WO2018126930A1 - 功率控制方法和通信设备 - Google Patents

功率控制方法和通信设备 Download PDF

Info

Publication number
WO2018126930A1
WO2018126930A1 PCT/CN2017/118379 CN2017118379W WO2018126930A1 WO 2018126930 A1 WO2018126930 A1 WO 2018126930A1 CN 2017118379 W CN2017118379 W CN 2017118379W WO 2018126930 A1 WO2018126930 A1 WO 2018126930A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
message
power control
control information
information
Prior art date
Application number
PCT/CN2017/118379
Other languages
English (en)
French (fr)
Inventor
任海豹
王正
王婷
李元杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17889548.8A priority Critical patent/EP3547741B1/en
Priority to BR112019013773A priority patent/BR112019013773A2/pt
Publication of WO2018126930A1 publication Critical patent/WO2018126930A1/zh
Priority to US16/460,638 priority patent/US20190327695A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • H04W28/0221Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices power availability or consumption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a power control method and a communication device.
  • high frequency can provide more spectrum resources, support more antennas, and increase system capacity.
  • NR new radio access technology
  • HF high frequency
  • the wavelength of the wireless signal becomes shorter accordingly.
  • the short wavelength can greatly reduce the size of the antenna at both ends of the transceiver, and the multiple antennas can be easily integrated into a space-limited panel.
  • the receiver can form a directional receive beam to achieve high gain reception of wireless signals arriving in a certain spatial direction.
  • multiple antenna elements can be more easily combined with chip nesting to form an antenna panel or antenna array, which makes it possible to configure multiple low-correlation antenna arrays at the transmitter.
  • Multiple antenna panels can independently form a transmit beam so that one transmitter can transmit data streams through different beams to increase the capacity or reliability of the transmission.
  • Power control is critical for the entire wireless communication system. However, there is currently no better power control method for NR.
  • the power control method and the communication device provided by the embodiments of the present application can be applied to the NR, can ensure efficient and reasonable power allocation, and improve overall system performance.
  • the embodiment of the present application provides a power control method, including: a first device sends a first message to a second device, where the first message includes a power of a first beam of the second device Controlling information, the first beam includes at least one beam, the power control information includes a power control command, and the signal transmitted by the second device by the first beam is transmitted, and the signal on the first beam is transmitted. Power is determined based on the power control information.
  • the power control method fully considers the characteristics of the NR, and can ensure efficient and reasonable power distribution and improve overall system performance.
  • the first device performs power control on multiple beams and/or beam sets of the second device in a time division manner, that is, the sending timing of the first message is associated with the first beam. In this way, signaling overhead can be effectively saved.
  • the first message may include multiple independent power control information, and each independent power control information corresponds to one beam or beam set. Further, the power control information of each beam or beam set is The bit information position in the first message can be fixed according to the relevant configuration information. In this way, signaling overhead can be effectively saved.
  • the power control information may further include an identifier of the first beam, by which the power control command may be associated with which beam or beam set.
  • the first beam is a beam set.
  • the power control information may be valid for all beams in the beam set, and then for multiple beams. Only one power control information can be sent, so that signaling can be saved.
  • the first device sends information indicating the number of power control information carried in the first message to the second device, so that the complexity of the blind detection can be reduced.
  • the first device receives a second message from the second device, where the second message includes capability information indicating inter-beam power sharing of the second device;
  • the second message may further include: a sum of maximum transmission powers of the beams for power sharing, and/or a maximum transmission power of the beams for which power sharing is not performed.
  • the first device sends a third message to the second device, where the third message includes maximum transmission power information allowed by the first device, where the permission
  • the maximum transmission power information may be a respective maximum transmission power of the beams that do not share power, and/or a maximum allowable transmission power of the beam for power sharing; the third message may further include the A device allows beam information for power sharing.
  • the first device may further receive power control information sent by the other device, where the first device receives the power control information corresponding to the beam and/or the beam set sent by the other device, and after processing, Sending at least one power control information to the second device by using the first message. That is to say, one of the plurality of first devices implements the function of centralized control, and all of the power control information for the second device is transmitted by the first device of the centrally controlled function.
  • the first message sent by the base station may include power control information of the local base station, and may also include power control information of other base stations.
  • the base station may also send multiple first messages at different times, and send power control information of multiple beams and/or beam sets of the terminal to the terminal, as long as the terminal can identify different beams and/or beams.
  • the power control information of the set can be.
  • the embodiment of the present application further provides a power control method, including:
  • the second device receives the first message from the first device, where the first message includes power control information of the first beam of the second device, where the first beam includes at least one beam, and the power control information includes a power control command; transmitting a signal to the first device on the first beam, wherein a transmission power of a signal on the first beam is determined according to the power control information.
  • the power control information further includes: an identifier of the first beam.
  • the foregoing power control method may further include: receiving information indicating the number of power control information carried in the first message from the first device.
  • the foregoing power control method may further include: the second device sends a second message to the first device, where the second message indicates inter-beam power of the second device Shared ability information.
  • the second message may further include: a sum of maximum transmission powers of the beams that perform power sharing, or a maximum transmission power of the beams that do not perform power sharing.
  • the method may further include: if the sum of the transmission powers of the signals on the beams of the second device that can share the power is greater than the sharing The sum of the maximum transmission powers of the power beams, the transmission power of the signals on the at least one of the beams that can share the power is adjusted downward, so that the sum of the transmission powers of the signals on the beams that can share the power is less than or equal to the shared power The sum of the maximum transmission power of the beams.
  • the power control method provided by the embodiment of the present application fully considers the characteristics of the NR through power control of the beam level, can ensure efficient and reasonable power allocation, and improve overall system performance.
  • an embodiment of the present application further provides a communication device having a function of a first device in a power control method that implements all of the foregoing examples.
  • the above functions can be implemented by hardware or by executing corresponding software through hardware.
  • the above hardware or software includes one or more modules corresponding to the above functions.
  • the communication device can include a receiver and a transmitter, and can further include a processor.
  • an embodiment of the present application provides a communication device having a function of a second device in a power control method that implements all of the foregoing examples.
  • the above functions can be implemented by hardware or by executing corresponding software through hardware.
  • the above hardware or software includes one or more modules corresponding to the above functions.
  • the communication device can include a receiver and a transmitter, and can further include a processor.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used in the communication device of the above third aspect, which comprises a program designed to execute the above aspects.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the communication device of the fourth aspect, which includes a program designed to perform the above aspects.
  • FIG. 1 is a schematic diagram of a wireless communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of beam communication according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another beam communication according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a power control method according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of power control information according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a power control method according to still another embodiment of the present application.
  • 7a is a timing diagram of signals on a beam according to an embodiment of the present application.
  • FIG. 7b is another timing diagram of signals on a beam according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a wireless communication system to which the technical solutions of the embodiments of the present application are applicable.
  • the communication system in the communication system as described in FIG. 1, includes at least one base station and a plurality of terminals.
  • the system architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the communication system in the embodiment of the present application may be, for example, 5G.
  • the base station mentioned in the embodiment of the present application is a device deployed in a radio access network to provide a wireless communication function for a terminal.
  • the base station may include various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, transmission/reception points (TRPs), and the like.
  • TRPs transmission/reception points
  • the names of devices with base station functionality may vary.
  • the foregoing devices for providing wireless communication functions to terminals are collectively referred to as base stations.
  • the terminals involved in the embodiments of the present application may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to a wireless modem.
  • the terminal may also be referred to as a mobile station (MS), a user equipment, a terminal equipment, and may also include a subscriber unit, a cellular phone, and a smart phone.
  • MS mobile station
  • PDA personal digital assistant
  • modem modem
  • handheld device laptop computer
  • cordless phone cordless phone
  • WLL wireless local loop
  • MTC machine type communication
  • an antenna panel simultaneously forms a beam direction in which different physical signals or physical channels can be carried.
  • one or more antenna ports can be included in one beam. It is used to transmit data channels, control channels and sounding signals, etc., or one beam can also transmit physical channels for random access, which may be transmitted in any antenna port.
  • the transmit beam may refer to a distribution of signal strengths formed in different directions of the space after the signal is transmitted through the antenna
  • the receive beam may refer to a signal intensity distribution of the wireless signals received from the antenna in different directions in space.
  • one or more antenna ports in one beam can also be regarded as one antenna port set, that is, one antenna port set includes at least one antenna port. In the embodiment of the present application, a case where a beam and an antenna port set are mixed may occur.
  • the beam may refer to a precoding vector having a certain energy transmission directivity and can identify the precoding vector by using index information, where the energy transmission directivity refers to receiving the precoding vector in a certain spatial position.
  • the pre-coded signal has better receiving power, such as satisfying the reception demodulation signal-to-noise ratio, etc., and in other spatial locations, the signal received by the pre-coding vector for pre-coding processing has lower power and is not satisfied. Receive demodulation signal to noise ratio.
  • Different communication devices may have different precoding vectors, ie corresponding to different beams. For a configuration or capability of the communication device, one communication device may use one or more of a plurality of different precoding vectors at the same time, ie simultaneously One beam or multiple beams can be formed.
  • the beam can be understood as a spatial resource.
  • the index information may be used to identify the beam, and the index information may be corresponding to the corresponding resource ID of the user, such as a channel-state information-reference signal (CSI-RS) corresponding to a certain configuration.
  • CSI-RS channel-state information-reference signal
  • the ID or the resource may also be the ID or resource of a certain configured Sounding Reference Signal (SRS), or may be the specific signal or channel display or implicit bearer index information carried by the beam, including but It is not limited to transmitting a synchronization signal through the beam or a broadcast channel indicating index information of the beam.
  • SRS Sounding Reference Signal
  • the power control method in the embodiment of the present application may be used in a scenario where the first device performs power control on a signal sent by the second device to the first device when the first device and the second device communicate.
  • the first device may be a base station, and the second device may be a terminal.
  • the first device may be a terminal, and the second device may be another terminal. Make a limit.
  • first device as a base station and a second device as a terminal.
  • the terminal can communicate with different base stations through multiple beams respectively. As shown in FIG. 2, the terminal communicates with the base station 1 and the base station 2 through the beam 7 and the beam 2 respectively; or the terminal can communicate with one base station through multiple beams, such as As shown in FIG. 3, the terminal communicates with the base station 1 through three beams.
