WO2018126844A1 - 通信信道的传输、接收方法、装置、基站及终端 - Google Patents

通信信道的传输、接收方法、装置、基站及终端 Download PDF

Info

Publication number
WO2018126844A1
WO2018126844A1 PCT/CN2017/115349 CN2017115349W WO2018126844A1 WO 2018126844 A1 WO2018126844 A1 WO 2018126844A1 CN 2017115349 W CN2017115349 W CN 2017115349W WO 2018126844 A1 WO2018126844 A1 WO 2018126844A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication channel
transmission
terminal
channel
reference signal
Prior art date
Application number
PCT/CN2017/115349
Other languages
English (en)
French (fr)
Inventor
弓宇宏
鲁照华
陈艺戬
张淑娟
王瑜新
蒋创新
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018126844A1 publication Critical patent/WO2018126844A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the 5G communication system is also referred to as a "post 4G network” or a “Long Term Evolution (LTE) system).
  • a 5G communication system is considered to be implemented in a higher frequency band (eg, above 3 GHz) in order to achieve higher data rates.
  • the characteristics of high-frequency communication are that it has relatively serious path loss and penetration loss, and its spatial transmission is closely related to the atmosphere. Due to the extremely short wavelength of the high-frequency signal, a large number of small antenna arrays can be applied, so that the beamforming technology can obtain a more accurate beam direction, and the advantages of the narrow beam technology can improve the coverage of the high-frequency signal and compensate for the transmission loss.
  • the downlink physical control channel mainly includes two types, one is publicly owned by the terminal, and the other is terminal-specific.
  • the control channel of the terminal is mainly used to indicate some public information to the terminal, for example, a system message, a random access authorization message, etc., which can be received by all terminals in the cell.
  • the terminal-specific control channel is mainly used to indicate to the terminal some terminal-specific information, which can only be received by the target terminal.
  • the terminal's common control channel adopts omnidirectional transmission
  • the terminal-specific control channel adopts omnidirectional or directional transmission.
  • the directional transmission is implemented by digital precoding.
  • the terminal receives the physical downlink control channel by means of blind detection, that is, the terminal needs to try to receive and demodulate the control channel in the first few symbols of each scheduling time unit.
  • the downlink physical control channel In the LTE system, an important role of the downlink physical control channel is to indicate to the terminal the transmission related information of the data channel.
  • the data channel In LTE, the data channel is also transmitted in an omnidirectional or directional manner, wherein the directional transmission is implemented by digital precoding.
  • the terminal grouping information includes one of: terminal grouping information in a current scheduling time unit; terminal grouping information in a specified scheduling time unit; and a specified duration period from a current scheduling time unit.
  • Terminal grouping information terminal grouping information; terminal grouping information starting from a specified scheduling time unit and within a specified duration; wherein the scheduling time unit comprises one or more time units, the time unit comprising one of: a time slot , subframes, frames, symbols, mini-slots.
  • Offset is an integer ranging from ⁇ 0 to M-1 ⁇ ; and/or, the default value of Offset is 0.
  • grouping the terminal according to the predefined manner includes: grouping the terminal according to the terminal capability, where the terminal capability and the terminal group have a predefined correspondence, the terminal capability includes at least one of the following : The bandwidth capability of the terminal, the beam capability of the terminal, and the type of service that the terminal can support.
  • indicating by using a transmission manner of the first communication channel, a transmission manner of the second communication channel, by using an aggregation level of the first communication channel, indicating a modulation and/or coding level of the second communication channel And wherein there is a predefined correspondence between an aggregation level of the first communication channel and a modulation and/or coding level of the second communication channel.
  • the first communication channel comprises: a control channel, or a broadcast channel.
  • the second communication channel comprises: a control channel, or a data channel.
  • the method includes: at least one of the following: a pre-defined correspondence between a transmission sequence of the transmission beam transmitting the control channel and a transmission sequence of the transmission beam or the transmission beam group used by the synchronization signal; and transmitting the control channel
  • a predefined correspondence between the transmission sequence of the transmission beam and the transmission sequence of the transmission beam or the transmission beam group used by the broadcast channel there is a predefined time between the time unit transmitting the control channel and the time unit transmitting the synchronization signal Correspondence relationship; there is a predefined correspondence between the time unit transmitting the control channel and the time unit transmitting the broadcast channel.
  • the first communication channel is a terminal-specific control channel, where the terminal-specific control channel includes at least one of the following features: supporting multi-stream/multi-layer transmission; supporting a spatial multiplexing transmission scheme; Support modulation mode above QPSK; transmit in data channel area; support MCS adaptive transmission; support rank adaptive transmission.
  • transmitting the first communication channel comprises: the transmission of the first communication channel supports a hybrid automatic repeat request (HARQ) transmission mechanism.
  • HARQ hybrid automatic repeat request
  • transmitting the first communication channel includes at least one of: a demodulation reference signal resource specified in a demodulation reference signal resource of the second communication channel is specified in a transmission area of the second communication channel a transmission area transmission; a demodulation reference signal resource other than the specified demodulation reference signal resource in the demodulation reference signal resource of the second communication channel is in the transmission area of the second communication channel except the designation The transmission area outside the transmission area is transmitted.
  • transmitting the first communication channel includes at least one of: a demodulation reference signal resource specified in a demodulation reference signal resource of the second communication channel is located in a transmission area of the second communication channel One or more symbol locations starting in the time domain in the transmission area; demodulation reference signal resources other than the specified demodulation reference signal resources in the demodulation reference signal resources of the second communication channel are located in the One or more symbol positions beginning in the time domain in the transmission area other than the specified transmission area in the transmission area of the second communication channel.
  • the first communication channel is based on the demodulation reference signal resource specified in the demodulation reference signal resource of the second communication channel, where the first communication channel is based on P of the second communication channel.
  • Demodulating reference signal port transmission wherein the P demodulation reference signal ports are the specified demodulation reference signal resources, and the demodulation reference signal resources of the second communication channel include W demodulation reference signal ports , W and P are both positive integers, and the value of W is greater than P.
  • the transmission manner of the first communication channel includes at least one of: a demodulation reference signal resource associated with the first communication channel; a time domain resource occupied by the first communication channel transmission; a frequency domain resource occupied by the first communication channel transmission; a transmission scheme used by the first communication channel transmission; an aggregation level used by the first communication channel transmission; and a modulation level used by the first communication channel transmission a coding level used by the first communication channel transmission; a blind detection area corresponding to the first communication channel transmission; a transmission beam used by the first communication channel transmission; and a corresponding transmission of the first communication channel Receive beam.
  • the transmission manner of the second communication channel includes at least one of: a demodulation reference signal resource associated with the second communication channel; and a time domain resource occupied by the second communication channel transmission; a frequency domain resource occupied by the second communication channel transmission; a transmission scheme used by the second communication channel transmission; an aggregation level used by the second communication channel transmission; and a modulation level used by the second communication channel transmission a coding level used by the second communication channel transmission; a blind detection area corresponding to the second communication channel transmission; a transmission beam used by the second communication channel transmission; and a corresponding transmission by the second communication channel Receive beam.
  • a method of receiving a communication channel comprising: receiving a first communication channel; transmitting by the first communication channel and/or signaling carried by the first communication channel Obtaining at least one of the following information: terminal scheduling information, and a transmission mode of the second communication channel.
  • the method further includes: determining, according to the terminal scheduling information, a scheduled or unscheduled terminal group; determining whether the terminal receiving the first communication channel belongs to the scheduled terminal grouping If the determination result is yes, the first communication channel and/or the second communication channel are attempted to be received within a time corresponding to the terminal scheduling information.
  • the method before receiving the first communication channel, the method further includes: grouping the terminals in a predefined manner.
  • Offset is an integer ranging from ⁇ 0 to M-1 ⁇ ; and/or, the default value of Offset is 0.
  • grouping the terminal according to the predefined manner includes: grouping the terminal according to the terminal capability, where the terminal capability and the terminal group have a predefined correspondence, the terminal capability includes at least one of the following : The bandwidth capability of the terminal, the beam capability of the terminal, and the type of service that the terminal can support.
  • acquiring by using the transmission manner of the first communication channel, a transmission manner of the second communication channel, where: a pre-defined between a transmission manner of the first communication channel and a transmission manner of the second communication channel Correspondence.
  • acquiring the transmission manner of the second communication channel by using the transmission manner of the first communication channel includes: acquiring, by using a transmission scheme of the first communication channel, a transmission scheme of the second communication channel, where There is a predefined correspondence between the transmission scheme of the first communication channel and the transmission scheme of the second communication channel.
  • the first communication channel comprises: a control channel, or a broadcast channel.
  • the second communication channel comprises: a control channel, or a data channel.
  • the first communication channel is a control channel, where the control channel includes: a public control channel, or a control channel shared by multiple terminals.
  • the specified time unit pattern is determined by at least one of: predefined manner determination, broadcast channel reception, synchronization signal reception, and high layer signaling reception.
  • receiving the first communication channel includes: repeatedly receiving the control channel on a specified multiple time units, where different receiving beams or receiving beam groups are respectively received on the multiple time units Said control channel.
  • the method includes: at least one of the following: a pre-defined correspondence between a receiving sequence of the receiving beam that receives the control channel and a transmission sequence of the receiving beam or the receiving beam group used by the synchronization signal; and receiving the control channel
  • a predefined correspondence between the receiving order of the receiving beams and the receiving order of the receiving beam or the receiving beam group used by the broadcast channel there is a predefined time between the time unit receiving the control channel and the time unit receiving the synchronization signal Correspondence relationship; there is a predefined correspondence between the time unit receiving the control channel and the time unit receiving the broadcast channel.
  • the first communication channel is a terminal-specific control channel, where the terminal-specific control channel includes at least one of the following features: supporting multi-stream/multi-layer transmission; supporting a spatial multiplexing transmission scheme; Support modulation mode above QPSK; transmit in data channel area; support MCS adaptive transmission; support rank adaptive transmission.
  • receiving the first communication channel comprises: receiving the first communication channel to support a hybrid automatic repeat request (HARQ) transmission mechanism.
  • HARQ hybrid automatic repeat request
  • the receiving the hybrid automatic repeat request (HARQ) transmission mechanism of the first communication channel comprises: feeding back, to the base station, acknowledgement ACK information of the first communication channel, or non-acknowledgment NACK information, where the ACK information is used for Representing that the first communication channel is correctly received, the NACK information indicating that the first communication channel was not received correctly.
  • HARQ hybrid automatic repeat request
  • the receiving the hybrid automatic repeat request (HARQ) transmission mechanism of the first communication channel comprises: receiving the second communication channel according to the ACK information or NACK information fed back to the base station, where Receiving, by the base station, the second communication channel according to the indication of the first control channel, and receiving the second communication according to the indication of the second control channel when feeding back the NACK information to the base station a channel, wherein the first control channel is the first communication channel, and the second control channel is another control channel different from the first control channel.
  • HARQ hybrid automatic repeat request
  • receiving the first communication channel includes at least one of: receiving, by the transmission area specified in a transmission area of the second communication channel, the first communication channel; demodulation based on the second communication channel Receiving, by the demodulation reference signal resource specified in the reference signal resource, the first communication channel; the maximum number of transmission layers supported by the first communication channel is smaller than the maximum number of transmission layers supported by the second communication channel.
  • receiving the first communication channel includes at least one of: a demodulation reference signal resource specified in a demodulation reference signal resource of the second communication channel is located in a transmission area of the second communication channel One or more symbol locations starting in the time domain in the transmission area; demodulation reference signal resources other than the specified demodulation reference signal resources in the demodulation reference signal resources of the second communication channel are located in the One or more symbol positions beginning in the time domain in the transmission area other than the specified transmission area in the transmission area of the second communication channel.
  • receiving, according to the demodulation reference signal resource specified in the demodulation reference signal resource of the second communication channel, the first communication channel comprises: receiving, according to P demodulation reference signal ports of the second communication channel The first communication channel, wherein the P demodulation reference signal ports are the specified demodulation reference signal resources, and the demodulation reference signal resources of the second communication channel include W demodulation reference signal ports , W and P are both positive integers, and the value of W is greater than P.
  • the specified demodulation reference signal resource includes: the P demodulation reference signal ports being the first P demodulation reference signal ports of the W demodulation reference signal ports.
  • the transmission manner of the first communication channel includes at least one of: a demodulation reference signal resource associated with the first communication channel; a time domain resource occupied by the first communication channel transmission; a frequency domain resource occupied by the first communication channel transmission; a transmission scheme used by the first communication channel transmission; an aggregation level used by the first communication channel transmission; and a modulation level used by the first communication channel transmission a coding level used by the first communication channel transmission; a blind detection area corresponding to the first communication channel transmission; a transmission beam used by the first communication channel transmission; and a corresponding transmission of the first communication channel Receive beam.
  • a transmission device for a communication channel comprising: a first transmission module, configured to transmit a first communication channel, wherein a transmission mode and/or the transmission through the first communication channel
  • the signaling carried by the first communication channel indicates at least one of the following information: terminal scheduling information, and a transmission mode of the second communication channel.
  • the method further includes: a first grouping module, configured to group the terminals in a predefined manner.
  • the first grouping module is further configured to group the terminals according to the terminal capability, where the terminal capability and the terminal group have a predefined correspondence, and the terminal capability includes at least one of the following: The bandwidth capability of the terminal, the beam capability of the terminal, and the type of service that the terminal can support.
  • the first transmission module is further configured to indicate, by using a transmission manner of the first communication channel, a transmission manner of the second communication channel: a transmission manner of the first communication channel and the second communication There is a predefined correspondence between the transmission modes of the channels.
  • the first communication channel is a control channel, where the control channel includes: a public control channel, or a control channel shared by multiple terminals.
  • the first transmission module is further configured to transmit the control channel on a specified time unit pattern, where the specified time unit pattern includes one or more time units, where the time unit includes the following One: time slot, subframe, frame, symbol, or minislot.
  • the first transmission module is further configured to repeatedly transmit the control channel on a specified multiple time units, where different transmit beams or transmit beam groups are respectively used on the multiple time units.
  • the control channel is further configured to repeatedly transmit the control channel on a specified multiple time units, where different transmit beams or transmit beam groups are respectively used on the multiple time units.
  • the first transmission module is further configured to implement a transmission of the first communication channel to support a hybrid automatic repeat request (HARQ) transmission mechanism.
  • HARQ hybrid automatic repeat request
  • the first transmission module is further configured to receive acknowledgement ACK information of the first communication channel, or non-acknowledgement NACK information, where the ACK information is used to indicate that the first communication channel is correctly received, The NACK information indicates that the first communication channel is not received correctly.
  • the first transmission module is further configured to transmit the second communication channel according to the received ACK information or NACK information, where, when the ACK information is received, according to the first control channel Instructing to transmit the second communication channel, when receiving the NACK information, transmitting the second communication channel according to an indication of a second control channel, wherein the first control channel is the first communication channel,
  • the second control channel is another control channel that is different from the first control channel.
  • a base station including a transmission device of any of the above communication channels.
  • the device further includes: a first determining module, configured to determine, according to the terminal scheduling information, a scheduled or unscheduled terminal group; the first determining module, configured to determine, by using the terminal, the terminal that receives the first communication channel Whether it belongs to the scheduled terminal group; the second receiving module is configured to, when the determination result is yes, attempt to receive the first communication channel and/or the second time in a time corresponding to the terminal scheduling information Communication channel.
  • a first determining module configured to determine, according to the terminal scheduling information, a scheduled or unscheduled terminal group
  • the first determining module configured to determine, by using the terminal, the terminal that receives the first communication channel Whether it belongs to the scheduled terminal group
  • the second receiving module is configured to, when the determination result is yes, attempt to receive the first communication channel and/or the second time in a time corresponding to the terminal scheduling information Communication channel.
  • the apparatus further includes: a second grouping module, configured to group the terminals in a predefined manner.
  • a second grouping module configured to group the terminals in a predefined manner.
  • the first communication channel is a control channel, where the control channel includes: a public control channel, or a control channel shared by multiple terminals.
  • the first receiving module is further configured to receive the control channel on a specified time unit pattern, where the specified time unit pattern includes one or more time units, where the time unit includes the following One: time slot, subframe, frame, symbol, or minislot.
  • the first receiving module is further configured to repeatedly receive the control channel on a specified multiple time units, where different receiving beams or receiving beam groups are respectively received on the multiple time units The control channel.
  • the first receiving module is further configured to receive the second communication channel according to the ACK information or NACK information fed back to the base station, where when the ACK information is fed back to the base station Receiving, according to an indication of the first control channel, the second communication channel, when feeding back the NACK information to the base station, receiving the second communication channel according to an indication of a second control channel, where the first control channel For the first communication channel, the second control channel is another control channel that is different from the first control channel.
  • a terminal comprising a receiving device of any of the above communication channels.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the step of transmitting a first communication channel, wherein the transmission by the first communication channel and/or the signaling carried by the first communication channel indicates the following information At least one of: terminal scheduling information, and transmission mode of the second communication channel.
  • the storage medium is further configured to store program code for performing the following steps: the terminal scheduling information comprises: terminal grouping information, wherein the terminal grouping information comprises indication information of one or more terminal groups.
  • the storage medium is further configured to store program code for performing the following steps: the terminal grouping information comprises one of: terminal grouping information within a current scheduling time unit; terminal grouping information within the specified scheduling time unit a terminal grouping information within a specified duration period from a current scheduling time unit; terminal grouping information starting from a specified scheduling time unit and within a specified duration period; wherein the scheduling time unit includes one or more Time units, the time unit comprising one of: a time slot, a subframe, a frame, a symbol, a minislot.
  • the storage medium is further configured to store program code for performing the following steps: the specified scheduling time unit, or the specified duration period is indicated by one of: the first communication channel Bearer signaling, high layer signaling.
  • the storage medium is further configured to store program code for performing the following steps: Offset is an integer ranging from ⁇ 0 to M-1 ⁇ ; and/or, the default value of Offset is 0.
  • the storage medium is further configured to store program code for performing the following steps: grouping the terminals in a predefined manner comprises: grouping the terminals according to terminal capabilities, wherein the terminal capabilities and terminal groupings exist For a predefined correspondence, the terminal capability includes at least one of the following: a bandwidth capability of the terminal, a beam capability of the terminal, and a service type that the terminal can support.
  • the storage medium is further configured to store program code for performing: transmitting, by the transmission manner of the first communication channel, the transmission manner of the second communication channel comprises: transmitting the first communication channel There is a predefined correspondence relationship with the transmission mode of the second communication channel.
  • the storage medium is further configured to store program code for performing: transmitting, by the transmission mode of the first communication channel, the transmission manner of the second communication channel comprises: transmitting by using the first communication channel
  • the scheme indicates a transmission scheme of the second communication channel, wherein there is a predefined correspondence between the transmission scheme of the first communication channel and the transmission scheme of the second communication channel.
  • the storage medium is further arranged to store program code for performing the step of: the first communication channel comprising: a control channel, or a broadcast channel.
  • the storage medium is further arranged to store program code for performing the step of: the second communication channel comprising: a control channel, or a data channel.
  • the storage medium is further configured to store program code for performing the step of: the first communication channel is a control channel, wherein the control channel comprises: a public control channel, or a control channel shared by multiple terminals .
  • the storage medium is further configured to store program code for performing the step of transmitting the first communication channel comprising transmitting the control channel on a specified time unit pattern, wherein the specified time unit pattern One or more time units are included, the time unit including one of: a time slot, a subframe, a frame, a symbol, or a minislot.
  • the storage medium is further configured to store program code for performing the following steps: the specified time unit pattern is determined by at least one of: a predefined manner determination, a broadcast channel indication, a synchronization signal indication, a higher layer signaling Instructions.
  • the storage medium is further configured to store program code for performing the step of: transmitting the first communication channel comprises: repeatedly transmitting the control channel over a plurality of specified time units, wherein The control channel is transmitted on the time unit by using different transmit beams or transmit beam groups respectively.
  • the storage medium is further configured to store program code for performing the following steps: including at least one of: transmitting a transmission sequence of the control channel and transmitting a transmission beam or a transmission beam group used by the synchronization signal There is a predefined correspondence between the sequences; there is a predefined correspondence between the transmission sequence of the transmission beam transmitting the control channel and the transmission sequence of the transmission beam or the transmission beam group used by the broadcast channel; transmitting the control channel There is a predefined correspondence between the time unit and the time unit transmitting the synchronization signal; there is a predefined correspondence between the time unit transmitting the control channel and the time unit transmitting the broadcast channel.
  • the storage medium is further configured to store program code for performing the step of: the first communication channel being a terminal-specific control channel, wherein the terminal-specific control channel comprises at least one of the following features: Support multi-stream/multi-layer transmission; support spatial multiplexing transmission scheme; support modulation scheme above QPSK; transmit in data channel region; support MCS adaptive transmission; support rank adaptive transmission.
  • the storage medium is further configured to store program code for performing the following steps: the transmission of the first communication channel supports a hybrid automatic repeat request.
  • the HARQ transmission mechanism comprises: receiving acknowledgement ACK information of the first communication channel, or Non-acknowledgment NACK information, wherein the ACK information is used to indicate that the first communication channel is correctly received, and the NACK information indicates that the first communication channel is not correctly received.
  • the storage medium is further configured to store program code for performing the following steps: the transmission of the first communication channel supports a hybrid automatic repeat request.
  • the HARQ transmission mechanism further comprises: according to the received ACK information or NACK information, Transmitting the second communication channel, wherein when the ACK information is received, transmitting the second communication channel according to an indication of a first control channel, when receiving the NACK information, according to an indication of a second control channel Transmitting the second communication channel, wherein the first control channel is the first communication channel, and the second control channel is another control channel different from the first control channel.
  • the storage medium is further configured to store program code for performing the step of transmitting the first communication channel comprising at least one of: the first communication channel is specified in a transmission area of the second communication channel Transmission area transmission; the first communication channel is transmitted based on a demodulation reference signal resource specified in a demodulation reference signal resource of the second communication channel; the maximum number of transmission layers supported by the first communication channel transmission is less than The maximum number of transmission layers supported by the second communication channel.
  • the storage medium is further configured to store program code for performing the step of transmitting the first communication channel comprising at least one of: a demodulation reference specified in a demodulation reference signal resource of the second communication channel a signal resource is transmitted in a transmission area specified in a transmission area of the second communication channel; a demodulation reference signal resource other than the specified demodulation reference signal resource in the demodulation reference signal resource of the second communication channel A transmission area other than the designated transmission area is transmitted in a transmission area of the second communication channel.
  • the storage medium is further configured to store program code for performing the step of transmitting the first communication channel comprising at least one of: a demodulation reference specified in a demodulation reference signal resource of the second communication channel
  • the signal resource is located at one or more symbol locations beginning in a time domain in the designated transmission region of the second communication channel; the demodulation reference signal resource of the second communication channel is divided by the specified solution
  • the demodulation reference signal resource other than the reference signal resource is located at one or more symbol locations beginning in the time domain in the transmission region other than the designated transmission region in the transmission region of the second communication channel.
  • the storage medium is further configured to store program code for performing: the first communication channel based on the demodulation reference signal resource transmission specified in the demodulation reference signal resource of the second communication channel comprises: The first communication channel is transmitted based on P demodulation reference signal ports of the second communication channel, wherein the P demodulation reference signal ports are the designated demodulation reference signal resources, and the second communication channel
  • the demodulation reference signal resources include W demodulation reference signal ports, W and P are both positive integers, and the value of W is greater than P.
  • the storage medium is further configured to store program code for performing the following steps: the transmission manner of the first communication channel includes at least one of: a demodulation reference signal resource associated with the first communication channel; a time domain resource occupied by the first communication channel transmission; a frequency domain resource occupied by the first communication channel; a transmission scheme used by the first communication channel transmission; and a transmission adopted by the first communication channel An aggregation level; a modulation level used by the first communication channel transmission; an encoding level used by the first communication channel transmission; a blind detection area corresponding to the first communication channel transmission; and the first communication channel transmission a transmit beam employed; the first communication channel transmits a corresponding receive beam.
  • the storage medium is further configured to store program code for performing the following steps: the transmission manner of the second communication channel comprises at least one of: a demodulation reference signal resource associated with the second communication channel; a time domain resource occupied by the second communication channel transmission; a frequency domain resource occupied by the second communication channel; a transmission scheme used by the second communication channel transmission; and a second communication channel transmission An aggregation level; a modulation level used by the second communication channel transmission; an encoding level used by the second communication channel transmission; a blind detection area corresponding to the second communication channel transmission; and the second communication channel transmission a transmit beam used; the second communication channel transmits a corresponding receive beam.
  • the transmission manner of the second communication channel comprises at least one of: a demodulation reference signal resource associated with the second communication channel; a time domain resource occupied by the second communication channel transmission; a frequency domain resource occupied by the second communication channel; a transmission scheme used by the second communication channel transmission; and a second communication channel transmission An aggregation level; a modulation level used by
  • a storage medium is also provided.
  • the storage medium is configured to store program code for performing the steps of: receiving a first communication channel; obtaining, by the transmission mode of the first communication channel and/or signaling carried by the first communication channel, at least One: terminal scheduling information, and the second communication channel transmission mode.
  • the storage medium is further configured to store program code for performing the following steps: the terminal scheduling information comprises: terminal grouping information, wherein the terminal grouping information comprises indication information of one or more terminal groups.
  • the storage medium is further configured to store program code for performing the following steps: the terminal grouping information comprises one of: terminal grouping information within a current scheduling time unit; terminal grouping information within the specified scheduling time unit a terminal grouping information within a specified duration period from a current scheduling time unit; terminal grouping information starting from a specified scheduling time unit and within a specified duration period; wherein the scheduling time unit includes one or more Time units, the time unit comprising one of: a time slot, a subframe, a frame, a symbol, a minislot.
  • the storage medium is further configured to store program code for performing the following steps: after acquiring the terminal scheduling information, further comprising: determining, according to the terminal scheduling information, a scheduled or unscheduled terminal group; determining receiving Whether the terminal of the first communication channel belongs to the scheduled terminal group; if the determination result is yes, attempting to receive the first communication channel and/or the first time in the time corresponding to the terminal scheduling information Two communication channels.
  • the storage medium is further configured to store program code for performing the following steps: the specified scheduling time unit, or the specified duration period is obtained by one of: the first communication channel Bearer signaling, high layer signaling.
  • the storage medium is further configured to store program code for performing the steps of: prior to receiving the first communication channel, further comprising: grouping the terminals in a predefined manner.
  • the storage medium is further configured to store program code for performing the following steps: Offset is an integer ranging from ⁇ 0 to M-1 ⁇ ; and/or, the default value of Offset is 0.
  • the storage medium is further configured to store program code for performing the following steps: grouping the terminals in a predefined manner comprises: grouping the terminals according to terminal capabilities, wherein the terminal capabilities and terminal groupings exist For a predefined correspondence, the terminal capability includes at least one of the following: a bandwidth capability of the terminal, a beam capability of the terminal, and a service type that the terminal can support.
  • the storage medium is further configured to store program code for performing the following steps: acquiring, by the transmission manner of the first communication channel, a transmission manner of the second communication channel, including: transmitting the first communication channel There is a predefined correspondence relationship with the transmission mode of the second communication channel.
  • the storage medium is further configured to store program code for performing the following steps: obtaining, by the transmission mode of the first communication channel, a transmission manner of the second communication channel, comprising: transmitting by using the first communication channel The solution acquires a transmission scheme of the second communication channel, where there is a predefined correspondence between the transmission scheme of the first communication channel and the transmission scheme of the second communication channel.
  • the storage medium is further configured to store program code for performing the following steps: obtaining, by the transmission mode of the first communication channel, a transmission manner of the second communication channel, comprising: aggregating by the first communication channel The level acquires a modulation and/or coding level of the second communication channel, wherein there is a predefined correspondence between an aggregation level of the first communication channel and a modulation and/or coding level of the second communication channel.
  • the storage medium is further arranged to store program code for performing the step of: the first communication channel comprising: a control channel, or a broadcast channel.
  • the storage medium is further arranged to store program code for performing the step of: the second communication channel comprising: a control channel, or a data channel.
  • the storage medium is further configured to store program code for performing the step of: receiving the first communication channel comprises: receiving the control channel on a specified time unit pattern, wherein the specified time unit pattern One or more time units are included, the time unit including one of: a time slot, a subframe, a frame, a symbol, or a minislot.
  • the storage medium is further configured to store program code for performing the following steps: the specified time unit pattern is determined by at least one of: predefined manner determination, broadcast channel reception, synchronization signal reception, high layer signaling receive.
  • the storage medium is further configured to store program code for performing the step of: receiving the first communication channel comprises: repeatedly receiving the control channel over a plurality of specified time units, wherein The control channel is received by different receiving beams or groups of receiving beams on the time unit respectively.
  • the storage medium is further configured to store program code for performing the following steps, comprising at least one of: receiving a receiving sequence of the receiving beam of the control channel and transmitting a receiving beam or a receiving beam group used by the synchronization signal There is a predefined correspondence between the sequences; a receiving correspondence between a receiving sequence of receiving the control channel and a receiving sequence of the receiving beam or the receiving beam group used by the broadcast channel; receiving the control channel There is a predefined correspondence between the time unit and the time unit receiving the synchronization signal; there is a predefined correspondence between the time unit receiving the control channel and the time unit receiving the broadcast channel.
  • the storage medium is further configured to store program code for performing the step of: receiving the first communication channel comprises: receiving the first communication channel to support a hybrid automatic repeat request HARQ transmission mechanism.
  • the storage medium is further configured to store program code for performing the following steps: receiving the hybrid automatic repeat request (HARQ) transmission mechanism of the first communication channel comprises: feeding back, to the base station, the acknowledgement ACK information of the first communication channel, Or, non-acknowledging NACK information, wherein the ACK information is used to indicate that the first communication channel is correctly received, and the NACK information indicates that the first communication channel is not correctly received.
  • HARQ hybrid automatic repeat request
  • the storage medium is further configured to store program code for performing: receiving, by the first communication channel, a hybrid automatic repeat request, the HARQ transmission mechanism comprises: according to the ACK information fed back to the base station or Receiving, by the NACK information, the second communication channel, wherein when the ACK information is fed back to the base station, the second communication channel is received according to an indication of a first control channel, and the NACK information is fed back to the base station Receiving, according to the indication of the second control channel, the second communication channel, where the first control channel is the first communication channel, and the second control channel is other than the first control channel Control channel.
  • the storage medium is further configured to store program code for performing the step of: receiving the first communication channel comprises at least one of: receiving the specified transmission area in a transmission area of the second communication channel a first communication channel; receiving the first communication channel based on a demodulation reference signal resource specified in a demodulation reference signal resource of the second communication channel; the maximum number of transmission layers supported by the first communication channel is less than The maximum number of transmission layers supported by the second communication channel.
  • the storage medium is further configured to store program code for performing the step of: receiving the first communication channel comprises at least one of: a demodulation reference specified in a demodulation reference signal resource of the second communication channel a signal resource is transmitted in a transmission area specified in a transmission area of the second communication channel; a demodulation reference signal resource other than the specified demodulation reference signal resource in the demodulation reference signal resource of the second communication channel A transmission area other than the designated transmission area is transmitted in a transmission area of the second communication channel.
  • the storage medium is further configured to store program code for: receiving, according to the demodulation reference signal resource specified in the demodulation reference signal resource of the second communication channel, the first communication channel comprises: based on Receiving, by the P demodulation reference signal ports of the second communication channel, the first communication channel, wherein the P demodulation reference signal ports are the specified demodulation reference signal resources, and the second communication channel
  • the demodulation reference signal resources include W demodulation reference signal ports, W and P are both positive integers, and the value of W is greater than P.
  • the storage medium is further configured to store program code for performing the following steps: the specified demodulation reference signal resource comprises: the P demodulation reference signal ports being the W demodulation reference signal ports The first P demodulation reference signal ports.
  • the storage medium is further configured to store program code for performing the following steps: the transmission manner of the first communication channel includes at least one of: a demodulation reference signal resource associated with the first communication channel; a time domain resource occupied by the first communication channel transmission; a frequency domain resource occupied by the first communication channel; a transmission scheme used by the first communication channel transmission; and a transmission adopted by the first communication channel An aggregation level; a modulation level used by the first communication channel transmission; an encoding level used by the first communication channel transmission; a blind detection area corresponding to the first communication channel transmission; and the first communication channel transmission a transmit beam employed; the first communication channel transmits a corresponding receive beam.
  • the storage medium is further configured to store program code for performing the following steps: the transmission manner of the second communication channel comprises at least one of: a demodulation reference signal resource associated with the second communication channel; a time domain resource occupied by the second communication channel transmission; a frequency domain resource occupied by the second communication channel; a transmission scheme used by the second communication channel transmission; and a second communication channel transmission An aggregation level; a modulation level used by the second communication channel transmission; an encoding level used by the second communication channel transmission; a blind detection area corresponding to the second communication channel transmission; and the second communication channel transmission a transmit beam used; the second communication channel transmits a corresponding receive beam.
  • the transmission manner of the second communication channel comprises at least one of: a demodulation reference signal resource associated with the second communication channel; a time domain resource occupied by the second communication channel transmission; a frequency domain resource occupied by the second communication channel; a transmission scheme used by the second communication channel transmission; and a second communication channel transmission An aggregation level; a modulation level used by
  • the terminal scheduling indication information and the transmission mode information of the second communication channel are instructed, which effectively solves the problem that the transmission of the communication channel has a large resource overhead and a high reception complexity.
  • the problem is that the resource overhead is effectively reduced, and the reception complexity of the communication channel can also be effectively reduced.
  • FIG. 1 is a block diagram showing the hardware structure of a mobile terminal receiving method of a communication channel according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a method of transmitting a communication channel in accordance with an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a method of transmitting a communication channel in accordance with an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a time unit pattern available for downlink common control channel transmission according to a preferred embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a DMRS pattern of a second-level control channel and a data channel shared part DMRS port according to a preferred embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of performing ACK/NACK feedback on a second-level control channel according to a preferred embodiment of the present disclosure
  • FIG. 7 is a structural block diagram of a transmission apparatus of a communication channel according to an embodiment of the present disclosure.
  • FIG. 8 is a structural block diagram of a transmission apparatus of a communication channel according to an embodiment of the present disclosure.
  • FIG. 9 is a structural block diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 10 is a structural block diagram of a receiving apparatus of a communication channel according to an embodiment of the present disclosure.
  • FIG. 11 is a block diagram 1 of a preferred structure of a receiving apparatus for a communication channel according to an embodiment of the present disclosure
  • FIG. 12 is a block diagram 2 of a preferred structure of a receiving device for a communication channel according to an embodiment of the present disclosure
  • FIG. 13 is a structural block diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 1 is a hardware structural block diagram of a mobile terminal for receiving a communication channel according to an embodiment of the present disclosure.
  • the mobile terminal 10 may include one or more (only one shown) processor 102 (the processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA).
  • FIG. 1 is merely illustrative and does not limit the structure of the above electronic device.
  • the mobile terminal 10 may also include more or fewer components than those shown in FIG. 1, or have a different configuration than that shown in FIG.
  • the memory 104 can be used to store software programs and modules of the application software, such as program instructions/modules corresponding to the receiving method of the communication channel in the embodiment of the present disclosure, and the processor 102 executes by executing the software program and the module stored in the memory 104.
  • Memory 104 may include high speed random access memory, and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 104 may further include memory remotely located relative to processor 102, which may be connected to mobile terminal 10 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 106 is for receiving or transmitting data via a network.
  • the above-described network specific example may include a wireless network provided by a communication provider of the mobile terminal 10.
  • the transmission device 106 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 can be a Radio Frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • the design of the 5G communication system has higher requirements on delay, it has been proposed in the 3GPP discussion to support multiple subcarrier spacing and symbol length design, that is, the 5G communication system can support shorter orthogonal frequency division multiplexing (Orthogonal). Frequency Division Multiplexing (abbreviated as OFDM) symbol, shorter scheduling time unit design.
  • OFDM Frequency Division Multiplexing
