WO2018126439A1 - 动力电池顶盖结构、动力电池及电池模组 - Google Patents

动力电池顶盖结构、动力电池及电池模组 Download PDF

Info

Publication number
WO2018126439A1
WO2018126439A1 PCT/CN2017/070419 CN2017070419W WO2018126439A1 WO 2018126439 A1 WO2018126439 A1 WO 2018126439A1 CN 2017070419 W CN2017070419 W CN 2017070419W WO 2018126439 A1 WO2018126439 A1 WO 2018126439A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting block
limiting
top cover
power battery
electrode assembly
Prior art date
Application number
PCT/CN2017/070419
Other languages
English (en)
French (fr)
Inventor
朱凌波
李全坤
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN201780070011.9A priority Critical patent/CN109937494B/zh
Priority to PCT/CN2017/070419 priority patent/WO2018126439A1/zh
Publication of WO2018126439A1 publication Critical patent/WO2018126439A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of energy storage devices, and in particular, to a power battery top cover structure, a power battery, and a battery module.
  • the Busbar is made thicker, basically in the range of 2 to 3 mm. To achieve easy deformation, it is necessary to make an " ⁇ " shape with a high arch in the middle. Thus, for the same module space, since the portion of the Busbar arch occupies a large space in the height direction, the space available for the battery is reduced.
  • the application provides a power battery top cover structure, a power battery and a battery module, which can solve the above problems.
  • a first aspect of the embodiment of the present application provides a power battery top cover structure, including a top cover sheet, a first electrode assembly, a second electrode assembly, a first flexible electrical connector, a first connecting block, and a first limiting member. And the first elastic member,
  • the first electrode assembly and the second electrode assembly are both attached to the top cover sheet, and At least one of the first electrode assembly and the second electrode assembly is insulated from the top cover sheet,
  • the first connecting block is located above the first electrode assembly, and the first connecting block is electrically connected to the first electrode assembly through the first flexible electrical connector, and the first flexible electrical connector is provided a first electrode assembly connecting portion, a first deformation portion, and a first connecting block connecting portion, the first electrode assembly connecting portion being electrically connected to the first electrode assembly, the first connecting block connecting portion and the first The connection block is electrically connected, and the first deformation portion connects the first electrode assembly connection portion and the first connection block connection portion,
  • the first connecting block is displaceable relative to the first electrode assembly under an external force, and the first connecting block connecting portion is movable together with the first connecting block and pulling the first deformation portion Deformation,
  • the first connecting block is provided with a first limiting engaging portion, the first limiting engaging portion is coupled with the first limiting member, and the first limiting member can limit the first connecting block Amount of movement,
  • the first connecting block can press the first elastic member when displaced relative to the first electrode assembly by an external force, and the first elastic member can rebound after the external force is cancelled.
  • the three-dimensional Cartesian coordinate system includes an X-axis, a Y-axis, and a Z-axis perpendicular to each other, and the length direction of the top cover sheet is an X-axis, a width direction is a Y-axis, and a thickness direction is a Z-axis.
  • the first limiting portion is a first limiting hole
  • the first limiting member includes a first limiting post and a first limiting cap
  • the first limiting post is fixed relative to the top cover sheet And being fixedly connected to the first limiting cap after passing through the first limiting hole along the Z axis, wherein the first limiting cap is located in the first connecting block away from the top cover piece side.
  • a first annular gap can be formed between the first limiting hole and the first limiting post.
  • the first elastic member includes a first radial elastic member, the first radial elastic member is embedded in the first annular gap, and when the first connecting block moves along an X-axis or a Y-axis under an external force The first radial elastic member can be pressed.
  • the limiting cap is located above the first radial elastic member, and the first limiting hole is provided with a blocking portion for blocking the first radial elastic member from being detached from the bottom A limit hole.
  • the blocking portion is an annular baffle.
  • the first limiting cap and the first radial elastic member are both located in the first limiting hole, and the upper surface of the first limiting cap does not exceed the first connecting block Upper surface.
  • the first limiting post and the first limiting hole are relatively movable along a Z axis, and the first connecting block is restricted by the first limiting cap away from the first in a Z axial direction a maximum amount of movement of the direction of movement of the electrode assembly, the first elastic member further comprising a first axial elastic member, the first axial elastic member being disposed below the first connecting block
  • the first axial elastic member can be pressed when the first connecting block moves downward in the Z-axis direction by an external force.
  • the first axial elastic member is sleeved on the first limiting post.
  • the power battery cap structure has a first recessed portion, a bottom of the first limiting post is fixed in the first recessed portion, and a second loop is formed between the first recessed portion and the first recessed portion a gap, the first axial elastic member is embedded in the second annular gap, and an upper surface thereof is beyond the first recessed portion.
  • the first limiting post includes a lower engaging section and a upper engaging section
  • the lower fitting section has a diameter larger than a diameter of the upper fitting section
  • the first axial elastic component is sleeved in the lower fitting
  • the first radial elastic member is sleeved on the upper mating segment.
  • the first radial elastic member and/or the first axial elastic member is an annular structure made of an elastic material.
  • the first limiting member is fixed on the top cover sheet.
  • the first limiting member is fixed on the first electrode assembly.
  • a second aspect of an embodiment of the present application provides a power battery including the power battery top cover structure.
  • a third aspect of the embodiments of the present application provides a battery module including a bus bar and a plurality of the power batteries, and the plurality of first connection blocks are electrically connected by the bus bar.
  • the bus bar is a straight plate structure, and an upper surface of the first connecting block is in close contact with the bus bar.
  • the power battery top cover structure provided by the embodiment of the present application can displace the first connecting block relative to the first electrode assembly under external force, and perform relative displacement to absorb the force between the bus bar and the bus bar.
  • the power battery top cover structure provided by the example can utilize straight The bus bar structure of the board structure performs series or parallel connection of the power batteries, thereby improving the space utilization rate of the battery modules.
  • FIG. 1 is a schematic top plan view of a power battery top cover structure according to Embodiment 1 of the present application;
  • FIG. 2 is a schematic exploded view of a first power battery top cover structure according to Embodiment 1 of the present application;
  • FIG. 3 is a cross-sectional structural view of the power battery top cover structure shown in FIG. 2 taken along line A-A of FIG. 1;
  • FIG. 4 is a schematic exploded view of a second power battery top cover structure according to Embodiment 1 of the present application.
  • Figure 5 is a cross-sectional structural view of the power battery top cover structure shown in Figure 4 taken along line A-A of Figure 1;
  • Figure 6 is a cross-sectional structural view of the power battery top cover structure shown in Figure 4 taken along line B-B of Figure 1;
  • Figure 7 is a cross-sectional structural view of the power battery top cover structure shown in Figure 4 taken along line C-C of Figure 1;
  • FIG. 8 is a schematic exploded view of a third power battery top cover structure according to Embodiment 1 of the present application.
  • Figure 9 is a cross-sectional structural view of the power battery top cover structure of Figure 8 taken along line A-A of Figure 1;
  • FIG. 12 is a schematic exploded view of a fourth power battery top cover structure according to Embodiment 1 of the present application.
  • FIG. 15 is a first flexible electrical connector/second flexible structure according to Embodiment 1 of the present application. Schematic diagram of a side view of the electrical connector;
  • Figure 17 is a partial cross-sectional view of the power battery cap structure employing the first flexible electrical connector of Figure 16 taken along the line A-A of Figure 1 in the vicinity of the first electrode assembly;
  • Figure 19 is a partial cross-sectional view of the power battery top cover structure of the first flexible electrical connector shown in Figure 18 taken along the line A-A of Figure 1 in the vicinity of the first electrode assembly;
  • FIG. 20 is a side view showing a structure of a fourth first flexible electrical connector/second flexible electrical connector according to Embodiment 1 of the present application;
  • Figure 21 is a partial cross-sectional view of the power battery top cover structure of the first flexible electrical connector shown in Figure 20 taken along the line A-A of Figure 1 in the vicinity of the first electrode assembly;
  • FIG. 23 is a top plan view showing the structure of a first power battery top cover according to Embodiment 2 of the present application.
  • FIG. 24 is a schematic exploded view of a first power battery top cover structure according to Embodiment 2 of the present application.
  • Figure 25 is a cross-sectional structural view of the power battery top cover structure of Figure 24 taken along line A-A of Figure 23;
  • 26 is a schematic top plan view of a second power battery top cover structure according to Embodiment 2 of the present application.
  • FIG. 27 is a schematic exploded view of a second power battery top cover structure according to Embodiment 2 of the present application.
  • Figure 28 is a cross-sectional structural view of the power battery top cover structure shown in Figure 27 taken along line A-A of Figure 26;
  • FIG. 29 is a schematic structural diagram of a first flexible electrical connector/second flexible electrical connector according to Embodiment 2 of the present application.
  • FIG. 30 is a top view structure of a power battery top cover structure according to Embodiment 3 of the present application; schematic diagram;
  • FIG. 31 is a schematic exploded view of a power battery top cover structure according to Embodiment 3 of the present application.
  • FIG. 32 is a cross-sectional structural view of the power battery top cover structure shown in FIG. 31 taken along line A-A of FIG.
  • the embodiment of the present application defines an X-axis, a Y-axis, and a Z-axis which are perpendicular to each other in a three-dimensional orthogonal coordinate system.
  • the embodiment of the present application provides a power battery top cover structure including a first electrode.
  • the top cover sheet 30 has an X-axis in the longitudinal direction, a Y-axis in the width direction, and a Z-axis in the thickness direction.
  • the first electrode assembly 10, the first flexible electrical connector 12 and the first connection block 14 are responsible for one pole output of the power battery, and the second electrode assembly 20, the second flexible electrical connector 22 and the second connection block 24 are responsible for the power battery The other pole output.
  • the first electrode assembly 10 is connected to the positive electrode of the power battery
  • the second electrode assembly 20 is connected to the negative electrode of the power battery as an example.
  • the first electrode assembly 10 is The connection objects of the second electrode assembly 20 can also be interchanged. It should be noted that the self-structures of the first electrode assembly 10 and the second electrode assembly 20 described below may also be reversed according to the exchange of their connection objects.
  • the first electrode assembly 10 is sealingly connected to the top cover sheet 30 to prevent liquid leakage, and at the same time, the first electrode assembly 10 and the top cover sheet 30 can be insulated and electrically connected.
  • the first electrode assembly 10 is electrically connected to the top cover sheet 30 to positively charge the top cover sheet 30 to prevent the top cover sheet 30 from being corroded.
  • the second electrode assembly 20 is electrically insulated from the top cover sheet 30 to prevent the positive and negative electrodes of the power battery from being directly turned on. Of course, sealing is also required to prevent leakage.
  • the first connection block 14 is located above the first electrode assembly 10 as a component connected to the bus bar.
  • the position of the first connecting block 14 is not fixed, but can be moved within a certain range.
  • the first flexible electrical connector 12 is used to ensure electrical conduction between the first electrode assembly 10 and the first connecting block 14 after the position of the first connecting block 14 is changed.
  • the first flexible electrical connector 12 is provided with a first electrode assembly connecting portion 120, a first connecting block connecting portion 122, and a first deforming portion (not labeled), the first electrode
  • the component 10 is electrically connected to the first electrode assembly connecting portion 120.
  • the first connecting block 14 is electrically connected to the first connecting block connecting portion 122, and the first deforming portion connects the first electrode assembly connecting portion 120 and the first connecting block connecting portion 122.
  • the first deformation portion has a flexible deformation ability and is deformable by an external force.
  • the bus bar When a plurality of power batteries using the power battery top cover structure form a battery module, the bus bar is simultaneously connected to the upper surfaces of the plurality of first connecting blocks 14 by the bus bar, because the first connecting block 14 and the bus bar are fixed. Connected together, the bus bar adopts a straight plate structure that is not easily deformed, so that the first connecting block 14 is fixed at this time, and when the power battery expands, if the power battery top cover structure of the prior art is used (the first electrode assembly The relative displacement between the first connecting block 14 and the first connecting block 14 is not generated. As the expansion force increases, the breaking occurs in the weak area (for example, at the junction of the bus bar and the first connecting block 14), so that the power battery cannot be output. With the power battery top cover structure of the embodiment of the present application, since the relative displacement between the first connecting block 14 and the first electrode assembly 10 occurs, the power battery does not affect its output when it expands.
  • the electrical connector 12 generally needs to have a large overcurrent area, and the excessive overcurrent area may cause the three-dimensional size of the first flexible electrical connector 12 to be too large, which is disadvantageous for deformation, and therefore, in order to make the first flexible electricity
  • the connector 12 is smoothly deformed, and the first flexible electrical connector 12 is smaller in size in at least one dimension (e.g., thickness) for bending deformation.
  • the first deformation portion generally includes at least one first bending portion 124.
  • the projection of the first bending portion 124 in one of the XY plane, the YZ plane, and the XZ plane is a bending structure according to a direction in which deformation is required. .
  • the first bent portion 124 can generate a shape variable along the X axis and the Y axis.
  • the projection in the YZ plane is a bent structure, and the shape variables along the Y-axis and the Z-axis can be generated.
  • the projection in the XZ plane is a bent structure, which can generate along the X-axis and the Z-axis. Shape variable. It should be noted that if the projection of the first bent portion 124 in the XY plane is a bent structure, in order to have a large overcurrent area, the first bent portion 124 needs to have a larger size in the Z-axis direction. This will take up a lot of space.
  • a first bending portion 124 can generally ensure that two dimensional deformation variables are generated.
  • the first deformation portion needs to be along The X-axis, the Y-axis, and the Z-axis generate a deformation amount, so if only one first bent portion 124 is used, either the first flexible electrical connector 12 has other deformation structures, or the first deformation portion can be simultaneously along the X The axis, the Y axis, and the Z axis produce a shape variable.
  • the first flexible electrical connector 12 also has other deformation structures
  • a twisting may generate a large tearing force, which may occur between the first electrode assembly connecting portion 120 and the first electrode assembly 10, or between the first connecting block connecting portion 122 and the first connecting block 14. Tearing, weakening the joint strength, or even completely disconnecting.