  • the terminal communicates with the base station 1 through three beams.
  • FIG. 2 or FIG. 3 other scenarios may be used, and the embodiments of the present application are not illustrated one by one.
  • the embodiment of the present application provides a power control method, as shown in FIG. 4, including:
  • the base station sends a first message to the terminal.
  • the first message may include power control information of the first beam of the terminal, and the first beam may include at least one beam.
  • the terminal can communicate with at least one base station through one or more beams.
  • the three beams that communicate with the base station 1 can be regarded as the first beam as a whole.
  • a beam can be understood as a set of beams, and the three beams can also be regarded as independent beams; or, in the scenario shown in FIG. 2, beam 7 and beam 2 are independent beams.
  • the power control information may include power control commands, and in addition, other power control related information may be included on the basis of the power control commands.
  • the first message may be transmitted through a downlink control channel, which may be, for example, a channel similar to a physical downlink control channel (PDCCH) in long term evolution (LTE).
  • a downlink control channel which may be, for example, a channel similar to a physical downlink control channel (PDCCH) in long term evolution (LTE).
  • PDCCH physical downlink control channel
  • LTE long term evolution
  • the power control command may be a relative type command or an absolute type command.
  • the so-called relative type command can be understood as that after the terminal receives the power control command, the adjustment effect of the transmission power is similar to the relative adjustment based on the current transmission power, and the relative type command can also be called a cumulative type command;
  • the so-called absolute type command can be understood as the adjustment effect of the transmission power of the terminal after receiving the power control command is similar to the adjustment based on the initial transmission power;
  • the specific form of the power control command may be related to the network requirement. Or the specific transmission format and other factors are related to each other in the embodiment of the present application.
  • the power control command may be configured by using a high-level message.
  • Table 1 shows an example of the value of a possible power control command. It should be noted that the specific power control command corresponding to each value of the power control command field is not limited, and the power control command is not used. The specific number of bits of the field is limited, and the bit length of the power control command field may be predefined or variable.
  • the power control information is transmitted through the first message by using any one of the following methods:
  • the base station performs power control on multiple beams and/or beam sets of the terminal in a time division manner, that is, the timing of transmitting power control information of different beam/beam sets is different, and the timing and timing of transmitting the first message A beam is associated. For example, assuming that the base station 1 is to separately transmit the power control information of the beam 1 and the beam 2 of the terminal, the power control information of the beam 1 can be transmitted at the first timing, and the power control information of the beam 2 can be transmitted at the second timing.
  • the timing of transmitting a particular beam may be determined based on relevant configuration information associated with an index of a beam/beam set communicated with at least one base station.
  • At least one beam and/or beam set of the base station and at least one beam and/or beam set of the terminal may be determined for
  • the base station may indicate to the terminal, by using configuration information, an index of the determined at least one beam or beam set for transmission of the uplink signal.
  • the information of the specific beam included in the beam set may be sent to the terminal, and when the terminal receives the identifier of the beam set, the beam set and the specific The beams are associated.
  • the first message may include multiple independent power control information, each independent power control information corresponding to one beam or beam set, and the bit information of the power control information of each beam or beam set in the first message.
  • the location can be fixed based on the relevant configuration information.
  • the first message may further include power control information of the second beam, and the location of the power control information of the first beam and the power control information of the second beam in the first message is determined according to the configuration information, where The two beams include at least one beam.
  • the configuration information is related to an index of a beam or a set of beams that communicate with at least one base station.
  • the configuration information here may be similar to the configuration information described in the foregoing mode (1), and details are not described herein again.
  • the power control information may further include an identifier of the first beam, by which the power control command may be associated with which beam or beam set, and the combination of the identifier and the power control command may be referred to as power control information.
  • Each beam or beam set that is independently power controlled can be assigned an identity.
  • the identifier of the first beam may be as shown in Table 2. Different values correspond to different beams or beam sets. It is to be understood that Table 2 is only an example. The specific corresponding manner is not limited in the embodiment of the present application, and the number of bits indicating the identifier of the first beam is not limited. For example, it is assumed that the number of bits used for power control in the first message may be 8, for providing power control information of two independent beams or sets of beams, which are respectively referred to as first The beam and the second beam, the power control information of the first beam and the second beam may each occupy 4 bits, at least one of the 4 bits is used to identify a beam or a set of beams, and the remaining bits are used as power control information fields. For example, as shown in FIG. 5, the first 4 bits are the power control information of the first beam, and the last 4 bits are the power control information of the second beam.
  • the power control information when the power control information includes the identifier of the beam set, the power control information may be valid for all beams in the beam set, and then only one power may be sent for multiple beams. Control information so that signaling can be saved.
  • the information of the beam included in the beam set may be sent to the terminal by using a specific message, such as the foregoing configuration information or the third message described below. Make a limit.
  • the terminal receives the first message sent by the base station, and determines, according to the power control information in the first message, the transmission power of the signal on the first beam.
  • the terminal After receiving the first message, the terminal demodulates the first message to obtain power control information corresponding to the first beam, thereby determining the transmission power of the signal on the first beam.
  • the specific manner in which the terminal determines the transmission power of the signal on the first beam may be multiple, for example, it may be:
  • Transmission power basic open loop operating point + f ( ⁇ TPC) + other partial power
  • f( ⁇ TPC) represents the cumulative amount under the cumulative power control command
  • f( ⁇ TPC) represents the power adjustment value in the current power control command word
  • Determining, and related to a specific uplink signal and/or channel may include at least one of the following related factors: a signal to be transmitted on the uplink and/or a bandwidth of the channel, an uplink transmission signal, and a modulation coding order of the channel, and an uplink.
  • the uplink channel includes but is not limited to SRS, uplink One or more of a Physical Uplink Control Channel (PUCCH) and a Physical Uplink Shared Chanel (PUSCH).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Chanel
  • the base station may configure a basic open loop working point for the uplink beam of the terminal according to the cell load condition and the neighbor cell interference, and the basic open loop working point may be described as follows:
  • P0 is the semi-static reference power, determined by the sum of a common power level (measured in dBm) of P O_NOMINAL and a terminal uplink transmit beam-specific offset P O_UE for all terminals served by the base station, P O_NOMINAL and P O_UE respectively
  • the system broadcast message and the high-level signaling are configured
  • is a fractional path loss compensation factor, which is used to control the interference of the edge terminal uplink beam to the neighboring cell, and can be configured by a high-level message
  • the PL is a path loss compensation part between the terminal and the base station.
  • the path loss information may be jointly obtained by the reference signal received power reported by the terminal and the transmit power of the base station side reference signal.
  • the terminal sends a signal to the base station on the first beam according to the transmission power of the signal on the first beam.
  • the base station receives the signal transmitted by the terminal on the first beam.
  • the characteristics of the NR are fully considered, and efficient and reasonable power allocation can be ensured, and overall system performance can be improved.
  • the embodiment of the present application may further include: the base station will be in the first message.
  • the indication information of the number of included power control information is sent to the terminal.
  • the indication information of the number of the power control information may be included in the first message, or may be sent by other means, which is not limited by the embodiment of the present application.
  • the base station may notify the terminal of the indication information of the number of power control information by using high layer signaling or physical layer signaling.
  • the complexity of channel blind detection of the bearer power control information by the terminal can be reduced. For example, if two power control information are included in the first message, the terminal detects two power control information. , the detection of the corresponding channel can be terminated, thereby reducing the complexity of blind detection.
  • the multiple base stations may respectively send power control information of the beam and/or beam set that communicates with the base station to the terminal
  • the power control information of the beam and/or the beam set may be transmitted to the terminal through one of the plurality of base stations, for example, may be a base station similar to the centralized control function.
  • the method of the embodiment of the present application may further include: the base station receiving the other Power control information sent by the base station.
  • the base station receives the power control information corresponding to the beam and/or the beam set sent by the other base station, and after processing, sends the at least one power control information to the terminal by using the first message.
  • the first message sent by the base station may include power control information of the local base station, and may also include power control information of other base stations.
  • the base station may also send multiple first messages at different times, and send power control information of multiple beams and/or beam sets of the terminal to the terminal, as long as the terminal can identify different beams and/or beams.
  • the power control information of the set is not limited, and the embodiment of the present application does not limit this.
  • the terminal communicates with the base station 1 and the base station 2 through the beam 7 and the beam 2, respectively.
  • the base station 2 controls the power of the beam 2.
  • the information is sent to the base station 1, and the base station 1 transmits the power control information of the beam 7 and the beam 2 to the terminal through at least one first message.
  • the base station may determine specific power control information for the first beam by:
  • the base station determines a specific value of the power control command based on at least one of an uplink sounding reference signal, an uplink demodulation reference signal, an uplink block error rate, and a modulation coding order of the terminal. It can be understood that, for different network requirements or conditions, the base station can determine the specific power control information in different manners, which is not limited in this embodiment of the present application.
  • the terminal may further send the capability information of the terminal to the base station, where the base station determines the specific power control information.
  • a power control method including:
  • the terminal sends a second message to the base station, where the second message includes information indicating an ability of the inter-beam power sharing of the terminal.
  • the capability of power sharing between beams may include any of the following:
  • Power can be shared between all beams of the terminal; (2) power can be shared between certain beams of the terminal (3) All beams cannot share power.
  • the ability to indicate inter-beam power sharing through an 8-bit message can indicate beam 1, and power can be shared between beam 5 and beam 6; or
  • the capability of power sharing between beams can also be indicated by two 4-bit information, "1001", "0110", indicating that power can be shared between beam 1 and beam 4, and power can be shared between beam 6 and beam 7; or If all beams can share power, it can be represented by 1 bit, for example, "1”. If all beams cannot share power, it can also be represented by 1 bit, for example, "0".
  • the terminal can also transmit the associated maximum transmission power (ie, power capability) to the base station.
  • the maximum transmission power of each beam can be transmitted to the base station; for all beams to share power, the sum of the maximum transmission powers of all beams can be transmitted to the base station; In the case where the beams can share power, the sum of the maximum transmission powers of the beams of the shared power can be transmitted to the base station.
  • the foregoing information indicating the capability of inter-beam power sharing and the associated maximum transmission power may be included in a message, that is, the second message is sent to the base station, or may be transmitted to the base station through different messages. There is no limitation on what message the second message is and the structure of the message.
