WO2018126722A1 - 一种测量信号的传输方法及装置 - Google Patents
一种测量信号的传输方法及装置 Download PDFInfo
- Publication number
- WO2018126722A1 WO2018126722A1 PCT/CN2017/100293 CN2017100293W WO2018126722A1 WO 2018126722 A1 WO2018126722 A1 WO 2018126722A1 CN 2017100293 W CN2017100293 W CN 2017100293W WO 2018126722 A1 WO2018126722 A1 WO 2018126722A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- measurement signal
- terminal device
- network device
- signal
- downlink
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0695—Hybrid systems, i.e. switching and simultaneous transmission using beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/08—Testing, supervising or monitoring using real traffic
Definitions
- the present invention relates to the field of wireless communications, and more particularly to a method and apparatus for transmitting measurement signals.
- the radio resource management of the existing wireless communication system generally adopts a measurement method based on a downlink measurement signal, that is, the base station transmits a downlink measurement signal, such as a reference signal RS (Reference Signal), and the terminal device measures the RSRP of the reference signal sent by the base station (Reference Signal Received). Power, reference signal received power, RSRQ (Reference Signal Received Quality), and other parameters are reported to the base station, and the base station determines the switching and moving of the terminal device according to the measurement result.
- RS Reference Signal
- RSRQ Reference Signal Received Quality
- a measurement method based on the uplink measurement signal that is, the terminal device sends an uplink measurement signal
- the network device associated with the terminal device For example, a base station or a TRP (transmission reception point) and a neighboring base station or a TRP measure the uplink signal sent by the terminal device, and compare and determine the measurement results of each base station or TRP to determine that the terminal device switches to A suitable cell is used for service.
- a base station or a TRP transmission reception point
- a neighboring base station or a TRP measure the uplink signal sent by the terminal device, and compare and determine the measurement results of each base station or TRP to determine that the terminal device switches to A suitable cell is used for service.
- a high-frequency band greater than 6 GHz is introduced for communication to utilize its large bandwidth and high-rate transmission characteristics. Due to the high path loss of high-frequency communication, a narrow beam is required. In order to ensure the propagation distance and the high beam gain, the uplink measurement signal or the downlink measurement signal also adopts a directional narrow beam transmission. Since the number of beams in the high frequency communication is large, a relatively large measurement overhead is generated.
- the invention provides a method and a device for transmitting measurement signals to reduce system overhead.
- the uplink measurement signal is an uplink reference signal or an uplink tracking signal.
- the downlink measurement signal is a downlink reference signal, a channel state information reference signal, or a measurement reference signal.
- the measurement parameter of the uplink measurement signal or the downlink measurement signal is RSRP or RSRQ, and may also be other measurement parameters, such as CQI (Channel Quality Indicator), RI (Rank Indicator, rank indication; PMI (Precoding Matrix indicator), etc.
- CQI Channel Quality Indicator
- RI Rank Indicator, rank indication
- PMI Precoding Matrix indicator
- the network device is a base station or a TRP, and may also be other types of network devices.
- a network device including:
- a receiving module configured to receive an uplink measurement signal sent by the terminal device on multiple transmit beams
- a determining module configured to determine, according to signal strength information of an uplink measurement signal of the multiple beams, a beam direction of an optimal transmit beam
- a sending module configured to use a corresponding downlink transmit beam to the end according to a beam direction of the optimal transmit beam
- the end device sends a downlink measurement signal.
- a terminal device including:
- a receiving module configured to receive a downlink measurement signal sent by the network device on multiple transmit beams
- a determining module determining, according to signal strength information of the downlink measurement signals of the multiple transmit beams, a beam direction of the optimal transmit beam;
- the sending module is configured to send an uplink measurement signal to the network device by using a corresponding uplink transmit beam according to a beam direction of the optimal transmit beam.
- the optimal transmit beam is the transmit beam with the strongest signal or the transmit beam with a signal strength higher than a set threshold.
- a network device including a sending module, a receiving module, and a detecting module; wherein:
- the sending module is configured to send a downlink measurement signal to the terminal device by using one or more transmit beams;
- the receiving module is configured to receive a detection result of a signal strength of a downlink measurement signal of the one or more transmission beams that is fed back by the terminal device;
- the sending module is further configured to notify the terminal device to adopt a measurement manner of the uplink measurement signal.
- the receiving module is further configured to receive an uplink measurement signal sent by the terminal device by using one or more beams.
- a terminal device including:
- a receiving module configured to receive a downlink measurement signal sent by the network device by using one or more beams
- a detecting module configured to detect a signal strength of the downlink measurement signal, and feed back the detection result to the network device;
- the receiving module is further configured to receive a notification that the measurement mode of the uplink measurement signal is sent by the network device.
- the method further includes: a sending module, configured to send an uplink measurement signal to the network device by using one or more beams.
- Each of the foregoing devices respectively corresponds to a corresponding network device or terminal device in the method, and corresponding steps are respectively performed by corresponding modules, and are not detailed in detail.
- the receiving module may be implemented by a receiver
- the sending module may be implemented by a transmitter
- the detecting module the determining module being implemented by the processor
- steps other than sending/receiving involved in other method flows Corresponding corresponding functions can be implemented by the processor.
- the measurement signal is transmitted according to the determined optimal transmit beam, the measurement overhead is reduced.
- the measurement mode is converted according to the measurement result, and the signaling overhead is reduced.
- FIG. 1 is a flow chart of a method for transmitting a measurement signal according to an embodiment of the present invention.
- FIG. 2 is a flow chart of a method for transmitting a measurement signal according to another embodiment of the present invention.
- FIG. 3 is a flow chart of a method for transmitting a measurement signal according to still another embodiment of the present invention.
- FIG. 4 is a schematic diagram of a reference signal burst according to an embodiment of the present invention.
- FIG. 5 is a schematic diagram of a measurement signal transmitting apparatus according to an embodiment of the present invention.
- FIG. 6 is a schematic diagram of a measurement signal transmitting apparatus according to another embodiment of the present invention.
- FIG. 7 is a schematic diagram of a measurement signal transmitting apparatus according to still another embodiment of the present invention.
- Embodiments of the present invention can be used in wireless networks of various technologies.
- a wireless access network device may include different network elements in different systems.
- network elements of a radio access network in LTE (Long Term Evolution), LTE-A (LTE Advanced), and 5G NR (New Radio) include an eNB (eNodeB, evolved base station), a TRP (transmission reception point), and the like, and a WLAN.
- eNB evolved base station
- TRP transmission reception point
- WLAN wireless local area network
- Wi-Fi network element includes an access point (AP) and the like.
- Other wireless networks may also use a solution similar to the embodiment of the present invention, but the related modules in the base station system may be different, and the embodiment of the present invention is not limited.
- the terminal device includes but is not limited to a user equipment (UE, User Station), a mobile station (MS, Mobile Station), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), a mobile phone. (handset) and portable equipment, etc.
- the user equipment can communicate with one or more core networks via a radio access network (RAN), for example, the user equipment can be a mobile phone (or "Cellular" telephones, computers with wireless communication capabilities, etc., user equipment can also be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices.
- RAN radio access network
- the network device sends the measurement signal by using a transmit beam (TX beam), and the terminal device receives the measurement signal by using a corresponding receive beam (TX beam); likewise, the terminal device sends the measurement signal by using a transmit beam (TX beam), and the network device receives the corresponding signal.