  • the twisting ability of the first flexible electrical connector 12 can be increased to some extent (see FIGS. 16 to 19), and the first can also be added. The deformability of the flexible electrical connector 12.
  • the first deformation portion can simultaneously generate a shape variable along the X axis, the Y axis, and the Z axis
  • the bent portion 124 is designed in the form of a wire or a strip so that the first bent portion 124 is also bent in the third dimension.
  • this design on the one hand causes the strength of the first flexible electrical connector 12 to drop itself. Low, on the other hand, also causes the overcurrent area of the first flexible electrical connector 12 to be too small, the resistance is too high, and there is a risk of being blown.
  • the first flexible electrical connector 12 is entirely in the form of a sheet, and the first deformation portion is provided with the first connecting portion 126 and the two first bent portions 124a, 124b.
  • the projections of the bent portions 124a, 124b in different planes respectively have a bent structure, and the plane in which the bent structures formed by the first bent portions 124a, 124b are projected and the first bent portions 124a, 124b themselves
  • the thickness directions are parallel, thereby achieving a shape variable in three dimensions.
  • the projection of the first bent portion 124a in the XZ plane is a bent structure, and the thickness direction of the first bent portion 124a changes with the shape of the first bent portion, but is always parallel to the XZ.
  • the plane, and the projection of the first bent portion 124b in the YZ plane is a bent structure, while the thickness direction of the first bent portion 124b is always parallel to the YZ direction.
  • the first bent portion 124a, 124b is connected to the first connecting portion 126 through one end, and the first electrode assembly connecting portion 120 is connected to one end of the first bent portion 124a away from the first connecting portion 126.
  • the first connecting block connecting portion 122 It is connected to one end of the first bent portion 124b away from the first connecting portion 126.
  • the first bent portion 124a can be deformed, and when the first connecting block 14 is displaced in the Y-axis direction, the first bent portion 124b can be deformed.
  • the first bent portions 124a, 124b can be simultaneously deformed.
  • the first flexible electrical connector 12 may be formed by using a single piece of sheet material, or may be formed by sequentially laminating a plurality of flexible connecting pieces.
  • the first flexible electrical connecting member 12 The total thickness is preferably maintained in the range of 0.1 to 1 mm, preferably in the range of 0.2 to 0.6 mm.
  • the flexible connecting pieces are fixedly connected to each other at least at both end positions, and the intermediate portions, particularly the portions at the first bent portion 124a, are independently movable to each other to improve the deformability of the first flexible electrical connecting member 12.
  • the first flexible electrical connector 12 in the embodiment does not participate in the sealed connection of the first electrode assembly 10 and the top cover sheet 30, the deformation of the first flexible electrical connector 12 does not affect the top.
  • the sealing properties of the cover sheet 30 since the first flexible electrical connector 12 in the embodiment does not participate in the sealed connection of the first electrode assembly 10 and the top cover sheet 30, the deformation of the first flexible electrical connector 12 does not affect the top. The sealing properties of the cover sheet 30.
  • the first electrode assembly 10 and the top cover sheet 30 are directly assembled.
  • the first electrode assembly 10 is formed on the top cover sheet 30 by, for example, stamping or other processing. Since the first electrode assembly 10 and the top cover sheet 30 are integrated, the problems of sealing and electrical connection can be completely solved, and this manner can greatly simplify the assembly process and reduce the space occupied by the first electrode assembly 10. At this time, the first electrode assembly 10 only needs to be provided with the first pole 100 without other components.
  • the first electrode assembly 10 includes a first pole 100, a first pole seal 102, and a first electrical connector 104.
  • the first pole 100 passes through the top cover sheet 30 and passes through the first pole seal. 102 is sealingly connected to the top cover sheet 30.
  • the first pole 100 is electrically connected to the top cover sheet 30 through the first electrical connector 104 to positively charge the top cover sheet 30.
  • the first electrode assembly connecting portion 120 and the first portion The poles 100 are electrically connected.
  • the first electrical connector 104 may be located above the top cover sheet 30 or below the top cover sheet 30. Generally, the first electrical connector 104 and the top cover sheet 30 are in direct contact electrical connection.
  • the first electrical connector 104 is located below the top cover sheet 30 and between the bottom of the first pole 100 and the lower surface of the top cover sheet 30, thereby placing the first pole 100 The bottom is electrically connected to the lower surface of the top cover sheet 30.
  • the first connecting block 14 and the top cover sheet 30 may be insulated by a first upper insulating member 106 disposed between the first connecting block 14 and the top cover sheet 30 while leaving the first flexible electrical connecting member. 12 assembly space.
  • the first electrical connector 104 is located above the top cover sheet 30, more specifically between the top cover sheet 30 and the first connecting block 14, and the first pole 100 passes through at the same time.
  • the top cover sheet 30 and the first electrical connector 104 At this time, the first electrical connector 104 is in contact with and electrically connected to the side of the first pole 100, and the first electrode assembly connecting portion 120 and the top of the first pole 100 are electrically connected. connection.
  • the first electrical connector 104 may also be indirectly electrically connected to the first pole 100 through the first flexible electrical connector 12, the first connecting block 14, and the like. connection.
  • the first pole 100 is passed through the first electrical connector 104 but is not directly electrically connected thereto.
  • the first electrode assembly connecting portion 120 is in electrical contact with the first pole 100, and the first connecting block connecting portion 122 is connected.
  • a connecting block 14 contacts the electrical connection, and the first electrical connector 104 is simultaneously in contact with and electrically connected to the top cover sheet 30 and the first connecting block 14, thereby passing the first electrical connector 104 through the first connecting block 14 and the first flexible electrical
  • the connector 12 is in indirect electrical connection with the first pole 100.
  • the power battery forms a threading circuit through the top cover sheet 30 and the first electrode assembly 10. If the resistance in the nailing circuit is too small, the current in the nailing circuit is too large, and the nailing point is easy. Sparking, causing the battery to run out of control, so when wearing the nail, a large resistance is required in the nailing circuit. Therefore, the first electrical connector 104 in the second mode can be designed as a resistor having a large resistance (1 to 100,000 ⁇ ), thereby increasing the resistance in the circuit and reducing the current.
  • the first electrical connector 104 When the first electrical connector 104 is located below the top cover sheet 30, it is actually located inside the power battery, because the first electrical connector 104 can take the form of a resistor block in view of reducing the volume. When the first electrical connector 104 is located above the top cover sheet 30, conductive plastic can be used to protect the first flexible electrical connector 12 on the one hand and to buffer the movement of the first connecting block 14 on the other hand.
  • a first lower insulation may be provided between the bottom of the first pole 100 and the lower surface of the top cover sheet 30.
  • the piece 103 is insulated.
  • the first electrode assembly 10 and the top cover sheet 30 can be optimally designed in this embodiment, as shown in FIGS. 12 to 14. At this time, the first electrode assembly 10 includes the conductive sheet 101 and the first lower portion.
  • the insulating member 103, the first electrical connecting member 104 and the inverting sheet 105 are provided with a flipping plate connecting hole 300 on the top cover sheet 30, the flipping sheet 105 sealing the flipping sheet connecting hole 300, and the first lower insulating member 103 is located on the top cover sheet Below the 30, and connected to the top cover sheet 30, the conductive sheet 101 is insulated from the top cover sheet 30 by the first lower insulating member 103, and at the same time, the conductive sheet 30 is also electrically connected to the flip sheet 105.
  • the first electrical connector 104 is located above the top cover sheet 30 and covers the flip chip connection hole 300.
  • the first electrical connector 104 is electrically connected to the top cover sheet 30.
  • the first electrode assembly connecting portion 120 and the first electrical connector 104 are electrically connected. Electrical connection.
  • the power of the positive pole of the power battery is outputted by the conductive sheet 101, then sent to the top cover sheet 30 via the flip sheet 105, then transported by the top cover sheet 30 to the first electrical connector 104, and finally to the first flexible electrical connector 12 to the The first connection block 14.
  • the flipping sheet 105 can reverse and disconnect the electrical connection with the conductive sheet 101, thereby causing the interruption of the transport path of the positive electrode and releasing the overcharge state of the power battery.
  • the conductive sheet 101 is preferably provided with a weakened area. When the flipping sheet 105 is reversed, the weakened area may be broken due to stress concentration, so that the flipping sheet 105 is smoothly turned up.
  • the first connecting block connecting portion 122 may be connected to the lower surface of the first connecting block 14, for example, between the first connecting block 14 and the first electrode assembly 10.
  • a first receiving cavity 11 is disposed in the first receiving cavity 11.
  • the volume and structure of the first flexible electrical connector 12 in the above structure need to be restricted by the first accommodating cavity 11, and thus may affect the magnitude of movement of the first connecting block 14.
  • the space of the first accommodating cavity 11 can be expanded by providing the relief portion 148 on the lower surface of the first connecting block 14 (see FIGS. 17, 19), but since the thickness of the first connecting block 14 itself is limited, the evasing portion The depth of 148 is not too large, and at most, it can only penetrate through the first connecting block 14, and the space expansion capability for the first receiving cavity 11 is limited.
  • the first connection block connecting portion 122 may be electrically connected to the upper surface of the first connection block 14, that is, the first flexible electrical connector.
  • a portion of the 12 can extend beyond the area between the first electrode assembly 10 and the first connecting block 14, so that the first flexible electrical connector 12 can have a larger size and a more complicated structure, thereby being able to accommodate the first connecting block. 14 more substantial movement.
  • a first connecting hole 140 may be disposed on the first connecting block 14 , first The connection block connecting portion 122 is electrically connected to the upper surface of the first connection block 14 after passing through the first connection hole 140. As shown in FIGS. 1 to 7, 12 to 13, 20 to 22, the first connection block connecting portion 122 may also be wound from the lower side of the first connection block 14 to the first connection block 14 via one side of the first connection block 14. The surface is electrically connected to the upper surface of the first connection block 14.
  • the first connecting block connecting portion 122 is directly wound from one side of the first connecting block 14 to the upper surface of the first connecting block 14, it may cause a portion of the first flexible electrical connector 12 to protrude outside the first connecting block 14 This part is easily damaged by external influences.
  • the structure of the first connecting block 14 can be optimized such that a first notch (not labeled) recessed inwardly is formed on one side, and the first flexible electrical connector 12 can be wound by the first notch.
  • the first connecting block 14 is passed so as not to protrude beyond the first connecting block 14, and good protection is obtained.
  • the first gap and the first flexible electrical connector 12 are preferably conformal.
  • the upper surface of the first connecting block 14 is preferably kept flat. Therefore, the upper surface of the first connecting block 14 preferably has a first connecting groove 142, when the first When the connecting block connecting portion 122 is connected to the upper surface of the first connecting block 14, the first connecting block connecting portion 122 is electrically connected to the first connecting groove 142, so that the upper surface of the first connecting block connecting portion 122 does not exceed the first connection The upper surface of block 14.
  • the first connecting groove 142 and the first connecting block connecting portion 122 are conformal.
  • the second connection block 24 is located above the second electrode assembly 20 and also serves as a component connected to the bus bar.
  • the bus bar connected to the second connecting block 24 also adopts a straight plate structure, and when the power battery expands, the position between the second connecting block 24 and the bus bar is fixed. In order to prevent the second connecting block 24 from being displaced by the expansion of the power battery, the weakened area between the second connecting block 24 and the bus bar is broken.
  • the second flexible electrical connector 22 is utilized. The second electrode assembly 20 and the second connection block 24 are connected such that the relative position between the second connection block 24 and the second electrode assembly 20 can be changed so as not to affect the output of the power battery when it expands.
  • the second flexible electrical connector 22 is provided with a second electrode assembly connecting portion 220, a second connecting block connecting portion 222, and a second deformation portion (
  • the second electrode assembly 20 is electrically connected to the second electrode assembly connecting portion 220
  • the second connecting block 24 is electrically connected to the second connecting block connecting portion 222.
  • the second deformation portion has a flexible deformation ability and is deformable by an external force.
  • the bus bar is also simultaneously connected to the upper surfaces of the plurality of second connecting blocks 24, and when the power battery expands, the second The electrode assembly 20 is also displaced, and since the second connection block 24 is coupled to the bus bar, the second connection block 24 is stationary, which results in the connection between the second connection block 24 and the second electrode assembly 20. Relative displacement also occurs.
  • the second flexible electrical connector 22 In order to reduce the resistance, the second flexible electrical connector 22 generally needs to have a large overcurrent area, and the excessive overcurrent area may cause the three-dimensional size of the second flexible electrical connector 22 to be too large, which is disadvantageous for deformation. In order to smoothly deform the second flexible electrical connector 22, the second flexible electrical connector 22 is smaller in size in at least one dimension (e.g., thickness) for bending deformation.
  • the second flexible electrical connector 22 can also adopt a sheet-like structure, and the second deformation portion can also be provided with the second bending portion 224 and the second connecting portion 226, and the second bending portion
  • the number, arrangement, and function of the folded portions 224 can also be designed with reference to the first bent portion 124, for example, the second bent portion 224a and the second bent portion 224b.
  • the second flexible electrical connector 22 may be formed by using a single piece of sheet material, or may be formed by laminating a plurality of flexible connecting pieces in a thin manner, and details are not described herein.
  • the second flexible electrical connector 22 in this embodiment also does not participate in the sealed connection of the second electrode assembly 20 and the top cover sheet 30, the deformation of the second flexible electrical connector 22 does not affect the cover sheet 30. Sealing performance.
  • the second electrode assembly 20 includes a second pole 200, a second pole seal 202, and a second upper insulator 206.
  • the second pole 200 passes through the top cover sheet 30 and passes through the second pole.
  • the sealing member 202 is sealed and insulated from the top cover sheet 30.
  • the second upper insulating member 206 is located between the second connecting block 24 and the top cover sheet 30 to ensure electrical insulation between the second connecting block 24 and the top cover sheet 30.
  • the two electrode assembly connecting portion 220 is electrically connected to the second pole 200.