  • the base station receives the second message, and determines power control information for the first beam according to the second message.
  • the base station After receiving the second message, the base station can know which beams of the terminal can share power, which beams cannot share power, and can further know the relevant maximum transmission power, and can determine the corresponding maximum allowed power. For example, the base station may determine at least one of an interference condition in the current network, a signal quality requirement of the uplink signal of the terminal, an out-of-band radiation requirement, a spectrum radiation template of the uplink signal, a spurious emission requirement, and an influence of the uplink signal on the human body.
  • the corresponding maximum power allowed by the base station and/or a beam that can share the maximum value of the power, and the result determined by the base station is sent to the terminal, for example, by a third message.
  • the third message may include a sum of allowed power maximums of beams capable of sharing power and corresponding beams of shared power, and may also include respective allowed power maximum values of beams that do not share power, according to Different determination results, the third message will include different content.
  • the information such as the allowed maximum power value determined by the base station and/or the beam that can share the power maximum value may be sent through a third message different from the first message, or may be carried in the first message.
  • the power control information is sent together, which is not limited in this embodiment of the present application. If it is sent by the third message, it may be performed before S603, or may be performed after S603, which is not limited by the embodiment of the present application.
  • the power control of the terminal is further combined with the second message, so that the power of each beam can be allocated more reasonably, and the signals on different beams can be enabled as much as possible. It is allocated to the ideal transmission power, which can improve the transmission performance.
  • the base station sends a first message to the terminal.
  • the terminal receives the first message sent by the base station, and determines the transmission power of the signal on the first beam according to the power control information in the first message.
  • the terminal sends a signal to the base station on the first beam according to the transmission power of the signal on the first beam.
  • the S603-S605 in the embodiment of the present application is similar to the S401-S403 shown in the embodiment of FIG. 4, and the embodiment shown in FIG. 6 may further include the base station transmitting the indication information of the number of power control information included in the first message.
  • S601-S602 can be applied to any of the embodiments of the present application.
  • the embodiment of the present application may further include: if the terminal can share power on the beam The sum of the transmission powers of the signals is greater than the sum of the maximum allowed transmission powers of the beams of the shared power, and the transmission power of the signals on at least one of the beams that can share the power is adjusted downward so that the power can be shared on the beam The sum of the transmission powers of the signals is less than or equal to the sum of the allowed maximum transmission powers of the beams of the shared power.
  • the sum of the allowed maximum transmission powers of beam 1 and beam 2 is Pmax, and the transmission of signals on at least one of the beams that can share power
  • the corresponding value can be configured by the base station, or can be determined by the terminal itself, which is not limited by the embodiment; (2) if the signals of the beam 1 and the beam 2 are A power control time unit does not completely coincide, assuming that the Mth power control time unit of beam 1 and the Nth power control time unit of beam 2 overlap in the time domain, and the Nth power control time unit of beam 2 The Mth power control with timing earlier than beam 1 The time unit, as shown in FIG.
  • the 7b may adjust at least one of the transmission power of the signal on the Mth power control time unit on the beam 1 and the first transmission power of the signal on the beam 2, the first transmission The power is the larger of the transmission power of the signal on the Nth power time unit and the transmission power of the signal on the N+1th power time unit, for example, the specific adjustment manner may be: ⁇ 1 ⁇ P 1, M + ⁇ 2 ⁇ max ⁇ P 2,N ,P 2,N+1 ⁇ Pmax, where M and N are natural numbers, 0 ⁇ 1 ⁇ 1, 0 ⁇ 2 ⁇ 1, P 1,M is beam 1
  • the transmission power of the signal on the Mth power control time unit, P 2, N is the transmission power of the signal on the Nth power time unit of beam 2
  • P 2, N+1 is the N+ of beam 2
  • the corresponding values can be a base station configuration, may be determined by the terminal itself, the present embodiment is not limited in application.
  • the power control time unit is a time granularity of power control, and the power control time unit may be a minimum scheduling time unit or an agreed time unit.
  • the power control method provided by the embodiment of the present application is introduced from the perspective of the interaction between the network elements and the network elements.
  • each network element such as a terminal, a base station, etc.
  • each network element includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. The skilled person can use different methods for each particular application to implement the described functionality.
  • the embodiment of the present application further provides a communication device 800, which is used to implement the functions of the first device in the foregoing method embodiments.
  • the communication device 800 may include:
  • the transmitter 801 is configured to send a first message to the second device, where the first message includes power control information of the first beam of the second device, where the first beam includes at least one beam,
  • the power control information includes a power control command
  • the receiver 802 is configured to receive a signal that is sent by the second device by using the first beam, where a transmission power of a signal on the first beam is determined according to the power control information.
  • the sender 801 is further configured to send, to the second device, information indicating the number of power control information carried in the first message.
  • the receiver 802 is further configured to receive the second message from the second device, where the second message includes capability information indicating inter-beam power sharing of the second device.
  • the transmitter 801 is further configured to send configuration information related to an index of a beam/beam set communicated by the at least one communication device 800.
  • the communication device 800 may further include a processor 803, configured to determine, according to the configuration information, a sending occasion of the medium power control information of the first message or a location of the power control information in the first message.
  • a processor 803 configured to determine, according to the configuration information, a sending occasion of the medium power control information of the first message or a location of the power control information in the first message.
  • the processor 803 can be used to determine power control information for the first beam.
  • the manner in which the processor 803 specifically determines the power control information is not limited in this embodiment of the present application.
  • the processor 803 is further configured to determine, according to the second message received by the receiver 802, the allowed maximum power value and/or the beam that can share the power maximum value, the transmitter 801 can also use the transmitter 801. Transmitting, to the second device, a third message, where the third message includes maximum transmission power information allowed by the first device, where the allowed maximum transmission power information may be a respective one of beams that do not share power.
  • the maximum transmit power allowed, and/or the maximum allowable transmit power of the beam for power sharing; optionally, the third message may further include beam information that the first device allows for power sharing.
  • the first message may further include maximum transmission power information allowed by the first device, and may also include beam information that the first device allows for power sharing.
  • the receiver 802 is further configured to receive power control information sent by another communications device, where the transmitter 801 is configured to send the received power control information sent by the other communications device to the second device.
  • transmitter 801 and the receiver 802 may exist independently or may be integrated into one transceiver, which is not limited in this embodiment of the present application.
  • the communication device 800 of the embodiment of the present application may further include a memory.
  • This memory can be used to store program code and data for the communication device 800.
  • FIG. 8 only shows a simplified design of the communication device 800.
  • the communication device 800 can include any number of transmitters, receivers, processors, memories, etc., and all communication devices that can implement the embodiments of the present application are within the scope of the present application.
  • the embodiment of the present application further provides a communication device, which is used to implement the function of the second device in the foregoing method embodiment.
  • the communication device 900 may include:
  • the receiver 901 is configured to receive, by the first device, a first message, where the first message includes power control information of a first beam of the communications device 900, the first beam includes at least one beam, and the power control The information includes power control commands;
  • the transmitter 902 sends a signal to the first device on the first beam, where a transmission power of a signal on the first beam is determined according to the power control information.
  • the receiver 901 is further configured to receive, by the first device, information indicating the number of power control information carried in the first message.
  • the communication device 900 may further include a processor 903, configured to acquire power control information corresponding to the first beam according to the first message, thereby determining a transmission power of the signal on the first beam.
  • a processor 903 configured to acquire power control information corresponding to the first beam according to the first message, thereby determining a transmission power of the signal on the first beam.
  • the transmitter 902 is further configured to send a second message to the first device, where the second message indicates capability information of inter-beam power sharing of the second device; It may include: a sum of maximum transmission powers of beams that perform power sharing, or a maximum transmission power of beams that do not perform power sharing.
  • the receiver 901 is further configured to receive, by the first device, a third message, where the third message includes maximum transmission power information allowed by the first device, where the allowed maximum transmission power information may be The respective allowed maximum transmission power of the beams that do not share power, and/or the maximum allowed transmission power of the beams that perform power sharing; the third message may further include: the first device allows power sharing Beam information.
  • the processor 903 can further determine the transmission power in conjunction with the third message.
  • the first message may further include maximum transmission power information allowed by the first device, and may also include beam information that the first device allows for power sharing.
  • the processor 903 is further configured to: when the sum of the transmission powers of the signals on the beams of the second device that can share the power is greater than the sum of the maximum transmission powers of the beams of the shared power, the beams that can share the power The transmission power of the signal on at least one of the beams is adjusted downward such that the sum of the transmission powers of the signals on the beams that can share the power is less than or equal to the sum of the allowed maximum transmission powers of the beams of the shared power.
  • the communication device 900 of the embodiment of the present application may further include a memory.
  • This memory can be used to store program code and data for the communication device 900.
  • FIG. 9 merely shows a simplified design of the communication device 900.
  • the communication device 900 can include any number of transmitters, receivers, processors, memories, etc., and all communication devices that can implement the embodiments of the present application are within the scope of the present application.
  • FIG. 10 Another exemplary structure of the communication device in the embodiment of the present application is as shown in FIG. It should be understood that the communication device 1000 illustrated in FIG. 10 is merely an example, and the communication device of the embodiment of the present application may further include other modules or units, or include modules similar in function to the respective modules in FIG. 10.
  • the transmitting module 1010 can be used to implement the functions implemented by the transmitter 801 in FIG.
  • the receiving module 1020 can be used to implement the functions implemented by the receiver 802 of FIG.
  • the processing module 1030 can be used to implement the functions implemented by the processor 803 of FIG.
  • FIG. 11 Another exemplary structure of the communication device in the embodiment of the present application is as shown in FIG. It should be understood that the communication device 1100 illustrated in FIG. 11 is merely an example, and the communication device of the embodiment of the present application may further include other modules or units, or include modules similar in function to the respective modules in FIG.
  • the receiving module 1110 is configured to implement the functions implemented by the receiver 901 in FIG.
  • the transmitting module 1120 is configured to implement the functions implemented by the transmitter 902 in FIG.
  • the processing module 1130 is configured to implement the functions implemented by the processor 903 in FIG.
  • the processor in each of the above embodiments may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or the like. Programming logic devices, transistor logic devices, hardware components, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the terminal.
  • the processor and the storage medium can also exist as discrete components in the terminal.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种功率控制方法,包括:第一设备发送第一消息给第二设备,其中,所述第一消息中包括所述第二设备的第一波束的功率控制信息,所述第一波束包括至少一个波束,所述功率控制信息中包括功率控制命令;接收所述第二设备通过所述第一波束发送的信号,所述第一波束上的信号的传输功率是根据所述功率控制信息确定的。通过本申请实施例提供的功率控制方法,充分的考虑了NR中的特性,可以保证高效合理的功率分配,提高整体系统性能。

