WO2018124683A1 - Organic solar cell module and building-integrated photovoltaic module having same - Google Patents

Organic solar cell module and building-integrated photovoltaic module having same Download PDF

Info

Publication number
WO2018124683A1
WO2018124683A1 PCT/KR2017/015448 KR2017015448W WO2018124683A1 WO 2018124683 A1 WO2018124683 A1 WO 2018124683A1 KR 2017015448 W KR2017015448 W KR 2017015448W WO 2018124683 A1 WO2018124683 A1 WO 2018124683A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
organic solar
unit
film
module
Prior art date
Application number
PCT/KR2017/015448
Other languages
French (fr)
Korean (ko)
Inventor
갈진하
문정열
서정은
김광수
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160181542A external-priority patent/KR101948993B1/en
Priority claimed from KR1020160181544A external-priority patent/KR101948994B1/en
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Publication of WO2018124683A1 publication Critical patent/WO2018124683A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an organic solar cell module having a reflector integrated structure and a building integrated photovoltaic module having the same.
  • a solar cell is a photovoltaic cell manufactured for converting solar energy into electrical energy, and refers to a semiconductor device that converts light energy generated from the sun into electrical energy.
  • Such solar cells are expected to be an energy source that can solve future energy problems due to their low pollution, infinite resources and a semi-permanent lifetime.
  • the research on solar cell technology is being carried out at the same time research on low-cost solar cells to lower the cost of power generation and high-efficiency solar cells to increase the conversion efficiency.
  • the BIPV system is designed as a part of the building from the early stage of the building plan using the BIPV module and integrated into the building.
  • the BIPV module can be used as a building exterior material to reduce the corresponding cost, and because it is well coordinated with the building, it has the advantage of improving the added value of the building.
  • BIPV Battery-inverter
  • the solar cell module is integrally installed on a wall or roof of a building or a window such as a window.
  • Korean Patent Laid-Open Publication No. 2010-0034191 proposes a method of disposing a reflective member between solar cell arrays and mentions that light incident from the outside by the reflective member may be reflected toward the solar cell panel to increase the light collecting efficiency.
  • photovoltaic power generation efficiency is inevitably affected by the sun's altitude, and thus it is impossible to secure a desired level of battery efficiency.
  • the present invention manufactures a module integrating the reflector and the organic solar cell to increase the amount of light incident to the organic solar cell and ensure visibility, and when applied to the BIPV ensures visibility In addition, it can improve battery efficiency and enhance the aesthetic effect of buildings as BIPV.
  • an object of the present invention is to provide a reflector integrated organic solar cell module having a novel structure in which the reflector and the glass solar cell unit are integrated.
  • Another object of the present invention is to provide a BIPV module that can secure visibility and high solar cell efficiency.
  • An organic solar cell unit formed in a stripe pattern shape extending in one direction on the base film
  • It includes a reflector formed in a stripe pattern extending in the same direction in the remaining area in which the organic solar cell unit is not formed on the base film,
  • the reflector may include at least one reflective layer including a reflective layer capable of reflecting incident light to the organic solar cell part due to a difference in refractive index, and a reflective layer having a refractive pattern formed on a surface thereof to reflect the incident light to the organic solar cell part. It provides an integrated organic solar cell module.
  • the reflective layer capable of reflecting incident light to the organic solar cell unit due to the refractive index difference may include a single layer or a multilayer film including light reflection or light scattering particles in at least one film;
  • a multilayer film in which two or more layers of films having different refractive indices are laminated is laminated
  • Layers having different refractive indices may be laminated, but may have a feature of being a multilayer film having a film having light reflection or light scattering particles present in any one of these layers.
  • the light reflection or light scattering particles may have a feature including one or more materials selected from the group consisting of glass, inorganic particles, and organic particles.
  • the inorganic particles may have at least one member selected from the group consisting of zirconia, titania, ceria, alumina, iron oxide, vanadia, antimony oxide, tin oxide, and alumina / silica.
