WO2018126366A1 - 温度测量方法及装置 - Google Patents
温度测量方法及装置 Download PDFInfo
- Publication number
- WO2018126366A1 WO2018126366A1 PCT/CN2017/070189 CN2017070189W WO2018126366A1 WO 2018126366 A1 WO2018126366 A1 WO 2018126366A1 CN 2017070189 W CN2017070189 W CN 2017070189W WO 2018126366 A1 WO2018126366 A1 WO 2018126366A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- closed state
- tested
- temperature sensors
- measurement space
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/01—Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K13/00—Thermometers specially adapted for specific purposes
Definitions
- the present application relates to the field of temperature and humidity measurement technology, and in particular, to a temperature measurement method and device.
- Body temperature is a physical quantity that measures the body's heat and cold. In practical applications, the temperature of the skin surface is mostly measured by a thermometer. The surface of the skin in different parts is quite different. Most of the skin surface to be tested is exposed to the air during measurement, which is greatly affected by the environment and the accuracy of the measurement results is low. The surface of the skin located in a relatively closed space, such as the underarms, the mouth, etc., is relatively stable with the temperature of the human body. Therefore, the underarms, the mouth and the like become the standard position for body temperature measurement.
- the body's health index can be monitored.
- the inventors of the present application found that the accuracy of the monitoring result is low, and the monitoring effect is not ideal. This prompted the inventors to further analyze the research to investigate the cause.
- the inventors found that the main reason for the unsatisfactory monitoring effect is that the body temperature measured continuously is not accurate enough and the error is large.
- the inventors made further analysis and research on the continuous body temperature measurement process, and found that in the case of continuous body temperature measurement, due to the possible movement of the subject, the underarm and the mouth are closed. The temperature measurement space is broken, and the temperature of the skin surface exposed to the air is greatly affected by the environment. There is a certain error with the body temperature of the human body, resulting in the measured temperature is not accurate enough.
- the embodiment of the present application provides a temperature measurement method, including: collecting measurement values of at least two temperature sensors, where the at least two temperature sensors are located in a temperature measurement space of an object to be tested; a change trend of the measured values of the temperature sensors, determining that the temperature measuring space is converted from a closed state to a non-closed state; according to the measured values of the at least two temperature sensors when the temperature measuring space is in a non-closed state, obtaining a The temperature value of the object to be measured is described.
- the obtaining the temperature value of the object to be tested includes: determining a linear compensation time range according to the temperature transfer coefficient; and superposing the at least two temperature sensors in the linear compensation time range A measured value when the temperature measurement space is in a non-closed state as a temperature value of the object to be tested.
- the determining step of the linear compensation time range includes: calculating the linear compensation time range according to a formula B*t ⁇ G; wherein B represents the temperature transfer coefficient; t represents the Linear compensation time range; G is an empirical value determined based on the allowable range of temperature error.
- the step of superimposing the measured values of the at least two temperature sensors when the temperature measurement space is in a non-closed state comprises: determining the at least two temperatures according to a linear attenuation relationship of the measured values Corresponding linear superposition coefficients of the sensors; superimposing the measured values of the at least two temperature sensors when the temperature measurement space is in a non-closed state, based on the respective linear superposition coefficients of the at least two temperature sensors, as the Measure the temperature value of the object.
- the method further includes superimposing, in a non-linear manner, the measurement of the at least two temperature sensors when the temperature measurement space is in a non-closed state, outside the linear compensation time range.
- the value is the temperature value of the object to be tested.
- the determining step of the non-closed state includes: when the measured values of the at least two temperature sensors are in a downward trend, and the difference between the measured values of the at least two temperature sensors When the set temperature difference condition is met, it is determined that the temperature measurement space is changed from the closed state to the non-closed state.
- the method further includes: according to the at least two temperature sensors a trend of the measured value, determining that the temperature measuring space is in a closed state; and selecting, from the measured values of the at least two temperature sensors when the temperature measuring space is in a closed state, selecting the largest measured value as the object to be tested Temperature value.
- the embodiment of the present application further provides a temperature measuring device, including: an collecting unit, configured to collect measured values of at least two temperature sensors, wherein the at least two temperature sensors are located in a temperature measuring space of the object to be tested; a determining unit, configured to determine that the temperature measurement space is changed from a closed state to a non-closed state according to a change trend of the measured values of the at least two temperature sensors; and a temperature acquiring unit configured to be according to the at least two temperature sensors The measured value when the temperature measurement space is in a non-closed state, and the temperature value of the object to be tested is obtained.
- the temperature acquiring unit includes: a determining subunit, configured to determine a linear compensation time range according to a temperature transfer coefficient; and an overlay subunit, configured to superimpose the said linear compensation time range
- a determining subunit configured to determine a linear compensation time range according to a temperature transfer coefficient
- an overlay subunit configured to superimpose the said linear compensation time range
- the determining subunit is specifically configured to: calculate the linear compensation time range according to a formula B*t ⁇ G; wherein B represents the temperature transfer coefficient; t represents the linear compensation time Range; G is an empirical value determined based on the allowable range of temperature error.
- the superposition subunit is specifically configured to: determine, according to a linear attenuation relationship of the measured values, a linear superposition coefficient corresponding to each of the at least two temperature sensors; and corresponding to each of the at least two temperature sensors The linear superposition coefficient superimposes the measured value of the at least two temperature sensors when the temperature measurement space is in a non-closed state as the temperature value of the object to be tested.
- the superposition subunit is further configured to: superimpose the at least two temperature sensors in a non-closed state in the temperature measurement space in a non-linear manner outside the linear compensation time range The measured value at the time is taken as the temperature value of the object to be tested.
- the state determining unit is specifically configured to: when the measured values of the at least two temperature sensors are in a downward trend, and the difference between the measured values of the at least two temperature sensors is consistent When the temperature difference condition is determined, it is determined that the temperature measurement space is changed from a closed state to a non-closed state. status.
- the state determining unit is further configured to: determine that the temperature measurement space is in a closed state according to a change trend of the measured values of the at least two temperature sensors; and the temperature acquiring unit is further configured to: And selecting, from the measured values of the at least two temperature sensors when the temperature measurement space is in a closed state, a maximum measurement value as the temperature value of the object to be tested.
- the embodiment of the present application further provides a computer storage medium, which stores the following program instructions:
- a first program instruction configured to collect, by using the communication interface, measurement values of at least two temperature sensors, where the at least two sensors are located in a temperature measurement space of the object to be tested;
- a second program instruction configured to determine, according to a change trend of the measured values of the at least two temperature sensors, that the temperature measurement space is changed from a closed state to a non-closed state
- a third program instruction configured to obtain a temperature value of the object to be tested according to the measured value of the at least two temperature sensors when the temperature measurement space is in a non-closed state.
- an electronic device including:
- a memory configured to store a computer program
- a communication interface configured to effect communication between the electronic device and other devices
- a processor coupled to the memory and the communication interface, configured to execute the computer program to: acquire measurements of at least two temperature sensors through the communication interface, the at least two temperature sensors being located Determining, in accordance with a change trend of the measured values of the at least two temperature sensors, converting the temperature measurement space from a closed state to a non-closed state; according to the at least two temperature sensors The measured value when the temperature measurement space is in the non-closed state, and the temperature value of the object to be tested is obtained.
- the processor when the processor obtains the temperature value of the object to be tested, the processor is specifically configured to: determine a linear compensation time range according to the temperature transfer coefficient; and superimpose the time in the linear compensation time range The measured value of the at least two temperature sensors when the temperature measurement space is in a non-closed state is used as the temperature value of the object to be tested.
- the processor when determining the linear compensation time range, has The body is used to: calculate the linear compensation time range according to the formula B*t ⁇ G; wherein B represents the temperature transfer coefficient; t represents the linear compensation time range; G is an empirical value determined based on the temperature error allowable range .
- the method when the processor obtains the temperature value of the object to be tested, the method is specifically configured to: determine, according to a linear attenuation relationship of the measured values, a linear superposition coefficient corresponding to each of the at least two temperature sensors And superimposing a measured value of the at least two temperature sensors when the temperature measurement space is in a non-closed state as a temperature value of the object to be tested, based on respective linear superposition coefficients of the at least two temperature sensors.
- the processor when determining that the temperature measurement space is changed from a closed state to a non-closed state, is specifically configured to: when the measured values of the at least two temperature sensors are in a downward trend, When the difference between the measured values of the at least two temperature sensors meets the set temperature difference condition, it is determined that the temperature measurement space is changed from the closed state to the non-closed state.
- the temperature of the object to be tested is obtained based on the measured values of the at least two temperature sensors when the temperature measurement space is in the non-closed state.
- the value instead of directly taking the measured value of the temperature sensor as the temperature value of the object to be tested, fully considers the influence of the ambient temperature on the temperature sensor, and is beneficial to reducing the measured temperature value of the object to be tested and the actual temperature value of the object to be tested. The error between the two increases the accuracy of the temperature measurement.
- FIG. 1 is a schematic structural diagram of a temperature measuring system according to an embodiment of the present application.
- FIG. 2 is a schematic flow chart of a temperature measurement method according to another embodiment of the present application.
- FIG. 3 is a schematic flow chart of a temperature measurement method according to another embodiment of the present application.
- FIG. 4 is a schematic flow chart of a temperature measurement method according to another embodiment of the present application.
- FIG. 5 is a schematic flowchart diagram of a temperature measurement method according to another embodiment of the present application.
- FIG. 6 is a schematic structural diagram of a temperature measuring device according to another embodiment of the present application.
- FIG. 7 is a schematic structural diagram of a temperature measuring device according to another embodiment of the present application.
- FIG. 8 is a schematic diagram of an electronic device according to another embodiment of the present application.
- Non-invasive temperature measurement refers to a method of measuring the surface temperature of an object to be tested, such as a human body.
- a space having a closed state is selected for temperature measurement.
- a space for temperature measurement is referred to as a temperature measurement space.
- the inventors of the present application have thought that the closed state of the temperature measuring space may be destroyed.
- the subject may have actions such as raising the hand, raising the arm, shaking the shoulder, etc., thereby causing the relatively closed space of the armpit to be destroyed.
- the temperature sensor is easily affected by the ambient temperature, resulting in a certain error between the measured temperature value and the actual temperature value of the subject, and the measurement result is not accurate enough.
- the embodiment of the present application provides a solution, the main principle is: using at least two temperature sensors, combined with the identification of the state of the temperature measurement space, when identifying that the temperature measurement space is changed from the closed state to the non-closed state, Based on at least two temperature sensors in the temperature measurement
- the temperature value of the object to be tested is obtained, instead of directly taking the measured value of the temperature sensor as the temperature value of the object to be tested, taking full account of the influence of the ambient temperature on the temperature sensor, which is advantageous for reducing the measurement.