Description

功率控制方法和通信设备 技术领域
本申请涉及无线通信技术领域,具体涉及功率控制方法和通信设备。
背景技术
作为新一代无线接入技术(new radio access technology,NR)关键技术之一,高频(high frequency,HF)可以提供更多的频谱资源、支持更多的天线数目,提升系统容量,已经得到了广泛研究。随着频率的提升,无线信号的波长相应地变短,短波长可以使得收发两端的天线尺寸大为缩减,多个天线因而能够被容易的集成在一个空间有限的面板之内。通过多天线的波束赋性技术,将发送信号能量汇集在某一方向上进行发送,可以有效提升覆盖,进而提高通信的性能。相应地,接收机可以形成具有方向性的接收波束,实现高增益的接收某一空间方向上到达的无线信号。伴随着天线封装技术的不断演进,多个天线阵子可以更容易地与芯片嵌套结合,形成一个天线面板或者天线阵列,这使得在发射机配置多个低相关性的天线阵列成为可能。多个天线面板可以独立的形成发送波束,从而一个发射机可以通过不同的波束发送数据流,以提升传输的容量或可靠性。
功率控制对于整个无线通信系统较为关键,然而,目前还没有适用于NR较好的功率控制方法。
发明内容
本申请实施例提供的功率控制方法和通信设备,可以适用于NR,能够保证高效合理的功率分配,提高整体系统性能。
第一方面,本申请实施例提供了一种功率控制方法,包括:第一设备发送第一消息给第二设备,其中,所述第一消息中包括所述第二设备的第一波束的功率控制信息,所述第一波束包括至少一个波束,所述功率控制信息中包括功率控制命令;接收所述第二设备通过所述第一波束发送的信号,所述第一波束上的信号的传输功率是根据所述功率控制信息确定的。该功率控制方法,充分的考虑了NR的特性,可以保证高效合理的功率分配,提高整体系统性能。
在一种可能的实现方式中,第一设备通过时分的方式对第二设备的多个波束和/或波束集合分别进行功率控制,也就是说第一消息的发送时机与第一波束是关联的,通过这种方式可以有效的节约信令开销。
在一种可能的实现方式中,第一消息可以包括多个独立的功率控制信息,每个独立的功率控制信息对应一个波束或者波束集合,进一步的,每个波束或者波束集合的功率控制信息在第一消息中的比特信息位置可以根据相关的配置信息固定。通过这种方式可以有效的节约信令开销。
在一种可能的实现方式中,功率控制信息中还可以包括第一波束的标识,通过该标识可以获知功率控制命令是与哪个波束或者波束集合对应的。
在一种可能的实现方式中,第一波束为波束集合,当功率控制信息中包括的是波束集合的标识时,该功率控制信息可以对波束集合中的所有波束都生效,那么针对多个波束可以只发一个功率控制信息,从而可以节省信令。
在一种可能的实现方式中,所述第一设备向所述第二设备发送指示所述第一消息中携 带的功率控制信息的个数的信息,从而可以降低盲检的复杂度。
在一种可能的实现方式中,所述第一设备从所述第二设备接收第二消息,其中,所述第二消息包括指示所述第二设备的波束间功率共享的能力信息;所述第二消息中还可以包括:进行功率共享的波束的最大传输功率之和,和/或,不进行功率共享的波束的最大传输功率。
在一种可能的实现方式中,所述第一设备发送第三消息给所述第二设备,其中,所述第三消息中包括所述第一设备允许的最大传输功率信息,其中,该允许的最大传输功率信息可以是不共享功率的波束的各自的允许的最大传输功率,和/或进行功率共享的波束的允许的最大传输功率之和;所述第三消息中还可以包括所述第一设备允许进行功率共享的波束信息。
在一种可能的实现方式中,第一设备还可以接收其他设备发送的功率控制信息,所述第一设备接收到其他设备发送的与波束和/或波束集合对应功率控制信息,进行处理后,将至少一个功率控制信息通过第一消息发送给第二设备。也就是说,多个第一设备中的一个来实现集中控制的功能,所有的对第二设备的功率控制信息均由该集中控制的功能的第一设备来发送。此时,所述基站发送的第一消息中可以包括本基站的功率控制信息,也可以包括其他基站的功率控制信息。或者,所述基站也可以分别在不同时刻发送多条第一消息,将终端的多个波束和/或波束集合的功率控制信息下发给终端,只要终端能识别出对不同波束和/或波束集合的功率控制信息即可。
第二方面,本申请实施例还提供了一种功率控制方法,包括:
第二设备从第一设备接收第一消息,所述第一消息中包括所述第二设备的第一波束的功率控制信息,所述第一波束包括至少一个波束,所述功率控制信息中包括功率控制命令;在所述第一波束上向所述第一设备发送信号,其中所述第一波束上的信号的传输功率是根据所述功率控制信息确定的。
在一种可能的实现方式中,所述功率控制信息还包括:所述第一波束的标识。
在一种可能的实现方式中,上述功率控制方法还可以包括:从所述第一设备接收指示第一消息中携带的功率控制信息的个数的信息。
在一种可能的实现方式中,上述功率控制方法还可以包括:所述第二设备发送第二消息给所述第一设备,其中,所述第二消息指示所述第二设备的波束间功率共享的能力信息。所述第二消息中还可以包括:进行功率共享的波束的最大传输功率之和,或者,不进行功率共享的波束的最大传输功率。
在一种可能的实现方式中,为了使得第二设备的各个波束上的信号的传输功率更加合理,还可以包括:如果第二设备的可以共享功率的波束上的信号的传输功率之和大于共享功率的波束的最大传输功率之和,将可以共享功率的波束中的至少一个波束上的信号的传输功率向下调整,使得可以共享功率的波束上的信号的传输功率之和小于或者等于共享功率的波束的最大传输功率之和。
本申请实施例提供的功率控制方法,通过波束级的功率控制,充分的考虑了NR的特性,可以保证高效合理的功率分配,提高整体系统性能。
第三方面,本申请实施例还提供了一种通信设备,该通信设备具有实现上述所有示例的功率控制方法中第一设备的功能。上述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。上述硬件或软件包括一个或多个与上述功能相对应的模块。例如,该通信 设备可以包括接收器和发送器,此外,还可以包括处理器。
第四方面,本申请实施例提供了一种通信设备,该通信设备具有实现上述所有示例的功率控制方法中第二设备的功能。上述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。上述硬件或软件包括一个或多个与上述功能相对应的模块。例如,该通信设备可以包括接收器和发送器,此外,还可以包括处理器。
再一方面,本申请实施例提供了一种计算机存储介质,用于储存为上述第三方面的通信设备中所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本申请实施例提供了一种计算机存储介质,用于储存为上述第四方面的通信设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
附图说明
图1为本申请实施例提供的无线通信系统示意图;
图2为本申请实施例提供的一种波束通信示意图;
图3为本申请实施例提供的另一种波束通信示意图;
图4为本申请实施例提供的一种功率控制方法一种示意图;
图5为本申请实施例提供的一种功率控制信息结构示意图;
图6为本申请又一实施例的提供的功率控制方法的示意图;
图7a为本申请实施例的波束上的信号的一种时序示意图;
图7b为本申请实施例的波束上的信号的另一种时序示意图;
图8为本申请实施例的通信设备的结构示意图;
图9为本申请实施例的通信设备的结构示意图;
图10为本申请实施例的通信设备的结构示意图;
图11为本申请实施例的通信设备的结构示意图。
具体实施方式
下面结合附图,对本申请的实施例进行描述。
图1是可应用本申请实施例技术方案的无线通信系统的一个示意图。
在本实施例的方案中,如图1所述的通信系统中,该通信系统至少包括至少一个基站和多个终端。
本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。具体的,本申请实施例中的通信系统例如可以是5G。
本申请实施例中所提到的基站是一种部署在无线接入网中用以为终端提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站(也称为小站),中继站,发送/接收点(transmission/reception point,TRP)等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同。为方便描述,本申请所有实施例中,上述为终端提供无线通信功能的装置统称为基站。
本申请实施例中所涉及到的终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。所述终端也可以称为移动台(mobile station,简称MS),用户设备(user equipment),终端设备(terminal equipment),还可以包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板 型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端等。为方便描述,本申请所有实施例中,上面提到的设备统称为终端。
需要说明的是,图1所示的通信系统中所包含的终端的数量和类型仅仅是一种例举,本申请实施例也并不限制于此。
一般而言,一个天线面板同时形成一个波束方向,在该波束方向内,可以承载不同的物理信号或者物理信道,对于同一类物理信道或者物理信号,一个波束内可以包括一个或多个天线端口,用于传输数据信道,控制信道和探测信号等,或者,一个波束还可以传输用于随机接入的物理信道,该物理信道可能在任意天线端口中传输。例如,发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,一个波束内的一个或多个天线端口也可以看作是一个天线端口集,也就是说一个天线端口集包括至少一个天线端口。本申请实施例中,可能会出现波束和天线端口集混用的情况。
具体的,波束可以是指具有一定能量传输指向性的预编码向量并且能够通过索引信息去标识该预编码向量,所述能量传输指向性是指在一定空间位置内,接收经过该预编码向量进行预编码处理后的信号具有较好的接收功率,如满足接收解调信噪比等,而在其他空间位置内,接收经过该预编码向量进行预编码处理后的信号的功率较低,不满足接收解调信噪比。不同的通信设备可以有不同的预编码向量,即对应不同的波束,针对通信设备的配置或者能力,一个通信设备在同一时刻可以使用多个不同的预编码向量中的一个或者多个,即同时可以形成一个波束或者多个波束。所述波束可以理解为空间资源。可以通过一个索引信息去标识波束,所述索引信息可以对应配置该用户的对应的资源ID,如对应为某一个配置的信道状态信息参考信号(Channel-State Information-Reference Signal,CSI-RS)的ID或者资源,也可以是某一配置的上行探测参考信号(Sounding Reference Signal,SRS)的ID或者资源,也可以是通过该波束承载的特定信号或信道显示或隐式承载的索引信息,包括但是不限于通过该波束发送同步信号或者广播信道指示该波束的索引信息。
本申请实施例的功率控制方法,可以用于第一设备和第二设备进行通信时,第一设备对第二设备发送给第一设备的信号进行功率控制的场景。例如,在上行传输场景下,第一设备可以为基站,第二设备可以为终端,在D2D场景中,第一设备可以为终端,第二设备可以为另一个终端,本申请实施例对此不做限定。
为便于说明和理解,下面的实施例以第一设备为基站,第二设备为终端为例进行说明。