  • a second lower insulator 203 may be provided between the bottom of the second pole 200 and the lower surface of the cover sheet 30 for insulation.
  • the second connection block connection portion 222 of the second flexible electrical connector 22 can be coupled to the lower surface of the second connection block 24, such as at the second connection block 24 and the second electrode assembly 20.
  • a second receiving cavity 21 is defined between the second flexible electrical connectors 22 and placed in the second receiving cavity 21.
  • the second connecting block connecting portion 222 can be electrically connected to the upper surface of the second connecting block 24, for example, a second connecting hole 240 is disposed on the second connecting block 24, and the second connecting block connecting portion 222 passes through the The two connection holes 140 are electrically connected to the upper surface of the second connection block 24.
  • the second connecting block connecting portion 222 is wound from the lower side of the second connecting block 24 to the upper surface of the second connecting block 24 via the side of the second connecting block 24, and is electrically connected to the upper surface of the second connecting block 24.
  • the second flexible electrical connector 22 may also be provided with a second notch (not labeled) on the side of the second connecting block 24 in the same manner and function as the first notch on the first connecting block 14.
  • the upper surface of the second connecting block 24 is preferably kept flat, and the upper surface of the second connecting block 14 preferably also has a second connecting groove 242, and the second connecting block
  • the connecting portion 222 is electrically connected to the second connecting groove 242 such that the upper surface of the second connecting block connecting portion 222 does not exceed the upper surface of the second connecting block 24.
  • first connecting block 14 and the second connecting block 24 are flexibly connected by the first flexible electrical connector 12 and the second flexible electrical connector 22, so that the first connecting block 14 and the first connecting block 14 can be maintained while maintaining the electrical connection state.
  • the two connecting blocks 24 obtain a certain amount of displacement along the X-axis, the Y-axis, and the Z-axis, thereby better absorbing the force with the bus bar caused by the expansion and absorption of the battery.
  • the second embodiment of the present application performs structural improvement on the basis of the first embodiment.
  • the first connecting block 14 is provided with the moving capability, if the moving amount of the first connecting block 14 exceeds the deforming ability of the first flexible electrical connector 12, the first flexible electrical connector 12 has The breakage may occur, or the electrical connection with the first connection block 14 and the first electrode assembly 10 may be disengaged, and whatever happens, the first connection block 14 may no longer be in communication with the positive electrode of the power battery.
  • the second connection block 24 also has the possibility of this happening. Therefore, it is necessary to limit the specific movement range of the first connection block 14 and the second connection block 24 so that it can only be within a reasonable range. Move.
  • the power battery top cover structure provided in this embodiment further includes a first limiting member 16 and a second limiting member 26 in addition to the structure of the first embodiment.
  • the first connecting block 14 is provided with a first limiting engaging portion 144.
  • the first limiting engaging portion 144 can be coupled with the first limiting member 16 and the two can be mutually restrained after the connecting, so that the first limiting member The movement of the first limit fitting portion 144 can be restricted. Since the first connecting block connecting portion 122 and the first connecting block 14 are electrically connected together, the two are moved together, and the first limiting engaging portion 144 is restricted, which means that the moving amount of the first connecting block 14 is limit.
  • the first limiting portion 144 is a first limiting hole (for ease of understanding, hereinafter referred to as reference numeral 144), the first limiting member 16 includes a first limiting post 160 and a first limit.
  • the first cap 160 is fixedly disposed with respect to the top cover sheet 30, for example, directly on the top cover sheet 30, or fixed to the first electrical connector 104 or the first upper insulator of the first electrode assembly 10.
  • 106 that is, the first limit post 160 can accommodate the first electrode assembly 10 of various structures in the first embodiment, and is not limited to the first electrode assembly 10 including the conductive sheet 101 and the flip sheet 105.
  • the first limiting cap 162 is located on a side of the first connecting block 14 away from the top cover sheet 30.
  • the first limiting post 160 passes through the first limiting hole 144 along the Z axis and is riveted and welded to the first limiting cap 162.
  • the first limiting post 160 and the first limiting cap 162 can limit the movement of the first connecting block 14 in the Z-axis direction.
  • the first upper insulating member 106 is generally made of insulating plastic, the first limiting member 16 and the first upper insulating member 106 can be integrally formed to improve assembly efficiency, and the first limiting member 16 is insulated from the first upper portion.
  • the pieces 106 can be the same material or different materials.
  • the manner of limiting the movement of the first limiting hole 144 is mainly divided into two categories.
  • the first type is the movement of the first limiting hole 144 along the X axis and the Y axis, that is, the radial movement relative to the first limiting column 160.
  • the second type is the movement of the first limiting hole 144 in the Z direction, that is, the axial movement relative to the first limiting post 160.
  • the first limiting member 16 can completely restrict one of the movements of the first limiting hole 144 as needed (for example, the first limiting hole 144 is completely unable to move along the X axis, the Y axis, or can not be performed at all).
  • the diameter of the first limiting hole 144 needs to be larger than the diameter of the first limiting post 160, and a first ring may be formed between the first limiting hole 144 and the first limiting post 160.
  • the gap 164 due to the presence of the first annular gap 164, the first limiting hole 144 can move along the radial direction of the first limiting post 160, and the amplitude of the movement is equal to the first limiting hole 144 and the first limiting post The difference in radial dimension of 160, thereby achieving the purpose of limiting the amount of movement of the first stop hole 144 in the XY direction.
  • the first limiting post 160 having a larger dimension in the Z-axis direction can be matched with the first limiting hole 144 having a smaller Z-axis direction, so that the first limiting hole 144 can Moving along the axial direction of the first limiting post 160, at the same time, since one end of the first limiting post 160 is fixed and the other end is fixed to the first limiting cap 162, the first connecting block 14 is actually Can not be separated from the first limit column 160, but can only be in the axial dimension of the first limit column 160 Move around the perimeter.
  • the first limiting cap 142 is located in the first limiting hole 144, and the blocking is disposed in the first limiting hole 144.
  • the portion 146 is configured to block the first limiting cap 142 from being separated from the first limiting hole 144 by the lower portion. Since the first limiting cap 142 is located in the first limiting hole 144, the upper surface of the first limiting cap 142 may not exceed the upper surface of the first connecting block 14.
  • the first connecting block 14 may not be restricted from rotating in the XY plane, and if the plurality of first limiting members 16 are simultaneously disposed, The first connecting block 14 is provided with a plurality of first limiting engaging portions 144.
  • the first limiting member 16 is coupled with the first limiting engaging portion 144 one by one, thereby solving the problem and making the first connecting block
  • the rotation of 14 in the XY plane is also limited.
  • the number of the first limiting member 16 and the first limiting portion 144 is even, for example two, symmetrically distributed on both sides of the first flexible electrical connector 12 along the X axis, if the first electrode assembly 10 and the first A first receiving cavity 11 is formed between the connecting blocks 14, and the first limiting member 16 can also be disposed directly relative to the first receiving cavity 11. Since the length direction of the top cover sheet 30 is along the X-axis direction, the space in the X-axis direction is relatively abundant, so that on the one hand, the first flexible electrical connector 12 can be avoided, and on the other hand, the first flexible electrical connector can also be used. 12 forms protection.
  • a first extension 128 may be disposed on the first flexible electrical connector 12, the first extension 128 being located between the first electrode assembly connection portion 120 and the first connection block connection portion 122, as shown in FIGS. 26 to 28, assembled
  • 16 is disposed on both sides of the first flexible electrical connector 12 along the X axis, so in order to avoid the first limiting member 16, at least a portion of the first flexible electrical connector 12 is along the Y axis.
  • the first accommodating cavity 11 is extended, and the first extending portion 128 is located outside the first accommodating cavity 11 and extends along the X axis to increase the heat dissipating area and improve the heat dissipating efficiency.
  • the first deforming portion has the first bent portion 124a projected in the XZ plane as a bent structure, at least one of the first bent portions 124a extends beyond the first receiving cavity 11, and this The first extension portion 128 is connected to the first bent portion 124a that extends beyond the first accommodation front 11.
  • This design can not only increase the heat dissipation area by the first extension portion 128, but also increase the bend. The strength of the fold.
  • the first connecting block connecting portion 122 is further provided with a first connecting block auxiliary connecting portion 122a while being connected at the first electrode assembly.
  • the portion 120 further includes a first electrode assembly auxiliary connecting portion 120a.
  • the first connecting block auxiliary connecting portion 122a can extend all the way to the side of the first extending portion 128 to increase the contact area of the first connecting block connecting portion 122 with the first connecting block 14, and similarly, the first electrode assembly auxiliary connection
  • the portion 120a also extends to the side of the first extension portion 128 for increasing the contact area of the first electrode assembly connecting portion 120 with the first electrode assembly 10. When the contact area is increased, the overcurrent capability can be enhanced.
  • the first indentation on the side of the first connection block 14 can accommodate the first bend 124 and the first extension 128 together.
  • the second limiting member 26 is similar in structure and function to the first limiting member 16 , and may include a second limiting post 260 and a second limiting cap 262 . And the second limit block fitting portion 244 (for example, the second limit hole) disposed on the second connecting block 24 is engaged to limit the displacement amplitude of the second connecting block 24.
  • the second limiting member 26 may be fixed to the top cover sheet 30 like the first limiting member 16, or may be fixed to the second upper insulating member 206 of the second electrode assembly 20 of various configurations in the first embodiment. At the same time, the second electrode assembly 20 may also be integrally formed with the second upper insulator 206.
  • the second flexible electrical connector 22 in this embodiment may further include a second extension portion 228 for dissipating heat, and the second electrode assembly auxiliary connection portion 220a and the second connection block auxiliary connection portion 222a are second.
  • the overall overcurrent capability of the flexible electrical connector 22 is the same as that of the first flexible electrical connector 12, and will not be described herein.
  • the third embodiment of the present application performs structural improvement on the basis of the second embodiment.
  • the first connecting block 14 and the second connecting block 24 are all capable of being opposite to the top cover sheet. The displacement is performed 30.
  • both the first connection block 14 and the second connection block 24 are freely movable, assembly troubles are caused.
  • the power battery top cover structure provided in this embodiment further includes a first elastic member 18 and a second elastic member 28 in addition to the structure of the second embodiment.
  • the first elastic member 18 and the second elastic member 28 function to elastically deform when the first connecting block 14 and the second connecting block 24 move relative to the top cover sheet 30, and rebound after the external force is removed, and While rebounding, the first connecting block 14 and the second connecting block 24 are pushed back to the position before the movement, thereby ensuring that the first connecting block 14 and the second connecting block 24 can have a substantially fixed position for assembly.
  • the first elastic member 18 includes a first radial elastic member 180 and a first axial elastic member 182.
  • the first radial elastic member 180 is embedded in the first annular gap 164, and can be in the first A connecting block 14 is crushed and deformed when moved along the X-axis or the Y-axis by an external force.
  • the first radial elastic member 180 may be blocked by the blocking portion 146 in the embodiment, that is, at the time of assembly, the first The radial elastic member 180 is disposed between the blocking portion 146 and the first limit cap 162. At this time, it is preferable to ensure that the upper surface of the first limiting cap 142 does not exceed the upper surface of the first connecting block 14.
  • the structure of the blocking portion 146 may take the form of a limiting block, preferably an annular baffle.
  • the first axial elastic member 182 is disposed below the first connecting block 14, for example, between the first connecting block 14 and the top cover sheet 30, or at the first connecting block 14 and the first electrode. Between components 10. When the first connecting block 14 moves downward in the Z-axis direction by an external force, the first axial elastic member 182 can be compressed, and after the external force is removed, the first connecting block 14 can be lifted by the first axial elastic member 182 Jack up until it is restrained by the first limit cap 162. At this time, the first connecting block 14 is restrained by the first limiting cap 162 and the first axial elastic member 182 from opposite directions.
  • the first axial elastic member 182 may be disposed at any position below the first connecting block 14, as long as it is desirable to avoid other components. However, in consideration of space saving and ease of assembly, it is preferable to set the first axial elastic member 182. It is arranged on the first limit column 160. Moreover, a first recess portion (not labeled) may be disposed on the top cover sheet 30, the first electrical connector 104 or the first upper insulator 106, and the bottom of the first limiting post 160 is fixed to the first recess.
  • the first limiting post 160 may include a lower fitting section 160a and an upper fitting section 160b.
  • the diameter of the lower fitting section 160a is larger than the diameter of the upper fitting section 160b, and the first axial elastic component 182 sets are disposed on the lower mating section 160a, and the first radial elastic member 180 is sleeved on the upper mating section 160b.
  • the thicker lower fitting section 160a can increase the structural strength and the joint strength of the first limiting post 160, and the movement of the first limiting block 14 along the X-axis and the Y-axis is mainly restricted by the upper fitting section 160b, and therefore, is smaller.
  • the upper mating segment 160b is advantageous for increasing the magnitude of movement of the first connecting block 14.
  • the first radial elastic member 180 and the first axial elastic member 182 may take various forms, for example, a spring extending around the first limiting post 160 along the radial direction of the first limiting post 160 serves as the first radial direction.
  • the elastic member 180 is provided with a spring extending in the axial direction of the first limiting member 160 to serve as the first axial elastic member 182.
  • the assembly of this method is difficult and the reliability is poor. Therefore, in the present embodiment, the first radial elastic member 180 and the first axial elastic member 182 are preferably formed of an annular structure made of an elastic material.
  • the power battery top cover structure provided by the embodiment of the present application can relatively displace the first connecting block and the second connecting block to absorb the force between the bus bar and the first connecting block and the second connecting block.
  • the displacement amplitude is such that the first connection block and the second connection block can be returned to the initial position in a natural state.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

