembling the fish finder 4 from the unmanned detection vessel.
  • the first fixing structure 81 and the second fixing structure 82 together constitute a self-lock system as shown in FIG. 11.
  • the first fixing structure 81 of the self-lock system is disposed at a smooth bottom of the vessel 1 of FIG. 10. The self-lock system allows a user to perform the aforesaid assemble and disassemble action by applying uni-directional force to the fish finder 4.
  • the first fixing structure 81 includes a hollow tube 811 having a protruding sleeve 811' (shown in FIG. 12A) at an inner sidewall of the hollow tube 811.
  • An inner wall of the protruding sleeve 811' is configured to receive and fix a push rod 812 at a shorter end 812a of the push rod 812.
  • a longer end 812b of the push rod 812 further contains a through hole 812c configured to engage with a scrolling member 813, as will be subsequently described in FIG. 15.
  • the push rod 812 includes a curve, for example, the push rod 812 may be an L-shaped push rod.
  • the shape of the push rod 812 can vary as long as one terminal of the push rod 812 being fed into the protruding sleeve 811'and the other terminal pointing downward to the second fixing structure 82.
  • the first fixing structure 81 further includes a base plate 814 having a front side 8141 and a back side 8142 (shown in FIG. 14) .
  • the back side 8142 of the base plate 814 is engaging with an inner surface of the hollow tube 811, for example, the back side 8142 is nestling up with the inner surface.
  • the back side 8142 of the base plate 814 further includes a recess 8142a containing a vertical post 8142b.
  • the vertical post 8142b is configured to accommodate and guide a spring 815 along with a movement of the base plate 814. As shown in FIGS.
  • one end of the spring 815 is disposed between an outer wall of the protruding sleeve 811'while the other end of the spring 815 is abutting a bottom wall of the recess 8142a supporting the vertical post 8142b.
  • the distance between the protruding sleeve 811'and the base plate 814 determines whether the spring 815 is under a compression state or a relaxed state.
  • the front side 8141 of the base plate 814 possesses a closed groove loop 814a engraved at an upper portion of the front side 8141 and a protrusion 814b (shown in FIG. 14) protruding out from the front side 8141 at a lower portion thereof.
  • the protrusion 814b is configured to engage to a fixture mechanism, for example, a set of claws 816, of the first fixing structure 81.
  • the claws 816 may include a first part 816a and a second part 816b, each connected to a torsion mechanism 816c at one end engaging the first part 816a and the second part 816b.
  • a form or a number of the part of claws are not limited herein.
  • first part 816a and second part 816b of the claws 816 is set to be in an unfurl state, that is, an end of the claws 816 opposite to the torsion spring repel each other.
  • the scrolling member 813 is configured to pass through the through hole 812c of the push rod 812 and engaging a track surface 814a'of the closed groove loop 814a (shown in FIG. 16) .
  • the scrolling member 813 includes a marble 8131, a spring 8132, and a cover 8133 storing the marble 8131 and the spring 8132.
  • the cover 8133 includes a base 8134 at a closed end 8135 and an open end 8136 opposite to the closed end 8135.
  • the spring 8132 is fixed to the base 8134 at one end and connected to the marble 8131 at the other end.
  • the marble 8131 is positioned to face the track surface 814a'of the closed groove loop 814a.
  • a pressure mass 817 is positioned in the hollow tube 811 proximal to the push rod 812 and at a side opposite from the base plate 814 in order to maintain constant contact of the scrolling member 813 and the track surface 814a'of the closed groove loop 814a.
  • the scrolling member 813 is retrained between the longer end 812b of the push rod 812 and the closed groove loop 814a under the structure that the longer end 812b of the push rod 812 is attached to the pressure mass 817.
  • the marble 8131 of the scrolling member 813 is capable of looping around the track surface 814a'of closed groove loop 814a without detachment.
  • the second fixing structure 82 includes a knob 821 at a top of the fish finder 4.
  • the knob 821 can be fixed by a fixture mechanism, for example, a set of claws, of the first fixing structure 81, as previously described.
  • FIG. 12A shows an assembled first fixing structure 81 and second fixing structure 82 with the claws 816 be at an unfurl state due to the absence of spatial constraint from the hollow tube 811.
  • position of the claws 816 is lower than a bottom of the hollow tube 811 and the protrusion 814b of the base plate 814 is approximately leveling with the bottom of the hollow tube 811.
  • the spring 815 may stay with its original length or store with a first level of compression energy.
  • the scrolling member 813 is secured at a starting pit 91 (shown in FIG. 16) of the closed groove loop 814a.
  • FIG. 12B shows an assembled first fixing structure 81 and second fixing structure 82 with the claws 816 being at a furl state due to the presence of spatial constraint from the hollow tube 811.
  • position of the claws 816 is higher than a bottom of the hollow tube 811 and the protrusion 814b of the base plate 814 is also higher than the bottom of the hollow tube 811.
  • the spring 815 may store with a second level of compression energy greater than the first level of the compression energy.
  • the scrolling member 813 is secured at a locking pit 92 (shown in FIG. 16) of the closed groove loop 814a.
  • the claws 816 When the claws 816 is at an unfurl state as shown in FIG. 12A, users may bring together the knob 821 of the fish finder 4 and the claws 816 and further apply a push force at a bottom of the fish finder 4 along a longitudinal direction of the hollow tube 811 toward the vessel.
  • the push force transfers from the fish finder 4 to the claws 816, the protrusion 814b on the base plate 814, and then the base plate 814 may move along a longitudinal direction of the hollow tube 811 toward the vessel end, rendering the claws 816 to transform from the unfurl state to a furl state as shown in FIG. 12B.
  • the open end of claws 816 may be squeezed and pushed toward each other by the inner sidewall of hollow tube 811, as the second fixing structure 82 may be fixed into the first fixing structure 81.
  • the torsion mechanism or the torsion spring can store potential energy as the claws 816 change from the unfurl state to the furl state.
  • the spring 815 is compressed between the protruding sleeve 811'and the back side 8142 of the base plate 814 while the potential energy with respect to the push force exerted by the users is stored in the spring 815.
  • users may further apply a push force at a bottom of the fish finder 4 along a longitudinal direction of the hollow tube 811 toward the vessel.
  • the push force transfers from the fish finder 4 to the claws 816, the protrusion 814b on the base plate 814, and then the base plate 814 may further move along a longitudinal direction of the hollow tube 811 toward the vessel end.
  • the spring 815 may store with a third level of compression energy greater than the second level of the compression energy.
  • the third level compression energy takes over and dictates the motion of the base plate 814 by repelling the base plate 814 away from the protruding sleeve 811', rendering the claws 816 to transform from the furl state to the unfurl state as shown in FIG. 12A, and the second fixing structure 82 may be released from the first fixing structure 81. Meanwhile the torsion mechanism or the torsion spring also releases potential energy as the claws 816 change from the furl state to the unfurl state. During the aforesaid procedure, the spring 815 is initially compressed until the third level compression energy is reached and subsequently released back to the first level compression energy, as previously discussed when addressing FIG. 12A.
  • the closed groove loop 814a is a quadrilateral loop as shown in FIG. 16.
  • the closed groove loop 814a includes a first section 901 traversing a longer side of the base plate 814, which is parallel to the longitudinal direction of the hollow tube 811 when assembled.
  • the closed groove loop 814a further includes a second section 902 substantially parallel to the longer side of the base plate 814.
  • the second section 902 is connected to the first section 901 at a first angle ⁇ 1.
  • the first angle ⁇ 1 is smaller than 90 degrees.
  • the closed groove loop 814a further includes a third section 903 traversing the longer side of the base plate 814 and connected to the second section 902 at a second angle ⁇ 2.
  • the second angle ⁇ 2 is greater than 90 degrees.
  • the first angle ⁇ 1 and the second angle ⁇ 2 are supplementary to each other.
  • the track surface 814a'of the closed groove loop 814a includes a starting pit 91 proximal to the first angle ⁇ 1 and a locking pit 92 proximal to the second angle ⁇ 2.
  • the starting pit 91 and the locking pit 92 are configured to temporarily accommodating the marble 8131 of the scrolling member 813 by having a back-stop end and a forward-guiding end.
  • the back-stop end is a side of the starting pit 91 or the locking pit 92 abruptly higher than the pits.
  • the forward-guiding end is a side of the starting pit 91 or the locking pit 92 gradually lower than the pits.
  • the marble 8131 of the scrolling member 813 is configured to move in a clockwise direction in the closed groove loop 814a of FIG. 16.
  • the marble 8131 enters the starting pit 91 from the first section 901, it passes the back-stop end 91a and temporarily dwells in the starting pit 91 without further moving toward the forward-guiding end 91b.
  • the marble 8131 enters the locking pit 92 from the second section 902, it passes the back-stop end 92a and temporarily dwells in the locking pit 92 without further moving toward the forward-guiding end 92b.
  • the track surface 814a' may be designed to have gradient features.
  • the first section 901 of track surface 814a' possesses a positive gradient with the most elevated portion at the back-stop end.
  • the marble 8131 of the scrolling member 813 is initially accommodating in the starting pit 91 when the claws is at an unfurl state.
  • the spring 815 is compressed in response to the push force applied by the users and the base plate 814 is pushed upward toward the protruding sleeve 811'. Consequently, the marble 8131 exits the starting pit 91 via the forward-guiding end 91b and scrolls along the second section 902 in a clockwise direction until reaches the locking pit 92 and temporarily accommodating therein.
  • the spring 815 is compressed between the protruding sleeve 811'and the back side 8142 of the base plate 814 while the second level compression energy with respect to the push force exerted by the users is stored in the spring 815 when the marble 8131 accommodates in the locking pit 92.
  • the marble 8131 of the scrolling member 813 is initially accommodating in the locking pit 92 when the claws is at a furl state.
  • the spring 815 is further compressed in response to the second push force applied by the users and the base plate 814 is pushed upward toward the protruding sleeve 811'. Consequently, the marble 8131 exits the locking pit 92 via the forward-guiding end 92b and scrolls along the third section 903 in a clockwise direction until reaches the angle ⁇ 3 connecting the third section 903 and the fourth section 904.
  • the spring 815 is compressed between the protruding sleeve 811'and the back side 8142 of the base plate 814 while the third level compression energy with respect to the push force exerted by the users is stored in the spring 815 when the marble 8131 come across the angle ⁇ 3 connecting the third section 903 and the fourth section 904.
  • the third level compression energy takes over and dictates the motion of the base plate 814 by repelling the base plate 814 away from the protruding sleeve 811', rendering the marble 8131 of the scrolling member 813 scrolling along the fourth section 904 of the track surface 814a'in a clockwise direction back to the first section 901 and temporarily accommodates in the starting pit 91.
  • the claws 816 is again transformed back to the unfurl state, as shown in FIG. 12A, ready for the next assemble/disassemble routine.
  • the shape of the closed groove loop 814a is not limited to the quadrilateral loop as described in FIG. 16.
  • Other closed groove loops in FIGS. 17A, 17B, and 17C including combinations of curved segments and straight segments are within the contemplated scope of current application.
  • other closed groove loops in FIGS. 17A, 17B, and 17C include starting pits (93, 94, and 95) and locking pits (93’, 94’, and 95’) connecting two adjacent sections. When the scrolling member travels in a clockwise direction, two adjacent sections constituting the locking pit appear to form an angle greater than 90 degrees.
  • a fish finder including a shell body.
  • the shell body includes an upper shell and a lower shell sealingly connected to the upper shell.
  • the fish finder also includes a sonar device disposed in the lower shell and a luring lamp disposed in the lower shell and surrounding the sonar device.
  • an unmanned detection system comprising a vessel including a communication module and a sonar device includes a wireless communication module communicatively connected to the communication module.
  • the sonar device is configured to detect fish and is separable from the vessel when detecting fish.
  • Some embodiments of the present disclosure provide an unmanned detection vessel comprising a vessel body, a first fixing structure disposed on a bottom surface of the vessel body, and a fish finder including a second fixing structure correspondingly fixed to the first fixing structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

