WO2018126653A1 - 一种针对三维图像的非对称拼接方法 - Google Patents

一种针对三维图像的非对称拼接方法 Download PDF

Info

Publication number
WO2018126653A1
WO2018126653A1 PCT/CN2017/094683 CN2017094683W WO2018126653A1 WO 2018126653 A1 WO2018126653 A1 WO 2018126653A1 CN 2017094683 W CN2017094683 W CN 2017094683W WO 2018126653 A1 WO2018126653 A1 WO 2018126653A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinates
image
point
images
mosaic
Prior art date
Application number
PCT/CN2017/094683
Other languages
English (en)
French (fr)
Inventor
王荣刚
王振宇
王悦名
高文
Original Assignee
北京大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学深圳研究生院 filed Critical 北京大学深圳研究生院
Publication of WO2018126653A1 publication Critical patent/WO2018126653A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/156Mixing image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/161Encoding, multiplexing or demultiplexing different image signal components

Definitions

  • the present invention relates to the field of three-dimensional (3D) video technology, and in particular, to a new method for asymmetrically stitching 3D images, which can reduce the resolution of one of the left and right viewing images and reduce the code rate required for video compression.
  • the 3D video contains images of the left and right viewpoints, so the amount of data that the video transmission needs to transmit is doubled compared to the normal video.
  • the conventional method is to perform horizontal or vertical 1/2 down sampling of the left and right images, and then stitch the left and right or the upper and lower sides together.
  • the image resolution after splicing is the same as that of the original single channel, and the images of both viewpoints lose half of the resolution in the horizontal or vertical direction.
  • the existing image stitching method is used to process 3D video images, and it is difficult to achieve the effect that the picture quality of the video can be kept not lowered, and the amount of data of the original 3D video can be reduced.
  • the present invention provides an asymmetric splicing method for a three-dimensional image, which can reduce the screen resolution of a certain viewpoint in the 3D video, and reduce the resolution of one of the left and right viewing images in the 3D video, and reduce the resolution.
  • the bit rate required for video compression reduces the amount of data in 3D video.
  • the principle of the present invention is that since the human eye is looking at the 3D picture, the pictures seen by the two eyes are very similar. When there is a quality difference between the left and right viewing pictures, the quality of the picture details perceived by the human eye is often determined by the better quality. Therefore, the present invention utilizes the characteristic of the human eye, uses an asymmetric splicing method, keeps the resolution of one viewpoint unchanged, and reduces the resolution of another viewpoint, so as to maintain the picture quality without degrading, and can reduce the original 3D. The purpose of the amount of video data.
  • An asymmetric splicing method for three-dimensional images By using asymmetric splicing, the resolution of one of the viewpoints is kept constant, and the resolution of the other viewpoint is reduced, thereby reducing the left and right viewing images in the three-dimensional video.
  • the original resolution of the left and right view images of the original three-dimensional image is W ⁇ H, and for one of the left and right view images, the resolution of the road image is kept unchanged, and the road image is recorded as A; the other image B is Divided into two halves according to the left and right equally divided or up and down, respectively recorded as B1 and B2;
  • step 2 the downsampling of step 2) is to downsample 1/2 of each of the horizontal and vertical directions of B1 and B2, so that the obtained image area becomes 1/4 of the original.
  • the other image B is divided into two halves according to the left and right, respectively, as B1 and B2, and then B1 and B2 are down-sampled horizontally and vertically by 1/2 to obtain an image B1'. And B2', then B1' and B2' are spliced to the left and right to form a mosaic.
  • the relationship between the generated mosaic image and the left and right view images of the original three-dimensional image includes two types:
