WO2018126573A1 - 一种提取煤田火区地下高温区热能的方法 - Google Patents

一种提取煤田火区地下高温区热能的方法 Download PDF

Info

Publication number
WO2018126573A1
WO2018126573A1 PCT/CN2017/082987 CN2017082987W WO2018126573A1 WO 2018126573 A1 WO2018126573 A1 WO 2018126573A1 CN 2017082987 W CN2017082987 W CN 2017082987W WO 2018126573 A1 WO2018126573 A1 WO 2018126573A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat medium
heat
high temperature
zone
extraction target
Prior art date
Application number
PCT/CN2017/082987
Other languages
English (en)
French (fr)
Inventor
仲晓星
汤研
张新浩
李光宇
王德明
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to US16/091,997 priority Critical patent/US10816241B2/en
Priority to AU2017391229A priority patent/AU2017391229A1/en
Publication of WO2018126573A1 publication Critical patent/WO2018126573A1/zh
Priority to ZA2018/06967A priority patent/ZA201806967B/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/20Geothermal collectors using underground water as working fluid; using working fluid injected directly into the ground, e.g. using injection wells and recovery wells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T50/00Geothermal systems 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T2010/50Component parts, details or accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T2010/50Component parts, details or accessories
    • F24T2010/56Control arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the invention relates to a thermal energy extraction method, in particular to a method for extracting thermal energy in an underground high temperature zone of a coal field fire zone.
  • Coal field fire refers to the phenomenon that large-area coal combustion occurs when underground coal seams are ignited by natural or human factors and gradually develop along the coal seam into large-scale coal damage caused by coal resources and the surrounding environment.
  • the coal field fire area has a large burning area and high temperature. There is also huge heat in the fire area. About 1 billion tons of coal is burnt down by underground coal fire every year, accounting for 12.5% of the total coal consumption, generating about 1000 GW of energy. , equivalent to 2.5 times the total energy produced by 500 nuclear power plants around the world.
  • the patent document published as CN106026778A discloses a system and method for the sustainable utilization of coal thermal energy and coal fire control, which proposes to arrange horizontal steel pipes in the fire area of the coal field and pass the heat.
  • the carrier realizes the purpose of extracting thermal energy, but has the following practical problems: 1.
  • the heat exchange radius of the pipeline is relatively small, and the heat extraction efficiency is low; 2.
  • When used for heating large-area coalfield fire area a large amount of burial is required, and the amount of engineering is required. Large and horizontal drilling is very difficult and difficult to achieve; 3.
  • the pipeline is difficult to recycle, the cost of use is high, and the applicability is low.
  • the patent document published in CN105298569A discloses a method for extracting and converting thermal energy in a coal field fire zone, which proposes to use a gaseous heat medium to achieve a large area coal field fire zone.
  • the heat exchange control method has a wide range of heat exchange control, and is suitable for use in a high temperature zone having a porous medium property and a good gas flowability.
  • the geological complex of the underground high temperature zone of the coalfield fire zone is complicated, and the coal rock compaction is widespread.
  • the present invention provides a method for extracting thermal energy in an underground high temperature zone of a coal field fire zone, which can achieve efficient extraction of thermal energy in an underground high temperature zone of a coalfield fire zone with uneven gas permeability.
  • a method for extracting thermal energy in an underground high temperature zone of a coal field fire zone, determining heat by natural potential method and ground detecting borehole The target area is extracted, and the low temperature gaseous heat medium is sent to the underground high temperature area of the heat extraction target area by using the injection drilling hole in the heat extraction target area, and the gas heat medium exchanges heat with the high temperature coal rock body of the fire area, and then the hole is extracted.
  • the high temperature gaseous heat medium is extracted from the surface; the high temperature gaseous heat medium is extracted while continuously monitoring the natural potential of the heat extraction target zone, and the casing type borehole heat exchanger is arranged in the potential abnormal region continuously existing in the heat extraction target area to complete the high temperature of the region. Heat exchange between coal rock and liquid heat medium; when the temperature of the extracted gaseous heat medium and liquid heat medium reaches 70 ° C or below, the heat extraction operation is stopped.
  • the method specifically includes the following steps:
  • the natural potential method is used to detect the abnormal area of the fire area in the coal field, and the hot extraction target area is determined by combining the ground detecting borehole;
  • the gas booster pump set by the surface is used to pressurize the low temperature gaseous heat medium and then into the injection hole, and then use the vacuum pump to extract the high temperature gaseous heat medium that has exchanged heat with the high temperature coal rock body through the extraction hole;
  • thermometer to detect the temperature of the gaseous heat medium at the exit of the drill hole, when the temperature of the gaseous heat medium reaches 70 ° C or below, stop the heat extraction operation of the gaseous heat medium; continuously extract the high temperature gaseous heat medium while continuously monitoring the heat Extracting the natural potential of the target zone, constructing a borehole from the surface to the underground high temperature zone and installing a casing type borehole heat exchanger in a region of potential abnormality existing in the heat extraction target zone;