It is disclosed a fish finder including a plurality of shells to storage sonar device and luring lamp to detect and lure fish. And an unmanned detection system regarding the fish data transmitted wirelessly between a vessel and a sonar device is disclosed, and the sonar device is separable form the vessel when detecting fish. Furthermore, an unmanned detection vessel has specific fixing structures to fix the fish finder on the vessel is also disclosed.

Description

FISH FINDER, UNMANNED DETECTION VESSEL, AND UNMANNED DETECTION SYSTEM
CROSS REFERENCE TO RELATED APPLCIATION
This application claims the benefit of Chinese application CN201720008401.0, filed January 4, 2017, Chinese application CN201720006599.9, filed January 4, 2017, and Chinese application CN201720356190X, filed April 6, 2017. The disclosure of these applications is hereby incorporated by reference in their entirety.
BACKGROUND
The robot technology has developed rapidly in recent years. Although there is a large number of applications for different environments such as unmanned aerial vehicle, unmanned car, unmanned underwater vessels, etc., most of these devices have not yet for civil use due to technological constraints. Take unmanned underwater vessels for example; they are mostly applied to military purpose such as completing reconnaissance missions or long-distance attacking missions. In some instances, unmanned underwater vessels are applied in scientific investigation such as maritime data monitoring, maritime experimental sample collection, or the like. In industrial application aspect, unmanned underwater vessels have been utilized for remote underwater equipment maintenance and underwater mining.
Apart from entertainment purposes, unmanned underwater vessels focused on civil fishing activities are still very limited. Due to the market demand of civil fishing activities with the aid of unmanned underwater vessels, there is a need to develop unmanned underwater vessels particularly for civil fishing activity purposes.
Fish finder is an equipment applying sonar technology on fish finding and underwater landscape detection. By exploiting ultrasound signal emitted by a sonar device and receiving the reflected ultrasound signal, user is able to obtain comprehensible real time information of underwater fish distribution and underwater landscape after data processing. Along with the development of unmanned underwater vessels for civil fishing activity purposes, integration of fish finder with such vessels or systems is of prime interest.
BRIEF DESCRIPTION OF THE DRAWINGS
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is noted that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
FIG. 1 is a schematic diagram of the communication between the vessel and the sonar device, according to some embodiments of the present disclosure.
FIG. 2 is a schematic diagram of the communication between the vessel and the water station, according to some embodiments of the present disclosure.
FIG. 3 is a schematic diagram of the structure of the user terminal, according to some embodiments of the present disclosure.
FIG. 4A is an exploded view of the fish finder, according to some embodiments of the present disclosure.
FIG. 4B is a bottom view of the fish finder, according to some embodiments of the present disclosure.
FIG. 4C is a perspective view of the fish finder with light transmissive part, according to some embodiments of the present disclosure.
FIG. 5A is a cross-sectional view of a fish finder, according to some embodiments of the present disclosure.
FIG. 5B is an enlarged cross-sectional view of the fish finder regarding area A of FIG. 5A, according to some embodiments of the present disclosure.
FIG. 6 is a partial exploded view of a fish finder, according to some embodiments of the present disclosure.
FIG. 7 is a perspective view of a fish finder, according to some embodiments of the present disclosure.
FIG. 8A is an exploded view of an upper shell of a fish finder, according to some embodiments of the present disclosure.
FIG. 8B is a perspective view of an upper shell of a fish finder, according to some embodiments of the present disclosure.
FIG. 9A is a perspective view of a vessel body, according to some embodiments of the present disclosure.
FIG. 9B is an exploded view of a first fixing structure, according to some embodiments of the present disclosure.
FIG. 10 is an exploded view of a first fixing structure and a second fixing structure, according to some embodiments of the present disclosure.
FIG. 11 is an exploded view of a first fixing structure and a second fixing structure, according to some embodiments of the present disclosure.
FIG. 12A is a perspective view of a first fixing structure and a second fixing structure when the first fixing structure is in an unfurl stage, according to some embodiments of the present disclosure.
FIG. 12B is a perspective view of a first fixing structure and a second fixing structure when the first fixing structure is in a furl stage, according to some embodiments of the present disclosure.
FIG. 13 is a perspective view of a back side of a base plate, according to some embodiments of the present disclosure.
FIG. 14 is a perspective view of a front side of a base plate, according to some embodiments of the present disclosure.
FIG. 15 is a cross sectional of scrolling member, according to some embodiments of the present disclosure.
FIG. 16 shows a closed groove loop at a front side of a base plate, according to some embodiments of the present disclosure.
FIGS. 17A, 17B, and 17C show various shapes of closed groove loops, according to some embodiments of the present disclosure.
SUMMARY
One objective of the present disclosure is to provide an unmanned detection system allowing fish detection information to be transmitted wirelessly between sonar devices and an unmanned vessel. The sonar devices can accompany the unmanned vessel for underwater detection or perform individual detection separated from the unmanned vessel and float at water surface.
One objective of the present disclosure is to provide a fish finder including a plurality of shells to accommodate sonar devices and fish luring lamps in order to detect and lure fish. The fish finder possesses sealing mechanism preventing water seepage into compartment storing electronic devices such as sonar devices.
One objective of the present disclosure is to provide an unmanned detection vessel possessing a fixing structure to secure a fish finder on the vessel. Such fixing structure permits user-friendly assembling and disassembling of the fish finder to and from the vessel. The fixing structure can be in forms of a cradle mechanism, claws, or bolted joint, whichever adequate to different applications.
In order to achieve one of the objectives as described above, the present disclosure provides an unmanned detection system including: a vessel including a communication module, and a sonar device includes a wireless communication module communicatively connected to the communication module. The sonar device is configured to detect fish and is separable form the vessel when detecting fish.
In order to achieve one of the objectives as described above, the present disclosure provides a fish finder including: a shell body, including an upper shell; and a lower shell sealingly connected to the upper shell; a sonar device disposed in the lower shell; and a luring lamp disposed in the lower shell and surrounding the sonar device.
In order to achieve one of the objectives as described above, the present disclosure provides an unmanned detection vessel including: a vessel body, a first fixing structure disposed on a bottom surface of the vessel body, and a fish finder including a second fixing structure correspondingly fixed to the first fixing structure.
DETAILED DESCRIPTION
The following disclosure provides many different embodiments, or examples, for implementing different features of the provided subject matter. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
Further, spatially relative terms, such as “beneath, ” “below, ” “lower, ” “above, ” “upper” and the like, may be used herein for ease of description to describe one element or feature’s relationship to another element (s) or feature (s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the disclosure are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in the respective testing measurements. Also, as used herein, the term “about” generally means within 10%, 5%, 1%, or 0.5%of a given value or range. Alternatively, the term “about” means within an  acceptable standard error of the mean when considered by one of ordinary skill in the art. Other than in the operating/working examples, or unless otherwise expressly specified, all of the numerical ranges, amounts, values and percentages such as those for quantities of materials, durations of times, temperatures, operating conditions, ratios of amounts, and the likes thereof disclosed herein should be understood as modified in all instances by the term “about. ” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the present disclosure and attached claims are approximations that can vary as desired. At the very least, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Ranges can be expressed herein as from one endpoint to another endpoint or between two endpoints. All ranges disclosed herein are inclusive of the endpoints, unless specified otherwise.
With the rise of unmanned vehicle technology, a variety of unmanned equipment has been widely used. Nevertheless, existing unmanned underwater vessels still have many shortcomings and limitations from provide etiquette fishing experience, thus the present disclosure provides an unmanned underwater detection system that can not only detect underwater objects by a sonar device, but also perform long-distance communication between the sonar device to users at shore in achieving transmission of real time information or pictures taken by unmanned underwater vessels. Accordingly, fishing experience will be more entertaining than before and much easier to success.
In the field of unmanned underwater vessels particularly for civil fishing activity purposes, sonar devices are widely used by users. Yet currently, these sonar devices are still performing wire communication with the vessels and thus creating inconvenience or even interference with the unmanned underwater vessels which need to be operated underwater for hours. In some instances, sonar devices are equipped to float at water surface instead of performing underwater detection, rendering rather limited detection information due to small detection range and passive detection activity.
In addition to the sonar devices, fish luring lamps are also widely used by users for luring fish. Fish luring lamps are usually positioned under water to be close to fish. However, current fish luring lamps do not provide real time feedback, for example, the quantity of fish, the  size of fish, or the particular location of fish, etc., to the users such that fail to further enhance the fishing experience.
Some fish finders integrate sonar devices with a wiring mechanism in a same compartment of a fish finder. The wiring mechanism is configured to connect to one end of a wire, and with the other end of the wire controlled by users. Water seepage is an issue to such fish finder because water can easily enter through any slots on an outer shell of such fish finder to the compartment accommodating sonar devices, causing failure to such sonar devices.