  • the design of the 5G communication system is oriented to more scenarios and can meet various needs. Therefore, in the discussion of 3GPP, it is proposed to support multi-level downlink control channels for balancing different levels of control channel robustness and spectrum efficiency. However, how to smoothly implement switching between multi-level downlink control channels and how to rationally design resource multiplexing of multi-level downlink control channels and data channels to maximize resource saving while ensuring transmission performance is a problem to be considered .
  • FIG. 2 is a flowchart of a method for transmitting a communication channel according to an embodiment of the present disclosure. As shown in FIG. 2, the process includes the following steps:
  • Step S202 transmitting a first communication channel, wherein the transmission mode carried by the first communication channel and/or the signaling carried by the first communication channel indicates at least one of the following information: terminal scheduling information, and a transmission mode of the second communication channel.
  • the terminal scheduling indication information and the transmission mode information of the second communication channel are instructed, which effectively solves the problem that the transmission of the communication channel has a large resource overhead and a high reception complexity.
  • the problem is that the resource overhead is effectively reduced, and the receiving complexity of the communication channel can also be effectively reduced.
  • the execution body of the foregoing step may be a base station, a network control entity that is similar to a base station, or the like, but is not limited thereto. It should be noted that, in FIG. 2, the base station transmits the above step S202 to the terminal as an example for description.
  • the terminal scheduling information may include: terminal group information, where the terminal group information includes indication information of one or more terminal groups.
  • the terminal scheduling information herein refers to indication information that the terminal is scheduled or not scheduled.
  • the terminal scheduling information is terminal group information, where the terminal group information includes indication information of one or more terminal groups.
  • the terminal grouping information herein may include group index indication information of one or more terminal packets for indicating terminal packets scheduled or not scheduled for the current or specified duration.
  • a terminal packet scheduled for a current or specified duration indicating that the base station will be able to send control channels and data services to terminals within the terminal group within the current or specified duration, and the terminal needs to try for the current or specified duration.
  • the terminal scheduling information includes terminal grouping information within a current scheduling time unit or within a specified time unit.
  • the specified time period unit includes a specified scheduling time unit, a specified duration period starting from the current scheduling time unit, or a specified duration period starting from the specified time.
  • the specified time unit, the specified time unit, the specified scheduling time unit, and the specified time duration may be indicated to the terminal by signaling and/or higher layer signaling carried by the first communication channel.
  • the scheduling time unit includes one or more time units, and the time unit is a time slot, a subframe, a frame, an OFDM symbol, or a minislot.
  • the terminal grouping information may include at least one of: terminal grouping information within a current scheduling time unit; terminal grouping information within a specified scheduling time unit; terminal within a specified duration of time from a current scheduling time unit Packet information; terminal grouping information starting from a specified scheduling time unit and within a specified duration.
  • time unit and the “scheduling time unit” described in the embodiments of the present disclosure have the following relationship, and one time unit may be one OFDM symbol, one time slot, one micro time slot, one subframe. Or one frame, one scheduling time unit may include one or more time units.
  • the method further includes: grouping the terminals in a predefined (or pre-agreed manner) manner. It should be noted that grouping the terminal may be performed by the base station or by the terminal.
  • the predefined ways include: grouping terminals according to one of the following formulas:
  • the index of the M packets is defined as 0 to M-1, which is mainly for convenience of describing and distinguishing different packets.
  • the index of the M packet may be defined as other methods, as long as different types can be distinguished.
  • the packet may be, for example, the index of the M packets is 1 to M, respectively, and i ⁇ ⁇ 0 to M-1 ⁇ indicates that the terminal identifying the terminal as the UE_ID is divided into the i+1th packet.
  • the parameter Offset is an integer ranging from ⁇ 0 to M-1 ⁇ , and the default value of the parameter Offset is 0.
  • the terminal determines the packet to which the terminal belongs according to the value of the indicated Offset.
  • the value of the default Offset of the terminal is 0.
  • the predefined manner may also include: grouping the terminals according to the terminal capability, where the terminal capability may include at least one of a bandwidth capability of the terminal, a beam capability of the terminal, and a service type that the terminal can support.
  • the bandwidth capability herein refers to the maximum frequency domain bandwidth that the terminal can support.
  • the beam capability here refers to the number of beams that the terminal can simultaneously transmit or the maximum number of radio links (sometimes called TXRU) that the terminal can support.
  • the types of services here include at least eMBB (enhanced Mobile Broadband), URLLC (Ultra-Reliable and Low Latency Communications), eMTC (massive Machine Type Communications), etc. .
  • a transmission manner of the second communication channel may be in multiple manners. For example, the following manner may be adopted: between the transmission manner of the first communication channel and the transmission manner of the second communication channel.
  • the transmission mode of the first communication channel and the transmission mode of the second communication channel herein may refer to the same or different transmission mode parameters, for example, the transmission mode of the first communication channel and the transmission mode of the second communication channel all refer to a transmission scheme, that is, There is a correspondence between the transmission scheme of the first communication channel and the transmission scheme adopted by the second communication channel.
  • the transmission scheme adopted by the second communication channel is an optional range of one transmission scheme; for example, the first communication channel.
  • the transmission mode refers to the aggregation level
  • the transmission mode of the second communication channel refers to a Modulation and Coding Scheme (MCS), that is, between the aggregation level of the first communication channel and the modulation coding level of the second communication channel.
  • MCS Modulation and Coding Scheme
  • the predefined correspondence, optionally, the modulation coding level corresponding to the second communication channel is an optional range of one modulation coding level.
  • the first communication channel may be transmitted by the first communication node to the second communication node, and the terminal scheduling information may be indicated by the transmission mode of the first communication channel and/or the carried signaling. At least one of transmission mode information of the second communication channel.
  • the first communication channel may be a control channel or a broadcast channel
  • the second communication channel may be a control channel or a data channel.
  • the control channel includes: a public control channel, or multiple The control channel shared by the terminals.
  • the control channel here is optionally a terminal-specific control channel.
  • the second communication channel and the first communication channel may be located in different scheduling time units, and the second communication channel may also be the same type of communication channel as the first communication channel. In an extreme case, the second communication channel is the first communication channel. .
  • the first communication channel is a control channel
  • the second communication channel is a data channel
  • the first communication channel is a public control channel
  • the second communication channel is a terminal-specific control channel
  • the first communication channel and the second communication channel are both Terminal-specific control channel, and the same control channel corresponding to the same terminal.
  • transmitting the first communication channel comprises: transmitting a control channel on the specified time unit pattern, wherein the specified time unit pattern comprises one or more time units, the time unit comprising one of: a time slot , subframe, frame, symbol, or minislot.
  • the base station when the first communication channel is a public (downlink) control channel (a downlink control channel of a terminal or a downlink control channel of a cell level) or a downlink control channel shared by multiple terminals, the base station is only allowed to be on a specified time unit pattern.
  • the control channel is transmitted, that is, on the allowed time unit pattern, the transmission or non-transmission control channel is determined by the base station autonomously, but the terminal needs to monitor/blindly detect the control channel on each time unit on these time unit patterns.
  • the specified time unit pattern may be determined by at least one of the following: a broadcast channel or a synchronization signal or a high layer signaling indication to the terminal or a predefined manner.
  • the time unit pattern may include one or more consecutive or non-contiguous time units, which are time slots, subframes, frames, symbols (optionally OFDM symbols in the downlink), or mini-slots.
  • the control channel shared by multiple terminals herein may also be a control channel shared by one terminal group, that is, the control channel may be received by multiple terminals or terminal groups.
  • transmitting the first communication channel further comprises: repeatedly transmitting the control channel on the specified multiple time units, wherein the control channel is transmitted by using different transmit beams or transmit beam groups respectively on multiple time units .
  • repeatedly transmitting the control channel on the specified multiple time units includes at least one of the following: a pre-prediction between a transmission sequence of the transmission beam of the transmission control channel and a transmission sequence of the transmission beam or the transmission beam group used by the synchronization signal Corresponding relationship defined; there is a predefined correspondence between the transmission sequence of the transmission beam of the transmission control channel and the transmission sequence of the transmission beam or the transmission beam group used by the broadcast channel; the time unit of the transmission control channel and the time of transmitting the synchronization signal There is a predefined correspondence between the units; there is a predefined correspondence between the time unit transmitting the control channel and the time unit transmitting the broadcast channel.
  • the transmission of the control channel is done over a plurality of time units, wherein the control channel can be transmitted using different transmit beams or transmit beam sets on multiple time units, respectively.
  • the transmit beam/imitation beam group sequence has a predefined correspondence with the transmission sequence of the transmission beam or the transmission beam group used by the synchronization signal or the broadcast channel.
  • the transmission resource of the control channel occupies the same time domain resource as the transmission resource used by the synchronization signal or the broadcast channel.
  • the maximum number of transmission layers supported by the first communication channel is smaller than the maximum number of transmission layers supported by the second communication channel.
  • the first communication channel is only one type of control channel.
  • the first communication channel may be a terminal-specific control channel, wherein the terminal-specific control channel includes at least one of the following features: supporting multi-stream/multi-layer transmission; supporting spatial multiplexing transmission scheme; supporting quadrature phase shift Modulation method of keying (Quadture Phase Shift Keyin, abbreviated as QPSK), for example, can support modulation modes such as 16 Quadrature Amplitude Modulation (abbreviated as 16QAM); transmission in data channel area; support modulation and coding level (Modulation and Coding Scheme, MCS for short) adaptive transmission, where MCS adaptation means that the base station can adaptively adjust the MCS level according to channel quality state measurement information fed back from the terminal; support rank Adaptive transmission, wherein the number of transmission layers/rank adaptation means that the base station can adaptively adjust the number of transmission layers/rank according to channel quality state measurement information fed back from the terminal.
  • QPSK Quadrature Phase Shift Keyin
  • 16QAM 16 Quadrature Am
  • the first communication channel may be multiplexed and transmitted with the second communication channel, and the first communication channel may be located in the second communication channel region for transmission, wherein the second communication channel region scheduling unit specifies a good for the second communication channel transmission.
  • a region for example, a data channel region or a control channel region.
  • the control channel includes at least two types, one of which is a basic control channel, the other is an enhanced control channel, and the first communication channel is an enhanced control channel.
  • the transmission mode of the basic control channel is predefined, and the transmission mode of the enhanced control channel can be indicated by the basic control channel.
  • the enhanced control channel can support better bit rate, higher spectral efficiency information transmission, and can be used to indicate the transmission of more advanced data channels.
  • the basic control channel is a fallback form of the enhanced control channel.
  • the base station When the channel conditions are relatively good, the base station will transmit an enhanced control channel to indicate the transmission of the data channel. When the channel conditions are relatively poor, the base station will transmit a basic control channel to indicate the transmission of the data channel.
  • the enhanced control channel When the enhanced control channel is used to indicate the data channel, the data channel uses the information indicated by the enhanced control channel for advanced transmission (using an enhanced/advanced transmission mode), and when the basic control channel is used to indicate the data channel
  • the data channel uses the information indicated by the basic control channel for basic transmission (using basic/rough/more Lubon transmission).
  • This type of control channel may support a Hybrid Automatic Repeat reQuest (HARQ) mechanism, for example, receiving ACK/NACK acknowledgement information of the first communication channel before the second communication channel is transmitted.
  • HARQ Hybrid Automatic Repeat reQuest
  • the base station transmits a second communication channel according to the received ACK information or NACK information, where when the ACK information is received, the second communication channel is transmitted according to the indication of the first control channel, and when the NACK information is received, according to the second control channel
  • the indication transmits a second communication channel, wherein the first control channel is a first communication channel and the second control channel is another control channel different from the first control channel.
  • the second control channel does not have the features included when the first control channel is the terminal-specific control channel.
  • the second control channel may be a control channel transmitted before the second communication channel, where the second control channel is another or other type of control channel different from the first control channel;
  • the second control channel may be a control channel that is transmitted before the second communication channel and is closest to the second communication channel, wherein the second control channel is another or other type of control channel that is different from the first control channel.
  • the second control channel is a control channel transmitted before the second communication channel, where the second control channel is another or other type of control channel different from the first control channel;
  • the second control channel is a control channel that is transmitted before the second communication channel and is closest to the second communication channel, wherein the second control channel is another or other type of control channel that is different from the first control channel.
  • transmitting the first communication channel may further include: the transmission of the first communication channel supports a hybrid automatic repeat request (HARQ) transmission mechanism.
  • HARQ hybrid automatic repeat request
  • the transmission of the first communication channel supports a hybrid automatic repeat request (HARQ) transmission mechanism, including: receiving acknowledgement ACK information of the first communication channel, or non-acknowledgement NACK information, wherein the ACK information is used to indicate that the first communication channel is Correctly received, the NACK information indicates that the first communication channel was not received correctly.
  • HARQ hybrid automatic repeat request
  • the transmission of the first communication channel supporting the hybrid automatic repeat request (HARQ) transmission mechanism may further include: transmitting, according to the received ACK information or the NACK information, the second communication channel, wherein, when the ACK information is received, according to the first control channel Instructing to transmit a second communication channel, when receiving the NACK information, transmitting a second communication channel according to the indication of the second control channel, where the first control channel is the first communication channel, and the second control channel is different from the first control channel Other control channels.
  • HARQ hybrid automatic repeat request
  • the base station After the base station receives the ACK signal, the base station transmits the data channel according to the transmission mode information indicated by the enhanced control channel, and after receiving the NACK information, the base station transmits the data channel according to the transmission mode information indicated by the basic control channel. .
  • the terminal when it feeds back the ACK signal to the base station, the terminal will receive the second communication channel according to the indication of the first communication channel, and when it feeds back the NACK signal to the base station, the terminal will receive the indication according to the indication of other types of control channels. Two communication channels.
  • This type of control channel can share a portion of the DMRS resource of a set of DMRS patterns with the second communication channel.
  • the shared demodulation reference signal resource can be used for demodulating the first communication channel or for demodulating the second communication channel, and the shared demodulation reference signal resource can only be used for demodulation.
  • the DMRS pattern satisfies the following design principle: the shared demodulation reference signal resource is located in the first communication channel region, and the demodulation reference signal resource other than the shared demodulation reference signal resource in the demodulation reference signal resource is located in the second communication channel region.
  • the shared demodulation reference signal resource is located at a resource start position of the first communication channel transmission, and the demodulation reference signal resource other than the shared demodulation reference signal resource in the demodulation reference signal resource is located on the second communication channel. The starting position of the resource.
  • the maximum number of transmission layers supported by the first communication channel is the P layer
  • the maximum number of transmission layers supported by the second communication channel is the W layer
  • P and W are both positive integers, and the value of P is less than W
  • the first P ports (for example, if the demodulation reference signal port is defined as port [0, 7], then the first P ports are [0, P-1], and P is smaller than the total number of ports of the demodulation reference signal resource, that is, P is less than 8)
  • a DMRS port shared by the first communication channel and the second communication channel, and the remaining WP ports are DMRS ports specific to the second communication channel.
  • the terminal can support multiple sets of DMRS patterns, and the above DMRS pattern is used when the first communication channel is transmitted in the second communication channel area, otherwise other DMRS patterns are used.
  • the other patterns are different patterns different from the above patterns.
  • other DMRS patterns are DMRS ports for the second communication channel at the beginning of the second communication channel region.
  • the first communication channel is based on a demodulation reference signal resource transmission specified in a demodulation reference signal resource of the second communication channel. That is, the demodulation reference signal of the first communication channel is the demodulation reference signal resource specified in the demodulation reference signal resource of the second communication channel.
  • the first communication channel is transmitted in a transmission area specified in a transmission area of the second communication channel; the first communication channel is based on a demodulation reference signal resource specified in a demodulation reference signal resource of the second communication channel; The maximum number of transmission layers supported by the communication channel transmission is less than the maximum number of transmission layers supported by the second communication channel.
  • the transmission area of the foregoing second communication channel generally refers to an area for transmitting the second communication channel in one scheduling time unit.
  • the transmission area of the corresponding second communication channel is a data channel transmission area, similar to the concept of a data channel area and a control channel area in each subframe in LTE.
  • the demodulation reference signal resource specified in the demodulation reference signal resource of the second communication channel is transmitted in a transmission area specified in a transmission area of the second communication channel; and the demodulation reference signal resource of the second communication channel is specified
  • the demodulation reference signal resources other than the demodulation reference signal resources are transmitted in the transmission area of the second communication channel except for the designated transmission area.
  • the demodulation reference signal resource specified in the demodulation reference signal resource of the second communication channel is located at one or more symbol positions beginning in a time domain in the designated transmission region in the transmission region of the second communication channel;
  • the demodulation reference signal resource other than the specified demodulation reference signal resource in the demodulation reference signal resource of the second communication channel is located in the time domain of the transmission area other than the designated transmission area in the transmission area of the second communication channel The beginning of one or more symbol positions.
  • the first communication channel is transmitted based on P demodulation reference signal ports of the second communication channel, where the P demodulation reference signal ports are designated demodulation reference signal resources, and the demodulation reference signals of the second communication channel are
  • the resource includes W demodulation reference signal ports, W and P are both positive integers, and the value of W is greater than P.
  • the specified demodulation reference signal resource includes: P demodulation reference signal ports are the first P demodulation reference signal ports of the W demodulation reference signal ports.
  • the foregoing communication channel includes: a first communication channel and a second communication channel.
  • the transmission mode of the communication channel includes a plurality of types.
  • the transmission mode of the first communication channel and the transmission mode of the second communication channel are respectively described below.
  • the transmission manner of the first communication channel includes at least one of: a demodulation reference signal resource associated with the first communication channel; a time domain resource occupied by the first communication channel transmission; and a frequency domain resource occupied by the first communication channel transmission; a transmission scheme employed by the first communication channel transmission; an aggregation level used for transmission of the first communication channel; a modulation level used for transmission of the first communication channel; a coding level used for transmission of the first communication channel; and a first communication channel transmission station Corresponding blind detection area; a transmission beam used for the first communication channel transmission; and a corresponding reception beam for the first communication channel transmission.
  • the transmission manner of the second communication channel includes at least one of: a demodulation reference signal resource associated with the second communication channel; a time domain resource occupied by the second communication channel transmission; and a frequency domain resource occupied by the second communication channel transmission; a transmission scheme employed by the second communication channel transmission; an aggregation level used for transmission of the second communication channel; a modulation level used for transmission of the second communication channel; a coding level used for transmission of the second communication channel; and a second communication channel transmission station Corresponding blind detection area; a second communication channel transmits a transmission beam; and a second communication channel transmits a corresponding reception beam.
  • the demodulation reference signal resource includes at least one of a port, a time-frequency resource, a pattern, and a sequence of a Demodulation Reference Signal (DMRS);
  • the transmission scheme includes single-port transmission, diversity transmission, and spatial multiplexing.
  • SFBC Space Frequency Block Code
  • CDD Cyclic Delay Diversity
  • SU-MIMO Single User-Multiple Input Multiple Output
  • MU- Transmission schemes such as MIMO (Multiple User Multiple Input Multiple Output)
  • the blind detection area here is a time-frequency resource area where the terminal needs to try to receive a communication channel;
  • the beam here may be a resource, such as sending End precoding (transmission beam), receiver precoding (receiving beam), antenna port, antenna weight vector, antenna weight matrix, etc., since the beam can be bound to some time-frequency code resources for transmission, the beam ID can also be Replace with the resource ID.
  • the beam may also be in a transmission (transmit/receive) mode; the transmission mode may include space division multiplexing, frequency domain/time domain diversity, etc.; further optionally, the receiving beam refers to a beam of the receiving end that does not need to be indicated, Or the transmitting end may use the current reference signal and the antenna port to report the reported reference signal (or reference reference signal) of the UE and the quasi-co-location (QCL) of the antenna port to indicate the beam resource of the receiving end.
  • the transmission mode may include space division multiplexing, frequency domain/time domain diversity, etc.
  • the receiving beam refers to a beam of the receiving end that does not need to be indicated, Or the transmitting end may use the current reference signal and the antenna port to report the reported reference signal (or reference reference signal) of the UE and the quasi-co-location (QCL) of the antenna port to indicate the beam resource of the receiving end.
  • the transmitting end may use the current reference signal and the antenna port to report the reported reference signal (or reference reference signal) of the UE
  • the first communication node is the transmitting end of the communication channel
  • the second communication node is the receiving end of the communication channel.
  • the first communication node is a base station or a network control node
  • the second node is a user or a terminal or a network controlled node.
  • FIG. 3 is a flowchart of a method for transmitting a communication channel according to an embodiment of the present disclosure. As shown in FIG. 3, the process includes the following steps:
  • Step S302 receiving a first communication channel
  • Step S304 obtaining at least one of the following information by using a transmission mode of the first communication channel and/or signaling carried by the first communication channel: terminal scheduling information, and a transmission mode of the second communication channel.
  • the terminal scheduling information includes: terminal group information, where the terminal group information includes indication information of one or more terminal groups.
  • the terminal grouping information includes one of: terminal grouping information in a current scheduling time unit; terminal grouping information in a specified scheduling time unit; and a terminal within a specified duration period from a current scheduling time unit.
  • Packet information terminal packet information starting from a specified scheduling time unit and within a specified duration; wherein the scheduling time unit includes one or more time units, the time unit including one of: a time slot, a subframe, a frame, Symbol, microslot.
  • the method further includes: determining, according to the terminal scheduling information, the scheduled or unscheduled terminal group; determining whether the terminal receiving the first communication channel belongs to the scheduled terminal group; In the case, the first communication channel and/or the second communication channel are attempted to be received within a time corresponding to the terminal scheduling information.
  • the specified scheduling time unit, or the specified duration period is obtained by using one of the following manners: signaling carried by the first communication channel, high layer signaling.
  • the terminal grouping information herein may include group index indication information of one or more terminal groups for indicating terminal packets scheduled or not scheduled for the current or specified duration.
  • a terminal packet scheduled for a current or specified duration indicating that the base station will be able to send control channels and data services to terminals within the terminal group within the current or specified duration, and the terminal needs to try for the current or specified duration.
  • the method may further: group the terminals in a predefined manner. It should be noted that the grouping of the terminals may be preceded by receiving the first communication channel or after receiving the first communication channel.
  • M is an integer greater than one.
  • the value of M may be indicated to the terminal by the base station. For example, in some cases, the value of M is equal to 1, that is, the terminal is not grouped. In some cases, the value of M is greater than 1, and the terminal needs to be grouped.
  • the value of M can also be pre-agreed by the base station and the terminal.
  • the index of the M packets is defined as 0 to M-1, mainly for the convenience of describing and distinguishing different packets.
  • the index of the M packet can also be defined as other methods, as long as different packets can be distinguished.
  • the indexes of the M packets are respectively 1 to M, and i ⁇ ⁇ 0 to M-1 ⁇ indicates that the terminal identified by the terminal as the UE_ID is divided into the i+1th packet.
  • Offset is an integer ranging from ⁇ 0 to M-1 ⁇ ; and/or, the default value of Offset is 0.
  • grouping the terminal according to the predefined manner includes: grouping the terminal according to the terminal capability, where the terminal capability and the terminal group have a predefined correspondence, and the terminal capability includes at least one of the following: the bandwidth of the terminal. Capabilities, beam capabilities of the terminal, and types of services that the terminal can support.
  • the obtaining the transmission manner of the second communication channel by using the transmission manner of the first communication channel comprises: a predefined correspondence between the transmission manner of the first communication channel and the transmission manner of the second communication channel.
  • acquiring, by using a transmission manner of the first communication channel, a transmission manner of the second communication channel includes: acquiring, by using a transmission scheme of the first communication channel, a transmission scheme of the second communication channel, where the transmission scheme of the first communication channel is There is a predefined correspondence between the transmission schemes of the two communication channels.
  • acquiring the transmission manner of the second communication channel by using the transmission manner of the first communication channel includes: acquiring, by using an aggregation level of the first communication channel, a modulation and/or coding level of the second communication channel, where the first communication channel is There is a predefined correspondence between the aggregation level and the modulation and/or coding level of the second communication channel.
  • the first communication channel comprises: a control channel, or a broadcast channel.
  • the second communication channel comprises: a control channel, or a data channel.
  • the first communication channel is a control channel, where the control channel includes: a public control channel, or a control channel shared by multiple terminals.
  • receiving the first communication channel includes: receiving a control channel on the specified time unit pattern, wherein the specified time unit pattern includes one or more time units, and the time unit includes one of: a time slot, a subframe, Frame, symbol, or minislot.
  • the specified time unit pattern is determined by at least one of the following manners: predefined manner determination, broadcast channel reception, synchronization signal reception, and high layer signaling reception.
  • receiving the first communication channel comprises: repeatedly receiving the control channel on the specified plurality of time units, wherein the control channel is received by using different receive beams or receive beam groups respectively on the plurality of time units.
  • the method includes: at least one of the following: a pre-defined correspondence between a receiving sequence of the receiving beam of the receiving control channel and a transmission sequence of the receiving beam or the receiving beam group used by the synchronization signal; and receiving the receiving beam of the control channel There is a predefined correspondence between the receiving sequence and the receiving sequence of the receiving beam or the receiving beam group used by the broadcast channel; there is a predefined correspondence between the time unit receiving the control channel and the time unit receiving the synchronization signal; receiving control There is a predefined correspondence between the time unit of the channel and the time unit receiving the broadcast channel.
  • the first communication channel is a terminal-specific control channel
  • the terminal-specific control channel includes at least one of the following features: supporting multi-stream/multi-layer transmission; supporting spatial multiplexing transmission scheme; supporting QPSK or higher Modulation mode (for example, it can support modulation mode such as 16QAM); transmit in data channel area; support MCS adaptive transmission (It should be noted that this MCS adaptation means that the base station can adaptively adjust according to the channel quality state measurement information fed back from the terminal. MCS level); supports rank adaptive transmission (where the number of transmission layers/rank, rank adaptation means that the base station can adaptively adjust the number of transmission layers/rank according to channel quality state measurement information fed back from the terminal).
  • receiving the first communication channel comprises: receiving the first communication channel to support a hybrid automatic repeat request HARQ transmission mechanism.
  • the receiving the hybrid automatic repeat request (HARQ) transmission mechanism of the first communication channel comprises: feeding back, to the base station, the acknowledgement ACK information of the first communication channel, or the non-acknowledgement NACK information, wherein the ACK information is used to indicate the first communication The channel is correctly received and the NACK information indicates that the first communication channel was not received correctly.
  • HARQ hybrid automatic repeat request
  • the receiving the hybrid automatic repeat request (HARQ) transmission mechanism of the first communication channel comprises: receiving the second communication channel according to the ACK information or the NACK information fed back to the base station, wherein when the ACK information is fed back to the base station, according to the The indication of a control channel receives the second communication channel, and when the NACK information is fed back to the base station, receives the second communication channel according to the indication of the second control channel, where the first control channel is the first communication channel, and the second control channel is different from Other control channels of the first control channel.
  • HARQ hybrid automatic repeat request
  • the second control channel herein does not have those features included in the terminal-specific control channel described above.
  • the second control channel is a control channel transmitted before the second communication channel, wherein the second control channel is another or other type of control channel different from the first control channel.
  • the second control channel is a control channel that is transmitted before the second communication channel and is closest to the second communication channel, wherein the second control channel is another or other type of control channel that is different from the first control channel.
  • receiving the first communication channel includes at least one of: receiving, by the transmission area specified in the transmission area of the second communication channel, the first communication channel; demodulation specified in the demodulation reference signal resource based on the second communication channel
  • the reference signal resource receives the first communication channel; the maximum number of transmission layers supported by the first communication channel reception is less than the maximum number of transmission layers supported by the second communication channel.
  • receiving the first communication channel includes at least one of: a demodulation reference signal resource specified in a demodulation reference signal resource of the second communication channel is transmitted in a transmission area specified in a transmission area of the second communication channel;
  • the demodulation reference signal resource other than the designated demodulation reference signal resource in the demodulation reference signal resource of the communication channel is transmitted in the transmission area other than the designated transmission area in the transmission area of the second communication channel.
  • the transmission area of the foregoing second communication channel generally refers to an area for transmitting the second communication channel in one scheduling time unit.
  • the transmission area of the corresponding second communication channel is a data channel transmission area, similar to the concept of a data channel area and a control channel area in each subframe in LTE.
  • receiving the first communication channel includes at least one of: a demodulation reference signal resource specified in a demodulation reference signal resource of the second communication channel is located in a time domain specified in a transmission area of a transmission area of the second communication channel One or more symbol positions from the beginning; demodulation reference signal resources other than the specified demodulation reference signal resources in the demodulation reference signal resources of the second communication channel are located in the transmission area of the second communication channel except the designated transmission One or more symbol locations starting on the time domain in the transmission area outside the area.
  • receiving the first communication channel based on the demodulation reference signal resource specified in the demodulation reference signal resource of the second communication channel comprises: receiving the first communication channel based on the P demodulation reference signal ports of the second communication channel, where The P demodulation reference signal ports are designated demodulation reference signal resources, and the demodulation reference signal resources of the second communication channel include W demodulation reference signal ports, W and P are positive integers, and the value of W is greater than P.
  • the specified demodulation reference signal resource comprises: P demodulation reference signal ports being the first P demodulation reference signal ports of the W demodulation reference signal ports.
  • the transmission manner of the first communication channel includes at least one of: a demodulation reference signal resource associated with the first communication channel; a time domain resource occupied by the first communication channel transmission; and occupied by the first communication channel transmission a frequency domain resource; a transmission scheme used for transmission of the first communication channel; an aggregation level used for transmission of the first communication channel; a modulation level used for transmission of the first communication channel; a coding level used for transmission of the first communication channel; a blind detection area corresponding to the communication channel transmission; a transmission beam used by the first communication channel transmission; and a reception beam corresponding to the first communication channel transmission.
  • the transmission manner of the second communication channel includes at least one of: a demodulation reference signal resource associated with the second communication channel; a time domain resource occupied by the second communication channel transmission; and a second communication channel transmission occupied by the second communication channel a frequency domain resource; a transmission scheme used for transmission of the second communication channel; an aggregation level used for transmission of the second communication channel; a modulation level used for transmission of the second communication channel; a coding level used for transmission of the second communication channel; The blind detection area corresponding to the communication channel transmission; the second communication channel transmits the transmission beam; the second communication channel transmits the corresponding reception beam.
  • predefined or “predefined” used in the description in the above embodiments of the present disclosure, which is not further explained, means that the object described by “predefined” or “predefined” is The base station and the terminal are both known by the base station and the terminal, or are indicated by the base station to the terminal; the "designated” or “designated” used in the description in the embodiment of the present disclosure is not explained further.
  • the objects described by “designated” or “designated” are known to both the base station and the terminal, and may be pre-approved for the base station and the terminal, or indicated by the base station to the terminal.
  • the terminal does not The control channel needs to be blindly detected on each scheduling time unit, which reduces the complexity of the terminal blind detection control channel; by placing the first communication channel in the second communication channel area, then defining the first communication channel and the second communication channel There is a corresponding relationship between the transmission modes, the signaling resource overhead of the control channel is saved, and the second communication channel region is effectively utilized, and the multiplexing efficiency is improved; by feeding back the ACK/NACK information of the first communication channel before the second communication channel, Supporting adaptive switching between multi-level control channels; placing the unshared reference signal at the beginning of the second communication channel by placing the shared demodulation reference signal resource at the beginning of the first communication channel transmission, both the communication channel The decoding delay is the lowest, while ensuring the best channel estimation performance.
  • Step 1 grouping the UEs in the cell, and notifying the UEs that are scheduled in the current time slot (one scheduling time unit) or the current N time slots to all UEs through a public or public group control channel;
  • Step 2 After receiving the packet information, the UE determines, according to the grouping rule, whether it is within the received packet, and if so, attempts to receive the terminal-specific control channel within the current or current period of time, and if not, the current or current Do not attempt to receive the terminal's proprietary control channel for a period of time.
  • the rules of the UE grouping include one of the following, assuming that the UE needs to be divided into M groups:
  • Rule 1 The UE is grouped according to the UE identifier (Identity, abbreviated as ID). For example, if the value of the UE ID is M, the UE is assigned to the i-th group.
  • Rule 3 Perform UE grouping according to the configured parameters. For example, if the value of the parameter UE_ID_v is M, the UE is allocated to the i-th group, where the parameter UE_ID_v is configured by the base station to the terminal, and the parameter is The value of UE_ID_v is configurable, for example, can be indicated to the terminal through a broadcast channel, a synchronization signal, high layer signaling, and the like. Optionally, the parameter UE_ID_v ranges from ⁇ 0 to M-1 ⁇ . When the terminal does not receive the configuration indication of the Offset, the terminal defaults to the value of the parameter UE_ID_v being 0.
  • Rule 4 The UE is configured according to the UE capability.
  • the UE reports the UE capability to the base station. Therefore, the base station and the UE can group the UE according to different UE capabilities, that is, there is a predefined between the UE capability and the UE packet. Correspondence.
  • the correspondence is pre-defined by the base station and the terminal, where the UE capability may include bandwidth capability, beam capability, and the like.
  • the UE packet information herein may be information of one or more packets, and the base station may indicate a packet index of one or more packets to the terminal.
  • the UE group information in the following time domain range may be indicated by a public control channel or a control channel common to the terminal group:
  • the group information that is not scheduled in the time domain range may also be indicated by the public control channel of the public or terminal group.
  • the UE receives the group information, according to the grouping rule. It is determined whether it is within the received packet, and if so, does not attempt to receive the terminal-specific control channel for the current or current period of time, and if not, attempts to receive the terminal-specific control channel for the current or current period of time.
  • a scheduling unit pattern is defined in a manner agreed in advance by the base station and the terminal, or a scheduling unit pattern information is notified to the base station by signaling.
  • the scheduling unit pattern may be included in a predetermined time period, and may be used to send indication information of a scheduling time unit of the public downlink control channel.
  • the predetermined time period of the base station and the terminal pre-agreed may be one subframe, one frame or consecutive T time slots, where T is pre-agreed or indicated to the terminal by signaling; the scheduling time unit is corresponding to one scheduling.
  • the time unit for example, is one or more OFDM symbols, time slots, mini-slots, subframes or frames.
  • a subframe includes 10 time slots, and the base station respectively represents one through 10-bit signaling. Whether the 10 time slots in the subframe can be used to transmit the public downlink control channel, the bits from the lowest bit to the highest bit respectively correspond to the time domain from the last 10 time slots in one subframe, and the bit value indicates 0 to indicate the corresponding time slot. It is not used to transmit the public downlink control channel. A bit value of 1 indicates that the corresponding time slot can be used to transmit the public downlink control channel.
  • slots 3, 6, and 9 can be used to transmit a public downlink control channel, and other time slots do not transmit a public downlink control channel.
  • the terminal After obtaining the scheduling time unit pattern, the terminal attempts to receive the public downlink control channel only on the time unit indicating that the public downlink control channel is available for transmission, and does not attempt to receive the public downlink control channel on other scheduling time units.
  • the public downlink control channel may also be a downlink control channel that is common to the terminal group.
  • the public downlink control channel and the terminal-specific downlink control channel are transmitted by using independent resource configurations, where resource configuration is performed.
  • resource configuration refers to the subcarrier spacing, OFDM symbol length, cyclic shift length, etc. of the resources used to transmit the control channel.
  • the independent resource configuration described herein refers to that the time-frequency resources in which the public downlink control channel and the terminal-specific downlink control channel are transmitted may have different sub-carrier spacing, different OFDM symbol lengths, and different cyclic shift lengths.
  • the public downlink control channel and the terminal-specific downlink control channel are in different time units in one scheduling time unit. transmission.
  • the radio frequency bandwidth of the public downlink control channel and the terminal-specific downlink control channel are independently configured.
  • the public downlink control channel is transmitted by using different time units and multiple scheduling time units with different beams to complete the public downlink control.
  • the downlink control channel supports two levels of downlink control channels, wherein the transmission configuration of the first-level downlink control channel is relatively fixed, and the resource configuration is pre-agreed and configured by semi-static signaling, and is transmitted by using a more robust transmission scheme.
  • the Space Frequency Block Code SFBC
  • the transmission configuration of the second-level downlink control channel is more flexible, and the resource configuration can be indicated by the first-level control channel, and the spectrum efficiency is more supported.
  • a high transmission scheme for example, Single User-Multiple-Input Multiple-Output (SU-MIMO).
  • the first level downlink control channel is located in the downlink control channel region, and the second level control channel may be located in the data channel region.
  • the channel environment and the data channel of the second-level control channel are both located in the data channel region, there is often a correspondence between the transmission mode of the second-level control channel and the data channel. This correspondence may be pre-agreed by the base station and the terminal.
  • the second-level control channel supports up to two layers of SU-MIMO transmission, SFBC, and Cyclic Delay Diversity (CDD), while the data channel supports up to eight layers of SU-MIMO transmission, SFBC, and CDD.
  • CDD Cyclic Delay Diversity
  • the transmission scheme corresponding to the Physical Downlink Shared Channel (PDSCH) is SU-MIMO (5-8 layers);
  • the transmission scheme corresponding to the PDSCH ranges from SU-MIMO (1 to 4 layers);
  • the transmission scheme corresponding to the PDSCH ranges from ⁇ SFBC, CDD, and SU-MIMO (1 to 2 layers) ⁇ .
  • the base station determines a transmission scheme range corresponding to the PDSCH by using a transmission scheme of the second-level control channel, and selects a transmission scheme from the transmission scheme range to perform transmission of the current data channel according to the channel measurement feedback information, and passes the selected transmission scheme information.
  • the signaling carried in the secondary control channel is indicated to the terminal; the base station determines the transmission scheme range corresponding to the PDSCH by using the transmission scheme of the second-level control channel, and determines the current PDSCH from the received signaling indication carried in the second-level control channel.
  • the transmission scheme employed then receives and demodulates the PDSCH.
  • the second-level control channel may indicate the selected transmission scheme to the terminal by using 2-bit signaling.