- the error between the temperature value of the object to be tested and the actual temperature value of the object to be tested improves the accuracy of the temperature measurement.
- the temperature measuring method provided by each embodiment of the present application can be implemented based on the temperature measurement system shown in FIG. 1, but is not limited thereto.
- the temperature measuring system includes a control device 10 and a temperature measuring device 20.
- the temperature measuring device 20 includes at least two temperature sensors for measuring the temperature of the location or environment in which it is located.
- the at least two include two or more. This embodiment does not limit the specific number of temperature sensors.
- the temperature measuring device 20 includes two temperature sensors that are disposed opposite the body of the temperature measuring device 20 to achieve complementarity in temperature measurement.
- the implementation structure and shape of the fixed temperature measuring device 20 will vary depending on the temperature measurement scene.
- the temperature measuring device 20 may be in the shape of a flat, approximately elliptical drop, which can reduce the foreign body sensation during use.
- an object that needs to measure temperature is referred to as an object to be tested.
- the object to be tested may be different, such as a human body, an animal, or some confined space.
- the object to be tested has a certain temperature measurement space, and the temperature measuring device 20 is located in the temperature measurement space for temperature measurement, which means that at least two temperature sensors are located in the temperature measurement space.
- the temperature measurement space may be a relatively closed space formed by the underarm, the mouth, the anus, etc.; correspondingly, the temperature measuring device 20 may be placed under the armpit, the mouth, the anus, and the like of the human body.
- the temperature measuring device 20 is in the shape of a flat, approximately elliptical drop, and includes two temperature sensors disposed oppositely, the temperature measuring device 20 can be placed under the armpit of the human body by a medical tape, and one of the temperature sensors is placed under the armpit. skin.
- the control device 10 and the temperature measuring device 20 may be connected by wireless or wired network, mainly The method is configured to collect measurement values of at least two temperature sensors, and process the collected measurement values to obtain a temperature value of the object to be tested.
- the control device 10 can be any device with certain processing capabilities, such as a computer, a smart phone, a notebook, a tablet, a server, and the like.
- the control device 10 is in communication connection with the temperature measuring device 20 through a mobile network
- the network standard of the mobile network may be 2G (GSM), 2.5G (GPRS), 3G (WCDMA, TD-SCDMA, CDMA2000, UTMS), 4G (LTE), 4G+ (LTE+), WiMax, and the like.
- the control device 10 can also be communicatively coupled to the temperature measuring device 20 via wireless means such as Wi-Fi, Bluetooth, infrared, or the like.
- the closed state of the temperature measurement space belongs to a normal temperature measurement state.
- the control device 10 can continuously acquire the measured values of the at least two temperature sensors and select the maximum measured value as the temperature value of the object to be tested.
- the embodiment of the present application provides a temperature measuring method from the perspective of the control device 10. As shown in FIG. 2, the temperature measuring method includes:
- the temperature of the object to be tested is different from the ambient temperature, or higher than the ambient temperature, or lower than the ambient temperature.
- the measured values of at least two temperature sensors tend to be ambient temperature, and the measured values of at least two temperature sensors tend to be different in the ambient temperature, and the more temperature sensors are exposed.
- the measured value tends to be faster at ambient temperature.
- the control device 10 can change according to the measured values of the at least two temperature sensors. The trend is to determine whether the closed state of the temperature measurement space is destroyed.
- the temperature of the object to be tested is higher than the ambient temperature.
- body temperature is generally higher than ambient temperature.
- the control device 10 can determine whether the measured values of the at least two sensors are in a downward trend, and whether the difference between the measured values of the at least two temperature sensors meets the set temperature difference condition; when the measured values of the at least two sensors are When the difference between the measured values of the at least two temperature sensors meets the set temperature difference condition, it is determined that the temperature measurement space is changed from the closed state to the non-closed state.
- a temperature difference condition may be that the measured values of the two temperature sensors are required to differ by at least a certain degree, for example, 0.4 degrees.
- the control device 10 can determine whether the measured values of the two sensors are in a downward trend, and whether the measured values of the two temperature sensors are at least 0.4 degrees apart; if the determination result is yes, it is determined that the temperature measuring space is from the closed state. Converted to a non-closed state.
- the temperature of the object to be tested is lower than the ambient temperature.
- the temperature in the freezer or refrigerator is generally lower than the ambient temperature.
- the control device 10 can determine whether the measured values of the at least two sensors are in an upward trend, and whether the difference between the measured values of the at least two temperature sensors meets the set temperature difference condition; when the measured values of the at least two sensors are When the rising trend and the difference between the measured values of the at least two temperature sensors meet the set temperature difference condition, it is determined that the temperature measuring space is changed from the closed state to the non-closed state.
- the control device 10 When it is determined that the closed state of the temperature measurement space is broken, that is, when the closed state is changed to the non-closed state, the measured values of at least two temperature sensors are affected by the ambient temperature, and there is a certain error with the actual temperature value of the object to be tested. For this purpose, the control device 10 is no longer directly selecting the maximum measured value as the temperature value of the object to be tested. Considering that many times, the closed state of the temperature measurement space is generally temporarily destroyed, and will soon return to the closed state. At this time, the measured value of the temperature sensor will not drop very much. many. Based on the consideration, the control device 10 can obtain the temperature value of the object to be tested according to the measured value of the at least two temperature sensors when the temperature measurement space is in the non-closed state. This fully considers the influence of the ambient temperature on the temperature sensor, which is beneficial to reducing the error between the measured temperature value of the object to be tested and the actual temperature value of the object to be tested, and improving the accuracy of the temperature measurement.
- the temperature of the object to be tested is generally higher than the ambient temperature.
- the measured value of the temperature sensor will decrease.
- the measured value of the temperature sensor will be as shown in the following formula (1). The linear attenuation relationship decreases.
- T is the measured value of the temperature sensor when the temperature measurement space is in the non-closed state
- T 0 is the measured value of the temperature sensor when the temperature measurement space is in the closed state, that is, the temperature value of the object to be tested
- B represents the temperature transfer coefficient
- the temperature transfer coefficient refers to a coefficient of a temperature measuring device where at least two temperature sensors are located, and the coefficient can be obtained by measurement or experiment. The coefficient is determined when a general device is shipped from the factory; C is a constant; t represents time.
- the inventors of the present application have found through research that the measured value of the temperature sensor can be considered to be linearly decreased in a relatively short period of time, and it is found that the linear attenuation relationship shown by the formula (2) can be used to indicate the decrease of the measured value of the temperature sensor. Based on this, formula (2) can be used instead of formula (1) to simplify the calculation complexity and improve the efficiency of obtaining the temperature value of the object to be tested.
- T represents the measured value of the temperature sensor when the temperature measurement space is in a non-closed state
- T 0 is a measured value of the temperature sensor when the temperature measurement space is in a closed state, that is, the temperature value of the object to be tested
- the temperature measuring method includes:
- the control device 10 may determine the linear compensation time range according to the temperature transfer coefficient; the linear compensation time range refers to determining the temperature measurement After the space is switched from the closed state to the non-closed state, the time period of temperature compensation can be performed in a linear manner, which generally refers to determining a short period of time after the temperature measurement space is switched from the closed state to the non-closed state.
- control device 10 In the linear compensation time range, the control device 10 superimposes the measured values of the at least two temperature sensors in the non-closed state of the temperature measurement space in a linear manner as the temperature value of the object to be tested.
- the determination of the linear compensation time range is critical.
- the inventors of the present invention have found through a large amount of research that the temperature transfer coefficient and the linear compensation time range have the relationship shown by the following formula (3). Based on this, the linear compensation time range can be calculated according to the following formula (3).
- B represents a temperature transfer coefficient
- t represents a linear compensation time range
- G is an empirical value determined based on a temperature error allowable range.
- the temperature error allowable range will vary depending on the application scenario. For example, in body temperature measurement applications, the temperature error is allowed to be around 5%, although it can vary depending on the accuracy requirement of 5%.
- the e- Bt in the above formula (1) is linearly expanded by Taylor series to obtain e -Bt ⁇ 1 +(-Bt) .
- e -Bt of linear expansion needs to be established under conditions of a temperature allowable range of error, i.e., (e -Bt - (1 + ( - Bt))) / e -Bt ⁇ .
- the step of superimposing the measured values of the at least two temperature sensors in the non-closed state of the temperature measurement space may be: a linear attenuation relationship of the measured values based on the formula (2) above, A linear superposition coefficient corresponding to each of the at least two temperature sensors may be determined; in a linear decay time range, at least two temperature sensors are superimposed in the temperature measurement space in a linear manner based on respective linear superposition coefficients of the at least two temperature sensors The measured value in the closed state as the temperature value of the object to be tested.
- the temperature measuring device 20 includes two temperature sensors disposed oppositely, denoted as a first temperature sensor and a second temperature sensor.
- the linear superposition coefficients corresponding to each of the two temperature sensors are derived in conjunction with equation (2). The specific derivation process is as follows:
- the time values t of the first temperature sensor and the second temperature sensor are respectively expressed in the time t after the temperature measurement space is changed from the closed state to the non-closed state, respectively:
- T 1 k 1 t+T 0 (4)
- T 0 (k 1 -k 2 ) T 2 k 1 -T 1 k 2 (10)
- T 0 T 2 k 1 /(k 1 -k 2 )+T 1 k 2 /(k 2 -k 1 ) (11)
- K 1 k 1 /(k 1 -k 2 ) (12)
- T 1 represents a measured value of the first temperature sensor when the temperature measurement space is in a non-closed state
- k 1 represents an attenuation coefficient corresponding to the first temperature sensor
- K 1 represents a linear superposition coefficient of the first temperature sensor
- T 2 represents a measured value of the second temperature sensor when the temperature measuring space is in a non-closed state
- k 2 represents an attenuation coefficient corresponding to the second temperature sensor
- K 2 represents a linear superposition coefficient of the second temperature sensor
- T 0 is a temperature sensor at The measured value when the temperature measurement space is in the closed state, that is, the temperature value of the object to be tested
- t represents the time.
- linear superposition step based on the linear superposition coefficient can be expressed as the following formula (14):
- the temperature sensor on the temperature measuring device 20 is labeled to facilitate distinguishing between the first temperature sensor and the second temperature sensor.
- the first temperature sensor can be directly attached to the underarm skin, and the second temperature sensor is away from the underarm skin.
- the temperature sensor on the temperature measuring device 20 is not tagged and can be worn at will.