In some embodiments, present disclosure provides an unmanned detection system, particularly an unmanned underwater detection system, which can be used to detect objects under water such as fish, shrimp, seaweed, or other aquatic plants, even sunken objects or underwater geomorphic features are also detectable. This system realizes wireless communication between sonar devices and an unmanned detection vessel. The sonar devices are allowed to accompany the unmanned detection vessel for underwater detection or perform individual detection separated from the unmanned vessel and float at water surface.
Referring to FIG. 1, which shows a schematic diagram according to some embodiments of the present disclosure. The structure of an unmanned detection system according to the present disclosure includes a vessel 1, a communication module 10, a sonar device 2, and a wireless communication module 20. Among the components in the unmanned detection system, the vessel 1 includes the communication module 10, and the sonar device 2 includes the wireless communication module 20 which is communicatively connected to the communication module 10 on the vessel 1.
In some embodiments, the vessel 1 is an underwater robot and also can be called an aquatic unmanned vessel which is available to be active in the water or on water surface. The sonar device 2 is configured to detect fish and is separable form the vessel 1 when detecting fish, which means the sonar device 2 can either be sunken into water with the vessel 1 or to execute detection alone on water surface. In the case where the sonar device 2 is connected with the vessel 1, the sonar device 2 may wirelessly communicate with the vessel 1 without the hassle of wire communication. Moreover, due to the separable design for the vessel 1 and the sonar device  2, it is much easier to conduct maintenance on each of the vessel 1 and the sonar device 2, and hence the reliability and convenience of the unmanned detection system can be ensured.
In some embodiments of the present disclosure, the vessel 1 is sealed and can be a neutral buoyancy vessel with a density essentially identical or at least close to surrounding waters. There are several sealed chambers in the vessel 1 to prevent water or moisture from permeating into the chambers and destroy the electronic modules inside. Furthermore, these sealed chambers can balance the density of the vessel shell, thereby the vessel 1 can perform as a neutral buoyancy vessel and have a better controllability in adjusting the direction or the route during its navigation.
In some embodiments of the present disclosure, the sonar device 2 is disposed at a bottom of the vessel 1. The sonar device 2 may include at least three snaps corresponding to the same number of slops at the bottom of the vessel 1. The sonar device 2 thus can be fixed under the vessel 1 through these corresponding snaps and slops. In addition, the sonar device 2 also may be connected to the vessel 1 through a bolted joint, for example, secured with the mating of screw threads. In order to improve the sealing effect, sonar device 2 may further include a sealing ring compressed by abovementioned screw threads between the vessel 1 and the sonar device 2, thereby evacuating air from the connection region and obtaining better sealing effect.
In some embodiments of the present disclosure, the sonar device 2 is capable of sinking into the water with the vessel 1 within a certain depth. The wireless communication module 20 of the sonar device 2 may be a Wi-Fi module and the communication module 10 of the vessel 1 includes an internet access module 101 and a power line communication (PLC) module 102, as illustrated in FIG. 2. The wireless communication module 20 is communicatively connected to an input 101a of the internet access module 101, and the PLC module 102 is connected to an output 101b of the internet access module 101. Under this communication structure, the data received by the sonar device 2 can be transmitted to the internet access module 101 via Wi-Fi signals and then be transmitted to another device via the PLC module 102. In other embodiments, when the sonar device 2 is executing detection alone on water, users can communicate with the sonar device 2 through the Wi-Fi module.
Referring to FIG. 2, the unmanned detection system in the present disclosure can further include a water station 30 and a user terminal 31 such as a remote control designated to vessel 1 or an integrated mobile platform. The user terminal 31 is communicatively connected to the vessel 1 via the water station 30. For example, when the vessel 1 is under water, the water station 30 is connected to the vessel 1 via a cable, and the user terminal 31 is wirelessly connected to the water station 30. By using the water station 30, the vessel 1 may transmits the data it acquired to the user terminal 31, and users may remotely control the vessel 1 according to the data which users have received. The cable connecting the water station 30 and the vessel 1 may be a neutral buoyancy cable, which has a density essentially identical or at least close to water. Thus, the cable can float easily in the water and the reliability of the unmanned detection system is improved as well.
On the other hand, when the vessel 1 is floated on the water surface, the water station 30 can be placed elsewhere other than the water surface. For example, the water station 30 can be placed at the shore of the water or be placed on a coastal object, such as a tree or a car. In other embodiments, the water station 30 can be placed on a boat on which the user locates. In some embodiments, the wireless PLC modem 301 and the power management board 3011 of the water station 30, or the equivalents thereof, can be integrated on user terminal 31 when the vessel 1 is floated on the water surface. In some embodiments, no cable is connected between the water station 30 and the vessel 1 when the vessel 1 is floated on the water surface. In some embodiments, no water station 30 is required when the vessel 1 is floated on the water surface and the vessel 1 is communicating directly to user terminal 31.
In some embodiments of the present disclosure, the problems regarding the decay of electromagnetic waves in water and the impact of waterflow can be solved at the same time by utilizing neutral buoyancy cable as previously described.
Furthermore, in some embodiments of the present disclosure, the water station 30 includes a wireless PLC modem 301 and a power management board 3011 electrically connected to the wireless PLC modem 301. The wireless PLC modem 301 is configured to wireless communication with the user terminal 31. The power management board 3011 is configured to supply power to the water station 30. Furthermore, in some embodiments, the wireless PLC  modem 301 further includes a PLC unit 3012 and a wireless access point (AP) unit 3013. The PLC unit 3012 is connected to the PLC module 102 via a cable and the wireless AP unit 3013 is wirelessly connected to the user terminal 31. The user terminal 31 may be a smart phone, tablets, computer, VR glasses, or the like, and an applicable unmanned vessel application software may be installed at the user terminal 31.
For example, in some embodiments of the present disclosure, the sonar device 2 firstly transmits the data such as the species of fish, the size of fish, or the coordinate of fish to the internet access module 101 of the vessel 1, then the internet access module 101 transmits the data to the PLC module 102, and then the PLC module 102 transmits the data to the wireless PLC modem 301 of the water station 30 via the neutral buoyancy cable, and finally, the water station 30 transmits the data to the user terminal 31 via Wi-Fi signals generated by the wireless AP unit 3013.
Referring to FIG. 3, user terminal 31 includes a CPU 311, an input module 312, a display module 313, a wireless communication module 314, and a storage module 315. The input module 312, the display module 313, the wireless communication module 314, and the storage module 315 are connected to the CPU 311. The CPU 311 is used to generate control commands to the vessel 1 via the wireless communication module 314. The input module 312 may be a joystick, keyboard, touch panel, voice input, gesture input, or a combination thereof, and is used to input external commands to the CPU 311. The display module 313 is used to display the image data, sonar data, GPS data, navigation date, and the sensor data received from the vessel 1. The wireless communication module 314 is used to transmit and/or to receive the signals to/from the vessel 1. In some embodiments, the wireless communication module 314 may be selected from Wi-Fi, Bluetooth, Radio frequency (RF) , and optical communication. The storage module 315 is used to storage the image data, the sonar data, the GPS data, the navigation data, and the sensor data received from the vessel 1, or the information inputted by users, or the pre-stored automotive navigation information and navigation modes.
Whenever the vessel 1 sinks to a desired depth in water, the sonar device 2 detects the information regarding the distribution, the size, and the location of fish, and also the geographic information; meanwhile, the display module 313 displays the information in real time. Moreover,  the vessel 1 may further include an image capturing module 11 connected to the internet access module 101 and configured to take pictures or record videos of underwater objects detected by the sonar device 2. The pictures or the videos may be transmitted to the user terminal 31 and be displayed. The image capturing module 11 may include an auxiliary light to ensure the quality of the pictures and the videos when the vessel 1 is in dark water. The image capturing module 11 is electrically connected to a main controller 12 of the vessel 1.
In some embodiments, the CPU 311 of the user terminal 31 analyses the data received by the wireless communication module 314 and displays the results to users through the display module 313. The results may be displayed as a 3D image and the users can adjust the angles of observation through the display module 313. Accordingly, the present disclosure may offer an omnidirectional observation and the users may control the vessel 1 easily.
In some embodiments, present disclosure provides a fish finder including a plurality of shells to accommodate sonar devices and fish luring lamps in order to detect and lure fish. The fish finder possesses sealing mechanism preventing water seepage into compartment storing electronic devices such as sonar devices.
In some embodiment of the present disclosure, a sonar device may be carried by a fish finder. In some embodiments, the fish finder can be connected to the vessel through a fixing structure including a claw or a part of a bolted joint. Referring to FIG. 4A, the fish finder 4 includes a shell body 40, a sonar device 41, and a luring lamp 42. The shell body 40 includes an upper shell 401 and a lower shell 402 sealingly connected to the upper shell 401. In some embodiments, the sonar device 41 is disposed in the lower shell 402, and the luring lamp 42 is disposed in the lower shell 402 and surrounding the sonar device 41. The fixing structures may be set on the upper shell 401 or at a proximal end of the lower shell 402 side according to various embodiments described herein.
In some embodiments of the present disclosure, the shape of the fish finder 4 can be a sphere, a quasi-sphere, or an egg-shaped depends on the design of the shell body 40. The present disclosure not only combines the functions of sonar device and luring lamp into a fish finder but also allows the fish finder to be fixed on other equipment such as an underwater robot vessel, so that the fish finder can detect and lure fish with the navigation of the underwater robot vessel. In  other words, the fish finder may detect and lure fish actively, and the applicable range of the fish finder is thus expanded significantly.