  • the downlink control channel supports two levels of downlink control channels, wherein the transmission configuration of the first-level downlink control channel is relatively fixed, and the resource configuration is pre-agreed by a semi-static signaling configuration, and a more robust transmission scheme is adopted.
  • Transmission for example, SFBC
  • the transmission configuration of the second-level downlink control channel is more flexible, and its resource configuration may be indicated by the first-level control channel and supports a more spectrally efficient transmission scheme, for example, SU-MIMO.
  • the first level downlink control channel is located in the downlink control channel region, and the second level control channel may be located in the data channel region.
  • a set of DMRS patterns can be shared between the second-level control channel and the data channel.
  • the data channel also supports SU-MIMO transmission
  • the control channel transmission since the control channel transmission has higher requirements on robustness, usually the maximum transmission layer supported by the second-level downlink control channel SU-MIMO is smaller than that supported by the data channel. The maximum number of transport layers. Therefore, some resources in the DMRS pattern may be located at the beginning of the transmission of the second-level downlink control channel, and some resources are located at the beginning of the data channel transmission.
  • the DMRS resource located at the start position of the second-level downlink control channel transmission includes a shared DMRS port of the control channel and the data channel, and the shared DMRS port can be used for demodulating the second-level downlink control channel and for demodulating. Data channel.
  • FIG. 5 is a schematic diagram of a DMRS pattern of a second-level control channel and a data channel shared part DMRS port according to a preferred embodiment of the present disclosure.
  • one DMRS pattern supports eight ports, and the numbers are respectively ⁇ 0-7.
  • the second-level control channel supports up to Layer 2 transmission
  • the data channel supports up to 8 layers of transmission.
  • the first two ports (port 0 to 1) of the eight ports in the DMRS pattern are the second-level control channel and data.
  • the port shared by the channel, the last 6 ports (ports 2 to 7) are the ports dedicated to the data channel.
  • the channel estimation performance is best, and the shared DMRS port (port 0 ⁇ 1) is placed at the beginning of the control channel transmission, and the data channel is dedicated to the DMRS port ( Port 2 to 7) are placed at the beginning of the data channel transmission.
  • the multiplexing of the control channel and the data channel adopts a TDM manner.
  • the terminal After receiving the first two DMRS ports (port 0 ⁇ 1), the terminal attempts to demodulate the control channel and the data channel, and after receiving the last six DMRS ports (ports 2-7), attempts to demodulate the data channel.
  • multiple sets of DMRS patterns are supported.
  • the foregoing DMRS pattern is used. Otherwise, when no second-level control channel is transmitted in the data area, All DMRS ports in the DMRS pattern are located at the beginning of the data area.
  • the downlink control channel supports two levels of downlink control channels, wherein the transmission configuration of the first-level downlink control channel is relatively fixed, and the resource configuration is pre-agreed by a semi-static signaling configuration, and a more robust transmission scheme is adopted.
  • Transmission for example, SFBC
  • the transmission configuration of the second-level downlink control channel is more flexible, and its resource configuration may be indicated by the first-level control channel and supports a more spectrally efficient transmission scheme, for example, SU-MIMO.
  • the first level downlink control channel is located in the downlink control channel region, and the second level control channel may be located in the data channel region.
  • the base station is based on adaptive switching between the first-level control channel and the second-level control channel.
  • the second level control channel supports the HARQ mechanism.
  • FIG. 6 is a schematic flowchart of performing ACK/NACK feedback on a second-level control channel according to a preferred embodiment of the present disclosure.
  • a downlink control of a base station in a slot n The Downlink Control (DC) area sends the second-level downlink control channel, and the ACK/NACK information for the second-level downlink control channel is fed back to the base station in the Uplink Control (UC) area of the slot.
  • the base station receives the ACK information fed back by the terminal, the base station normally transmits data according to the indication of the second-level downlink control channel on slot n+1, and the terminal also demodulates the data channel according to the indication of the second-level downlink control channel.
  • the base station when the base station receives the NACK information, the base station will send data according to the indication of the first-level downlink control channel (transmitted before slot n or sent on slot n+1), and the terminal also correspondingly follows the first-level downlink control channel.
  • the indication demodulates and decodes the data channel.
  • a transmission device for a communication channel is also provided in this embodiment, and the device is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 7 is a structural block diagram of a transmission apparatus of a communication channel according to an embodiment of the present disclosure.
  • the transmission apparatus 70 of the communication channel includes: a first transmission module 72, and the first transmission module 72 is described below. .
  • the first transmission module 72 is configured to transmit the first communication channel, where the signaling manner by the first communication channel and/or the signaling carried by the first communication channel indicates at least one of the following information: terminal scheduling information, second communication The way the channel is transmitted.
  • the terminal scheduling information includes: terminal group information, where the terminal group information includes indication information of one or more terminal groups.
  • the terminal grouping information includes one of: terminal grouping information in a current scheduling time unit; terminal grouping information in a specified scheduling time unit; and a terminal within a specified duration period from a current scheduling time unit.
  • Packet information terminal packet information starting from a specified scheduling time unit and within a specified duration; wherein the scheduling time unit includes one or more time units, the time unit including one of: a time slot, a subframe, a frame, Symbol, microslot.
  • the specified scheduling time unit, or the specified duration period is indicated by one of the following modes: signaling carried by the first communication channel, high layer signaling.
  • FIG. 8 is a structural block diagram of a transmission apparatus of a communication channel according to an embodiment of the present disclosure. As shown in FIG. 8, the apparatus includes, in addition to all the modules shown in FIG. 7, a first grouping module 82, which is The first grouping module 82 is described.
  • the first grouping module 82 is coupled to the first transmission module 72 for grouping the terminals in a predefined manner.
  • Offset is an integer ranging from ⁇ 0 to M-1 ⁇ ; and/or, the default value of Offset is 0.
  • the first grouping module 82 is further configured to group the terminals according to the terminal capability, where the terminal capability and the terminal group have a predefined correspondence, and the terminal capability includes at least one of the following: a bandwidth capability of the terminal, The beam capability of the terminal and the type of service that the terminal can support.
  • the first transmission module 72 is further configured to indicate, by using a transmission manner of the first communication channel, a transmission manner of the second communication channel: a pre-defined between a transmission manner of the first communication channel and a transmission manner of the second communication channel Correspondence.
  • indicating, by using a transmission manner of the first communication channel, a transmission manner of the second communication channel includes: indicating, by using a transmission scheme of the first communication channel, a transmission scheme of the second communication channel, where the transmission scheme of the first communication channel is There is a predefined correspondence between the transmission schemes of the two communication channels.
  • indicating, by the transmission manner of the first communication channel, the transmission manner of the second communication channel includes: indicating, by using an aggregation level of the first communication channel, a modulation and/or coding level of the second communication channel, where the first communication channel is There is a predefined correspondence between the aggregation level and the modulation and/or coding level of the second communication channel.
  • the first communication channel comprises: a control channel, or a broadcast channel.
  • the second communication channel comprises: a control channel, or a data channel.
  • the first communication channel is a control channel, where the control channel includes: a public control channel, or a control channel shared by multiple terminals.
  • the first transmission module 72 is further configured to transmit a control channel on the specified time unit pattern, where the specified time unit pattern includes one or more time units, and the time unit includes one of the following: a time slot, a sub Frame, frame, symbol, or minislot.
  • the specified time unit pattern is determined by at least one of the following: a predefined manner determination, a broadcast channel indication, a synchronization signal indication, a high layer signaling instruction.
  • the first transmission module 72 is further configured to repeatedly transmit the control channel on the specified multiple time units, where the control channel is transmitted by using different transmit beams or transmit beam groups on the multiple time units.
  • the method includes: at least one of the following: a pre-defined correspondence between a transmission sequence of the transmission beam of the transmission control channel and a transmission sequence of the transmission beam or the transmission beam group used by the synchronization signal; and a transmission beam of the transmission control channel There is a predefined correspondence between the transmission sequence and the transmission sequence of the transmission beam or the transmission beam group used by the broadcast channel; there is a predefined correspondence between the time unit of the transmission control channel and the time unit of the transmission synchronization signal; transmission control There is a predefined correspondence between the time unit of the channel and the time unit of the transmission broadcast channel.
  • the first communication channel is a terminal-specific control channel, where the terminal-specific control channel includes at least one of the following features: supporting multi-stream/multi-layer transmission; supporting spatial multiplexing transmission scheme; supporting QPSK or higher Modulation mode; transmission in data channel area; support MCS adaptive transmission; support rank adaptive transmission.
  • the first transmission module 72 is further configured to implement a transmission of the first communication channel to support a hybrid automatic repeat request (HARQ) transmission mechanism.
  • HARQ hybrid automatic repeat request
  • the first transmission module 72 is further configured to receive the acknowledgement ACK information of the first communication channel, or the non-acknowledgement NACK information, where the ACK information is used to indicate that the first communication channel is correctly received, and the NACK information represents the first The communication channel was not received correctly.
  • the first transmission module 72 is further configured to transmit, according to the received ACK information or the NACK information, the second communication channel, where, when the ACK information is received, the second communication channel is transmitted according to the indication of the first control channel, When receiving the NACK information, transmitting the second communication channel according to the indication of the second control channel, where the first control channel is the first communication channel, and the second control channel is another control channel different from the first control channel.
  • the first communication channel is transmitted in a transmission area specified in a transmission area of the second communication channel; the first communication channel is based on a demodulation reference signal resource specified in a demodulation reference signal resource of the second communication channel; The maximum number of transmission layers supported by the communication channel transmission is less than the maximum number of transmission layers supported by the second communication channel.
  • the demodulation reference signal resource specified in the demodulation reference signal resource of the second communication channel is transmitted in a transmission area specified in a transmission area of the second communication channel; and the demodulation reference signal resource of the second communication channel is specified
  • the demodulation reference signal resources other than the demodulation reference signal resources are transmitted in the transmission area of the second communication channel except for the designated transmission area.
  • the demodulation reference signal resource specified in the demodulation reference signal resource of the second communication channel is located in a time domain start position in the transmission region specified in the transmission region of the second communication channel; demodulation of the second communication channel
  • the demodulation reference signal resource other than the specified demodulation reference signal resource in the reference signal resource is located in the time domain start position in the transmission area other than the designated transmission area in the transmission area of the second communication channel.
  • the first communication channel is based on the demodulation reference signal resource transmission specified in the demodulation reference signal resource of the second communication channel, where the first communication channel is transmitted based on P demodulation reference signal ports of the second communication channel, where The P demodulation reference signal ports are designated demodulation reference signal resources, and the demodulation reference signal resources of the second communication channel include W demodulation reference signal ports, W and P are positive integers, and the value of W is greater than P.
  • the P demodulation reference signal ports are the first P demodulation reference signal ports of the W demodulation reference signal ports.
  • the transmission manner of the first communication channel includes at least one of: a demodulation reference signal resource associated with the first communication channel; a time domain resource occupied by the first communication channel transmission; and occupied by the first communication channel transmission a frequency domain resource; a transmission scheme used for transmission of the first communication channel; an aggregation level used for transmission of the first communication channel; a modulation level used for transmission of the first communication channel; a coding level used for transmission of the first communication channel; a blind detection area corresponding to the communication channel transmission; a transmission beam used by the first communication channel transmission; and a reception beam corresponding to the first communication channel transmission.
  • the transmission manner of the second communication channel includes at least one of: a demodulation reference signal resource associated with the second communication channel; a time domain resource occupied by the second communication channel transmission; and a second communication channel transmission occupied by the second communication channel a frequency domain resource; a transmission scheme used for transmission of the second communication channel; an aggregation level used for transmission of the second communication channel; a modulation level used for transmission of the second communication channel; a coding level used for transmission of the second communication channel; The blind detection area corresponding to the communication channel transmission; the second communication channel transmits the transmission beam; the second communication channel transmits the corresponding reception beam.
  • FIG. 9 is a structural block diagram of a base station according to an embodiment of the present disclosure. As shown in FIG. 9, the base station 90 includes the transmission device 70 of the communication channel of any of the above.
  • FIG. 10 is a structural block diagram of a receiving apparatus for a communication channel according to an embodiment of the present disclosure.
  • the receiving apparatus 100 of the communication channel includes: a first receiving module 102, a first acquiring module 104, and the following Be explained.
  • the first receiving module 102 is configured to receive the first communication channel, and the first obtaining module 104 is connected to the first receiving module 102, for transmitting by using the first communication channel and/or the signal carried by the first communication channel. Let at least one of the following information be obtained: terminal scheduling information, and transmission mode of the second communication channel.
  • the terminal scheduling information includes: terminal group information, where the terminal group information includes indication information of one or more terminal groups.
  • the terminal grouping information includes one of: terminal grouping information in a current scheduling time unit; terminal grouping information in a specified scheduling time unit; and a terminal within a specified duration period from a current scheduling time unit.
  • Packet information terminal packet information starting from a specified scheduling time unit and within a specified duration; wherein the scheduling time unit includes one or more time units, the time unit including one of: a time slot, a subframe, a frame, Symbol, microslot.
  • FIG. 11 is a block diagram of a preferred structure of a receiving device for a communication channel according to an embodiment of the present disclosure. As shown in FIG. 11, the device includes: a first determining module 112, a first determining The module 114 and the second receiving module 116 are described below with respect to the preferred structure.
  • the first determining module 112 is connected to the first obtaining module 104, and is configured to determine a scheduled or unscheduled terminal group according to the terminal scheduling information.
  • the first determining module 114 is connected to the first determining module 112 for determining Whether the terminal receiving the first communication channel belongs to the scheduled terminal group;
  • the second receiving module 116 is connected to the first determining module 114, and configured to: when the determination result of the first determining module 114 is YES, the terminal is The time corresponding to the scheduling information attempts to receive the first communication channel and/or the second communication channel.
  • the specified scheduling time unit, or the specified duration period is obtained by using one of the following manners: signaling carried by the first communication channel, high layer signaling.
  • FIG. 12 is a block diagram of a preferred structure of a receiving device for a communication channel according to an embodiment of the present disclosure. As shown in FIG. 12, the device includes: a second grouping module 122, in addition to the structure shown in FIG. The second grouping module 122 is described.
  • the second grouping module 122 is connected to the first receiving module 102 for grouping the terminals in a predefined manner.
  • Offset is an integer ranging from ⁇ 0 to M-1 ⁇ ; and/or, the default value of Offset is 0.
  • the second grouping module 122 is further configured to group the terminals according to the terminal capability, where the terminal capability and the terminal group have a predefined correspondence, and the terminal capability includes at least one of the following: a bandwidth capability of the terminal, The beam capability of the terminal and the type of service that the terminal can support.
  • the first obtaining module 102 is further configured to obtain, by using a transmission manner of the first communication channel, a transmission manner of the second communication channel: a pre-defined between a transmission manner of the first communication channel and a transmission manner of the second communication channel Correspondence.
  • acquiring, by using a transmission manner of the first communication channel, a transmission manner of the second communication channel includes: acquiring, by using a transmission scheme of the first communication channel, a transmission scheme of the second communication channel, where the transmission scheme of the first communication channel is There is a predefined correspondence between the transmission schemes of the two communication channels.
  • acquiring the transmission manner of the second communication channel by using the transmission manner of the first communication channel includes: acquiring, by using an aggregation level of the first communication channel, a modulation and/or coding level of the second communication channel, where the first communication channel is There is a predefined correspondence between the aggregation level and the modulation and/or coding level of the second communication channel.
  • the first communication channel comprises: a control channel, or a broadcast channel.
  • the second communication channel comprises: a control channel, or a data channel.
  • the first communication channel is a control channel, where the control channel includes: a public control channel, or a control channel shared by multiple terminals.
  • the first receiving module 102 is further configured to receive a control channel on the specified time unit pattern, where the specified time unit pattern includes one or more time units, and the time unit includes one of the following: a time slot, a sub Frame, frame, symbol, or minislot.
  • the specified time unit pattern is determined by at least one of the following manners: predefined manner determination, broadcast channel reception, synchronization signal reception, and high layer signaling reception.
  • the first receiving module 102 is further configured to repeatedly receive the control channel on the specified multiple time units, where the control channel is received by using different receiving beams or receiving beam groups on the multiple time units.
  • the method includes: at least one of the following: a pre-defined correspondence between a receiving sequence of the receiving beam of the receiving control channel and a transmission sequence of the receiving beam or the receiving beam group used by the synchronization signal; and receiving the receiving beam of the control channel There is a predefined correspondence between the receiving sequence and the receiving sequence of the receiving beam or the receiving beam group used by the broadcast channel; there is a predefined correspondence between the time unit receiving the control channel and the time unit receiving the synchronization signal; receiving control There is a predefined correspondence between the time unit of the channel and the time unit receiving the broadcast channel.
  • the first communication channel is a terminal-specific control channel, where the terminal-specific control channel includes at least one of the following features: supporting multi-stream/multi-layer transmission; supporting spatial multiplexing transmission scheme; supporting QPSK or higher Modulation mode; transmission in data channel area; support MCS adaptive transmission; support rank adaptive transmission.
  • the first receiving module 102 is further configured to implement receiving, by the first communication channel, a hybrid automatic repeat request (HARQ) transmission mechanism.
  • HARQ hybrid automatic repeat request
  • the first receiving module 102 is further configured to feed back, to the base station, the acknowledgement ACK information of the first communication channel, or the non-acknowledgement NACK information, where the ACK information is used to indicate that the first communication channel is correctly received, and the NACK information is represented. The first communication channel is not received correctly.
  • the first receiving module 102 is further configured to receive, according to the ACK information or the NACK information fed back to the base station, the second communication channel, where when the ACK information is fed back to the base station, receive the second according to the indication of the first control channel.
  • a communication channel when feeding back NACK information to the base station, receiving a second communication channel according to an indication of the second control channel, where the first control channel is a first communication channel, and the second control channel is another control different from the first control channel channel.
  • the first receiving module 102 is further configured to: receive, by using a transmission area specified in a transmission area of the second communication channel, a first communication channel; and demodulation reference specified in a demodulation reference signal resource of the second communication channel.
  • the signal resource receives the first communication channel; the maximum number of transmission layers supported by the first communication channel reception is less than the maximum number of transmission layers supported by the second communication channel.
  • the first receiving module 102 is further configured to implement at least one of the following: a demodulation reference signal resource specified in a demodulation reference signal resource of the second communication channel, a transmission area specified in a transmission area of the second communication channel And a demodulation reference signal resource other than the specified demodulation reference signal resource of the demodulation reference signal resource of the second communication channel is transmitted in a transmission area other than the designated transmission area in the transmission area of the second communication channel.
  • the first receiving module 102 is further configured to implement at least one of the following: the demodulation reference signal resource specified in the demodulation reference signal resource of the second communication channel is located in the transmission area specified in the transmission area of the second communication channel. One or more symbol positions starting in the time domain; the demodulation reference signal resources of the demodulation reference signal resources of the second communication channel other than the specified demodulation reference signal resources are located in the transmission region of the second communication channel One or more symbol positions starting on the time domain in the transmission area other than the specified transmission area.
  • the first receiving module 102 is further configured to receive, according to the P demodulation reference signal ports of the second communication channel, the first communication channel, where the P demodulation reference signal ports are designated demodulation reference signal resources,
  • the demodulation reference signal resources of the second communication channel include W demodulation reference signal ports, W and P are both positive integers, and the value of W is greater than P.
  • the P demodulation reference signal ports are the first P demodulation reference signal ports of the W demodulation reference signal ports.
  • the transmission manner of the first communication channel includes at least one of: a demodulation reference signal resource associated with the first communication channel; a time domain resource occupied by the first communication channel transmission; and occupied by the first communication channel transmission a frequency domain resource; a transmission scheme used for transmission of the first communication channel; an aggregation level used for transmission of the first communication channel; a modulation level used for transmission of the first communication channel; a coding level used for transmission of the first communication channel; a blind detection area corresponding to the communication channel transmission; a transmission beam used by the first communication channel transmission; and a reception beam corresponding to the first communication channel transmission.
  • the transmission manner of the second communication channel includes at least one of: a demodulation reference signal resource associated with the second communication channel; a time domain resource occupied by the second communication channel transmission; and a second communication channel transmission occupied by the second communication channel a frequency domain resource; a transmission scheme used for transmission of the second communication channel; an aggregation level used for transmission of the second communication channel; a modulation level used for transmission of the second communication channel; a coding level used for transmission of the second communication channel; The blind detection area corresponding to the communication channel transmission; the second communication channel transmits the transmission beam; the second communication channel transmits the corresponding reception beam.
  • FIG. 13 is a structural block diagram of a terminal according to an embodiment of the present disclosure. As shown in FIG. 13, the terminal 130 includes the receiving device 100 of the communication channel of any of the above.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • Embodiments of the present disclosure also provide a storage medium.
  • the above storage medium may be arranged to store program code for performing the following steps:
  • the storage medium is further arranged to store program code for performing the following steps:
  • the terminal scheduling information includes: terminal group information, where the terminal group information includes indication information of one or more terminal groups.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the terminal grouping information includes one of: terminal grouping information in a current scheduling time unit; terminal grouping information in a specified scheduling time unit; terminal grouping information in a specified duration period from a current scheduling time unit. a terminal grouping information starting from a specified scheduling time unit and within a specified duration period; wherein the scheduling time unit comprises one or more time units, the time unit comprising one of: a time slot, a subframe, a frame, a symbol, Microslot.
  • the storage medium is further arranged to store program code for performing the following steps:
  • S1 the specified scheduling time unit, or the specified duration period is indicated by one of the following modes: signaling carried by the first communication channel, high layer signaling.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the method further includes:
  • the terminals are grouped in a predefined manner.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the storage medium is further arranged to store program code for performing the following steps:
  • Offset is an integer ranging from ⁇ 0 to M-1 ⁇ ; and/or, the default value of Offset is 0.
  • the storage medium is further arranged to store program code for performing the following steps:
  • Grouping terminals in a predefined way includes:
  • the terminal is grouped according to the terminal capability, where the terminal capability and the terminal group have a predefined correspondence relationship, and the terminal capability includes at least one of the following: the bandwidth capability of the terminal, the beam capability of the terminal, and the service that the terminal can support. Types of.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the storage medium is further arranged to store program code for performing the following steps:
  • the transmission mode indicating the second communication channel by the transmission mode of the first communication channel includes:
  • the transmission scheme of the first communication channel is indicated by a transmission scheme of the first communication channel, where there is a predefined correspondence between the transmission scheme of the first communication channel and the transmission scheme of the second communication channel.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the transmission mode indicating the second communication channel by the transmission mode of the first communication channel includes:
  • the storage medium is further arranged to store program code for performing the following steps:
  • the first communication channel comprises: a control channel, or a broadcast channel.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the second communication channel comprises: a control channel, or a data channel.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the first communication channel is a control channel, where the control channel includes: a public control channel, or a control channel shared by multiple terminals.
  • the storage medium is further arranged to store program code for performing the following steps:
  • Transmitting the first communication channel includes:
  • S1 Transmit a control channel on the specified time unit pattern, wherein the specified time unit pattern includes one or more time units, and the time unit includes one of: a time slot, a subframe, a frame, a symbol, or a minislot.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the specified time unit pattern is determined by at least one of the following manners: a predefined mode determination, a broadcast channel indication, a synchronization signal indication, and a high layer signaling indication.
  • the storage medium is further arranged to store program code for performing the following steps:
  • Transmitting the first communication channel includes:
  • control channel is repeatedly transmitted on the specified multiple time units, wherein the control channel is transmitted by using different transmit beams or transmit beam groups on multiple time units.
  • the storage medium is further arranged to store program code for performing the following steps:
  • S1 comprising at least one of the following: a pre-defined correspondence between a transmission sequence of a transmission beam of a transmission control channel and a transmission sequence of a transmission beam or a transmission beam group used by the synchronization signal; and a transmission sequence of a transmission beam of the transmission control channel
  • a predefined correspondence between the transmission sequence of the transmission beam or the transmission beam group used by the broadcast channel there is a predefined correspondence between the time unit of the transmission control channel and the time unit of the transmission synchronization signal;
  • the storage medium is further arranged to store program code for performing the following steps:
  • the first communication channel is a terminal-specific control channel, where the terminal-specific control channel includes at least one of the following features: supporting multi-stream/multi-layer transmission; supporting spatial multiplexing transmission scheme; and supporting modulation scheme above QPSK ; transmission in the data channel area; support MCS adaptive transmission; support rank adaptive transmission.
  • the storage medium is further arranged to store program code for performing the following steps:
  • Transmitting the first communication channel includes:
  • the transmission of the first communication channel supports a hybrid automatic repeat request HARQ transmission mechanism.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the transmission of the first communication channel supports a hybrid automatic repeat request (HARQ) transmission mechanism including:
  • the storage medium is further arranged to store program code for performing the following steps:
  • the transmission of the first communication channel supports the hybrid automatic repeat request.
  • the HARQ transmission mechanism further includes:
  • S1 Transmit a second communication channel according to the received ACK information or NACK information, where when the ACK information is received, the second communication channel is transmitted according to the indication of the first control channel, and when the NACK information is received, according to the second control
  • the indication of the channel transmits a second communication channel, wherein the first control channel is a first communication channel and the second control channel is another control channel different from the first control channel.
  • the storage medium is further arranged to store program code for performing the following steps:
  • Transmitting the first communication channel includes at least one of: the first communication channel is transmitted in a transmission area specified in a transmission area of the second communication channel; and the first communication channel is specified based on a demodulation reference signal resource of the second communication channel. Demodulation reference signal resource transmission; the maximum number of transmission layers supported by the first communication channel transmission is less than the maximum number of transmission layers supported by the second communication channel.
  • the storage medium is further arranged to store program code for performing the following steps:
  • Transmitting the first communication channel includes at least one of: a demodulation reference signal resource specified in a demodulation reference signal resource of the second communication channel is transmitted in a transmission area specified in a transmission area of the second communication channel; and a second communication channel
  • the demodulation reference signal resources other than the specified demodulation reference signal resources in the demodulation reference signal resources are transmitted in the transmission area other than the designated transmission area in the transmission area of the second communication channel.
  • the storage medium is further arranged to store program code for performing the following steps:
  • Transmitting the first communication channel includes at least one of: a demodulation reference signal resource specified in a demodulation reference signal resource of the second communication channel is located in a time domain in a designated transmission area in a transmission area of the second communication channel. One or more symbol positions; demodulation reference signal resources other than the specified demodulation reference signal resources in the demodulation reference signal resources of the second communication channel are located in the transmission area of the second communication channel except the designated transmission area One or more symbol locations starting on the time domain in the outer transmission area.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the first communication channel is based on the demodulation reference signal resource specified in the demodulation reference signal resource of the second communication channel, where the first communication channel is transmitted based on P demodulation reference signal ports of the second communication channel, where,
  • the demodulation reference signal port is a designated demodulation reference signal resource, and the demodulation reference signal resources of the second communication channel include W demodulation reference signal ports, W and P are both positive integers, and the value of W is greater than P.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the specified demodulation reference signal resource includes: P demodulation reference signal ports are the first P demodulation reference signal ports of the W demodulation reference signal ports.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the transmission manner of the first communication channel includes at least one of: a demodulation reference signal resource associated with the first communication channel; a time domain resource occupied by the first communication channel transmission; and a frequency domain occupied by the first communication channel transmission a resource; a transmission scheme used for transmission of the first communication channel; an aggregation level used for transmission of the first communication channel; a modulation level used for transmission of the first communication channel; a coding level used for transmission of the first communication channel; and a first communication channel
  • the storage medium is further arranged to store program code for performing the following steps:
  • the transmission manner of the second communication channel includes at least one of: a demodulation reference signal resource associated with the second communication channel; a time domain resource occupied by the second communication channel transmission; and a frequency domain occupied by the second communication channel transmission a resource; a transmission scheme used for transmission of the second communication channel; an aggregation level used for transmission of the second communication channel; a modulation level used for transmission of the second communication channel; a coding level used for transmission of the second communication channel; and a second communication channel
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • S2 Acquire at least one of the following information by using a transmission mode of the first communication channel and/or signaling carried by the first communication channel: terminal scheduling information, and a transmission mode of the second communication channel.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the terminal scheduling information includes: terminal group information, where the terminal group information includes indication information of one or more terminal groups.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the terminal grouping information includes one of: terminal grouping information in a current scheduling time unit; terminal grouping information in a specified scheduling time unit; terminal grouping information in a specified duration period from a current scheduling time unit. a terminal grouping information starting from a specified scheduling time unit and within a specified duration period; wherein the scheduling time unit comprises one or more time units, the time unit comprising one of: a time slot, a subframe, a frame, a symbol, Microslot.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the method further includes: determining, according to the terminal scheduling information, a scheduled or unscheduled terminal group; determining whether the terminal receiving the first communication channel belongs to the scheduled terminal group; and determining that the result is yes Next, an attempt is made to receive the first communication channel and/or the second communication channel within a time corresponding to the terminal scheduling information.
  • the storage medium is further arranged to store program code for performing the following steps:
  • S1 the specified scheduling time unit, or the specified duration period is obtained by one of the following methods: signaling carried by the first communication channel, high layer signaling.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the method Before receiving the first communication channel, the method further includes: grouping the terminals according to a predefined manner.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the storage medium is further arranged to store program code for performing the following steps:
  • Offset is an integer ranging from ⁇ 0 to M-1 ⁇ ; and/or, the default value of Offset is 0.
  • the storage medium is further arranged to store program code for performing the following steps:
  • Grouping terminals in a predefined way includes:
  • the terminal is grouped according to the terminal capability, where the terminal capability and the terminal group have a predefined correspondence relationship, and the terminal capability includes at least one of the following: the bandwidth capability of the terminal, the beam capability of the terminal, and the service that the terminal can support. Types of.
  • the storage medium is further arranged to store program code for performing the following steps:
  • Acquiring the transmission mode of the second communication channel by using the transmission mode of the first communication channel includes:
  • the storage medium is further arranged to store program code for performing the following steps:
  • Acquiring the transmission mode of the second communication channel by using the transmission mode of the first communication channel includes:
  • the storage medium is further arranged to store program code for performing the following steps:
  • Acquiring the transmission mode of the second communication channel by using the transmission mode of the first communication channel includes:
  • the storage medium is further arranged to store program code for performing the following steps:
  • the first communication channel comprises: a control channel, or a broadcast channel.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the second communication channel comprises: a control channel, or a data channel.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the first communication channel is a control channel, where the control channel includes: a public control channel, or a control channel shared by multiple terminals.
  • the storage medium is further arranged to store program code for performing the following steps:
  • Receiving the first communication channel includes:
  • S1 Receive a control channel on a specified time unit pattern, wherein the specified time unit pattern includes one or more time units, and the time unit includes one of: a time slot, a subframe, a frame, a symbol, or a minislot.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the specified time unit pattern is determined by at least one of the following methods: pre-defined mode determination, broadcast channel reception, synchronization signal reception, and high layer signaling reception.
  • the storage medium is further arranged to store program code for performing the following steps:
  • Receiving the first communication channel includes:
  • the storage medium is further arranged to store program code for performing the following steps:
  • S1 comprising at least one of the following: a pre-defined correspondence between a receiving sequence of the receiving beam of the receiving control channel and a transmission sequence of the receiving beam or the receiving beam group used by the synchronization signal; and a receiving sequence of the receiving beam of the receiving control channel
  • a predefined correspondence between the receiving sequence of the receiving beam or the receiving beam group used by the broadcast channel there is a predefined correspondence between the time unit receiving the control channel and the time unit receiving the synchronization signal
  • receiving the control channel There is a predefined correspondence between the time unit and the time unit receiving the broadcast channel.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the first communication channel is a terminal-specific control channel, where the terminal-specific control channel includes at least one of the following features: supporting multi-stream/multi-layer transmission; supporting spatial multiplexing transmission scheme; and supporting modulation scheme above QPSK ; transmission in the data channel area; support MCS adaptive transmission; support rank adaptive transmission.
  • the storage medium is further arranged to store program code for performing the following steps:
  • Receiving the first communication channel includes:
  • the reception of the first communication channel supports a hybrid automatic repeat request HARQ transmission mechanism.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the receiving of the first communication channel supports the hybrid automatic repeat request HARQ transmission mechanism includes:
  • the acknowledgment ACK information of the first communication channel or the non-acknowledgement NACK information is fed back to the base station, wherein the ACK information is used to indicate that the first communication channel is correctly received, and the NACK information indicates that the first communication channel is not correctly received.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the receiving of the first communication channel supports the hybrid automatic repeat request HARQ transmission mechanism includes:
  • the storage medium is further arranged to store program code for performing the following steps:
  • the receiving the first communication channel includes at least one of: receiving, by the transmission area specified in the transmission area of the second communication channel, the first communication channel; and demodulating the reference signal specified in the demodulation reference signal resource of the second communication channel.
  • the resource receives the first communication channel; the maximum number of transmission layers supported by the first communication channel is less than the maximum number of transmission layers supported by the second communication channel.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the receiving the first communication channel includes at least one of: a demodulation reference signal resource specified in a demodulation reference signal resource of the second communication channel is transmitted in a transmission area specified in a transmission area of the second communication channel; and a second communication channel
  • the demodulation reference signal resources other than the specified demodulation reference signal resources in the demodulation reference signal resources are transmitted in the transmission area other than the designated transmission area in the transmission area of the second communication channel.
  • the storage medium is further arranged to store program code for performing the following steps:
  • a demodulation reference signal resource specified in a demodulation reference signal resource of the second communication channel is located in a time domain in a designated transmission area in a transmission area of the second communication channel.
  • demodulation reference signal resources other than the specified demodulation reference signal resources in the demodulation reference signal resources of the second communication channel are located in the transmission area of the second communication channel except the designated transmission area One or more symbol locations starting on the time domain in the outer transmission area.
  • the storage medium is further arranged to store program code for performing the following steps:
  • Receiving, by the demodulation reference signal resource specified in the demodulation reference signal resource of the second communication channel, the receiving the first communication channel by: receiving, by using P demodulation reference signal ports of the second communication channel, the first communication channel, where The demodulation reference signal port is a designated demodulation reference signal resource, and the demodulation reference signal resources of the second communication channel include W demodulation reference signal ports, W and P are both positive integers, and the value of W is greater than P.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the specified demodulation reference signal resource includes: P demodulation reference signal ports are the first P demodulation reference signal ports of the W demodulation reference signal ports.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the transmission manner of the first communication channel includes at least one of: a demodulation reference signal resource associated with the first communication channel; a time domain resource occupied by the first communication channel transmission; and a frequency domain occupied by the first communication channel transmission a resource; a transmission scheme used for transmission of the first communication channel; an aggregation level used for transmission of the first communication channel; a modulation level used for transmission of the first communication channel; a coding level used for transmission of the first communication channel; and a first communication channel
  • the storage medium is further arranged to store program code for performing the following steps:
  • the transmission manner of the second communication channel includes at least one of: a demodulation reference signal resource associated with the second communication channel; a time domain resource occupied by the second communication channel transmission; and a frequency domain occupied by the second communication channel transmission a resource; a transmission scheme used for transmission of the second communication channel; an aggregation level used for transmission of the second communication channel; a modulation level used for transmission of the second communication channel; a coding level used for transmission of the second communication channel; and a second communication channel
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor performs the steps in the method for transmitting and receiving the communication channel according to the stored program code in the storage medium.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.
  • the present disclosure is applicable to the field of communications, and effectively solves the problem that in the related art, the transmission of the communication channel has a large resource overhead and a high reception complexity, thereby effectively reducing resource overhead, and also effectively reducing the communication channel. Receive complexity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种通信信道的传输、接收方法、基站及终端,其中,该传输方法包括:传输第一通信信道,其中,通过第一通信信道的传输方式和/或第一通信信道所承载的信令指示以下信息至少之一:终端调度信息,第二通信信道的传输方式,通过本公开,有效地解决了在相关技术中,通信信道的传输存在资源开销大、接收复杂度高的问题,从而达到了有效降低资源开销,而且也能够有效降低对通信信道的接收复杂度。