  • the first one is: the coordinates of the point pa located on the image A are (xa, ya), the coordinates of the same point pa' on the generated mosaic are (xa, ya); the point p1 located on the image B1'
  • the coordinates (x1, y1), the coordinates on the generated mosaic are (W+x1, y1); the coordinates (x2, y2) of the point p2 located on the image B2', on the generated mosaic
  • the coordinates are (W+x2, H/2+y2);
  • the second type is: the coordinates of the point pa located on the image A are (xa, ya), the coordinates of the same point pa' on the generated mosaic are (W/4+xa, ya); and the image B1'
  • the coordinates (x1, y1) of the upper point p1, the coordinates on the generated mosaic map are (x1, y1); the coordinates (x2, y2) of the point p2 located on the image B2', in the generated mosaic map
  • the coordinates on it are (x2, H/2+y2).
  • the other image B is divided into two halves, which are respectively recorded as B1 and B2, and then B1 and B2 are down-sampled horizontally and vertically by 1/2 to obtain an image B1'. And B2', then B1' and B2' are spliced up and down with A to generate a mosaic.
  • the relationship between the generated mosaic image and the left and right view images of the original three-dimensional image includes two types:
  • the first one is: the coordinates of the point pa located on the image A are (xa, ya), the coordinates of the same point pa' on the generated mosaic are (xa, ya); the point p1 located on the image B1'
  • the coordinates (x1, y1), the coordinates on the generated mosaic are (x1, H+y1); the coordinates (x2, y2) of the point p2 located on the image B2', on the generated mosaic
  • the coordinates are (W/2+x2, H+y2);
  • the second type is that the coordinates of the point pa located on the image A are (xa, ya), and the coordinates of the same point pa' on the generated mosaic are (xa, H/4 + ya);
  • the coordinates (x1, y1) of the upper point p1, the coordinates on the generated mosaic map are (x1, y1); the coordinates (x2, y2) of the point p2 located on the image B2', in the generated mosaic map
  • the coordinates on it are (W/2+x2, y2).
  • the existing image stitching method processes the 3D video image by horizontally or vertically 1/2 down-sampling the left and right images, and then stitching the left and right or the top and bottom together; the image resolution after stitching is the same as the original single-channel video resolution.
  • the images of both viewpoints lose half of the resolution in the horizontal or vertical direction.
  • the asymmetric splicing method for three-dimensional images provided by the present invention, By using asymmetric splicing, keeping the resolution of one viewpoint unchanged, reducing the resolution of another viewpoint, can reduce the resolution of a certain viewpoint in 3D video, and reduce the resolution of one of the left and right viewing images in 3D video, reducing The bit rate required for video compression reduces the amount of data in 3D video.
  • FIG. 1 is a flow block diagram of an asymmetric splicing method for a three-dimensional image provided by the present invention.
  • FIG. 2 is a schematic view of left and right splicing in an embodiment of the present invention.
  • (a) is the left and right stitching scheme 1; (b) is the left and right stitching scheme 2; W and H respectively indicate the width and height of the left and right looking dual video images, the two images are the same width and height;
  • A represents the two images The other way is not divided down; the other image is divided into two halves according to the left and right, denoted as B1 and B2; B1' and B2' represent the images after B1 and B2 downsampling; pa indicates a point on the graph A; pa' indicates A point corresponding to the same point pa on the mosaic; p1 and p2 indicate a point on B1' and B2', respectively.
  • FIG. 3 is a schematic view of the upper and lower splicing in the embodiment of the present invention.
  • (a) is the upper and lower splicing scheme 1; (b) is the upper and lower splicing scheme 2; W and H respectively indicate the width and height of the left and right viewing dual video images, the two images are the same width and height;
  • A represents the two images The other way is not to downsample; the other image is divided into two halves according to the upper and lower sides, denoted as B1 and B2; B1' and B2' represent the images after B1 and B2 downsampling; pa indicates a point on the A graph, pa' indicates The points corresponding to the point pa on the mosaic, p1 and p2 indicate a point on B1' and B2', respectively.