As illustrated in FIG. 4A, the lower shell 402 defines a chamber 402a accommodating the sonar device 41 and the luring lamp 42. The luring lamp 42 is disposed at a bottom of the chamber 402a. By using the cumulative weight of the sonar device 41 and the luring lamp 42, the center of gravity of the fish finder 4 is leaned to the lower shell 402, therefore, the fish finder 4 is capable of being self-stable in water.
Furthermore, the fish finder 4 may include a power supply 43 and a main controller 44. In some embodiments, the power supply 43 is disposed over the sonar device 41, and the main controller 44 is disposed over the power supply 43. However, the stacking order of the power supply 43, the main controller 44, and the sonar device 41 is not limited herein. Any suitable stacking orders as long as effectively connected are within the contemplated scope of present disclosure. In some embodiments, the power supply 43 is configured to supply power to the sonar device 41 and the luring lamp 42. The main controller 44 is configured to control the sonar device 41 in order to emit ultrasound within different frequency ranges and receive reflected ultrasound signal via a receptor. In some embodiments, the main controller 44 is configured to control the luring lamp 42 for light emission. In order to simplify the circuit routing, a main PCB 45 can be optionally disposed in the fish finder 4. In some embodiments, the sonar device 41, the luring lamp 42, the power supply 43, and the main controller 44 are electrically connected to the main PCB 45. In some embodiments, the main PCB 45 includes a plurality of sockets corresponding to those connected electronic components, such that the abovementioned electronic components are capable to converge to the main PCB 45. In some embodiments, a wireless module may be disposed in the lower shell 402 and electrically connected to the main controller 44 instead of disposing a wireless communication module in the sonar device 41.
The sonar device 41 may include a transducer 46, for example, an acoustic transducer. The transducer 46 emits ultrasounds in different frequency ranges corresponding to different underwater detection distances. In an embodiment of the present disclosure, the transducer 46 emits ultrasounds in two different frequency ranges, for example, a first working frequency  range falls within 100 kHz to 400 kHz and a second working frequency range falls within 40 kHz to 100 kHz. In some embodiments, the first frequency range is designed for close distance underwater detection, and the second frequency range is designed for long distance underwater detection. Furthermore, the preferred first working frequency is 120 kHz and the preferred second working frequency is 80 kHz. The fish finder 4 may use the second working frequency to detect fish and geomorphic features underwater, and changes to use the first working frequency to detect fish precisely when approaching targets.
The luring lamp 42 may include several LEDs 422 coupled to a lamp board 421. In some embodiments, the LEDs 422 emit visible light, including at least red light, green light, and blue light. Alternatively, the LEDs 422 can flash the light to lure fish. Also, the LEDs 422 can emit invisible light, including at least infrared light, which can be sensed by fish. Moreover, based on the detection result of the sonar device 41, the main controller 44 may control the color and the luminance of the LEDs 422. For example, the main controller 44 may enhance the luminance of the LEDs 422 or change to emit the type of light having a better penetration in water while the fish or target are still distant from the fish finder 4.
Referring to FIGS. 4A and 4B, the fish finder 4 may further includes a switch module 47 disposed at a bottom of the lower shell 402 and electrically connected to the main controller 44. The switch module 47 includes a plurality of pins 470. In some embodiments, the switch module 47 includes two pins 470 connected to the main PCB 45, respectively. In case of the two pins 470 are immersed in water, they can be electrically connected via water and an electrical pathway is thus formed. Similarly, when the pins 470 are not immersed in water, for example, when the fish finder 4 is removed from wafer, the electrical pathway would be cut off. Thereby, other components such as sonar device 41 and luring lamp 42 in the fish finder 4 may be turned on/off automatically based on the determination of whether fish finder 4 being in contact with water, as a means of power saving. In some embodiments, a soaking detector is disposed in the chamber 402a and electrically connected to the main controller 44 and the pins 470. This soaking detector is configured to transmit the condition of the electrical pathway to the main controller 44.
In some embodiments, the switch module 47 includes two pins 470. One end of the pin 470 is electrically connected to main controller 44, and the other end of the pin 470 extends outside the lower shell 402. In some embodiments, the pins 470 are closely sealed with the lower shell 402 to avoid wafer seepage from occurring in the chamber 402a. In some embodiments, the pins 470 are disposed at the bottom of the fish finder 4, such that when the fish finder 4 is floating on water surface, the pins 470 could first in contact with water and be electrified, then transmit the signal to main controller 44.
In some embodiments, the bottom of the fish finder includes a flat surface 402b which is perpendicular to the gravity axis of the fish finder 4. The fish finder 4 may stands stably when be stored independently by using the flat surface 402b. Also, it is easier to dispose the sonar device 41 and the luring lamp 42 in the chamber 402a where the structure is flat.
Referring to FIG. 4C, in other embodiments, the switch module 47 includes three pins 470 for electrifying and/or charging the power supply. For example, two of the three pins 470 may be paired up to form electrical pathway when in contact with water, and another two of the three pins 470 may be paired up to charge the power supply. Alternatively, the number of the pins 470 is not limited. For example, the switch module 47 may include two, three, or four pins.
As illustrated in FIG. 4C, in some embodiments, the lower shell 402 including a light transmissive part 402c disposed correspondingly to the luring lamp. In some embodiments, the light transmissive part 402c is a transparent or semi-transparent lamp shade. The light emitted from the LEDs can penetrate through the light transmissive part 402c to lure fish. The material of the light transmissive part 402c may choose from most of the solid transparent materials such as PMMA, PP, and glass.
Regarding the combination of the upper shell 401 and the lower shell 402, the upper shell 401 and the lower shell 402 may be sealingly connected by threaded connection or further include a sealing ring 48 to ensure the sealing effect. When the upper shell 401 and the lower shell 402 are attached to each other, the sealing ring 48 wraps around the seam at an interface where the upper shell 401 and the lower shell 402 engage to prevent undesired water seepage into the chamber of the fish finder 4. For example, in order to improve the sealing effect, the sealing ring 48 may be set in a corresponding groove which excavated at the contact surface of  the upper shell 401 and the lower shell 402. Moreover, there may be more than one sealing rings 48 and corresponding grooves whatever suitable for achieving desired sealing effect.
In some embodiments, an open end of the lower shell 402 can further include a screw thread at either an outer surface or an inner surface in proximity to the opening. In some embodiments, the screw thread on the lower shell 402 may be used to connect with an underwater robot vessel which has a mating screw thread. In other words, the lower shell 402 may be connected to the underwater robot vessel independently without the upper shell 401. Meanwhile, there may be at least one sealing ring 48 set in a corresponding groove which excavated at the contact surface of the underwater robot vessel and the lower shell 402.
Referring to FIGS. 5A and 5B, the upper shell 401 and the lower shell 402 may be sealingly connected by a serrated structure at the open end of the lower shell 402 and the sealing ring 48. The serrated structure at the lower shell 402 may engage with the corresponding serrated structure at an inner surface of the sealing ring 48, and the outer surface of the sealing ring 48 can be a wedge surface 480 contacted with the upper shell 401. Accordingly, the upper shell 401 and the lower shell 402 may be sealingly connected by engaging the inner surface of the sealing ring 48 with the lower shell 402 and compressing the outer surface of the sealing ring 48 with the upper shell 401, respectively, through a tightening process of the upper shell 401 and the lower shell 402. The sealing effect is improved and the sealing ring 48 cannot be visualized from outside of the fish finder 4 as an advanced design for aesthetic purpose.
In another embodiment of the present disclosure, by controlling a wire wound on a winding column, users could manually fish using the fish finder 4 alone with the lower shell 402 connected to the upper shell 401. Referring to FIG. 6, the upper shell 401 includes a first shell portion 401a and a second shell portion 401b. The first shell portion 401a includes an anti-shedding cap 403 and a winding column 404 connected to the anti-shedding cap 403 and extending to the second shell portion 401b. In some embodiments, the first shell portion 401a and a second shell portion 401b appears to be an umbrella-shape. The winding column 404 is separable with the first shell portion 401a and may be threadly connected to the first shell portion 401a. In some embodiments, there may have screw threads on the outer surface of the winding column 404, which can better help the wires to be wound on the winding column 404. In some  embodiments, the anti-shedding cap 403 has a rounded arc structure that can splice with the upper shell 401 smoothly.
In some embodiments of the present disclosure, the second shell portion 401b is a shell portion with a receiving hole 406 facing the first shell portion 401a. The receiving hole 406 is configured to correspondingly engage with the winding column 404 and thus the first shell portion 401a and the second shell portion 401b are connected. In some embodiments, a spring 407 is compressively set on a guide post at the bottom of the receiving hole 406 in order to prevent the winding column 404 from being loose. In some embodiments, the anti-shedding cap 403 includes a notch 403a connecting its top surface and bottom surface, allowing the wire to be pull out from the first shell portion 401a. The distance between the anti-shedding cap 403 and the second shell portion 401b can be tuned by screwing the winding column 404, so that the diameter of wires be used in this embodiment is not limited to a fixed size.
Referring to FIG. 7, in another embodiment of the present disclosure, the upper shell 401 includes an open end 401c connected to the lower shell 402, and a flat surface end 401d opposite to the open end 401c, which including a plurality of claws 409 distributed around a center of the flat surface end 401d. In some embodiments, the lower shell 402 is connected to an underwater vessel to lure fish through the plurality of claws 409 on the flat surface end 401d of the upper shell 401.