  • the organic particles may have a feature including a transparent polymer material.
  • the refractive pattern of the reflective layer may have a feature of an embossed or intaglio pattern.
  • the refractive pattern may have a feature of being jagged, multifaceted, pyramidal, conical or semi-rounded.
  • the reflective layer on which the embossed or negative refraction pattern is formed is formed
  • a single layer or multilayer film comprising light reflecting or light scattering particles inside one film
  • a multilayer film in which two or more layers of films having different refractive indices are laminated is laminated
  • the base film may have a characteristic of being a transparent polymer material.
  • the organic solar cell unit may have a feature in which a cathode, a photoactive layer, and an anode are sequentially stacked on the base film.
  • the reflective layer may have a feature including a transparent polymer material.
  • BIPV module building integrated photo voltaic
  • a transparent substrate extending laterally in the frame and having a protruding structure; And a reflective unit integrated organic solar cell module according to claim 1 mounted on the transparent substrate, wherein the organic solar cell unit and the reflective unit are arranged up and down.
  • the protruding structure may have a circular or polygonal cross-sectional structure so that the organic solar cell unit and the reflecting unit mounted thereon may be disposed at a predetermined angle.
  • Reflective unit integrated organic solar cell module can be applied to a variety of fields by manufacturing the reflector and the organic solar cell unit integrally.
  • the module is attached to a transparent substrate having a protruding structure, which can be applied for a BIPV system system to inject a larger amount of sunlight into the solar cell modules, thereby ensuring further improved photovoltaic power generation efficiency.
  • a transparent substrate having a protruding structure which can be applied for a BIPV system system to inject a larger amount of sunlight into the solar cell modules, thereby ensuring further improved photovoltaic power generation efficiency. Can be.
  • FIG. 1 is a front view of a reflector integrated organic solar cell module according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II ′ of FIG. 1.
  • FIG. 5 is a schematic diagram showing a BIPV module according to an embodiment of the present invention
  • FIG. 7 shows the application of the OPV module
  • FIG. 9 is a cross-sectional view showing the optical path of the incident light and reflected light of the BIPV module
  • each member is exaggerated, omitted, or schematically illustrated for convenience and clarity of description.
  • the size and area of each component does not necessarily reflect the actual size or area.
  • the present invention proposes a BIPV module having a new structure and an organic solar cell module (hereinafter, referred to as 'OPV module') that can be used therein while improving visibility and improving solar cell efficiency.
  • 'OPV module' organic solar cell module
  • FIG. 1 is a front view of a reflector integrated OPV module 10 according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the line II ′ of FIG. 1.
  • the reflective unit integrated OPV module 10 has a structure in which the OPV unit 13 and the reflective unit 15 are formed on the same surface on the base film 11.
  • the OPV unit 13 and the reflector 15 have a stripe pattern structure extending in the same direction.
  • the width of the stripe pattern is formed corresponding to the inclined surface length of the projecting structure of the transparent substrate when applied to the BIPV module described later.
  • the OPV unit 13 and the reflector 15 are shown to have the same thickness, but the widths of the OPV unit 13 and the reflector 15 may be the same or different.
  • the width of the reflector 15 may be thickened to secure visibility, or the width of the OPV 13 may be thickened to increase solar efficiency.
  • the base film 11 is not particularly limited as long as it has flexibility and transparency, and it is preferable to use a transparent polymer material in the form of a film that is flexible and has high chemical stability, mechanical strength and transparency.
  • cycloolefin derivatives having a unit of a monomer containing a cycloolefin such as norbornene or a polycyclic norbornene monomer, cellulose (diacetyl cellulose, triacetyl cellulose, acetyl cellulose butyrate, isobutyl Ester cellulose, propionyl cellulose, butyryl cellulose, acetyl propionyl cellulose), ethylene-vinyl acetate copolymer, polyester, polystyrene, polyamide, polyetherimide, polyacryl, polyimide, polyethersulfone, polysulfone, polyethylene , Polypropylene, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyvinyl acetal, polyether ketone, polyether ether ketone, polyether sulfone, polymethyl methacrylate, polyethylene terephthalate, poly
  • the base film 11 may have a transmittance of at least 70% or more, preferably 80% or more at a visible light wavelength of about 400 to 750 nm.