- TX beam transmit beam
- TX beam transmit beam
- TX beam receives the measurement signal.
- the introduction is based on The measurement method of the uplink measurement signal, that is, the terminal device sends the uplink measurement signal, and the base station or the transmission reception point TRP (transmission reception point) associated with the terminal device and the uplink signal sent by the neighboring base station or the TRP to the terminal device are measured, and The measurement results of each base station or TRP are compared and judged to determine that the terminal device switches to a suitable cell for service.
- TRP transmission reception point
- a base station may include one or more TRPs, and a cell may be a coverage formed by one or more TRPs.
- the use of uplink signal measurements allows the network to track the end device, not only allowing the network to track where the terminal device is currently located, but also knowing which TRP or base station can provide the current best transmission.
- the embodiment of the invention provides a method for transmitting uplink/downlink measurement signals in a high-frequency communication system scenario to improve measurement accuracy and save measurement signal overhead.
- the network device and the terminal device use the uplink signal to assist the downlink measurement. How to send a quantity signal.
- the terminal device sends an uplink measurement signal on multiple uplink transmit beams, for example, an uplink SRS (sounding reference signal), an uplink tracking signal (Tracking signal), or other measurement signals;
- the signal strength of the uplink measurement signal determines the beam direction of the optimal transmission beam, and uses the corresponding downlink beam to transmit the downlink measurement signal according to the beam direction.
- the method for transmitting the downlink measurement signal includes:
- the terminal device sends an uplink measurement signal on multiple transmit beams respectively.
- the terminal device may separately send uplink measurement signals on different uplink transmit beams by using beam scanning.
- the uplink measurement signal may be an SRS, a tracking signal, or other measurement signals; the base station may receive one or more beams.
- the uplink measurement signal is usually multiple.
- the terminal device may send an uplink measurement signal for multiple uplink transmit beams (TX beams) in one UL SRS burst, where one UL SRS burst includes multiple UL SRS blocks, and each UL SRS block is used for one transmission.
- a UL SRS burst can poll the various transmit beams of the terminal equipment, and can also poll part of the transmit beam.
- the base station receives the uplink measurement signal by using multiple transmit beams, detects the signal strength of the uplink measurement signal of each beam, and determines the beam direction of the optimal transmit beam.
- the base station receives the SRS signals of the multiple SRS blocks, and detects the signal strength information of each SRS signal.
- the signal strength information may be based on the RSRP/RSRQ value, or may be based on the CQI value, or may be other types of detection values, such as RI, PMI. Since each SRS block corresponds to one transmission beam, the TRP can determine the beam direction of the transmission beam with the strongest signal according to the received signal strength information of the SRS corresponding to each SRS block, and the transmission beam with the strongest signal is the optimal transmission beam. .
- the threshold may be set, and the beam whose signal strength is higher than the threshold is used as the optimal transmit beam.
- the optimal transmit beam may be one or more.
- the optimal transmission beam of the terminal corresponds to the optimal receiving beam of the corresponding base station.
- the base station sends a downlink measurement signal to the terminal device by using a corresponding downlink beam according to a beam direction of the optimal transmit beam.
- the base station sends a downlink measurement signal by using a corresponding downlink transmit beam for the terminal device according to the beam direction of the optimal transmit beam.
- the downlink measurement signal may be a CSI-RS (channel state information-reference signal), an SS (Synchronization Signal), or a reference signal RS, MRS for each beam. (Measuring reference signal), which may be other types of reference signals, is not limited in the embodiment of the present invention.
- the terminal device can detect the reference signal sent by the base station, and report the detection result to the base station, and the base station can perform corresponding processing according to the detection result of the terminal device.
- the process is prior art and will not be described in detail.
- a method for transmitting a downlink measurement signal by using a downlink signal in a network device and a terminal device in a high frequency system is provided.
- the base station sends the downlink measurement signal on the downlink transmission beam, which may be the downlink MRS or other measurement signals.
- the terminal device determines the beam direction of the optimal transmission beam according to the signal strength of the received downlink measurement signal, and according to the The beam direction uses the corresponding uplink transmit beam to transmit the uplink measurement signal.
- the method for transmitting the uplink measurement signal includes:
- the base station may use the beam scanning method to send the downlink measurement signal on multiple downlink transmission beams. If there are multiple base stations, the base station may separately transmit the downlink measurement signal, and the downlink measurement signal may be the measurement reference signal MRS. Other types of measurement signals mentioned in the examples.
- the downlink measurement signal received by the terminal device detecting signal strength information of the downlink measurement signal, and determining a beam direction of the optimal transmission beam.
- the terminal device measures the signal strength of the downlink measurement signal, and uses the transmission beam with the strongest signal strength as the optimal transmission beam. For example, the RSRP or RSRQ of each beam can be measured to determine the optimal beam; further, the optimal downlink transmission can be fed back. The beam is given to the base station.
- the threshold may be set, and the beam whose signal strength is higher than the threshold is used as the optimal transmit beam.
- the optimal transmit beam may be one or more.
- the terminal device sends an uplink measurement signal to the base station by using a corresponding uplink transmit beam according to a beam direction of the optimal transmit beam.
- the terminal device sends the uplink measurement signal to the base station by using the corresponding uplink beam in the optimal beam direction, and the uplink measurement signal may be an uplink tracking signal or an uplink reference signal.
- the uplink measurement signal can be transmitted by means of beam sweeping.
- the base station can measure the uplink measurement signal sent by the terminal device, and then the base station can perform corresponding processing according to the measurement result, which is a prior art and will not be described in detail.
- a method for determining an optimal port may also be adopted; after the terminal device receives the downlink measurement signal sent by the base station, the terminal device may also measure each port corresponding to the downlink measurement signal. And determining an optimal port according to the measured quantity of the obtained port (for example, RSRP or RSRQ), for example, the port with the strongest signal, and then transmitting the uplink measurement signal by using a corresponding transmitting beam according to one or more beam directions corresponding to the optimal port.
- the port is a time-frequency resource location corresponding to the measurement signal, and one port may correspond to one or more transmit beams, and the base station may notify the terminal device of the port number to be measured in advance.
- the threshold may be set, and the port whose measured quantity is higher than the threshold is used as the optimal port, and the threshold may be notified to the terminal device by the base station in advance.
- the third embodiment provides a method for transmitting a wireless measurement signal by using a downlink and uplink hybrid mode between a terminal device and a base station in a high frequency system.
- the method includes:
- the base station sends a downlink measurement signal to the terminal device on multiple transmit beams.
- the base station may send downlink measurement signals to the downlink beams in different directions in a beam scanning manner, so that terminals at different locations can receive the same; one terminal device can receive one or more beam direction reference signals, usually multiple.
- the reference signal of the beam usually multiple.
- reference may be made to the downlink measurement signal mentioned in the foregoing embodiment, and details are not described in detail.
- the terminal device detects a signal strength of the downlink measurement signal on the multiple transmit beams, and feeds back the detection result to the base station.
- the terminal device receives the downlink measurement signal of the multiple beams, and detects the signal strength of the downlink measurement signal of each beam, for example, the RSRP value of the downlink measurement signal of each beam, and may also adopt other measurement parameters, such as or RSRQ, in this embodiment. Qualify; and feed back the detection result to the base station.