As aforementioned, the fish finder 4 is connected to underwater vessel such as an unmanned robot through fixing structures. Referring to FIGS. 8A and 8B, in another embodiment of the present disclosure, the fish finder includes an upper shell 501 and a lower shell 502. The upper shell 501 of the fish finder further includes a first shell portion 501a and a second shell portion 501b. The first shell portion 501a includes an appending fixing structure 51 corresponding to the fixing structure 52, and the second shell portion 501b includes the fixing structure 52, the first shell portion 501a and the second shell portion 501b are configured to be connected by the appending fixing structure 51 and the fixing structure 52. By controlling a wire connecting to the appending fixing structure 51 in the first shell portion 501a, a user could utilize the lower shell 502 and the upper shell 501 together to lure fish.
In order to improve the fixing quality, agility and reliability of the fish finder, the present disclosure further discloses an unmanned detection vessel which includes a vessel body and the aforesaid fish finder, or its essential equivalents configured to be connected to the vessel body. In some embodiments, the vessel body has a first fixing structure at a bottom surface thereof. The fish finder includes a second fixing structure configured to be correspondingly fixed to the bottom surface of the vessel body via the first fixing structure.
Present disclosure provides an unmanned detection vessel possessing a fixing structure to secure a fish finder on the vessel. Such fixing structure permits user-friendly assembling and disassembling of the fish finder to and from the vessel. The fixing structure can be in forms of a cradle mechanism, claws, or bolted joint, whichever adequate to different applications.
As illustrated in FIG. 9A, in some embodiments of the present disclosure, the vessel body 6 includes a fitting recess 60 at the bottom surface thereof for accommodating the first fixing structure. The first fixing structure includes a cradle mechanism separably connected to the bottom surface and configured to rotate the fish finder with respect to a first axis 61a. In an embodiment of the present disclosure as shown in FIG. 9B, the first fixing structure 61 is a 2-axis cradle mechanism separably connected to the bottom surface and configured to rotate the fish finder 4 with respect to the first axis 61a and a second axis 61b perpendicular to the first axis 61a. In some embodiments, the first axis 61a is parallel to a traveling direction of the vessel body 6.
In this embodiment, the first fixing structure 61 includes a first cradle head 611 and a second cradle head 612. A first end 6111 of the first cradle head 611 is being connected to the fish finder 4, and a second end 6112 opposite to the first end 6110 of the first cradle head 611 is being connected to a first end 6121 of the second cradle head 612. Moreover, a second end 6122 opposite to the first end 6121 of the second cradle head 612 is fixed to the bottom surface of the vessel body 6 in the fixing recess 60 via a fixture unit 63. In some embodiments of the present disclosure, the fixture unit 63 is mounted on a surface of the fitting recess 60, for example, a side surface of the fitting recess 60, so that the first fixing structure 61 may be better contained in the fixing recess 60 and still allowed to rotate the fish finder 4 along with the first axis 61a and the second axis 61b in a certain range without clashing to the vessel body 6.
By using the structure of the cradle mechanism, the navigation range of the fish finder 4 is not constrained by the location of vessel body 6 anymore. For example, by using the 2-axis cradle mechanism, the fish finder 4 may detect and lure fish in a wider range even though the vessel body 6 is staying at a fixed location. Alternatively stated, the applicable range of the fish finder 4 is expanded with the implementation of the cradle mechanism. Furthermore, in some embodiments of the present disclosure, the 2-axis cradle mechanism is controlled by the main controller of the vessel, and each of the first cradle head 611 and the second cradle head 612 includes a  motor  611a, 612a and a  rotating arm  611b, 612b, respectively, in order to independently drive the first cradle head 611 and the second cradle head 612. For example, the first cradle head 611 and the second cradle head 612 can be move in a same speed of different speeds, or stayed at a same angle of different angles with respect to the first axis 61a and the second axis 61b. Gaining independent control over the 2-axis cradle mechanism effectively expand the navigation and detection range of the fish finder 4. However, 1-axis or more than 2-axis cradle mechanism can be used in present disclosure adapting for various navigation and detection range demands.
In some embodiments, the fish finder 4 may connect to the first end 6111 of the first cradle head 611 via a fixing column 64. The fixing column 64 may be a column for fixing the fish finder 4 to the first end 6111. The fixing column 64 may be defined as a part of the second fixing structure 62. In some embodiments, the fixing column 64 may possess various lengths suitable for various navigation and detection range demands.
In some embodiments of the present disclosure, the first fixing structure and the second fixing structure are connected to prevent relative rotation of the vessel body 6 and the fish finder 4. Undesirable rotation of the fish finder 4, for instance, caused by water flow, may lead to twisted wires or cables electrically coupling the vessel body 6 and the fish finder 4 and hence deteriorating the performance of electronic signal transmission. Referring to FIG. 10, the first fixing structure 61 includes a wire socket 613 and a first fixing pillar 614 adjacent to the wire socket 613. Likewise, the second fixing structure 62 includes a wire plug 623 and a second fixing pillar 624 adjacent to the wire plug 623. The wire socket 613 and the first fixing pillar 614 are correspondingly positioned with respect to the wire plug 623 and the second fixing pillar 624.
In this embodiment of the present disclosure, the fish finder 4 is electrically connected with the vessel 1 via a cable or wire (not shown) passing through at least the wire socket 613 and the wire plug 623 in order to fix the fish finder 4 at a vessel bottom 1. In some embodiments, the vessel bottom 1 is a smooth surface. When attaching fish finder 4 to the vessel bottom 1, the wire plug 623 is plugged into the wire socket 613. On the other hand, a sealing nut 625 is fixed to a top of the second fixing pillar 624 by a sealing screw 626 and a washer 627. In some embodiments, the sealing nut 625 is configured to sheath the first fixing pillar 614, for example, the first fixing pillar 614 possesses outer screw threads configured to mate with inner screw threads of the sealing nut 625. Therefore, in some embodiments, the sealing screw 626 is a part of a screw-lock design which fixes the sealing nut 625 to the top of the second fixing pillar 624 to an extent that the sealing nut 625 is still capable of a threading move corresponding to the first fixing pillar 614. In some embodiments, users have the degree of freedom to tightly thread or loosely thread the sealing nut 625 to the first fixing pillar 614 as a way to tightly or loosely secure the first fixing structure 61 to the second fixing structure 62. However, the connection mechanism of the screw-lock design is not limited herein. Any connection mechanism preventing relative rotation of the vessel body 6 shall be contemplated within the scope of present disclosure.
By using the connection of the wire plug 623 and the wire socket 613, the fish finder 4 may communicates with the vessel via wire or cable which is protected by the plug/socket structure. Meanwhile, the fish finder 4 is fixed under the vessel bottom 1 by the pair of fixing pillars.
Referring to FIG. 11, in some embodiments of the present disclosure, the first fixing structure 81 and the second fixing structure 82 are designed to render a user-friendly process of assembling the fish finder 4 to the unmanned detection vessel or disassembling the fish finder 4 from the unmanned detection vessel. In some embodiments, the first fixing structure 81 and the second fixing structure 82 together constitute a self-lock system as shown in FIG. 11. In some embodiments, the first fixing structure 81 of the self-lock system is disposed at a smooth bottom of the vessel 1 of FIG. 10. The self-lock system allows a user to perform the aforesaid assemble and disassemble action by applying uni-directional force to the fish finder 4.
Still referring to FIG. 11, the first fixing structure 81 includes a hollow tube 811 having a protruding sleeve 811' (shown in FIG. 12A) at an inner sidewall of the hollow tube 811. An inner wall of the protruding sleeve 811'is configured to receive and fix a push rod 812 at a shorter end 812a of the push rod 812. A longer end 812b of the push rod 812 further contains a through hole 812c configured to engage with a scrolling member 813, as will be subsequently described in FIG. 15. In some embodiments, the push rod 812 includes a curve, for example, the push rod 812 may be an L-shaped push rod. However, the shape of the push rod 812 can vary as long as one terminal of the push rod 812 being fed into the protruding sleeve 811'and the other terminal pointing downward to the second fixing structure 82.
The first fixing structure 81 further includes a base plate 814 having a front side 8141 and a back side 8142 (shown in FIG. 14) . The back side 8142 of the base plate 814 is engaging with an inner surface of the hollow tube 811, for example, the back side 8142 is nestling up with the inner surface. Referring to FIG. 13 of present disclosure, the back side 8142 of the base plate 814 further includes a recess 8142a containing a vertical post 8142b. The vertical post 8142b is configured to accommodate and guide a spring 815 along with a movement of the base plate 814. As shown in FIGS. 12A and 13, one end of the spring 815 is disposed between an outer wall of the protruding sleeve 811'while the other end of the spring 815 is abutting a bottom wall of the recess 8142a supporting the vertical post 8142b. In some embodiments, the distance between the protruding sleeve 811'and the base plate 814 determines whether the spring 815 is under a compression state or a relaxed state.
Referring back to FIG. 11, the front side 8141 of the base plate 814 possesses a closed groove loop 814a engraved at an upper portion of the front side 8141 and a protrusion 814b (shown in FIG. 14) protruding out from the front side 8141 at a lower portion thereof. The protrusion 814b is configured to engage to a fixture mechanism, for example, a set of claws 816, of the first fixing structure 81. The claws 816 may include a first part 816a and a second part 816b, each connected to a torsion mechanism 816c at one end engaging the first part 816a and the second part 816b. However, a form or a number of the part of claws are not limited herein. Any suitable fixture that can physically secure a knob 821 of the second fixing structure 82 is within the contemplated scope of present disclosure. Without any physical constraint and under an aid of torsion mechanism 816c, for  example, a torsion spring, first part 816a and second part 816b of the claws 816 is set to be in an unfurl state, that is, an end of the claws 816 opposite to the torsion spring repel each other.