  • the thickness of the base film 11 may vary depending on the use of the BIPV module, and is not limited in the present invention and may be manufactured to a thickness of several millimeters at several microns.
  • the OPV unit 13 constituting the reflective unit integrated OPV module 10 of the present invention is for photovoltaic power generation, and as shown in FIG. 3, the cathode 131 and the photoactive layer 133 on the base film 11. , And anode 135 are sequentially stacked.
  • the structure and each component of the OPV unit 13 is not particularly limited in the present invention, any of those known in the art can be used.
  • the cathode 131 is a path for light to reach the photoactive layer 133, it is preferable to use a conductive material having high transparency and having a high work function of about 4.5 eV or more and a low resistance.
  • the cathode 131 may be formed of indium tin oxide (ITO), indium zinc oxide (IZO), fluorine-doped tin oxide (FTO), ZnO-Ga 2 O 3 , A metal oxide transparent electrode selected from the group consisting of ZnO-Al 2 O 3 , SnO 2 -Sb 2 O 3, and a combination thereof; Organic transparent electrodes such as conductive polymers, graphene thin films, graphene oxide thin films, and carbon nanotube thin films; Alternatively, an organic-inorganic bonded transparent electrode such as a carbon nanotube thin film bonded to a metal may be used.
  • the thickness of the cathode 131 may be 10 to 3000 nm.
  • the anode 135 includes silver (Ag), copper (Cu), gold (Au), platinum (Pt), titanium (Ti), aluminum (Al), nickel (Ni), zirconium (Zr), iron (Fe), Metal particles such as manganese (Mn); Or precursors containing the metal elements, for example silver nitrate (AgNO 3 ), Cu (HAFC) 2 (Cu (hexafluoroacetylacetonate) 2, ), Cu (HAFC) (1,5-Cyclooctanediene), Cu (HAFC) (1 , 5-Dimethylcyclooctanediene), Cu (HAFC) (4-Methyl-1-pentene), Cu (HAFC) (Vinylcyclohexane), Cu (HAFC) (DMB), Cu (TMHD) 2 (Cu (tetramethylheptanedionate) 2 ), DMAH (dimethylaluminum hydride), TMEDA (tetramethylethylenediamine), DMEAA
  • the photoactive layer 133 can use a well-known thing without a restriction.
  • the photoactive layer 133 may have a bulk hetero-junction (BHJ) structure in which an electron acceptor and an electron donor are mixed, or may have a bilayer structure in which they are stacked.
  • BHJ bulk hetero-junction
  • the electron donor may be used without limitation, known materials such as semiconductor polymer, conjugated polymer, low molecular semiconductor, and the like, for example, PPV (poly (para-phenylene vinylene) -based material, polythiophene) derivative , Phthalocyanine-based materials, etc.
  • known materials can be used without limitation, and, for example, fullerenes having high electron affinity (C60, C70, C76, C78, C82, C90).
  • a functional layer may be formed between the cathode 131 and the photoactive layer 133, and between the photoactive layer 133 and the anode 135, and the functional layer may be a hole transport layer or an electron transport layer.
  • a hole transfer layer As a hole transfer layer (HTL), a known material may be used without limitation, and may be formed using, for example, a material such as MTDATA, TDATA, NPB, PEDOT: PSS, TPD or p-type metal oxide. Can be.
  • the p-type metal oxide may be MoO 3 or V 2 O 5 , for example.
  • a self-assembled thin film of a metal layer may be used as the hole transport layer.
  • a self-assembled thin film formed by depositing and heat-treating a material such as Ni can be used as a functional layer.