  • the asymmetric splicing method for three-dimensional images provided by the present invention can reduce the resolution of one viewpoint and reduce the resolution of another viewpoint by using asymmetric splicing, thereby reducing the resolution of a certain viewpoint in 3D video and reducing
  • the resolution of one of the left and right views in the 3D video reduces the bit rate required for video compression, thereby reducing the amount of data of the 3D video;
  • the asymmetric stitching method includes the following steps:
  • B1 and B2 are down-sampled horizontally and vertically by 1/2, and the area becomes 1/4 of the original, which are respectively recorded as B1' and B2';
  • the left and right stitching may be as shown in FIG. 2(a), the coordinates of the point pa located on the image A are (xa, ya), and the coordinates of the same point pa' on the generated stitching map are (xa, ya);
  • the upper coordinates are (W+x1, y1); the coordinates (x2, y2) of the point p2 located on the image B2', and the coordinates on the search stitching map are (W+x2, H/2+y2).
  • the left and right stitching may also be as shown in FIG.
  • the coordinates of the point pa located on the image A are (xa, ya), and the coordinates of the same point pa' on the stitching map are (W/4+xa, Ya); the coordinates (x1, y1) of the point p1 located on the image B1', the coordinates on the mosaic (x1, y1); the coordinates (x2, y2) of the point p2 located on the image B2',
  • the coordinates on the search stitch map are (x2, H/2+y2).
  • the upper and lower splicing may be as shown in FIG. 3( a ), the coordinates of the point pa located on the image A are (xa, ya), and the coordinates of the same point pa′ on the mosaic image are (xa, ya);
  • the coordinates on the mosaic are (W/2+x2, H+y2).
  • the upper and lower splicing can also be as shown in Fig.
  • the coordinates of the point pa on the image A are (xa, ya), and the coordinates of the same point pa' on the mosaic are (xa, H/4+).
  • Ya) the coordinates (x1, y1) of the point p1 located on the image B1', the coordinates on the mosaic (x1, y1); the coordinates (x2, y2) of the point p2 located on the image B2',
  • the coordinates on the search stitch map are (W/2+x2, y2).
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the collected left and right view images are spliced to the spliced image by using the asymmetric splicing method proposed by the present invention.
  • the original acquired right-view image with a resolution of W ⁇ H is divided into two halves, which are recorded as B1 and B2.
  • the left view with a resolution of W ⁇ H remains unchanged.
  • B1 and B2 are downsampled by 1/2 in the horizontal and vertical directions, and the resolution is W/4 ⁇ H/2, which is denoted as B1' and B2'.
  • B1' and B2' are spliced together with A to form a mosaic.
  • the left and right stitching can be as shown in FIG.
  • the coordinates of the point pa located on the image A are (xa, ya), and the coordinates of the same point pa' on the stitching map are (xa, ya);
  • the coordinates (x1, y1) of the point p1 on B1', the coordinates on the mosaic (W+x1, y1); the coordinates (x2, y2) of the point p2 on the image B2', on the mosaic The coordinates are (W+x2, H/2+y2).
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the collected left and right view images are spliced up and down into a spliced image by using the asymmetric splicing method proposed by the present invention.
  • the original acquired right-view image with a resolution of W ⁇ H is divided into two halves, which are recorded as B1 and B2.
  • the left view with a resolution of W ⁇ H remains unchanged.
  • B1 and B2 are downsampled by 1/2 in the horizontal and vertical directions, and the resolution is W/2 ⁇ H/4, which is denoted as B1' and B2'.
  • B1' and B2' are spliced together with A to form a mosaic.
  • the upper and lower splicing can be as shown in Fig.
  • the coordinates of the point pa on the image A are (xa, ya), the coordinates of the same point pa' on the mosaic are (xa, ya); the image B1'
  • the coordinates of the upper point p1 (x1, y1), the coordinates on the mosaic (x1, H+y1); the coordinates of the point p2 located on the image B2' (x2, y2), the coordinates on the mosaic are (W/2+x2, H+y2).