Referring to FIG. 15, the scrolling member 813 is configured to pass through the through hole 812c of the push rod 812 and engaging a track surface 814a'of the closed groove loop 814a (shown in FIG. 16) . In some embodiments, the scrolling member 813 includes a marble 8131, a spring 8132, and a cover 8133 storing the marble 8131 and the spring 8132. The cover 8133 includes a base 8134 at a closed end 8135 and an open end 8136 opposite to the closed end 8135. The spring 8132 is fixed to the base 8134 at one end and connected to the marble 8131 at the other end. The marble 8131 is positioned to face the track surface 814a'of the closed groove loop 814a. A pressure mass 817 is positioned in the hollow tube 811 proximal to the push rod 812 and at a side opposite from the base plate 814 in order to maintain constant contact of the scrolling member 813 and the track surface 814a'of the closed groove loop 814a. Alternatively stated, the scrolling member 813 is retrained between the longer end 812b of the push rod 812 and the closed groove loop 814a under the structure that the longer end 812b of the push rod 812 is attached to the pressure mass 817. With the pressure mass 817, the marble 8131 of the scrolling member 813 is capable of looping around the track surface 814a'of closed groove loop 814a without detachment.
Referring back to FIG. 11, the second fixing structure 82 includes a knob 821 at a top of the fish finder 4. The knob 821 can be fixed by a fixture mechanism, for example, a set of claws, of the first fixing structure 81, as previously described.
FIG. 12A shows an assembled first fixing structure 81 and second fixing structure 82 with the claws 816 be at an unfurl state due to the absence of spatial constraint from the hollow tube 811. In other words, position of the claws 816 is lower than a bottom of the hollow tube 811 and the protrusion 814b of the base plate 814 is approximately leveling with the bottom of the hollow tube 811. At the meantime, the spring 815 may stay with its original length or store with a first level of compression energy. The scrolling member 813 is secured at a starting pit 91 (shown in FIG. 16) of the closed groove loop 814a.
Similarly, FIG. 12B shows an assembled first fixing structure 81 and second fixing structure 82 with the claws 816 being at a furl state due to the presence of spatial constraint from the hollow tube 811. In other words, position of the claws 816 is higher than a bottom of the hollow tube 811 and the protrusion 814b of the base plate 814 is also higher than the bottom of the hollow tube 811. At the meantime, the spring 815 may store with a second level of compression energy greater than the first level of the compression energy. The scrolling member 813 is secured at a locking pit 92 (shown in FIG. 16) of the closed groove loop 814a.
When the claws 816 is at an unfurl state as shown in FIG. 12A, users may bring together the knob 821 of the fish finder 4 and the claws 816 and further apply a push force at a bottom of the fish finder 4 along a longitudinal direction of the hollow tube 811 toward the vessel. The push force transfers from the fish finder 4 to the claws 816, the protrusion 814b on the base plate 814, and then the base plate 814 may move along a longitudinal direction of the hollow tube 811 toward the vessel end, rendering the claws 816 to transform from the unfurl state to a furl state as shown in FIG. 12B. Due to the constraints of the hollow tube 811, the open end of claws 816 may be squeezed and pushed toward each other by the inner sidewall of hollow tube 811, as the second fixing structure 82 may be fixed into the first fixing structure 81. Meanwhile the torsion mechanism or the torsion spring can store potential energy as the claws 816 change from the unfurl state to the furl state. During the aforesaid procedure, the spring 815 is compressed between the protruding sleeve 811'and the back side 8142 of the base plate 814 while the potential energy with respect to the push force exerted by the users is stored in the spring 815.
When the claws 816 is at a furl state as shown in FIG. 12B, users may further apply a push force at a bottom of the fish finder 4 along a longitudinal direction of the hollow tube 811 toward the vessel. The push force transfers from the fish finder 4 to the claws 816, the protrusion 814b on the base plate 814, and then the base plate 814 may further move along a longitudinal direction of the hollow tube 811 toward the vessel end. At the meantime, the spring 815 may store with a third level of compression energy greater than the second level of the compression energy. Users then terminate the push force, the third level compression energy takes over and dictates the motion of the base  plate 814 by repelling the base plate 814 away from the protruding sleeve 811', rendering the claws 816 to transform from the furl state to the unfurl state as shown in FIG. 12A, and the second fixing structure 82 may be released from the first fixing structure 81. Meanwhile the torsion mechanism or the torsion spring also releases potential energy as the claws 816 change from the furl state to the unfurl state. During the aforesaid procedure, the spring 815 is initially compressed until the third level compression energy is reached and subsequently released back to the first level compression energy, as previously discussed when addressing FIG. 12A.
In some embodiments, the closed groove loop 814a is a quadrilateral loop as shown in FIG. 16. For example, the closed groove loop 814a includes a first section 901 traversing a longer side of the base plate 814, which is parallel to the longitudinal direction of the hollow tube 811 when assembled. The closed groove loop 814a further includes a second section 902 substantially parallel to the longer side of the base plate 814. As shown in FIG. 16, the second section 902 is connected to the first section 901 at a first angle θ1. In some embodiments, the first angle θ1 is smaller than 90 degrees. The closed groove loop 814a further includes a third section 903 traversing the longer side of the base plate 814 and connected to the second section 902 at a second angle θ2. In some embodiments, the second angle θ2 is greater than 90 degrees. As illustrated in FIG. 16, the first angle θ1 and the second angle θ2 are supplementary to each other.
Still referring to FIG. 16, the track surface 814a'of the closed groove loop 814a includes a starting pit 91 proximal to the first angle θ1 and a locking pit 92 proximal to the second angle θ2. The starting pit 91 and the locking pit 92 are configured to temporarily accommodating the marble 8131 of the scrolling member 813 by having a back-stop end and a forward-guiding end. The back-stop end is a side of the starting pit 91 or the locking pit 92 abruptly higher than the pits. Similarly, the forward-guiding end is a side of the starting pit 91 or the locking pit 92 gradually lower than the pits. For example, the marble 8131 of the scrolling member 813 is configured to move in a clockwise direction in the closed groove loop 814a of FIG. 16. When the marble 8131 enters the starting pit 91 from the first section 901, it passes the back-stop end 91a and temporarily dwells in the starting pit 91 without further moving toward the forward-guiding end 91b. Similarly, when the marble 8131 enters the locking pit 92 from the  second section 902, it passes the back-stop end 92a and temporarily dwells in the locking pit 92 without further moving toward the forward-guiding end 92b. In some embodiments, the track surface 814a'may be designed to have gradient features. For example, the first section 901 of track surface 814a'possesses a positive gradient with the most elevated portion at the back-stop end.
Referring to FIGS. 12A and 16, the marble 8131 of the scrolling member 813 is initially accommodating in the starting pit 91 when the claws is at an unfurl state. When users apply a first push force at a bottom of the fish finder 4 along a longitudinal direction of the hollow tube 811 toward the vessel, the spring 815 is compressed in response to the push force applied by the users and the base plate 814 is pushed upward toward the protruding sleeve 811'. Consequently, the marble 8131 exits the starting pit 91 via the forward-guiding end 91b and scrolls along the second section 902 in a clockwise direction until reaches the locking pit 92 and temporarily accommodating therein. During the aforesaid procedure, the spring 815 is compressed between the protruding sleeve 811'and the back side 8142 of the base plate 814 while the second level compression energy with respect to the push force exerted by the users is stored in the spring 815 when the marble 8131 accommodates in the locking pit 92.
Similarly, referring to FIGS. 12B and 16, the marble 8131 of the scrolling member 813 is initially accommodating in the locking pit 92 when the claws is at a furl state. When users apply a second push force at a bottom of the fish finder 4 along a longitudinal direction of the hollow tube 811 toward the vessel, the spring 815 is further compressed in response to the second push force applied by the users and the base plate 814 is pushed upward toward the protruding sleeve 811'. Consequently, the marble 8131 exits the locking pit 92 via the forward-guiding end 92b and scrolls along the third section 903 in a clockwise direction until reaches the angle θ3 connecting the third section 903 and the fourth section 904. During the aforesaid procedure, the spring 815 is compressed between the protruding sleeve 811'and the back side 8142 of the base plate 814 while the third level compression energy with respect to the push force exerted by the users is stored in the spring 815 when the marble 8131 come across the angle θ3 connecting the third section 903 and the fourth section 904.
Users then release the second push force, the third level compression energy takes over and dictates the motion of the base plate 814 by repelling the base plate 814 away from the protruding sleeve 811', rendering the marble 8131 of the scrolling member 813 scrolling along the fourth section 904 of the track surface 814a'in a clockwise direction back to the first section 901 and temporarily accommodates in the starting pit 91. The claws 816 is again transformed back to the unfurl state, as shown in FIG. 12A, ready for the next assemble/disassemble routine.
Referring to FIGS. 17A, 17B, and 17C, the shape of the closed groove loop 814a is not limited to the quadrilateral loop as described in FIG. 16. Other closed groove loops in FIGS. 17A, 17B, and 17C including combinations of curved segments and straight segments are within the contemplated scope of current application. Similar to the closed groove loop 814a, other closed groove loops in FIGS. 17A, 17B, and 17C include starting pits (93, 94, and 95) and locking pits (93’, 94’, and 95’) connecting two adjacent sections. When the scrolling member travels in a clockwise direction, two adjacent sections constituting the locking pit appear to form an angle greater than 90 degrees.
Some embodiments of the present disclosure provide a fish finder including a shell body. The shell body includes an upper shell and a lower shell sealingly connected to the upper shell. The fish finder also includes a sonar device disposed in the lower shell and a luring lamp disposed in the lower shell and surrounding the sonar device.
Some embodiments of the present disclosure provide an unmanned detection system comprising a vessel including a communication module and a sonar device includes a wireless communication module communicatively connected to the communication module. The sonar device is configured to detect fish and is separable from the vessel when detecting fish.
Some embodiments of the present disclosure provide an unmanned detection vessel comprising a vessel body, a first fixing structure disposed on a bottom surface of the vessel body, and a fish finder including a second fixing structure correspondingly fixed to the first fixing structure.
The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