  • the temperature of the liquid heat medium at the exit of the borehole heat exchanger is detected by a thermometer, and when the temperature of the liquid heat medium reaches 70 ° C or below, the heat extraction operation of the liquid heat medium is stopped.
  • the potential abnormal region is a region where the measured potential value is not equal to zero.
  • the natural potential method is to determine the potential anomaly (potential not equal to 0) caused by temperature gradient (thermal potential), intense redox reaction (oxidation reduction potential) of coal, and water vapor migration (flow potential) in the fire zone. And the method of determining the location of the high temperature zone in the fire zone.
  • the abnormal zone of the fire zone potential detected in step A is the underground high temperature zone existing in the coalfield fire zone, that is, the hot extraction target zone; the potential abnormal zone continuously existing in the heat extraction target zone detected in step E is The high temperature zone of the fire zone that continues to exist during the thermal energy extraction process of the gaseous heat medium is the area where the gas heat medium is difficult to flow and heat exchange, thereby realizing effective screening of different gas permeability geological regions in the coal field fire zone.
  • step C the injection drilled holes are arranged at a center with a drilled hole and a radius of 10 to 30 m. On the circumference, a drilled control zone is formed.
  • the gaseous heat medium is an inert gas.
  • the casing type borehole heat exchanger comprises a high heat conductive cylindrical casing vertically disposed in the borehole of the potential abnormal zone, and the high heat conductive cylindrical casing is provided with an inner pipe extending along the central axis thereof and along the inner tube thereof
  • the outer tube extending from the inner wall, the inner tube and the outer tube are connected at the bottom of the high-heat-conducting cylindrical shell; in step F, the liquid heat medium is injected from the top of the inner tube by the circulation pump, and is taken out from the top of the outer tube, and the liquid heat medium passes through the high
  • the heat-conducting cylindrical shell is used to exchange heat with the high-temperature coal rock, and the circulating flow pump is used to control the flow rate of the liquid heat medium.
  • the liquid heat medium is an alkyl naphthalene heat transfer oil, has good thermal stability, no environmental pollution, and can efficiently transfer heat.
  • the present invention provides a method for extracting thermal energy in an underground high temperature zone of a coal field fire zone, first determining a hot extraction target zone of a coal field fire zone by a natural potential method and a ground detecting borehole, so that the extraction of thermal energy in the fire zone is targeted, Improve the heat extraction efficiency; use the flame-retardant filling body to fill the surface cracks and collapse pits covering the high temperature area, and the inlet and outlet channels connecting the high temperature area of the underground coal fire and the external environment, which can control the development of coal fire in the area and avoid heat energy.
  • the injection borehole is arranged on the circumference centered on the extracted borehole to form the borehole control zone, and then the nitrogen gas is cooled by the injection borehole.
  • the inert gas is injected into the underground coal fire high temperature zone as a gaseous heat medium.
  • the gaseous heat medium is heat-exchanged with the high-temperature coal rock in the borehole control area under the pressure difference between the injected borehole and the extracted borehole, and then extracted by a vacuum pump.
  • Drilling and extracting the surface thereby realizing the extraction of thermal energy from the permeable region of the gaseous heat medium in the underground high temperature zone of the heat extraction target zone, and lowering the temperature of the zone While controlling coal fire, it also provides reference for screening areas with high compaction and poor gas permeability.
  • the high temperature heat medium is extracted while continuously monitoring the natural potential of the heat extraction target area to determine the potential abnormal area. It is a poorly ventilated area where the gaseous heat medium cannot circulate and effectively exchange heat in the high temperature zone.
  • the borehole is constructed in this area and a casing type borehole heat exchanger is installed, and the liquid heat medium and the high temperature coal are completed by the bore heat exchanger.
  • the heat exchange of the rock enables the efficient extraction of the thermal energy in the high temperature zone of the fire zone with uneven gas permeability on the basis of effectively screening different geological regions of the coal field fire zone.
  • FIG. 1 is a flow chart of a method for extracting thermal energy in an underground high temperature zone of a coal field fire zone according to the present invention
  • FIG. 2 is a schematic view showing a plane arrangement manner of a gaseous heat medium injection drilling hole and a drawing hole in the present invention
  • FIG. 3 is a schematic structural view of a system for extracting thermal energy in an underground high temperature zone of a coal field fire zone according to the present invention (corresponding to the A-A section in FIG. 2);
  • the figure includes: 1. Flame-retardant filling body, 2. Overlying rock layer in fire area, 3. Injecting borehole, 4. Extracting borehole, 5. Underground high temperature zone, 6. Potential abnormality in heat extraction target zone Zone (ie, the area where the gaseous heat medium is difficult to transfer heat), 7, natural potential testing device, 8, gas booster pump, 9, vacuum pump, 10, casing type borehole heat exchanger, 11, circulation pump, 12, heat extraction target area, 13, drilling control area, 14, Cooler.
  • 1. Flame-retardant filling body 2. Overlying rock layer in fire area, 3. Injecting borehole, 4. Extracting borehole, 5. Underground high temperature zone, 6. Potential abnormality in heat extraction target zone Zone (ie, the area where the gaseous heat medium is difficult to transfer heat), 7, natural potential testing device, 8, gas booster pump, 9, vacuum pump, 10, casing type borehole heat exchanger, 11, circulation pump, 12, heat extraction target area, 13, drilling control area, 14, Cooler.
  • a method for extracting thermal energy in an underground high temperature region of a coal field fire region includes: determining a hot extraction target region 12 by a natural potential method and a ground detecting borehole, and using the injection drill hole 3 to lower the temperature in the heat extraction target region 12
  • the gaseous heat medium is sent to the underground high temperature zone 5 of the heat extraction target zone 12, and after the gas heat medium exchanges heat with the high temperature coal rock mass of the fire zone, the high temperature gaseous heat medium is extracted from the surface by extracting the borehole 4; the high temperature gaseous heat is extracted.
  • the medium continuously monitors the natural potential of the heat extraction target zone 12, and arranges the casing type borehole heat exchanger 10 in the potential abnormal zone 6 existing in the heat extraction target zone to complete the heat exchange between the high temperature coal rock and the liquid heat medium in the region.
  • the temperature of the extracted gaseous heat medium and liquid heat medium reaches 70 ° C or below, the heat extraction operation is stopped.
  • the extraction borehole 4 and the injection borehole 3 of the gaseous heat medium are sequentially drilled from the surface to the underground high temperature zone 5, and the extracted borehole 4 and the injection borehole 3 are all passed through the overburden rock of the fire zone.
  • Layer 2 reaches the underground high temperature zone 5 of the coalfield fire zone;
  • the gas booster pump 7 provided by the surface is used to pressurize the gaseous heat medium and then enter the injection hole 3, and then the vacuum pump 8 is used to extract the borehole 4 to complete heat exchange with the high temperature coal rock mass.
  • the high temperature gaseous heat medium is extracted from the surface;
  • thermometer to detect the temperature of the gaseous heat medium at the exit of the drilled hole 4, when the temperature of the gaseous heat medium reaches 70 ° C or below, stop the heat extraction operation of the gaseous heat medium; continuously extract the high temperature gaseous heat medium while continuously monitoring
  • the natural potential of the target region 12 is thermally extracted, and a borehole is drilled from the surface to the underground high temperature region 5 in the potential abnormal region 6 existing in the heat extraction target region, and a casing type borehole heat exchanger 10 is installed, and the borehole is drilled through the fire region.
  • the overlying geotechnical layer 2 reaches the underground high temperature zone 5 of the coalfield fire zone;
  • the liquid heat medium is injected into the casing type borehole heat exchanger 10 by using the circulation pump 11, and the heat exchange between the liquid heat medium and the high temperature coal rock is completed by the casing type bore heat exchanger 10, and the liquid heat medium and the high temperature are to be The coal rock is extracted after heat exchange is completed;
  • the temperature of the liquid heat medium at the exit of the borehole heat exchanger 10 is detected by a thermometer, and when the temperature of the liquid heat medium reaches 70 ° C or below, the heat extraction operation of the liquid heat medium is stopped.
  • step C the injection hole 3 is evenly arranged on a circumference having a radius of 20 m centered on the extraction hole 4, thereby forming a hole control zone 13.
  • the gaseous heat medium is nitrogen
  • the flame-retardant filling body 1 is a solidified foam
  • the liquid heat medium is an alkyl naphthalene heat-conducting oil.
  • the potential abnormal region (including the abnormal region of the potential of the coal field fire region and the potential region of the heat extraction target region 6) is a region where the measured potential value is not equal to zero.
  • the casing type borehole heat exchanger 10 includes a high heat conductive cylindrical casing vertically disposed in a borehole of the potential abnormal zone 6 continuously existing in the heat extraction target zone, and the high heat conductive cylindrical casing is disposed therein.
  • An inner tube extending along a central axis thereof and an outer tube extending along an inner wall thereof, the inner tube and the outer tube are connected at a bottom of the high heat conductive cylindrical casing; in step F, the liquid heat medium is injected from the top of the inner tube by a circulation pump 11 And the liquid heat medium is extracted from the top of the outer tube, and the liquid heat medium passes through the high heat conductive cylindrical shell to realize heat exchange with the high temperature coal rock; the circulation pump 11 controls the flow rate flow rate of the liquid heat medium, and the extracted liquid heat medium is cooled by the cooler 14
  • the casing type borehole heat exchanger 10 is injected again to complete the cycle heating.
  • the invention adopts a gaseous heat medium to realize the heat collection in the fire area of the large-area coal field, and uses the natural potential method to identify the potential abnormal region 6 which is continuously present in the heat extraction target region, that is, the coal rock has high compactness and gas permeability.
  • the area where the poor and gaseous heat medium is difficult to enter, and then the heating of the area is completed by the casing type bore heat exchanger 10, thereby realizing efficient extraction of the heat energy in the high temperature area of the fire area with uneven gas permeability, and at the same time realizing the fire
  • the effective cooling of the area has achieved the goal of controlling fires.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

一种提取煤田火区地下高温区热能的方法,包括:通过自然电位法和地面探测钻孔确定热提取靶区(12),在热提取靶区(12)利用注入钻孔(3)将低温气态热媒送至热提取靶区(12)的地下高温区(5)中,气态热媒与火区高温煤岩体发生热交换后,再通过抽出钻孔(4)将高温气态热媒抽出地表;抽取高温气态热媒的同时持续监测热提取靶区(12)的自然电位,在热提取靶区(12)持续存在的电位异常区(6)内布置套管式钻孔换热器(10)完成该区域高温煤岩与液态热媒的热交换。当抽取的气态热媒和液态热媒温度达到70℃或以下时,停止热提取作业。

Description

一种提取煤田火区地下高温区热能的方法 技术领域
本发明涉及一种热能提取方法,具体涉及一种提取煤田火区地下高温区热能的方法。
背景技术
煤田火灾是指地下煤层因自然或人为因素发火后,沿着煤层逐步发展成对煤炭资源和周围环境造成较大危害的大面积煤燃烧现象。煤田火区燃烧面积大、温度高,火区中也蕴藏着巨大的热量,全世界每年约有10亿吨煤炭被地下煤火烧毁,约占煤总消耗量的12.5%,产生约1000GW的能量,相当于全球500个核电站所产能量总和的2.5倍。
为提取并利用煤田火区热能,公开号为CN106026778A的专利文件公开了一种煤田火区热能可持续利用与煤火治理系统及方法,该方法提出在煤田火区内布置水平钢管并通以热载体来实现提取热能的目的,但是存在以下实际问题:1、管路换热半径相对较小,热提取效率较低;2、用于大面积煤田火区采热时则需大量埋设,工程量大且水平钻孔的难度很大,基本难以实现;3、管路难以回收,使用成本较高,适用性较低。
为提高热提取控制范围及热提取效率并减少工程量,公开号为CN105298569A的专利文件公开了一种煤田火区热能的提取与转化方法,该方法提出采用气态热媒实现对大面积煤田火区的采热,这种方法的热交换控制范围大,在具有多孔介质特性、气体流通性较好的高温区较为适用,但是煤田火区地下高温区的地质复杂,且普遍存在有煤岩压实度高、透气性较差的地质区域,所注入的气态热媒难以进入这些区域,导致无法实现与该区域中高温煤岩的有效热交换,严重影响煤田火区的热提取量和热提取效率。而当前尚无一种针对透气性不均匀的煤田火区高温区中热能的高效提取方法。
因此,本领域技术人员致力于开发一种提取煤田火区地下高温区热能的方法,在有效勘探和辨别煤田火区地下高温区不同透气性区域的基础上,结合气态热媒及液态热媒的热交换实现煤田火区地下高温区热能的高效提取。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种提取煤田火区地下高温区热能的方法,能够实现对透气性不均匀的煤田火区地下高温区热能的高效提取。
技术方案:为实现上述目的,本发明采用的技术方案为:
一种提取煤田火区地下高温区热能的方法,通过自然电位法和地面探测钻孔确定热 提取靶区,在热提取靶区利用注入钻孔将低温气态热媒送至热提取靶区的地下高温区中,气态热媒与火区高温煤岩体发生热交换后,再通过抽出钻孔将高温气态热媒抽出地表;抽取高温气态热媒的同时持续监测热提取靶区的自然电位,在热提取靶区持续存在的电位异常区域内布置套管式钻孔换热器完成该区域高温煤岩与液态热媒的热交换;当抽取的气态热媒和液态热媒温度达到70℃或以下时,停止热提取作业。
优选的,具体包括以下步骤:
A、通过自然电位法探测煤田火区电位异常区,并结合地面探测钻孔确定热提取靶区;
B、利用阻燃填充体填充覆盖热提取靶区的地表裂隙、塌陷坑等进风与出风通道;
C、在热提取靶区由地表向地下高温区施工依次钻出气态热媒的抽出钻孔及注入钻孔;
D、利用地表设置的气体增压泵将低温气态热媒增压后通入注入钻孔中,而后利用真空泵通过抽出钻孔将与高温煤岩体完成热交换的高温气态热媒抽出地表;
E、利用测温仪检测抽出钻孔出口处的气态热媒温度,当气态热媒的温度达到70℃或以下时,停止气态热媒的热提取作业;抽取高温气态热媒的同时持续监测热提取靶区的自然电位,在热提取靶区持续存在的电位异常区域内由地表向地下高温区施工钻孔并安设套管式钻孔换热器;
F、利用循环泵将液态热媒注入套管式钻孔换热器中,利用套管式钻孔换热器完成液态热媒与高温煤岩的热交换,待液态热媒与高温煤岩完成热交换后抽出;
G、利用测温仪检测钻孔换热器出口处的液态热媒温度,当液态热媒的温度达到70℃或以下时,停止液态热媒的热提取作业。
进一步的,所述电位异常区为所测电位值不等于0的区域。自然电位法是通过测定煤田火区由于温度梯度(热电位)、煤的剧烈氧化还原反应(氧化还原电位)以及火区水蒸汽运移(流动电位)所导致的电位异常(电位不等于0)而确定火区高温区位置的方法。步骤A中探测出的煤田火区电位异常区就是一开始煤田火区存在的地下高温区,即热提取靶区;步骤E中探测出的热提取靶区中持续存在的电位异常区则是在气态热媒热能提取过程中持续存在的火区高温区,即为气态热媒难以流通换热的区域,从而实现煤田火区不同透气性地质区域的有效甄别。
进一步的,步骤C中,所述注入钻孔排布在以抽出钻孔为圆心、半径为10~30m的 圆周上,从而形成钻孔控制区。
优选的,所述气态热媒为惰性气体。
优选的,所述套管式钻孔换热器包括竖直设置于电位异常区钻孔中的高导热圆柱壳体,且高导热圆柱壳体内设置有沿其中心轴线延伸的内管及沿其内壁延伸的外管,内管及外管在高导热圆柱壳体的底部连通;步骤F中,利用循环泵将液态热媒从内管顶部注入,并从外管顶部抽出,液态热媒通过高导热圆柱壳体来实现与高温煤岩的热交换,并通过循环泵来控制液态热媒的流速流量。
优选的,所述液态热媒为烷基萘导热油,热稳定性好,无环境污染,可高效传热。
有益效果:本发明提供的一种提取煤田火区地下高温区热能的方法,首先通过自然电位法和地面探测钻孔确定煤田火区热提取靶区,使得对火区热能的提取具有针对性、提高热提取效率;利用阻燃填充体填充覆盖高温区的地表裂隙、塌陷坑等连接地下煤火高温区和外界环境的进风与出风通道,能够控制该区域中煤火的发展且避免热能沿通风通道散失;然后施工气态热媒的注入钻孔和抽出钻孔,注入钻孔排布在以抽出钻孔为圆心的圆周上以形成钻孔控制区,再通过注入钻孔将氮气类低温惰性气体作为气态热媒注入地下煤火高温区,气态热媒在注入钻孔和抽出钻孔之间压差的作用下与钻孔控制区内的高温煤岩完成热置换,再通过真空泵由抽出钻孔抽出地表,从而实现了对热提取靶区地下高温区中气态热媒可流通区域热能的提取,并使得该区域温度降低,治理煤火的同时也为甄别煤岩压实度高、透气性较差的区域提供参考;抽取高温热媒的同时持续监测热提取靶区的自然电位,确定其中持续存在的电位异常区,即为高温区中气态热媒无法流通和有效换热的透气性差的区域,在该区域施工钻孔并安设套管式钻孔换热器,利用钻孔换热器完成液态热媒与高温煤岩的热交换,从而实现了在有效甄别煤田火区不同地质区域的基础上对透气性不均匀的火区高温区热能的高效提取。
附图说明
图1为本发明一种提取煤田火区地下高温区热能的方法的流程图;
图2为本发明中气态热媒注入钻孔和抽出钻孔的平面排列方式示意图;
图3为本发明一种提取煤田火区地下高温区热能的系统的结构示意图(对应图2中A-A剖面);
图中包括:1、阻燃填充体,2、火区上覆岩土层,3、注入钻孔,4、抽出钻孔,5、地下高温区,6、热提取靶区持续存在的电位异常区(即气态热媒难以流通换热的区域), 7、自然电位测试装置,8、气体增压泵,9、真空泵,10、套管式钻孔换热器,11、循环泵,12、热提取靶区,13、钻孔控制区,14、冷却器。
具体实施方式
下面结合附图及实施例对本发明作更进一步的说明。
如图1所示为一种提取煤田火区地下高温区热能的方法,包括:通过自然电位法和地面探测钻孔确定热提取靶区12,在热提取靶区12利用注入钻孔3将低温气态热媒送至热提取靶区12的地下高温区5中,气态热媒与火区高温煤岩体发生热交换后,再通过抽出钻孔4将高温气态热媒抽出地表;抽取高温气态热媒的同时持续监测热提取靶区12的自然电位,在热提取靶区持续存在的电位异常区6内布置套管式钻孔换热器10完成该区域高温煤岩与液态热媒的热交换;当抽取的气态热媒和液态热媒温度达到70℃或以下时,停止热提取作业。
本实施例中,具体包括以下步骤:
A、利用自然电位测试装置7探测煤田火区电位异常区,并结合地面探测钻孔确定热提取靶区12;
B、利用阻燃填充体1填充覆盖热提取靶区12的地表裂隙、塌陷坑等进风与出风通道;
C、在热提取靶区12由地表向地下高温区5施工依次钻出气态热媒的抽出钻孔4及注入钻孔3,抽出钻孔4及注入钻孔3均穿过火区上覆岩土层2达到煤田火区地下高温区5;
D、如图3所示,利用地表设置的气体增压泵7将气态热媒增压后通入注入钻孔3中,而后利用真空泵8通过抽出钻孔4将与高温煤岩体完成热交换的高温气态热媒抽出地表;
E、利用测温仪检测抽出钻孔4出口处的气态热媒温度,当气态热媒的温度达到70℃或以下时,停止气态热媒的热提取作业;抽取高温气态热媒的同时持续监测热提取靶区12的自然电位,在热提取靶区持续存在的电位异常区6内由地表向地下高温区5施工钻孔并安设套管式钻孔换热器10,钻孔穿过火区上覆岩土层2达到煤田火区地下高温区5;
F、利用循环泵11将液态热媒注入套管式钻孔换热器10中,利用套管式钻孔换热器10完成液态热媒与高温煤岩的热交换,待液态热媒与高温煤岩完成热交换后抽出;
G、利用测温仪检测钻孔换热器10出口处的液态热媒温度,当液态热媒的温度达到70℃或以下时,停止液态热媒的热提取作业。
如图2所示,步骤C中,所述注入钻孔3均匀排布在以抽出钻孔4为圆心、半径为20m的圆周上,从而形成钻孔控制区13。
本实施例中,所述气态热媒为氮气,且所述阻燃填充体1采用固化泡沫,液态热媒为烷基萘导热油。
本发明中,所述电位异常区(包括煤田火区电位异常区及热提取靶区持续存在的电位异常区6)为所测电位值不等于0的区域。
本实施例中,所述套管式钻孔换热器10包括竖直设置于热提取靶区持续存在的电位异常区6钻孔中的高导热圆柱壳体,且高导热圆柱壳体内设置有沿其中心轴线延伸的内管及沿其内壁延伸的外管,内管及外管在高导热圆柱壳体的底部连通;步骤F中,利用循环泵11将液态热媒从内管顶部注入,并从外管顶部抽出,液态热媒通过高导热圆柱壳体来实现与高温煤岩的热交换;通过循环泵11来控制液态热媒的流速流量,抽取的液态热媒经冷却器14冷却后再次注入套管式钻孔换热器10完成循环采热。
本发明在采用气态热媒实现对大面积煤田火区的采热的基础上,配合使用自然电位法甄别出热提取靶区持续存在的电位异常区6,即煤岩压实度高、透气性较差、气态热媒难以进入的区域,进而通过套管式钻孔换热器10完成该区域的采热,实现了对透气性不均匀的火区高温区热能的高效提取,同时实现了火区的有效降温,达到了治理火灾的目的。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

  1. 一种提取煤田火区地下高温区热能的方法,其特征在于,通过自然电位法和地面探测钻孔确定热提取靶区(12),在热提取靶区(12)利用注入钻孔(3)将低温气态热媒送至热提取靶区(12)的地下高温区(5)中,气态热媒与火区高温煤岩体发生热交换后,再通过抽出钻孔(4)将高温气态热媒抽出地表;抽取高温气态热媒的同时持续监测热提取靶区(12)的自然电位,在热提取靶区持续存在的电位异常区(6)内布置套管式钻孔换热器(10)完成该区域高温煤岩与液态热媒的热交换;当抽取的气态热媒和液态热媒温度达到70℃或以下时,停止热提取作业。
  2. 根据权利要求1所述的一种提取煤田火区地下高温区热能的方法,其特征在于,具体包括以下步骤:
    A、通过自然电位法探测煤田火区电位异常区,并结合地面探测钻孔确定热提取靶区(12);
    B、利用阻燃填充体(1)填充覆盖热提取靶区(12)的地表进风和出风通道;
    C、在热提取靶区(12)由地表向地下高温区(5)施工依次钻出气态热媒的抽出钻孔(4)及注入钻孔(3);
    D、利用地表设置的气体增压泵(7)将低温气态热媒增压后通入注入钻孔(3)中,而后利用真空泵(8)通过抽出钻孔(4)将与高温煤岩体完成热交换的高温气态热媒抽出地表;
    E、利用测温仪检测抽出钻孔(4)出口处的气态热媒温度,当气态热媒的温度达到70℃或以下时,停止气态热媒的热提取作业;抽取高温气态热媒的同时持续监测热提取靶区(12)的自然电位,在热提取靶区持续存在的电位异常区(6)内由地表向地下高温区(5)施工钻孔并安设套管式钻孔换热器(10);
    F、利用循环泵(11)将液态热媒注入套管式钻孔换热器(10)中,利用套管式钻孔换热器(10)完成液态热媒与高温煤岩的热交换,待液态热媒与高温煤岩完成热交换后抽出;
    G、利用测温仪检测套管式钻孔换热器(10)出口处液态热媒的温度,当液态热媒的温度达到70℃或以下时,停止液态热媒的热提取作业。
  3. 根据权利要求2所述的一种提取煤田火区地下高温区热能的方法,其特征在于,所述电位异常区为所测电位值不等于0的区域。
  4. 根据权利要求2所述的一种提取煤田火区地下高温区热能的方法,其特征在于, 步骤C中,所述注入钻孔(3)排布在以抽出钻孔(4)为圆心、半径为10~30m的圆周上,形成钻孔控制区(13)。
  5. 根据权利要求1所述的一种提取煤田火区地下高温区热能的方法,其特征在于,所述气态热媒为惰性气体。
  6. 根据权利要求1所述的一种提取煤田火区地下高温区热能的方法,其特征在于,所述套管式钻孔换热器(10)包括竖直设置于热提取靶区持续存在的电位异常区(6)钻孔中的高导热圆柱壳体,且高导热圆柱壳体内设置有沿其中心轴线延伸的内管及沿其内壁延伸的外管,内管及外管在高导热圆柱壳体的底部连通;步骤F中,利用循环泵(11)将液态热媒从内管顶部注入,并从外管顶部抽出,液态热媒通过高导热圆柱壳体来实现与高温煤岩的热交换,并通过循环泵(11)来控制液态热媒的流速流量。
  7. 根据权利要求1所述的一种提取煤田火区地下高温区热能的方法,其特征在于,所述液态热媒为烷基萘导热油。
PCT/CN2017/082987 2017-01-09 2017-05-04 一种提取煤田火区地下高温区热能的方法 WO2018126573A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/091,997 US10816241B2 (en) 2017-01-09 2017-05-04 Method for extracting thermal energy in underground high temperature area of coalfield fire area
AU2017391229A AU2017391229A1 (en) 2017-01-09 2017-05-04 Method for extracting thermal energy in underground high temperature area of coal field fire zone
ZA2018/06967A ZA201806967B (en) 2017-01-09 2018-10-18 Method for extracting thermal energy in underground high temperature area of coalfield fire area

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710012418.8A CN106679207B (zh) 2017-01-09 2017-01-09 一种提取煤田火区地下高温区热能的方法
CN201710012418.8 2017-01-09

Publications (1)

Publication Number Publication Date
WO2018126573A1 true WO2018126573A1 (zh) 2018-07-12

Family

ID=58850005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082987 WO2018126573A1 (zh) 2017-01-09 2017-05-04 一种提取煤田火区地下高温区热能的方法

Country Status (5)

Country Link
US (1) US10816241B2 (zh)
CN (1) CN106679207B (zh)
AU (1) AU2017391229A1 (zh)
WO (1) WO2018126573A1 (zh)
ZA (1) ZA201806967B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110888149A (zh) * 2019-11-04 2020-03-17 西安科技大学 煤层火灾定位系统及定位方法
CN114165281A (zh) * 2021-12-10 2022-03-11 西安科技大学 一种矿山地下空间的充填生物质固/液产能源气方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106679207B (zh) * 2017-01-09 2018-10-30 中国矿业大学 一种提取煤田火区地下高温区热能的方法
CN109779600B (zh) * 2019-02-27 2023-08-01 中国矿业大学 地下热-气联产气化设备、煤田火区前沿治理系统和方法
CN110630310A (zh) * 2019-09-05 2019-12-31 常州大学 一种煤矿井用压裂双水平井压缩空气储能通风系统
EP4148342A1 (en) * 2021-09-13 2023-03-15 Vito NV A method and system for operating a geothermal heat mining system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100006281A1 (en) * 2008-07-09 2010-01-14 Air Wars Defense Lp Harvesting hydrocarbons and water from methane hydrate deposits and shale seams
CN102508309A (zh) * 2011-10-31 2012-06-20 中国矿业大学 一种探测煤田火区分布范围的方法
CN103396154A (zh) * 2013-07-17 2013-11-20 中国矿业大学 浅埋煤层矿区地表堵漏的无机固化泡沫材料及制备方法
CN105298569A (zh) * 2015-10-12 2016-02-03 中国矿业大学 一种煤田火区热能的提取与转化方法
CN106288465A (zh) * 2016-09-06 2017-01-04 中国矿业大学 一种分布式煤田火区废弃热能发电系统
CN106679207A (zh) * 2017-01-09 2017-05-17 中国矿业大学 一种提取煤田火区地下高温区热能的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3865186A (en) * 1971-07-16 1975-02-11 Hippel Hans Joach Von Method of and system for gasifying underground deposits of coal
US4018279A (en) * 1975-11-12 1977-04-19 Reynolds Merrill J In situ coal combustion heat recovery method
US4092052A (en) * 1977-04-18 1978-05-30 In Situ Technology, Inc. Converting underground coal fires into commercial products
US4557328A (en) * 1984-05-03 1985-12-10 Birch Charles H Method for underground burning of coal for energy
RU1786248C (ru) 1990-11-11 1993-01-07 Всесоюзный научно-исследовательский институт горной геомеханики и маркшейдерского дела Способ определени местоположени подземного объекта
AU2012367347A1 (en) * 2012-01-23 2014-08-28 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US8915084B2 (en) * 2012-03-08 2014-12-23 7238703 Canada Inc. Heat energy extraction system from underground in situ combustion of hydrocarbon reservoirs
CN106026778B (zh) 2016-08-02 2017-10-24 中国矿业大学 一种煤田火区热能可持续利用与煤火治理系统及方法
CN106452186B (zh) * 2016-10-17 2018-10-12 中国矿业大学 一种地下煤火热能提取温差发电系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100006281A1 (en) * 2008-07-09 2010-01-14 Air Wars Defense Lp Harvesting hydrocarbons and water from methane hydrate deposits and shale seams
CN102508309A (zh) * 2011-10-31 2012-06-20 中国矿业大学 一种探测煤田火区分布范围的方法
CN103396154A (zh) * 2013-07-17 2013-11-20 中国矿业大学 浅埋煤层矿区地表堵漏的无机固化泡沫材料及制备方法
CN105298569A (zh) * 2015-10-12 2016-02-03 中国矿业大学 一种煤田火区热能的提取与转化方法
CN106288465A (zh) * 2016-09-06 2017-01-04 中国矿业大学 一种分布式煤田火区废弃热能发电系统
CN106679207A (zh) * 2017-01-09 2017-05-17 中国矿业大学 一种提取煤田火区地下高温区热能的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110888149A (zh) * 2019-11-04 2020-03-17 西安科技大学 煤层火灾定位系统及定位方法
CN110888149B (zh) * 2019-11-04 2021-07-23 西安科技大学 煤层火灾定位系统及定位方法
CN114165281A (zh) * 2021-12-10 2022-03-11 西安科技大学 一种矿山地下空间的充填生物质固/液产能源气方法

Also Published As

Publication number Publication date
CN106679207B (zh) 2018-10-30
US10816241B2 (en) 2020-10-27
AU2017391229A1 (en) 2018-11-08
CN106679207A (zh) 2017-05-17
US20190346180A1 (en) 2019-11-14
ZA201806967B (en) 2020-01-29

Similar Documents

Publication Publication Date Title
WO2018126573A1 (zh) 一种提取煤田火区地下高温区热能的方法
CN110318675B (zh) 一种深部煤层气热共采方法
WO2021128933A1 (zh) 一种高瓦斯煤层原位热解瓦斯流态化开采方法
CN104533514B (zh) 一种钻孔内热驱替式强化抽采方法
CN106884638A (zh) 一种煤层气热力开采的原位加热方法
CN105674608A (zh) 一种提取利用地热能的装置及方法
CN206650861U (zh) 一种井内流体电加热器
CN112483062B (zh) 一种地下隔层式煤炭原位气化开采方法及系统
CN104713259A (zh) 一种提取干热岩热能的方法及系统
CN106593511A (zh) 一种热害矿井巷道支护降温系统及方法
Yu et al. Thermal response test for ground source heat pump based on constant temperature and heat-flux methods
CN103225497A (zh) 微波原位汽化地层水并驱替稠油的开采方法
CN109488305A (zh) 一种应用在破损井筒修复过程中的冻结器布置方式
RU2288413C1 (ru) Способ извлечения геотермального тепла
CN109630081A (zh) 一种煤层钻孔注高压高温水蒸气强化煤层气抽采装置及方法
CN109709134A (zh) 一种井筒自循环热交换实验装置与方法
CN206803542U (zh) 一种大跨度多孔地热井系统
CN106839478A (zh) 一种深层地热热传导根系的建造方法
CN102434143B (zh) 一种煤炭地下气化出气孔双套管换热装置及换热保护方法
CN210033395U (zh) 利用井下蒸汽发生的单水平井重力泄油开采装置
WO2020143066A1 (zh) 一种地热开发系统及其施工方法
CN111927454B (zh) 深部煤层超长钻孔探水及地热一体化开采方法
CN114837648B (zh) 动力煤地下原位可控燃烧采热和碳埋藏一体系统及方法
CN106288465A (zh) 一种分布式煤田火区废弃热能发电系统
CN109812999B (zh) 一种干热岩热能的大规模采集利用系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017391229

Country of ref document: AU

Date of ref document: 20170504

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890219

Country of ref document: EP

Kind code of ref document: A1