- the temperature measuring device 20 is used to measure the body temperature of the human body by the armpit, the temperature sensor attached to the underarm skin is highly measured during the formation of the underarm space, so that the temperature sensor corresponding to the higher measured value can be used as the first
- a temperature sensor uses another temperature sensor as the second temperature sensor.
- the temperature compensation is performed in a linear manner, which not only can accurately obtain the temperature value of the object to be tested, but also can simplify the calculation complexity, and is beneficial to improve the temperature value of the object to be tested. effectiveness.
- another embodiment of the present application further provides a temperature measurement method.
- the method further includes:
- the measured values of at least two temperature sensors in the non-closed state of the temperature measurement space are superimposed in a linear manner as the temperature value of the object to be tested.
- a nonlinear method can be used to superimpose at least two temperature passes The measured value of the sensor when the temperature measurement space is in a non-closed state, as the temperature value of the object to be tested.
- the measurement of at least two temperature sensors when the temperature measurement space is in a non-closed state can be superimposed using equation (1).
- temperature compensation in addition to performing temperature compensation in a linear manner within a linear compensation time range, temperature compensation is performed in a nonlinear manner in addition to the linear compensation time range, and the object to be tested can be more comprehensively obtained. Temperature value.
- the temperature measurement method after step 305, further includes:
- the control device 10 can be based on at least two The trend of the measured value of the temperature sensor determines that the temperature measurement space is in a closed state, and selects the maximum measured value as the temperature value of the object to be tested from the measured values of the at least two temperature sensors when the temperature measurement space is in a closed state.
- the temperature of the object to be tested is higher than the ambient temperature.
- body temperature is generally higher than ambient temperature.
- the control device 10 can determine whether the measured values of the at least two sensors are in an upward trend and tend to be consistent within a specified time or at a time; when the measured values of at least two sensors are in an upward trend and are within a specified time or eventually tend to When consistent, it is determined that the temperature measurement space is switched from a non-closed state to a closed state. The convergence tends to mean that the difference between the measured values of the at least two sensors is less than a specified degree, such as less than 0.4 degrees.
- the temperature of the object to be tested is lower than the ambient temperature.
- the temperature in the freezer or refrigerator is generally lower than the ambient temperature. In this case, if the temperature measurement space is restored from the non-closed state to the closed state, the measured value of the temperature sensor gradually decreases to tend to the actual temperature value of the object to be tested.
- the control device 10 can determine whether the measured values of the at least two sensors are in a downward trend and tend to be consistent within a specified time or at a time; when the measured values of at least two sensors are in a downward trend and are in a specified time or eventually tend to When consistent, it is determined that the temperature measurement space is switched from a non-closed state to a closed state.
- the convergence tends to mean that the difference between the measured values of the at least two sensors is less than a specified degree, such as less than 0.4 degrees.
- the closed state of the temperature measurement space is fully considered to be destroyed and restored, which is advantageous for accurately obtaining the temperature value of the object to be tested under various conditions.
- the execution bodies of the steps of the method provided by the foregoing embodiments may all be the same device, or the method may also be performed by different devices.
- the execution body of steps 201 to 203 may be device A; for example, the execution body of steps 201 and 202 may be device A, the execution body of step 203 may be device B, and the like.
- FIG. 6 is a schematic structural diagram of a temperature measuring device according to another embodiment of the present application. As shown in FIG. 6, the temperature measuring device includes an acquisition unit 61, a state determination unit 62, and a temperature acquisition unit 63.
- the collecting unit 61 is configured to collect the measured values of the at least two temperature sensors, and the at least two temperature sensors are located in the temperature measuring space of the object to be tested.
- the state determining unit 62 is connected to the collecting unit 61 for determining that the temperature measuring space is changed from the closed state to the non-closed state according to the change trend of the measured values of the at least two temperature sensors collected by the collecting unit 61.
- the temperature acquiring unit 63 is connected to the collecting unit 61 and the state determining unit 62 for determining, according to the at least two temperature sensors collected by the collecting unit 61, the state determining unit 62 determining the measured value when the temperature measuring space is in the non-closed state. Measure the temperature value of the object.
- an object that needs to measure temperature is referred to as an object to be tested.
- the object to be tested may be different, such as a human body, an animal, or some confined space.
- the object to be tested has a certain temperature measurement space, and at least two temperature sensors are located in the temperature measurement space. Perform temperature measurement.
- an implementation structure of the temperature acquisition unit 63 includes a determination sub-unit 631 and an overlay sub-unit 632.
- a determining subunit 631 is configured to determine a linear compensation time range based on the temperature transfer coefficient.
- the superposition sub-unit 632 is connected to the determination sub-unit 631 for superimposing the measured values of the at least two temperature sensors in the non-closed state of the temperature measurement space as the object to be tested within the linear compensation time range determined by the determination sub-unit 631. Temperature value.
- the determining subunit 631 is specifically configured to: calculate a linear compensation time range according to the formula B*t ⁇ G.
- B represents a temperature transfer coefficient
- the temperature transfer coefficient refers to a coefficient of a temperature measuring device where at least two temperature sensors are located, and the coefficient can be obtained by measurement or experiment, and the coefficient is determined when a general device is shipped
- t represents linear compensation Time range
- G is an empirical value determined based on the allowable range of temperature error.
- the superposition sub-unit 632 is specifically configured to: determine, according to a linear attenuation relationship of the measured values, a linear superposition coefficient corresponding to each of the at least two temperature sensors; and based on a linear superposition coefficient corresponding to each of the at least two temperature sensors, Superimposing the measured values of at least two temperature sensors when the temperature measurement space is in a non-closed state as the temperature value of the object to be tested.
- the superposition sub-unit 632 performs temperature compensation in a linear manner within a linear compensation time range, which not only can accurately obtain the temperature value of the object to be tested, but also can simplify the calculation complexity and improve the temperature value of the object to be tested. effectiveness.
- the superposition sub-unit 632 is further configured to: superimpose the measured values of the at least two temperature sensors in the non-closed state of the temperature measurement space in a non-linear manner outside the linear compensation time range, as a Measure the temperature value of the object.
- the superposition sub-unit 632 performs temperature compensation in a linear manner in addition to the linear compensation time range, and performs temperature compensation in a nonlinear manner in addition to the linear compensation time range, so that the temperature value of the object to be tested can be more comprehensively obtained. .
- the temperature of the object to be tested is higher than the ambient temperature.
- body temperature is generally higher than ambient temperature.
- the state determining unit 62 is specifically configured to: determine the temperature measurement when the measured values of the at least two temperature sensors are in a downward trend, and the difference between the measured values of the at least two temperature sensors meets the set temperature difference condition The space transitions from a closed state to a non-closed state.
- the temperature of the object to be tested is lower than the ambient temperature.
- the temperature in the freezer or refrigerator is generally lower than the ambient temperature.
- the state determining unit 62 is specifically configured to determine the temperature measurement space when the measured values of the at least two sensors are in an upward trend and the difference between the measured values of the at least two temperature sensors meets the set temperature difference condition. Transition from closed to unclosed.
- the state determining unit 62 is further configured to: determine that the temperature measurement space is in a closed state according to a change trend of the measured values of the at least two temperature sensors.
- the temperature acquisition unit 63 is further configured to: select, from the measurement values of the at least two temperature sensors when the temperature measurement space is in a closed state, the maximum measurement value as the temperature value of the object to be tested.
- the temperature of the object to be tested is higher than the ambient temperature.
- body temperature is generally higher than ambient temperature.
- the state determining unit 62 is specifically configured to determine that the temperature measurement space is converted from the non-closed state to the closed state when the measured values of the at least two sensors are in an upward trend and are within a specified time or eventually become uniform. The convergence tends to mean that the difference between the measured values of the at least two sensors is less than a specified degree, such as less than 0.4 degrees.
- the temperature of the object to be tested is lower than the ambient temperature.
- the temperature in the freezer or refrigerator is generally lower than the ambient temperature.
- the state determining unit 62 is specifically configured to: when the measured values of the at least two sensors are in a downward trend and become consistent in a specified time or eventually, determine that the temperature measuring space is switched from the non-closed state to the closed state.
- the temperature measurement device provided in this embodiment may be used to perform the process of the foregoing method embodiment, and details are not described herein again.
- the temperature measuring device obtained in this embodiment obtains the object to be tested based on the measured value when at least two temperature sensors are in a non-closed state in the temperature measurement space when the temperature measurement space of the object to be tested is changed from the closed state to the non-closed state.
- the temperature value instead of directly taking the measured value of the temperature sensor as the temperature value of the object to be tested, fully considers the influence of the ambient temperature on the temperature sensor, and is beneficial to reducing the measured temperature value of the object to be tested and the actual object to be tested.
- the error between the temperature values improves the accuracy of the temperature measurement.
- the temperature measuring device can be implemented as an electronic device including: a memory 81, a processor 82, and a communication interface 83.
- the memory 81 is configured to store a computer program.
- the memory 81 can also be configured to store other various data to support operation on the electronic device. Examples of such data include instructions for any application or method operating on an electronic device, contact data, phone book data, messages, pictures, videos, and the like.
- the memory 81 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable.
- SRAM static random access memory
- EEPROM electrically erasable programmable read only memory
- EPROM Programmable Read Only Memory
- PROM Programmable Read Only Memory
- ROM Read Only Memory
- Magnetic Memory Flash Memory
- Disk Disk or Optical Disk.
- the communication interface 83 is configured to implement communication between the electronic device and other devices, such as wired or wireless communication.
- the electronic device can access a wireless network based on a communication standard such as WiFi, 2G or 3G, or a combination thereof.
- the communication interface 83 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
- communication interface 83 also includes a near field communication (NFC) module to facilitate short range communication.
- NFC near field communication
- the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
- RFID radio frequency identification
- IrDA infrared data association
- UWB ultra-wideband
- Bluetooth Bluetooth
- a processor 82 coupled to the memory 81 and the communication interface 83, is configured to execute a computer program in the memory 81 for:
- the temperature value of the object to be tested is obtained according to the measured values of the at least two temperature sensors when the temperature measurement space is in a non-closed state.
- the processor 82 when obtaining the temperature value of the object to be tested, is specifically configured to: determine a linear compensation time range according to the temperature transfer coefficient; and superimpose at least two temperature sensors in the linear compensation time range The measured value when the temperature measurement space is in the non-closed state, as the temperature value of the object to be tested.
- the processor 82 when determining the linear compensation time range, is specifically configured to: calculate a linear compensation time range according to the formula B*t ⁇ G; wherein B represents a temperature transfer coefficient; t represents a linear compensation time Range; G is an empirical value determined based on the allowable range of temperature error.