终端可以通过多个波束分别与不同的基站通信,如图2所示,终端通过波束7和波束2分别和基站1和基站2通信;或者还可以是终端通过多个波束与一个基站通信,如图3所示,终端通过三个波束与基站1通信。当然,除了类似于图2或者图3的情况,还可以是其他场景,本申请实施例不一一进行图示。
本申请实施例提供了一种功率控制方法,如图4所示,包括:
S401,基站发送第一消息给终端;
其中,第一消息中可以包括终端的第一波束的功率控制信息,而第一波束可以包括至少一个波束。如前所述,终端可以通过一个或者多个波束与至少一个基站通信,例如图3所示的场景中,可以将与基站1通信的三个波束作为整体看做第一波束,此时第一波束可 以理解为一个波束集合,也可以将这三个波束看作是独立的波束;或者,如图2所示的场景中,波束7和波束2作为独立的波束。
可以理解的是,除功率控制信息外,第一消息中还可以包括其他的信息,本申请实施例对此不做限定。功率控制信息可以包括功率控制命令,此外,在功率控制命令的基础上,还可以包括其他与功率控制相关的信息。
第一消息可以通过下行控制信道进行传输,该下行控制信道例如可以是类似于长期演进(long term evolution,LTE)中的物理下行控制信道(physical downlink control channel,PDCCH)的信道。
其中,功率控制命令可以是相对型的命令,也可以是绝对型的命令。所谓相对型的命令可以理解为终端在接收到该功率控制命令后,其传输功率的调整效果类似于在当前的传输功率基础上进行相对的调整,相对型的命令也可以叫做累积型的命令;所谓绝对型的命令,可以理解为终端在接收到该功率控制命令后,其传输功率的调整效果类似于在初始传输功率的基础上进行调整;具体采用何种形式的功率控制命令可能与网络需求或者具体的传输格式等因素相关,本申请实施例对此不做限定,例如可以是通过高层消息配置功率控制命令的形式。
表1给出了一种可能的功率控制命令的取值示例,需要说明的是,本申请实施例对功率控制命令字段各个取值所对应的具体功率控制命令不做限定,也不对功率控制命令字段的具体比特数做限定,功率控制命令字段的比特长度可以是预定义好的,也可以是可变的。
表1
功率控制命令字段取值 相对型的功率控制命令(dB) 绝对型的功率控制命令(dB)
0 -1 -4
1 0 -1
2 1 1
3 3 4
可选的,通过第一消息传递功率控制信息可以通过以下任意一种方式实现:
(1)基站通过时分的方式对终端的多个波束和/或波束集合分别进行功率控制,也就是说不同的波束/波束集合的功率控制信息发送的时机不同,第一消息的发送时机与第一波束是关联的。例如,假设基站1要分别发送终端的波束1和波束2的功率控制信息,可以在第一时机发送波束1的功率控制信息,在第二时机发送波束2的功率控制信息。发送具体波束的时机可以根据相关配置信息确定,该配置信息和与至少一个基站通信的波束/波束集合的索引相关。例如,通过波束训练、波束对齐、信道状态信息测量、探测参考信号发送中的至少一种过程,可以确定基站的至少一个波束和/或波束集合以及终端的至少一个波束和/或波束集合用于信号传输,基站可以通过配置信息向终端指示所确定的至少一个波束或者波束集合的索引,用于上行信号的发送。当确定的是波束集合时,除了发送波束集合的索引,还可以将波束集合中包括的具体的波束的信息发送给终端,那么当终端接收到该波束集合的标识时便可以将波束集合和具体的波束关联起来。
(2)在第一消息中可以包括多个独立的功率控制信息,每个独立的功率控制信息对应一个波束或者波束集合,每个波束或者波束集合的功率控制信息在第一消息中的比特信息位置可以根据相关的配置信息固定。例如,第一消息中还可以包括第二波束的功率控制信息,而第一波束的功率控制信息与第二波束的功率控制信息在第一消息中的位置是根据配置信息确定的,其中,第二波束包括至少一个波束。其中,该配置信息是和与至少一个基站通信的波束或者波束集合的索引相关。此处的配置信息可以与上述方式(1)所描述的配置信息类似,此处不再赘述。
(3)功率控制信息中还可以包括第一波束的标识,通过该标识可以获知功率控制命令是与哪个波束或者波束集合对应的,可以将标识与功率控制命令的组合称为功率控制信息。每个独立进行功率控制的波束或者波束集合都可以被分配一个标识。
所述第一波束的标识可以如表2所示,不同的数值对应表示不同的波束或者波束集合。可以理解的是,表2只是举例说明,本申请实施例对具体的对应方式不做限定,以及对表示第一波束的标识的比特位数也不做限定。例如,假设第一消息中的用于功率控制的比特位数可以是8,用于提供两个独立的波束或者波束集合的功率控制信息,这两个独立的波束或者波束集合分别称为第一波束和第二波束,第一波束和第二波束的功率控制信息可以各自占用4比特,4比特中的至少一个比特用于标识波束或者波束集合,剩余比特作为功率控制信息字段。例如图5所示,前4个比特为第一波束的功率控制信息,后4个比特为第二波束的功率控制信息。
表2
标识数值 波束
0 0
1 1
2 2
3 3
可以理解的是,以上各种方式中,当功率控制信息中包括的是波束集合的标识时,该功率控制信息可以对波束集合中的所有波束都生效,那么针对多个波束可以只发一个功率控制信息,从而可以节省信令。
波束集合中包括的波束的信息,也就是波束集合和波束的对应关系,可以通过特定的消息发送给终端,例如前述的配置信息或者下文所描述的第三消息等,本申请实施例对此不做限定。
需要说明的是,以上通过第一消息传递功率控制信息的各种方式适用于终端通过波束和/或波束集合与一个或者一个以上基站通信的场景,如果是各个基站独立给与其通信的终端发送功率控制信息,各个基站的处理方式是类似的。
S402,终端接收基站发送的第一消息,根据第一消息中的功率控制信息确定第一波束上的信号的传输功率。
终端接收到第一消息后,会对第一消息进行解调,获取对应于第一波束的功率控制信息,从而确定第一波束上的信号的传输功率。
可选的,终端确定第一波束上的信号的传输功率的具体方式可以有多种,例如可以是:
结合当前基本开环工作点,和指示该波束对应的功率控制命令,确定该波束上的信号的传输功率,例如
传输功率=基本开环工作点+f(ΔTPC)+其他部分功率
其中f(ΔTPC)代表在累积型功控命令下的累积量,如果是绝对型功控命令,则f(ΔTPC)代表当前功控命令字中的功率调整值;其他部分功率可以由多种因素决定,并且与具体的上行信号和/或信道相关,例如可以包括以下相关因素中的至少一种:上行要发送的信号和或信道的带宽、上行传输信号和或信道的调制编码阶数、上行传输信号和或信道的格式、半静态配置的功率、随机接入响应消息中指示功率调整部分、信道状态信息反馈信息、混合自适应重传确认消息,所述上行信道包括但不限SRS、上行物理控制信道(Physical Uplink Control Channel,PUCCH)、上行物理共享信道(Physical Uplink Shared Chanel,PUSCH)中的一种或多种。
进一步的,基站可以根据小区负载状况和邻小区干扰,为终端的上行波束配置一个基本开环工作点,所述基本开环工作点可以描述如下:
基本开环工作点=P0+β*PL
其中P0为半静态基准功率,由基站服务的所有终端的一个共同功率水平(用dBm衡量)P O_NOMINAL和一个终端上行发送波束特定的偏移量P O_UE之和确定,P O_NOMINAL和P O_UE分别由系统广播消息和高层信令进行配置,β为分数路径损耗补偿因子,用于控制边缘终端上行波束对相邻小区的干扰,可以通过高层消息进行配置,PL为终端与基站间的路径损耗补偿部分,用于补偿终端到基站的路径损耗,可以通过终端上报的参考信号接收功率和基站侧参考信号的发送功率联合获取路径损耗信息。
可以理解的是,上文所描述的基本开环工作点和传输功率的计算公式只是一种示例,上述公式存在各种变形,或者上述公式中参数也可以替换为其他相关参数,本申请实施例不一一举例。
S403,终端根据第一波束上的信号的传输功率,在第一波束上发送信号给基站。
相应的,基站会接收终端在第一波束上发送的信号。
通过本申请实施例提供的功率控制方法,充分的考虑了NR的特性,可以保证高效合理的功率分配,提高整体系统性能。
如上所述,在第一消息中可能会包括不止一个功率控制信息,可选的,为了提高解调效率,在上述实施例的基础上,本申请实施例还可以包括:基站将第一消息中包括的功率控制信息的个数的指示信息发送给终端。
功率控制信息的个数的指示信息可以包括在第一消息中,也可以通过其他方式发送,本申请实施例对此不做限定。例如基站可以通过高层信令或者物理层信令将功率控制信息的个数的指示信息通知给终端。
通过指示功率控制信息的个数,可以降低终端对承载功率控制信息的信道盲检的复杂度,例如,如果指示第一消息中包括两个功率控制信息时,终端一旦检测到两个功率控制信息,则可以终止相应信道的检测,从而降低盲检复杂度。
可选的,对于终端通过不同的波束和/或波束集合与多个基站通信的情况,可以是多个基站分别给终端发送与该基站进行通信的波束和/或波束集合的功率控制信息,也可以是 通过多个基站中的一个基站,例如可以是类似于实现集中控制功能的基站,将波束和/或波束集合的功率控制信息发送给终端。对于通过多个基站中的一个基站将波束和/或波束集合的功率控制信息发送给终端的情况,在上述方法实施例的基础上,本申请实施例的方法还可以包括:所述基站接收其他基站发送的功率控制信息。
所述基站接收到其他基站发送的与波束和/或波束集合对应功率控制信息,进行处理后,将至少一个功率控制信息通过第一消息发送给终端。此时,所述基站发送的第一消息中可以包括本基站的功率控制信息,也可以包括其他基站的功率控制信息。或者,所述基站也可以分别在不同时刻发送多条第一消息,将终端的多个波束和/或波束集合的功率控制信息下发给终端,只要终端能识别出对不同波束和/或波束集合的功率控制信息即可,本申请实施例对此不做限定。
例如,如图2所示的场景中,终端通过波束7和波束2分别和基站1和基站2通信,假设功率控制信息都通过基站1发送给终端,那么基站2会将对波束2的功率控制信息发送给基站1,基站1将波束7和波束2的功率控制信息通过至少一条第一消息发送给终端。
可选的,本申请实施例中,基站可以通过如下方式为第一波束确定具体的功率控制信息:
基站基于上行探测参考信号、上行解调参考信号,上行误块率、终端的调制编码阶数中的至少一种因素,确定功率控制命令的具体值。可以理解的是,对于不同的网络需求或者条件,基站可以通过不同的方式确定具体的功率控制信息,本申请实施例对此不做限定。
可选的,终端还可以将该终端的能力信息发送给基站,用于基站确定具体的功率控制信息,如图6所示,本申请又一实施例还提供了一种功率控制方法,包括:
S601,终端发送第二消息给基站,其中,所述第二消息包括指示终端的波束间功率共享的能力的信息。
其中波束间功率共享的能力可以包括以下任意一种:
(1)终端的所有波束之间都可以共享功率;(2)终端的某些波束之间可以共享功率(3)所有波束都不可以共享功率。
指示波束间功率共享的能力的信息的通知方式可能有多种,本申请实施例不做限定。假设终端共有八个波束(波束1-8),可以通过一个8比特的信息指示波束间功率共享的能力,例如“10001100”,可以表示波束1,波束5和波束6之间可以共享功率;或者,也可以通过两个4比特的信息指示波束间功率共享的能力,“1001”,“0110”,表示波束1和波束4之间可以共享功率,波束6和波束7之间可以共享功率;或者,如果所有波束都可以共享功率,可以用1个比特,例如“1”表示,如果所有波束都不可以共享功率,也可以用1个比特,例如“0”表示。
此外,除了指示波束间功率共享的能力的信息,终端还可以将相关的最大传输功率(即功率能力)发送给基站。对于所有波束都不可以共享功率的情况,可以将每个波束的最大传输功率发送给基站;对于所有波束都可以共享功率的情况,可以将所有波束的最大传输功率之和发送给基站;对于某些波束可以共享功率的情况,可以将共享功率的波束的最大传输功率之和发送给基站。