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Image Processing (AREA)

Abstract

本发明公布了一种针对三维图像的非对称拼接方法,对三维左右视图像,通过使用非对称拼接,保持其中一个视点的分辨率不变,降低另一个视点的分辨率,从而减少三维视频中左右视画面其中一路的分辨率;包括对三维图像左右视图像中的一路进行切分;对切分后的图像进行下采样;下采样图像和另一路图像进行拼接。本发明提供的非对称拼接方法能够降低3D视频中某个视点的画面分辨率,减少3D视频中左右视画面其中一路的分辨率,降低视频压缩所需的码率,从而降低3D视频的数据量。

Description

一种针对三维图像的非对称拼接方法 技术领域
本发明涉及三维(3D)视频技术领域,尤其涉及一种新的3D图像非对称拼接方法,能够减少左右视画面其中一路的分辨率,降低视频压缩所需的码率。
背景技术
3D视频包含了左右两路视点的图像,因此,视频传输需要传输的数据量较普通视频翻了一倍。目前,现有的传统方法是将左右视的图像进行横向或纵向1/2下采样,然后再将左右或上下拼接在一起。该方法拼接后的图像分辨率和原始单路的视频分辨率相同,两个视点的图像都在横向或纵向损失了一半分辨率。采用现有的图像拼接方法处理3D视频图像,难以达到既可以保持视频的画面质量不下降,又可以降低原始3D视频的数据量的效果。
发明内容
为了克服上述现有技术的不足,本发明提供一种针对三维图像的非对称拼接方法,能够降低3D视频中某个视点的画面分辨率,减少3D视频中左右视画面其中一路的分辨率,降低视频压缩所需的码率,从而降低3D视频的数据量。
本发明的原理是:由于人眼在看3D画面时,两眼看到的画面非常近似,当左右视画面存在质量差异时,人眼感受到的画面细节质量往往由质量更好的一路来决定。因此,本发明利用人眼的这一特性,使用非对称拼接的方法,保持一个视点的分辨率不变,降低另一个视点的分辨率,达到既可以保持画面质量不下降,又可以降低原始3D视频的数据量的目的。
本发明提供的技术方案是:
一种针对三维图像的非对称拼接方法,对三维左右视图像,通过使用非对称拼接,保持其中一个视点的分辨率不变,降低另一个视点的分辨率,从而减少三维视频中左右视画面其中一路的分辨率,由此达到降低视频压缩所需的码率,降低三维视频的数据量的目的;包括如下步骤:
1)原始三维图像的左右视图像的原始分辨率各为W×H,针对左右视图像其中的一路图像,保持该路图像分辨率不变,将该路图像记为A;将另一路图像B按左右均分或上下均分成两半,分别记为B1和B2;
2)对B1和B2进行下采样,将得到的图像分别记为B1′和B2′;
3)通过左右拼接或上下拼接,将B1′、B2′和A拼接在一起,生成拼接图。
针对上述非对称拼接方法,进一步地,步骤2)所述下采样为对B1和B2进行横向和纵向各1/2的下采样,使得得到的图像面积变为原来的1/4。
针对上述非对称拼接方法,进一步地,将另一路图像B按左右均分成两半,分别记为B1和B2,再对B1和B2进行横向和纵向各1/2的下采样,得到图像B1′和B2′,再将B1′和B2′同A进行左右拼接,生成拼接图。其中,生成拼接图与原始三维图像的左右视图像的关系包括两种:
第一种是:位于图像A上的点pa的坐标为(xa,ya),在所述生成拼接图上的相同点pa′的坐标为(xa,ya);位于图像B1′上的点p1的坐标(x1,y1),在所述生成拼接图上的坐标为(W+x1,y1);位于图像B2′上的点p2的坐标(x2,y2),在所述生成拼接图上的坐标为(W+x2,H/2+y2);