- the processor 82 when obtaining the temperature value of the object to be tested, is specifically configured to: determine, according to a linear attenuation relationship of the measured values, a linear superposition coefficient corresponding to each of the at least two temperature sensors; The linear superposition coefficients corresponding to the temperature sensors respectively superimpose the measured values of at least two temperature sensors when the temperature measurement space is in a non-closed state, as the temperature value of the object to be tested.
- the processor 82 is further configured to: in a non-linear manner, superimpose the measured values of the at least two temperature sensors in the non-closed state of the temperature measurement space outside the linear compensation time range, as a test The temperature value of the object.
- the processor 82 when determining that the temperature measurement space is changed from the closed state to the non-closed state, is specifically configured to: when the measured values of the at least two temperature sensors are in a downward trend, and the at least two temperature sensors are When the difference between the measured values meets the set temperature difference condition, it is determined that the temperature measurement space is changed from the closed state to the non-closed state.
- the processor 82 is further configured to: determine that the temperature measurement space is in a closed state according to a change trend of the measured values of the at least two temperature sensors; and when the temperature measurement space is in a closed state from the at least two temperature sensors Among the measured values, the largest measured value is selected as the temperature value of the object to be tested.
- the electronic device further includes: a display 84, a power supply component 85, an audio component 86, and the like. Only some of the components are schematically illustrated in FIG. 8, and it is not meant that the client device includes only the components shown in FIG.
- Display 84 includes a screen whose screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
- the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor may sense not only the boundary of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
- a power supply assembly 85 provides power to various components of the electronic device.
- Power component 85 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for client devices.
- the audio component 86 is configured to output and/or input an audio signal.
- the audio component 86 includes a microphone (MIC) that is configured to receive an external audio signal when the electronic device is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
- the received audio signal may be further stored in the memory 81 or transmitted via the communication interface 83.
- audio component 86 also includes a speaker for outputting an audio signal.
- the embodiment of the present application further provides a computer storage medium suitable for a computer program, where the computer storage medium stores the following program instructions:
- a first program instruction configured to collect, by using a communication interface, measurement values of at least two temperature sensors, where at least two sensors are located in a temperature measurement space of the object to be tested;
- a second program instruction configured to determine that the temperature measurement space is changed from a closed state to a non-closed state according to a change trend of the measured values of the at least two temperature sensors
- a third program instruction configured to obtain a temperature value of the object to be tested according to the measured value when the temperature measurement space is in a non-closed state by the at least two temperature sensors.
- the flow provided by the above method embodiment can be implemented to accurately obtain the temperature value of the object to be tested when the temperature measurement space is in a non-closed state.
- embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
- computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
- the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
- the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
- These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
- the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
- the computing device includes one or more processors (CPUs), input/output Outbound interface, network interface, and memory.
- processors CPUs
- input/output Outbound interface network interface
- memory volatile and non-volatile memory
- the memory may include non-persistent memory, random access memory (RAM), and/or non-volatile memory in a computer readable medium, such as read only memory (ROM) or flash memory.
- RAM random access memory
- ROM read only memory
- Memory is an example of a computer readable medium.
- Computer readable media includes both permanent and non-persistent, removable and non-removable media.
- Information storage can be implemented by any method or technology.
- the information can be computer readable instructions, data structures, modules of programs, or other data.
- Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory. (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape storage or other magnetic storage devices or any other non-transportable media can be used to store information that can be accessed by a computing device.
- computer readable media does not include temporary storage of computer readable media, such as modulated data signals and carrier waves.
- embodiments of the present application can be provided as a method, system, or computer program product.
- the present application can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment in combination of software and hardware.