Claims (43)

  1. A fish finder, comprising:
    a shell body, including:
    an upper shell; and
    a lower shell sealingly connected to the upper shell;
    a sonar device disposed in the lower shell; and
    a luring lamp disposed in the lower shell and surrounding the sonar device.
  2. The fish finder of claim 1, wherein the upper shell includes a fixing structure configured to connect to an underwater robot, the fixing structure including a claw or a part of a bolted joint; wherein the underwater robot may be a vessel.
  3. The fish finder of claim 1, the upper shell further comprising a first shell portion and a second shell portion; wherein:
    the first shell portion including:
    an anti-shedding cap; and
    a winding column connected to the anti-shedding cap and configured to extend to the second shell portion, and
    the second shell portion including a receiving hole facing the first shell portion, the first shell portion and the second shell portion is configured to be connected through the winding column and the receiving hole;
    wherein the lower shell is connected to the upper shell to lure fish by controlling a wire wound on the winding column.
  4. The fish finder of claim 1, wherein the upper shell comprises:
    an open end connected to the lower shell, and
    a flat surface end opposite to the open end, including a plurality of claws distributed around a center of the flat surface end;
    wherein the lower shell is connected to a vessel to lure fish through the plurality of claws on the flat surface end of the upper shell.
  5. The fish finder of claim 2, the upper shell further comprising a first shell portion and a second shell portion; wherein:
    the first shell portion including:
    an appending fixing structure corresponding to the fixing structure; and
    the second shell portion including the fixing structure, the first shell portion and the second shell portion is configured to be connected by the appending fixing structure and the fixing structure;
    wherein the lower shell is connected to the upper shell to lure fish by controlling a wire connecting to the appending fixing structure.
  6. The fish finder of claim 1, wherein the lower shell comprises a chamber accommodating the sonar device and the luring lamp, the luring lamp being disposed on a bottom of the chamber.
  7. The fish finder of claim 1, wherein the luring lamp comprises a plurality of LEDs coupled to a lamp board, the lower shell including a light transmissive part disposed correspondingly to the luring lamp.
  8. The fish finder of claim 1, further comprising:
    a power supply disposed over the sonar device; and
    a main controller disposed over the power supply;
    wherein the sonar device, the luring lamp, and the power supply are electrically connected to the main controller.
  9. The fish finder of claim 8, further comprising a wireless module disposed in the lower shell and electrically connected to the main controller.
  10. The fish finder of claim 8, further comprising a switch module disposed at a bottom of the lower shell and electrically connected to the main controller.
  11. The fish finder of claim 10, wherein the switch module includes a plurality of pins configured to electrify or charge the power supply of the fish finder.
  12. An unmanned detection system, comprising:
    a vessel including a communication module; and
    a sonar device includes a wireless communication module communicatively connected to the communication module;
    wherein the sonar device is configured to detect fish and is separable form the vessel when detecting fish.
  13. The system of claim 12, wherein the communication module includes an internet access module and a power line communication (PLC) module, the wireless communication module communicatively connecting to an input of the internet access module, and the PLC module connecting to an output of the internet access module.
  14. The system of claim 12, further comprising a user terminal and a water station, wherein the user terminal communicatively connected to the vessel via the water station.
  15. The system of claim 14, wherein the user terminal is wirelessly connected to the water station, and the water station is connected to the vessel via a cable.
  16. The system of claim 14, wherein the water station includes a wireless PLC modem configured to wireless communication with the user terminal, and wherein the wireless PLC modem includes a power management board configured to supply power to the water station.
  17. The system of claim 16, wherein the wireless PLC modem further includes a PLC unit and a wireless access point (AP) unit, the PLC unit connected to the PLC module via a cable.
  18. The system of claim 12, wherein the vessel further comprising a camera module connected to the internet access module configured to take pictures or record videos of underwater objects detected by the sonar device.
  19. An unmanned detection vessel, comprising:
    a vessel body;
    a first fixing structure disposed on a bottom surface of the vessel body; and
    a fish finder including a second fixing structure correspondingly fixed to the first fixing structure.
  20. The unmanned detection vessel of claim 19, wherein the vessel body comprises a fitting recess at the bottom surface for accommodating the first fixing structure.
  21. The unmanned detection vessel of claim 19, wherein the first fixing structure comprises a cradle mechanism separably connected to the bottom surface and configured to rotate the fish finder with respect to a first axis.
  22. The unmanned detection vessel of claim 19, wherein the first fixing structure comprises a 2-axis cradle mechanism separably connected to the bottom surface and configured to rotate the fish finder with respect to a first axis and a second axis perpendicular to the first axis.
  23. The unmanned detection vessel of claim 22, wherein the 2-axis cradle mechanism comprises a first cradle head and a second cradle head, a first end of the first cradle head being connected to the fish finder, and a second end opposite to the first end of the first cradle head being connected to a first end of the second cradle head.
  24. The unmanned detection vessel of claim 23, wherein a second end opposite to the first end of the second cradle head is fixed to the bottom surface of the vessel body in the fixing recess via a fixture unit.
  25. The unmanned detection vessel of claim 19, wherein the first cradle head and the second cradle head each comprising a rotating arm and a motor.
  26. The unmanned detection vessel of claim 19, wherein the fish finder is wirelessly connected with a communication module disposed in the vessel body.
  27. The unmanned detection vessel of claim 17, wherein the first fixing structure and the second fixing structure are connected to prevent relative rotation of the vessel body and the fish finder.
  28. The unmanned detection vessel of claim 27, wherein the first fixing structure comprises a wire socket and a first fixing pillar adjacent to the wire socket.
  29. The unmanned detection vessel of claim 28 wherein the second fixing structure includes a wire plug and a second fixing pillar adjacent to the wire plug, the wire socket and the first fixing pillar are correspondingly positioned with respect to the wire plug and the second fixing pillar, respectively.
  30. The unmanned detection vessel of claim 29, wherein the second fixing structure further comprises a sealing nut fixed to the second fixing pillar by a sealing screw, the sealing nut being configured to sheath the first fixing pillar.
  31. The unmanned detection vessel of claim 29, wherein the fish finder is electrically connected with the vessel via a wire passing through the wire socket and the wire plug.
  32. The unmanned detection vessel of claim 19, wherein the first fixing structure comprises:
    a hollow tube having a protruding sleeve at an inner sidewall thereof;
    a base plate engaging with the inner sidewall of the hollow tube, the base plate having a closed groove loop on a first side of the base plate;
    a fixture mechanism connected to the first side of the base plate and configured to be in an unfurl state when no constraint being applied;
    a first spring between the protruding sleeve and a second side of the base plate;
    a push rod having a first end feeding into the protruding sleeve; and
    a scrolling member restrained between a second end of the push rod and the closed groove loop.
  33. The unmanned detection vessel of claim 32, wherein the base plate follows a longitudinal direction of the hollow tube transferring toward the protruding sleeve when a compression force  is applied to the first spring, and transferring away from the protruding sleeve when the compression force is released from the first spring.
  34. The unmanned detection vessel of claim 33, further comprising a pressure mass between the inner sidewall of the hollow tube and the push rod, the pressure mass being configured to maintain engagement of the scrolling member and a track surface of the closed groove loop through restraining the push rod.
  35. The unmanned detection vessel of claim 34, wherein the scrolling member comprises:
    a cover having a base and an opening opposite to the base;
    a second spring engaging the base at a first end of the second spring; and
    a marble at a second end of the second spring, the marble engaging the track surface of the closed groove loop through the opening.
  36. The unmanned detection vessel of claim 34, wherein the closed groove loop comprises:
    a first section, traversing the longitudinal direction of the hollow tube; and
    a second section, substantially parallel to the longitudinal direction of the hollow tube and connected to the first section.
  37. The unmanned detection vessel of claim 35, further comprising a third section traversing the longitudinal direction of the hollow tube and connected to the second section, wherein the first section and the second section are connected by a first angle, the second section and the third section are connected by a second angle.
  38. The unmanned detection vessel of claim 34, wherein the track surface of the closed groove loop comprises a starting pit and a locking pit configured to temporarily accommodating the marble, each of the starting pit and the locking pit having a back-stop end and a forward-guiding end.
  39. The unmanned detection vessel of claim 38, wherein the marble exits the starting pit in the first section via the forward-guiding end when the compression force is applied to the first spring,
  40. The unmanned detection vessel of claim 39, wherein the marble exits the locking pit in the third section via the forward-guiding end when the compression force is applied to the first spring,
  41. The unmanned detection vessel of claim 36, wherein the track surface of the closed groove loop in the first section comprises a gradient.
  42. The unmanned detection vessel of claim 33, wherein the fixture mechanism is constrained by the inner sidewall of the hollow tube and change to a furl state when the base plate transferring toward the protruding sleeve.
  43. The unmanned detection vessel of claim 42, wherein the second fixing structure comprises a knob engaging with the fixture mechanism when the fixture mechanism being in the furl state and releasing from the fixture mechanism when the fixture mechanism being in the unfurl state.
PCT/CN2017/119251 2017-01-04 2017-12-28 Fish finder, unmanned detection vessel, and unmanned detection system WO2018126978A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201720008401.0U CN206481837U (en) 2017-01-04 2017-01-04 A kind of fish deteclor and fish finding system
CN201720008401.0 2017-01-04
CN201720006599.9 2017-01-04
CN201720006599.9U CN207281283U (en) 2017-01-04 2017-01-04 A kind of unmanned boat detection system
CN201720356190.X 2017-04-06
CN201720356190.XU CN206848474U (en) 2017-04-06 2017-04-06 Fish deteclor and fish finding system