Description

通信信道的传输、接收方法、装置、基站及终端 技术领域
本公开涉及通信领域,具体而言,涉及一种通信信道的传输、接收方法、装置、基站及终端。
背景技术
为了满足自4G(第4代)通信系统的部署以来增加的对无线数据业务的需求,已经进行努力来开发改善5G(第5代)通信系统。5G通信系统也被称为“后4G网络”或“后长期演进(Long Term Evolution,简称为LTE)系统”。
5G通信系统被认为是在更高频带(例如,3GHz以上)中实施,以便完成更高的数据速率。高频通信的特点在于具有比较严重的路损、穿透损耗,在空间传播与大气关系密切。由于高频信号的波长极短,可以应用大量小型天线阵,以使得波束成形技术能够获得更为精确的波束方向,以窄波束技术优势提高高频信号的覆盖能力,弥补传输损耗,是高频通信的一大特点。
在LTE系统中,下行物理控制信道主要包括两种,一种是终端公有的,另一种是终端专有的。终端公有的控制信道主要用于向终端指示一些公有的信息,例如,系统消息、随机接入授权消息等,它能被本小区内所有终端接收。终端专有的控制信道主要用于向终端指示一些终端专有的信息,它只能被目标终端接收。在LTE中,终端公有的控制信道采用全向发送,终端专有的控制信道采用全向或定向发送,其中,定向发送是通过数字预编码的方式实现的。在每个调度时间单元上,终端通过盲检测的方式接收物理下行控制信道,即终端需要在每个调度时间单元的前几个符号中尝试接收并解调控制信道。
在LTE系统中,下行物理控制信道一个重要的作用是用于向终端指示数据信道的传输相关信息。在LTE中,数据信道也是采用全向或定向发送,其中,定向发送是通过数字预编码的方式实现的。
在5G通信系统中,引入了混合预编码的结构,即同时采用数字预编码和模拟波束赋形技术对控制信道、数据信道进行传输。混合预编码结构下,一个射频链路在同一个时候只能发送一个波束,因此,在多波束情况下,需要多个时间上对多个不同波束方向进行扫描,才能完成控制信道或数据信道的全向或准全向发送。这增加了通信信道传输的资源开销。另外,与LTE相比,在相等的时间间隔内,调度时间单元的数量成倍增加,控制信道盲检测的复杂度也成倍增加。
因此,在相关技术中,通信信道的传输存在资源开销大,接收复杂度高的问题。
发明内容
本公开实施例提供了一种通信信道的传输、接收方法、装置、基站及终端,以至少解决 相关技术中,通信信道的传输存在资源开销大,接收复杂度高的问题。
根据本公开的一个实施例,提供了一种通信信道的传输方法,包括:传输第一通信信道,其中,通过所述第一通信信道的传输方式和/或所述第一通信信道所承载的信令指示以下信息至少之一:终端调度信息,第二通信信道的传输方式。
可选地,所述终端调度信息包括:终端分组信息,其中,所述终端分组信息包括一个或多个终端分组的指示信息。
可选地,所述终端分组信息包括以下之一:当前的调度时间单元内的终端分组信息;指定的调度时间单元内的终端分组信息;从当前的调度时间单元开始的指定的持续时间段内的终端分组信息;从指定的调度时间单元开始并且指定的持续时间段内的终端分组信息;其中,所述调度时间单元包括一个或多个时间单元,所述时间单元包括以下之一:时隙、子帧、帧、符号、微时隙。
可选地,所述指定的调度时间单元,或者,所述指定的持续时间段通过以下方式之一指示:所述第一通信信道所承载的信令,高层信令。
可选地,在传输所述第一通信信道之前,还包括:按照预定义的方式对终端进行分组。
可选地,按照预定义的方式对终端进行分组包括:通过以下方式之一对终端进行分组:UE_ID mod M=i;(UE_ID mod M+Offset)mod M=i;Offset mod M=i;其中,UE_ID表示终端标识,M表示共有M个分组并且M的值为非负整数,Offset为预定值,i∈{0~M-1}表示将终端标识为UE_ID的终端划分到第i个分组。
可选地,Offset为取值范围为{0~M-1}的整数;和/或,Offset的默认的取值为0。
可选地,按照预定义的方式对终端进行分组包括:按照终端能力对终端进行分组,其中,所述终端能力和终端分组之间存在预定义的对应关系,所述终端能力包括以下至少之一:终端的带宽能力、终端的波束能力、终端所能支持的业务类型。
可选地,通过所述第一通信信道的传输方式指示所述第二通信信道的传输方式包括:所述第一通信信道的传输方式与所述第二通信信道的传输方式之间存在预定义的对应关系。
可选地,通过所述第一通信信道的传输方式指示所述第二通信信道的传输方式包括:通过所述第一通信信道的传输方案指示所述第二通信信道的传输方案,其中,所述第一通信信道的传输方案与所述第二通信信道的传输方案之间存在预定义的对应关系。
可选地,通过所述第一通信信道的传输方式指示所述第二通信信道的传输方式包括:通过所述第一通信信道的聚合级别指示所述第二通信信道的调制和/或编码等级,其中,所述第一通信信道的聚合级别和所述第二通信信道的调制和/或编码等级之间存在预定义的对应关系。
可选地,所述第一通信信道包括:控制信道,或者,广播信道。
可选地,所述第二通信信道包括:控制信道,或者,数据信道。
可选地,所述第一通信信道为控制信道,其中,所述控制信道包括:公有控制信道,或者,多个终端共享的控制信道。
可选地,传输所述第一通信信道包括:在指定的时间单元图样上传输所述控制信道,其 中,所述指定的时间单元图样包括一个或多个时间单元,所述时间单元包括以下之一:时隙、子帧、帧、符号、或者微时隙。
可选地,所述指定的时间单元图样通过以下方式至少之一确定:预定义方式确定,广播信道指示,同步信号指示,高层信令指示。
可选地,传输所述第一通信信道包括:在指定的多个时间单元上重复传输所述控制信道,其中,在所述多个时间单元上分别采用不同的发送波束或发送波束组传输所述控制信道。
可选地,包括以下至少之一:传输所述控制信道的发送波束的传输顺序与同步信号所采用的发送波束或发送波束组的传输顺序之间存在预定义的对应关系;传输所述控制信道的发送波束的传输顺序与广播信道所采用的发送波束或发送波束组的传输顺序之间存在预定义的对应关系;传输所述控制信道的时间单元与传输同步信号的时间单元之间存在预定义的对应关系;传输所述控制信道的时间单元与传输广播信道的时间单元之间存在预定义的对应关系。
可选地,所述第一通信信道为终端专有的控制信道,其中,所述终端专有的控制信道包括以下特征至少之一:支持多流/多层传输;支持空间复用传输方案;支持QPSK以上的调制方式;在数据信道区域传输;支持MCS自适应传输;支持rank自适应传输。
可选地,传输所述第一通信信道包括:所述第一通信信道的传输支持混合自动重传请求HARQ传输机制。
可选地,所述第一通信信道的传输支持混合自动重传请求HARQ传输机制包括:接收第一通信信道的确认ACK信息,或者,非确认NACK信息,其中,所述ACK信息用于表示所述第一通信信道被正确接收,所述NACK信息表示所述第一通信信道没有被正确接收。
可选地,所述第一通信信道的传输支持混合自动重传请求HARQ传输机制还包括:根据接收的所述ACK信息或者NACK信息,传输所述第二通信信道,其中,当接收到所述ACK信息时,根据第一控制信道的指示传输所述第二通信信道,当接收到所述NACK信息时,根据第二控制信道的指示传输所述第二通信信道,其中所述第一控制信道为所述第一通信信道,所述第二控制信道为区别于所述第一控制信道的其它的控制信道。
可选地,传输所述第一通信信道包括以下至少之一:所述第一通信信道在所述第二通信信道的传输区域中指定的传输区域传输;所述第一通信信道基于所述第二通信信道的解调参考信号资源中指定的解调参考信号资源传输;所述第一通信信道传输所支持的最大传输层数小于所述第二通信信道所支持的最大传输层数。
可选地,传输所述第一通信信道包括以下至少之一:所述第二通信信道的解调参考信号资源中指定的解调参考信号资源在所述第二通信信道的传输区域中指定的传输区域传输;所述第二通信信道的解调参考信号资源中除所述指定的解调参考信号资源之外的解调参考信号资源在所述第二通信信道的传输区域中除所述指定的传输区域之外的传输区域传输。
可选地,传输所述第一通信信道包括以下至少之一:所述第二通信信道的解调参考信号资源中指定的解调参考信号资源位于所述第二通信信道的传输区域中指定的传输区域中的时域上开始的一个或多个符号位置;所述第二通信信道的解调参考信号资源中除所述指定的 解调参考信号资源之外的解调参考信号资源位于所述第二通信信道的传输区域中除所述指定的传输区域之外的传输区域中的时域上开始的一个或多个符号位置。
可选地,所述第一通信信道基于所述第二通信信道的解调参考信号资源中指定的解调参考信号资源传输包括:所述第一通信信道基于所述第二通信信道的P个解调参考信号端口传输,其中,所述P个解调参考信号端口为所述指定的解调参考信号资源,所述第二通信信道的解调参考信号资源中包括W个解调参考信号端口,W和P均为正整数,并且W的值大于P。
可选地,所述指定的解调参考信号资源包括:所述P个解调参考信号端口为所述W个解调参考信号端口中的前P个解调参考信号端口。
可选地,所述第一通信信道的传输方式包括以下至少之一:与所述第一通信信道相关的解调参考信号资源;所述第一通信信道传输所占用的时域资源;所述第一通信信道传输所占用的频域资源;所述第一通信信道传输所采用的传输方案;所述第一通信信道传输所采用的聚合级别;所述第一通信信道传输所采用的调制等级;所述第一通信信道传输所采用的编码等级;所述第一通信信道传输所对应的盲检测区域;所述第一通信信道传输所采用的发送波束;所述第一通信信道传输所对应的接收波束。
可选地,所述第二通信信道的传输方式包括以下至少之一:与所述第二通信信道相关的解调参考信号资源;所述第二通信信道传输所占用的时域资源;所述第二通信信道传输所占用的频域资源;所述第二通信信道传输所采用的传输方案;所述第二通信信道传输所采用的聚合级别;所述第二通信信道传输所采用的调制等级;所述第二通信信道传输所采用的编码等级;所述第二通信信道传输所对应的盲检测区域;所述第二通信信道传输所采用的发送波束;所述第二通信信道传输所对应的接收波束。
根据本公开的另一个方面,提供了一种通信信道的接收方法,包括:接收第一通信信道;通过所述第一通信信道的传输方式和/或所述第一通信信道所承载的信令获取以下信息至少之一:终端调度信息,第二通信信道的传输方式。
可选地,所述终端调度信息包括:终端分组信息,其中,所述终端分组信息包括一个或多个终端分组的指示信息。
可选地,所述终端分组信息包括以下之一:当前的调度时间单元内的终端分组信息;指定的调度时间单元内的终端分组信息;从当前的调度时间单元开始的指定的持续时间段内的终端分组信息;从指定的调度时间单元开始并且指定的持续时间段内的终端分组信息;其中,所述调度时间单元包括一个或多个时间单元,所述时间单元包括以下之一:时隙、子帧、帧、符号、微时隙。
可选地,在获取所述终端调度信息之后,还包括:根据所述终端调度信息确定被调度或未被调度的终端分组;判断接收所述第一通信信道的终端是否属于被调度的终端分组;在判断结果为是的情况下,在所述述终端调度信息对应的时间内尝试接收所述第一通信信道和/或所述第二通信信道。
可选地,所述指定的调度时间单元,或者,所述指定的持续时间段通过以下方式之一获 取:所述第一通信信道所承载的信令,高层信令。
可选地,在接收所述第一通信信道之前,还包括:按照预定义的方式对终端进行分组。
可选地,按照预定义的方式对终端进行分组包括:通过以下方式之一对终端进行分组:UE_ID mod M=i;(UE_ID mod M+Offset)mod M=i;Offset mod M=i;其中,UE_ID表示终端标识,M表示共有M个分组并且M的值为非负整数,Offset为预定值,i∈{0~M-1}表示将终端标识为UE_ID的终端划分到第i个分组。
可选地,Offset为取值范围为{0~M-1}的整数;和/或,Offset的默认的取值为0。
可选地,按照预定义的方式对终端进行分组包括:按照终端能力对终端进行分组,其中,所述终端能力和终端分组之间存在预定义的对应关系,所述终端能力包括以下至少之一:终端的带宽能力、终端的波束能力、终端所能支持的业务类型。
可选地,通过所述第一通信信道的传输方式获取所述第二通信信道的传输方式包括:所述第一通信信道的传输方式与所述第二通信信道的传输方式之间存在预定义的对应关系。
可选地,通过所述第一通信信道的传输方式获取所述第二通信信道的传输方式包括:通过所述第一通信信道的传输方案获取所述第二通信信道的传输方案,其中,所述第一通信信道的传输方案与所述第二通信信道的传输方案之间存在预定义的对应关系。
可选地,通过所述第一通信信道的传输方式获取所述第二通信信道的传输方式包括:通过所述第一通信信道的聚合级别获取所述第二通信信道的调制和/或编码等级,其中,所述第一通信信道的聚合级别和所述第二通信信道的调制和/或编码等级之间存在预定义的对应关系。
可选地,所述第一通信信道包括:控制信道,或者,广播信道。
可选地,所述第二通信信道包括:控制信道,或者,数据信道。
可选地,所述第一通信信道为控制信道,其中,所述控制信道包括:公有控制信道,或者,多个终端共享的控制信道。
可选地,接收所述第一通信信道包括:在指定的时间单元图样上接收所述控制信道,其中,所述指定的时间单元图样包括一个或多个时间单元,所述时间单元包括以下之一:时隙、子帧、帧、符号、或者微时隙。
可选地,所述指定的时间单元图样通过以下方式至少之一确定:预定义方式确定,广播信道接收,同步信号接收,高层信令接收。
可选地,接收所述第一通信信道包括:在指定的多个时间单元上重复接收所述控制信道,其中,在所述多个时间单元上分别采用不同的接收波束或接收波束组接收所述控制信道。
可选地,包括以下至少之一:接收所述控制信道的接收波束的接收顺序与同步信号所采用的接收波束或接收波束组的传输顺序之间存在预定义的对应关系;接收所述控制信道的接收波束的接收顺序与广播信道所采用的接收波束或接收波束组的接收顺序之间存在预定义的对应关系;接收所述控制信道的时间单元与接收同步信号的时间单元之间存在预定义的对应关系;接收所述控制信道的时间单元与接收广播信道的时间单元之间存在预定义的对应关系。
可选地,所述第一通信信道为终端专有的控制信道,其中,所述终端专有的控制信道包括以下特征至少之一:支持多流/多层传输;支持空间复用传输方案;支持QPSK以上的调制方式;在数据信道区域传输;支持MCS自适应传输;支持rank自适应传输。
可选地,接收所述第一通信信道包括:所述第一通信信道的接收支持混合自动重传请求HARQ传输机制。
可选地,所述第一通信信道的接收支持混合自动重传请求HARQ传输机制包括:向基站反馈第一通信信道的确认ACK信息,或者,非确认NACK信息,其中,所述ACK信息用于表示所述第一通信信道被正确接收,所述NACK信息表示所述第一通信信道没有被正确接收。
可选地,所述第一通信信道的接收支持混合自动重传请求HARQ传输机制包括:根据向所述基站反馈的所述ACK信息或者NACK信息,接收所述第二通信信道,其中,当向所述基站反馈所述ACK信息时,根据第一控制信道的指示接收所述第二通信信道,当向所述基站反馈所述NACK信息时,根据第二控制信道的指示接收所述第二通信信道,其中所述第一控制信道为所述第一通信信道,所述第二控制信道为区别于所述第一控制信道的其它的控制信道。
可选地,接收所述第一通信信道包括以下至少之一:在所述第二通信信道的传输区域中指定的传输区域接收所述第一通信信道;基于所述第二通信信道的解调参考信号资源中指定的解调参考信号资源接收所述第一通信信道;所述第一通信信道接收所支持的最大传输层数小于所述第二通信信道所支持的最大传输层数。
可选地,接收所述第一通信信道包括以下至少之一:所述第二通信信道的解调参考信号资源中指定的解调参考信号资源在所述第二通信信道的传输区域中指定的传输区域传输;所述第二通信信道的解调参考信号资源中除所述指定的解调参考信号资源之外的解调参考信号资源在所述第二通信信道的传输区域中除所述指定的传输区域之外的传输区域传输。
可选地,接收所述第一通信信道包括以下至少之一:所述第二通信信道的解调参考信号资源中指定的解调参考信号资源位于所述第二通信信道的传输区域中指定的传输区域中的时域上开始的一个或多个符号位置;所述第二通信信道的解调参考信号资源中除所述指定的解调参考信号资源之外的解调参考信号资源位于所述第二通信信道的传输区域中除所述指定的传输区域之外的传输区域中的时域上开始的一个或多个符号位置。
可选地,基于所述第二通信信道的解调参考信号资源中指定的解调参考信号资源接收所述第一通信信道包括:基于所述第二通信信道的P个解调参考信号端口接收所述第一通信信道,其中,所述P个解调参考信号端口为所述指定的解调参考信号资源,所述第二通信信道的解调参考信号资源中包括W个解调参考信号端口,W和P均为正整数,并且W的值大于P。
可选地,所述指定的解调参考信号资源包括:所述P个解调参考信号端口为所述W个解调参考信号端口中的前P个解调参考信号端口。
可选地,所述第一通信信道的传输方式包括以下至少之一:与所述第一通信信道相关的 解调参考信号资源;所述第一通信信道传输所占用的时域资源;所述第一通信信道传输所占用的频域资源;所述第一通信信道传输所采用的传输方案;所述第一通信信道传输所采用的聚合级别;所述第一通信信道传输所采用的调制等级;所述第一通信信道传输所采用的编码等级;所述第一通信信道传输所对应的盲检测区域;所述第一通信信道传输所采用的发送波束;所述第一通信信道传输所对应的接收波束。
可选地,所述第二通信信道的传输方式包括以下至少之一:与所述第二通信信道相关的解调参考信号资源;所述第二通信信道传输所占用的时域资源;所述第二通信信道传输所占用的频域资源;所述第二通信信道传输所采用的传输方案;所述第二通信信道传输所采用的聚合级别;所述第二通信信道传输所采用的调制等级;所述第二通信信道传输所采用的编码等级;所述第二通信信道传输所对应的盲检测区域;所述第二通信信道传输所采用的发送波束;所述第二通信信道传输所对应的接收波束。
根据本公开的一个实施例,提供了一种通信信道的传输装置,包括:第一传输模块,用于传输第一通信信道,其中,通过所述第一通信信道的传输方式和/或所述第一通信信道所承载的信令指示以下信息至少之一:终端调度信息,第二通信信道的传输方式。
可选地,还包括:第一分组模块,用于按照预定义的方式对终端进行分组。
可选地,所述第一分组模块,还用于通过以下方式之一对终端进行分组:UE_ID mod M=i;(UE_ID mod M+Offset)mod M=i;Offset mod M=i;其中,UE_ID表示终端标识,M表示共有M个分组并且M的值为非负整数,Offset为预定值,i∈{0~M-1}表示将终端标识为UE_ID的终端划分到第i个分组。
可选地,所述第一分组模块,还用于按照终端能力对终端进行分组,其中,所述终端能力和终端分组之间存在预定义的对应关系,所述终端能力包括以下至少之一:终端的带宽能力、终端的波束能力、终端所能支持的业务类型。
可选地,所述第一传输模块,还用于通过所述第一通信信道的传输方式指示所述第二通信信道的传输方式:所述第一通信信道的传输方式与所述第二通信信道的传输方式之间存在预定义的对应关系。
可选地,所述第一通信信道为控制信道,其中,所述控制信道包括:公有控制信道,或者,多个终端共享的控制信道。
可选地,所述第一传输模块,还用于在指定的时间单元图样上传输所述控制信道,其中,所述指定的时间单元图样包括一个或多个时间单元,所述时间单元包括以下之一:时隙、子帧、帧、符号、或者微时隙。
可选地,所述第一传输模块,还用于在指定的多个时间单元上重复传输所述控制信道,其中,在所述多个时间单元上分别采用不同的发送波束或发送波束组传输所述控制信道。
可选地,所述第一传输模块,还用于实现所述第一通信信道的传输支持混合自动重传请求HARQ传输机制。
可选地,所述第一传输模块,还用于接收第一通信信道的确认ACK信息,或者,非确认NACK信息,其中,所述ACK信息用于表示所述第一通信信道被正确接收,所述NACK 信息表示所述第一通信信道没有被正确接收。
可选地,所述第一传输模块,还用于根据接收的所述ACK信息或者NACK信息,传输所述第二通信信道,其中,当接收到所述ACK信息时,根据第一控制信道的指示传输所述第二通信信道,当接收到所述NACK信息时,根据第二控制信道的指示传输所述第二通信信道,其中所述第一控制信道为所述第一通信信道,所述第二控制信道为区别于所述第一控制信道的其它的控制信道。
根据本公开的另一个实施例,提供了一种基站,包括上述任一通信信道的传输装置。
根据本公开的一个实施例,提供了一种通信信道的接收装置,包括:第一接收模块,用于接收第一通信信道;第一获取模块,用于通过所述第一通信信道的传输方式和/或所述第一通信信道所承载的信令获取以下信息至少之一:终端调度信息,第二通信信道的传输方式。
可选地,该装置还包括:第一确定模块,用于根据所述终端调度信息确定被调度或未被调度的终端分组;第一判断模块,用于判断接收所述第一通信信道的终端是否属于被调度的终端分组;第二接收模块,用于在判断结果为是的情况下,在所述述终端调度信息对应的时间内尝试接收所述第一通信信道和/或所述第二通信信道。
可选地,该装置还包括:第二分组模块,用于按照预定义的方式对终端进行分组。
可选地,所述第二分组模块,还用于通过以下方式之一对终端进行分组:UE_ID mod M=i;(UE_ID mod M+Offset)mod M=i;Offset mod M=i;其中,UE_ID表示终端标识,M表示共有M个分组并且M的值为非负整数,Offset为预定值,i∈{0~M-1}表示将终端标识为UE_ID的终端划分到第i个分组。
可选地,所述第二分组模块,还用于按照终端能力对终端进行分组,其中,所述终端能力和终端分组之间存在预定义的对应关系,所述终端能力包括以下至少之一:终端的带宽能力、终端的波束能力、终端所能支持的业务类型。
可选地,所述第一获取模块,还用于通过所述第一通信信道的传输方式获取所述第二通信信道的传输方式:所述第一通信信道的传输方式与所述第二通信信道的传输方式之间存在预定义的对应关系。
可选地,所述第一通信信道为控制信道,其中,所述控制信道包括:公有控制信道,或者,多个终端共享的控制信道。
可选地,所述第一接收模块,还用于在指定的时间单元图样上接收所述控制信道,其中,所述指定的时间单元图样包括一个或多个时间单元,所述时间单元包括以下之一:时隙、子帧、帧、符号、或者微时隙。
可选地,所述第一接收模块,还用于在指定的多个时间单元上重复接收所述控制信道,其中,在所述多个时间单元上分别采用不同的接收波束或接收波束组接收所述控制信道。
可选地,所述第一接收模块,还用于实现所述第一通信信道的接收支持混合自动重传请求HARQ传输机制。
可选地,所述第一接收模块,还用于向基站反馈第一通信信道的确认ACK信息,或者,非确认NACK信息,其中,所述ACK信息用于表示所述第一通信信道被正确接收,所述 NACK信息表示所述第一通信信道没有被正确接收。
可选地,所述第一接收模块,还用于根据向所述基站反馈的所述ACK信息或者NACK信息,接收所述第二通信信道,其中,当向所述基站反馈所述ACK信息时,根据第一控制信道的指示接收所述第二通信信道,当向所述基站反馈所述NACK信息时,根据第二控制信道的指示接收所述第二通信信道,其中所述第一控制信道为所述第一通信信道,所述第二控制信道为区别于所述第一控制信道的其它的控制信道。
根据本公开的还一个实施例,提供了一种终端,包括上述任一通信信道的接收装置。
根据本公开的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:传输第一通信信道,其中,通过所述第一通信信道的传输方式和/或所述第一通信信道所承载的信令指示以下信息至少之一:终端调度信息,第二通信信道的传输方式。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述终端调度信息包括:终端分组信息,其中,所述终端分组信息包括一个或多个终端分组的指示信息。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述终端分组信息包括以下之一:当前的调度时间单元内的终端分组信息;指定的调度时间单元内的终端分组信息;从当前的调度时间单元开始的指定的持续时间段内的终端分组信息;从指定的调度时间单元开始并且指定的持续时间段内的终端分组信息;其中,所述调度时间单元包括一个或多个时间单元,所述时间单元包括以下之一:时隙、子帧、帧、符号、微时隙。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述指定的调度时间单元,或者,所述指定的持续时间段通过以下方式之一指示:所述第一通信信道所承载的信令,高层信令。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:在传输所述第一通信信道之前,还包括:按照预定义的方式对终端进行分组。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:按照预定义的方式对终端进行分组包括:通过以下方式之一对终端进行分组:UE_ID mod M=i;(UE_ID mod M+Offset)mod M=i;Offset mod M=i;其中,UE_ID表示终端标识,M表示共有M个分组并且M的值为非负整数,Offset为预定值,i∈{0~M-1}表示将终端标识为UE_ID的终端划分到第i个分组。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:Offset为取值范围为{0~M-1}的整数;和/或,Offset的默认的取值为0。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:按照预定义的方式对终端进行分组包括:按照终端能力对终端进行分组,其中,所述终端能力和终端分组之间存在预定义的对应关系,所述终端能力包括以下至少之一:终端的带宽能力、终端的波束能力、终端所能支持的业务类型。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:通过所述第一通信信道的传输方式指示所述第二通信信道的传输方式包括:所述第一通信信道的传输方式与所述第 二通信信道的传输方式之间存在预定义的对应关系。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:通过所述第一通信信道的传输方式指示所述第二通信信道的传输方式包括:通过所述第一通信信道的传输方案指示所述第二通信信道的传输方案,其中,所述第一通信信道的传输方案与所述第二通信信道的传输方案之间存在预定义的对应关系。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:通过所述第一通信信道的传输方式指示所述第二通信信道的传输方式包括:通过所述第一通信信道的聚合级别指示所述第二通信信道的调制和/或编码等级,其中,所述第一通信信道的聚合级别和所述第二通信信道的调制和/或编码等级之间存在预定义的对应关系。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述第一通信信道包括:控制信道,或者,广播信道。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述第二通信信道包括:控制信道,或者,数据信道。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述第一通信信道为控制信道,其中,所述控制信道包括:公有控制信道,或者,多个终端共享的控制信道。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:传输所述第一通信信道包括:在指定的时间单元图样上传输所述控制信道,其中,所述指定的时间单元图样包括一个或多个时间单元,所述时间单元包括以下之一:时隙、子帧、帧、符号、或者微时隙。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述指定的时间单元图样通过以下方式至少之一确定:预定义方式确定,广播信道指示,同步信号指示,高层信令指示。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:传输所述第一通信信道包括:在指定的多个时间单元上重复传输所述控制信道,其中,在所述多个时间单元上分别采用不同的发送波束或发送波束组传输所述控制信道。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:包括以下至少之一:传输所述控制信道的发送波束的传输顺序与同步信号所采用的发送波束或发送波束组的传输顺序之间存在预定义的对应关系;传输所述控制信道的发送波束的传输顺序与广播信道所采用的发送波束或发送波束组的传输顺序之间存在预定义的对应关系;传输所述控制信道的时间单元与传输同步信号的时间单元之间存在预定义的对应关系;传输所述控制信道的时间单元与传输广播信道的时间单元之间存在预定义的对应关系。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述第一通信信道为终端专有的控制信道,其中,所述终端专有的控制信道包括以下特征至少之一:支持多流/多层传输;支持空间复用传输方案;支持QPSK以上的调制方式;在数据信道区域传输;支持MCS自适应传输;支持rank自适应传输。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:传输所述第一通信信道包括:所述第一通信信道的传输支持混合自动重传请求HARQ传输机制。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述第一通信信道的传输支持混合自动重传请求HARQ传输机制包括:接收第一通信信道的确认ACK信息,或者,非确认NACK信息,其中,所述ACK信息用于表示所述第一通信信道被正确接收,所述NACK信息表示所述第一通信信道没有被正确接收。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述第一通信信道的传输支持混合自动重传请求HARQ传输机制还包括:根据接收的所述ACK信息或者NACK信息,传输所述第二通信信道,其中,当接收到所述ACK信息时,根据第一控制信道的指示传输所述第二通信信道,当接收到所述NACK信息时,根据第二控制信道的指示传输所述第二通信信道,其中所述第一控制信道为所述第一通信信道,所述第二控制信道为区别于所述第一控制信道的其它的控制信道。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:传输所述第一通信信道包括以下至少之一:所述第一通信信道在所述第二通信信道的传输区域中指定的传输区域传输;所述第一通信信道基于所述第二通信信道的解调参考信号资源中指定的解调参考信号资源传输;所述第一通信信道传输所支持的最大传输层数小于所述第二通信信道所支持的最大传输层数。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:传输所述第一通信信道包括以下至少之一:所述第二通信信道的解调参考信号资源中指定的解调参考信号资源在所述第二通信信道的传输区域中指定的传输区域传输;所述第二通信信道的解调参考信号资源中除所述指定的解调参考信号资源之外的解调参考信号资源在所述第二通信信道的传输区域中除所述指定的传输区域之外的传输区域传输。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:传输所述第一通信信道包括以下至少之一:所述第二通信信道的解调参考信号资源中指定的解调参考信号资源位于所述第二通信信道的传输区域中指定的传输区域中的时域上开始的一个或多个符号位置;所述第二通信信道的解调参考信号资源中除所述指定的解调参考信号资源之外的解调参考信号资源位于所述第二通信信道的传输区域中除所述指定的传输区域之外的传输区域中的时域上开始的一个或多个符号位置。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述第一通信信道基于所述第二通信信道的解调参考信号资源中指定的解调参考信号资源传输包括:所述第一通信信道基于所述第二通信信道的P个解调参考信号端口传输,其中,所述P个解调参考信号端口为所述指定的解调参考信号资源,所述第二通信信道的解调参考信号资源中包括W个解调参考信号端口,W和P均为正整数,并且W的值大于P。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述指定的解调参考信号资源包括:所述P个解调参考信号端口为所述W个解调参考信号端口中的前P个解调参考信号端口。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述第一通信信道的传输方式包括以下至少之一:与所述第一通信信道相关的解调参考信号资源;所述第一通信信 道传输所占用的时域资源;所述第一通信信道传输所占用的频域资源;所述第一通信信道传输所采用的传输方案;所述第一通信信道传输所采用的聚合级别;所述第一通信信道传输所采用的调制等级;所述第一通信信道传输所采用的编码等级;所述第一通信信道传输所对应的盲检测区域;所述第一通信信道传输所采用的发送波束;所述第一通信信道传输所对应的接收波束。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述第二通信信道的传输方式包括以下至少之一:与所述第二通信信道相关的解调参考信号资源;所述第二通信信道传输所占用的时域资源;所述第二通信信道传输所占用的频域资源;所述第二通信信道传输所采用的传输方案;所述第二通信信道传输所采用的聚合级别;所述第二通信信道传输所采用的调制等级;所述第二通信信道传输所采用的编码等级;所述第二通信信道传输所对应的盲检测区域;所述第二通信信道传输所采用的发送波束;所述第二通信信道传输所对应的接收波束。