- the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Physics & Mathematics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
一种温度测量方法及装置。温度测量方法包括:采集至少两个温度传感器的测量值,至少两个温度传感器位于待测对象的温度测量空间内(201);根据至少两个温度传感器的测量值的变化趋势,确定温度测量空间从封闭状态转换为非封闭状态(202);根据至少两个温度传感器在温度测量空间处于非封闭状态时的测量值,获得待测对象的温度值(203)。采用该方法可以提高温度测量的准确性。
Description
本申请涉及温湿度测量技术领域,尤其涉及一种温度测量方法及装置。
体温是度量人体冷热的物理量,实际应用中大多是通过温度计测量皮肤表面的温度。不同部位的皮肤表面情况差异较大,大部分受测皮肤表面在测量时裸露在空气中,受环境影响较大,测量结果的准确度较低。而位于相对较为封闭的空间中的皮肤表面如腋下、口腔等,与人体温度的关系相对稳定,所以,腋下、口腔等部位成为体温测量的标准位置。
传统温度测量只能做到定时测量,而连续温度测量是在物联网和可穿戴设备的技术装备下出现的全新的温度测量理念。基于连续温度测量,可以连续、实时地监测人体温度。
发明内容
基于连续体温测量,可以监测人体的健康指数。在基于连续体温测量监测人体健康指数的应用中,本申请发明人发现,监测结果的准确度较低,监测效果不是很理想。这促使发明人进一步分析研究,以排查原因。
在排查原因的过程中,发明人发现:导致监测效果不理想的主要原因在于连续测量的体温不够准确,误差较大。为了发现导致连续测量的体温不够准确的原因,发明人对连续体温测量过程做了进一步分析研究,发现:在连续体温测量的情况下,由于受测者可能发生动作,导致腋下、口腔等封闭的体温测量空间被打破,而裸露在空气中的皮肤表面的温度受环境影响较大,
与人体核心体温会有一定误差,导致测量到的温度不够准确。
针对上述技术问题,本申请实施例提供一种温度测量方法,包括:采集至少两个温度传感器的测量值,所述至少两个温度传感器位于待测对象的温度测量空间内;根据所述至少两个温度传感器的测量值的变化趋势,确定所述温度测量空间从封闭状态转换为非封闭状态;根据所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,获得所述待测对象的温度值。
在一可选实施方式中,所述待测对象的温度值的获得步骤,包括:根据温度传递系数,确定线性补偿时间范围;在所述线性补偿时间范围内,叠加所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,作为所述待测对象的温度值。
在一可选实施方式中,所述线性补偿时间范围的确定步骤,包括:根据公式B*t<G,计算所述线性补偿时间范围;其中,B表示所述温度传递系数;t表示所述线性补偿时间范围;G为基于温度误差允许范围确定的经验值。
在一可选实施方式中,所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值的叠加步骤,包括:根据测量值的线性衰减关系,确定所述至少两个温度传感器各自对应的线性叠加系数;基于所述至少两个温度传感器各自对应的线性叠加系数,叠加所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,作为所述待测对象的温度值。
在一可选实施方式中,所述方法还包括:在所述线性补偿时间范围之外,以非线性方式,叠加所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,作为所述待测对象的温度值。
在一可选实施方式中,所述非封闭状态的确定步骤,包括:当所述至少两个温度传感器的测量值呈下降趋势,且所述至少两个温度传感器的测量值之间的差值符合设定温差条件时,确定所述温度测量空间从封闭状态转换为非封闭状态。
在一可选实施方式中,所述方法还包括:根据所述至少两个温度传感器
的测量值的变化趋势,确定所述温度测量空间处于封闭状态;从所述至少两个温度传感器在所述温度测量空间处于封闭状态时的测量值中,选择最大测量值作为所述待测对象的温度值。
相应地,本申请实施例还提供一种温度测量装置,包括:采集单元,用于采集至少两个温度传感器的测量值,所述至少两个温度传感器位于待测对象的温度测量空间内;状态确定单元,用于根据所述至少两个温度传感器的测量值的变化趋势,确定所述温度测量空间从封闭状态转换为非封闭状态;温度获取单元,用于根据所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,获得所述待测对象的温度值。
在一可选实施方式中,所述温度获取单元包括:确定子单元,用于根据温度传递系数,确定线性补偿时间范围;叠加子单元,用于在所述线性补偿时间范围内,叠加所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,作为所述待测对象的温度值。
在一可选实施方式中,所述确定子单元具体用于:根据公式B*t<G,计算所述线性补偿时间范围;其中,B表示所述温度传递系数;t表示所述线性补偿时间范围;G为基于温度误差允许范围确定的经验值。
在一可选实施方式中,所述叠加子单元具体用于:根据测量值的线性衰减关系,确定所述至少两个温度传感器各自对应的线性叠加系数;基于所述至少两个温度传感器各自对应的线性叠加系数,叠加所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,作为所述待测对象的温度值。
在一可选实施方式中,所述叠加子单元还用于:在所述线性补偿时间范围之外,以非线性方式,叠加所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,作为所述待测对象的温度值。
在一可选实施方式中,所述状态确定单元具体用于:当所述至少两个温度传感器的测量值呈下降趋势,且所述至少两个温度传感器的测量值之间的差值符合设定温差条件时,确定所述温度测量空间从封闭状态转换为非封闭
状态。
在一可选实施方式中,所述状态确定单元还用于:根据所述至少两个温度传感器的测量值的变化趋势,确定所述温度测量空间处于封闭状态;所述温度获取单元还用于:从所述至少两个温度传感器在所述温度测量空间处于封闭状态时的测量值中,选择最大测量值作为所述待测对象的温度值。
相应地,本申请实施例还提供一种计算机存储介质,存储有以下程序指令:
第一程序指令,用于通过所述通信接口采集至少两个温度传感器的测量值,所述至少两个传感器位于待测对象的温度测量空间内;
第二程序指令,用于根据所述至少两个温度传感器的测量值的变化趋势,确定所述温度测量空间从封闭状态转换为非封闭状态;
第三程序指令,用于根据所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,获得所述待测对象的温度值。
相应地,本申请实施例还提供一种电子设备,包括:
存储器,被配置为存储计算机程序;
通信接口,被配置为实现所述电子设备与其它设备之间的通信;以及
处理器,耦合至所述存储器和所述通信接口,被配置为执行所述计算机程序,以用于:通过所述通信接口采集至少两个温度传感器的测量值,所述至少两个温度传感器位于待测对象的温度测量空间内;根据所述至少两个温度传感器的测量值的变化趋势,确定所述温度测量空间从封闭状态转换为非封闭状态;根据所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,获得所述待测对象的温度值。
在一可选实施方式中,所述处理器在获得所述待测对象的温度值时,具体用于:根据温度传递系数,确定线性补偿时间范围;在所述线性补偿时间范围内,叠加所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,作为所述待测对象的温度值。
在一可选实施方式中,所述处理器在确定所述线性补偿时间范围时,具
体用于:根据公式B*t<G,计算所述线性补偿时间范围;其中,B表示所述温度传递系数;t表示所述线性补偿时间范围;G为基于温度误差允许范围确定的经验值。
在一可选实施方式中,所述处理器在获得所述待测对象的温度值时,具体用于:根据测量值的线性衰减关系,确定所述至少两个温度传感器各自对应的线性叠加系数;基于所述至少两个温度传感器各自对应的线性叠加系数,叠加所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,作为所述待测对象的温度值。
在一可选实施方式中,所述处理器在确定所述温度测量空间从封闭状态转换为非封闭状态时,具体用于:当所述至少两个温度传感器的测量值呈下降趋势,且所述至少两个温度传感器的测量值之间的差值符合设定温差条件时,确定所述温度测量空间从封闭状态转换为非封闭状态。
在本申请实施例中,在待测对象的温度测量空间由封闭状态转换为非封闭状态时,基于至少两个温度传感器在温度测量空间处于非封闭状态时的测量值,获得待测对象的温度值,而不是直接将温度传感器的测量值作为待测对象的温度值,充分考虑了环境温度对温度传感器的影响,有利于降低测量到的待测对象的温度值与待测对象的实际温度值之间的误差,提高温度测量的准确性。
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请一实施例提供的温度测量系统的结构示意图;
图2为本申请另一实施例提供的温度测量方法的流程示意图;
图3为本申请又一实施例提供的温度测量方法的流程示意图;
图4为本申请又一实施例提供的温度测量方法的流程示意图;
图5为本申请又一实施例提供的温度测量方法的流程示意图;
图6为本申请又一实施例提供的温度测量装置的结构示意图;
图7为本申请又一实施例提供的温度测量装置的结构示意图;
图8为本申请又一实施例提供的电子设备示意图。
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在连续温度测量的应用场景中,包括侵入式温度测量和非侵入式温度测量。本申请实施例提供的温度测量方法主要是针对非侵入式温度测量方式提出的。非侵入式温度测量是指测量待测对象(例如人体)的表面温度的测量方式。在非侵入温度测量方式下,为了使得测量到的温度值尽量接近待测对象的真实温度值,选定一具有封闭状态的空间进行温度测量。在本申请实施例中,将用于温度测量的空间称为温度测量空间。
本申请发明人想到温度测量空间的封闭状态可能会被破坏。例如,在连续体温测量过程中,以腋下测量为例,受测者可能发生如举手、抬手臂、晃动肩膀等动作,从而导致腋下相对封闭的空间被破坏。温度测量空间的封闭状态一旦被破坏,温度传感器很容易受到环境温度的影响,导致测量到的温度值与受测者的实际温度值有一定误差,测量结果不够准确。
针对上述问题,本申请实施例提供一种解决方案,主要原理是:采用至少两个温度传感器,结合温度测量空间的状态的识别,在识别出温度测量空间从封闭状态转换为非封闭状态时,基于至少两个温度传感器在温度测量空
间处于非封闭状态时的测量值,获得待测对象的温度值,而不是直接将温度传感器的测量值作为待测对象的温度值,充分考虑了环境温度对温度传感器的影响,有利于降低测量到的待测对象的温度值与待测对象的实际温度值之间的误差,提高温度测量的准确性。
以下结合附图,详细说明本申请各实施例提供的技术方案。
本申请各实施例提供的温度测量方法可基于图1所示温度测量系统实现,但不限于此。如图1所示,该温度测量系统包括:控制设备10以及温度测量设备20。
温度测量设备20包括至少两个温度传感器,主要用于测量其所在位置或所处环境的温度。所述至少两个包括两个或两个以上。本实施例并不限定温度传感器的具体数量。
例如,在温度测量设备20的一种可选结构中,温度测量设备20包括两个温度传感器,两个温度传感器相对设置于温度测量设备20的主体上,以在温度测量时实现互补。
另外,值得说明的是,根据温度测量场景的不同,定温度测量设备20的实现结构以及外形都会有所不同。可选的,温度测量设备20可以是扁平近似椭圆的水滴形,这种外形可以降低使用时的异物感。
在本实施例中,将需要测量温度的对象称为待测对象。根据应用场景的不同,待测对象会有所不同,例如可以是人体、动物或某些密闭空间等。待测对象具有一定的温度测量空间,温度测量设备20位于温度测量空间内进行温度测量,这意味着,至少两个温度传感器位于温度测量空间内。
例如,待测对象为人体,则温度测量空间可是腋下、口腔、肛门等部位形成的相对较为封闭的空间;相应的,温度测量设备20可置于人体的腋下、口腔、肛门等部位,以便测量人体体温。例如,若温度测量设备20为扁平近似椭圆的水滴形,且包括相对设置的两个温度传感器,则可以通过医用胶布将温度测量设备20置于人体的腋下,其中一个温度传感器紧贴腋下皮肤。
控制设备10与温度测量设备20之间可以是无线或有线网络连接,主要
用于采集至少两个温度传感器的测量值,对采集到的测量值进行处理,以获得待测对象的温度值。在实现上,控制设备10可以是任何具有一定处理能力的设备,例如计算机、智能手机、笔记本、平板电脑、服务器等。
在本实施例中,若控制设备10通过移动网络与温度测量设备20通信连接,该移动网络的网络制式可以为2G(GSM)、2.5G(GPRS)、3G(WCDMA、TD-SCDMA、CDMA2000、UTMS)、4G(LTE)、4G+(LTE+)、WiMax等中的任意一种。控制设备10除了通过移动网络与温度测量设备20通信连接之外,还可以通过Wi-Fi、蓝牙、红外等无线方式与温度测量设备20通信连接。
其中,温度测量空间的封闭状态属于正常的温度测量状态。在温度测量空间处于封闭状态的情况下,至少两个温度传感器几乎不受环境温度的影响,至少两个温度传感器的测量值比较相近,也比较接近待测对象的温度值。在这种情况下,控制设备10可以连续采集至少两个温度传感器的测量值,并选择最大测量值作为待测对象的温度值。