- the detection result is an average value or a maximum value of the signal strengths of the downlink measurement signals of the plurality of beams. For example, the largest RSRP value among the plurality of beams that can be fed back can be fed back, and the average value of the RSRPs of the multiple beams can also be fed back.
- the RSRP values of the respective beams may also be fed back to the base station, and the RSRP average value is calculated by the base station.
- the terminal device receives only the downlink measurement signal of one beam, it only feeds back the RSRP value of the beam.
- the base station determines, according to the feedback result, that the terminal device enters a boundary area of the cell, and notifies the terminal device to adopt an uplink signal measurement manner.
- the base station detects that the signal strength of the downlink measurement signal fed back by the terminal device is less than a set threshold, and notifies the terminal device to adopt an uplink signal measurement mode.
- the base station detects that the RSRP measurement value of the terminal device is less than the set threshold, indicating that the terminal device enters the boundary area of the cell; when detecting that the RSRP measurement value of the multiple terminal devices is less than a certain threshold, the multiple terminal devices enter The boundary area of the cell; that is, the base station detects that the terminal device moves to the boundary area of the cell, that is, when the base station determines that the terminal device enters the boundary area of the cell according to the detection result fed back by the terminal device, the downlink signal measurement mode signaling is used. If the overhead is large, the base station notifies the terminal device or the plurality of terminal devices to adopt an uplink signal measurement mode.
- the base station may further include other detection conditions, for example, when the base station detects that the number of terminal devices entering the boundary area of the cell is less than a set threshold, notifying the terminal.
- the device adopts an uplink signal measurement mode; for example, the threshold may be the number of neighboring base stations; that is, the base station detects that the terminal device moves to the boundary area of the cell, and the number of terminal devices entering the boundary area of the cell is smaller than the number of neighboring base stations.
- the terminal device is notified to adopt an uplink signal measurement manner; the terminal device may be one or more.
- other types of thresholds can also be set.
- the terminal device after the terminal device receives the downlink measurement signal sent by the base station, the terminal device detects the downlink measurement signal; when the terminal device detects that the measurement result of the downlink measurement signal is less than a set threshold, The terminal device sends an uplink measurement signal to the base station. That is, the measurement mode of the uplink signal is actively switched by the terminal device, and the base station is not required to notify the handover.
- the terminal device receives the downlink measurement signal sent by the base station; the terminal device detects the downlink measurement signal; when the terminal device detects that the measurement result of the downlink measurement signal is less than a set threshold, The measurement result is reported to the network device, and the base station determines the measurement mode using the uplink measurement signal according to the measurement result, and notifies the terminal device to adopt the measurement mode of the uplink measurement signal.
- the base station controls whether the uplink measurement is used, and only the measurement result that is smaller than the threshold is reported, which saves network overhead and prevents the terminal from frequently switching the measurement mode.
- the terminal device may further notify the base station to adopt a measurement manner of the uplink measurement signal.
- the method for measuring the strength of the plurality of beam signals is used.
- the terminal device may measure the downlink measurement signal corresponding to the downlink measurement signal.
- a port when the measured quantity of the port is less than a set threshold, the terminal device sends an uplink measurement signal to the network device; or reports the measurement result to the network device, and the network device determines, according to the measurement result, the measurement mode using the uplink measurement signal, and Notify the terminal device.
- the terminal device or the plurality of terminal devices may send an uplink measurement signal to the corresponding base station by using one or more transmit beams, where the uplink measurement signal may be an SRS or an uplink tracking signal, or other types of measurement signals may be used.
- the base station performs a process related to cell handover determination according to the uplink measurement signal fed back by the terminal device, and is not detailed.
- the downlink mobility measurement may cause a large signaling overhead.
- the uplink signal measurement can also implement fast access of the terminal device, reduce the downlink paging message transmission range and paging signaling overhead, and improve network performance. .
- the manner in which the terminal device detects the downlink measurement signal may be measured for each of the transmission beams, or may be measured for each port, and the measurement amount may be RSRP or RSRQ, or may be other measurement quantities.
- the embodiments of the present invention are not limited.
- a network device is also provided. Referring to FIG. 5, the method includes:
- the receiving module 501 is configured to receive an uplink measurement signal that is sent by the terminal device on multiple transmit beams.
- a determining module 502 configured to determine, according to signal strength information of an uplink measurement signal of the multiple beams, a beam direction of an optimal transmit beam
- the sending module 503 is configured to send, according to the beam direction of the optimal transmit beam, a downlink measurement signal to the terminal device by using a corresponding downlink transmit beam.
- a terminal device is provided. Referring to FIG. 5, the method includes:
- the receiving module 501 is configured to receive a downlink measurement signal that is sent by the network device on multiple transmit beams.
- a determining module 502 determining, according to signal strength information of downlink measurement signals of the multiple transmit beams, a beam direction of an optimal transmit beam;
- the sending module 503 is configured to send an uplink measurement signal to the network device by using a corresponding uplink transmit beam according to a beam direction of the optimal transmit beam.
- the optimal transmit beam is the transmit beam with the strongest signal or the transmit beam with the signal strength higher than the set threshold.
- the method includes a sending module 603, a receiving module 601, and a detecting module 602.
- the sending module is configured to send a downlink measurement signal to the terminal device by using one or more transmit beams;
- the receiving module is configured to receive a detection result of a signal strength of a downlink measurement signal of the one or more transmission beams that is fed back by the terminal device;
- the sending module is further configured to notify the terminal device to adopt a measurement manner of the uplink measurement signal.
- the receiving module is further configured to receive an uplink measurement signal sent by the terminal device by using one or more beams.
- a terminal device is provided. Referring to FIG. 6, the method includes:
- the receiving module 601 is configured to receive a downlink measurement signal that is sent by the network device by using one or more beams;
- the detecting module 602 is configured to detect a signal strength of the downlink measurement signal, and feed back the detection result to the network device.
- the receiving module is further configured to receive a notification that the measurement mode of the uplink measurement signal is sent by the network device.
- the method further includes: a sending module 603: configured to send an uplink measurement signal to the network device by using one or more beams.
- the network device and the terminal device respectively correspond to the base station and the terminal device in the corresponding method embodiment, and the corresponding modules perform corresponding steps, and other steps may refer to the corresponding method embodiment and adopt corresponding modules. To implement, no longer detailed one by one.
- the receiving module may be implemented by a receiver
- the transmitting module may be implemented by a transmitter
- other modules such as a determining module
- the network device in the above embodiments may be a base station, or may be another network device such as a transmission and reception point TRP, which is not limited in the embodiment of the present invention.
- the various components of the device of Figure 7 are coupled together by a bus system, wherein the bus system includes a power bus, a control bus, and a status signal bus in addition to the data bus.
- the bus system includes a power bus, a control bus, and a status signal bus in addition to the data bus.
- the processor may be a central processing unit (“CPU"), and the processor may also be other general-purpose processors, digital signal processors (DSPs), dedicated Integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
- the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
- the memory can include read only memory and random access memory and provides instructions and data to the processor.
- a portion of the memory may also include a non-volatile random access memory.
- the memory can also store information of the device type.