可以理解的是,上述指示波束间功率共享的能力的信息以及相关的最大传输功率可以包括在一条消息,即第二消息中发送给基站,也可以通过不同的消息传递给基站,本申请实施例对第二消息是什么消息以及消息的结构不做限定。
S602,基站接收第二消息,根据第二消息为第一波束确定功率控制信息。
基站收到第二消息,即可获知终端的哪些波束可以共享功率,哪些波束不能共享功率,也可以进一步知道相关的最大传输功率,可以确定出相应的允许的功率最大值。例如,基站可以结合当前网络中干扰状况、终端上行信号的信号质量要求和带外辐射要求、上行信号的频谱辐射模板和杂散辐射要求、上行信号对人体影响等中的至少一个因素,确定该基站允许的相应的功率最大值和/或可以共享该功率最大值的波束,将基站确定的结果发送给终端,例如可以通过第三消息发送。可选的,,第三消息中可以包括能够共享功率的波束以及相应的共享功率的波束的允许的功率最大值之和,也可以包括不共享功率的波束的各自的允许的功率最大值,根据不同的确定结果,第三消息中会包括不同的内容。可以理解的是,基站确定的允许的相应的功率最大值和/或可以共享该功率最大值的波束等信息可以通过不同于第一消息的第三消息发送,也可以携带在第一消息中与功率控制信息一起发送,本申请实施例对此不做限定。如果是通过第三消息发送,可以是在S603之前执行,也可以是在S603之后执行,本申请实施例对此不做限定。
在前述为第一波束确定具体的功率控制信息的方式的基础上,进一步结合第二消息对终端进行功率控制,可以更合理的分配各个波束的功率,尽量使得不同的波束上的信号都可以被分配到较为理想的传输功率,从而可以提高传输性能。
S603,基站发送第一消息给终端。
S604,终端接收基站发送的第一消息,根据第一消息中的功率控制信息确定第一波束上的信号的传输功率。
S605,终端根据第一波束上的信号的传输功率,在第一波束上发送信号给基站。
本申请实施例中的S603-S605分别与图4实施例所示S401-S403类似,图6所示实施例也可以进一步包括基站将第一消息中包括的功率控制信息的个数的指示信息发送给终端等其他在上述实施例中描述过的步骤或者方案,也就是说S601-S602可以适用于本申请任一实施例。
进一步的,在图4或者图6所示的实施例的基础上,为了使得终端的各个波束上的信号的传输功率更加合理,本申请实施例还可以包括:如果终端的可以共享功率的波束上的信号的传输功率之和大于共享功率的波束的允许的最大传输功率之和,将可以共享功率的波束中的至少一个波束上的信号的传输功率向下调整,使得可以共享功率的波束上的信号的传输功率之和小于或者等于共享功率的波束的允许的最大传输功率之和。
例如,假设与基站通信的波束1和波束2之间可以共享功率,波束1和波束2的允许的最大传输功率之和为Pmax,将可以共享功率的波束中的至少一个波束上的信号的传输功率向下调整的方式可以如下:
(1)若波束1和波束2的信号在一个功率控制时间单元内是完全重合的,如图7a所示,根据功率控制信息得到的波束1和波束2上的信号的传输功率分别为P1和P2,而P1+P2>Pmax,终端可以将波束1和波束2中的至少一个波束向下调整,使得调整后的波束1和波束2的功率之和小于或者等于Pmax,比如可以在P1和P2的基础上各自乘以相应的缩放因子,即P1’=P1*alpha1,P2’=P2*alpha2,P1’+P2’小于或者等于Pmax,0<alpha1≤1,0<alpha2≤1,alpha1和alpha2与波束1和波束2上承载的信道或者信号相关,对应的值可以通过基站配置,也可以通过终端自己确定,本申请实施例不做限定;(2)若波束1和波束2的信号在一个功率控制时间单元不完全重合,假设波束1的第M个功率控制时间单元 和波束2的第N个功率控制时间单元在时域上有重叠,且波束2的第N个功率控制时间单元的时序早于波束1的第M个功率控制时间单元,如图7b所示,可以将波束1上的第M个功率控制时间单元上的信号的传输功率和波束2上的信号的第一传输功率中的至少一个向下调整,第一传输功率为第N个功率时间单元上的信号的传输功率和第N+1个功率时间单元上的信号的传输功率中的较大值,比如具体的调整方式可以是:α 1·P 1,M2·max{P 2,N,P 2,N+1}≤Pmax,其中,M和N为自然数,0<α 1≤1,0<α 2≤1,P 1,M为波束1上的第M个功率控制时间单元上的信号的传输功率,P 2,N为波束2的第N个功率时间单元上的信号的传输功率,P 2,N+1为波束2的第N+1个功率时间单元上的信号的传输功率。α 1和α 2与波束1和波束2上承载的信道或者信号相关,对应的值可以通过基站配置,也可以通过终端自己确定,本申请实施例不做限定。进一步的,,功率控制时间单元为功率控制的时间粒度,所述功率控制时间单元可以为最小调度时间单元,也可以为一个约定的时间单元。
需要说明的是,本申请上述各个实施例是以第一设备为基站,第二设备为终端为例进行说明的,对于其他场景,例如D2D的场景,其方法是类似的,只是各个步骤的执行主体发生变更,此处不再赘述。
上述本申请提供的实施例中,分别从各个网元本身、以及从各个网元之间交互的角度对本申请实施例提供的功率控制方法进行了介绍。可以理解的是,各个网元,例如终端、基站等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能。
本申请实施例还提供了一种通信设备800,该通信设备800用于实现上述各个方法实施例中第一设备的功能,如图8所示,该通信设备800可以包括:
发送器801,用于发送第一消息给第二设备,其中,所述第一消息中包括所述第二设备的第一波束的功率控制信息,所述第一波束包括至少一个波束,所述功率控制信息中包括功率控制命令;
接收器802,用于接收所述第二设备通过所述第一波束发送的信号,所述第一波束上的信号的传输功率是根据所述功率控制信息确定的。
可选的,发送器801还可以用于向所述第二设备发送指示所述第一消息中携带的功率控制信息的个数的信息。
可选的,接收器802还可以用于从所述第二设备接收第二消息,其中,所述第二消息包括指示所述第二设备的波束间功率共享的能力信息。
可选的,发送器801还可以用于发送配置信息,该配置信息与至少一个通信设备800通信的波束/波束集合的索引相关。
可选的,通信设备800还可以包括处理器803,处理器803用于根据配置信息确定第一消息的中功率控制信息的发送时机或者功率控制信息在第一消息中的位置。
处理器803可以用于为第一波束确定功率控制信息,本申请实施例对于处理器803如何具体确定功率控制信息的方式不做限定。
可选的,处理器803还可以用于根据接收器802收到的第二消息,确定允许的相应的 功率最大值和/或可以共享该功率最大值的波束,那么,发送器801还可以用于向第二设备发送第三消息,其中,所述第三消息中包括所述第一设备允许的最大传输功率信息,其中,该允许的最大传输功率信息可以是不共享功率的波束的各自的允许的最大传输功率,和/或进行功率共享的波束的允许的最大传输功率之和;可选的,第三消息中还可以包括第一设备允许进行功率共享的波束信息。或者,可选的,第一消息中还可以包括第一设备允许的最大传输功率信息,也可以包括第一设备允许进行功率共享的波束信息。
可选的,接收器802还可以用于接收其他通信设备发送的功率控制信息,发送器801用于将接收到的其他通信设备发送的功率控制信息发送给第二设备。
可以理解的是,发送器801和接收器802可以独立存在,也可以集成在一个收发器上,本申请实施例对此不做限定。
本申请实施例的通信设备800中,还可以包括存储器。该存储器可以用于存储通信设备800的程序代码和数据。可以理解的是,图8仅仅示出了通信设备800的简化设计。在实际应用中,通信设备800可以包含任意数量的发送器,接收器,处理器,存储器等,而所有可以实现本申请实施例的通信设备都在本申请的保护范围之内。
应理解,图8所示本申请实施例的通信设备中的各个单元的上述和其它操作和/或功能分别为了实现图4至图7b中的任一通信方法的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种通信设备,用于实现上述方法实施例中第二设备的功能,如图9所示,该通信设备900可以包括:
接收器901,用于从第一设备接收第一消息,所述第一消息中包括所述通信设备900的第一波束的功率控制信息,所述第一波束包括至少一个波束,所述功率控制信息中包括功率控制命令;
发送器902,在所述第一波束上向所述第一设备发送信号,其中所述第一波束上的信号的传输功率是根据所述功率控制信息确定的。
可选的,接收器901还可以用于从所述第一设备接收指示第一消息中携带的功率控制信息的个数的信息。
可选的,通信设备900还可以包括处理器903,用于对根据第一消息获取对应于第一波束的功率控制信息,从而确定第一波束上的信号的传输功率。
可选的,发送器902还可以用于发送第二消息给所述第一设备,其中,所述第二消息指示所述第二设备的波束间功率共享的能力信息;所述第二消息还可以包括:进行功率共享的波束的最大传输功率之和,或者,不进行功率共享的波束的最大传输功率。
可选的,接收器901还可以用于从第一设备接收第三消息,所述第三消息中包括所述第一设备允许的最大传输功率信息,其中,该允许的最大传输功率信息可以是不共享功率的波束的各自的允许的最大传输功率,和/或进行功率共享的波束的允许的最大传输功率之和;所述第三消息中还可以包括:所述第一设备允许进行功率共享的波束信息。处理器903可以进一步结合第三消息确定传输功率。或者,可选的,第一消息中还可以包括第一设备允许的最大传输功率信息,也可以包括第一设备允许进行功率共享的波束信息。
可选的,处理器903还可以用于在第二设备的可以共享功率的波束上的信号的传输功率之和大于共享功率的波束的允许的最大传输功率之和时,将可以共享功率的波束中的至少一个波束上的信号的传输功率向下调整,使得可以共享功率的波束上的信号的传输功率之和小于或者等于共享功率的波束的允许的最大传输功率之和。
本申请实施例的通信设备900中,还可以包括存储器。该存储器可以用于存储通信设备900的程序代码和数据。可以理解的是,图9仅仅示出了通信设备900的简化设计。在实际应用中,通信设备900可以包含任意数量的发送器,接收器,处理器,存储器等,而所有可以实现本申请实施例的通信设备都在本申请的保护范围之内。
应理解,图9所示本申请实施例的通信设备中的各个单元的上述和其它操作和/或功能分别为了实现图4至图7b中的任一功率控制方法的相应流程,为了简洁,在此不再赘述。
本申请实施例中的通信设备的另一种示例性结构如图10所示。应理解,图10示出的通信设备1000仅是示例,本申请实施例的通信设备还可包括其他模块或单元,或者包括与图10中的各个模块的功能相似的模块。
发送模块1010可以用于实现图8中的发送器801所实现的功能。接收模块1020可以用于实现图8中的接收器802所实现的功能。处理模块1030可以用于实现图8中的处理器803所实现的功能。
本申请实施例中的通信设备的另一种示例性结构如图11所示。应理解,图11示出的通信设备1100仅是示例,本申请实施例的通信设备还可包括其他模块或单元,或者包括与图11中的各个模块的功能相似的模块。
接收模块1110用于实现图9中的接收器901所实现的功能。发送模块1120用于实现图9中的发送器902所实现的功能。处理模块1130用于实现图9中的处理器903所实现的功能。
进一步的,上述各个实施例中的处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端中。当然,处理器和存储介质也可以作为分立组件存在于终端中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (34)