一种动力电池顶盖结构、动力电池及电池模组,涉及储能器件领域,所述动力电池顶盖结构包括顶盖片(30)、第一电极组件(10)、第二电极组件(20)、第一柔性电连接件(12)、第一连接块(14)、第一限位件(16)以及第一弹性件(18),第一连接块(14)通过第一柔性电连接件(12)与第一电极组件(10)电连接,第一连接块(14)能够相对于第一电极组件(10)发生位移,第一连接块(14)上设置有第一限位配合部(144),第一限位配合部(144)与第一限位件(16)配合连接,第一连接块(14)能够挤压第一弹性件(18),且当外力撤销后所述第一弹性件(18)能够回弹。动力电池包括所述的动力电池顶盖结构。电池模组包括汇流排以及多个所述的动力电池,多个第一连接块(14)之间通过汇流排电连接。所述动力电池顶盖结构能够使第一连接块(14)在外力作用下相对于第一电极组件(10)发生位移。

Description

动力电池顶盖结构、动力电池及电池模组 技术领域
本申请涉及储能器件领域,尤其涉及一种动力电池顶盖结构、动力电池及电池模组。
背景技术
对于电动车,要提高车子的行驶里程,有几种改进方式:
1、提高电池的能量密度;
2、在提高电池包及电池模组的空间利用率,有限的空间内能容纳更大体积的电池。
目前来说,业界普遍采用的是硬壳电池,考虑到电池在使用过程中电池膨胀对电池使用寿命及安全等方面的影响,大部分模组组装都是电池大面紧贴大面在一定压力下固定在一起。然后极柱之间通过Busbar(汇流排)连接。而电池在充放电过程中,电池会产生膨胀或收缩,相应的极柱及Busbar会受力。这就需要Busbar或者极柱能变形。
而考虑到过流能力Busbar都做得比较厚,基本上都在2~3mm,要实现容易变形,就要做成“Ω”形状,中间有较高的拱起。这样,对于同样的模组空间,由于Busbar拱起的部分在高度方向会占用较大空间,因而导致电池可利用空间的减小。
发明内容
本申请提供了一种动力电池顶盖结构、动力电池及电池模组,能够解决上述问题。
本申请实施例的第一方面提供了一种动力电池顶盖结构,包括顶盖片、第一电极组件、第二电极组件、第一柔性电连接件、第一连接块、第一限位件以及第一弹性件,
所述第一电极组件以及所述第二电极组件均附接在所述顶盖片上,且 所述第一电极组件以及所述第二电极组件中至少一者与所述顶盖片绝缘,
所述第一连接块位于所述第一电极组件的上方,所述第一连接块通过所述第一柔性电连接件与所述第一电极组件电连接,所述第一柔性电连接件具备第一电极组件连接部、第一变形部和第一连接块连接部,所述第一电极组件连接部与所述第一电极组件电连接,所述第一连接块连接部与所述第一连接块电连接,所述第一变形部连接所述第一电极组件连接部和所述第一连接块连接部,
所述第一连接块在外力作用下能够相对于所述第一电极组件发生位移,并且所述第一连接块连接部能够与所述第一连接块一起移动,并拉动所述第一变形部发生形变,
所述第一连接块上设置有第一限位配合部,所述第一限位配合部与所述第一限位件配合连接,所述第一限位件能够限制所述第一连接块的移动量,
所述第一连接块在外力作用下相对于所述第一电极组件发生位移时能够挤压所述第一弹性件,且当所述外力撤销后所述第一弹性件能够回弹。
优选地,三维直角坐标系内包括相互垂直的X轴、Y轴以及Z轴,所述顶盖片的长度方向为X轴,宽度方向为Y轴,厚度方向为Z轴,
所述第一限位配合部为第一限位孔,所述第一限位件包括第一限位柱以及第一限位帽,所述第一限位柱相对于所述顶盖片固定设置,且沿Z轴穿过所述第一限位孔后与所述第一限位帽固定连接,所述第一限位帽位于所述第一连接块中远离所述顶盖片的一侧。
优选地,所述第一限位孔与所述第一限位柱之间能够形成第一环隙,
所述第一弹性件包括第一径向弹性件,所述第一径向弹性件嵌入所述第一环隙内,当所述第一连接块在外力作用下沿X轴或Y轴移动时,能够挤压所述第一径向弹性件。
优选地,所述限位帽位于所述第一径向弹性件的上方,所述第一限位孔内设有阻挡部,用于阻挡所述第一径向弹性件由下方脱离所述第一限位孔。
优选地,所述阻挡部为环形挡板。
优选地,所述第一限位帽以及所述第一径向弹性件均位于所述第一限位孔内,且所述第一限位帽的上表面不超过所述第一连接块的上表面。
优选地,所述第一限位柱与所述第一限位孔能够沿Z轴相对移动,所述第一连接块被所述第一限位帽限制住沿Z轴向远离所述第一电极组件的方向移动的最大移动量,所述第一弹性件还包括第一轴向弹性件,所述第一轴向弹性件设置于所述第一连接块的下方,
当所述第一连接块在外力作用下沿Z轴向下移动时,能够挤压所述第一轴向弹性件。
优选地,所述第一轴向弹性件套设在所述第一限位柱上。
优选地,所述动力电池顶盖结构中存在第一凹陷部,所述第一限位柱的底部固定在所述第一凹陷部中,并与所述第一凹陷部之间形成第二环隙,所述第一轴向弹性件嵌入所述第二环隙内,且其上表面超出所述第一凹陷部。
优选地,所述第一限位柱包括下配合段以及上配合段,所述下配合段的直径大于所述上配合段的直径,所述第一轴向弹性件套设在所述下配合段上,所述第一径向弹性件套设在所述上配合段上。
优选地,所述第一径向弹性件和/或所述第一轴向弹性件为由弹性材料制成的环状结构。
优选地,所述第一限位件固定在所述顶盖片上。
优选地,所述第一限位件固定在所述第一电极组件上。
本申请实施例的第二方面提供了一种动力电池,包括所述的动力电池顶盖结构。
本申请实施例的第三方面提供了一种电池模组,包括汇流排以及多个所述的动力电池,多个所述第一连接块之间通过所述汇流排电连接。
优选地,所述汇流排为直板结构,所述第一连接块的上表面与所述汇流排贴合连接。
本申请实施例提供的技术方案可以达到以下有益效果:
本申请实施例所提供的动力电池顶盖结构能够使第一连接块在外力作用下相对于第一电极组件发生位移,并且进行相对位移来吸收与汇流排之间的作用力,因此本申请实施例所提供的动力电池顶盖结构能够利用直 板结构的汇流排进行动力电池的串联或者并联,提高了电池模组的空间利用率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
图1为本申请实施例一所提供的动力电池顶盖结构的俯视结构示意图;
图2为本申请实施例一所提供的第一种动力电池顶盖结构的爆炸结构示意图;
图3为图2所示的动力电池顶盖结构沿图1中A-A的剖视结构示意图;
图4为本申请实施例一所提供的第二种动力电池顶盖结构的爆炸结构示意图;
图5为图4所示的动力电池顶盖结构沿图1中A-A的剖视结构示意图;
图6为图4所示的动力电池顶盖结构沿图1中B-B的剖视结构示意图;
图7为图4所示的动力电池顶盖结构沿图1中C-C的剖视结构示意图;
图8为本申请实施例一所提供的第三种动力电池顶盖结构的爆炸结构示意图;
图9为图8所示的动力电池顶盖结构沿图1中A-A的剖视结构示意图;
图10为图8所示的动力电池顶盖结构沿图1中B-B的剖视结构示意图;
图11为图8所示的动力电池顶盖结构沿图1中C-C的剖视结构示意图;
图12为本申请实施例一所提供的第四种动力电池顶盖结构的爆炸结构示意图;
图13为图12所示的动力电池顶盖结构沿图1中A-A的剖视结构示意图;
图14为本申请实施例一所提供的第五种动力电池顶盖结构的爆炸结构示意图;
图15为本申请实施例一所提供的第一种第一柔性电连接件/第二柔性 电连接件的侧视结构示意图;
图16为本申请实施例一所提供的第二种第一柔性电连接件的侧视结构示意图;
图17为采用图16所示的第一柔性电连接件的动力电池顶盖结构在第一电极组件附近沿图1中A-A的局部剖视图;
图18为本申请实施例一所提供的第三种第一柔性电连接件的侧视结构示意图;
图19为采用图18所示的第一柔性电连接件的动力电池顶盖结构在第一电极组件附近沿图1中A-A的局部剖视图;
图20为本申请实施例一所提供的第四种第一柔性电连接件/第二柔性电连接件的侧视结构示意图;
图21为采用图20所示的第一柔性电连接件的动力电池顶盖结构在第一电极组件附近沿图1中A-A的局部剖视图;
图22为采用图20所示的第一柔性电连接件的动力电池顶盖结构在第一电极组件附近沿图1中B-B的局部剖视图;
图23为本申请实施例二所提供的第一种动力电池顶盖结构的俯视结构示意图;
图24为本申请实施例二所提供的第一种动力电池顶盖结构的爆炸结构示意图;
图25为图24所示的动力电池顶盖结构沿图23中A-A的剖视结构示意图;
图26为本申请实施例二所提供的第二种动力电池顶盖结构的俯视结构示意图;
图27为本申请实施例二所提供的第二种动力电池顶盖结构的爆炸结构示意图;
图28为图27所示的动力电池顶盖结构沿图26中A-A的剖视结构示意图;
图29为本申请实施例二所提供的一种第一柔性电连接件/第二柔性电连接件的结构示意图;
图30为本申请实施例三所提供的一种动力电池顶盖结构的俯视结构 示意图;
图31为本申请实施例三所提供的一种动力电池顶盖结构的爆炸结构示意图;
图32为图31所示的动力电池顶盖结构沿图30中A-A的剖视结构示意图。
附图标记:
10-第一电极组件;
100-第一极柱;
101-导电片;
102-第一极柱密封件;
103-第一下绝缘件;
104-第一电连接件;
105-翻转片;
106-第一上绝缘件;
11-第一容纳腔;
12-第一柔性电连接件;
120-第一电极组件连接部;
120a-第一电极组件辅助连接部;
122-第一连接块连接部;
122a-第一连接块辅助连接部;
124、124a、124b-第一弯折部;
126-第一连接部;
128-第一延展部;
14-第一连接块;
140-第一连接孔;
142-第一连接槽;
144-第一限位配合部/第一限位孔;
146-阻挡部;
148-避让部;
16-第一限位件;
160-第一限位柱;
160a-下配合段;
160b-上配合段;
162-第一限位帽;
164-第一环隙;
166-第二环隙;
18-第一弹性件;
180-第一径向弹性件;
182-第一轴向弹性件;
20-第二电极组件;
200-第二极柱;
202-第二极柱密封件;
203-第二下绝缘件;
206-第二上绝缘件;
21-第二容纳腔;
22-第二柔性电连接件;
220-第二电极组件连接部;
220a-第二电极组件辅助连接部;
222-第二连接块连接部;
222a-第二连接块辅助连接部;
224、224a、224b-第二弯折部;
226-第二连接部;
24-第二连接块;
240-第二连接孔;
242-第二连接槽;
244-第二限位配合部;
26-第二限位件;
260-第二限位柱;
262-第二限位帽;
28-第二弹性件;
280-第二径向弹性件;
282-第二轴向弹性件;
30-顶盖片;
300-翻转片连接孔。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
具体实施方式
下面通过具体的实施例并结合附图对本申请做进一步的详细描述。文中所述“前”、“后”、“左”、“右”、“上”、“下”均以附图中的动力电池顶盖结构为参照。
实施例一
如图1至22所示,首先本申请实施例在三维直角坐标系内定义相互垂直的X轴、Y轴以及Z轴,本申请实施例提供了一种动力电池顶盖结构,包括第一电极组件10、第一柔性电连接件12、第一连接块14、第二电极组件20、第二柔性电连接件22、第二连接块24以及顶盖片30。顶盖片30的长度方向为X轴,宽度方向为Y轴,厚度方向为Z轴。
第一电极组件10、第一柔性电连接件12以及第一连接块14负责动力电池的一极输出,而第二电极组件20、第二柔性电连接件22以及第二连接块24负责动力电池的另一极输出。本实施例中,以第一电极组件10连接动力电池的正极,第二电极组件20连接动力电池的负极为例进行描述,但需要强调的是,在其它实施例中,第一电极组件10与第二电极组件20的连接对象也可以相互调换。需要注意的是,下文所描述的第一电极组件10以及第二电极组件20的自身结构也可以根据其连接对象的调换而相应调换。