根据本公开的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:接收第一通信信道;通过所述第一通信信道的传输方式和/或所述第一通信信道所承载的信令获取以下信息至少之一:终端调度信息,第二通信信道的传输方式。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述终端调度信息包括:终端分组信息,其中,所述终端分组信息包括一个或多个终端分组的指示信息。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述终端分组信息包括以下之一:当前的调度时间单元内的终端分组信息;指定的调度时间单元内的终端分组信息;从当前的调度时间单元开始的指定的持续时间段内的终端分组信息;从指定的调度时间单元开始并且指定的持续时间段内的终端分组信息;其中,所述调度时间单元包括一个或多个时间单元,所述时间单元包括以下之一:时隙、子帧、帧、符号、微时隙。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:在获取所述终端调度信息之后,还包括:根据所述终端调度信息确定被调度或未被调度的终端分组;判断接收所述第一通信信道的终端是否属于被调度的终端分组;在判断结果为是的情况下,在所述述终端调度信息对应的时间内尝试接收所述第一通信信道和/或所述第二通信信道。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述指定的调度时间单元,或者,所述指定的持续时间段通过以下方式之一获取:所述第一通信信道所承载的信令,高层信令。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:在接收所述第一通信信道之前,还包括:按照预定义的方式对终端进行分组。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:按照预定义的方式对终端进行分组包括:通过以下方式之一对终端进行分组:UE_ID mod M=i;(UE_ID mod M+Offset)mod M=i;Offset mod M=i;其中,UE_ID表示终端标识,M表示共有M个分组并且M的值为非负整数,Offset为预定值,i∈{0~M-1}表示将终端标识为UE_ID的终端划分到第i个分组。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:Offset为取值范围为{0~M-1}的整数;和/或,Offset的默认的取值为0。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:按照预定义的方式对终端进行分组包括:按照终端能力对终端进行分组,其中,所述终端能力和终端分组之间存在预定义的对应关系,所述终端能力包括以下至少之一:终端的带宽能力、终端的波束能力、终端所能支持的业务类型。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:通过所述第一通信信道的传输方式获取所述第二通信信道的传输方式包括:所述第一通信信道的传输方式与所述第二通信信道的传输方式之间存在预定义的对应关系。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:通过所述第一通信信道的传输方式获取所述第二通信信道的传输方式包括:通过所述第一通信信道的传输方案获取所述第二通信信道的传输方案,其中,所述第一通信信道的传输方案与所述第二通信信道的传输方案之间存在预定义的对应关系。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:通过所述第一通信信道的传输方式获取所述第二通信信道的传输方式包括:通过所述第一通信信道的聚合级别获取所述第二通信信道的调制和/或编码等级,其中,所述第一通信信道的聚合级别和所述第二通信信道的调制和/或编码等级之间存在预定义的对应关系。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述第一通信信道包括:控制信道,或者,广播信道。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述第二通信信道包括:控制信道,或者,数据信道。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述第一通信信道为控制信道,其中,所述控制信道包括:公有控制信道,或者,多个终端共享的控制信道。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:接收所述第一通信信道包括:在指定的时间单元图样上接收所述控制信道,其中,所述指定的时间单元图样包括一个或多个时间单元,所述时间单元包括以下之一:时隙、子帧、帧、符号、或者微时隙。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述指定的时间单元图样通过以下方式至少之一确定:预定义方式确定,广播信道接收,同步信号接收,高层信令接收。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:接收所述第一通信信道包括:在指定的多个时间单元上重复接收所述控制信道,其中,在所述多个时间单元上分别采用不同的接收波束或接收波束组接收所述控制信道。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:包括以下至少之一:接收所述控制信道的接收波束的接收顺序与同步信号所采用的接收波束或接收波束组的传输顺序之间存在预定义的对应关系;接收所述控制信道的接收波束的接收顺序与广播信道所采用的接收波束或接收波束组的接收顺序之间存在预定义的对应关系;接收所述控制信道的时 间单元与接收同步信号的时间单元之间存在预定义的对应关系;接收所述控制信道的时间单元与接收广播信道的时间单元之间存在预定义的对应关系。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述第一通信信道为终端专有的控制信道,其中,所述终端专有的控制信道包括以下特征至少之一:支持多流/多层传输;支持空间复用传输方案;支持QPSK以上的调制方式;在数据信道区域传输;支持MCS自适应传输;支持rank自适应传输。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:接收所述第一通信信道包括:所述第一通信信道的接收支持混合自动重传请求HARQ传输机制。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述第一通信信道的接收支持混合自动重传请求HARQ传输机制包括:向基站反馈第一通信信道的确认ACK信息,或者,非确认NACK信息,其中,所述ACK信息用于表示所述第一通信信道被正确接收,所述NACK信息表示所述第一通信信道没有被正确接收。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述第一通信信道的接收支持混合自动重传请求HARQ传输机制包括:根据向所述基站反馈的所述ACK信息或者NACK信息,接收所述第二通信信道,其中,当向所述基站反馈所述ACK信息时,根据第一控制信道的指示接收所述第二通信信道,当向所述基站反馈所述NACK信息时,根据第二控制信道的指示接收所述第二通信信道,其中所述第一控制信道为所述第一通信信道,所述第二控制信道为区别于所述第一控制信道的其它的控制信道。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:接收所述第一通信信道包括以下至少之一:在所述第二通信信道的传输区域中指定的传输区域接收所述第一通信信道;基于所述第二通信信道的解调参考信号资源中指定的解调参考信号资源接收所述第一通信信道;所述第一通信信道接收所支持的最大传输层数小于所述第二通信信道所支持的最大传输层数。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:接收所述第一通信信道包括以下至少之一:所述第二通信信道的解调参考信号资源中指定的解调参考信号资源在所述第二通信信道的传输区域中指定的传输区域传输;所述第二通信信道的解调参考信号资源中除所述指定的解调参考信号资源之外的解调参考信号资源在所述第二通信信道的传输区域中除所述指定的传输区域之外的传输区域传输。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:接收所述第一通信信道包括以下至少之一:所述第二通信信道的解调参考信号资源中指定的解调参考信号资源位于所述第二通信信道的传输区域中指定的传输区域中的时域上开始的一个或多个符号位置;所述第二通信信道的解调参考信号资源中除所述指定的解调参考信号资源之外的解调参考信号资源位于所述第二通信信道的传输区域中除所述指定的传输区域之外的传输区域中的时域上开始的一个或多个符号位置。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:基于所述第二通信信道的解调参考信号资源中指定的解调参考信号资源接收所述第一通信信道包括:基于所述第二 通信信道的P个解调参考信号端口接收所述第一通信信道,其中,所述P个解调参考信号端口为所述指定的解调参考信号资源,所述第二通信信道的解调参考信号资源中包括W个解调参考信号端口,W和P均为正整数,并且W的值大于P。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述指定的解调参考信号资源包括:所述P个解调参考信号端口为所述W个解调参考信号端口中的前P个解调参考信号端口。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述第一通信信道的传输方式包括以下至少之一:与所述第一通信信道相关的解调参考信号资源;所述第一通信信道传输所占用的时域资源;所述第一通信信道传输所占用的频域资源;所述第一通信信道传输所采用的传输方案;所述第一通信信道传输所采用的聚合级别;所述第一通信信道传输所采用的调制等级;所述第一通信信道传输所采用的编码等级;所述第一通信信道传输所对应的盲检测区域;所述第一通信信道传输所采用的发送波束;所述第一通信信道传输所对应的接收波束。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述第二通信信道的传输方式包括以下至少之一:与所述第二通信信道相关的解调参考信号资源;所述第二通信信道传输所占用的时域资源;所述第二通信信道传输所占用的频域资源;所述第二通信信道传输所采用的传输方案;所述第二通信信道传输所采用的聚合级别;所述第二通信信道传输所采用的调制等级;所述第二通信信道传输所采用的编码等级;所述第二通信信道传输所对应的盲检测区域;所述第二通信信道传输所采用的发送波束;所述第二通信信道传输所对应的接收波束。
通过上述实施例,在传输第一通信信道时,指示终端调度指示信息和第二通信信道的传输方式信息,有效地解决了在相关技术中,通信信道的传输存在资源开销大,接收复杂度高的问题,从而达到了有效降低资源开销,而且也能够有效降低对通信信道的接收复杂度。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是本公开实施例的一种通信信道的接收方法的移动终端的硬件结构框图;
图2是根据本公开实施例的通信信道的传输方法的流程图;
图3是根据本公开实施例的通信信道的传输方法的流程图;
图4是本公开优选实施例提供的一个可用于下行公共控制信道传输的时间单元图样的示意图;
图5是本公开优选实施例提供的第二级控制信道和数据信道共享部分DMRS端口的DMRS图样示意图;
图6是本公开优选实施例提供的对第二级控制信道进行ACK/NACK反馈的流程示意图;
图7是根据本公开实施例的通信信道的传输装置的结构框图;
图8是根据本公开实施例的通信信道的传输装置的结构框图;
图9是本公开实施例提供的基站的结构框图;
图10是本公开实施例提供的通信信道的接收装置的结构框图;
图11是本公开实施例提供的通信信道的接收装置的优选结构框图一;
图12是本公开实施例提供的通信信道的接收装置的优选结构框图二;
图13是本公开实施例提供的终端的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
方法实施例
本申请实施例一所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本公开实施例的一种通信信道的接收方法的移动终端的硬件结构框图。如图1所示,移动终端10可以包括一个或多个(图中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器104、以及用于通信功能的传输装置106。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,移动终端10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储应用软件的软件程序以及模块,如本公开实施例中的通信信道的接收方法对应的程序指令/模块,处理器102通过运行存储在存储器104内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
由于5G通信系统的设计对时延的要求更高,因此,在3GPP的讨论中已经提出支持多种子载波间隔、符号长度设计,即5G通信系统能够支持更短的正交频分复用(Orthogonal Frequency Division Multiplexing,简称为OFDM)符号、更短的调度时间单元设计。
5G通信系统的设计面向更多场景、能够满足各种需求,因此在3GPP的讨论中提出支 持多级下行控制信道,用于兼顾对控制信道鲁棒性和频谱效率的不同层次的需求。然而,如何平滑地实现多级下行控制信道之间的切换、以及如何合理地设计多级下行控制信道与数据信道的资源复用以最大程度地节省资源开销同时保证传输性能是需要考虑的一个问题。
针对上述通信信道传输的资源开销大、盲检测复杂度高、复用效率低的问题,尚未提出有效的解决方法,在本实施例中,提出了一种通信信道的传输和指示方法。
在本实施例中提供了一种运行于基站的通信信道的传输方法,图2是根据本公开实施例的通信信道的传输方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,传输第一通信信道,其中,通过第一通信信道的传输方式和/或第一通信信道所承载的信令指示以下信息至少之一:终端调度信息,第二通信信道的传输方式。
通过上述步骤,在传输第一通信信道时,指示终端调度指示信息和第二通信信道的传输方式信息,有效地解决了在相关技术中,通信信道的传输存在资源开销大,接收复杂度高的问题,从而达到了有效降低资源开销,而且也能够有效降低对通信信道的接收复杂度。
可选地,上述步骤的执行主体可以为基站、也可以是类似基站的网络控制实体等,但不限于此。需要说明的是,在图2中以基站向终端发送上述步骤S202为例进行说明。
其中,上述终端调度信息可以包括:终端分组信息,其中,终端分组信息包括一个或多个终端分组的指示信息。
可选地,这里的终端调度信息指终端被调度或未被调度的指示信息。可选地,终端调度信息为终端分组信息,其中,终端分组信息中包括一个或多个终端分组的指示信息。
例如,这里的终端分组信息可以包括一个或多个终端分组的组索引指示信息,用于指示当前或指定的持续时间内调度或未被调度到的终端分组。
当前或指定的持续时间内调度到的终端分组,指当前或指定的持续时间内基站将可能会对这些终端分组内的终端发送控制信道及数据业务,终端在当前或指定的持续时间内需要尝试接收控制信道及数据业务;
当前或指定的持续时间内未被调度到的终端分组,指当前或指定的持续时间内基站将不会对这些终端分组内的终端发送控制信道及数据业务,终端将不会在当前或指定的持续时间内接收控制信道及数据业务。
可选地,终端调度信息包括当前的调度时间单元内或者指定的一段时间单元内的终端分组信息。可选地,指定的一段时间单元包括指定的调度时间单元、从当前的调度时间单元开始的指定的持续时间段、或者从指定的时间开始并且指定的持续时间段。可选地可选地,指定的时间单元、指定的一段时间单元、指定的调度时间单元、指定的时间持续时间段可通过第一通信信道所承载的信令和/或高层信令指示给终端。其中,调度时间单元包括一个或多个时间单元,时间单元为时隙、子帧、帧、OFDM符号、或者微时隙。
例如,终端分组信息可以包括以下至少之一:当前的调度时间单元内的终端分组信息;指定的调度时间单元内的终端分组信息;从当前的调度时间单元开始的指定的持续时间段内的终端分组信息;从指定的调度时间单元开始并且指定的持续时间段内的终端分组信息。
在此需要说明的是,本公开实施例中所描述的“时间单元”与“调度时间单元”具有以下关 系,一个时间单元可以为一个OFDM符号、一个时隙、一个微时隙、一个子帧或者一个帧,一个调度时间单元则可以包括一个或多个时间单元。
可选地,上述方法还包括:按照预定义(或预先约定的方式)的方式对终端进行分组。需要说明的是,对终端进行分组可以由基站来执行,也可以由终端来执行。
预定义的方式包括:按照如下公式之一对终端进行分组:
公式一:UE_ID mod M=i;
公式二:(UE_ID mod M+Offset)mod M=i;
公式三:Offset mod M=i。
其中,UE_ID表示终端标识,M表示共有M个分组并且M的值为非负整数,参数Offset的取值是可配置的,i∈{0~M-1}表示将终端标识为UE_ID的终端划分到第i个分组。这里的终端标识是区别于其它终端的唯一标识,例如,LTE中由16位二级制比特序列组成。可选地,M为大于1的整数。这里M的值可以是通过基站指示给终端的,例如,有些情况下M的值等于1即不对终端进行分组,有些情况下M的值大于1即需要对终端进行分组处理。M的值也可以是基站和终端预先约定好的。
需要说明的是,将M个分组的索引定义为0~M-1,主要是为了方便描述和区别不同的分组,实际上M的分组的索引也可以定义为其它的方式,只要能区分不同的分组就可以,例如M个分组的索引分别为1~M,这时i∈{0~M-1}表示将终端标识为UE_ID的终端划分到第i+1个分组。
可选地,上述参数Offset为取值范围为{0~M-1}的整数,参数Offset的默认的取值为0。当终端接收到参数Offset的指示信息时,终端按照所指示的Offset的值确定终端所属分组,当未接收到参数Offset的指示信息时,终端默认Offset的值为0。
预定义的方式也可以包括:按照终端能力对终端进行分组,其中,终端能力可以包括终端的带宽能力、终端的波束能力、终端所能支持的业务类型中至少之一。其中,终端能力和终端分组之间存在预定义的对应关系。可选地,这里的带宽能力指终端所能支持的最大频域带宽,这里的波束能力指终端能同时发出的波束个数或者终端所能支持的最大射频链路(有时也叫TXRU)个数,这里的业务类型至少包括eMBB(enhanced Mobile Broadband,增强的移动宽带)、URLLC(Ultra-Reliable and Low Latency Communications,低时延高可靠连接)、eMTC(massive Machine Type Communications,大规模物联网)等。
可选地,通过第一通信信道的传输方式指示第二通信信道的传输方式可以采用多种方式,例如,可以采用以下方式:第一通信信道的传输方式和第二通信信道的传输方式之间存在预定义的对应关系。这里的第一通信信道的传输方式和第二通信信道的传输方式可以指相同或不同的传输方式参数,例如,第一通信信道的传输方式和第二通信信道的传输方式均指传输方案,即第一通信信道的传输方案和第二通信信道所采用的传输方案之间存在对应关系,可选地第二通信信道所采用的传输方案为一个传输方案的可选范围;又例如第一通信信道的传输方式指聚合级别,而第二通信信道的传输方式指调制编码等级(Modulation and Coding Scheme,简称为MCS),即第一通信信道的聚合级别和第二通信信道的调制编码等 级之间存在预定义的对应关系,可选地,第二通信信道所对应的调制编码等级为一个调制编码等级的可选范围。
在上述的通信信道的传输和指示方法中,可以由第一通信节点向第二通信节点传输第一通信信道,通过第一通信信道的传输方式和/或所承载的信令指示终端调度信息、第二通信信道的传输方式信息中至少之一。
可选地,第一通信信道可以为控制信道或者广播信道,第二通信信道可以为控制信道或者数据信道,例如,第一通信信道为控制信道时,控制信道包括:公有控制信道,或者,多个终端共享的控制信道。需要说明的是,这里的控制信道可选地为终端专有的控制信道。第二通信信道与第一通信信道可以位于不同的调度时间单元中,第二通信信道也有可能和第一通信信道是同一种类型的通信信道,极端情况下,第二通信信道就是第一通信信道。例如,第一通信信道是控制信道,第二通信信道是数据信道;第一通信信道是公有控制信道,第二通信信道是终端专有的控制信道;第一通信信道和第二通信信道均为终端专有的控制信道,且同对应同一个终端的同一个控制信道。
可选地,传输第一通信信道(控制信道)包括:在指定的时间单元图样上传输控制信道,其中,指定的时间单元图样包括一个或多个时间单元,时间单元包括以下之一:时隙、子帧、帧、符号、或者微时隙。
例如,当第一通信信道为公有(下行)控制信道(终端公有的下行控制信道或者小区级的下行控制信道)或者多个终端共享的下行控制信道时,基站只允许在指定的时间单元图样上传输控制信道,即在所允许的时间单元图样上,传或不传控制信道是基站自主决定的,但终端需要在这些时间单元图样上的每一个时间单元上都监听/盲检测控制信道。其中,指定的时间单元图样可以通过以下方式至少之一确定:广播信道或同步信号或高层信令指示给终端或者为预定义的方式。其中,时间单元图样可以包括一个或多个连续或非连续的时间单元,时间单元为时隙、子帧、帧、符号(下行链路中可选地为OFDM符号)、或者微时隙。这里的多个终端共享的控制信道也可以是一个终端组共享的控制信道,即该控制信道可以被多个终端或终端组都接收。
可选地,传输第一通信信道(控制信道)还包括:在指定的多个时间单元上重复传输控制信道,其中,在多个时间单元上分别采用不同的发送波束或发送波束组传输控制信道。
可选地,在指定的多个时间单元上重复传输控制信道包括以下至少之一:传输控制信道的发送波束的传输顺序与同步信号所采用的发送波束或发送波束组的传输顺序之间存在预定义的对应关系;传输控制信道的发送波束的传输顺序与广播信道所采用的发送波束或发送波束组的传输顺序之间存在预定义的对应关系;传输控制信道的时间单元与传输同步信号的时间单元之间存在预定义的对应关系;传输控制信道的时间单元与传输广播信道的时间单元之间存在预定义的对应关系。
例如,控制信道的传输在多个时间单元上完成,其中,控制信道在多个时间单元上可以分别采用不同的发送波束或发送波束组进行传输。可选地,发送波束/仿波束组顺序与同步信号或广播信道所采用的发送波束或发送波束组的传输顺序存在预定义的对应关系。可选地, 控制信道的发送资源(例如,发送控制信道的时间单元)与同步信号或广播信道所采用的发送资源(例如,发送控制信道的时间单元)之间存在预定义的对应关系,可选地,控制信道的发送资源与同步信号或广播信道所采用的发送资源占用相同的时域资源。可选地,第一通信信道所支持的最大传输层数小于第二通信信道所支持的最大传输层数。
当控制信道存在多种类型(或者多个等级)时,第一通信信道仅为其中的一种类型的控制信道。例如,第一通信信道可以为终端专有的控制信道,其中,终端专有的控制信道包括以下特征至少之一:支持多流/多层传输;支持空间复用传输方案;支持正交相移键控(Quadrature Phase Shift Keyin,简称为QPSK)以上的调制方式,例如,可以支持16正交振幅调制(Quadrature Amplitude Modulation,简称为16QAM)等调制方式;在数据信道区域传输;支持调制与编码等级(或者调制与编码方案)(Modulation and Coding Scheme,简称为MCS)自适应传输,其中,MCS自适应指基站可以根据来自终端反馈的信道质量状态测量信息自适应调整MCS等级;支持秩(rank)自适应传输,其中,传输层数/秩(rank)自适应指,基站可以根据来自终端反馈的信道质量状态测量信息自适应调整传输层数/秩。
第一通信信道可以与第二通信信道进行复用传输,第一通信信道可位于第二通信信道区域进行传输,其中,第二通信信道区域调度单元中规定好的用于第二通信信道传输的区域,例如,数据信道区域或控制信道区域。可选地,控制信道至少包括两种类型,其中一种类型为基本的控制信道,另一种类型为增强的控制信道,第一通信信道为增强的控制信道。基本的控制信道的传输方式为预定义的,增强的控制信道的传输方式可以通过基本的控制信道进行指示。增强的控制信道可以支持更好码率、更高频谱效率的信息传输,可以用于指示更高级的数据信道的传输。基本的控制信道为增强的控制信道的一种回退形式。当信道条件比较好的时候,基站将传输增强的控制信道对数据信道的传输进行指示,当信道条件比较差的时候,基站将传输基本的控制信道对数据信道的传输进行指示。当采用增强的控制信道对数据信道指示时,数据信道采用增强的控制信道所指示的信息进行高级传输(采用增强的/高级的传输方式),而当采用基本的控制信道对数据信道进行指示时,数据信道采用基本的控制信道所指示的信息进行基本的传输(采用基本的/粗糙的/更为鲁邦的传输方式)。
这种类型的控制信道(第一通信信道)可以支持自动传输请求(Hybrid Automatic Repeat reQuest,简称为HARQ)机制,例如,在第二通信信道发送之前接收第一通信信道的ACK/NACK确认信息,其中ACK表示第一通信信道被正确接收,NACK表示第一通信信道没有被正确接收。
基站根据接收的ACK信息或者NACK信息,传输第二通信信道,其中,当接收到ACK信息时,根据第一控制信道的指示传输第二通信信道,当接收到NACK信息时,根据第二控制信道的指示传输第二通信信道,其中第一控制信道为第一通信信道,第二控制信道为区别于第一控制信道的其它的控制信道。
需要指出的是,作为本公开的一种优选实施方式,上述第二控制信道不具有上述第一控制信道为上述终端专有的控制信道时所包括的特征。可选地,第二控制信道可以为在第二通信信道之前传输的控制信道,其中第二控制信道为区别于第一控制信道的其它或其它类型的 控制信道;
例如,上述第二控制信道可以为在第二通信信道之前并且距离第二通信信道最近传输的控制信道,其中第二控制信道为区别于第一控制信道的其它或其它类型的控制信道。
可选地,第二控制信道为在第二通信信道之前传输的控制信道,其中第二控制信道为区别于第一控制信道的其它或其它类型的控制信道;
可选地,第二控制信道为在第二通信信道之前并且距离第二通信信道最近传输的控制信道,其中第二控制信道为区别于第一控制信道的其它或其它类型的控制信道。
可选地,传输第一通信信道还可以包括:第一通信信道的传输支持混合自动重传请求HARQ传输机制。
可选地,第一通信信道的传输支持混合自动重传请求HARQ传输机制包括:接收第一通信信道的确认ACK信息,或者,非确认NACK信息,其中,ACK信息用于表示第一通信信道被正确接收,NACK信息表示第一通信信道没有被正确接收。
其中,第一通信信道的传输支持混合自动重传请求HARQ传输机制还可以包括:根据接收的ACK信息或者NACK信息,传输第二通信信道,其中,当接收到ACK信息时,根据第一控制信道的指示传输第二通信信道,当接收到NACK信息时,根据第二控制信道的指示传输第二通信信道,其中第一控制信道为第一通信信道,第二控制信道为区别于第一控制信道的其它的控制信道。
例如,当基站接收到ACK信号之后,基站将按照增强的控制信道所指示的传输方式信息传输数据信道,当接收到NACK信息之后,基站将按照基本的控制信道所指示的传输方式信息传输数据信道。对于终端来说,当它向基站反馈ACK信号时,终端将按照第一通信信道的指示接收第二通信信道,当它向基站反馈NACK信号时,终端将按照其它类型的控制信道的指示接收第二通信信道。
这种类型的控制信道(第一通信信道)可以和第二通信信道共享一套DMRS图样的部分DMRS资源。可选地,共享的解调参考信号资源既可以用于解调第一通信信道,也可以用于解调第二通信信道,而非被共享的解调参考信号资源只能用于解调第二通信信道或第一通信信道。DMRS图样满足以下设计原则:共享的解调参考信号资源位于第一通信信道区域,解调参考信号资源中除被共享的解调参考信号资源之外的解调参考信号资源位于第二通信信道区域;或者,共享的解调参考信号资源位于第一通信信道传输的资源开始位置,解调参考信号资源中除共享的解调参考信号资源之外的解调参考信号资源位于第二通信信道传输的资源开始位置。假设第一通信信道支持的最大传输层数为P层,第二通信信道支持的最大传输层数为W层,其中P和W均为正整数,且P的值小于W,于是DMRS图样中的前P个端口(例如,假设解调参考信号端口定义为端口[0,7],则前P个端口为[0,P-1],P小于解调参考信号资源总的端口数即P小于8)为第一通信信道和第二通信信道共享的DMRS端口,剩余W-P个端口为第二通信信道专有的DMRS端口。终端可以支持多套DMRS图样,当第一通信信道在第二通信信道区域传输时采用上述DMRS图样,否则采用其它DMRS图样。其中,其它图样为区别于上述图样的不同图样,例如,其它DMRS图样为用于第二通信信 道的DMRS端口均在第二通信信道区域的开始位置处。
可选地,第一通信信道基于第二通信信道的解调参考信号资源中指定的解调参考信号资源传输。即第一通信信道的解调参考信号为第二通信信道的解调参考信号资源中指定的解调参考信号资源。