  1. 一种功率控制方法,其特征在于,包括:
    第一设备发送第一消息给第二设备,其中,所述第一消息中包括所述第二设备的第一波束的功率控制信息,所述第一波束包括至少一个波束,所述功率控制信息中包括功率控制命令;
    所述第一设备接收所述第二设备通过所述第一波束发送的信号,所述第一波束上的信号的传输功率是根据所述功率控制信息确定的。
  2. 根据权利要求1所述的方法,其特征在于,所述第一消息的发送时机与所述第一波束关联。
  3. 根据权利要求1所述的方法,其特征在于,所述第一消息中还包括第二波束的功率控制信息;其中,所述第一波束的功率控制信息与所述第二波束的功率控制信息在第一消息中的位置是根据配置信息确定的,所述第二波束包括至少一个波束,所述配置信息和与所述第一设备通信的波束的索引相关。
  4. 根据权利要求1所述的方法,其特征在于,所述功率控制信息中还包括:所述第一波束的标识。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送指示所述第一消息中携带的功率控制信息的个数的信息。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,还包括:
    所述第一设备从所述第二设备接收第二消息,其中,所述第二消息包括指示所述第二设备的波束间功率共享的能力信息。
  7. 根据权利要求6所述的方法,其特征在于,所述第二消息还包括:进行功率共享的波束的最大传输功率之和,和/或,不进行功率共享的波束的最大传输功率。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:所述第一设备发送第三消息给所述第二设备,其中,所述第三消息中包括所述第一设备允许的最大传输功率信息,其中,所述允许的最大传输功率信息包括不共享功率的波束的各自的允许的最大传输功率,和/或进行功率共享的波束的允许的最大传输功率之和。
  9. 根据权利要求8所述的方法,其特征在于,所述第三消息中还包括:所述第一设备允许进行功率共享的波束信息。
  10. 一种功率控制方法,其特征在于,包括:
    第二设备从第一设备接收第一消息,所述第一消息中包括所述第二设备的第一波束的功率控制信息,所述第一波束包括至少一个波束,所述功率控制信息中包括功率控制命令;
    所述第二设备在所述第一波束上向所述第一设备发送信号,其中所述第一波束上的信号的传输功率是根据所述功率控制信息确定的。
  11. 根据权利要求10所述的方法,其特征在于,所述功率控制信息还包括:所述第一波束的标识。
  12. 根据权利要求10或11所述的方法,其特征在于,还包括:
    所述第二设备从所述第一设备接收指示第一消息中携带的功率控制信息的个数的信息。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,还包括:
    所述第二设备发送第二消息给所述第一设备,其中,所述第二消息指示所述第二设备的波束间功率共享的能力信息。
  14. 根据权利要求13所述的方法,其特征在于,所述第二消息还包括:进行功率共享的波束的最大传输功率之和,或者,不进行功率共享的波束的最大传输功率。
  15. 根据权利要求13或14任一项所述的方法,其特征在于,还包括,所述第二设备从第一设备接收第三消息,其中,所述第三消息中包括所述第一设备允许的最大传输功率信息,其中,所述允许的最大传输功率信息包括不共享功率的波束的各自的允许的最大传输功率,和/或进行功率共享的波束的允许的最大传输功率之和。
  16. 根据权利要求15所述的方法,其特征在于,所述第三消息中还包括:所述第一设备允许进行功率共享的波束信息。
  17. 一种通信设备,其特征在于,包括:
    发送器,用于发送第一消息给第二设备,其中,所述第一消息中包括所述第二设备的第一波束的功率控制信息,所述第一波束包括至少一个波束,所述功率控制信息中包括功率控制命令;
    接收器,用于接收所述第二设备通过所述第一波束发送的信号,所述第一波束上的信号的传输功率是根据所述功率控制信息确定的。
  18. 根据权利要求17所述的设备,其特征在于,第一消息的发送时机与所述第一波束关联。
  19. 根据权利要求17所述的设备,其特征在于,所述第一消息中还包括第二波束的功率控制信息;其中,所述第一波束的功率控制信息与所述第二波束的功率控制信息在第一消息中的位置是根据配置信息确定的,所述第二波束包括至少一个波束,所述配置信息和与所述第一设备通信的波束的索引相关。
  20. 根据权利要求17所述的设备,其特征在于,所述功率控制信息中还包括:所述第一波束的标识。
  21. 根据权利要求17-20任一项所述的设备,其特征在于,所述发送器还用于向所述第二设备发送指示所述第一消息中携带的功率控制信息的个数的信息。
  22. 根据权利要求17-21任一项所述的设备,其特征在于,所述接收器还用于从所述第二设备接收第二消息,其中,所述第二消息包括指示所述第二设备的波束间功率共享的能力信息。
  23. 根据权利要求22所述的设备,其特征在于,所述第二消息还包括:进行功率共享的波束的最大传输功率之和,和/或,不进行功率共享的波束的最大传输功率。
  24. 根据权利要求22或23所述的设备,其特征在于,所述发送器还用于,发送第三消息给所述第二设备,其中,所述第三消息中包括所述第一设备允许的最大传输功率信息,其中,所述允许的最大传输功率信息包括不共享功率的波束的各自的允许的最大传输功率,和/或进行功率共享的波束的允许的最大传输功率之和。
  25. 根据权利要求24所述的设备,其特征在于,所述第三消息中还包括:所述第一设备允许进行功率共享的波束信息。
  26. 一种通信设备,其特征在于,包括:
    接收器,用于从第一设备接收第一消息,所述第一消息中包括所述第二设备的第一波 束的功率控制信息,所述第一波束包括至少一个波束,所述功率控制信息中包括功率控制命令;
    发送器,用于在所述第一波束上向所述第一设备发送信号,其中所述第一波束上的信号的传输功率是根据所述功率控制信息确定的。
  27. 根据权利要求26所述的设备,其特征在于,所述功率控制信息还包括:所述第一波束的标识。
  28. 根据权利要求26或27所述的设备,其特征在于,所述接收器还用于从所述第一设备接收指示第一消息中携带的功率控制信息的个数的信息。
  29. 根据权利要求26-28任一项所述的设备,其特征在于,所述发送器还用于发送第二消息给所述第一设备,其中,所述第二消息指示所述第二设备的波束间功率共享的能力信息。
  30. 根据权利要求29所述的设备,其特征在于,所述第二消息还包括:进行功率共享的波束的最大传输功率之和,或者,不进行功率共享的波束的最大传输功率。
  31. 根据权利要求29或30所述的设备,其特征在于,所述接收器还用于从第一设备接收第三消息,其中,所述第三消息中包括所述第一设备允许的最大传输功率信息,其中,所述允许的最大传输功率信息包括不共享功率的波束的各自的允许的最大传输功率,和/或进行功率共享的波束的允许的最大传输功率之和。
  32. 根据权利要求31所述的设备,其特征在于,所述第三消息中还包括:所述第一设备允许进行功率共享的波束信息。
  33. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至9任一项所述的方法。
  34. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求10至16任一项所述的方法。
PCT/CN2017/118379 2017-01-03 2017-12-25 功率控制方法和通信设备 WO2018126930A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17889548.8A EP3547741B1 (en) 2017-01-03 2017-12-25 Power control method and communication device
BR112019013773A BR112019013773A2 (pt) 2017-01-03 2017-12-25 método de controle de energia e dispositivo de comunicações
US16/460,638 US20190327695A1 (en) 2017-01-03 2019-07-02 Power control method and communications device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710002391.4A CN108271175B (zh) 2017-01-03 2017-01-03 功率控制方法和通信设备
CN201710002391.4 2017-01-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/460,638 Continuation US20190327695A1 (en) 2017-01-03 2019-07-02 Power control method and communications device