在本实施例中,第一电极组件10与顶盖片30密封连接,以防止漏液,与此同时,第一电极组件10与顶盖片30之间可以绝缘连接,还可以进行电连接,当第一电极组件10连接动力电池的正极时,第一电极组件10与顶盖片30进行电连接便能够使顶盖片30带正电,防止顶盖片30被腐蚀。 第二电极组件20与顶盖片30电绝缘,以防止动力电池的正负极直接导通,当然为了防止漏液也需要进行密封。
在本实施例中,第一连接块14位于第一电极组件10的上方,作为与汇流排相连接的部件。其中,第一连接块14的位置并不固定,而是能够在一定幅度内进行移动。而第一柔性电连接件12则用来保证在第一连接块14的位置发生变化后依然能够使第一电极组件10与第一连接块14之间实现电导通。
如图6、10、16至22所示,第一柔性电连接件12具备第一电极组件连接部120、第一连接块连接部122以及第一变形部(图中未标号),第一电极组件10与第一电极组件连接部120电连接,第一连接块14与第一连接块连接部122电连接,第一变形部连接第一电极组件连接部120与第一连接块连接部122。第一变形部具备柔性形变能力,能够在外力作用下发生形变。
当多个采用这种动力电池顶盖结构的动力电池组成电池模组时,会通过汇流排同时与多个第一连接块14的上表面贴合连接,由于第一连接块14与汇流排固定连接在一起,汇流排采用不易变形的直板结构,因此此时第一连接块14是固定不动的,当动力电池发生膨胀时,如果采用现有技术的动力电池顶盖结构(第一电极组件10与第一连接块14之间不可产生相对位移),随着膨胀力的增加会在薄弱区(例如在汇流排和第一连接块14的连接处)发生断裂,使得动力电池不能输出。而采用本申请实施例的动力电池顶盖结构,由于第一连接块14与第一电极组件10之间能够发生相对位移,动力电池发生膨胀时也不会影响其输出。
以顶盖片30为基准物,当第一连接块14相对于顶盖片30发生相对位移时,由于第一连接块连接部122与第一连接块14连接在一起,因此第一连接块连接部122会跟随第一连接块14一起移动,而此时第一电极组件10相对于顶盖片30是固定不动的,因此第一电极组件连接部120也固定不动,这样就使得第一电极组件连接部120与第一连接块连接部122之间发生了相对位移,而相对位移的偏移量便通过第一变形部的形变进行吸收和补充,避免第一柔性电连接件12直接断裂而丧失导电能力。
动力电池使用中往往要通过较大的电流,为了保证过流能力,第一柔 性电连接件12一般需要具备较大的过流面积,而过大的过流面积会导致第一柔性电连接件12的三维尺寸过大,不利于发生形变,因此,为了使第一柔性电连接件12顺利发生形变,第一柔性电连接件12至少在一个维度上(例如厚度)的尺寸要小一些,以便进行弯曲变形。
第一变形部一般具备至少一个第一弯折部124,根据所需要进行形变的方向,第一弯折部124可在XY平面、YZ平面以及XZ平面三者之一内的投影为弯折结构。具体地,例如某一个第一弯折部124在XY平面内的投影为弯折结构,则该第一弯折部124能够产生沿着X轴以及Y轴的形变量。同理,在YZ平面内的投影为弯折结构,便能够产生沿着Y轴以及Z轴的形变量,在XZ平面内的投影为弯折结构,便能够产生沿着X轴以及Z轴的形变量。需要注意的是,如果第一弯折部124在XY平面内的投影呈弯折结构,则为了具备较大的过流面积,第一弯折部124在Z轴方向便需要具备较大的尺寸,这样会占用大量的空间。
由此可以看出,一个第一弯折部124一般能够确保产生两个维度的形变量,然而要实现第一连接块14在三维坐标系内的任意移动,就需要第一变形部同时能够沿X轴、Y轴和Z轴产生形变量,因此如果仅依靠一个第一弯折部124,则要么第一柔性电连接件12还具有其它形变结构,要么使这个第一变形部同时能够沿X轴、Y轴和Z轴产生形变量。
对于第一者(第一柔性电连接件12还具有其它形变结构),可以考虑利用第一柔性电连接件12自身发生扭动的方式获得第三个维度上的形变量。然而,这种扭动会产生较大的撕裂力,可能使第一电极组件连接部120与第一电极组件10之间,或者第一连接块连接部122与第一连接块14之间发生撕裂现象,削弱连接强度,甚至完全断开连接。通过增加第一柔性电连件12的第一弯折部124的数量,可以在一定程度上增加第一柔性电连接件12的扭动能力(参见图16至19),同时也能够增加第一柔性电连接件12的形变能力。
对于第二者(第一变形部同时能够沿X轴、Y轴和Z轴产生形变量),一般需要将第一弯折部124在第三维度上的尺寸设计得较小,例如将第一弯折部124设计成丝状或条状,以便于第一弯折部124在第三维度上也进行弯折。然而,这种设计一方面会导致第一柔性电连接件12自身强度降 低,另一方面,也会造成第一柔性电连接件12的过流面积过小,电阻过高,有被熔断的风险。
因此,如图20所示,第一柔性电连接件12整体采用片状结构,同时,第一变形部具备第一连接部126以及两个第一弯折部124a、124b,这两个第一弯折部124a、124b分别在不同的平面内的投影呈弯折结构,并且,第一弯折部124a、124b所形成的弯折结构投影所在的平面与第一弯折部124a、124b自身的厚度方向相平行,从而实现在三个维度上的形变量。具体地,第一弯折部124a在XZ平面内的投影为弯折结构,同时,第一弯折部124a的厚度方向随着第一弯折部的形状变化而变化,但却始终平行于XZ平面,而第一弯折部124b在YZ平面内的投影为弯折结构,同时,第一弯折部124b的厚度方向始终平行于YZ方向。第一弯折部124a、124b均通过一端与第一连接部126相连,第一电极组件连接部120与第一弯折部124a远离第一连接部126的一端相连,第一连接块连接部122与第一弯折部124b远离第一连接部126的一端相连。
这样,当第一连接块14发生X轴方向的位移时,第一弯折部124a能够产生形变,当第一连接块14发生Y轴方向的位移时,第一弯折部124b能够发生形变,当第一连接块14发生Z轴方向的位移时,第一弯折部124a、124b能够同时发生形变。
在本实施例中,第一柔性电连接件12可以采用一整块片材制成,也可以采用很薄的若干柔性连接片依次层叠形成,无论采用何种方式,第一柔性电连接件12的总厚度最好保持在0.1~1mm范围内,优选范围为0.2~0.6mm。这些柔性连接片至少在两端位置相互固定连接,而中间部分,尤其是处于第一弯折部124a的部分,相互之间可以独立活动,以提高第一柔性电连接件12的形变能力。
在本实施例中,由于本实施例中的第一柔性电连接件12并不参与第一电极组件10与顶盖片30的密封连接,因此第一柔性电连接件12的形变不会影响顶盖片30的密封性能。
将第一电极组件10与顶盖片30密封电连接的方式有很多种,本实施例中推荐以下几种方式。
方式一,如图2和图3所示,直接将第一电极组件10与顶盖片30集 成设置,例如,利用冲压或其它加工工艺在顶盖片30上形成第一电极组件10。由于第一电极组件10与顶盖片30是一体的,因此能够完全解决密封以及电连接的问题,同时这种方式还能够极大的简化装配工艺并减少第一电极组件10所占用的空间。此时,第一电极组件10只需要具备用第一极柱100,而无需其它部件。
方式二,第一电极组件10包括第一极柱100、第一极柱密封件102以及第一电连接件104,第一极柱100穿过顶盖片30,且通过第一极柱密封件102与顶盖片30密封连接,第一极柱100通过第一电连接件104与顶盖片30电连接,使顶盖片30带正电,同时,第一电极组件连接部120与第一极柱100电连接。第一电连接件104可以位于顶盖片30的上方,也可以位于顶盖片30的下方,一般情况下,第一电连接件104与顶盖片30之间是直接接触电连接的。
如图4和图5所示,第一电连接件104位于顶盖片30的下方,并处于第一极柱100的底部与顶盖片30的下表面之间,从而将第一极柱100的底部与顶盖片30的下表面电连接。此时,可以通过一个设置在第一连接块14以及顶盖片30之间的第一上绝缘件106使第一连接块14与顶盖片30进行绝缘,同时留出第一柔性电连接件12的装配空间。
又如图8和图9所示,第一电连接件104位于顶盖片30的上方,更具体地是位于顶盖片30与第一连接块14之间,第一极柱100同时穿过顶盖片30以及第一电连接件104,此时,第一电连接件104与第一极柱100的侧面接触并电连接,第一电极组件连接部120与第一极柱100的顶部电连接。
此外,当第一电连接件104位于顶盖片30上方时,第一电连接件104也可能是通过第一柔性电连接件12、第一连接块14等与第一极柱100进行间接电连接。例如,使第一极柱100穿过第一电连接件104但并不与其直接电连接,第一电极组件连接部120与第一极柱100接触电连接,第一连接块连接部122与第一连接块14接触电连接,第一电连接件104同时与顶盖片30以及第一连接块14接触并电连接,从而使第一电连接件104通过第一连接块14以及第一柔性电连接件12与第一极柱100进行间接电连接。
动力电池在穿钉的情况下会形成经过顶盖片30以及第一电极组件10的穿钉电路,如果穿钉电路中的电阻过小,则穿钉电路中的电流过大,穿钉点容易打火,造成电芯失控,因此穿钉时,穿钉电路中需要接入一个大电阻。因此,可以将方式二中的第一电连接件104设计为电阻较大(1~100000Ω)的电阻件,起到增大电路中电阻,减小电流的作用。
当第一电连接件104位于顶盖片30的下方时,实际上也就是位于动力电池的内部,因为考虑到减小体积,第一电连接件104可以采用电阻块的形式。而当第一电连接件104位于顶盖片30的上方时,则可以采用导电塑胶,一方面保护第一柔性电连接件12,另一方面也为第一连接块14的移动提供缓冲。
在上述方案中,为了防止第一极柱100的底部与顶盖片30直接接触而将电阻短路,可以在第一极柱100的底部与顶盖片30的下表面之间设置第一下绝缘件103进行绝缘。
在动力电池使用过程中有可能遇到过充问题,过充会导致动力电池内部升温并使压力上升,导致动力电池起火爆炸。为了避免这一问题,本实施例中还可对第一电极组件10以及顶盖片30进行优化设计,如图12至14所示,此时第一电极组件10包括导电片101、第一下绝缘件103、第一电连接件104以及翻转片105,在顶盖片30上设置有一个翻转片连接孔300,翻转片105密封翻转片连接孔300,第一下绝缘件103位于顶盖片30的下方,并与顶盖片30相连,导电片101通过第一下绝缘件103与顶盖片30绝缘固定,与此同时,导电片30还与翻转片105电连接。第一电连接件104位于顶盖片30的上方,且覆盖翻转片连接孔300,第一电连接件104与顶盖片30电连接,第一电极组件连接部120与第一电连接件104电连接。
动力电池正极的电量由导电片101输出,之后经过翻转片105输送至顶盖片30,再由顶盖片30输送至第一电连接件104,最后再经过第一柔性电连接件12输送至第一连接块14。而在动力电池内部压力超过基准压力时,翻转片105能够翻转并断开与导电片101的电连接,从而导致正极的输送路径中断,解除动力电池的过充状态。为了保证翻转片105能够顺利翻转并断开与导电片101的电连接,导电片101上最好设置有薄弱区, 当翻转片105翻转时,薄弱区会由于应力集中而断裂,从而使翻转片105顺利上翻。
在本实施例中,如图16至19所示,第一连接块连接部122可以与第一连接块14的下表面连接,例如在第一连接块14与第一电极组件10之间围成一个第一容纳腔11,第一柔性电连接件12置于第一容纳腔11内。
然而,上述结构中第一柔性电连接件12的体积以及结构需要受到第一容纳腔11的制约,因此可能影响第一连接块14的移动幅度。此时可以通过在第一连接块14的下表面设置避让部148的方式扩展第一容纳腔11的空间(参见图17、19),但由于第一连接块14自身的厚度有限,因此避让部148的深度不会太大,至多也只能贯穿第一连接块14,对于第一容纳腔11的空间扩展能力有限。