Publications (1)

Publication Number Publication Date
WO2018126978A1 true WO2018126978A1 (en) 2018-07-12

Family

ID=62789162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119251 WO2018126978A1 (en) 2017-01-04 2017-12-28 Fish finder, unmanned detection vessel, and unmanned detection system

Country Status (1)

Country Link
WO (1) WO2018126978A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3620367A1 (en) * 2018-09-05 2020-03-11 ATLAS MARIDAN ApS Optical detection of fish in shoals
CN117369481A (en) * 2023-12-05 2024-01-09 南京邮电大学 Unmanned underwater vehicle obstacle avoidance tracking control method under condition limitation
CN117434537A (en) * 2023-12-20 2024-01-23 江苏河海环境科学研究院有限公司 Sonar layered detection driving device for fish shoal layered fishing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9122678D0 (en) * 1991-10-25 1991-12-11 Lu Chih Chiang Remote fish-sensing apparatus
CN101799546A (en) * 2010-03-30 2010-08-11 中国船舶重工集团公司第七〇二研究所 High-speed and long-distance fish shoal detection robot and detection method
CN201761634U (en) * 2010-03-30 2011-03-16 中国船舶重工集团公司第七〇二研究所 High-speed remote fish detection robot
US20140057677A1 (en) * 2012-04-24 2014-02-27 Uab Friday Lab Tablet or Smart Phone Compatible Fish Finder Device
CN105629251A (en) * 2016-02-02 2016-06-01 宁波钱湖创想智能科技有限公司 Fish-finding system with function of split use
CN205787125U (en) * 2016-01-14 2016-12-07 深圳市旭达欣科技有限公司 A kind of novel remote bluetooth sonar fish deteclor
CN106240774A (en) * 2016-06-21 2016-12-21 北京臻迪机器人有限公司 A kind of unmanned boat and system
CN206481837U (en) * 2017-01-04 2017-09-12 北京臻迪科技股份有限公司 A kind of fish deteclor and fish finding system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9122678D0 (en) * 1991-10-25 1991-12-11 Lu Chih Chiang Remote fish-sensing apparatus
CN101799546A (en) * 2010-03-30 2010-08-11 中国船舶重工集团公司第七〇二研究所 High-speed and long-distance fish shoal detection robot and detection method
CN201761634U (en) * 2010-03-30 2011-03-16 中国船舶重工集团公司第七〇二研究所 High-speed remote fish detection robot
US20140057677A1 (en) * 2012-04-24 2014-02-27 Uab Friday Lab Tablet or Smart Phone Compatible Fish Finder Device
CN205787125U (en) * 2016-01-14 2016-12-07 深圳市旭达欣科技有限公司 A kind of novel remote bluetooth sonar fish deteclor
CN105629251A (en) * 2016-02-02 2016-06-01 宁波钱湖创想智能科技有限公司 Fish-finding system with function of split use
CN106240774A (en) * 2016-06-21 2016-12-21 北京臻迪机器人有限公司 A kind of unmanned boat and system
CN206481837U (en) * 2017-01-04 2017-09-12 北京臻迪科技股份有限公司 A kind of fish deteclor and fish finding system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3620367A1 (en) * 2018-09-05 2020-03-11 ATLAS MARIDAN ApS Optical detection of fish in shoals
CN117369481A (en) * 2023-12-05 2024-01-09 南京邮电大学 Unmanned underwater vehicle obstacle avoidance tracking control method under condition limitation
CN117369481B (en) * 2023-12-05 2024-02-20 南京邮电大学 Unmanned underwater vehicle obstacle avoidance tracking control method under condition limitation
CN117434537A (en) * 2023-12-20 2024-01-23 江苏河海环境科学研究院有限公司 Sonar layered detection driving device for fish shoal layered fishing
CN117434537B (en) * 2023-12-20 2024-02-20 江苏河海环境科学研究院有限公司 Sonar layered detection driving device for fish shoal layered fishing

Similar Documents

Publication Publication Date Title
US11726502B2 (en) Control systems for unmanned aerial vehicles
US11008081B2 (en) Underwater drone with capacity of fishing, rapidly moving and wireless remote control
CN106240774B (en) Unmanned ship and system
WO2018126978A1 (en) Fish finder, unmanned detection vessel, and unmanned detection system
EP3216205B1 (en) Inspection camera devices with selectively illuminated multisensor imaging
US9729253B2 (en) System and method for providing underwater video
CN208614792U (en) A kind of Intelligent Underwater Robot control system
CN106814735B (en) Control system of unmanned ship
CN100581244C (en) Underwater video detection device based on the omnidirectional vision
WO2021136357A1 (en) Fish finder, fish finding system, and fish finding method
US8035734B2 (en) Self-balancing remote sensing device and remote sensing system comprising same
JP6933840B2 (en) Connected underwater spacecraft
JP7352418B2 (en) Underwater survey equipment
CN106995047A (en) A kind of multifunctional intellectual underwater robot
US20180055031A1 (en) Fishing system
JP2019089422A (en) Seabed survey system using underwater drone
EP2863257B1 (en) Underwater images acquisition and processing system
KR102078160B1 (en) Underwater Remote Unmanned System
WO2017208199A1 (en) Amphibious vtol super drone camera in mobile case (phone case) with multiple aerial and aquatic flight modes for capturing panoramic virtual reality views, selfie and interactwe video
EP3650975A1 (en) Mobile image pickup device
KR20090000454U (en) Underwater photography device capable of acquisition of image for multi-direction
US7279675B2 (en) Floating periscope
CN115166765A (en) Underwater three-dimensional optical detection equipment
KR20170091390A (en) Robot fish
CN109581788B (en) Fully-sealed constant-pressure underwater camera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890406

Country of ref document: EP

Kind code of ref document: A1