- the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
- a power bus may include a power bus, a control bus, and a status signal bus in addition to the data bus.
- the various buses are labeled as bus systems in the figure.
- the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
- the implementation process constitutes any limitation.
- the disclosed systems, devices, and methods may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in each embodiment of the present invention may be integrated into one processing unit, or may be each Units exist physically alone, or two or more units can be integrated into one unit.
- the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
- the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
- the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
- the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
一种设备配置方法及装置,涉及通信技术领域,该方法用于管理n个传输设本发明提供一种测量信号的传输方法及装置,其中,测量信号发送方法包括:网络设备通过一个或多个发送波束向终端设备发送下行测量信号;所述网络设备接收所述终端设备反馈的所述一个或多个发送波束的下行测量信号的信号强度的检测结果;所述网络设备检测到所述终端设备反馈的下行测量信号的检测结果小于设定的阈值,则通知所述终端设备采用上行测量信号的测量方式。该方法由于根据测量结果转换测量方式,降低了信令开销。
Description
本发明涉及无线通信领域,更具体地,涉及一种测量信号的传输方法及装置。
现有无线通信系统的无线资源管理通常采用基于下行测量信号的测量方式,即基站发送下行测量信号,如参考信号RS(Reference Signal),终端设备测量该基站发送的参考信号的RSRP(Reference Signal Received Power,参考信号接收功率)/RSRQ(Reference Signal Received Quality,参考信号接收质量)等参数,并将测量结果上报给基站,由基站根据测量结果来决定终端设备的切换和移动。
为了减小无线资源管理对网络发送频繁的、固定的下行测量信号的依赖,提升系统效率,考虑引入基于上行测量信号的测量方法,即终端设备发送上行测量信号,由终端设备关联的网络设备,如基站或TRP(transmission reception point,传输接收点)以及相邻基站或TRP对该终端设备发送的上行信号进行测量,并对各基站或TRP的测量结果进行比较和判决,以决定终端设备切换到合适的小区进行服务。
为了满足移动通信系统的大容量及高速率的传输需求,引入大于6GHz的高频频段进行通信,以利用其大带宽、高速率的传输特性,由于高频通信的高路损,需采用窄波束来保证传播距离和高波束增益,因此,上行测量信号或下行测量信号也采用方向性的窄波束传输,由于高频通信中波束数量较多,会产生比较大的测量开销。
发明内容
本发明提供一种测量信号的传输方法及装置,以减小系统开销。
结合上述各个方面,其中上行测量信号为上行参考信号或上行跟踪信号。
结合上述各个方面,其中下行测量信号为下行参考信号、信道状态信息参考信号或测量参考信号。
结合上述各个方面,其中上行测量信号或下行测量信号的测量参数为RSRP或RSRQ,也可以为其它测量参数,如CQI(Channel Quality Indicator,信道质量指示)、RI(Rank Indicator,秩指示;)或PMI(Precoding Matrix indicator,预编码矩阵指示)等。
结合上述各个方面,其中网络设备为基站或TRP,也可以为其它类型网络设备。
基于第一方面的方法,还提供了一种网络设备,包括:
接收模块:用于接收终端设备在多个发送波束上发送的上行测量信号;
确定模块:用于根据所述多个波束的上行测量信号的信号强度信息确定最优发送波束的波束方向;
发送模块:用于根据所述最优发送波束的波束方向使用对应的下行发送波束向所述终
端设备发送下行测量信号。
基于第二方面的方法,提供了一种终端设备,包括:
接收模块:用于接收网络设备在多个发送波束上发送的下行测量信号;
确定模块:根据所述多个发送波束的下行测量信号的信号强度信息确定最优发送波束的波束方向;
发送模块:用于根据所述最优发送波束的波束方向使用对应的上行发送波束向所述网络设备发送上行行测量信号。
结合上述各个方面,其中最优发送波束为信号最强的发送波束或信号强度高于设定阈值的发送波束。
基于第三方面的方法,还提供了一种网络设备,包括发送模块、接收模块、检测模块;其中:
所述发送模块用于通过一个或多个发送波束向终端设备发送下行测量信号;
所述接收模块用于接收所述终端设备反馈的所述一个或多个发送波束的下行测量信号的信号强度的检测结果;
当所述检测模块检测到所述终端设备反馈的下行测量信号的检测结果小于设定的阈值,所述发送模块还用于通知所述终端设备采用上行测量信号的测量方式。
结合上述方面,其中所述接收模块还用于接收所述终设备通过一个或多个波束发送的上行测量信号。
基于第四方面的方法,提供了一种终端设备,包括:
接收模块:用于接收网络设备通过一个或多个波束发送的下行测量信号;
检测模块:用于检测所述下行测量信号的信号强度,并将检测结果反馈给所述网络设备;
当网络设备检测到所述终端设备反馈的下行测量信号的检测结果小于设定的阈值时,所述接收模块还用于接收所述网络设备发送的采用上行测量信号的测量方式的通知。
结合上述方面,进一步包括:发送模块:用于通过一个或多个波束向所述网络设备发送上行测量信号。
上述各个装置分别对应方法中相应的网络设备或终端设备,并采用相应的模块分别执行方法中相应的步骤,不再一一详述。
在另一种形式的装置实施例中,接收模块可以由接收机实现,发送模块可以由发射机实现,检测模块、确定模块由处理器实现,其它方法流程中涉及的除发送/接收外的步骤对应的相应功能可以由处理器实现。
本发明上述各个方面的方案中,由于根据确定的最优发送波束进行相应的测量信号的发送,减小了测量开销;另外,根据测量结果转换测量方式,降低了信令开销。
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明实施例测量信号发送方法流程图。
图2是本发明另一实施例测量信号发送方法流程图。
图3是本发明又一实施例测量信号发送方法流程图。
图4是本发明实施例参考信号burst示意图。
图5是本发明实施例测量信号发送装置示意图。
图6是本发明另一实施例测量信号发送装置示意图。
图7是本发明又一实施例测量信号发送装置示意图。
本发明实施例可以用于各种技术的的无线网络。无线接入网络设备在不同的系统中可包括不同的网元。例如,LTE(Long Term Evolution)、LTE-A(LTE Advanced)和5G NR(New Radio)中无线接入网络的网元包括eNB(eNodeB,演进型基站)、TRP(transmission reception point)等,WLAN(wireless local area network)/Wi-Fi的网元包括接入点(Access Point,AP)等。其它无线网络也可以使用与本发明实施例类似的方案,只是基站系统中的相关模块可能有所不同,本发明实施例并不限定。
还应理解,在本发明实施例中,终端设备包括但不限于用户设备(UE,User Equipment)、移动台(MS,Mobile Station)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(RAN,Radio Access Network)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