第二种是:位于图像A上的点pa的坐标为(xa,ya),在所述生成拼接图上的相同点pa′的坐标为(W/4+xa,ya);位于图像B1′上的点p1的坐标(x1,y1),在所述生成拼接图上的坐标为(x1,y1);位于图像B2′上的点p2的坐标(x2,y2),在所述生成拼接图上的坐标为(x2,H/2+y2)。
针对上述非对称拼接方法,进一步地,将另一路图像B按上下均分成两半,分别记为B1和B2,再对B1和B2进行横向和纵向各1/2的下采样,得到图像B1′和B2′,再将B1′和B2′同A进行上下拼接,生成拼接图。其中,生成拼接图与原始三维图像的左右视图像的关系包括两种:
第一种是:位于图像A上的点pa的坐标为(xa,ya),在所述生成拼接图上的相同点pa′的坐标为(xa,ya);位于图像B1′上的点p1的坐标(x1,y1),在所述生成拼接图上的坐标为(x1,H+y1);位于图像B2′上的点p2的坐标(x2,y2),在所述生成拼接图上的坐标为(W/2+x2,H+y2);
第二种是:位于图像A上的点pa的坐标为(xa,ya),在所述生成拼接图上的相同点pa′的坐标为(xa,H/4+ya);位于图像B1′上的点p1的坐标(x1,y1),在所述生成拼接图上的坐标为(x1,y1);位于图像B2′上的点p2的坐标(x2,y2),在所述生成拼接图上的坐标为(W/2+x2,y2)。
与现有技术相比,本发明的有益效果是:
现有图像拼接方法处理3D视频图像,是将左右视的图像进行横向或纵向1/2下采样,再将左右或上下拼接在一起;拼接后的图像分辨率和原始单路的视频分辨率相同,两个视点的图像都在横向或纵向损失了一半分辨率。而本发明提供的针对三维图像的非对称拼接方法, 通过使用非对称拼接,保持一个视点的分辨率不变,降低另一个视点的分辨率,能够降低3D视频中某个视点的画面分辨率,减少3D视频中左右视画面其中一路的分辨率,降低视频压缩所需的码率,从而降低3D视频的数据量。
附图说明
图1是本发明提供的针对三维图像的非对称拼接方法的流程框图。
图2是本发明实施例中左右拼接的示意图;
其中,(a)是左右拼接方案一;(b)是左右拼接方案二;W和H分别表示左右视双路视频图像各自的宽和高,两路图像宽高相同;A表示两路图像中不做下采样的一路;另一路图像按左右均分成两半,记为B1和B2;B1′和B2′表示B1和B2下采样后的图像;pa示意A图上的一个点;pa′表示拼接图上同点pa对应的点;p1和p2分别示意B1′和B2′上的一个点。
图3是本发明实施例中上下拼接的示意图;
其中,(a)是上下拼接方案一;(b)是上下拼接方案二;W和H分别表示左右视双路视频图像各自的宽和高,两路图像宽高相同;A表示两路图像中不做下采样的一路;另一路图像按上下均分成两半,记为B1和B2;B1′和B2′表示B1和B2下采样后的图像;pa示意A图上的一个点,pa′表示拼接图上同点pa对应的点,p1和p2分别示意B1′和B2′上的一个点。
具体实施方式
下面结合附图,通过实施例进一步描述本发明,但不以任何方式限制本发明的范围。
本发明提供的针对三维图像的非对称拼接方法,通过使用非对称拼接,保持一个视点的分辨率不变,降低另一个视点的分辨率,能够降低3D视频中某个视点的画面分辨率,减少3D视频中左右视画面其中一路的分辨率,降低视频压缩所需的码率,从而降低3D视频的数据量;针对三维图像,非对称拼接方法包括如下步骤:
1)首先,对原始的分辨率各为W×H的左右视图像中的一路,保持该路图像分辨率不变,将该路图像记为A;将另一路图像按左右或上下均分成两半,分别记为B1和B2;