Publications (1)

Publication Number Publication Date
WO2018126930A1 true WO2018126930A1 (zh) 2018-07-12

Family

ID=62771442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118379 WO2018126930A1 (zh) 2017-01-03 2017-12-25 功率控制方法和通信设备

Country Status (5)

Country Link
US (1) US20190327695A1 (zh)
EP (1) EP3547741B1 (zh)
CN (1) CN108271175B (zh)
BR (1) BR112019013773A2 (zh)
WO (1) WO2018126930A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3836644A4 (en) * 2018-08-10 2022-04-06 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND APPARATUS FOR ADJUSTING THE UPLINK TRANSMISSION POWER OF A TERMINAL AND RECORDING MEDIUM

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180096277A (ko) * 2017-02-21 2018-08-29 삼성전자주식회사 무선 통신 시스템에서 송신 전력 제어 방법 및 장치
EP3669466A1 (en) * 2017-10-02 2020-06-24 Lenovo (Singapore) Pte. Ltd. Uplink power control
CN110972251B (zh) * 2018-09-28 2021-10-22 华为技术有限公司 信号传输方法、相关设备及系统
CN110971317B (zh) * 2018-09-29 2021-09-21 华为技术有限公司 功率指示方法及装置
CN110971319B (zh) * 2018-09-30 2021-06-01 华为技术有限公司 一种资源映射和指示资源映射的方法及装置
WO2020124502A1 (zh) * 2018-12-20 2020-06-25 Oppo广东移动通信有限公司 一种功率分配方法、终端设备及存储介质
WO2020143018A1 (en) * 2019-01-11 2020-07-16 Lenovo (Beijing) Limited Methods and apparatuses that enable panel-specific configuration and transmission
CN111436105B (zh) * 2019-01-11 2023-11-21 中兴通讯股份有限公司 一种功率控制方法及装置
EP3949139A4 (en) * 2019-03-29 2022-12-07 Sony Group Corporation BEAM CONTROL SIGNALING METHODS, ASSOCIATED NETWORK NODES AND WIRELESS DEVICES
US11864234B2 (en) * 2019-08-08 2024-01-02 Qualcomm Incorporated Beam-based channel access procedures
CN111511004B (zh) * 2020-04-15 2024-05-14 北京星网锐捷网络技术有限公司 一种功率控制方法、装置及计算机设备、存储介质
CN113596975B (zh) * 2020-04-30 2022-12-06 华为技术有限公司 一种上行功率控制方法及装置
EP4270813A1 (en) * 2022-04-25 2023-11-01 Panasonic Intellectual Property Corporation of America Power control for network-controlled repeater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103067140A (zh) * 2011-10-20 2013-04-24 中兴通讯股份有限公司 控制信令发送方法及系统
CN103368684A (zh) * 2012-04-01 2013-10-23 华为技术有限公司 传输信号的方法、网络设备和用户设备
CN104488333A (zh) * 2014-03-20 2015-04-01 华为终端有限公司 发送信号的方法、用户设备和基站

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2824976B1 (en) * 2012-03-05 2017-09-20 Samsung Electronics Co., Ltd. Uplink signal sending and receiving method and device in a wireless communication system
US9544855B2 (en) * 2013-04-23 2017-01-10 Samsung Electronics Co., Ltd. Method and apparatus for controlling power of uplink in a beam forming system
CN105580448B (zh) * 2013-09-30 2020-05-19 索尼公司 通信控制设备、通信控制方法、终端设备和信息处理设备
WO2016044994A1 (zh) * 2014-09-23 2016-03-31 华为技术有限公司 波束配置方法、基站及用户设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103067140A (zh) * 2011-10-20 2013-04-24 中兴通讯股份有限公司 控制信令发送方法及系统
CN103368684A (zh) * 2012-04-01 2013-10-23 华为技术有限公司 传输信号的方法、网络设备和用户设备
CN104488333A (zh) * 2014-03-20 2015-04-01 华为终端有限公司 发送信号的方法、用户设备和基站

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3836644A4 (en) * 2018-08-10 2022-04-06 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND APPARATUS FOR ADJUSTING THE UPLINK TRANSMISSION POWER OF A TERMINAL AND RECORDING MEDIUM
US11785552B2 (en) 2018-08-10 2023-10-10 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for adjusting uplink transmission power of terminal, and storage medium

Also Published As

Publication number Publication date
CN108271175A (zh) 2018-07-10
BR112019013773A2 (pt) 2020-01-21
EP3547741B1 (en) 2022-03-23
EP3547741A1 (en) 2019-10-02
US20190327695A1 (en) 2019-10-24
CN108271175B (zh) 2023-06-02
EP3547741A4 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
WO2018126930A1 (zh) 功率控制方法和通信设备
CN109803363B (zh) 通信方法、通信装置和系统
CN110972251B (zh) 信号传输方法、相关设备及系统
US11570726B2 (en) Sidelink power control method and terminal for performing sidelink power control
US11012963B2 (en) Wireless communications method and apparatus
EP3713131A1 (en) Information sending and receiving method and device, storage medium and processor
CN109997313A (zh) 用于上行链路发送的方法
WO2018126850A1 (en) Uplinksignal transmit power control
US20160007232A1 (en) Flexible configuration of uplink and downlink ratio by exchanging information using an x2 interface
US11502806B2 (en) Method and apparatus for sending and receiving uplink control information
US20230209478A1 (en) Emission restricted transmission of reference signals
US10397930B2 (en) Resource and power allocation indication in beam-based access system
US8948762B2 (en) Apparatus for transmitting and receiving signals in multi-node system and method thereof
WO2023131244A1 (zh) 通信方法和通信装置
WO2024020822A1 (zh) 上行功率控制方法、装置、设备及存储介质
US20220368509A1 (en) Determining information for beam formation across component carriers
EP4262293A1 (en) Uplink power control method and apparatus, terminal, and storage medium
WO2023272514A1 (zh) 上行传输方法、装置、设备及可读存储介质
WO2023039696A1 (en) Systems and methods for uplink frequency selective precoding
US9949260B2 (en) Apparatus and method for transmit power control command transmission
CN117044140A (zh) 用于通信的方法、设备和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017889548

Country of ref document: EP

Effective date: 20190626

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019013773

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019013773

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190703