可选地,第一通信信道在第二通信信道的传输区域中指定的传输区域传输;第一通信信道基于第二通信信道的解调参考信号资源中指定的解调参考信号资源传输;第一通信信道传输所支持的最大传输层数小于第二通信信道所支持的最大传输层数。
需要说明的是,上述第二通信信道的传输区域,通常指在一个调度时间单元中用于传输第二通信信道的区域。例如第二通信信道为数据信道时,对应的第二通信信道的传输区域即为数据信道传输区域,类似于LTE中每个子帧中的数据信道区域、控制信道区域的概念。
可选地,第二通信信道的解调参考信号资源中指定的解调参考信号资源在第二通信信道的传输区域中指定的传输区域传输;第二通信信道的解调参考信号资源中除指定的解调参考信号资源之外的解调参考信号资源在第二通信信道的传输区域中除指定的传输区域之外的传输区域传输。
可选地,第二通信信道的解调参考信号资源中指定的解调参考信号资源位于第二通信信道的传输区域中指定的传输区域中的时域上开始的一个或多个符号位置;第二通信信道的解调参考信号资源中除指定的解调参考信号资源之外的解调参考信号资源位于第二通信信道的传输区域中除指定的传输区域之外的传输区域中的时域上开始的一个或多个符号位置。
可选地,第一通信信道基于第二通信信道的P个解调参考信号端口传输,其中,P个解调参考信号端口为指定的解调参考信号资源,第二通信信道的解调参考信号资源中包括W个解调参考信号端口,W和P均为正整数,并且W的值大于P。
其中,指定的解调参考信号资源包括:P个解调参考信号端口为W个解调参考信号端口中的前P个解调参考信号端口。
需要说明的是,上述通信信道包括:第一通信信道和第二通信信道。通信信道的传输方式包括多种,下面对第一通信信道的传输方式和第二通信信道的传输方式分别说明。
第一通信信道的传输方式包括以下至少之一:与第一通信信道相关的解调参考信号资源;第一通信信道传输所占用的时域资源;第一通信信道传输所占用的频域资源;第一通信信道传输所采用的传输方案;第一通信信道传输所采用的聚合级别;第一通信信道传输所采用的调制等级;第一通信信道传输所采用的编码等级;第一通信信道传输所对应的盲检测区域;第一通信信道传输所采用的发送波束;第一通信信道传输所对应的接收波束。
第二通信信道的传输方式包括以下至少之一:与第二通信信道相关的解调参考信号资源;第二通信信道传输所占用的时域资源;第二通信信道传输所占用的频域资源;第二通信信道传输所采用的传输方案;第二通信信道传输所采用的聚合级别;第二通信信道传输所采用的调制等级;第二通信信道传输所采用的编码等级;第二通信信道传输所对应的盲检测区域;第二通信信道传输所采用的发送波束;第二通信信道传输所对应的接收波束。
其中,解调参考信号资源包括解调参考信号(Demodulation Reference Signal,简称为 DMRS)的端口、时频资源、图样、序列中至少之一;这里的传输方案包括单端口传输、分集传输、空间复用传输,例如SFBC(Space Frequency Block Code,空频块码)、CDD(Cyclic Delay Diversity,循环延迟分集)、SU-MIMO(Single User-Multiple Input Multiple Output,单用户多输入多输出)、MU-MIMO(Multiple User-Multiple Input Multiple Output,多用户多输入多输出)等传输方案;这里的盲检测区域为终端需要尝试接收通信信道的时频资源区域;这里的波束可以为一种资源,例如发送端预编码(发送波束),接收端预编码(接收波束)、天线端口,天线权重矢量,天线权重矩阵等,由于波束可以与一些时频码资源进行传输上的绑定,波束ID也可以被替换为资源ID。波束也可以为一种传输(发送/接收)方式;的传输方式可以包括空分复用、频域/时域分集等;进一步可选地,的接收波束是指,无需指示的接收端的波束,或者发送端可以通过当前参考信号和天线端口与UE反馈报告的参考信号(或基准参考信号)和天线端口的准共址(QCL)指示下的接收端的波束资源。
需要说明的是,第一通信节点为通信信道的发送端,第二通信节点为通信信道的接收端。可选地,第一通信节点为基站或网络控制节点,第二节点为用户或者终端或网络被控制节点。
在本实施例中还提供了一种运行于终端的通信信道的接收方法,图3是根据本公开实施例的通信信道的传输方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,接收第一通信信道;
步骤S304,通过第一通信信道的传输方式和/或第一通信信道所承载的信令获取以下信息至少之一:终端调度信息,第二通信信道的传输方式。
通过上述步骤,在接收第一通信信道时,获取终端调度指示信息和第二通信信道的传输方式信息,使得终端可以依据上述信息进行检测,有效地解决了在相关技术中,通信信道的传输存在资源开销大,接收复杂度高的问题,从而达到了有效降低资源开销,而且也能够有效降低对通信信道的接收复杂度。
可选地,终端调度信息包括:终端分组信息,其中,终端分组信息包括一个或多个终端分组的指示信息。
可选地,终端分组信息包括以下之一:当前的调度时间单元内的终端分组信息;指定的调度时间单元内的终端分组信息;从当前的调度时间单元开始的指定的持续时间段内的终端分组信息;从指定的调度时间单元开始并且指定的持续时间段内的终端分组信息;其中,调度时间单元包括一个或多个时间单元,时间单元包括以下之一:时隙、子帧、帧、符号、微时隙。
可选地,在获取终端调度信息之后,还包括:根据终端调度信息确定被调度或未被调度的终端分组;判断接收第一通信信道的终端是否属于被调度的终端分组;在判断结果为是的情况下,在述终端调度信息对应的时间内尝试接收第一通信信道和/或第二通信信道。
可选地,指定的调度时间单元,或者,指定的持续时间段通过以下方式之一获取:第一通信信道所承载的信令,高层信令。
举例来说,这里的终端分组信息可以包括一个或多个终端分组的组索引指示信息,用于指示当前或指定的持续时间内调度或未被调度到的终端分组。
当前或指定的持续时间内调度到的终端分组,指当前或指定的持续时间内基站将可能会对这些终端分组内的终端发送控制信道及数据业务,终端在当前或指定的持续时间内需要尝试接收控制信道及数据业务;
当前或指定的持续时间内未被调度到的终端分组,指当前或指定的持续时间内基站将不会对这些终端分组内的终端发送控制信道及数据业务,终端将不会在当前或指定的持续时间内接收控制信道及数据业务。
可选地,该方法还可以:按照预定义的方式对终端进行分组。需要说明的是,对终端进行分组可以在接收第一通信信道之前,也可以在接收第一通信信道之后,两者可以不存在先后顺序。
可选地,按照预定义的方式对终端进行分组包括:通过以下方式之一对终端进行分组:UE_ID mod M=i;(UE_ID mod M+Offset)mod M=i;Offset mod M=i;其中,UE_ID表示终端标识,M表示共有M个分组并且M的值为非负整数,Offset为预定值,i∈{0~M-1}表示将终端标识为UE_ID的终端划分到第i个分组。可选地,M为大于1的整数。这里M的值可以是通过基站指示给终端的,例如,有些情况下M的值等于1即不对终端进行分组,有些情况下M的值大于1即需要对终端进行分组处理。M的值也可以是基站和终端预先约定好的。
同样,这里将M个分组的索引定义为0~M-1,主要也是为了方便描述和区别不同的分组,实际上M的分组的索引也可以定义为其它的方式,只要能区分不同的分组就可以,例如M个分组的索引分别为1~M,这时i∈{0~M-1}表示将终端标识为UE_ID的终端划分到第i+1个分组。
可选地,Offset为取值范围为{0~M-1}的整数;和/或,Offset的默认的取值为0。
可选地,按照预定义的方式对终端进行分组包括:按照终端能力对终端进行分组,其中,终端能力和终端分组之间存在预定义的对应关系,终端能力包括以下至少之一:终端的带宽能力、终端的波束能力、终端所能支持的业务类型。
可选地,通过第一通信信道的传输方式获取第二通信信道的传输方式包括:第一通信信道的传输方式与第二通信信道的传输方式之间存在预定义的对应关系。
可选地,通过第一通信信道的传输方式获取第二通信信道的传输方式包括:通过第一通信信道的传输方案获取第二通信信道的传输方案,其中,第一通信信道的传输方案与第二通信信道的传输方案之间存在预定义的对应关系。
可选地,通过第一通信信道的传输方式获取第二通信信道的传输方式包括:通过第一通信信道的聚合级别获取第二通信信道的调制和/或编码等级,其中,第一通信信道的聚合级别和第二通信信道的调制和/或编码等级之间存在预定义的对应关系。
可选地,第一通信信道包括:控制信道,或者,广播信道。
可选地,第二通信信道包括:控制信道,或者,数据信道。
可选地,第一通信信道为控制信道,其中,控制信道包括:公有控制信道,或者,多个终端共享的控制信道。
可选地,接收第一通信信道包括:在指定的时间单元图样上接收控制信道,其中,指定的时间单元图样包括一个或多个时间单元,时间单元包括以下之一:时隙、子帧、帧、符号、或者微时隙。
可选地,指定的时间单元图样通过以下方式至少之一确定:预定义方式确定,广播信道接收,同步信号接收,高层信令接收。
可选地,接收第一通信信道包括:在指定的多个时间单元上重复接收控制信道,其中,在多个时间单元上分别采用不同的接收波束或接收波束组接收控制信道。
可选地,包括以下至少之一:接收控制信道的接收波束的接收顺序与同步信号所采用的接收波束或接收波束组的传输顺序之间存在预定义的对应关系;接收控制信道的接收波束的接收顺序与广播信道所采用的接收波束或接收波束组的接收顺序之间存在预定义的对应关系;接收控制信道的时间单元与接收同步信号的时间单元之间存在预定义的对应关系;接收控制信道的时间单元与接收广播信道的时间单元之间存在预定义的对应关系。
可选地,第一通信信道为终端专有的控制信道,其中,终端专有的控制信道包括以下特征至少之一:支持多流/多层传输;支持空间复用传输方案;支持QPSK以上的调制方式(例如,可以支持16QAM等调制方式);在数据信道区域传输;支持MCS自适应传输(需要说明的是,这MCS自适应指基站可以根据来自终端反馈的信道质量状态测量信息自适应调整MCS等级);支持rank自适应传输(其中,传输层数/秩,rank自适应指,基站可以根据来自终端反馈的信道质量状态测量信息自适应调整传输层数/秩)。
可选地,接收第一通信信道包括:第一通信信道的接收支持混合自动重传请求HARQ传输机制。
可选地,第一通信信道的接收支持混合自动重传请求HARQ传输机制包括:向基站反馈第一通信信道的确认ACK信息,或者,非确认NACK信息,其中,ACK信息用于表示第一通信信道被正确接收,NACK信息表示第一通信信道没有被正确接收。
可选地,第一通信信道的接收支持混合自动重传请求HARQ传输机制包括:根据向基站反馈的ACK信息或者NACK信息,接收第二通信信道,其中,当向基站反馈ACK信息时,根据第一控制信道的指示接收第二通信信道,当向基站反馈NACK信息时,根据第二控制信道的指示接收第二通信信道,其中第一控制信道为第一通信信道,第二控制信道为区别于第一控制信道的其它的控制信道。
可选地,此处的第二控制信道不具有上述终端专有的控制信道中所包含的那些特征。
可选地,第二控制信道为在第二通信信道之前传输的控制信道,其中,第二控制信道为区别于第一控制信道的其它或其它类型的控制信道。
可选地,第二控制信道为在第二通信信道之前并且距离第二通信信道最近传输的控制信道,其中,第二控制信道为区别于第一控制信道的其它或其它类型的控制信道。
可选地,接收第一通信信道包括以下至少之一:在第二通信信道的传输区域中指定的传输区域接收第一通信信道;基于第二通信信道的解调参考信号资源中指定的解调参考信号资源接收第一通信信道;第一通信信道接收所支持的最大传输层数小于第二通信信道所支持的 最大传输层数。
可选地,接收第一通信信道包括以下至少之一:第二通信信道的解调参考信号资源中指定的解调参考信号资源在第二通信信道的传输区域中指定的传输区域传输;第二通信信道的解调参考信号资源中除指定的解调参考信号资源之外的解调参考信号资源在第二通信信道的传输区域中除指定的传输区域之外的传输区域传输。
需要说明的是,上述第二通信信道的传输区域,通常指在一个调度时间单元中用于传输第二通信信道的区域。例如,第二通信信道为数据信道时,对应的第二通信信道的传输区域即为数据信道传输区域,类似于LTE中每个子帧中的数据信道区域、控制信道区域的概念。
可选地,接收第一通信信道包括以下至少之一:第二通信信道的解调参考信号资源中指定的解调参考信号资源位于第二通信信道的传输区域中指定的传输区域中的时域上开始的一个或多个符号位置;第二通信信道的解调参考信号资源中除指定的解调参考信号资源之外的解调参考信号资源位于第二通信信道的传输区域中除指定的传输区域之外的传输区域中的时域上开始的一个或多个符号位置。
可选地,基于第二通信信道的解调参考信号资源中指定的解调参考信号资源接收第一通信信道包括:基于第二通信信道的P个解调参考信号端口接收第一通信信道,其中,P个解调参考信号端口为指定的解调参考信号资源,第二通信信道的解调参考信号资源中包括W个解调参考信号端口,W和P均为正整数,并且W的值大于P。
可选地,指定的解调参考信号资源包括:P个解调参考信号端口为W个解调参考信号端口中的前P个解调参考信号端口。
可选地,第一通信信道的传输方式包括以下至少之一:与第一通信信道相关的解调参考信号资源;第一通信信道传输所占用的时域资源;第一通信信道传输所占用的频域资源;第一通信信道传输所采用的传输方案;第一通信信道传输所采用的聚合级别;第一通信信道传输所采用的调制等级;第一通信信道传输所采用的编码等级;第一通信信道传输所对应的盲检测区域;第一通信信道传输所采用的发送波束;第一通信信道传输所对应的接收波束。
可选地,第二通信信道的传输方式包括以下至少之一:与第二通信信道相关的解调参考信号资源;第二通信信道传输所占用的时域资源;第二通信信道传输所占用的频域资源;第二通信信道传输所采用的传输方案;第二通信信道传输所采用的聚合级别;第二通信信道传输所采用的调制等级;第二通信信道传输所采用的编码等级;第二通信信道传输所对应的盲检测区域;第二通信信道传输所采用的发送波束;第二通信信道传输所对应的接收波束。
需要说明的是,本公开上述实施例中的描述中用到的“预定义的”或者“预定义”无进一步解释说明的,都表示“预定义的”或者“预定义”所描述的对象为基站和终端都知道的,可以为基站和终端预先约定好的,或者由基站指示给终端;本公开实施例中的描述中用到的“指定的”或者“指定”无进一步解释说明的,都表示“指定的”或者“指定”所描述的对象为基站和终端都知道的,可以为基站和终端预先约定好的,或者由基站指示给终端。
通过上述实施例所提供的通信信道的传输和指示方法,通过对当前或指定的一段时间内调度/未调度的终端分组信息进行指示,或者对控制信道的调度时间单元图样进行指示,使得 终端不需要在每个调度时间单元上都盲检测控制信道,降低了终端盲检测控制信道的复杂度;通过将第一通信信道置于第二通信信道区域,然后定义第一通信信道和第二通信信道的传输方式存在对应关系,节省了控制信道的信令资源开销并且有效利用了第二通信信道区域,提高了复用效率;通过在第二通信信道之前反馈第一通信信道的ACK/NACK信息,支持多级控制信道之间的自适应切换;通过将共享解调参考信号资源放于第一通信信道传输的开始位置,将非共享参考信号放于第二通信信道的开始位置,既使得通信信道解码时延最低,同时又保证了信道估计性能是最好的。
下面对本公开优选实施例进行说明。
优选实施例1
通过公有或者终端组公有的控制信道将当前或当前一段时间将调度到的用户设备(User Equipment,简称为UE)(或称为终端)分组的范围通知给UE,包括以下步骤:
步骤1:对小区内的UE进行分组,将当前时隙(一个调度时间单元)或当前N个时隙中调度到的UE分组信息通过公有或者用户组公有的控制信道通知给所有UE;
步骤2:UE接收到分组信息之后,根据分组规则判断自己是否在所接收到的分组内,若是,在当前或当前一段时间内尝试接收终端专有的控制信道,若否,则在当前或当前一段时间内不尝试接收终端专有的控制信道。
可选地,UE分组的规则包括以下之一,假设需要将UE划分为M个组:
规则1:根据UE标识(Identity,简称为ID)进行UE分组,例如,若UE ID对M取模后的值为i,则将该UE分配到第i组中;
规则2:根据UE ID和配置的参数进行UE分组,例如,通过公式(UE ID mod M+Offset)mod M=i,则将该UE分配到第i组中,其中,Offset的取值是可配置的,例如,可以通过广播信道、同步信号、高层信令等指示给终端。可选地Offset的取值范围为{0~M-1},当终端未接收到Offset的配置指示时,终端默认为Offset的值为0;
规则3:根据配置的参数进行进行UE分组,例如,若参数UE_ID_v对M取模后的值为i,则将该UE分配到第i组中,其中,参数UE_ID_v是基站配置给终端的,参数UE_ID_v的取值是可配置的,例如,可以通过广播信道、同步信号、高层信令等指示给终端。可选地,参数UE_ID_v的取值范围为{0~M-1},当终端未接收到Offset的配置指示时,终端默认为参数UE_ID_v的值为0;
规则4:根据UE能力进行分组,在初始接入阶段,UE会把UE能力上报给基站,因此基站和UE可以按照不同的UE能力对UE进行分组,即UE能力和UE分组之间存在预定义的对应关系。可选地,这种对应关系是基站和终端预先约定好的,这里的UE能力可能包括带宽能力、波束能力等。
值得说明的是,这里的UE分组信息可能或一个或多个分组的信息,基站可以将一个或多个分组的分组索引指示给终端。
作为本公开实施例的又一种实现方式,可以通过公有控制信道或终端组公有的控制信道指示以下时域范围内的UE分组信息:
指示当前时隙(slot)调度到的UE分组信息;或者
指示当前slot开始的连续N个slot上调度到的UE分组信息;或者
指示从slot n到slot n+k中调度到的UE分组信息。
作为本公开实施例的又一种实现方式,通过公有或者终端组公有的控制信道也可以指示上述时域范围内未调度到的分组信息,这时,当UE接收到分组信息之后,根据分组规则判断自己是否在所接收到的分组内,若是,在当前或当前一段时间内不尝试接收终端专有的控制信道,若否,则在当前或当前一段时间内尝试接收终端专有的控制信道。
优选实施例2
通过基站和终端预先约定的方式定义一个调度单元图样,或者通过信令向基站通知一个调度单元图样信息。其中,调度单元图样可以包含在一个预定的时间段内,可用于发送公有下行控制信道的调度时间单元的指示信息。其中,预定的时间段位基站和终端预先约定的,可以是一个子帧、一个帧或者连续的T个时隙,T为预先约定的或通过信令指示给终端;调度时间单元为一次调度所对应的时间单元,例如,为一个或多个OFDM符号、时隙、微时隙、子帧或者帧。
图4是本公开优选实施例提供的一个可用于下行公共控制信道传输的时间单元图样的示意图,如图4所示,一个子帧中包括10个时隙,基站通过10比特信令分别表示一个子帧中10个时隙是否可用于传输公有下行控制信道,比特位由最低位到最高位分别对应一个子帧中时域从前往后10个时隙,比特值指示为0表示对应的时隙不用于传输公有下行控制信道,比特值指示为1表示对应的时隙可用于传输公有下行控制信道。图4中时隙3、6、9可用于传输公有下行控制信道,其它时隙不传输公有下行控制信道。
终端获得调度时间单元图样之后,仅在指示可用于传输公有下行控制信道的时间单元上尝试接收公有下行控制信道,在其它调度时间单元上不尝试接收公有下行控制信道。
作为本公开实施例的又一种实施方式,公有下行控制信道也可能为终端组公有的下行控制信道。
作为本公开实施例的又一种实施方式,在可用于传输公有下行控制信道的调度时间单元中,公有下行控制信道和终端专有的下行控制信道采用独立的资源配置进行传输,这里的资源配置指用于传输控制信道的资源的子载波间隔、OFDM符号长度、循环移位长度等。这里所描述的独立的资源配置,指公有下行控制信道和终端专有的下行控制信道传输所在的时频资源可以具有不同的子载波间隔、不同OFDM符号长度、不同的循环移位长度中至少之一。
作为本公开实施例的又一种实施方式,在可用于传输公有下行控制信道的调度时间单元中,公有下行控制信道与终端专有的下行控制信道在一个调度时间单元中的不同的时间单元上传输。
作为本公开实施例的又一种实施方式,在可用于传输公有下行控制信道的调度时间单元中,公有下行控制信道与终端专有的下行控制信道的射频带宽独立配置。
作为本公开实施例的又一种实施方式,在可用于传输公有下行控制信道的调度时间单元 中,用多个时间单元、多个调度时间单元以不同波束传输公有下行控制信道,完成公有下行控制信道的一次全向发送。
优选实施例3
下行控制信道支持两级下行控制信道,其中第一级下行控制信道的传输配置相对固定,其资源配置是预先约定好的活着通过半静态信令配置的,采用更为鲁棒的传输方案进行传输,例如,空频块码(Space Frequency Block Code,简称为SFBC);第二级下行控制信道的传输配置更为灵活,其资源配置可以是由第一级控制信道指示的,并且支持频谱效率更高的传输方案,例如,单用户多输入多输出(Single User-Multiple-Input Multiple-Output,简称为SU-MIMO)。第一级下行控制信道位于下行控制信道区域传输,第二级控制信道可位于数据信道区域传输。
由于第二级控制信道的信道环境和数据信道都位于数据信道区域,因此第二级控制信道的传输方式与数据信道之间往往存在对应关系。这种对应关系可以是基站和终端预先约定好的。
假设第二级控制信道支持最大为2层的SU-MIMO传输、SFBC、循环延迟分集(Cyclic Delay Diversity,简称为CDD),而数据信道支持最大为8层的SU-MIMO传输、SFBC、CDD,第二级控制信道传输方案与数据信道传输方案之间存在如下的对应关系:
当第二级USS采用SU-MIMO(2层)传输时,物理下行共享信道(Physical Downlink Shared Channel,简称为PDSCH)对应的传输方案范围为SU-MIMO(5~8层);
当第二级USS采用SU-MIMO(1层)传输时,PDSCH对应的传输方案范围为SU-MIMO(1~4层);
当第二级USS采用SFBC传输时,PDSCH对应的传输方案范围为{SFBC、CDD、SU-MIMO(1~2层)}。
基站通过第二级控制信道的传输方案确定PDSCH对应的传输方案范围,并且根据信道测量反馈信息从传输方案范围中选择一个传输方案进行当前数据信道的传输,并将所选择的传输方案信息通过第二级控制信道中承载的信令指示给终端;基站通过第二级控制信道的传输方案确定PDSCH对应的传输方案范围,并从接收到的第二级控制信道中承载的信令指示确定PDSCH当前所采用的传输方案,然后接收并解调PDSCH。其中,第二级控制信道可以通过2比特信令向终端指示所选择的传输方案。
作为本公开实施例的又一种实施方式,第二级控制信道的调制编码方式与数据信道的调制编码方式之间存在对应关系。
作为本公开实施例的又一种实施方式,第二级控制信道的聚合级别和数据信道的调制编码方式之间存在对应关系。
作为本公开实施例的又一种实施方式,第二级控制信道的调制方式和数据信道的调制编码方式之间存在对应关系。
优选实施例4
下行控制信道支持两级下行控制信道,其中,第一级下行控制信道的传输配置相对固定,其资源配置是预先约定好的活着通过半静态信令配置的,采用更为鲁棒的传输方案进行传输,例如,SFBC;第二级下行控制信道的传输配置更为灵活,其资源配置可以是由第一级控制信道指示的,并且支持频谱效率更高的传输方案,例如,SU-MIMO。第一级下行控制信道位于下行控制信道区域传输,第二级控制信道可位于数据信道区域传输。
由于第二级控制信道的信道环境和数据信道都位于数据信道区域,因此第二级控制信道与数据信道之间可以共享一套DMRS图样。但是考虑到数据信道也支持SU-MIMO传输,然而,由于控制信道传输对鲁棒性的要求更高,通常第二级下行控制信道SU-MIMO下所支持的最大传输层数小于数据信道所支持的最大传输层数。因此,该DMRS图样中的部分资源可位于第二级下行控制信道传输的开始位置,部分资源位于数据信道传输的开始位置。其中,位于第二级下行控制信道传输开始位置处的DMRS资源中包括控制信道和数据信道的共享DMRS端口,该共享DMRS端口既可用于解调第二级下行控制信道,又可以用于解调数据信道。
图5是本公开优选实施例提供的第二级控制信道和数据信道共享部分DMRS端口的DMRS图样示意图,如图5所示,假设一个DMRS图样中支持8个端口,编号分别为{0~7},其中,第二级控制信道最多支持2层传输,数据信道最多支持8层传输,那么DMRS图样中的8个端口的前2个端口(port 0~1)为第二级控制信道和数据信道共享的端口,后6个端口(port 2~7)为数据信道专有的端口。因此,为了控制信道和数据信道的解码时延最优同时信道估计性能最好,将共享的DMRS端口(port 0~1)置于控制信道传输的开始位置,将数据信道专有的DMRS端口(port 2~7)置于数据信道传输的开始位置。可选地,控制信道和数据信道的复用采用TDM的方式。
终端接收到前两个DMRS端口(port 0~1)后,尝试解调控制信道和数据信道,在接收到后六个DMRS端口(port 2~7)后,尝试解调数据信道。
作为本公开实施例的又一种实现方式,支持多套DMRS图样,当有第二级控制信道在数据区域传输时,采用上述DMRS图样,否则当没有第二级控制信道在数据区域传输时,DMRS图样中的所有DMRS端口位于数据区域的开始位置。
优选实施例5
下行控制信道支持两级下行控制信道,其中,第一级下行控制信道的传输配置相对固定,其资源配置是预先约定好的活着通过半静态信令配置的,采用更为鲁棒的传输方案进行传输,例如,SFBC;第二级下行控制信道的传输配置更为灵活,其资源配置可以是由第一级控制信道指示的,并且支持频谱效率更高的传输方案,例如,SU-MIMO。第一级下行控制信道位于下行控制信道区域传输,第二级控制信道可位于数据信道区域传输。
为了同时保证第二级下行控制信道的鲁棒性,以及基站基于第一级控制信道和第二级控制信道之间的自适应切换。第二级控制信道支持HARQ机制。
图6是本公开优选实施例提供的对第二级控制信道进行ACK/NACK反馈的流程示意图,如图6所示,在跨时隙(slot)调度中,基站在slot n中的下行控制(Downlink Control,简称为DC)区域发送第二级下行控制信道,同时在该slot中的上行控制(Uplink Control,简称为UC)区域向基站反馈针对第二级下行控制信道的ACK/NACK信息,当基站接收到终端反馈的ACK信息时,基站正常在slot n+1上按第二级下行控制信道的指示发送数据,终端也对应地按照第二级下行控制信道的指示对数据信道进行解调、解码;当基站接收到NACK信息时,基站将按照第一级下行控制信道(在slot n之前发送或在slot n+1上发送)的指示发送数据,终端也对应地按照第一级下行控制信道的指示对数据信道进行解调、解码。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例的方法。
装置实施例
在本实施例中还提供了一种通信信道的传输装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图7是根据本公开实施例的通信信道的传输装置的结构框图,如图7所示,该通信信道的传输装置70包括:第一传输模块72,下面对该第一传输模块72进行说明。
第一传输模块72,用于传输第一通信信道,其中,通过第一通信信道的传输方式和/或第一通信信道所承载的信令指示以下信息至少之一:终端调度信息,第二通信信道的传输方式。
可选地,终端调度信息包括:终端分组信息,其中,终端分组信息包括一个或多个终端分组的指示信息。
可选地,终端分组信息包括以下之一:当前的调度时间单元内的终端分组信息;指定的调度时间单元内的终端分组信息;从当前的调度时间单元开始的指定的持续时间段内的终端分组信息;从指定的调度时间单元开始并且指定的持续时间段内的终端分组信息;其中,调度时间单元包括一个或多个时间单元,时间单元包括以下之一:时隙、子帧、帧、符号、微时隙。
可选地,指定的调度时间单元,或者,指定的持续时间段通过以下方式之一指示:第一通信信道所承载的信令,高层信令。
图8是根据本公开实施例的通信信道的传输装置的结构框图,如图8所示,该装置除包括图7所示的所有模块外,还包括:第一分组模块82,下面对该第一分组模块82进行说明。
第一分组模块82,连接至上述第一传输模块72,用于按照预定义的方式对终端进行分 组。
可选地,第一分组模块82,还用于通过以下方式之一对终端进行分组:UE_ID mod M=i;(UE_ID mod M+Offset)mod M=i;Offset mod M=i;其中,UE_ID表示终端标识,M表示共有M个分组并且M的值为非负整数,Offset为预定值,i∈{0~M-1}表示将终端标识为UE_ID的终端划分到第i个分组。
可选地,Offset为取值范围为{0~M-1}的整数;和/或,Offset的默认的取值为0。
可选地,第一分组模块82,还用于按照终端能力对终端进行分组,其中,终端能力和终端分组之间存在预定义的对应关系,终端能力包括以下至少之一:终端的带宽能力、终端的波束能力、终端所能支持的业务类型。
可选地,第一传输模块72,还用于通过第一通信信道的传输方式指示第二通信信道的传输方式:第一通信信道的传输方式与第二通信信道的传输方式之间存在预定义的对应关系。
可选地,通过第一通信信道的传输方式指示第二通信信道的传输方式包括:通过第一通信信道的传输方案指示第二通信信道的传输方案,其中,第一通信信道的传输方案与第二通信信道的传输方案之间存在预定义的对应关系。
可选地,通过第一通信信道的传输方式指示第二通信信道的传输方式包括:通过第一通信信道的聚合级别指示第二通信信道的调制和/或编码等级,其中,第一通信信道的聚合级别和第二通信信道的调制和/或编码等级之间存在预定义的对应关系。
可选地,第一通信信道包括:控制信道,或者,广播信道。
可选地,第二通信信道包括:控制信道,或者,数据信道。
可选地,第一通信信道为控制信道,其中,控制信道包括:公有控制信道,或者,多个终端共享的控制信道。
可选地,第一传输模块72,还用于在指定的时间单元图样上传输控制信道,其中,指定的时间单元图样包括一个或多个时间单元,时间单元包括以下之一:时隙、子帧、帧、符号、或者微时隙。
可可选地,指定的时间单元图样通过以下方式至少之一确定:预定义方式确定,广播信道指示,同步信号指示,高层信令指令。
可选地,第一传输模块72,还用于在指定的多个时间单元上重复传输控制信道,其中,在多个时间单元上分别采用不同的发送波束或发送波束组传输控制信道。
可选地,包括以下至少之一:传输控制信道的发送波束的传输顺序与同步信号所采用的发送波束或发送波束组的传输顺序之间存在预定义的对应关系;传输控制信道的发送波束的传输顺序与广播信道所采用的发送波束或发送波束组的传输顺序之间存在预定义的对应关系;传输控制信道的时间单元与传输同步信号的时间单元之间存在预定义的对应关系;传输控制信道的时间单元与传输广播信道的时间单元之间存在预定义的对应关系。
可选地,第一通信信道为终端专有的控制信道,其中,终端专有的控制信道包括以下特征至少之一:支持多流/多层传输;支持空间复用传输方案;支持QPSK以上的调制方式;在数据信道区域传输;支持MCS自适应传输;支持rank自适应传输。
可选地,第一传输模块72,还用于实现第一通信信道的传输支持混合自动重传请求HARQ传输机制。
可选地,第一传输模块72,还用于接收第一通信信道的确认ACK信息,或者,非确认NACK信息,其中,ACK信息用于表示第一通信信道被正确接收,NACK信息表示第一通信信道没有被正确接收。
可选地,第一传输模块72,还用于根据接收的ACK信息或者NACK信息,传输第二通信信道,其中,当接收到ACK信息时,根据第一控制信道的指示传输第二通信信道,当接收到NACK信息时,根据第二控制信道的指示传输第二通信信道,其中第一控制信道为第一通信信道,第二控制信道为区别于第一控制信道的其它的控制信道。