2)同时,对B1和B2进行横向和纵向各1/2的下采样,面积变为原来的1/4,分别记为B1′和B2′;
3)最后,通过左右拼接或上下拼接,将B1′、B2′和A拼接在一起,生成拼接图。
其中,左右拼接可以如图2(a)所示,位于图像A上的点pa的坐标为(xa,ya),在生成的拼接图上的相同点pa′的坐标为(xa,ya);位于图像B1′上的点p1的坐标(x1,y1),在所述拼接图 上的坐标为(W+x1,y1);位于图像B2′上的点p2的坐标(x2,y2),在搜书拼接图上的坐标为(W+x2,H/2+y2)。左右拼接还可以如图2(b)所示,位于图像A上的点pa的坐标为(xa,ya),在所述拼接图上的相同点pa′的坐标为(W/4+xa,ya);位于图像B1′上的点p1的坐标(x1,y1),在所述拼接图上的坐标为(x1,y1);位于图像B2′上的点p2的坐标(x2,y2),在搜书拼接图上的坐标为(x2,H/2+y2)。
上下拼接可以如图3(a)所示,位于图像A上的点pa的坐标为(xa,ya),在所述拼接图上的相同点pa′的坐标为(xa,ya);位于图像B1′上的点p1的坐标(x1,y1),在所述拼接图上的坐标为(x1,H+y1);位于图像B2′上的点p2的坐标(x2,y2),在搜书拼接图上的坐标为(W/2+x2,H+y2)。上下拼接还可以如图3(b)所示,位于图像A上的点pa的坐标为(xa,ya),在所述拼接图上的相同点pa′的坐标为(xa,H/4+ya);位于图像B1′上的点p1的坐标(x1,y1),在所述拼接图上的坐标为(x1,y1);位于图像B2′上的点p2的坐标(x2,y2),在搜书拼接图上的坐标为(W/2+x2,y2)。
实施例一:
在实施例一中,使用本发明提出的非对称拼接方法将采集到的左右视图像左右拼接为拼接图像。首先将原始采集到的分辨率为W×H的右视图像按左右分成两半,记为B1和B2。分辨率为W×H的左视图保持不变。对B1和B2进行横向和纵向各1/2的下采样,分辨率各位为W/4×H/2,记为B1′和B2′。最后将B1′、B2′同A左右拼接在一起,生成拼接图。其中,左右拼接可以如图2(a)所示,位于图像A上的点pa的坐标为(xa,ya),在拼接图上的相同点pa′的坐标为(xa,ya);位于图像B1′上的点p1的坐标(x1,y1),在拼接图上的坐标为(W+x1,y1);位于图像B2′上的点p2的坐标(x2,y2),在拼接图上的坐标为(W+x2,H/2+y2)。
实施例二:
实施例二中,使用本发明提出的非对称拼接方法将采集到的左右视图像上下拼接为拼接图像。首先将原始采集到的分辨率为W×H的右视图像按上下分成两半,记为B1和B2。分辨率为W×H的左视图保持不变。对B1和B2进行横向和纵向各1/2的下采样,分辨率各位为W/2×H/4,记为B1′和B2′。最后将B1′、B2′同A上下拼接在一起,生成拼接图。上下拼接可以如图3(a)所示,位于图像A上的点pa的坐标为(xa,ya),在拼接图上的相同点pa′的坐标为(xa,ya);位于图像B1′上的点p1的坐标(x1,y1),在拼接图上的坐标为(x1,H+y1);位于图像B2′上的点p2的坐标(x2,y2),在拼接图上的坐标为(W/2+x2,H+y2)。
需要注意的是,公布实施例的目的在于帮助进一步理解本发明,但是本领域的技术人员 可以理解:在不脱离本发明及所附权利要求的精神和范围内,各种替换和修改都是可能的。因此,本发明不应局限于实施例所公开的内容,本发明要求保护的范围以权利要求书界定的范围为准。