在高频通信过程中需采用窄波束来保证传播距离和高波束增益,并进行波束对准来保证通信质量,因而网络设备与不同终端设备在通信的过程中,会在不同的波束对上进行,网络设备通过发送波束(TX beam)发送测量信号,终端设备通过相应的接收波束(TX beam)接收该测量信号;同样终端设备通过发送波束(TX beam)发送测量信号,网络设备通过相应的接收波束(TX beam)接收该测量信号。
在下一代无线通信系统中,即5G通信系统,也称为NR(New Radio)系统,为了减小无线资源管理对网络发送频繁的、固定的下行参考信号的依赖,提升系统效率,考虑引入基于上行测量信号的测量方法,即终端设备发送上行测量信号,由终端设备关联的基站或传输接收点TRP(transmission reception point)以及相邻基站或TRP对该终端设备发送的上行信号进行测量,并对各基站或TRP的测量结果进行比较和判决,以决定终端设备切换到合适的小区进行服务。5G系统中,基站可以包括一个或多个TRP,小区可以为一个或多个TRP形成的覆盖范围。使用上行信号测量使得网络可以对终端设备进行跟踪,不仅可以使网络跟踪到终端设备当前所处位置,还可以知道哪个TRP或基站可以提供当前最好的传输。
为了提升网络效率,在无线资源管理方面提供更好的灵活性。本发明实施例提出了在高频通信系统场景下上行/下行测量信号混合的发送方式,以提高测量的准确性,节省测量信号开销。
本实施例一给出了一种高频系统中,网络设备和终端设备采用上行信号来辅助下行测
量信号的发送方法。终端设备在多个上行发送波束上发送上行测量信号,例如,可以是上行SRS(sounding reference signal,探测参考信号),上行跟踪信号(Tracking signal),也可以是其它测量信号;网络设备根据接收到的上行测量信号的信号强度,确定最优发送波束的波束方向,并根据所述波束方向采用相应的下行波束进行下行测量信号的发送。
以下以网络设备是基站为例进行说明,参考图1,该下行测量信号的发送方法包括:
101、终端设备分别在多个发送波束上发送上行测量信号;
终端设备可以以波束扫描的方式分别在不同上行发送波束上发送上行测量信号,例如,上行测量信号可以为SRS,Tracking signal,也可以是其它测量信号;基站可以接收到一个或多个波束上的上行测量信号,通常为多个。
参考图4,终端设备可以在一个UL SRS burst中针对多个上行发送波束(TX beam)发送上行测量信号,其中一个UL SRS burst包括多个UL SRS block,每个UL SRS block用于在一个发送波束上发送的上行测量信号,每个UL SRS block占一个或多个symbol。一个UL SRS burst可以轮询完终端设备各个发送波束,也可以轮询部分发送波束。
102、基站接收到多个发送波束上发送上行测量信号,检测各个波束的上行测量信号的信号强度,确定最优的发送波束的波束方向。
例如:基站接收到多个SRS block的SRS信号,检测各个SRS信号的信号强度信息,该信号强度信息可以是基于RSRP/RSRQ值,也可以是基于CQI值,也可以采用其它类型检测值,如RI、PMI。由于每个SRS block对应一个发送波束,TRP可以根据接收到的每个SRS block对应的SRS的信号强度信息,确定信号最强的发送波束的波束方向,信号最强的发送波束即最优发送波束。
另外,也可以设定阈值,将信号强度高于阈值的波束均作为最优发送波束,此时最优发送波束可以为一个或多个。
由于基站是采用对应接收波束接收终端设备发送的上行测量信号,终端最优的发送波束对应相应的基站最优的接收波束。
103、基站根据最优发送波束的波束方向采用相应的下行波束向所述终端设备发送下行测量信号。
基站根据最优的发送波束的波束方向,针对该终端设备,采用相应的下行发送波束发送下行测量信号。该下行测量信号可以是针对该终端设备的CSI-RS(channel state information-reference signal,信道状态信息参考信号),SS(Synchronization Signal,同步信号),也可以是针对各个波束的参考信号RS,MRS(measurement reference signal,测量参考信号),也可以为其它类型参考信号,本发明实施例不限定。
后续,终端设备可以检测基站发送的参考信号,并上报检测结果给基站,基站便可根据终端设备的检测结果进行相应的处理,该流程为现有技术,不再详述。
本实施例二给出了一种高频系统中,网络设备和终端设备采用下行信号来辅助上行测量信号的发送方法。基站在多个下行发送波束上发送下行测量信号,可以是下行MRS,也可以是其它测量信号;终端设备根据接收到的下行测量信号的信号强度,确定最优发送波束的波束方向,并根据所述波束方向采用相应的上行发送波束进行上行测量信号的发送。
参考图2,该上行测量信号的发送方法包括:
201,基站在多个发送波束上发送的下行测量信号;
基站可以采用波束扫描的方式在多个下行发送波束上发送下行测量信号,如果有多个基站,则可以分别以波束扫描的方式发送,下行测量信号可以为测量参考信号MRS;也可以为上述实施例中提到的其它类型的测量信号。
202,终端设备接收到的下行测量信号,检测所述下行测量信号的信号强度信息,确定最优发送波束的波束方向;
例如:终端设备测量下行测量信号的信号强度,将信号强度最强的发送波束作为最优发送波束,例如可以测量各个波束的RSRP或RSRQ,确定最优波束;进一步的可以反馈最佳的下行发送波束给基站。
另外,也可以设定阈值,将信号强度高于阈值的波束均作为最优发送波束,此时最优发送波束可以为一个或多个。
203、终端设备根据所述最优发送波束的波束方向使用对应的上行发送波束向所述基站发送上行测量信号。
终端设备在最优波束方向采用对应的上行波束发送上行测量信号给基站,上行测量信号可以是上行跟踪信号或上行参考信号。可以采用波束扫描(beam sweeping)的方式发送上行测量信号。
后续,基站可以测量终端设备发送的上行测量信号,然后,基站便可根据测量结果进行相应的处理,该流程为现有技术,不再详述。
除了采用上述确定最优波束的方法,在另一实施方式中,也可以采用确定最优端口的方式;终端设备接收基站发送的下行测量信号后,终端设备也可以测量下行测量信号对应的各个端口,根据得到的端口的测量量(例如可以为RSRP或RSRQ)确定最优端口,如信号最强的端口,然后根据最优端口对应的一个或多个波束方向采用相应的发送波束发送上行测量信号。所述端口为对应测量信号时频资源位置,一个端口可以对应一个或多个发送波束,基站可以预先将需要测量的端口号通知终端设备。
另外,也可以设定阈值,将测量量高于阈值的端口均作为最优端口,阈值可以预先由基站通知终端设备。
实施例三给出了一种高频系统中,终端设备和基站采用下行和上行混合的方式来发送无线测量信号的方法,参考图3,该方法包括:
301、基站在多个发送波束上向终端设备发送下行测量信号;
基站可以以波束扫描的方式向在不同方向的下行波束上发送下行测量信号,从而不同位置的终端均可收到;一个终端设备可以接收到一个或多个波束方向的参考信号,通常为多个波束的参考信号。下行测量信号的类型可以参考上述实施例中提到的下行测量信号,不再详述。
302、终端设备检测所述多个发送波束上的下行测量信号的信号强度,并向所述基站反馈检测结果;
终端设备接收到多个波束的下行测量信号,检测各个波束的下行测量信号的信号强度,例如测量各个波束的下行测量信号的RSRP值,也可以采用其它测量参数,如或RSRQ,本实施例不限定;并向基站反馈检测结果。
检测结果为多个波束的下行测量信号的信号强度的平均值或最大值,例如:可以反馈测量的多个波束中最大的RSRP值,也可以反馈多个波束的RSRP的平均值。
在另一个实施例中,也可以将各个波束的RSRP值均反馈给基站,由基站计算RSRP平均值。
如果终端设备只收到一个波束的下行测量信号,只反馈该波束的RSRP值。
303、基站根据所述反馈结果确定所述终端设备进入小区的边界区域,则通知所述终端设备采用上行信号测量方式。
例如:基站检测到所述终端设备反馈的下行测量信号的信号强度小于设定的阈值,则通知所述终端设备采用上行信号测量方式。
基站检测到终端设备的RSRP测量值小于设定的阈值,表示终端设备进入到小区的边界区域;当检测到有多个终端设备的RSRP测量值小于某个阈值,表示该多个终端设备进入到小区的边界区;即基站检测到终端设备移动到小区的边界区域,也就是说,当基站根据终端设备反馈的检测结果确定终端设备进入到小区的边界区域,此时采用下行信号测量方式信令开销较大,则基站通知所述终端设备或多个终端设备采用上行信号测量方式。