如图1至14、20至22所示,在本实施例中,也可以将第一连接块连接部122与第一连接块14的上表面电连接,也就是说,第一柔性电连接件12有一部分可以伸出第一电极组件10以及第一连接块14之间的区域,因此第一柔性电连接件12能够具备更大的尺寸以及更为复杂的结构,从而能够适应第一连接块14更大幅度的移动。
如图8至11以及图14所示,为了使第一连接块连接部122能够顺利抵达第一连接块14的上表面,可以在第一连接块14上设有第一连接孔140,第一连接块连接部122穿过第一连接孔140后与第一连接块14的上表面电连接。如图1至7、12至13、20至22所示,第一连接块连接部122也可由第一连接块14的下方经由第一连接块14的一侧绕至第一连接块14的上表面,并与第一连接块14的上表面电连接。
如果直接使第一连接块连接部122由第一连接块14的一侧绕至第一连接块14的上表面,可能导致第一柔性电连接件12的一部分凸出第一连接块14之外,这部分很容易受到外部作用而损坏。对此,可以对第一连接块14的结构进行优化,使其在一侧形成向内部凹进的第一缺口(图中未标号),第一柔性电连接件12可以由该第一缺口绕过第一连接块14,从而不会凸出于第一连接块14之外,进而获得良好的保护。为了节约空间以及提高整体的整洁性,第一缺口与第一柔性电连接件12最好是随形的。
为了便于第一连接块14与汇流排进行连接,第一连接块14的上表面最好保持平整,因此,在第一连接块14的上表面最好具有一个第一连接槽142,当第一连接块连接部122与第一连接块14的上表面连接时,第一连接块连接部122与第一连接槽142电连接,从而使第一连接块连接部122的上表面不超过第一连接块14的上表面。第一连接槽142与第一连接块连接部122最好是随形的。
在本实施例中,第二连接块24位于第二电极组件20的上方,也作为与汇流排相连接的部件。与第二连接块24连接的汇流排也采用直板结构,当动力电池发生膨胀时,第二连接块24与汇流排之间的位置是固定不动的。而为了防止因第二连接块24随动力电池的膨胀而发生位移,从而造成第二连接块24与汇流排之间的薄弱区发生断裂,本申请实施例中利用了第二柔性电连接件22连接第二电极组件20以及第二连接块24,使得第二连接块24与第二电极组件20之间的相对位置能够发生变化,从而在动力电池发生膨胀时也不会影响其输出。
请继续参见图1至22,与第一柔性电连接件12的结构相类似,第二柔性电连接件22具备第二电极组件连接部220、第二连接块连接部222以及第二变形部(图中未标号),第二电极组件20与第二电极组件连接部220电连接,第二连接块24与第二连接块连接部222电连接。第二变形部具备柔性形变能力,能够在外力作用下发生形变。
当多个采用这种动力电池顶盖结构的动力电池组成电池模组时,同样会通过汇流排同时与多个第二连接块24的上表面贴合连接,当动力电池发生膨胀时,第二电极组件20也会发生位移,而由于第二连接块24与汇流排连接在一起,因此第二连接块24是固定不动的,这就使得第二连接块24与第二电极组件20之间也发生相对位移。
以顶盖片30为基准物,当第二连接块24相对于顶盖片30发生相对位移时,由于第二连接块连接部222与第二连接块24连接在一起,因此第二连接块连接部222会跟随第二连接块24一起移动,而此时第二电极组件20相对于顶盖片30是固定不动的,因此第二电极组件连接部220也固定不动,这样就使得第二电极组件连接部220与第二连接块连接部222之间发生了相对位移,而相对位移的偏移量便通过第二变形部的形变进行 吸收和补充,避免第二柔性电连接件22直接断裂而丧失导电能力。
为了降低电阻,第二柔性电连接件22一般需要具备较大的过流面积,而过大的过流面积会导致第二柔性电连接件22的三维尺寸过大,不利于发生形变,因此,为了使第二柔性电连接件22顺利发生形变,第二柔性电连接件22至少在一个维度上(例如厚度)的尺寸要小一些,以便进行弯曲变形。
与第一柔性电连接件12相同,第二柔性电连接件22也可以采用片状结构,同时第二变形部也可以具备第二弯折部224以及第二连接部226,并且,第二弯折部224的数量、设置方式以及功能也可以参照第一弯折部124进行设计,例如设置第二弯折部224a以及第二弯折部224b。在本实施例中,第二柔性电连接件22可以采用一整块片材制成,也可以采用很薄的若干柔性连接片依次层叠形成,在此不再赘述。
由于本实施例中的第二柔性电连接件22也并不参与第二电极组件20与顶盖片30的密封连接,因此第二柔性电连接件22的形变也不会影响顶盖片30的密封性能。
本实施例中,第二电极组件20包括第二极柱200、第二极柱密封件202以及第二上绝缘件206,第二极柱200穿过顶盖片30,且通过第二极柱密封件202与顶盖片30密封绝缘连接,第二上绝缘件206位于第二连接块24与顶盖片30之间,保证第二连接块24与顶盖片30之间的电绝缘,第二电极组件连接部220与第二极柱200电连接。同时,也可以在第二极柱200的底部与顶盖片30的下表面之间设置第二下绝缘件203进行绝缘。
同第一柔性电连接件12一样,第二柔性电连接件22的第二连接块连接部222可以与第二连接块24的下表面连接,例如在第二连接块24与第二电极组件20之间围成一个第二容纳腔21,第二柔性电连接件22置于第二容纳腔21内。
同时,也可以将第二连接块连接部222与第二连接块24的上表面电连接,例如在第二连接块24上设一个第二连接孔240,第二连接块连接部222穿过第二连接孔140后与第二连接块24的上表面电连接。或者,第二连接块连接部222由第二连接块24的下方经由第二连接块24的一侧绕至第二连接块24的上表面,并与第二连接块24的上表面电连接。为了保护 第二柔性电连接件22,在第二连接块24的侧部也可以设置第二缺口(图中未标号),其设置方式与功能与第一连接块14上的第一缺口相同。
为了便于第二连接块24与汇流排进行连接,第二连接块24的上表面最好保持平整,在第二连接块14的上表面最好也具有一个第二连接槽242,第二连接块连接部222与第二连接槽242电连接,从而使第二连接块连接部222的上表面不超过第二连接块24的上表面。
本实施例通过第一柔性电连接件12以及第二柔性电连接件22柔性连接第一连接块14以及第二连接块24,能够在保持电连接状态的前提下使第一连接块14以及第二连接块24沿X轴、Y轴和Z轴获得一定幅度的位移量,进而更好地吸收因电池膨胀和吸收所导致的与汇流排之间的作用力。
实施例二
本申请的实施例二在实施例一的基础上进行了结构改进。在实施例一中,虽然第一连接块14具备了移动能力,但如果第一连接块14的移动量超过了第一柔性电连接件12的形变能力,则第一柔性电连接件12便有可能发生断裂,或者脱离与第一连接块14以及第一电极组件10的电连接状态,而无论发生那种情况,均会导致第一连接块14无法再与动力电池的正极连通。同样的,第二连接块24也存在发生这种情况的可能性,因此,有必要对第一连接块14以及第二连接块24的具体移动幅度进行限制,使其只能在合理的范围内进行移动。
为了解决上述问题,如图23至25所示,本实施例所提供的动力电池顶盖结构除具备实施例一的结构之外,还具备第一限位件16以及第二限位件26。第一连接块14上设置有第一限位配合部144,第一限位配合部144能够与第一限位件16配合连接,并且二者在连接之后能够相互制约,使第一限位件16能够限制第一限位配合部144的移动。由于第一连接块连接部122与第一连接块14电连接在一起,二者是一起移动的,而限制住第一限位配合部144,也就意味着第一连接块14的移动量被限制。
如图24所示,第一限位配合部144为第一限位孔(为了便于理解,下文沿用附图标记144),第一限位件16包括第一限位柱160以及第一限 位帽162,第一限位柱160相对于顶盖片30固定设置,例如直接固定在顶盖片30上,或者固定在第一电极组件10的第一电连接件104或第一上绝缘件106上,也就是说,第一限位柱160可以适应实施例一当中的各种结构的第一电极组件10,而不仅限于包含导电片101以及翻转片105的第一电极组件10。第一限位帽162位于第一连接块14远离顶盖片30的一侧,第一限位柱160沿Z轴穿过第一限位孔144后与第一限位帽162通过铆接、焊接或者其它方式固定连接,第一限位柱160以及第一限位帽162能够限制第一连接块14沿Z轴方向的移动。
由于第一上绝缘件106一般均由绝缘塑胶制成,因此可以将第一限位件16与第一上绝缘件106一体成型,,提高装配效率,第一限位件16与第一上绝缘件106可以是相同的材质也可以是不同的材质。
这里限制第一限位孔144移动的方式主要分为两类,第一类是第一限位孔144沿X轴、Y轴的移动,也就是相对于第一限位柱160的径向移动,第二类是第一限位孔144沿Z方向的移动,也就是相对于第一限位柱160的轴向移动。根据需要,第一限位件16可以完全限制住第一限位孔144的其中一类移动(例如使第一限位孔144完全不能进行沿X轴、Y轴的移动,或者完全不能进行沿Z轴的移动),同时允许第一限位孔144进行一定幅度的另一类移动。当然,最好能够使第一限位孔144在XYZ三个维度均能够进行一定幅度的移动。
具体地,对于第一类移动方式,第一限位孔144的直径需要大于第一限位柱160的直径,可以在第一限位孔144与第一限位柱160之间形成第一环隙164,由于第一环隙164的存在,第一限位孔144便可沿第一限位柱160的径向进行移动,并且移动的幅度等于第一限位孔144与第一限位柱160的径向尺寸的差值,从而实现沿XY方向限制第一限位孔144移动量的目的。
对于第二类移动方式,本实施例中可以采用在Z轴方向尺寸较大的第一限位柱160配合在Z轴方向较小的第一限位孔144,使第一限位孔144能够沿着第一限位柱160的轴向进行移动,与此同时,由于第一限位柱160的一端被固定住,而另一端固定第一限位帽162,因此第一连接块14实际上便无法脱离第一限位柱160,而只能够在第一限位柱160的轴向尺寸范 围内进行移动。
如图25所示,考虑到第一连接块14上表面的平整性问题,本实施例将第一限位帽142位于第一限位孔144内,同时在第一限位孔144内设置阻挡部146,用于阻挡第一限位帽142由下方脱离第一限位孔144。由于第一限位帽142位于第一限位孔144内,因此第一限位帽142的上表面可以不超过第一连接块14的上表面。
如果仅设置一套第一限位件16以及第一限位配合部144,则可能无法限制第一连接块14在XY平面内进行转动,而如果同时设置多个第一限位件16,同时在第一连接块14上设置有多个第一限位配合部144,第一限位件16与第一限位配合部144一一配合连接,便能够解决这一问题,使第一连接块14在XY平面内的转动也受到限制。
第一限位件16以及第一限位配合部144的数量最好为偶数,例如两个,对称分布在第一柔性电连接件12沿X轴的两侧,如果第一电极组件10与第一连接块14之间形成第一容纳腔11,则第一限位件16也可直接相对于第一容纳腔11设置。由于顶盖片30的长度方向是沿X轴方向,因此在X轴方向上的空间比较充裕,这样一方面能够避让第一柔性电连接件12,另一方面也能够对第一柔性电连接件12形成保护。
在电能传输过程中,第一柔性电连接件12会持续发热,如果这些热量不能及时散发,则可能导致第一柔性电连接件12过热甚至熔断,为了避免这一问题,如图29所示,可以在第一柔性电连接件12上设置第一延展部128,第一延展部128位于第一电极组件连接部120以及第一连接块连接部122之间,如图26至28所示,装配过程中,由于第一限位,16沿X轴设置在第一柔性电连接件12的两侧,因此为了避开第一限位件16,第一柔性电连接件12的至少一部分沿Y轴伸出第一容纳腔11,而第一延展部128便位于伸出第一容纳腔11之外的部分,且沿X轴延展,以增加散热面积,提高散热效率。
并且,若第一变形部具备在XZ平面内的投影为弯折结构的第一弯折部124a时,至少有一个第一弯折部124a是伸出第一容纳腔11之外的,而此时第一延展部128与伸出第一容纳前11之外的第一弯折部124a连接。这样设计不但能够利用第一延展部128增加散热面积,同时还能够提高弯 折部的强度。
然而,对于整个第一柔性电连接件12而言,它的整体过流能力取决于第一连接块连接部122、第一变形部以及第一电极组件连接部120这每个部分的独立过流能力,哪一个部分过流能力过低均会导致第一柔性电连接件12被熔断。因此,在本实施例中,为了提高第一柔性电连接件12的整体过流能力,在第一连接块连接部122上还具备第一连接块辅助连接部122a,同时在第一电极组件连接部120上还具备第一电极组件辅助连接部120a,
第一连接块辅助连接部122a能够一直延伸至第一延展部128的侧部,以增大第一连接块连接部122与第一连接块14的接触面积,同样的,第一电极组件辅助连接部120a也会延伸至第一延展部128的侧部,用来增大第一电极组件连接部120与第一电极组件10的接触面积。接触面积增大后,便能够加强过流能力。
为了保护第一延展部128,第一连接块14侧部的第一缺口可以将第一弯折部124以及第一延展部128一起容纳进去。
请继续参见图26至29,在本实施例中,第二限位件26的结构以及功能均与第一限位件16相类似,可包括第二限位柱260以及第二限位帽262,并依靠设置在第二连接块24上的第二限位配合部244(例如第二限位孔)进行配合来限制第二连接块24的位移幅度。第二限位件26可以像第一限位件16那样固定在顶盖片30上,也可以固定在实施例一中各种结构的第二电极组件20的第二上绝缘件206上。与此同时,第二电极组件20也可以与第二上绝缘件206一体成型。除此之外,本实施例中的第二柔性电连接件22也可以具备第二延展部228进行散热,并通过第二电极组件辅助连接部220a以及第二连接块辅助连接部222a提高第二柔性电连接件22的整体过流能力,相关结构的设置方式与第一柔性电连接件12相同,在此不再赘述。
实施例三
本申请的实施例三在实施例二的基础上进行了结构改进。在实施例一以及实施例二中,第一连接块14以及第二连接块24均能够相对于顶盖片 30进行位移,但是,在将第一连接块14以及第二连接块24与汇流排进行连接时,如果第一连接块14以及第二连接块24均能够随意移动,将会造成装配麻烦。
为了解决上述问题,如图30至32所示,本实施例所提供的动力电池顶盖结构除具备实施例二的结构之外,还具备第一弹性件18以及第二弹性件28。第一弹性件18以及第二弹性件28的作用便是在第一连接块14以及第二连接块24相对于顶盖片30发生移动时发生弹性形变,并在外力撤销后回弹,并在回弹的同时推动第一连接块14以及第二连接块24向移动之前的位置折返,从而保证第一连接块14以及第二连接块24能有基本固定的位置用于装配。
具体地,如图30所示,第一弹性件18包括第一径向弹性件180以及第一轴向弹性件182,第一径向弹性件180嵌入第一环隙164内,且能够在第一连接块14在外力作用下沿X轴或者Y轴移动时被挤压变形。为了防止第一径向弹性件180由下方脱离第一限位孔144,本实施例中可以利用阻挡部146对第一径向弹性件180进行阻挡,也就是说,在装配时,将第一径向弹性件180设置在阻挡部146以及第一限位帽162之间。此时,最好保证第一限位帽142的上表面不超过第一连接块14的上表面。阻挡部146的结构可以采用限位块形式,优选采用环形挡板。
继续参见图30,第一轴向弹性件182设置于第一连接块14的下方,例如设置在第一连接块14与顶盖片30之间,或者设置在第一连接块14与第一电极组件10之间。当第一连接块14在外力作用下沿Z轴向下移动时,第一轴向弹性件182能够被压缩,而在外力撤销后,第一连接块14能够被第一轴向弹性件182向上顶起,直至被第一限位帽162限制住。此时,第一连接块14被第一限位帽162以及第一轴向弹性件182由相反的两个方向限制住。
第一轴向弹性件182可以设置在第一连接块14下方的任意位置,只要注意避让其它部件即可,然而,考虑到节约空间,以及便于装配,最好将第一轴向弹性件182套设在第一限位柱160上。并且,还可在顶盖片30、第一电连接件104或者第一上绝缘件106上设置一个第一凹陷部(图中未标号),第一限位柱160的底部固定在第一凹陷部中,并与第一凹陷部之 间形成第二环隙166,将第一轴向弹性件182嵌入第二环隙166内,以降低第一轴向弹性件182在Z轴方向所占用的空间,同时使第一轴向弹性件182的上表面超出第一凹陷部,以与第一连接块14接触并提供作用力。
在本实施例中,如图31所示,第一限位柱160可以包括下配合段160a以及上配合段160b,下配合段160a的直径大于上配合段160b的直径,第一轴向弹性件182套设在下配合段160a上,而第一径向弹性件180则套设在上配合段160b上。较粗的下配合段160a可以提高第一限位柱160的结构强度以及连接强度,而第一限位块14沿X轴以及Y轴的移动主要通过上配合段160b进行限制,因此,较小的上配合段160b有利于提高第一连接块14的移动幅度。
第一径向弹性件180以及第一轴向弹性件182可以采用多种形式,例如围绕第一限位柱160设置一圈沿第一限位柱160的径向延伸的弹簧充当第一径向弹性件180,设置一圈沿第一限位件160的轴向延伸的弹簧充当第一轴向弹性件182。但这种方式的装配难度较大,且可靠性差。因此,在本实施例中,第一径向弹性件180以及第一轴向弹性件182推荐采用由弹性材料制成的环状结构。
同样的,本实施例中的第二弹性件28的结构以及功能均与第一弹性件18相类似,可以包括第二径向弹性件280以及第二轴向弹性件282,而根据第二限位柱260的设置位置,可以在顶盖片30或者第二上绝缘件206上设置第二凹陷部,第二限位柱260的底部固定在第二凹陷部中,第二轴向弹性件282嵌入第二凹陷部以及第二限位柱260之间,以降低第二轴向弹性件282在Z轴方向所占用的空间,同时使第二轴向弹性件282的上表面超出第二凹陷部,以与第二连接块24接触并提供作用力。并且,第二限位柱260也可以采用类似第一限位柱160的两段式结构以达到相同的技术效果,在此不再赘述。
本申请实施例所提供的动力电池顶盖结构能够使第一连接块以及第二连接块进行相对位移来吸收与汇流排之间的作用力,同时还可以限制第一连接块以及第二连接块的位移幅度,并能够在自然状态下使第一连接块以及第二连接块回到初始位置。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于 本领域的技术人员来说,本申请可以有各种更改和变化,基于本申请所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种动力电池顶盖结构,其特征在于,包括顶盖片、第一电极组件、第二电极组件、第一柔性电连接件、第一连接块、第一限位件以及第一弹性件,
    所述第一电极组件以及所述第二电极组件均附接在所述顶盖片上,且所述第一电极组件以及所述第二电极组件中至少一者与所述顶盖片绝缘,
    所述第一连接块位于所述第一电极组件的上方,所述第一连接块通过所述第一柔性电连接件与所述第一电极组件电连接,所述第一柔性电连接件具备第一电极组件连接部、第一变形部和第一连接块连接部,所述第一电极组件连接部与所述第一电极组件电连接,所述第一连接块连接部与所述第一连接块电连接,所述第一变形部连接所述第一电极组件连接部和所述第一连接块连接部,
    所述第一连接块在外力作用下能够相对于所述第一电极组件发生位移,并且所述第一连接块连接部能够与所述第一连接块一起移动,并拉动所述第一变形部发生形变,
    所述第一连接块上设置有第一限位配合部,所述第一限位配合部与所述第一限位件配合连接,所述第一限位件能够限制所述第一连接块的移动量,
    所述第一连接块在外力作用下相对于所述第一电极组件发生位移时能够挤压所述第一弹性件,且当所述外力撤销后所述第一弹性件能够回弹。
  2. 如权利要求1所述的动力电池顶盖结构,其特征在于,三维直角坐标系内包括相互垂直的X轴、Y轴以及Z轴,所述顶盖片的长度方向为X轴,宽度方向为Y轴,厚度方向为Z轴,
    所述第一限位配合部为第一限位孔,所述第一限位件包括第一限位柱以及第一限位帽,所述第一限位柱相对于所述顶盖片固定设置,且沿Z轴穿过所述第一限位孔后与所述第一限位帽固定连接,所述第一限位帽位于所述第一连接块中远离所述顶盖片的一侧。
  3. 如权利要求2所述的动力电池顶盖结构,其特征在于,所述第一 限位孔与所述第一限位柱之间能够形成第一环隙,
    所述第一弹性件包括第一径向弹性件,所述第一径向弹性件嵌入所述第一环隙内,当所述第一连接块在外力作用下沿X轴或Y轴移动时,能够挤压所述第一径向弹性件。
  4. 如权利要求3所述的动力电池顶盖结构,其特征在于,所述限位帽位于所述第一径向弹性件的上方,所述第一限位孔内设有阻挡部,用于阻挡所述第一径向弹性件由下方脱离所述第一限位孔。
  5. 如权利要求4所述的动力电池顶盖结构,其特征在于,所述阻挡部为环形挡板。
  6. 如权利要求4所述的动力电池顶盖结构,其特征在于,所述第一限位帽以及所述第一径向弹性件均位于所述第一限位孔内,且所述第一限位帽的上表面不超过所述第一连接块的上表面。
  7. 如权利要求3至6任一项所述的动力电池顶盖结构,其特征在于,所述第一限位柱与所述第一限位孔能够沿Z轴相对移动,所述第一连接块被所述第一限位帽限制住沿Z轴向远离所述第一电极组件的方向移动的最大移动量,所述第一弹性件还包括第一轴向弹性件,所述第一轴向弹性件设置于所述第一连接块的下方,
    当所述第一连接块在外力作用下沿Z轴向下移动时,能够挤压所述第一轴向弹性件。
  8. 如权利要求7所述的动力电池顶盖结构,其特征在于,所述第一轴向弹性件套设在所述第一限位柱上。
  9. 如权利要求8所述的动力电池顶盖结构,其特征在于,所述动力电池顶盖结构中存在第一凹陷部,所述第一限位柱的底部固定在所述第一凹陷部中,并与所述第一凹陷部之间形成第二环隙,所述第一轴向弹性件嵌入所述第二环隙内,且其上表面超出所述第一凹陷部。
  10. 如权利要求8所述的动力电池顶盖结构,其特征在于,所述第一限位柱包括下配合段以及上配合段,所述下配合段的直径大于所述上配合段的直径,所述第一轴向弹性件套设在所述下配合段上,所述第一径向弹性件套设在所述上配合段上。
  11. 如权利要求7所述的动力电池顶盖结构,其特征在于,所述第一 径向弹性件和/或所述第一轴向弹性件为由弹性材料制成的环状结构。
  12. 如权利要求1至6任一项所述的动力电池顶盖结构,其特征在于,所述第一限位件固定在所述顶盖片上。
  13. 如权利要求1至6任一项所述的动力电池顶盖结构,其特征在于,所述第一限位件固定在所述第一电极组件上。
  14. 一种动力电池,其特征在于,包括权利要求1至13任一项所述的动力电池顶盖结构。
  15. 一种电池模组,其特征在于,包括汇流排以及多个权利要求14所述的动力电池,多个所述第一连接块之间通过所述汇流排电连接。
  16. 如权利要求15所述的电池模组,其特征在于,所述汇流排为直板结构,所述第一连接块的上表面与所述汇流排贴合连接。
PCT/CN2017/070419 2017-01-06 2017-01-06 动力电池顶盖结构、动力电池及电池模组 WO2018126439A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780070011.9A CN109937494B (zh) 2017-01-06 2017-01-06 动力电池顶盖结构、动力电池及电池模组
PCT/CN2017/070419 WO2018126439A1 (zh) 2017-01-06 2017-01-06 动力电池顶盖结构、动力电池及电池模组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/070419 WO2018126439A1 (zh) 2017-01-06 2017-01-06 动力电池顶盖结构、动力电池及电池模组

Publications (1)

Publication Number Publication Date
WO2018126439A1 true WO2018126439A1 (zh) 2018-07-12

Family

ID=62789025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070419 WO2018126439A1 (zh) 2017-01-06 2017-01-06 动力电池顶盖结构、动力电池及电池模组

Country Status (2)

Country Link
CN (1) CN109937494B (zh)
WO (1) WO2018126439A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021234106A1 (fr) 2020-05-20 2021-11-25 Saft Ensemble électrochimique, batterie et procédé correspondants
FR3125172A1 (fr) * 2021-07-12 2023-01-13 Saft Pièce de connexion pour élément électrochimique de format prismatique

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202495544U (zh) * 2012-02-14 2012-10-17 东莞新能源科技有限公司 一种动力电池
CN203871392U (zh) * 2014-06-13 2014-10-08 苏州创能新能源实业有限公司 一体化高铆接式锂电池盖板
US20150311568A1 (en) * 2014-04-23 2015-10-29 Samsung Sdi Co., Ltd. Battery pack
CN105591062A (zh) * 2016-03-17 2016-05-18 宁德时代新能源科技股份有限公司 二次电池
CN105977411A (zh) * 2016-06-27 2016-09-28 宁德时代新能源科技股份有限公司 二次电池顶盖及二次电池
CN205666258U (zh) * 2016-05-27 2016-10-26 杜福宙 一种软连接式极柱的锂离子电池盖板
CN106207016A (zh) * 2015-05-04 2016-12-07 宁德时代新能源科技股份有限公司 动力电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855454B2 (en) * 2001-12-20 2005-02-15 Eveready Battery Company, Inc. Electrochemical cell having venting current collector and seal assembly
KR100778979B1 (ko) * 2005-12-29 2007-11-22 삼성에스디아이 주식회사 이차전지
CN205666261U (zh) * 2016-06-07 2016-10-26 宁德时代新能源科技股份有限公司 动力电池顶盖及动力电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202495544U (zh) * 2012-02-14 2012-10-17 东莞新能源科技有限公司 一种动力电池
US20150311568A1 (en) * 2014-04-23 2015-10-29 Samsung Sdi Co., Ltd. Battery pack
CN203871392U (zh) * 2014-06-13 2014-10-08 苏州创能新能源实业有限公司 一体化高铆接式锂电池盖板
CN106207016A (zh) * 2015-05-04 2016-12-07 宁德时代新能源科技股份有限公司 动力电池
CN105591062A (zh) * 2016-03-17 2016-05-18 宁德时代新能源科技股份有限公司 二次电池
CN205666258U (zh) * 2016-05-27 2016-10-26 杜福宙 一种软连接式极柱的锂离子电池盖板
CN105977411A (zh) * 2016-06-27 2016-09-28 宁德时代新能源科技股份有限公司 二次电池顶盖及二次电池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021234106A1 (fr) 2020-05-20 2021-11-25 Saft Ensemble électrochimique, batterie et procédé correspondants
FR3110773A1 (fr) 2020-05-20 2021-11-26 Saft Ensemble électrochimique, batterie et procédé correspondants
FR3125172A1 (fr) * 2021-07-12 2023-01-13 Saft Pièce de connexion pour élément électrochimique de format prismatique

Also Published As

Publication number Publication date
CN109937494B (zh) 2021-09-17
CN109937494A (zh) 2019-06-25

Similar Documents

Publication Publication Date Title
JP5823024B2 (ja) 二次電池の連結構造及びそれを含む電池パック
CN105322211B (zh) 电池组和电池操作系统
CN106601940B (zh) 动力电池顶盖结构、动力电池及电池模组
US11916244B2 (en) Battery module including partition member
KR101565115B1 (ko) 배터리 팩 및 그 제조 방법
KR20190071454A (ko) 버스바 어셈블리를 포함하는 배터리 모듈
KR102283959B1 (ko) 배터리 팩
US9660302B2 (en) Secondary battery pack having non-protruded connector
US9178206B2 (en) Battery module
KR20180050086A (ko) 배터리 팩
JP2020505730A (ja) 電極タブ切断装置を含むパウチ形二次電池
KR20180117033A (ko) 배터리 모듈
CN106328857B (zh) 二次电池及电池模组
CN105977411B (zh) 二次电池顶盖及二次电池
JP6594455B2 (ja) ワイヤー固定リブを備えている電池モジュール
WO2018126439A1 (zh) 动力电池顶盖结构、动力电池及电池模组
EP3576178A1 (en) Battery pack
WO2018126438A1 (zh) 动力电池顶盖结构、动力电池及电池模组
KR20170040636A (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2019017211A1 (ja) バスバー及び電池積層体
WO2018126437A1 (zh) 动力电池顶盖结构、动力电池及电池模组
KR20170021561A (ko) 배터리 팩
CN112787043A (zh) 电池模组以及用电装置
KR20220001989A (ko) 배터리 모듈, 그것을 포함하는 배터리 팩, 및 자동차
KR101658526B1 (ko) 과전압 방지 단자 접속부재들을 포함하는 전지팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889969

Country of ref document: EP

Kind code of ref document: A1