可选地,第一通信信道在第二通信信道的传输区域中指定的传输区域传输;第一通信信道基于第二通信信道的解调参考信号资源中指定的解调参考信号资源传输;第一通信信道传输所支持的最大传输层数小于第二通信信道所支持的最大传输层数。
可选地,第二通信信道的解调参考信号资源中指定的解调参考信号资源在第二通信信道的传输区域中指定的传输区域传输;第二通信信道的解调参考信号资源中除指定的解调参考信号资源之外的解调参考信号资源在第二通信信道的传输区域中除指定的传输区域之外的传输区域传输。
可选地,第二通信信道的解调参考信号资源中指定的解调参考信号资源位于第二通信信道的传输区域中指定的传输区域中的时域上开始位置;第二通信信道的解调参考信号资源中除指定的解调参考信号资源之外的解调参考信号资源位于第二通信信道的传输区域中除指定的传输区域之外的传输区域中的时域上开始位置。
可选地,第一通信信道基于第二通信信道的解调参考信号资源中指定的解调参考信号资源传输包括:第一通信信道基于第二通信信道的P个解调参考信号端口传输,其中,P个解调参考信号端口为指定的解调参考信号资源,第二通信信道的解调参考信号资源中包括W个解调参考信号端口,W和P均为正整数,并且W的值大于P。
可选地,P个解调参考信号端口为W个解调参考信号端口中的前P个解调参考信号端口。
可选地,第一通信信道的传输方式包括以下至少之一:与第一通信信道相关的解调参考信号资源;第一通信信道传输所占用的时域资源;第一通信信道传输所占用的频域资源;第一通信信道传输所采用的传输方案;第一通信信道传输所采用的聚合级别;第一通信信道传输所采用的调制等级;第一通信信道传输所采用的编码等级;第一通信信道传输所对应的盲检测区域;第一通信信道传输所采用的发送波束;第一通信信道传输所对应的接收波束。
可选地,第二通信信道的传输方式包括以下至少之一:与第二通信信道相关的解调参考信号资源;第二通信信道传输所占用的时域资源;第二通信信道传输所占用的频域资源;第二通信信道传输所采用的传输方案;第二通信信道传输所采用的聚合级别;第二通信信道传输所采用的调制等级;第二通信信道传输所采用的编码等级;第二通信信道传输所对应的盲检测区域;第二通信信道传输所采用的发送波束;第二通信信道传输所对应的接收波束。
图9是本公开实施例提供的基站的结构框图,如图9所示,该基站90包括上述任一项的通信信道的传输装置70。
图10是本公开实施例提供的通信信道的接收装置的结构框图,如图10所示,该通信信道的接收装置100包括:第一接收模块102,第一获取模块104,下面对该装置进行说明。
第一接收模块102,用于接收第一通信信道;第一获取模块104,连接至上述第一接收模块102,用于通过第一通信信道的传输方式和/或第一通信信道所承载的信令获取以下信息至少之一:终端调度信息,第二通信信道的传输方式。
可选地,终端调度信息包括:终端分组信息,其中,终端分组信息包括一个或多个终端分组的指示信息。
可选地,终端分组信息包括以下之一:当前的调度时间单元内的终端分组信息;指定的调度时间单元内的终端分组信息;从当前的调度时间单元开始的指定的持续时间段内的终端分组信息;从指定的调度时间单元开始并且指定的持续时间段内的终端分组信息;其中,调度时间单元包括一个或多个时间单元,时间单元包括以下之一:时隙、子帧、帧、符号、微时隙。
图11是本公开实施例提供的通信信道的接收装置的优选结构框图一,如图11所示,该装置除包括图10所示的结构外,还包括:第一确定模块112,第一判断模块114和第二接收模块116,下面对该优选结构进行说明。
第一确定模块112,连接至上述第一获取模块104,用于根据终端调度信息确定被调度或未被调度的终端分组;第一判断模块114,连接至上述第一确定模块112,用于判断接收第一通信信道的终端是否属于被调度的终端分组;第二接收模块116,连接至上述第一判断模块114,用于在第一判断模块114的判断结果为是的情况下,在述终端调度信息对应的时间内尝试接收第一通信信道和/或第二通信信道。
可选地,指定的调度时间单元,或者,指定的持续时间段通过以下方式之一获取:第一通信信道所承载的信令,高层信令。
图12是本公开实施例提供的通信信道的接收装置的优选结构框图二,如图12所示,该装置除包括图10所示的结构外,还包括:第二分组模块122,下面对该第二分组模块122进行说明。
第二分组模块122,连接至上述第一接收模块102,用于按照预定义的方式对终端进行分组。
可选地,上述第二分组模块122,还用于通过以下方式之一对终端进行分组:UE_ID mod M=i;(UE_ID mod M+Offset)mod M=i;Offset mod M=i;其中,UE_ID表示终端标识,M表示共有M个分组并且M的值为非负整数,Offset为预定值,i∈{0~M-1}表示将终端标识为UE_ID的终端划分到第i个分组。
可选地,Offset为取值范围为{0~M-1}的整数;和/或,Offset的默认的取值为0。
可选地,第二分组模块122,还用于按照终端能力对终端进行分组,其中,终端能力和终端分组之间存在预定义的对应关系,终端能力包括以下至少之一:终端的带宽能力、终端 的波束能力、终端所能支持的业务类型。
可选地,第一获取模块102,还用于通过第一通信信道的传输方式获取第二通信信道的传输方式:第一通信信道的传输方式与第二通信信道的传输方式之间存在预定义的对应关系。
可选地,通过第一通信信道的传输方式获取第二通信信道的传输方式包括:通过第一通信信道的传输方案获取第二通信信道的传输方案,其中,第一通信信道的传输方案与第二通信信道的传输方案之间存在预定义的对应关系。
可选地,通过第一通信信道的传输方式获取第二通信信道的传输方式包括:通过第一通信信道的聚合级别获取第二通信信道的调制和/或编码等级,其中,第一通信信道的聚合级别和第二通信信道的调制和/或编码等级之间存在预定义的对应关系。
可选地,第一通信信道包括:控制信道,或者,广播信道。
可选地,第二通信信道包括:控制信道,或者,数据信道。
可选地,第一通信信道为控制信道,其中,控制信道包括:公有控制信道,或者,多个终端共享的控制信道。
可选地,第一接收模块102,还用于在指定的时间单元图样上接收控制信道,其中,指定的时间单元图样包括一个或多个时间单元,时间单元包括以下之一:时隙、子帧、帧、符号、或者微时隙。
可选地,指定的时间单元图样通过以下方式至少之一确定:预定义方式确定,广播信道接收,同步信号接收,高层信令接收。
可选地,第一接收模块102,还用于在指定的多个时间单元上重复接收控制信道,其中,在多个时间单元上分别采用不同的接收波束或接收波束组接收控制信道。
可选地,包括以下至少之一:接收控制信道的接收波束的接收顺序与同步信号所采用的接收波束或接收波束组的传输顺序之间存在预定义的对应关系;接收控制信道的接收波束的接收顺序与广播信道所采用的接收波束或接收波束组的接收顺序之间存在预定义的对应关系;接收控制信道的时间单元与接收同步信号的时间单元之间存在预定义的对应关系;接收控制信道的时间单元与接收广播信道的时间单元之间存在预定义的对应关系。
可选地,第一通信信道为终端专有的控制信道,其中,终端专有的控制信道包括以下特征至少之一:支持多流/多层传输;支持空间复用传输方案;支持QPSK以上的调制方式;在数据信道区域传输;支持MCS自适应传输;支持rank自适应传输。
可选地,第一接收模块102,还用于实现第一通信信道的接收支持混合自动重传请求HARQ传输机制。
可选地,第一接收模块102,还用于向基站反馈第一通信信道的确认ACK信息,或者,非确认NACK信息,其中,ACK信息用于表示第一通信信道被正确接收,NACK信息表示第一通信信道没有被正确接收。
可选地,第一接收模块102,还用于根据向基站反馈的ACK信息或者NACK信息,接收第二通信信道,其中,当向基站反馈ACK信息时,根据第一控制信道的指示接收第二通 信信道,当向基站反馈NACK信息时,根据第二控制信道的指示接收第二通信信道,其中第一控制信道为第一通信信道,第二控制信道为区别于第一控制信道的其它的控制信道。
可选地,第一接收模块102,还用于:在第二通信信道的传输区域中指定的传输区域接收第一通信信道;基于第二通信信道的解调参考信号资源中指定的解调参考信号资源接收第一通信信道;第一通信信道接收所支持的最大传输层数小于第二通信信道所支持的最大传输层数。
可选地,第一接收模块102,还用于实现以下至少之一:第二通信信道的解调参考信号资源中指定的解调参考信号资源在第二通信信道的传输区域中指定的传输区域传输;第二通信信道的解调参考信号资源中除指定的解调参考信号资源之外的解调参考信号资源在第二通信信道的传输区域中除指定的传输区域之外的传输区域传输。
可选地,第一接收模块102,还用于实现以下至少之一:第二通信信道的解调参考信号资源中指定的解调参考信号资源位于第二通信信道的传输区域中指定的传输区域中的时域上开始的一个或多个符号位置;第二通信信道的解调参考信号资源中除指定的解调参考信号资源之外的解调参考信号资源位于第二通信信道的传输区域中除指定的传输区域之外的传输区域中的时域上开始的一个或多个符号位置。
可选地,第一接收模块102,还用于基于第二通信信道的P个解调参考信号端口接收第一通信信道,其中,P个解调参考信号端口为指定的解调参考信号资源,第二通信信道的解调参考信号资源中包括W个解调参考信号端口,W和P均为正整数,并且W的值大于P。
可选地,P个解调参考信号端口为W个解调参考信号端口中的前P个解调参考信号端口。
可选地,第一通信信道的传输方式包括以下至少之一:与第一通信信道相关的解调参考信号资源;第一通信信道传输所占用的时域资源;第一通信信道传输所占用的频域资源;第一通信信道传输所采用的传输方案;第一通信信道传输所采用的聚合级别;第一通信信道传输所采用的调制等级;第一通信信道传输所采用的编码等级;第一通信信道传输所对应的盲检测区域;第一通信信道传输所采用的发送波束;第一通信信道传输所对应的接收波束。
可选地,第二通信信道的传输方式包括以下至少之一:与第二通信信道相关的解调参考信号资源;第二通信信道传输所占用的时域资源;第二通信信道传输所占用的频域资源;第二通信信道传输所采用的传输方案;第二通信信道传输所采用的聚合级别;第二通信信道传输所采用的调制等级;第二通信信道传输所采用的编码等级;第二通信信道传输所对应的盲检测区域;第二通信信道传输所采用的发送波束;第二通信信道传输所对应的接收波束。
图13是本公开实施例提供的终端的结构框图,如图13所示,该终端130包括上述任一项的通信信道的接收装置100。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本公开的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被 设置为存储用于执行以下步骤的程序代码:
S1,传输第一通信信道,其中,通过第一通信信道的传输方式和/或第一通信信道所承载的信令指示以下信息至少之一:终端调度信息,第二通信信道的传输方式。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,终端调度信息包括:终端分组信息,其中,终端分组信息包括一个或多个终端分组的指示信息。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,终端分组信息包括以下之一:当前的调度时间单元内的终端分组信息;指定的调度时间单元内的终端分组信息;从当前的调度时间单元开始的指定的持续时间段内的终端分组信息;从指定的调度时间单元开始并且指定的持续时间段内的终端分组信息;其中,调度时间单元包括一个或多个时间单元,时间单元包括以下之一:时隙、子帧、帧、符号、微时隙。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,指定的调度时间单元,或者,指定的持续时间段通过以下方式之一指示:第一通信信道所承载的信令,高层信令。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
在传输第一通信信道之前,还包括:
S1,按照预定义的方式对终端进行分组。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,按照预定义的方式对终端进行分组包括:通过以下方式之一对终端进行分组:UE_ID mod M=i;(UE_ID mod M+Offset)mod M=i;Offset mod M=i;其中,UE_ID表示终端标识,M表示共有M个分组并且M的值为非负整数,Offset为预定值,i∈{0~M-1}表示将终端标识为UE_ID的终端划分到第i个分组。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,Offset为取值范围为{0~M-1}的整数;和/或,Offset的默认的取值为0。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
按照预定义的方式对终端进行分组包括:
S1,按照终端能力对终端进行分组,其中,终端能力和终端分组之间存在预定义的对应关系,终端能力包括以下至少之一:终端的带宽能力、终端的波束能力、终端所能支持的业务类型。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,通过第一通信信道的传输方式指示第二通信信道的传输方式包括:第一通信信道的传输方式与第二通信信道的传输方式之间存在预定义的对应关系。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
通过第一通信信道的传输方式指示第二通信信道的传输方式包括:
S1,通过第一通信信道的传输方案指示第二通信信道的传输方案,其中,第一通信信道的传输方案与第二通信信道的传输方案之间存在预定义的对应关系。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
通过第一通信信道的传输方式指示第二通信信道的传输方式包括:
S1,通过第一通信信道的聚合级别指示第二通信信道的调制和/或编码等级,其中,第一通信信道的聚合级别和第二通信信道的调制和/或编码等级之间存在预定义的对应关系。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,第一通信信道包括:控制信道,或者,广播信道。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,第二通信信道包括:控制信道,或者,数据信道。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,第一通信信道为控制信道,其中,控制信道包括:公有控制信道,或者,多个终端共享的控制信道。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
传输第一通信信道包括:
S1,在指定的时间单元图样上传输控制信道,其中,指定的时间单元图样包括一个或多个时间单元,时间单元包括以下之一:时隙、子帧、帧、符号、或者微时隙。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,指定的时间单元图样通过以下方式至少之一确定:预定义方式确定,广播信道指示,同步信号指示,高层信令指示。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
传输第一通信信道包括:
S1,在指定的多个时间单元上重复传输控制信道,其中,在多个时间单元上分别采用不同的发送波束或发送波束组传输控制信道。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,包括以下至少之一:传输控制信道的发送波束的传输顺序与同步信号所采用的发送波束或发送波束组的传输顺序之间存在预定义的对应关系;传输控制信道的发送波束的传输顺序与广播信道所采用的发送波束或发送波束组的传输顺序之间存在预定义的对应关系;传输控制信道的时间单元与传输同步信号的时间单元之间存在预定义的对应关系;传输控制信道的时间单元与传输广播信道的时间单元之间存在预定义的对应关系。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,第一通信信道为终端专有的控制信道,其中,终端专有的控制信道包括以下特征至少之一:支持多流/多层传输;支持空间复用传输方案;支持QPSK以上的调制方式;在数据信道区域传输;支持MCS自适应传输;支持rank自适应传输。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
传输第一通信信道包括:
S1,第一通信信道的传输支持混合自动重传请求HARQ传输机制。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
第一通信信道的传输支持混合自动重传请求HARQ传输机制包括:
S1,接收第一通信信道的确认ACK信息,或者,非确认NACK信息,其中,ACK信息用于表示第一通信信道被正确接收,NACK信息表示第一通信信道没有被正确接收。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
第一通信信道的传输支持混合自动重传请求HARQ传输机制还包括:
S1,根据接收的ACK信息或者NACK信息,传输第二通信信道,其中,当接收到ACK信息时,根据第一控制信道的指示传输第二通信信道,当接收到NACK信息时,根据第二控制信道的指示传输第二通信信道,其中第一控制信道为第一通信信道,第二控制信道为区别于第一控制信道的其它的控制信道。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,传输第一通信信道包括以下至少之一:第一通信信道在第二通信信道的传输区域中指定的传输区域传输;第一通信信道基于第二通信信道的解调参考信号资源中指定的解调参考信号资源传输;第一通信信道传输所支持的最大传输层数小于第二通信信道所支持的最大传输层数。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,传输第一通信信道包括以下至少之一:第二通信信道的解调参考信号资源中指定的解调参考信号资源在第二通信信道的传输区域中指定的传输区域传输;第二通信信道的解调参考信号资源中除指定的解调参考信号资源之外的解调参考信号资源在第二通信信道的传输区域中除指定的传输区域之外的传输区域传输。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,传输第一通信信道包括以下至少之一:第二通信信道的解调参考信号资源中指定的解调参考信号资源位于第二通信信道的传输区域中指定的传输区域中的时域上开始的一个或多个符号位置;第二通信信道的解调参考信号资源中除指定的解调参考信号资源之外的解调参考信号资源位于第二通信信道的传输区域中除指定的传输区域之外的传输区域中的时域上开始的一个或多个符号位置。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,第一通信信道基于第二通信信道的解调参考信号资源中指定的解调参考信号资源传输包括:第一通信信道基于第二通信信道的P个解调参考信号端口传输,其中,P个解调参考信号端口为指定的解调参考信号资源,第二通信信道的解调参考信号资源中包括W个解调参考信号端口,W和P均为正整数,并且W的值大于P。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,指定的解调参考信号资源包括:P个解调参考信号端口为W个解调参考信号端口中的前P个解调参考信号端口。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,第一通信信道的传输方式包括以下至少之一:与第一通信信道相关的解调参考信号资源;第一通信信道传输所占用的时域资源;第一通信信道传输所占用的频域资源;第一通 信信道传输所采用的传输方案;第一通信信道传输所采用的聚合级别;第一通信信道传输所采用的调制等级;第一通信信道传输所采用的编码等级;第一通信信道传输所对应的盲检测区域;第一通信信道传输所采用的发送波束;第一通信信道传输所对应的接收波束。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,第二通信信道的传输方式包括以下至少之一:与第二通信信道相关的解调参考信号资源;第二通信信道传输所占用的时域资源;第二通信信道传输所占用的频域资源;第二通信信道传输所采用的传输方案;第二通信信道传输所采用的聚合级别;第二通信信道传输所采用的调制等级;第二通信信道传输所采用的编码等级;第二通信信道传输所对应的盲检测区域;第二通信信道传输所采用的发送波束;第二通信信道传输所对应的接收波束。
根据本公开的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
S1,接收第一通信信道;
S2,通过第一通信信道的传输方式和/或第一通信信道所承载的信令获取以下信息至少之一:终端调度信息,第二通信信道的传输方式。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,终端调度信息包括:终端分组信息,其中,终端分组信息包括一个或多个终端分组的指示信息。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,终端分组信息包括以下之一:当前的调度时间单元内的终端分组信息;指定的调度时间单元内的终端分组信息;从当前的调度时间单元开始的指定的持续时间段内的终端分组信息;从指定的调度时间单元开始并且指定的持续时间段内的终端分组信息;其中,调度时间单元包括一个或多个时间单元,时间单元包括以下之一:时隙、子帧、帧、符号、微时隙。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,在获取终端调度信息之后,还包括:根据终端调度信息确定被调度或未被调度的终端分组;判断接收第一通信信道的终端是否属于被调度的终端分组;在判断结果为是的情况下,在述终端调度信息对应的时间内尝试接收第一通信信道和/或第二通信信道。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,指定的调度时间单元,或者,指定的持续时间段通过以下方式之一获取:第一通信信道所承载的信令,高层信令。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,在接收第一通信信道之前,还包括:按照预定义的方式对终端进行分组。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,按照预定义的方式对终端进行分组包括:通过以下方式之一对终端进行分组:UE_ID mod M=i;(UE_ID mod M+Offset)mod M=i;Offset mod M=i;其中,UE_ID表示终端标识,M表示共有M个分组并且M的值为非负整数,Offset为预定值,i∈{0~M-1}表示将终端标识为UE_ID的终端划分到第i个分组。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,Offset为取值范围为{0~M-1}的整数;和/或,Offset的默认的取值为0。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
按照预定义的方式对终端进行分组包括:
S1,按照终端能力对终端进行分组,其中,终端能力和终端分组之间存在预定义的对应关系,终端能力包括以下至少之一:终端的带宽能力、终端的波束能力、终端所能支持的业务类型。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
通过第一通信信道的传输方式获取第二通信信道的传输方式包括:
S1,第一通信信道的传输方式与第二通信信道的传输方式之间存在预定义的对应关系。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
通过第一通信信道的传输方式获取第二通信信道的传输方式包括:
S1,通过第一通信信道的传输方案获取第二通信信道的传输方案,其中,第一通信信道的传输方案与第二通信信道的传输方案之间存在预定义的对应关系。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
通过第一通信信道的传输方式获取第二通信信道的传输方式包括:
S1,通过第一通信信道的聚合级别获取第二通信信道的调制和/或编码等级,其中,第一通信信道的聚合级别和第二通信信道的调制和/或编码等级之间存在预定义的对应关系。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,第一通信信道包括:控制信道,或者,广播信道。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,第二通信信道包括:控制信道,或者,数据信道。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,第一通信信道为控制信道,其中,控制信道包括:公有控制信道,或者,多个终端共享的控制信道。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
接收第一通信信道包括:
S1,在指定的时间单元图样上接收控制信道,其中,指定的时间单元图样包括一个或多个时间单元,时间单元包括以下之一:时隙、子帧、帧、符号、或者微时隙。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,指定的时间单元图样通过以下方式至少之一确定:预定义方式确定,广播信道接收,同步信号接收,高层信令接收。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
接收第一通信信道包括:
S1,在指定的多个时间单元上重复接收控制信道,其中,在多个时间单元上分别采用不同的接收波束或接收波束组接收控制信道。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,包括以下至少之一:接收控制信道的接收波束的接收顺序与同步信号所采用的接收波束或接收波束组的传输顺序之间存在预定义的对应关系;接收控制信道的接收波束的接收顺序与广播信道所采用的接收波束或接收波束组的接收顺序之间存在预定义的对应关系;接收控制信道的时间单元与接收同步信号的时间单元之间存在预定义的对应关系;接收控制信道的时间单元与接收广播信道的时间单元之间存在预定义的对应关系。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,第一通信信道为终端专有的控制信道,其中,终端专有的控制信道包括以下特征至少之一:支持多流/多层传输;支持空间复用传输方案;支持QPSK以上的调制方式;在数据信道区域传输;支持MCS自适应传输;支持rank自适应传输。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
接收第一通信信道包括:
S1,第一通信信道的接收支持混合自动重传请求HARQ传输机制。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
第一通信信道的接收支持混合自动重传请求HARQ传输机制包括:
S1,向基站反馈第一通信信道的确认ACK信息,或者,非确认NACK信息,其中,ACK信息用于表示第一通信信道被正确接收,NACK信息表示第一通信信道没有被正确接收。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
第一通信信道的接收支持混合自动重传请求HARQ传输机制包括:
S1,根据向基站反馈的ACK信息或者NACK信息,接收第二通信信道,其中,当向基站反馈ACK信息时,根据第一控制信道的指示接收第二通信信道,当向基站反馈NACK信息时,根据第二控制信道的指示接收第二通信信道,其中第一控制信道为第一通信信道,第二控制信道为区别于第一控制信道的其它的控制信道。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,接收第一通信信道包括以下至少之一:在第二通信信道的传输区域中指定的传输区域接收第一通信信道;基于第二通信信道的解调参考信号资源中指定的解调参考信号资源接收第一通信信道;第一通信信道接收所支持的最大传输层数小于第二通信信道所支持的最大传输层数。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,接收第一通信信道包括以下至少之一:第二通信信道的解调参考信号资源中指定的解调参考信号资源在第二通信信道的传输区域中指定的传输区域传输;第二通信信道的解调参考信号资源中除指定的解调参考信号资源之外的解调参考信号资源在第二通信信道的传输区域中除指定的传输区域之外的传输区域传输。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,接收第一通信信道包括以下至少之一:第二通信信道的解调参考信号资源中指定的解调参考信号资源位于第二通信信道的传输区域中指定的传输区域中的时域上开始的一个 或多个符号位置;第二通信信道的解调参考信号资源中除指定的解调参考信号资源之外的解调参考信号资源位于第二通信信道的传输区域中除指定的传输区域之外的传输区域中的时域上开始的一个或多个符号位置。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,基于第二通信信道的解调参考信号资源中指定的解调参考信号资源接收第一通信信道包括:基于第二通信信道的P个解调参考信号端口接收第一通信信道,其中,P个解调参考信号端口为指定的解调参考信号资源,第二通信信道的解调参考信号资源中包括W个解调参考信号端口,W和P均为正整数,并且W的值大于P。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,指定的解调参考信号资源包括:P个解调参考信号端口为W个解调参考信号端口中的前P个解调参考信号端口。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,第一通信信道的传输方式包括以下至少之一:与第一通信信道相关的解调参考信号资源;第一通信信道传输所占用的时域资源;第一通信信道传输所占用的频域资源;第一通信信道传输所采用的传输方案;第一通信信道传输所采用的聚合级别;第一通信信道传输所采用的调制等级;第一通信信道传输所采用的编码等级;第一通信信道传输所对应的盲检测区域;第一通信信道传输所采用的发送波束;第一通信信道传输所对应的接收波束。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:
S1,第二通信信道的传输方式包括以下至少之一:与第二通信信道相关的解调参考信号资源;第二通信信道传输所占用的时域资源;第二通信信道传输所占用的频域资源;第二通信信道传输所采用的传输方案;第二通信信道传输所采用的聚合级别;第二通信信道传输所采用的调制等级;第二通信信道传输所采用的编码等级;第二通信信道传输所对应的盲检测区域;第二通信信道传输所采用的发送波束;第二通信信道传输所对应的接收波束。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述通信信道的传输、接收方法中的步骤。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开适用于通信领域,用以有效地解决了在相关技术中,通信信道的传输存在资源开销大,接收复杂度高的问题,从而达到了有效降低资源开销,而且也能够有效降低对通信信道的接收复杂度。