另外,除了基站检测到终端设备移动到小区的边界区域,还可以包括其它检测条件,例如,当基站检测到进入到小区的边界区域的终端设备的数量小于设定的阈值时,通知所述终端设备采用上行信号测量方式;例如,阈值可以为邻区基站的数量;即基站检测到终端设备移动到小区的边界区域,并且进入到小区的边界区域的终端设备的数量小于邻区基站的数量时,通知所述终端设备采用上行信号测量方式;终端设备可以为一个或多个。另外,也可以设定其它类型的阈值。
在另一个实施方式中,终端设备接收基站发送的下行测量信号后;所述终端设备检测所述下行测量信号;当所述终端设备检测所述下行测量信号的测量结果小于设定的阈值时,所述终端设备向基站发送上行测量信号。即,由终端设备主动切换上行信号的测量方式,不需要基站通知切换。
在又一个实施方式中,终端设备接收基站发送的下行测量信号;所述终端设备检测所述下行测量信号;当所述终端设备检测所述下行测量信号的测量结果小于设定的阈值时,将测量结果上报网络设备,基站根据测量结果确定采用上行测量信号的测量方式,并通知终端设备采用上行测量信号的测量方式。该方式由基站控制是否采用上行测量,并且只将小于阈值的测量结果上报,节省了网络开销,也避免终端频繁切换测量方式。另外,所述终端设备可以进一步的通知基站采用上行测量信号的测量方式。
除了采用上述实施例中检测多个波束信号强度的方式,在另一实施方式中,可以用测量端口的方式,终端设备接收网络设备发送的下行测量信号后,终端设备可以测量下行测量信号对应的端口,当端口的测量量小于设定的阈值时,所述终端设备向网络设备发送上行测量信号;或者将测量结果上报网络设备,由网络设备根据测量结果确定采用上行测量信号的测量方式,并通知终端设备。
后续,所述终端设备或多个终端设备可以通过一个或多个发送波束向相应的基站发送上行测量信号,上行测量信号可以为SRS或上行跟踪信号,也可以采用其它类型测量信号。基站根据终端设备反馈的上行测量信号进行小区切换判断等相关的流程,不再详述。
在小区边缘区域,由于下行移动性的测量会引发信令开销较大,使用上行信号测量还可以实现终端设备快速的接入,降低下行寻呼消息发送范围和寻呼信令开销,提升网络性能。
本发明上述各个实施方式中,关于终端设备检测下行测量信号的方式,可以针对各个发送波束进行测量,也可以针对各个端口进行测量,测量量均可以采用RSRP或RSRQ,也可以为其它测量量,本发明实施例不限定。
基于方法实施例一中的基站,还提供了一种网络设备,参考图5,包括:
接收模块501:用于接收终端设备在多个发送波束上发送的上行测量信号;
确定模块502:用于根据所述多个波束的上行测量信号的信号强度信息确定最优发送波束的波束方向;
发送模块503:用于根据所述最优发送波束的波束方向使用对应的下行发送波束向所述终端设备发送下行测量信号。
基于方法实施例二中终端设备,提供了一种终端设备,参考图5,包括:
接收模块501:用于接收网络设备在多个发送波束上发送的下行测量信号;
确定模块502:根据所述多个发送波束的下行测量信号的信号强度信息确定最优发送波束的波束方向;
发送模块503:用于根据所述最优发送波束的波束方向使用对应的上行发送波束向所述网络设备发送上行行测量信号。
其中最优发送波束为信号最强的发送波束或信号强度高于设定阈值的发送波束。
基于方法实施例三中的基站,还提供了一种网络设备,参考图6,包括发送模块603、接收模块601、检测模块602;其中:
所述发送模块用于通过一个或多个发送波束向终端设备发送下行测量信号;
所述接收模块用于接收所述终端设备反馈的所述一个或多个发送波束的下行测量信号的信号强度的检测结果;
当所述检测模块检测到所述终端设备反馈的下行测量信号的检测结果小于设定的阈值,所述发送模块还用于通知所述终端设备采用上行测量信号的测量方式。
结合上述方面,其中所述接收模块还用于接收所述终设备通过一个或多个波束发送的上行测量信号。
基于方法实施例三中的终端设备,提供了一种终端设备,参考图6,包括:
接收模块601:用于接收网络设备通过一个或多个波束发送的下行测量信号;
检测模块602:用于检测所述下行测量信号的信号强度,并将检测结果反馈给所述网络设备;
当网络设备检测到所述终端设备反馈的下行测量信号的检测结果小于设定的阈值时,所述接收模块还用于接收所述网络设备发送的采用上行测量信号的测量方式的通知。
结合上述方面,进一步包括:发送模块603:用于通过一个或多个波束向所述网络设备发送上行测量信号。
上述各个装置实施例中,网络设备与终端设备分别对应相应的方法实施例中的基站与终端设备,由相应的模块执行相应的步骤,其它的步骤可以参考相应的方法实施例并采用相应的模块来执行,不再一一详述。
在另一种形式的装置实施例中,参考图7,上述各个实施例中,接收模块可以由接收机实现,发送模块可以由发射机实现,其它模块,如确定模块,检测模块可以由处理器实现,其它方法流程中涉及的步骤对应的相应功能可以由处理器实现。
上述各个装置实施例中由相应的功能模块来执行方法实施例中的相应步骤,具体步骤可以参考相应的方法,这里不再一一描述。
上述各个实施例中网络设备可以为基站,也可以为传输接收点TRP等其它网络设备,本发明实施例不限定。
可选地,图7中的设备的各个组件通过总线系统耦合在一起,其中总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
应理解,在本发明实施例中,该处理器可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器还可以是其它通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各
个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
Claims (30)
- 一种测量信号的发送方法,包括:网络设备通过一个或多个发送波束向终端设备发送下行测量信号;所述网络设备接收所述终端设备反馈的所述一个或多个发送波束的下行测量信号的信号强度的检测结果;所述网络设备检测到所述终端设备反馈的下行测量信号的检测结果小于设定的阈值,则通知所述终端设备采用上行测量信号的测量方式。
- 如权利要求1所述的方法,其中,所述下行测量信号的信号强度的检测结果为多个发送波束的下行测量信号的信号强度的平均值或最大值。
- 如权利要求1所述的方法,进一步包括:接收所述终端设备通过一个或多个波束发送的上行测量信号。
- 一种测量信号的接收方法,包括:终端设备接收网络设备通过一个或多个波束发送的下行测量信号;所述终端设备检测所述下行测量信号的信号强度,并将检测结果反馈给所述网络设备;当所述网络设备检测到所述终端设备反馈的下行测量信号的检测结果小于设定的阈值时,所述终端设备接收所述网络设备发送的采用上行测量信号的测量方式的通知。
- 如权利要求4所述的方法,其中,所述下行测量信号的信号强度的检测结果为多个发送波束的下行测量信号的信号强度的平均值或最大值。
- 如权利要求4所述的方法,进一步包括:所述终端设备通过一个或多个波束向所述网络设备发送上行测量信号。
- 如权利要求4至6任一项所述的方法,所述所述终端设备检测所述下行测量信号的信号强度,并将检测结果反馈给所述网络设备具体包括:所述终端设备测量所述下行测量信号对应的端口获取所述端口的测量量,并将所述端口的测量量发给所述网络设备;或,所述终端设备测量所述下行测量信号对应的波束获取所述波束的测量量,并将所述波束的测量量发给所述网络设备。
- 一种测量信号的接收方法,包括:终端设备接收网络设备发送的一个或者多个下行测量信号;所述终端设备检测所述下行测量信号;当所述下行测量信号的测量结果小于设定的阈值时,所述终端设备向网络设备发送上行测量信号。
- 一种测量信号的发送方法,包括:网络设备接收终端设备在多个发送波束上发送的上行测量信号;所述网络设备根据所述多个波束的上行测量信号的信号强度信息确定最优发送波束的波束方向;所述网络设备根据所述最优发送波束的波束方向使用对应的下行发送波束向所述终端设备发送下行测量信号。
- 一种测量信号的发送方法,包括:终端设备接收网络设备在多个发送波束上发送的下行测量信号;终端设备根据所述多个发送波束的下行测量信号的信号强度信息确定最优发送波束的波束方向;终端设备根据所述最优发送波束的波束方向使用对应的上行发送波束向所述网络设备发送上行行测量信号。
- 根据权利要求9或10所述的方法,所述最优发送波束为信号最强的发送波束或信号强度高于设定阈值的发送波束。
- 一种测量信号的发送方法,包括:终端设备接收网络设备在多个发送波束上发送的下行测量信号;所述终端设备根据所述多个发送波束的下行测量信号的信号强度信息确定最优端口;所述终端设备根据最优端口对应的一个或多个波束方向采用相应的发送波束发送上行测量信号。
- 根据权利要求12所述的方法,所述端口为对应测量信号的时频资源位置,对应一个或多个波束。
- 根据权利要求1-13任一项所述的方法,所述上行测量信号为上行参考信号或上行跟踪信号。