Claims (6)

  1. 一种针对三维图像的非对称拼接方法,对三维左右视图像,通过使用非对称拼接,保持其中一个视点的分辨率不变,降低另一个视点的分辨率;包括如下步骤:
    1)原始三维图像的左右视图像的原始分辨率各为W×H,针对左右视图像其中的一路图像,保持该路图像分辨率不变,将该路图像记为A;将另一路图像B按左右均分或上下均分成两半,分别记为B1和B2;
    2)对B1和B2进行下采样,将得到的图像分别记为B1′和B2′;
    3)通过左右拼接或上下拼接,将B1′、B2′和A拼接在一起,生成拼接图。
  2. 如权利要求1所述非对称拼接方法,其特征是,步骤2)所述下采样为对B1和B2进行横向和纵向各1/2的下采样,使得得到的图像面积变为原来的1/4。
  3. 如权利要求1所述非对称拼接方法,其特征是,将另一路图像B按左右均分成两半,分别记为B1和B2,再对B1和B2进行横向和纵向各1/2的下采样,得到图像B1′和B2′,再将B1′和B2′同A进行左右拼接,生成拼接图。
  4. 如权利要求3所述非对称拼接方法,其特征是,所述生成拼接图与原始三维图像的左右视图像的关系包括两种:
    第一种是:位于图像A上的点pa的坐标为(xa,ya),在所述生成拼接图上的相同点pa′的坐标为(xa,ya);位于图像B1′上的点p1的坐标(x1,y1),在所述生成拼接图上的坐标为(W+x1,y1);位于图像B2′上的点p2的坐标(x2,y2),在所述生成拼接图上的坐标为(W+x2,H/2+y2);
    第二种是:位于图像A上的点pa的坐标为(xa,ya),在所述生成拼接图上的相同点pa′的坐标为(W/4+xa,ya);位于图像B1′上的点p1的坐标(x1,y1),在所述生成拼接图上的坐标为(x1,y1);位于图像B2′上的点p2的坐标(x2,y2),在所述生成拼接图上的坐标为(x2,H/2+y2)。
  5. 如权利要求1所述非对称拼接方法,其特征是,将另一路图像B按上下均分成两半,分别记为B1和B2,再对B1和B2进行横向和纵向各1/2的下采样,得到图像B1′和B2′,再将B1′和B2′同A进行上下拼接,生成拼接图。
  6. 如权利要求5所述非对称拼接方法,其特征是,所述生成拼接图与原始三维图像的左右视图像的关系包括两种:
    第一种是:位于图像A上的点pa的坐标为(xa,ya),在所述生成拼接图上的相同点pa′的 坐标为(xa,ya);位于图像B1′上的点p1的坐标(x1,y1),在所述生成拼接图上的坐标为(x1,H+y1);位于图像B2′上的点p2的坐标(x2,y2),在所述生成拼接图上的坐标为(W/2+x2,H+y2);
    第二种是:位于图像A上的点pa的坐标为(xa,ya),在所述生成拼接图上的相同点pa′的坐标为(xa,H/4+ya);位于图像B1′上的点p1的坐标(x1,y1),在所述生成拼接图上的坐标为(x1,y1);位于图像B2′上的点p2的坐标(x2,y2),在所述生成拼接图上的坐标为(W/2+x2,y2)。
PCT/CN2017/094683 2017-01-05 2017-07-27 一种针对三维图像的非对称拼接方法 WO2018126653A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710007243.1 2017-01-05
CN201710007243.1A CN107046637A (zh) 2017-01-05 2017-01-05 一种针对三维图像的非对称拼接方法

Publications (1)

Publication Number Publication Date
WO2018126653A1 true WO2018126653A1 (zh) 2018-07-12

Family

ID=59543230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094683 WO2018126653A1 (zh) 2017-01-05 2017-07-27 一种针对三维图像的非对称拼接方法

Country Status (2)

Country Link
CN (1) CN107046637A (zh)
WO (1) WO2018126653A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110087054B (zh) * 2019-06-06 2021-06-18 北京七鑫易维科技有限公司 图像的处理方法、装置及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729892A (zh) * 2009-11-27 2010-06-09 宁波大学 一种非对称立体视频编码方法
CN101795411A (zh) * 2010-03-10 2010-08-04 宁波大学 一种立体图像的人眼最小可辨变化分析方法
US20120188335A1 (en) * 2011-01-26 2012-07-26 Samsung Electronics Co., Ltd. Apparatus and method for processing 3d video
CN102918836A (zh) * 2010-05-13 2013-02-06 高通股份有限公司 用于非对称立体视频的帧封装
CN103957398A (zh) * 2014-04-14 2014-07-30 北京视博云科技有限公司 一种立体图像的采样、编码及解码方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000075982A (ko) * 1997-03-07 2000-12-26 다카노 야스아키 디지탈 방송 수신기 및 디스플레이 장치
IT1399417B1 (it) * 2010-04-12 2013-04-16 Sisvel Technology Srl Metodo per la generazione e ricostruzione di un flusso video stereoscopico compatibile e relativi dispositivi di codifica e decodifica.
TWI558166B (zh) * 2013-04-04 2016-11-11 杜比國際公司 用於多視點裸視立體顯示器的深度地圖遞送格式

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729892A (zh) * 2009-11-27 2010-06-09 宁波大学 一种非对称立体视频编码方法
CN101795411A (zh) * 2010-03-10 2010-08-04 宁波大学 一种立体图像的人眼最小可辨变化分析方法
CN102918836A (zh) * 2010-05-13 2013-02-06 高通股份有限公司 用于非对称立体视频的帧封装
US20120188335A1 (en) * 2011-01-26 2012-07-26 Samsung Electronics Co., Ltd. Apparatus and method for processing 3d video
CN103957398A (zh) * 2014-04-14 2014-07-30 北京视博云科技有限公司 一种立体图像的采样、编码及解码方法及装置

Also Published As

Publication number Publication date
CN107046637A (zh) 2017-08-15

Similar Documents

Publication Publication Date Title
US8711204B2 (en) Stereoscopic editing for video production, post-production and display adaptation
RU2538335C2 (ru) Объединение данных 3d изображения и графических данных
US9094674B2 (en) Generation of three-dimensional movies with improved depth control
JP5183277B2 (ja) 立体画像表示装置
JP5638974B2 (ja) 画像処理装置、画像処理方法、およびプログラム
WO2010084716A1 (ja) 画像処理装置、プログラム、画像処理方法、記録方法および記録媒体
US20130127989A1 (en) Conversion of 2-Dimensional Image Data into 3-Dimensional Image Data
CN102186023B (zh) 一种双目立体字幕处理方法
US9167223B2 (en) Stereoscopic video processing device and method, and program
US20160344999A1 (en) SYSTEMS AND METHODs FOR PRODUCING PANORAMIC AND STEREOSCOPIC VIDEOS
BR122013001378A2 (pt) inserção de objetos em 3d em uma imagem estereoscópica em relativa profundidade
BRPI0911014B1 (pt) Método de criação de um sinal de imagem tridimensional para renderização em um display, dispositivo para criação de um sinal de imagem tridimensional para renderização em um display, método de processamento de um sinal de imagem tridimensional e dispositivo para processamento de um sinal de imagem tridimensional
JP2005073013A (ja) 立体画像表示装置、立体画像表示方法、その方法をコンピュータに実行させるためのプログラム及びそのプログラムを記録した記録媒体
JPWO2012153447A1 (ja) 画像処理装置、映像処理方法、プログラム、集積回路
WO2011105220A1 (ja) 立体映像処理装置および方法、並びにプログラム
TW201223245A (en) Displaying graphics with three dimensional video
CN102918855A (zh) 用于合理使用帧打包格式的活动空间的方法及设备
CA2933704A1 (en) Systems and methods for producing panoramic and stereoscopic videos
JP2008109267A (ja) 立体画像生成装置及び立体画像復号装置
CN107483913A (zh) 一种多维度画中画显示方法
WO2018126653A1 (zh) 一种针对三维图像的非对称拼接方法
US20100247079A1 (en) Visual Information Storage Methods and Systems
JP2010226390A (ja) 撮像装置および撮像方法
JP2011529285A (ja) 再現描写メディア中への両眼ステレオ情報の包含のための合成構造、メカニズムおよびプロセス
US20210037230A1 (en) Multiview interactive digital media representation inventory verification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890768

Country of ref document: EP

Kind code of ref document: A1