在实际应用中,温度测量空间很可能会被破坏。针对该情况,结合图1所示温度测量系统,本申请实施例从控制设备10的角度,提供了一种温度测量方法。如图2所示,所述温度测量方法包括:
201、采集至少两个温度传感器的测量值,所述至少两个温度传感器位于待测对象的温度测量空间内。
202、根据所述至少两个温度传感器的测量值的变化趋势,确定所述温度测量空间从封闭状态转换为非封闭状态。
203、根据所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,获得所述待测对象的温度值。
一般来说,待测对象的温度不同于环境温度,或者高于环境温度,或者低于环境温度。在温度测量空间的封闭状态被破坏的情况下,至少两个温度传感器的测量值都会趋向于环境温度,并且至少两个温度传感器的测量值趋向于环境温度的速度不同,暴露越多的温度传感器的测量值趋向于环境温度的速度越快。基于此,控制设备10可根据至少两个温度传感器的测量值的变
化趋势,判断温度测量空间的封闭状态是否被破坏。
在一可选实施方式中,待测对象的温度高于环境温度。例如,在测量人体体温的应用中,人体体温一般高于环境温度。在这种情况下,如果温度测量空间的封闭状态被破坏,温度传感器的测量值会逐渐下降以趋于环境温度。基于此,控制设备10可以判断至少两个传感器的测量值是否呈下降趋势,并且至少两个温度传感器的测量值之间的差值是否符合设定温差条件;当至少两个传感器的测量值呈下降趋势,且至少两个温度传感器的测量值之间的差值符合设定温差条件时,确定温度测量空间从封闭状态转换为非封闭状态。
根据应用场景的不同,上述温差条件会有所不同。例如,以温度测量设备20包括相对设置的两个温度传感器为例,则一种温差条件可以是要求两个温度传感器的测量值至少相差一定度数,例如0.4度。在该示例中,控制设备10可以判断两个传感器的测量值是否呈下降趋势,并且两个温度传感器的测量值是否至少相差0.4度;如果判断结果均为是,则确定温度测量空间从封闭状态转换为非封闭状态。
在一可选实施方式中,待测对象的温度低于环境温度。例如,在测量冰柜或冰箱的制冷效果的应用中,冰柜或冰箱里的温度一般低于环境温度。在这种情况下,如果温度测量空间的封闭状态被破坏,温度传感器的测量值会逐渐上升以趋于环境温度。基于此,控制设备10可以判断至少两个传感器的测量值是否呈上升趋势,并且至少两个温度传感器的测量值之间的差值是否符合设定温差条件;当至少两个传感器的测量值呈上升趋势,且至少两个温度传感器的测量值之间的差值符合设定温差条件时,确定温度测量空间从封闭状态转换为非封闭状态。
当确定温度测量空间的封闭状态被破坏,即从封闭状态转换为非封闭状态时,至少两个温度传感器的测量值会受环境温度的影响,与待测对象的实际温度值有一定误差。对此,控制设备10不再是直接选择最大测量值作为待测对象的温度值。考虑到很多时候,温度测量空间的封闭状态一般是暂时性被破坏,很快会重新恢复到封闭状态,此时温度传感器的测量值不会下降很
多。基于该考虑,控制设备10可以根据至少两个温度传感器在温度测量空间处于非封闭状态时的测量值,通过一定补偿算法获得待测对象的温度值。这充分考虑了环境温度对温度传感器的影响,有利于降低测量到的待测对象的温度值与待测对象的实际温度值之间的误差,提高温度测量的准确性。
在上述实施例或下述实施例中,在待测对象为人体等情况下,待测对象的温度一般会高于环境温度。在这种情况下,当温度测量空间从封闭状态转换为非封闭状态时,温度传感器的测量值会下降,按照传热学原理,温度传感器的测量值会按照下述公式(1)所示非线性衰减关系下降。
T=(T0-C)e-Bt+C (1)
其中,T表示温度传感器在温度测量空间处于非封闭状态时的测量值;T0是温度传感器在温度测量空间处于封闭状态时的测量值,即待测对象的温度值;B表示温度传递系数,所述温度传递系数是指至少两个温度传感器所在温度测量设备的系数,该系数可通过测量或实验获得,一般设备出厂时该系数就确定了;C为一常量;t表示时间。
但,本申请发明人经过研究发现,在较短时间内,温度传感器的测量值可认为是线性下降的,并发现可以用公式(2)所示线性衰减关系表示温度传感器的测量值的下降。基于此,可以用公式(2)代替公式(1),以简化计算复杂度,提高获得待测对象的温度值的效率。
T=kt+T0 (2)
在公式(2)中,T表示温度传感器在温度测量空间处于非封闭状态时的测量值;T0是温度传感器在温度测量空间处于封闭状态时的测量值,即待测对象的温度值;t表示时间。
基于上述分析,结合图1所示温度测量系统,本申请又一实施例提供了一种温度测量方法。所述方法主要从控制设备10的角度进行描述。如图3所示,所述温度测量方法包括:
301、采集至少两个温度传感器的测量值,所述至少两个温度传感器位于
待测对象的温度测量空间内。
302、根据所述至少两个温度传感器的测量值的变化趋势,确定所述温度测量空间从封闭状态转换为非封闭状态。
303、根据温度传递系数,确定线性补偿时间范围。
304、在线性补偿时间范围内,叠加至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,作为待测对象的温度值。
关于步骤301-302,可参见前述方法实施例中的相应描述,在此不再赘述。
在本实施例中,在确定温度测量空间从封闭状态转换为非封闭状态的情况下,控制设备10可以根据温度传递系数,确定线性补偿时间范围;所述线性补偿时间范围是指在确定温度测量空间从封闭状态转换为非封闭状态后,可以采用线性方式进行温度补偿的时间段,该时间段一般是指确定温度测量空间从封闭状态转换为非封闭状态后的一小段时间。
在线性补偿时间范围内,控制设备10以线性方式,叠加至少两个温度传感器在温度测量空间处于非封闭状态时的测量值,作为待测对象的温度值。
在上述线性补偿方案中,线性补偿时间范围的确定是关键。本申请发明人在经过大量研究后发现,温度传递系数与线性补偿时间范围存在下述公式(3)所示的关系。基于此,可以根据下述公式(3),计算线性补偿时间范围。
B*t<G (3)
在公式(3)中,B表示温度传递系数;t表示线性补偿时间范围;G为基于温度误差允许范围确定的经验值。其中,根据应用场景的不同,温度误差允许范围会有所不同。例如,在体温测量应用中,温度误差允许范围为5%左右,当然根据精度要求的不同5%可以变化。
为便于推导G,设温度误差允许范围为δ,则为了可以使用线性补偿,将上述公式(1)中的e-Bt利用泰勒级数进行线性展开,得到e-Bt≈1+(-Bt)。其中,为了保证温度误差满足精度要求,对e-Bt的线性展开需要在满足温度误差允许范围的条件下成立,即(e-Bt-(1+(-Bt)))/e-Bt≤δ。假设δ=5%,则可以根据公式(e-Bt-(1+(-Bt)))/e-Bt=5%,计算出Bt=0.287,即G=0.287。
可选的,在线性补偿时间范围内,叠加至少两个温度传感器在温度测量空间处于非封闭状态时的测量值的步骤,可以为:基于上述公式(2)所示测量值的线性衰减关系,可以确定至少两个温度传感器各自对应的线性叠加系数;在线性衰减时间范围内,基于至少两个温度传感器各自对应的线性叠加系数,以线性方式,叠加至少两个温度传感器在温度测量空间处于非封闭状态时的测量值,作为待测对象的温度值。
在一应用示例中,温度测量设备20包括相对设置的两个温度传感器,记为第一温度传感器和第二温度传感器。在该示例中,结合公式(2)推导出两个温度传感器各自对应的线性叠加系数。具体推导过程如下:
设在温度测量空间从封闭状态转换为非封闭状态后的时间t内,第一温度传感器和第二温度传感器的测量值分别表示为:
T1=k1t+T0 (4)
T2=k2t+T0 (5)
基于上述公式(4)和公式(5),分别计算时间t,公式如下:
t=(T1-T0)/k1 (6)
t=(T2-T0)/k2 (7)
进一步,基于公式(6)和(7),可以获得下述公式(8)-(13):
(T1-T0)/k1=(T2-T0)/k2 (8)
T1k2-T0k2=T2k1-T0k1 (9)
T0(k1-k2)=T2k1-T1k2 (10)
T0=T2k1/(k1-k2)+T1k2/(k2-k1) (11)
K1=k1/(k1-k2) (12)
K2=k2/(k2-k1) (13)
在上述推导过程中,T1表示第一温度传感器在温度测量空间处于非封闭状态时的测量值;k1表示第一温度传感器对应的衰减系数;K1表示第一温度传感器的线性叠加系数;T2表示第二温度传感器在温度测量空间处于非封闭状态时的测量值;k2表示第二温度传感器对应的衰减系数;K2表示第二温度
传感器的线性叠加系数;T0是温度传感器在温度测量空间处于封闭状态时的测量值,即待测对象的温度值;t表示时间。
进一步,基于线性叠加系数的线性叠加步骤,可以表示为如下公式(14):
T0=T2K1+T1K2 (14)
在根据上述公式(14)计算待测对象的温度值时,需要区分采集到的测量值是来自于第一温度传感器,还是来自于第二温度传感器。
在一种情况下,温度测量设备20上的温度传感器带有标记,便于区分第一温度传感器和第二温度传感器。在采用温度测量设备20通过腋下测量人体体温时,可以直接将第一温度传感器贴向腋下皮肤,第二温度传感器远离腋下皮肤。
在一种情况下,温度测量设备20上的温度传感器不带有标记,可以任意佩戴。在采用温度测量设备20通过腋下测量人体体温时,在腋下封闭空间形成过程中,贴向腋下皮肤的温度传感器的测量值较高,故可以将较高测量值对应的温度传感器作为第一温度传感器,将另一温度传感器作为第二温度传感器。
在本实施例中,在线性补偿时间范围内,采用线性方式进行温度补偿,不仅可以准确地获得待测对象的温度值,还可以简化计算复杂度,有利于提高获得待测对象的温度值的效率。
结合图3所示实施例,本申请又一实施例还提供一种温度测量方法。如图4所示,所述方法在步骤304之后,还包括:
305、在线性补偿时间范围之外,以非线性方式,叠加至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,作为所述待测对象的温度值。
在本实施例中,在线性补偿时间范围内,以线性方式,叠加至少两个温度传感器在温度测量空间处于非封闭状态时的测量值,作为待测对象的温度值。在线性补偿时间范围之外,可以采用非线性方式,叠加至少两个温度传
感器在温度测量空间处于非封闭状态时的测量值,作为待测对象的温度值。例如,可以采用公式(1)叠加至少两个温度传感器在温度测量空间处于非封闭状态时的测量值。
在本实施例中,除了在线性补偿时间范围内,以线性方式进行温度补偿之外,还考虑到线性补偿时间范围之外,以非线性方式进行温度补偿,可以更加全面地获得待测对象的温度值。
结合图4所示实施例,本申请又一实施例提供一种温度测量方法。如图5所示,所述温度测量方法,在步骤305之后,还包括:
306、根据所述至少两个温度传感器的测量值的变化趋势,确定所述温度测量空间处于封闭状态。
307、从所述至少两个温度传感器在所述温度测量空间处于封闭状态时的测量值中,选择最大测量值作为所述待测对象的温度值。
温度测量空间的封闭状态被破坏后,有可能恢复。当恢复到封闭状态时,至少两个温度传感器几乎不受环境温度的影响,至少两个温度传感器的测量值会慢慢趋向于待测对象的真实温度,因此,控制设备10可以根据至少两个温度传感器的测量值的变化趋势,确定温度测量空间处于封闭状态,并从至少两个温度传感器在温度测量空间处于封闭状态时的测量值中,选择最大测量值作为待测对象的温度值。
在一种情况下,待测对象的温度高于环境温度。例如,在测量人体体温的应用中,人体体温一般高于环境温度。在这种情况下,如果温度测量空间从非封闭状态恢复到封闭状态,温度传感器的测量值会逐渐上升以趋于待测对象的实际温度值。基于此,控制设备10可以判断至少两个传感器的测量值是否呈上升趋势并在指定时间内或最终趋于一致;当至少两个传感器的测量值呈上升趋势并在指定时间内或最终趋于一致时,确定温度测量空间从非封闭状态转换为封闭状态。所述趋于一致是指至少两个传感器的测量值的差值小于指定度数,例如小于0.4度。
在另一种情况下,待测对象的温度低于环境温度。例如,在测量冰柜或冰箱的制冷效果的应用中,冰柜或冰箱里的温度一般低于环境温度。在这种情况下,如果温度测量空间从非封闭状态恢复到封闭状态,温度传感器的测量值会逐渐下降以趋于待测对象的实际温度值。基于此,控制设备10可以判断至少两个传感器的测量值是否呈下降趋势并在指定时间内或最终趋于一致;当至少两个传感器的测量值呈下降趋势并在指定时间内或最终趋于一致时,确定温度测量空间从非封闭状态转换为封闭状态。所述趋于一致是指至少两个传感器的测量值的差值小于指定度数,例如小于0.4度。
在本实施例中,充分考虑温度测量空间的封闭状态被破坏和恢复情况,有利于在各种情况下,准确地获得待测对象的温度值。
需要说明的是,上述实施例所提供方法的各步骤的执行主体均可以是同一设备,或者,该方法也由不同设备作为执行主体。比如,步骤201至步骤203的执行主体可以为设备A;又比如,步骤201和202的执行主体可以为设备A,步骤203的执行主体可以为设备B;等等。
图6为本申请又一实施例提供的温度测量装置的结构示意图。如图6所示,温度测量装置包括:采集单元61、状态确定单元62和温度获取单元63。
采集单元61,用于采集至少两个温度传感器的测量值,至少两个温度传感器位于待测对象的温度测量空间内。
状态确定单元62,与采集单元61连接,用于根据采集单元61采集到的至少两个温度传感器的测量值的变化趋势,确定温度测量空间从封闭状态转换为非封闭状态。
温度获取单元63,与采集单元61和状态确定单元62连接,用于根据采集单元61采集到的至少两个温度传感器在状态确定单元62确定温度测量空间处于非封闭状态时的测量值,获得待测对象的温度值。
在本实施例中,将需要测量温度的对象称为待测对象。根据应用场景的不同,待测对象会有所不同,例如可以是人体、动物或某些密闭空间等。待测对象具有一定的温度测量空间,至少两个温度传感器位于温度测量空间内