- 根据权利要求1-14任一项所述的方法,所述下行测量信号为下行参考信号、信道状态信息参考信号或测量参考信号。
- 一种网络设备,包括发送模块、接收模块、检测模块;其中:所述发送模块用于通过一个或多个发送波束向终端设备发送下行测量信号;所述接收模块用于接收所述终端设备反馈的所述一个或多个发送波束的下行测量信号的信号强度的检测结果;当所述检测模块检测到所述终端设备反馈的下行测量信号的检测结果小于设定的阈值,所述发送模块还用于通知所述终端设备采用上行测量信号的测量方式。
- 如权利要求16所述的网络设备,所述接收模块还用于接收所述终设备通过一个或多个波束发送的上行测量信号。
- 一种终端设备,包括:接收模块:用于接收网络设备通过一个或多个波束发送的下行测量信号;检测模块:用于检测所述下行测量信号的信号强度,并将检测结果反馈给所述网络设备;当网络设备检测到所述终端设备反馈的下行测量信号的检测结果小于设定的阈值时,所述接收模块还用于接收所述网络设备发送的采用上行测量信号的测量方式的通知。
- 如权利要求18所述的方法,进一步包括:发送模块:用于通过一个或多个波束向所述网络设备发送上行测量信号。
- 一种终端设备,包括:接收模块:用于接收网络设备发送的一个或者多个下行测量信号;检测模块:用于检测所述下行测量信号;发送模块:用于当所述下行测量信号的测量结果小于设定的阈值时,向网络设备发送上行测量信号。
- 一种网络设备,包括:接收模块,用于接收终端设备在多个发送波束上发送的上行测量信号;检测模块,用于根据所述多个波束的上行测量信号的信号强度信息确定最优发送波束的波束方向;发送模块,用于根据所述最优发送波束的波束方向使用对应的下行发送波束向所述终端设备发送下行测量信号。
- 一种终端设备,包括:接收模块,用于接收网络设备在多个发送波束上发送的下行测量信号;检测模块,用于根据所述多个发送波束的下行测量信号的信号强度信息确定最优发送波束的波束方向;发送模块,用于根据所述最优发送波束的波束方向使用对应的上行发送波束向所述网络设备发送上行行测量信号。
- 一种终端设备,包括:接收模块,用于接收网络设备在多个发送波束上发送的下行测量信号;检测模块,用于根据所述多个发送波束的下行测量信号的信号强度信息确定最优端口;发送模块,用于根据最优端口对应的一个或多个波束方向采用相应的发送波束发送上行测量信号。
- 一种网络设备,包括发射机、接收机、存储器和处理器,所述存储存有程序,当所述程序被所述处理器执行时生成如下指令:通过一个或多个发送波束向终端设备发送下行测量信号;接收所述终端设备反馈的所述一个或多个发送波束的下行测量信号的信号强度的检测结果;检测到所述终端设备反馈的下行测量信号的检测结果小于设定的阈值,则通知所述终端设备采用上行测量信号的测量方式。
- 一种终端设备,包括发射机、接收机、存储器和处理器,所述存储存有程序,当所述程序被所述处理器执行时生成如下指令:接收网络设备通过一个或多个波束发送的下行测量信号;检测所述下行测量信号的信号强度,并将检测结果反馈给所述网络设备;当所述下行测量信号的检测结果小于设定的阈值时,接收所述网络设备发送的采用上行测量信号的测量方式的通知。
- 一种终端设备,包括发射机、接收机、存储器和处理器,所述存储存有程序,当所述程序被所述处理器执行时生成如下指令:接收网络设备发送的一个或者多个下行测量信号;检测所述下行测量信号;当所述下行测量信号的测量结果小于设定的阈值时,所述终端设备向网络设备发送上行测量信号。
- [根据细则91更正 20.09.2017]
一种网络设备,包括发射机、接收机、存储器和处理器,所述存储存有程序,当所述程序被所述处理器执行时生成如下指令:接收终端设备在多个发送波束上发送的上行测量信号;根据所述多个波束的上行测量信号的信号强度信息确定最优发送波束的波束方向;根据所述最优发送波束的波束方向使用对应的下行发送波束,向所述终端设备发送下行测量信号。 - 一种终端设备,包括发射机、接收机、存储器和处理器,所述存储存有程序,当所述程序被所述处理器执行时生成如下指令:接收网络设备在多个发送波束上发送的下行测量信号;根据所述多个发送波束的下行测量信号的信号强度信息确定最优发送波束的波束方向;根据所述最优发送波束的波束方向使用对应的上行发送波束向所述网络设备发送上行行测量信号。
- 一种终端设备,包括发射机、接收机、存储器和处理器,所述存储存有程序,当所述程序被所述处理器执行时生成如下指令:接收网络设备在多个发送波束上发送的下行测量信号;根据所述多个发送波束的下行测量信号的信号强度信息确定最优端口;根据最优端口对应的一个或多个波束方向采用相应的发送波束发送上行测量信号。
- 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-15任意一项所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17890622.8A EP3528528A4 (en) | 2017-01-03 | 2017-09-02 | METHOD AND DEVICE FOR TRANSMITTING A MEASUREMENT SIGNAL |
US16/420,863 US20190280786A1 (en) | 2017-01-03 | 2019-05-23 | Method for transmitting measurement signal and apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710002460.1 | 2017-01-03 | ||
CN201710002460.1A CN108271177B (zh) | 2017-01-03 | 2017-01-03 | 一种测量信号的传输方法及装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/420,863 Continuation US20190280786A1 (en) | 2017-01-03 | 2019-05-23 | Method for transmitting measurement signal and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018126722A1 true WO2018126722A1 (zh) | 2018-07-12 |
Family
ID=62771434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/100293 WO2018126722A1 (zh) | 2017-01-03 | 2017-09-02 | 一种测量信号的传输方法及装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20190280786A1 (zh) |
EP (1) | EP3528528A4 (zh) |
CN (1) | CN108271177B (zh) |
WO (1) | WO2018126722A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10313070B2 (en) * | 2016-11-03 | 2019-06-04 | Futurewei Technologies, Inc. | Fast millimeter-wave cell acquisition |
CN108668370B (zh) * | 2017-01-05 | 2019-08-06 | 华为技术有限公司 | 一种上行测量信号的指示方法及装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104349446A (zh) * | 2013-07-24 | 2015-02-11 | 中国移动通信集团设计院有限公司 | 一种上行功率控制方法及装置 |
CN105207705A (zh) * | 2014-06-23 | 2015-12-30 | 北京三星通信技术研究有限公司 | 有源天线系统中的参考信号收发方法及设备 |
WO2016111524A1 (ko) * | 2015-01-05 | 2016-07-14 | 엘지전자 주식회사 | 무선 통신 시스템에서 채널 상태를 추정하는 방법 및 이를 위한 장치 |
CN105828438A (zh) * | 2015-01-04 | 2016-08-03 | 中国移动通信集团公司 | 一种参考信号的配置方法、装置、基站和用户设备 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101237685B (zh) * | 2007-01-30 | 2011-12-14 | 诺基亚西门子通信系统技术(北京)有限公司 | 一种无线通信中的路由改变方法 |