Claims (65)

  1. 一种通信信道的传输方法,包括:
    传输第一通信信道,其中,通过所述第一通信信道的传输方式和/或所述第一通信信道所承载的信令指示以下信息至少之一:终端调度信息,第二通信信道的传输方式。
  2. 根据权利要求1所述的方法,其中,
    所述终端调度信息包括:终端分组信息,其中,所述终端分组信息包括一个或多个终端分组的指示信息。
  3. 根据权利要求2所述的方法,其中,所述终端分组信息包括以下之一:
    当前的调度时间单元内的终端分组信息;
    指定的调度时间单元内的终端分组信息;
    从当前的调度时间单元开始的指定的持续时间段内的终端分组信息;
    从指定的调度时间单元开始并且指定的持续时间段内的终端分组信息;
    其中,所述调度时间单元包括一个或多个时间单元,所述时间单元包括以下之一:时隙、子帧、帧、符号、微时隙。
  4. 根据权利要求3所述的方法,其中,所述指定的调度时间单元,或者,所述指定的持续时间段通过以下方式之一指示:所述第一通信信道所承载的信令,高层信令。
  5. 根据权利要求1所述的方法,还包括:
    按照预定义的方式对终端进行分组。
  6. 根据权利要求5所述的方法,其中,按照预定义的方式对终端进行分组包括:
    通过以下方式之一对终端进行分组:
    UE_ID mod M=i;
    (UE_ID mod M+Offset)mod M=i;
    Offset mod M=i;
    其中,UE_ID表示终端标识,M表示共有M个分组并且M的值为非负整数,Offset为预定值,i∈{0~M-1}表示将终端标识为UE_ID的终端划分到第i个分组。
  7. 根据权利要求6所述的方法,其中,
    Offset为取值范围为{0~M-1}的整数;和/或,
    Offset的默认的取值为0。
  8. 根据权利要求5所述的方法,其中,按照预定义的方式对终端进行分组包括:
    按照终端能力对终端进行分组,其中,所述终端能力和终端分组之间存在预定义的对应关系,所述终端能力包括以下至少之一:终端的带宽能力、终端的波束能力、终端所能支持的业务类型。
  9. 根据权利要求1所述的方法,其中,通过所述第一通信信道的传输方式指示所述第二通信信道的传输方式包括:
    所述第一通信信道的传输方式与所述第二通信信道的传输方式之间存在预定义的对应关系。
  10. 根据权利要求9所述的方法,其中,通过所述第一通信信道的传输方式指示所述第二通信信道的传输方式包括:
    通过所述第一通信信道的传输方案指示所述第二通信信道的传输方案,其中,所述第一通信信道的传输方案与所述第二通信信道的传输方案之间存在预定义的对应关系。
  11. 根据权利要求9所述的方法,其中,通过所述第一通信信道的传输方式指示所述第二通信信道的传输方式包括:
    通过所述第一通信信道的聚合级别指示所述第二通信信道的调制和/或编码等级,其中,所述第一通信信道的聚合级别和所述第二通信信道的调制和/或编码等级之间存在预定义的对应关系。
  12. 根据权利要求1所述的方法,其中,
    所述第一通信信道包括:控制信道,或者,广播信道。
  13. 根据权利要求1所述的方法,其中,
    所述第二通信信道包括:控制信道,或者,数据信道。
  14. 根据权利要求12所述的方法,其中,
    所述第一通信信道为控制信道,其中,所述控制信道包括:公有控制信道,或者,多个终端共享的控制信道。
  15. 根据权利要求14所述的方法,其中,传输所述第一通信信道包括:
    在指定的时间单元图样上传输所述控制信道,其中,所述指定的时间单元图样包括一个或多个时间单元,所述时间单元包括以下之一:时隙、子帧、帧、符号、或者微时隙。
  16. 根据权利要求15所述的方法,其中,所述指定的时间单元图样通过以下方式至少之一确定:预定义方式确定,广播信道指示,同步信号指示,高层信令指示。
  17. 根据权利要求14所述的方法,其中,传输所述第一通信信道包括:
    在指定的多个时间单元上重复传输所述控制信道,其中,在所述多个时间单元上分别采用不同的发送波束或发送波束组传输所述控制信道。
  18. 根据权利要求17所述的方法,包括以下至少之一:
    传输所述控制信道的发送波束的传输顺序与同步信号所采用的发送波束或发送波束组的传输顺序之间存在预定义的对应关系;
    传输所述控制信道的发送波束的传输顺序与广播信道所采用的发送波束或发送波束组的传输顺序之间存在预定义的对应关系;
    传输所述控制信道的时间单元与传输同步信号的时间单元之间存在预定义的对应关系;
    传输所述控制信道的时间单元与传输广播信道的时间单元之间存在预定义的对应关系。
  19. 根据权利要求12所述的方法,其中,
    所述第一通信信道为终端专有的控制信道,其中,所述终端专有的控制信道包括以下特征至少之一:
    支持多流/多层传输;
    支持空间复用传输方案;
    支持QPSK以上的调制方式;
    在数据信道区域传输;
    支持MCS自适应传输;
    支持rank自适应传输。
  20. 根据权利要求19所述的方法,其中,传输所述第一通信信道包括:所述第一通信信道的传输支持混合自动重传请求HARQ传输机制。
  21. 根据权利要求20所述的方法,其中,所述第一通信信道的传输支持混合自动重传请求HARQ传输机制包括:
    接收第一通信信道的确认ACK信息,或者,非确认NACK信息,其中,所述ACK信息用于表示所述第一通信信道被正确接收,所述NACK信息表示所述第一通信信道没有被正确接收。
  22. 根据权利要求21所述的方法,其中,所述第一通信信道的传输支持混合自动重传请求HARQ传输机制还包括:
    根据接收的所述ACK信息或者NACK信息,传输所述第二通信信道,其中,当接收到所述ACK信息时,根据第一控制信道的指示传输所述第二通信信道,当接收到所述NACK信息时,根据第二控制信道的指示传输所述第二通信信道,其中所述第一控制信道为所述第一通信信道,所述第二控制信道为区别于所述第一控制信道的其它的控制信道。
  23. 根据权利要求12所述的方法,其中,传输所述第一通信信道包括以下至少之一:
    所述第一通信信道在所述第二通信信道的传输区域中指定的传输区域传输;
    所述第一通信信道基于所述第二通信信道的解调参考信号资源中指定的解调参考信号资源传输;
    所述第一通信信道传输所支持的最大传输层数小于所述第二通信信道所支持的最大传输层数。
  24. 根据权利要求23所述的方法,其中,传输所述第一通信信道包括以下至少之一:
    所述第二通信信道的解调参考信号资源中指定的解调参考信号资源在所述第二通信信道的传输区域中指定的传输区域传输;
    所述第二通信信道的解调参考信号资源中除所述指定的解调参考信号资源之外的解调参考信号资源在所述第二通信信道的传输区域中除所述指定的传输区域之外的传输区域传输。
  25. 根据权利要求24所述的方法,其中,传输所述第一通信信道包括以下至少之一:
    所述第二通信信道的解调参考信号资源中指定的解调参考信号资源位于所述第二通信信道的传输区域中指定的传输区域中的时域上开始的一个或多个符号位置;
    所述第二通信信道的解调参考信号资源中除所述指定的解调参考信号资源之外的解调参考信号资源位于所述第二通信信道的传输区域中除所述指定的传输区域之外的传输区域中的时域上开始的一个或多个符号位置。
  26. 根据权利要求23所述的方法,其中,所述第一通信信道基于所述第二通信信道的解调参考信号资源中指定的解调参考信号资源传输包括:
    所述第一通信信道基于所述第二通信信道的P个解调参考信号端口传输,其中,所述P个解调参考信号端口为所述指定的解调参考信号资源,所述第二通信信道的解调参考信号资源中包括W个解调参考信号端口,W和P均为正整数,并且W的值大于P。
  27. 根据权利要求26所述的方法,其中,所述指定的解调参考信号资源包括:
    所述P个解调参考信号端口为所述W个解调参考信号端口中的前P个解调参考信号端口。
  28. 根据权利要求1至27中任一项所述的方法,其中,所述第一通信信道的传输方式包括以下至少之一:
    与所述第一通信信道相关的解调参考信号资源;
    所述第一通信信道传输所占用的时域资源;
    所述第一通信信道传输所占用的频域资源;
    所述第一通信信道传输所采用的传输方案;
    所述第一通信信道传输所采用的聚合级别;
    所述第一通信信道传输所采用的调制等级;
    所述第一通信信道传输所采用的编码等级;
    所述第一通信信道传输所对应的盲检测区域;
    所述第一通信信道传输所采用的发送波束;
    所述第一通信信道传输所对应的接收波束。
  29. 根据权利要求1至27中任一项所述的方法,其中,所述第二通信信道的传输方式包括以下至少之一:
    与所述第二通信信道相关的解调参考信号资源;
    所述第二通信信道传输所占用的时域资源;
    所述第二通信信道传输所占用的频域资源;
    所述第二通信信道传输所采用的传输方案;
    所述第二通信信道传输所采用的聚合级别;
    所述第二通信信道传输所采用的调制等级;
    所述第二通信信道传输所采用的编码等级;
    所述第二通信信道传输所对应的盲检测区域;
    所述第二通信信道传输所采用的发送波束;
    所述第二通信信道传输所对应的接收波束。
  30. 一种通信信道的接收方法,包括:
    接收第一通信信道;
    通过所述第一通信信道的传输方式和/或所述第一通信信道所承载的信令获取以下信息至少之一:终端调度信息,第二通信信道的传输方式。
  31. 根据权利要求30所述的方法,其中,
    所述终端调度信息包括:终端分组信息,其中,所述终端分组信息包括一个或多个终端分组的指示信息。
  32. 根据权利要求31所述的方法,其中,所述终端分组信息包括以下之一:
    当前的调度时间单元内的终端分组信息;
    指定的调度时间单元内的终端分组信息;
    从当前的调度时间单元开始的指定的持续时间段内的终端分组信息;
    从指定的调度时间单元开始并且指定的持续时间段内的终端分组信息;
    其中,所述调度时间单元包括一个或多个时间单元,所述时间单元包括以下之一:时隙、子帧、帧、符号、微时隙。
  33. 根据权利要求32所述的方法,其中,在获取所述终端调度信息之后,还包括:
    根据所述终端调度信息确定被调度或未被调度的终端分组;
    判断接收所述第一通信信道的终端是否属于被调度的终端分组;
    在判断结果为是的情况下,在所述述终端调度信息对应的时间内尝试接收所述第一通信信道和/或所述第二通信信道。
  34. 根据权利要求32所述的方法,其中,所述指定的调度时间单元,或者,所述指定的持续时间段通过以下方式之一获取:所述第一通信信道所承载的信令,高层信令。
  35. 根据权利要求30所述的方法,其中,在接收所述第一通信信道之前,还包括:
    按照预定义的方式对终端进行分组。
  36. 根据权利要求35所述的方法,其中,按照预定义的方式对终端进行分组包括:
    通过以下方式之一对终端进行分组:
    UE_ID mod M=i;
    (UE_ID mod M+Offset)mod M=i;
    Offset mod M=i;
    其中,UE_ID表示终端标识,M表示共有M个分组并且M的值为非负整数,Offset为预定值,i∈{0~M-1}表示将终端标识为UE_ID的终端划分到第i个分组。
  37. 根据权利要求36所述的方法,其中,
    Offset为取值范围为{0~M-1}的整数;和/或,
    Offset的默认的取值为0。
  38. 根据权利要求35所述的方法,其中,按照预定义的方式对终端进行分组包括:
    按照终端能力对终端进行分组,其中,所述终端能力和终端分组之间存在预定义的对应关系,所述终端能力包括以下至少之一:终端的带宽能力、终端的波束能力、终端所能支持的业务类型。
  39. 根据权利要求30所述的方法,其中,通过所述第一通信信道的传输方式获取所述第二通信信道的传输方式包括:
    所述第一通信信道的传输方式与所述第二通信信道的传输方式之间存在预定义的对应关系。
  40. 根据权利要求39所述的方法,其中,通过所述第一通信信道的传输方式获取所述第二通信信道的传输方式包括:
    通过所述第一通信信道的传输方案获取所述第二通信信道的传输方案,其中,所述第一通信信道的传输方案与所述第二通信信道的传输方案之间存在预定义的对应关系。
  41. 根据权利要求39所述的方法,其中,通过所述第一通信信道的传输方式获取所述第二通信信道的传输方式包括:
    通过所述第一通信信道的聚合级别获取所述第二通信信道的调制和/或编码等级,其中,所述第一通信信道的聚合级别和所述第二通信信道的调制和/或编码等级之间存在预定义的对应关系。
  42. 根据权利要求30所述的方法,其中,
    所述第一通信信道包括:控制信道,或者,广播信道。
  43. 根据权利要求30所述的方法,其中,
    所述第二通信信道包括:控制信道,或者,数据信道。
  44. 根据权利要求42所述的方法,其中,
    所述第一通信信道为控制信道,其中,所述控制信道包括:公有控制信道,或者,多个终端共享的控制信道。
  45. 根据权利要求44所述的方法,其中,接收所述第一通信信道包括:
    在指定的时间单元图样上接收所述控制信道,其中,所述指定的时间单元图样包括一个或多个时间单元,所述时间单元包括以下之一:时隙、子帧、帧、符号、或者微时隙。
  46. 根据权利要求45所述的方法,其中,所述指定的时间单元图样通过以下方式至少之一确定:预定义方式确定,广播信道接收,同步信号接收,高层信令接收。
  47. 根据权利要求44所述的方法,其中,接收所述第一通信信道包括:
    在指定的多个时间单元上重复接收所述控制信道,其中,在所述多个时间单元上分别采用不同的接收波束或接收波束组接收所述控制信道。
  48. 根据权利要求47所述的方法,包括以下至少之一:
    接收所述控制信道的接收波束的接收顺序与同步信号所采用的接收波束或接收波束组的传输顺序之间存在预定义的对应关系;
    接收所述控制信道的接收波束的接收顺序与广播信道所采用的接收波束或接收波束组的接收顺序之间存在预定义的对应关系;
    接收所述控制信道的时间单元与接收同步信号的时间单元之间存在预定义的对应关系;
    接收所述控制信道的时间单元与接收广播信道的时间单元之间存在预定义的对应关系。
  49. 根据权利要求42所述的方法,其中,
    所述第一通信信道为终端专有的控制信道,其中,所述终端专有的控制信道包括以下特征至少之一:
    支持多流/多层传输;
    支持空间复用传输方案;
    支持QPSK以上的调制方式;
    在数据信道区域传输;
    支持MCS自适应传输;
    支持rank自适应传输。
  50. 根据权利要求49所述的方法,其中,接收所述第一通信信道包括:所述第一通信信道的接收支持混合自动重传请求HARQ传输机制。
  51. 根据权利要求49所述的方法,其中,所述第一通信信道的接收支持混合自动重传请求HARQ传输机制包括:
    向基站反馈第一通信信道的确认ACK信息,或者,非确认NACK信息,其中,所述ACK信息用于表示所述第一通信信道被正确接收,所述NACK信息表示所述第一通信信道没有被正确接收。
  52. 根据权利要求49所述的方法,其中,所述第一通信信道的接收支持混合自动重传请求HARQ传输机制包括:
    根据向所述基站反馈的所述ACK信息或者NACK信息,接收所述第二通信信道,其中,当向所述基站反馈所述ACK信息时,根据第一控制信道的指示接收所述第二通信信道,当向所述基站反馈所述NACK信息时,根据第二控制信道的指示接收所述第二通信信道,其中所述第一控制信道为所述第一通信信道,所述第二控制信道为区别于所述第一控制信道的其它的控制信道。
  53. 根据权利要求42所述的方法,其中,接收所述第一通信信道包括以下至少之一:
    在所述第二通信信道的传输区域中指定的传输区域接收所述第一通信信道;
    基于所述第二通信信道的解调参考信号资源中指定的解调参考信号资源接收所述第 一通信信道;
    所述第一通信信道接收所支持的最大传输层数小于所述第二通信信道所支持的最大传输层数。
  54. 根据权利要求53所述的方法,其中,接收所述第一通信信道包括以下至少之一:
    所述第二通信信道的解调参考信号资源中指定的解调参考信号资源在所述第二通信信道的传输区域中指定的传输区域传输;
    所述第二通信信道的解调参考信号资源中除所述指定的解调参考信号资源之外的解调参考信号资源在所述第二通信信道的传输区域中除所述指定的传输区域之外的传输区域传输。
  55. 根据权利要求54所述的方法,其中,接收所述第一通信信道包括以下至少之一:
    所述第二通信信道的解调参考信号资源中指定的解调参考信号资源位于所述第二通信信道的传输区域中指定的传输区域中的时域上开始的一个或多个符号位置;
    所述第二通信信道的解调参考信号资源中除所述指定的解调参考信号资源之外的解调参考信号资源位于所述第二通信信道的传输区域中除所述指定的传输区域之外的传输区域中的时域上开始的一个或多个符号位置。
  56. 根据权利要求53所述的方法,其中,基于所述第二通信信道的解调参考信号资源中指定的解调参考信号资源接收所述第一通信信道包括:
    基于所述第二通信信道的P个解调参考信号端口接收所述第一通信信道,其中,所述P个解调参考信号端口为所述指定的解调参考信号资源,所述第二通信信道的解调参考信号资源中包括W个解调参考信号端口,W和P均为正整数,并且W的值大于P。
  57. 根据权利要求56所述的方法,其中,所述指定的解调参考信号资源包括:
    所述P个解调参考信号端口为所述W个解调参考信号端口中的前P个解调参考信号端口。
  58. 根据权利要求30至57中任一项所述的方法,其中,所述第一通信信道的传输方式包括以下至少之一:
    与所述第一通信信道相关的解调参考信号资源;
    所述第一通信信道传输所占用的时域资源;
    所述第一通信信道传输所占用的频域资源;
    所述第一通信信道传输所采用的传输方案;
    所述第一通信信道传输所采用的聚合级别;
    所述第一通信信道传输所采用的调制等级;
    所述第一通信信道传输所采用的编码等级;
    所述第一通信信道传输所对应的盲检测区域;
    所述第一通信信道传输所采用的发送波束;
    所述第一通信信道传输所对应的接收波束。
  59. 根据权利要求30至57中任一项所述的方法,其中,所述第二通信信道的传输方式包括以下至少之一:
    与所述第二通信信道相关的解调参考信号资源;
    所述第二通信信道传输所占用的时域资源;
    所述第二通信信道传输所占用的频域资源;
    所述第二通信信道传输所采用的传输方案;
    所述第二通信信道传输所采用的聚合级别;
    所述第二通信信道传输所采用的调制等级;
    所述第二通信信道传输所采用的编码等级;
    所述第二通信信道传输所对应的盲检测区域;
    所述第二通信信道传输所采用的发送波束;
    所述第二通信信道传输所对应的接收波束。
  60. 一种通信信道的传输装置,包括:
    第一传输模块,设置为传输第一通信信道,其中,通过所述第一通信信道的传输方式和/或所述第一通信信道所承载的信令指示以下信息至少之一:终端调度信息,第二通信信道的传输方式。
  61. 一种基站,包括权利要求60所述的通信信道的传输装置。
  62. 一种通信信道的接收装置,包括:
    第一接收模块,设置为接收第一通信信道;
    第一获取模块,设置为通过所述第一通信信道的传输方式和/或所述第一通信信道所承载的信令获取以下信息至少之一:终端调度信息,第二通信信道的传输方式。
  63. 一种终端,包括权利要求62所述的通信信道的接收装置。
  64. 一种存储介质,设置为存储用于执行以下步骤的程序代码:
    传输第一通信信道,
    其中,通过所述第一通信信道的传输方式和/或所述第一通信信道所承载的信令指示以下信息至少之一:终端调度信息,第二通信信道的传输方式。
  65. 一种存储介质,设置为存储用于执行以下步骤的程序代码:
    接收第一通信信道;
    通过所述第一通信信道的传输方式和/或所述第一通信信道所承载的信令获取以下信息至少之一:终端调度信息,第二通信信道的传输方式。
PCT/CN2017/115349 2017-01-06 2017-12-09 通信信道的传输、接收方法、装置、基站及终端 WO2018126844A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710011834.6A CN108282270B (zh) 2017-01-06 2017-01-06 通信信道的传输、接收方法、装置、基站及终端
CN201710011834.6 2017-01-06

Publications (1)

Publication Number Publication Date
WO2018126844A1 true WO2018126844A1 (zh) 2018-07-12

Family

ID=62789046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115349 WO2018126844A1 (zh) 2017-01-06 2017-12-09 通信信道的传输、接收方法、装置、基站及终端

Country Status (2)

Country Link
CN (1) CN108282270B (zh)
WO (1) WO2018126844A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112153632A (zh) * 2019-06-27 2020-12-29 华为技术有限公司 一种能力上报的方法及通信装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115002911A (zh) 2018-06-15 2022-09-02 成都华为技术有限公司 重复传输方法和通信装置
CN110831234B (zh) * 2018-08-07 2022-05-10 华为技术有限公司 随机接入方法、通信装置、芯片及存储介质
CN110536261B (zh) * 2018-09-28 2023-06-30 中兴通讯股份有限公司 V2x通信方法及设备、计算机可读存储介质
CN110536433B (zh) * 2018-09-29 2023-09-01 中兴通讯股份有限公司 Dmrs处理方法、装置、系统、设备、终端、存储介质
CN111130614B (zh) * 2018-10-30 2021-10-26 华为技术有限公司 一种卫星通信的时延指示方法及装置
CN114423080A (zh) * 2019-01-18 2022-04-29 维沃移动通信有限公司 资源分配的方法和设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101801097A (zh) * 2010-01-08 2010-08-11 中兴通讯股份有限公司 物理上行共享信道调度信息的指示方法
WO2013107368A1 (zh) * 2012-01-21 2013-07-25 电信科学技术研究院 一种下行数据传输方法及其设备
CN103378939A (zh) * 2012-04-28 2013-10-30 电信科学技术研究院 一种下行数据传输方法及装置
CN104349431A (zh) * 2013-07-25 2015-02-11 北京久华信信息技术有限公司 一种无线通信系统下行指示信息的传输方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101815340A (zh) * 2009-02-19 2010-08-25 中国移动通信集团公司 一种基站和移动终端以及信令信息传送、接收方法及系统
CN102263616B (zh) * 2011-08-15 2018-07-20 中兴通讯股份有限公司 指示控制信道的方法及装置
CN103999391A (zh) * 2012-11-15 2014-08-20 华为技术有限公司 信道传输方法、装置、基站及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101801097A (zh) * 2010-01-08 2010-08-11 中兴通讯股份有限公司 物理上行共享信道调度信息的指示方法
WO2013107368A1 (zh) * 2012-01-21 2013-07-25 电信科学技术研究院 一种下行数据传输方法及其设备
CN103378939A (zh) * 2012-04-28 2013-10-30 电信科学技术研究院 一种下行数据传输方法及装置
CN104349431A (zh) * 2013-07-25 2015-02-11 北京久华信信息技术有限公司 一种无线通信系统下行指示信息的传输方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112153632A (zh) * 2019-06-27 2020-12-29 华为技术有限公司 一种能力上报的方法及通信装置
CN112153632B (zh) * 2019-06-27 2022-12-13 华为技术有限公司 一种能力上报的方法及通信装置

Also Published As

Publication number Publication date
CN108282270B (zh) 2022-11-08
CN108282270A (zh) 2018-07-13

Similar Documents

Publication Publication Date Title
US20220345347A1 (en) Transmission structures and formats for dl control channels
CN109565338B (zh) 无线通信系统中的基站和终端及其执行的方法
US10601484B2 (en) Method for reporting channel state in wireless communication system, and device therefor
US9924507B2 (en) Apparatus and method for transmitting uplink control information
US11050540B2 (en) Method for reporting channel state in wireless communication system and device therefor
US11283509B2 (en) Method and apparatus for transmitting and receiving signal in wireless communication system
EP3471311B1 (en) Method for reporting channel state in wireless communication system and device therefor
WO2018126844A1 (zh) 通信信道的传输、接收方法、装置、基站及终端
US9258104B2 (en) Pattern indicator signal for new DMRS pattern
US10374664B2 (en) Method for reporting channel state in wireless communication system and apparatus therefor
US11075678B2 (en) Method for reporting channel state by using aperiodic channel state information-reference signal, and device therefor
US9131465B2 (en) Methods and apparatus for mapping control channels to resources in OFDM systems
US10820308B2 (en) Base station device, terminal device and communications system
EP4147403B1 (en) Methods and apparatuses for enhancing the reliability and performance of the physical downlink control channel in a wireless communications network
US20180332576A1 (en) Method and device for transmitting or receiving control information in wireless communication system
CN115134062B (zh) 无线蜂窝通信系统中设置多个dmrs结构的方法和设备
US10433293B2 (en) Method and apparatus for receiving or transmitting downlink signal in a wireless communication system
KR20210106572A (ko) 무선 통신 시스템에서의 분할 csi 보고를 가능하게 하는 방법 및 장치
US11765744B2 (en) Method for cell cyclic downlink transmission in wireless communication system and apparatus therefor
KR102587077B1 (ko) 비선형 프리코딩을 위한 기준신호 설정 방법 및 장치
KR102275239B1 (ko) 무선 통신 시스템에서의 자원 할당 방법 및 이에 기반한 데이터 수신 방법과 이를 위한 장치
JP5036869B2 (ja) 移動局装置、通信システムおよび通信方法
WO2018073813A1 (en) Collision avoidance between downlink control channels and aperiodic channel state information-reference signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890303

Country of ref document: EP

Kind code of ref document: A1