进行温度测量。
在一可选实施方式中,如图7所示,温度获取单元63的一种实现结构包括:确定子单元631和叠加子单元632。
确定子单元631,用于根据温度传递系数,确定线性补偿时间范围。
叠加子单元632,与确定子单元631连接,用于在确定子单元631确定的线性补偿时间范围内,叠加至少两个温度传感器在温度测量空间处于非封闭状态时的测量值,作为待测对象的温度值。
在一可选实施方式中,确定子单元631具体用于:根据公式B*t<G,计算线性补偿时间范围。其中,B表示温度传递系数,所述温度传递系数是指至少两个温度传感器所在温度测量设备的系数,该系数可通过测量或实验获得,一般设备出厂时该系数就确定了;t表示线性补偿时间范围;G为基于温度误差允许范围确定的经验值。
在一可选实施方式中,叠加子单元632具体用于:根据测量值的线性衰减关系,确定至少两个温度传感器各自对应的线性叠加系数;基于至少两个温度传感器各自对应的线性叠加系数,叠加至少两个温度传感器在温度测量空间处于非封闭状态时的测量值,作为待测对象的温度值。
其中,叠加子单元632在线性补偿时间范围内,采用线性方式进行温度补偿,不仅可以准确地获得待测对象的温度值,还可以简化计算复杂度,有利于提高获得待测对象的温度值的效率。
在一可选实施方式中,叠加子单元632还用于:在线性补偿时间范围之外,以非线性方式,叠加至少两个温度传感器在温度测量空间处于非封闭状态时的测量值,作为待测对象的温度值。
叠加子单元632除了在线性补偿时间范围内,以线性方式进行温度补偿之外,还考虑到线性补偿时间范围之外,以非线性方式进行温度补偿,可以更加全面地获得待测对象的温度值。
在一可选实施方式中,待测对象的温度高于环境温度。例如,在测量人体体温的应用中,人体体温一般高于环境温度。在这种情况下,如果温度测
量空间的封闭状态被破坏,温度传感器的测量值会逐渐下降以趋于环境温度。在该情况下,状态确定单元62具体用于:当至少两个温度传感器的测量值呈下降趋势,且至少两个温度传感器的测量值之间的差值符合设定温差条件时,确定温度测量空间从封闭状态转换为非封闭状态。
在一可选实施方式中,待测对象的温度低于环境温度。例如,在测量冰柜或冰箱的制冷效果的应用中,冰柜或冰箱里的温度一般低于环境温度。在这种情况下,如果温度测量空间的封闭状态被破坏,温度传感器的测量值会逐渐上升以趋于环境温度。在该情况下,状态确定单元62具体用于:当至少两个传感器的测量值呈上升趋势,且至少两个温度传感器的测量值之间的差值符合设定温差条件时,确定温度测量空间从封闭状态转换为非封闭状态。
在一可选实施方式中,状态确定单元62还用于:根据至少两个温度传感器的测量值的变化趋势,确定温度测量空间处于封闭状态。相应地,温度获取单元63还用于:从至少两个温度传感器在温度测量空间处于封闭状态时的测量值中,选择最大测量值作为待测对象的温度值。
在一种情况下,待测对象的温度高于环境温度。例如,在测量人体体温的应用中,人体体温一般高于环境温度。在这种情况下,如果温度测量空间从非封闭状态恢复到封闭状态,温度传感器的测量值会逐渐上升以趋于待测对象的实际温度值。基于此,状态确定单元62具体用于:当至少两个传感器的测量值呈上升趋势并在指定时间内或最终趋于一致时,确定温度测量空间从非封闭状态转换为封闭状态。所述趋于一致是指至少两个传感器的测量值的差值小于指定度数,例如小于0.4度。
在另一种情况下,待测对象的温度低于环境温度。例如,在测量冰柜或冰箱的制冷效果的应用中,冰柜或冰箱里的温度一般低于环境温度。在这种情况下,如果温度测量空间从非封闭状态恢复到封闭状态,温度传感器的测量值会逐渐下降以趋于待测对象的实际温度值。基于此,状态确定单元62具体用于:当至少两个传感器的测量值呈下降趋势并在指定时间内或最终趋于一致时,确定温度测量空间从非封闭状态转换为封闭状态。
本实施例提供的温度测量装置,可用于执行上述方法实施例的流程,在此不再赘述。
本实施例提供的温度测量装置,在待测对象的温度测量空间由封闭状态转换为非封闭状态时,基于至少两个温度传感器在温度测量空间处于非封闭状态时的测量值,获得待测对象的温度值,而不是直接将温度传感器的测量值作为待测对象的温度值,充分考虑了环境温度对温度传感器的影响,有利于降低测量到的待测对象的温度值与待测对象的实际温度值之间的误差,提高温度测量的准确性。
以上描述了温度测量装置的内部功能和结构,如图8所示,实际中,该温度测量装置可实现为一电子设备,包括:存储器81、处理器82和通信接口83。
存储器81,被配置为存储计算机程序。
另外,存储器81还可被配置为存储其它各种数据以支持在电子设备上的操作。这些数据的示例包括用于在电子设备上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。
存储器81可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
通信接口83,被配置为实现电子设备与其它设备之间的通信,例如可以是有线或无线通信方式。
电子设备可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信接口83经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信接口83还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
处理器82,耦合至存储器81和通信接口83,被配置为执行存储器81中的计算机程序,以用于:
通过通信接口83采集至少两个温度传感器的测量值,至少两个温度传感器位于待测对象的温度测量空间内;
根据至少两个温度传感器的测量值的变化趋势,确定温度测量空间从封闭状态转换为非封闭状态;
根据至少两个温度传感器在温度测量空间处于非封闭状态时的测量值,获得待测对象的温度值。
在一可选实施方式中,处理器82在获得待测对象的温度值时,具体用于:根据温度传递系数,确定线性补偿时间范围;在线性补偿时间范围内,叠加至少两个温度传感器在温度测量空间处于非封闭状态时的测量值,作为待测对象的温度值。
在一可选实施方式中,处理器82在确定线性补偿时间范围时,具体用于:根据公式B*t<G,计算线性补偿时间范围;其中,B表示温度传递系数;t表示线性补偿时间范围;G为基于温度误差允许范围确定的经验值。
在一可选实施方式中,处理器82在获得待测对象的温度值时,具体用于:根据测量值的线性衰减关系,确定至少两个温度传感器各自对应的线性叠加系数;基于至少两个温度传感器各自对应的线性叠加系数,叠加至少两个温度传感器在温度测量空间处于非封闭状态时的测量值,作为待测对象的温度值。
在一可选实施方式中,处理器82还用于:在线性补偿时间范围之外,以非线性方式,叠加至少两个温度传感器在温度测量空间处于非封闭状态时的测量值,作为待测对象的温度值。
在一可选实施方式中,处理器82在确定温度测量空间从封闭状态转换为非封闭状态时,具体用于:当至少两个温度传感器的测量值呈下降趋势,且至少两个温度传感器的测量值之间的差值符合设定温差条件时,确定温度测量空间从封闭状态转换为非封闭状态。
在一可选实施方式中,处理器82还用于:根据至少两个温度传感器的测量值的变化趋势,确定温度测量空间处于封闭状态;从至少两个温度传感器在温度测量空间处于封闭状态时的测量值中,选择最大测量值作为待测对象的温度值。
进一步,如图8所示,电子设备还包括:显示器84、电源组件85、音频组件86等其它组件。图8中仅示意性给出部分组件,并不意味着客户端设备只包括图8所示组件。
显示器84包括屏幕,其屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。
电源组件85,为电子设备的各种组件提供电力。电源组件85可以包括电源管理系统,一个或多个电源,及其他与为客户端设备生成、管理和分配电力相关联的组件。
音频组件86被配置为输出和/或输入音频信号。例如,音频组件86包括一个麦克风(MIC),当电子设备处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器81或经由通信接口83发送。在一些实施例中,音频组件86还包括一个扬声器,用于输出音频信号。
本申请实施例还提供一种适用于计算机程序的计算机存储介质,计算机存储介质存储有以下程序指令:
第一程序指令,用于通过通信接口采集至少两个温度传感器的测量值,至少两个传感器位于待测对象的温度测量空间内;
第二程序指令,用于根据至少两个温度传感器的测量值的变化趋势,确定温度测量空间从封闭状态转换为非封闭状态;
第三程序指令,用于根据至少两个温度传感器在温度测量空间处于非封闭状态时的测量值,获得待测对象的温度值。
当上述程序指令被执行时,可实现上述方法实施例提供的流程,以在温度测量空间处于非封闭状态的情况下,准确地获得待测对象的温度值。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输
出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之
内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。
Claims (20)
- 一种温度测量方法,其特征在于,包括:采集至少两个温度传感器的测量值,所述至少两个温度传感器位于待测对象的温度测量空间内;根据所述至少两个温度传感器的测量值的变化趋势,确定所述温度测量空间从封闭状态转换为非封闭状态;根据所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,获得所述待测对象的温度值。
- 根据权利要求1所述的方法,其特征在于,所述待测对象的温度值的获得步骤,包括:根据温度传递系数,确定线性补偿时间范围;在所述线性补偿时间范围内,叠加所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,作为所述待测对象的温度值。
- 根据权利要求2所述的方法,其特征在于,所述线性补偿时间范围的确定步骤,包括:根据公式B*t<G,计算所述线性补偿时间范围;其中,B表示所述温度传递系数;t表示所述线性补偿时间范围;G为基于温度误差允许范围确定的经验值。
- 根据权利要求2所述的方法,其特征在于,所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值的叠加步骤,包括:根据测量值的线性衰减关系,确定所述至少两个温度传感器各自对应的线性叠加系数;基于所述至少两个温度传感器各自对应的线性叠加系数,叠加所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,作为所述待测对象的温度值。
- 根据权利要求2所述的方法,其特征在于,还包括:在所述线性补偿时间范围之外,以非线性方式,叠加所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,作为所述待测对象的温度值。
- 根据权利要求1-5任一项所述的方法,其特征在于,所述非封闭状态的确定步骤,包括:当所述至少两个温度传感器的测量值呈下降趋势,且所述至少两个温度传感器的测量值之间的差值符合设定温差条件时,确定所述温度测量空间从封闭状态转换为非封闭状态。
- 根据权利要求1-5任一项所述的方法,其特征在于,还包括:根据所述至少两个温度传感器的测量值的变化趋势,确定所述温度测量空间处于封闭状态;从所述至少两个温度传感器在所述温度测量空间处于封闭状态时的测量值中,选择最大测量值作为所述待测对象的温度值。
- 一种温度测量装置,其特征在于,包括:采集单元,用于采集至少两个温度传感器的测量值,所述至少两个温度传感器位于待测对象的温度测量空间内;状态确定单元,用于根据所述至少两个温度传感器的测量值的变化趋势,确定所述温度测量空间从封闭状态转换为非封闭状态;温度获取单元,用于根据所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,获得所述待测对象的温度值。
- 根据权利要求8所述的装置,其特征在于,所述温度获取单元包括:确定子单元,用于根据温度传递系数,确定线性补偿时间范围;叠加子单元,用于在所述线性补偿时间范围内,叠加所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,作为所述待测对象的温度值。
- 根据权利要求9所述的装置,其特征在于,所述确定子单元具体用 于:根据公式B*t<G,计算所述线性补偿时间范围;其中,B表示所述温度传递系数;t表示所述线性补偿时间范围;G为基于温度误差允许范围确定的经验值。
- 根据权利要求9所述的装置,其特征在于,所述叠加子单元具体用于:根据测量值的线性衰减关系,确定所述至少两个温度传感器各自对应的线性叠加系数;基于所述至少两个温度传感器各自对应的线性叠加系数,叠加所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,作为所述待测对象的温度值。
- 根据权利要求9所述的装置,其特征在于,所述叠加子单元还用于:在所述线性补偿时间范围之外,以非线性方式,叠加所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,作为所述待测对象的温度值。
- 根据权利要求8-12任一项所述的装置,其特征在于,所述状态确定单元具体用于:当所述至少两个温度传感器的测量值呈下降趋势,且所述至少两个温度传感器的测量值之间的差值符合设定温差条件时,确定所述温度测量空间从封闭状态转换为非封闭状态。
- 根据权利要求8-12任一项所述的装置,其特征在于,所述状态确定单元还用于:根据所述至少两个温度传感器的测量值的变化趋势,确定所述温度测量空间处于封闭状态;所述温度获取单元还用于:从所述至少两个温度传感器在所述温度测量空间处于封闭状态时的测量值中,选择最大测量值作为所述待测对象的温度值。
- 一种计算机存储介质,其特征在于,所述计算机存储介质存储有以下程序指令:第一程序指令,用于通过所述通信接口采集至少两个温度传感器的测量值,所述至少两个传感器位于待测对象的温度测量空间内;第二程序指令,用于根据所述至少两个温度传感器的测量值的变化趋势,确定所述温度测量空间从封闭状态转换为非封闭状态;第三程序指令,用于根据所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,获得所述待测对象的温度值。
- 一种电子设备,其特征在于,包括:存储器,被配置为存储计算机程序;通信接口,被配置为实现所述电子设备与其它设备之间的通信;以及处理器,耦合至所述存储器和所述通信接口,被配置为执行所述计算机程序,以用于:通过所述通信接口采集至少两个温度传感器的测量值,所述至少两个温度传感器位于待测对象的温度测量空间内;根据所述至少两个温度传感器的测量值的变化趋势,确定所述温度测量空间从封闭状态转换为非封闭状态;根据所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,获得所述待测对象的温度值。
- 根据权利要求15所述的电子设备,其特征在于,所述处理器在获得所述待测对象的温度值时,具体用于:根据温度传递系数,确定线性补偿时间范围;在所述线性补偿时间范围内,叠加所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,作为所述待测对象的温度值。
- 根据权利要求17所述的电子设备,其特征在于,所述处理器在确定所述线性补偿时间范围时,具体用于:根据公式B*t<G,计算所述线性补偿时间范围;其中,B表示所述温度传递系数;t表示所述线性补偿时间范围;G为基于温度误差允许范围确定的经验值。
- 根据权利要求17所述的电子设备,其特征在于,所述处理器在获得所述待测对象的温度值时,具体用于:根据测量值的线性衰减关系,确定所述至少两个温度传感器各自对应的线性叠加系数;基于所述至少两个温度传感器各自对应的线性叠加系数,叠加所述至少两个温度传感器在所述温度测量空间处于非封闭状态时的测量值,作为所述待测对象的温度值。
- 根据权利要求17所述的电子设备,其特征在于,所述处理器在确定所述温度测量空间从封闭状态转换为非封闭状态时,具体用于:当所述至少两个温度传感器的测量值呈下降趋势,且所述至少两个温度传感器的测量值之间的差值符合设定温差条件时,确定所述温度测量空间从封闭状态转换为非封闭状态。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/070189 WO2018126366A1 (zh) | 2017-01-04 | 2017-01-04 | 温度测量方法及装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/070189 WO2018126366A1 (zh) | 2017-01-04 | 2017-01-04 | 温度测量方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018126366A1 true WO2018126366A1 (zh) | 2018-07-12 |
Family
ID=62788949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/070189 WO2018126366A1 (zh) | 2017-01-04 | 2017-01-04 | 温度测量方法及装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018126366A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111657880A (zh) * | 2020-05-20 | 2020-09-15 | 杨铭轲 | 一种插入式感温探头、体温检测装置和使用方法 |
CN113267264A (zh) * | 2021-05-23 | 2021-08-17 | 山东英信计算机技术有限公司 | 一种温度传感器的温度检测方法、系统、设备以及介质 |
CN114265446A (zh) * | 2021-12-27 | 2022-04-01 | 广东蓝玖新能源科技有限公司 | 一种用于制氢反应器的供热结构、温度协调控制方法及系统 |
CN114659670A (zh) * | 2022-05-24 | 2022-06-24 | 深圳市微克科技有限公司 | 智能穿戴设备用多采集方式的体温连续监测系统及方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1389713A (zh) * | 2001-06-04 | 2003-01-08 | 欧姆龙株式会社 | 红外线体温计及其温度状态推断方法、通知方法及管理方法 |
JP2010230538A (ja) * | 2009-03-27 | 2010-10-14 | Noritz Corp | 舌下体温計 |
CN104048771A (zh) * | 2013-03-12 | 2014-09-17 | 精工爱普生株式会社 | 温度测量装置及温度测量方法 |
CN104161498A (zh) * | 2014-08-28 | 2014-11-26 | 北京睿仁医疗科技有限公司 | 一种体温计 |
CN104173026A (zh) * | 2014-08-28 | 2014-12-03 | 北京睿仁医疗科技有限公司 | 一种体温计 |
CN104490368A (zh) * | 2014-12-01 | 2015-04-08 | 辛勤 | 一种体温测量的方法及装置 |
CN204600434U (zh) * | 2014-08-28 | 2015-09-02 | 北京睿仁医疗科技有限公司 | 一种用于腋下温度监测的体温计 |
CN106197745A (zh) * | 2015-05-29 | 2016-12-07 | 上海温尔信息科技有限公司 | 体温计及其测量方法 |
-
2017
- 2017-01-04 WO PCT/CN2017/070189 patent/WO2018126366A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1389713A (zh) * | 2001-06-04 | 2003-01-08 | 欧姆龙株式会社 | 红外线体温计及其温度状态推断方法、通知方法及管理方法 |
JP2010230538A (ja) * | 2009-03-27 | 2010-10-14 | Noritz Corp | 舌下体温計 |
CN104048771A (zh) * | 2013-03-12 | 2014-09-17 | 精工爱普生株式会社 | 温度测量装置及温度测量方法 |
CN104161498A (zh) * | 2014-08-28 | 2014-11-26 | 北京睿仁医疗科技有限公司 | 一种体温计 |
CN104173026A (zh) * | 2014-08-28 | 2014-12-03 | 北京睿仁医疗科技有限公司 | 一种体温计 |
CN204600434U (zh) * | 2014-08-28 | 2015-09-02 | 北京睿仁医疗科技有限公司 | 一种用于腋下温度监测的体温计 |
CN104490368A (zh) * | 2014-12-01 | 2015-04-08 | 辛勤 | 一种体温测量的方法及装置 |
CN106197745A (zh) * | 2015-05-29 | 2016-12-07 | 上海温尔信息科技有限公司 | 体温计及其测量方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111657880A (zh) * | 2020-05-20 | 2020-09-15 | 杨铭轲 | 一种插入式感温探头、体温检测装置和使用方法 |
CN113267264A (zh) * | 2021-05-23 | 2021-08-17 | 山东英信计算机技术有限公司 | 一种温度传感器的温度检测方法、系统、设备以及介质 |
CN113267264B (zh) * | 2021-05-23 | 2023-04-14 | 山东英信计算机技术有限公司 | 一种温度传感器的温度检测方法、系统、设备以及介质 |
CN114265446A (zh) * | 2021-12-27 | 2022-04-01 | 广东蓝玖新能源科技有限公司 | 一种用于制氢反应器的供热结构、温度协调控制方法及系统 |
CN114659670A (zh) * | 2022-05-24 | 2022-06-24 | 深圳市微克科技有限公司 | 智能穿戴设备用多采集方式的体温连续监测系统及方法 |
CN114659670B (zh) * | 2022-05-24 | 2022-08-19 | 深圳市微克科技有限公司 | 智能穿戴设备用多采集方式的体温连续监测系统及方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018126366A1 (zh) | 温度测量方法及装置 | |
JP7549893B2 (ja) | 非侵襲的熱インタロゲーションのための装置、システム、及び方法 | |
US11484261B2 (en) | Dynamic wearable device behavior based on schedule detection | |
CN104048771B (zh) | 温度测量装置及温度测量方法 | |
Crawford et al. | Which thermometer? Factors influencing best choice for intermittent clinical temperature assessment | |
WO2018039058A1 (en) | Real-time estimation of human core body temperature based on non-invasive physiological measurements | |
WO2018167765A1 (en) | Method, system and device for noninvasive core body temperature monitoring | |
TWI658258B (zh) | 測定一行動器具的周圍溫度的方法 | |
TWI655928B (zh) | 生理監控裝置、生理監控方法及實現該生理控制方法之電腦可讀取記錄媒體 | |
JP6166857B2 (ja) | 温度計の校正データの生成方法、校正データを格納した記憶装置、及びこの方法を採用した温度計 | |
WO2014175161A1 (ja) | 月経開始予定日算出装置、プログラムおよび生体分析装置 | |
WO2022253257A1 (zh) | 一种测量界面热阻的方法和装置 | |
WO2022007348A1 (zh) | 温度检测方法、装置、介质及电子设备 | |
CN104434031B (zh) | 红外热影像系统及分析自由皮瓣表面温度影响因素的方法 | |
WO2019129469A1 (en) | Non-invasive technique for body core temperature determination | |
CN104224239A (zh) | 女性生理周期监测方法及系统 | |
WO2016101610A1 (zh) | 一种环境传感器和一种环境参数测量和预测方法 | |
KR20150142332A (ko) | 센서값을 측정하는 방법 및 이를 수행하는 전자 장치 | |
WO2018218443A1 (zh) | 温度展示方法和装置 | |
US20190195699A1 (en) | Temperature estimation system, temperature estimation method, and recording medium storing temperature estimation program | |
US20230085210A1 (en) | Temperature estimation apparatus, temperature estimation method and storage medium | |
CN112268634A (zh) | 温度监控的方法、装置及存储介质 | |
CN107729625A (zh) | 一种对设备运行发热造成的温度测量误差进行补偿的方法及装置 | |
JPWO2017199663A1 (ja) | 生体状態予測装置、生体状態予測方法、および生体状態予測プログラム | |
EP3505891A1 (en) | Non-invasive technique for body core temperature determination |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17889561 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 28.10.2019) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17889561 Country of ref document: EP Kind code of ref document: A1 |