CN101494888B (zh) * | 2008-01-22 | 2010-12-08 | 中兴通讯股份有限公司 | 基于业务量的信道迁移方法 |
CN102572879B (zh) * | 2011-12-28 | 2015-07-08 | 华为技术有限公司 | 通信方法、装置及系统 |
WO2013191636A1 (en) * | 2012-06-19 | 2013-12-27 | Telefonaktiebolaget L M Ericsson (Publ) | Method and controlling node for controlling measurements by a user equipment |
CN103906120A (zh) * | 2012-12-27 | 2014-07-02 | 上海贝尔股份有限公司 | 多点协作测量集的配置方法与装置 |
EP3165022B1 (en) * | 2014-07-02 | 2020-06-03 | Telefonaktiebolaget LM Ericsson (publ) | Network node and method of taking a mobility decision by considering the beamforming capabilities of the neighbouring nodes |
CN105682154A (zh) * | 2014-11-20 | 2016-06-15 | 中兴通讯股份有限公司 | 一种小区切换方法及系统 |
US20170230869A1 (en) * | 2016-02-10 | 2017-08-10 | Qualcomm Incorporated | Beam selection for uplink and downlink based mobility |
-
2017
- 2017-01-03 CN CN201710002460.1A patent/CN108271177B/zh active Active
- 2017-09-02 EP EP17890622.8A patent/EP3528528A4/en active Pending
- 2017-09-02 WO PCT/CN2017/100293 patent/WO2018126722A1/zh unknown
-
2019
- 2019-05-23 US US16/420,863 patent/US20190280786A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104349446A (zh) * | 2013-07-24 | 2015-02-11 | 中国移动通信集团设计院有限公司 | 一种上行功率控制方法及装置 |
CN105207705A (zh) * | 2014-06-23 | 2015-12-30 | 北京三星通信技术研究有限公司 | 有源天线系统中的参考信号收发方法及设备 |
CN105828438A (zh) * | 2015-01-04 | 2016-08-03 | 中国移动通信集团公司 | 一种参考信号的配置方法、装置、基站和用户设备 |
WO2016111524A1 (ko) * | 2015-01-05 | 2016-07-14 | 엘지전자 주식회사 | 무선 통신 시스템에서 채널 상태를 추정하는 방법 및 이를 위한 장치 |
Also Published As
Publication number | Publication date |
---|---|
CN108271177A (zh) | 2018-07-10 |
US20190280786A1 (en) | 2019-09-12 |
EP3528528A4 (en) | 2019-10-30 |
EP3528528A1 (en) | 2019-08-21 |
CN108271177B (zh) | 2022-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI732416B (zh) | 波束失敗恢復方法、終端、基地台及電腦可讀存儲介質 | |
US11064492B2 (en) | Resource configuration method and apparatus | |
CN109005548B (zh) | 一种信道质量信息的上报方法及装置 | |
CN109804664B (zh) | 用于无线网络中的测量和测量报告的方法和装置 | |
US11070264B2 (en) | Downlink-beam adjustment method and apparatus | |
WO2021098568A1 (zh) | 一种能力信息发送方法、接收方法及装置 | |
US11201681B2 (en) | Signal communication method and apparatus | |
US20200120602A1 (en) | Communication method, terminal, and network device | |
US10862652B2 (en) | Uplink signal acknowledge method and apparatus | |
EP3607668B1 (en) | Cell quality derivation based on filtered beam measurements | |
US11317418B2 (en) | Communication method and communication apparatus | |
EP4008122A1 (en) | Positioning-specific beam refinement for neighbor cell positioning reference signal (prs) transmission | |
WO2018053766A1 (zh) | 通信方法、终端设备和网络设备 | |
US11202220B2 (en) | Method of adapting report mapping based on beamforming | |
CN108282807B (zh) | 信道质量信息的测量、选择和上报方法及装置 | |
EP3563492A1 (en) | Radio network nodes, wireless device, and methods performed therein for communicating in a wireless communication network | |
US11394444B2 (en) | Signal sending method and related device | |
EP4092925A1 (en) | Data transmission method and apparatus | |
CN110741718A (zh) | 用于随机接入配置的方法和设备 | |
US20190280786A1 (en) | Method for transmitting measurement signal and apparatus | |
US20230354252A1 (en) | Positioning information transmission method and apparatus | |
CN103209426B (zh) | 一种在用户终端异频切换前的测量方法及装置 | |
CN113965995A (zh) | 部分带宽选择方法、系统和基站 | |
WO2021013138A1 (zh) | 无线网络通信方法和通信装置 | |
WO2019033328A1 (en) | METHOD, COMPUTER PROGRAM, AND APPARATUS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17890622 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017890622 Country of ref document: EP Effective date: 20190517 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |