WO2018126572A1 - Dispositif de génération d'énergie directe intégré dans un trou de forage d'extinction d'incendie dans une zone d'incendie d'un gisement houiller - Google Patents

Dispositif de génération d'énergie directe intégré dans un trou de forage d'extinction d'incendie dans une zone d'incendie d'un gisement houiller Download PDF

Info

Publication number
WO2018126572A1
WO2018126572A1 PCT/CN2017/082986 CN2017082986W WO2018126572A1 WO 2018126572 A1 WO2018126572 A1 WO 2018126572A1 CN 2017082986 W CN2017082986 W CN 2017082986W WO 2018126572 A1 WO2018126572 A1 WO 2018126572A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
thermal conductivity
heat
high thermal
fire
Prior art date
Application number
PCT/CN2017/082986
Other languages
English (en)
Chinese (zh)
Inventor
仲晓星
汤研
张新浩
李光宇
王德明
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2018126572A1 publication Critical patent/WO2018126572A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/32Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from a charging set comprising a non-electric prime mover rotating at constant speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators

Definitions

  • the invention relates to a coal mine fire extinguishing and drilling internal embedded direct power generating device, belonging to the field of thermoelectric conversion equipment.
  • Coal field fire refers to the phenomenon that large-area coal combustion occurs when underground coal seams are ignited by natural or human factors and gradually develop along the coal seam into large-scale coal damage caused by coal resources and the surrounding environment.
  • the coal field fire area has a large burning area and high temperature. There is also huge heat in the fire area. About 1 billion tons of coal is burnt down by underground coal fire every year, accounting for 12.5% of the total coal consumption, generating about 1000 GW of energy. , equivalent to 2.5 times the total energy produced by 500 nuclear power plants around the world.
  • the patent document disclosed in CN106026778A discloses a system and method for the sustainable utilization of coal energy in the fire area of coal field and coal fire control, including: embedding horizontal steel pipe in the fire area of the coal field
  • the heat carrier is used to extract the heat energy of the fire zone to the ground, and then the heat energy contained in the heat carrier is converted by the thermoelectric power generation module.
  • the system and method first extracts the heat of the fire zone outside the fire zone, and then performs thermoelectric conversion of the extracted heat. It is impossible to realize the thermoelectric conversion of the heat in the fire zone directly inside the fire zone.
  • thermoelectric power generation module Since the heat energy of the fire zone in the system reaches the thermoelectric power generation module, the heat transfer of the coal rock and the steel pipe, the heat conduction of the steel pipe wall and the heat carrier, and the heat carrier are required.
  • the convective heat transfer, the heat carrier and the heat transfer of the thermoelectric module, the heat transfer process involved is numerous, which greatly increases the heat loss, especially the heat transfer between the heat carrier and the steel pipe wall and the flow of the heat carrier in the pipeline.
  • the thermal process will result in a large degree of loss and loss of the extracted heat energy, resulting in low heat utilization rate in the fire zone.
  • the horizontal drilling needs to complete the drilling guide hole-reaming-drag-laying pipe and other processes, and the construction process is carried out in the high-temperature formation. It is difficult, the engineering quantity is large, and the pipeline is difficult to recycle and reuse, and the use cost is high.
  • the thermal power generation in the fire zone is less suitable.
  • the present invention provides an in-line direct power generation device for fire extinguishing and drilling of a coal field fire area, which has the characteristics of simple structure, convenient use and maintenance, and reusability, and can realize coal field fire.
  • Direct power generation in the borehole of the area greatly simplifies the heat transfer process, improves the utilization of thermal energy, and at the same time reduces the temperature of the fire zone and achieves the purpose of controlling the fire zone.
  • In-line direct power generation device for fire extinguishing and drilling of coal field fire area including high heat conduction vacuum tube, thermoelectric power generation module, energy storage battery, high thermal conductivity cylindrical shell, high thermal conductivity filling body, heat dissipating fin and fire extinguishing hole, and temperature difference power generation
  • the number of modules is not less than four;
  • the high-heat-conducting cylindrical shell is disposed in a vertical fire-extinguishing borehole in a coal field fire zone, the upper end opening is flush with the top of the fire-extinguishing borehole and the bottom is closed;
  • the thermoelectric power generation module has a rectangular plate shape and is vertically disposed at a height
  • the heat-conducting cylindrical shell is filled with a refrigerant medium, and the high-heat-conducting vacuum tube, the heat-dissipating fin and the refrigerant medium constitute a cooling module;
  • the high-heat-conducting vacuum tube is disposed in the positive prism chamber surrounded by the thermoelectric power generation module, and
  • the cooling chamber of the cooling module is formed by the positive prism chamber enclosed by the thermoelectric power generation module;
  • the upper end of the high thermal conductivity vacuum tube extends to the outside of the high thermal conductivity cylindrical housing to form a cooling section of the cooling module, and the heat dissipating section of the cooling module is provided with
  • the portion of the thermoelectric power generation module that is tangent to the high thermal conductivity vacuum tube is a cold end, and the heat is transferred to the surface through evaporation of the refrigerant medium in the high thermal conductivity vacuum tube, and the heat dissipating fin increases the heat exchange between the refrigerant medium vapor and the external environment.
  • the area is accelerated to dissipate heat so that the steam is quickly condensed and returned to the cooling section of the cooling module.
  • the circulation of the refrigerant medium can continuously transfer the heat in the area around the high heat conduction vacuum tube to the surface, so that the temperature difference power generation module in contact with the high heat conduction vacuum tube is cold. The end is maintained at a lower temperature.
  • thermoelectric power generation module in contact with the inner wall of the high thermal conductivity cylindrical casing is a hot end, and the heat of the coal field fire zone is efficiently conducted to the hot end of the thermoelectric power generation module through the high thermal conductivity cylindrical casing and the high thermal conductivity filling body, and the heat transfer distance is short. Moreover, the thermal resistance is small, so that the cold and hot ends of the thermoelectric power generation module maintain a large temperature difference, thereby achieving high power generation efficiency.
  • the refrigerant working medium is distilled water, and maintains a liquid state in a high heat conduction vacuum tube at a normal temperature, and the boiling point of the tube is lowered due to the negative pressure in the tube, the heat is easily evaporated, and the latent heat of evaporation is large, the heat energy can be efficiently carried, and the non-flammable and explosive are safe.
  • Environmentally friendly, low cost, and the liquid filling rate in the high thermal conductivity vacuum tube is 20%-25%, which can efficiently transfer heat.
  • the high thermal conductivity cylindrical housing has a diameter of 73-127 mm.
  • the high thermal conductivity vacuum tube and the heat dissipating fin are made of metal copper, and the heat dissipating fin adopts a winding type, has strong heat conduction capability, is not easy to be corroded and damaged, and has a long service life.
  • the wire is a flexible fireproof cable.
  • the inner wall of the high thermal conductivity cylindrical housing is provided with a high temperature resistant thermocouple, and the power generating device can be taken out when the thermocouple shows a temperature of less than 50 °C.
  • the present invention provides a coal mine fire zone fire-extinguishing bore-in-line direct power generation device, which has the following advantages over the prior art: 1. Simple structure, low cost, convenient use and maintenance, flexible mobile installation, and operation Safe and reliable, avoiding the problem of building a water supply system or erecting a power supply circuit; 2. The device can be taken out and reused when the heat extraction in the fire area is exhausted, which greatly reduces the cost, is safe and environmentally friendly, and has wide practicality; The heat transfer process in the coal field fire area effectively improves the heat energy utilization rate, effectively reduces the temperature of the fire zone, and achieves the purpose of controlling the fire zone; 4. Realizing direct power generation in the borehole of the coal field fire zone, by maintaining the temperature difference power generation module The large temperature difference between the hot and cold ends enables efficient power generation and good universality.
  • FIG. 1 is a schematic overall structural view of an embodiment of the present invention
  • the figure includes: 1, high thermal conductivity vacuum tube, 2, thermoelectric power generation module, 3, energy storage battery, 4, high thermal conductivity cylindrical housing, 5, high thermal conductivity filling body, 6, heat dissipation fins, 7, cooling module heat dissipation section, 8, cooling module refrigeration section, 9, refrigerant working fluid, 10, coalfield fire zone high temperature zone, 11, fire drilling.
  • Figure 1 shows a coal mine fire zone borehole in-line direct power generation device, which is characterized in that it comprises a high thermal conductivity vacuum tube 1, a thermoelectric power generation module 2, an energy storage battery 3, a high thermal conductivity cylindrical housing 4, and a high thermal conductivity filling.
  • thermoelectric power generation module 2 has a rectangular plate shape.
  • the high thermal conductivity vacuum tube 1 stores a refrigerant medium 9, and the high thermal conductivity vacuum tube 1, the heat dissipating fins 6 and the refrigerant medium 9 constitute a cooling module;
  • the high thermal conductivity vacuum tube 1 is disposed Cooling module cooling is formed in the positive prism cavity enclosed by the thermoelectric power generation module 2 and in the positive prism cavity enclosed by the thermoelectric power generation module 2 Section 8; the upper end of the high thermal conductivity vacuum tube 1 extends to the outside of the high thermal conductivity cylindrical housing 4 to form a cooling module heat dissipating section 7, and the cooling module heat dissipating section 7 is provided with heat dissipating fins 6 along the circumferential direction thereof; the inner wall of the high thermal conductivity cylindrical housing 4 is The positive prism chamber enclosed by the thermoelectric power generation module 2 is externally connected, and the gap between the high thermal conductivity vacuum tube 1 and the thermoelectric power generation module 2, the temperature difference power generation module 2 and the high thermal conductivity cylindrical
  • the refrigerant working medium 9 is distilled water, which is safe, environmentally friendly and low in cost, can carry heat energy efficiently, and has a liquid filling rate of 24% in the high heat conduction vacuum tube, and can efficiently transfer heat;
  • the high heat conductive cylindrical shell The height of the body 4 is 80 mm;
  • the high heat conduction vacuum tube 1 and the heat dissipating fins 6 are all made of metal copper, and the heat dissipating fins 6 are wound;
  • the wires are flexible fireproof cables;
  • a high temperature thermocouple is attached to the inner wall.
  • a vertical fire-extinguishing hole 11 is set up in the high-temperature zone 10 of the coalfield fire zone, and the power-generating device is arranged in the fire-extinguishing hole 11; the high-temperature zone of the coal field fire zone contains high thermal energy, and the heat passes through the high-heat-conducting cylindrical shell. 4.
  • the high thermal conductive filling body 5 is conducted to the hot end of the thermoelectric power generation module 2, and the refrigerant working medium 9 in the high thermal conductivity vacuum tube 1 rapidly extracts the heat around the cooling section 8 of the high thermal conductivity cooling module by evaporation and transmits it to the surface, and utilizes the cooling section of the cooling module.
  • thermoelectric power generation module 2 in contact with the high thermal conductivity vacuum tube 1 is maintained at a lower temperature. Therefore, the cold and hot ends of the thermoelectric power generation module 2 will maintain a large temperature difference, and the thermal energy can be continuously and efficiently converted into electric energy. .
  • the power generator can be taken out when the thermocouple shows a temperature of less than 50 ° C and reused in other high temperature areas of the coal field fire zone.

Abstract

La présente invention concerne un dispositif de génération d'énergie directe intégré dans un trou de forage d'extinction d'incendie dans une zone d'incendie d'un gisement houiller, comprenant : un tube à vide à conduction thermique élevée, une ailette de rayonnement et un milieu de travail de fluide frigorigène, qui forment ensemble un module de refroidissement, le milieu de travail de fluide frigorigène étant stocké dans le tube à vide à conduction thermique élevée ; le tube à vide à conduction thermique élevée est disposé à l'intérieur d'une cavité de prisme régulière formée par l'enveloppement d'un module de génération d'énergie à différence de température et est intérieurement tangent à la cavité pour former une partie de refroidissement du module de refroidissement ; l'extrémité supérieure du tube à vide à conduction thermique élevée s'étend à l'extérieur d'une coque cylindrique à conduction thermique élevée pour former une section de dissipation de chaleur du module de refroidissement ; la section de dissipation de chaleur du module de refroidissement est fixée à des ailettes de dissipation de chaleur ; la coque cylindrique à conduction de chaleur élevée est extérieurement reliée à la cavité de prisme régulière formée par l'enveloppement du module de génération d'énergie à différence de température et des espaces entre le tube à vide à conduction thermique élevée et le module de génération d'énergie à différence de température et des espaces entre le module de génération d'énergie à différence de température et la coque cylindrique à conduction thermique élevée sont remplis de charges à conduction thermique élevée ; et le module de génération d'énergie à différence de température est connecté à une batterie de stockage d'énergie au moyen de fils. La présente invention dispose d'une structure simple, peut être recyclée et peut réaliser une génération d'énergie directe à l'intérieur des trous de forage, améliorant ainsi le taux de conversion thermoélectrique dans la zone d'incendie tout en réduisant la température de la zone d'incendie, ce qui permet de gérer la zone d'incendie.
PCT/CN2017/082986 2017-01-09 2017-05-04 Dispositif de génération d'énergie directe intégré dans un trou de forage d'extinction d'incendie dans une zone d'incendie d'un gisement houiller WO2018126572A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710012406.5A CN106787074A (zh) 2017-01-09 2017-01-09 一种煤田火区灭火钻孔内嵌式直接发电装置
CN201710012406.5 2017-01-09

Publications (1)

Publication Number Publication Date
WO2018126572A1 true WO2018126572A1 (fr) 2018-07-12

Family

ID=58950394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082986 WO2018126572A1 (fr) 2017-01-09 2017-05-04 Dispositif de génération d'énergie directe intégré dans un trou de forage d'extinction d'incendie dans une zone d'incendie d'un gisement houiller

Country Status (2)

Country Link
CN (1) CN106787074A (fr)
WO (1) WO2018126572A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106452186B (zh) * 2016-10-17 2018-10-12 中国矿业大学 一种地下煤火热能提取温差发电系统
CN108425637A (zh) * 2018-04-13 2018-08-21 吉林大学 一种井下发电钻杆及其发电方法
CN109861587B (zh) * 2019-03-07 2021-10-15 中国矿业大学 一种煤田火区胶囊式热能提取装置和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050051208A1 (en) * 2003-06-17 2005-03-10 Mount Robert L. System for transferring heat in a thermoelectric generator system
CN106223312A (zh) * 2016-07-18 2016-12-14 河海大学 一种提高浅层地热能利用效率的新型钢管能量桩及其制作方法
CN106288465A (zh) * 2016-09-06 2017-01-04 中国矿业大学 一种分布式煤田火区废弃热能发电系统
CN206379767U (zh) * 2017-01-09 2017-08-04 中国矿业大学 一种煤田火区灭火钻孔内嵌式直接发电装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2720631Y (zh) * 2003-11-25 2005-08-24 陈德荣 一种翅片热管散热器
CN101852563A (zh) * 2009-03-30 2010-10-06 童裳慧 一种用于地下换热的热管型地埋式低温高效换热管
CN103836813B (zh) * 2014-03-12 2016-02-03 青岛橡胶谷知识产权有限公司 双真空内冷凝式发电制热太阳能集热管
CN204705246U (zh) * 2015-05-18 2015-10-14 张国利 方形翅片热管的换热器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050051208A1 (en) * 2003-06-17 2005-03-10 Mount Robert L. System for transferring heat in a thermoelectric generator system
CN106223312A (zh) * 2016-07-18 2016-12-14 河海大学 一种提高浅层地热能利用效率的新型钢管能量桩及其制作方法
CN106288465A (zh) * 2016-09-06 2017-01-04 中国矿业大学 一种分布式煤田火区废弃热能发电系统
CN206379767U (zh) * 2017-01-09 2017-08-04 中国矿业大学 一种煤田火区灭火钻孔内嵌式直接发电装置

Also Published As

Publication number Publication date
CN106787074A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
US11788516B2 (en) Systems and methods of generating electricity using heat from within the earth
US20200217304A1 (en) Systems and methods of generating electricity using heat from within the earth
US8650875B2 (en) Direct exchange geothermal refrigerant power advanced generating system
WO2018126572A1 (fr) Dispositif de génération d'énergie directe intégré dans un trou de forage d'extinction d'incendie dans une zone d'incendie d'un gisement houiller
WO2018014608A1 (fr) Nouveau pieu énergétique à tube en acier destiné à améliorer l'efficacité d'utilisation de l'énergie géothermique peu profonde et son procédé de fabrication
WO2018014609A1 (fr) Système de pieu renforcé par un pieu sol-ciment à injection par jet pour la génération combinée de refroidissement, de chaleur et d'énergie et son procédé de construction
WO2018014606A1 (fr) Appareil à pieux pcc pour la génération combinée de refroidissement, de chaleur et d'énergie et son procédé de fabrication
WO2014048300A1 (fr) Equipement de stockage et d'échange thermiques
CN106787951A (zh) 一种新型热管煤田火区热能提取发电系统
CN104790875B (zh) 一种电热能‑机械能综合破岩钻头
CN203941754U (zh) 一种海岸电缆用热管冷却装置
CN111237146B (zh) 一种地热分支井恒温差发电系统
CN206379767U (zh) 一种煤田火区灭火钻孔内嵌式直接发电装置
CN103684082A (zh) 微型地热发电机
CN109861587B (zh) 一种煤田火区胶囊式热能提取装置和方法
CN106288465A (zh) 一种分布式煤田火区废弃热能发电系统
CN210892820U (zh) 一种煤井自动保温系统
CN109724278B (zh) 一种煤田火区热能综合利用系统
CN205960484U (zh) 一种气体绝缘开关柜、开关柜气箱及气箱的传热系统
CN201488114U (zh) 新型超导暖气片
CN102733838A (zh) 一种矿井避险设施的降温装置
LU500211B1 (en) Power generation equipment and control method for preventing spontaneous combustion of coal gangue hill and heat recovery
JP3242051U (ja) 水熱型地熱防食システム
CN219697510U (zh) 一种井下换热发电管道及井下发电系统
JP2005137138A (ja) 地熱発電方法および地熱発電設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890218

Country of ref document: EP

Kind code of ref document: A1