  • it includes an organic semiconductor such as an electrically conductive polymer or an organic low molecular semiconductor material.
  • the electrically conductive polymer may be at least one selected from the group consisting of polythiophene, polyphenylenevinylene, polyfulorene, polypyrrole, and copolymers thereof.
  • the organic low molecular weight semiconductor material includes at least one selected from the group consisting of pentacene, anthracene, tetratracene, perylene, oligothiophene, and derivatives thereof. can do.
  • An electron transfer layer allows electrons generated in the photoactive layer 133 to be easily transferred to adjacent electrodes.
  • the electron transporting layer may use a known material without limitation, and, for example, aluminum tris (8-hydroxyquinoline), Alq3), lithium fluoride (LiF), lithium complex (8-hydroxy) -quinolinato lithium (Liq), a nonconjugated polymer, a nonconjugated polymer electrolyte, a conjugated polymer electrolyte, or an n-type metal oxide.
  • the n-type metal oxide may be, for example, TiOx, ZnO or Cs 2 CO 3 .
  • a self-assembled thin film of a metal layer may be used as the electron transporting layer.
  • the OPV unit 13 having the above structure may be configured to electrically connect the positive electrode 135 and the negative electrode 131 which are spaced apart from each other not belonging to the same layer.
  • the small area OPV units 13 may be configured to be electrically connected through a process of forming the micro-area OPV units 13 at micrometer intervals and connecting them in series again.
  • the wiring for the electrical connection is not particularly limited in the present invention, a variety of known methods can be used. For example, soldering, welding, a conductive adhesive, an anisotropic conductive film (ACF), and the like are possible.
  • the material used at this time can use metal materials, such as silver and copper.
  • the wiring may be a wiring terminal of a charging unit connected to a power supply of a charger, or a wiring terminal of a USB charging unit connected to a universal serial bus (USB). Therefore, the organic solar cell encapsulation module of the present invention can be used to charge various electronic devices by connecting the USB connector to the electrode and integrated, and can be used for electronic devices that can be charged with various USB by forming a USB charging unit (Female). .
  • the reflector 15 is used for the purpose of increasing the solar cell efficiency by the OPV by injecting the reflected light other than the transmitted light while ensuring visibility to the OPV unit 13.
  • the light efficiency of the OPV unit 13 depends on the amount of light of incident sunlight, and the greater the amount of light incident, the higher the photoelectric conversion efficiency of the organic solar cell.
  • the reflective part 15 is formed in a stripe pattern in the same direction as the OPV part 13, which is attached to the transparent substrate to be described below to receive incident light incident on the reflective part 15. It is reflected by the photoactive layer 133 of (13). As a result, the amount of light incident on the photoactive layer 133 increases, and as a result, the photoelectric conversion efficiency produced by the OPV unit 13 may be increased.
  • the reflector 15 of the present invention may be formed on the base film 11, as shown in Figs.
  • the reflective layer 151 of the type capable of reflecting incident light by the difference in refractive index may have the structure shown in FIG. 4A.
  • the reflective layer 151 may be any layer that can be reflected by a difference in refractive index, and the material or shape thereof is not particularly limited in the present invention.
  • the reflective layer 151 may be a film having particles capable of reflecting light or scattering light inside the film.
  • the film of the reflective layer 151 may be made of a transparent material to ensure visibility, and may include the same or similar material as mentioned in the base film 11.
  • the particles capable of light reflection or light scattering include one material selected from the group consisting of glass, inorganic particles, and organic particles.
  • the type of the scattering particles Q may be any of the materials listed above as long as the material can reflect the incident light to the OPV unit 13 after scattering the incident light. If necessary, the particles may be selectively used a material capable of reflecting light of a specific wavelength that can specifically increase the photoelectric conversion efficiency of the OPV unit (13).
  • the inorganic particles may be one selected from the group consisting of zirconia, titania, ceria, alumina, iron oxide, vanadia, antimony oxide, tin oxide and alumina / silica.
  • Such inorganic particles include low refractive particles and high refractive particles, and optionally, the particles may be used alone, or a mixture thereof may be used.
  • the organic particles may be a transparent polymer material, and include the same or similar materials as mentioned in the base film 11.
  • an acrylic polymer or a silicone polymer such as polymethyl methacrylate may be used.
  • the particles in the reflective layer 151 may be contained in an amount of 5 to 30% by weight in the total reflective layer 151. If the content is less than the above range, it is difficult to reflect light to the OPV unit 13 at a sufficient level due to the low density of the scattering particles Q. On the contrary, if the content exceeds the above range, uniform dispersion is difficult. .
  • Such particles preferably have a range in which the median (median) of the particle size distribution has from nanometers to micrometers. If the particle diameter is smaller than this range, it is difficult for the scattering particles to be uniformly dispersed, and if larger than this range, the specific surface area of the light scattering particles becomes small and the scattering becomes difficult.
  • the reflective layer 151 of the present invention may be formed of a single film including particles, and may be formed of a multilayer film of two or more layers, if necessary.
  • the multilayer film configuration may proceed in a manner to maximize the reflection of the incident light, for example, two or more layers of particles of different materials among glass, inorganic particles, and organic particles, or low refractive layer / high refractive index having low refractive particles It may be configured to have different refractive indices, such as a high refractive index layer having particles, or may be configured with different particle sizes.
  • the construction of such multilayer films can be selected by one of ordinary skill in the art and various modifications and variations are possible.
  • the reflective layer 151 may have a multilayer film in which layers having different refractive indices are stacked to reflect light by the difference in refractive indices.
  • Layers having different refractive indices may be made of layers of different materials, or layers having a refractive index changed through mechanical processes such as stretching.
  • a glass material having a refractive index of 1.5 may be used, and in another layer, a transparent polymer material such as polycarbonate having a refractive index of 1.6 may be used.
  • a transparent polymer material such as polycarbonate having a refractive index of 1.6 may be used.
  • Optical interference may be made that selectively reflects light of wavelengths.
  • the multilayer film may have a thickness of several nanometers to several microns, and the total number of layers may have two or more, preferably about 2 to 50.
  • the reflective layer 151 has a multilayer film in which layers having different refractive indices are stacked, but in the form of a multilayer film having light reflection or light scattering particles present in any one of these layers. Can be.
  • one film configuration having light reflection or light scattering particles may be a stretched or unstretched film, and is located at the bottom or top of the multilayer film to further increase the reflection and scattering effect of light by the reflective layer 151.
  • the reflective layer 151 having the refractive pattern formed on the surface to reflect the incident light to the organic solar cell unit includes, for example, the reflective layer 151 having the refractive pattern Q formed on the surface thereof, as shown in FIG. do.
  • the refractive pattern Q illustrated in FIG. 4B illustrates a tetrahedron of triangular pyramids for convenience, various forms are possible as described below, but are not limited thereto.
  • the reflective layer 151 may be made of a transparent material to ensure visibility, and may include the same or similar material as mentioned in the base film 11.
  • the reflection from the reflective layer 151 of the present invention to the OPV portion 13 is made through the refractive pattern Q as shown in FIG.
  • the shape of the refraction pattern Q can be any shape as long as it can reflect incident light after refraction, and can be any shape as long as the shape has irregularities.
  • the refractive pattern Q has an embossed or engraved pattern, wherein the pattern is jagged, multifaceted, pyramidal, conical or hemispherical. It may have a semi-rounded form, and various forms are possible.
  • the refraction pattern Q is preferably a pyramidal shape in the case of an embossed pattern, and a hemispherical shape in the case of a cathode pattern. 5 illustrates an example of the refractive pattern Q of the present invention, and various other forms are possible.
  • the width, length or depth of the refractive pattern Q may be adjusted in a direction of increasing the reflectance of the incident light, and is not particularly limited in the present invention.
  • the refractive pattern Q may have a pyramidal shape, and may have a prism structure that may be cross-sectionalized in a triangle when viewed from the top, as shown in FIG. Due to the pyramidal refracting pattern Q, the incident light is refracted at least once inside the refracting pattern and causes total internal reflection to be emitted from the refracting pattern Q in a path different from that of the incident light, Light emitted from the refraction pattern Q enters the OPV unit 13.
  • Adjustment of the refraction and total internal reflection may be performed by adjusting the shape and size of the refraction pattern Q, that is, length and angle.
  • the parameters are not particularly limited in the present invention, and may be manufactured to a value capable of reflecting the incident light to the OPV unit 13 with the maximum amount of light.
  • the refractive pattern Q may be formed over the entire reflecting portion 15 or may be formed only on a portion (eg, the center) of the reflecting portion 15 so as to effectively transmit incident light.
  • the refractive pattern Q may be formed in a regular pattern, and may be formed in an irregular pattern if necessary.
  • Another embodiment of the reflective layer of the present invention is a reflective layer on which the embossed or negative refractive pattern is formed
  • a single layer or multilayer film comprising light reflecting or light scattering particles inside one film
  • a multilayer film in which two or more layers of films having different refractive indices are laminated is laminated
  • the thickness of the reflector 15 including the reflective layer 151 according to the present invention as described above is not particularly limited in the present invention, but is formed to have a thickness substantially similar to or the same as that of the OPV unit 13. However, it is preferable that the reflectance of the OPV unit 13 is 50% or more, preferably 60% or more, while maintaining transparency to ensure visibility.
  • the OPV unit 13 and the reflector 15 are the same on the base film 11 as shown in the drawing. Have an integrally formed structure.
  • This integrated structure has a structure different from the structure in which a separate reflector is provided in the OPV unit 13 or a reflector is provided separately from the OPV unit 13.
  • Manufacturing of the reflector integrated OPV module 10 of the present invention may proceed as follows.
  • either the OPV portion 13 or the reflecting portion 15 is formed in a predetermined region on the base film 11.
  • the reflector 15 or the OPV unit 13 is formed in a region where the OPV unit 13 or the reflector 15 is not formed.
  • the order of formation of the OPV 11 and the reflector 15 is not particularly limited in the present invention, and is determined in consideration of process equipment, process efficiency, and the like. For example, it is preferable to form the reflecting portion 15 on the base film 11 and then to form the OPV portion 13.
  • the formation of the OPV portion 13 is not particularly limited in the present invention, and follows a known manufacturing process of OPV.
  • forming a cathode 131 on the base film 11 For example, forming a cathode 131 on the base film 11; Forming a photoactive layer (133) on the cathode (131); And forming an anode 135 on the photoactive layer 133 to manufacture the OPV unit 13.
  • the cathode 131 and the anode 135 may be thermal vapor deposition, electron beam deposition, RF or magnetron sputtering, chemical vapor deposition, or similar dry deposition, or may be performed by a wet process such as coating or printing.
  • the photoactive layer 133 is formed on the cathode 131 by preparing a composition for forming a photoactive layer having the composition described above, and then drying it after wet coating.
  • the wet coating method is not particularly limited in the present invention, and for example, may be performed by a conventional coating method such as slot die coating, spin coating, gravure coating, spray coating, spin coating, printing, doctor blading, and the like.
  • the coated substrate may be subjected to a post treatment step of selectively drying or heat treatment.
  • the drying may be carried out by hot air drying, NIR drying, or UV drying for 50 to 400, preferably 70 to 200 for 1 to 30 minutes.
  • the temperature and time of the post-treatment process may vary depending on the type and physical properties of the substrate.
  • At least one selected from the group consisting of O 2 plasma treatment, UV / ozone cleaning, surface cleaning using an acid or alkaline solution, nitrogen plasma treatment and corona discharge cleaning to the substrate film 11 optionally
  • the process of pretreating the surface of the base film 11 can be further performed using either method.
  • Formation of the reflector 15 is, for example, a film including a reflective layer 151 having light reflection or light scattering particles, a reflective layer 151 having a multilayer film having different refractive indices, or a reflective layer 151 composed of both. Is carried out by the process of coating or laminating to the base film (11).
  • the slurry may be prepared by mixing the transparent polymer and the particles, and then performing wet coating on the base film 11. .
  • a multilayer film two or more films are drawn, respectively, and then laminated by an adhesive layer to produce a reflective layer 151 having a multilayer film structure, which is then manufactured through a process of laminating it on the base film 11 through an adhesive layer. Is possible.
  • the adhesive layer to be used is preferably an adhesive material of a transparent material, and may be a solvent adhesive, an emulsion adhesive, a pressure sensitive adhesive, a dehumidifying adhesive, a polycondensation adhesive, a solventless adhesive, a film adhesive, a hot melt adhesive, or the like.
  • examples thereof include acrylic resins such as polyvinyl alcohol resins and polymethyl methacrylate resins, polystyrene resins, styrene-acrylic copolymer resins, polyethylene resins, epoxy resins, polyurethane resins, silicone resins, polyester resins, and the like.
  • the reflective part 15 may be formed by forming the reflective layer 151 on the base film 11 and then forming the refractive pattern Q or the film of the reflective layer 151 having the refractive pattern Q. It is performed by laminating process.
  • the reflective layer 151 having the refractive pattern Q may be manufactured in various ways, for example, attaching the shape of the refractive pattern Q to the reflective layer 151, or forming the opposite shape of the refractive pattern Q. Imprinting is performed on the reflective layer 151 to form the refractive pattern Q on the reflective layer 151, or the etching pattern Q to form the refractive pattern Q. Such a method is not particularly limited in the present invention, and may be appropriately performed by those skilled in the art.
  • the lamination may be performed by applying an adhesive layer (not shown) between the base film 11 and the reflective layer 151 and then drying or applying pressure if necessary.
  • the adhesive layer to be used is preferably an adhesive material of a transparent material, and may be a solvent adhesive, an emulsion adhesive, a pressure sensitive adhesive, a dehumidifying adhesive, a polycondensation adhesive, a solventless adhesive, a film adhesive, a hot melt adhesive, or the like.
  • examples thereof include acrylic resins such as polyvinyl alcohol resins and polymethyl methacrylate resins, polystyrene resins, styrene-acrylic copolymer resins, polyethylene resins, epoxy resins, polyurethane resins, silicone resins, polyester resins, and the like.
  • the OPV unit 13 and the reflecting unit 15 are formed on the base film 11, and then wiring is performed to seal the OPV module.
  • Wiring may be performed by soldering or the like, through which a plurality of unit modules are electrically connected.
  • the reflective unit integrated OPV module 10 is sealed to block the external environment including oxygen and moisture.
  • the entire reflector-integrated OPV module 10 is fabricated through a laminating process with a transparent barrier film made of a material such as polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the module is cut to produce a plurality of unit modules by cutting one by one.
  • the unit module thus cut is applied as a BIPV module attached to a transparent substrate to be described below.
  • Reflective unit integrated OPV module 10 as described above is applicable to the BIPV module that can form the outer wall of the building.
  • FIG. 5 illustrates a BIPV module 100 according to an embodiment of the present invention.
  • the reflective unit integrated OPV module 10 is disposed in the frame 300, and the module 10 is stacked on the transparent substrate 200.
  • the BIPV module 100 is manufactured as a unit module, arranged in a plurality of arrays, and used as an exterior wall of a building to configure a BIPV system.
  • the BIPV module 100 of the present invention in order to maximize the photoelectric conversion rate due to the reflective unit integrated OPV module 10 formed in a stripe pattern, the OPV unit 13 and the reflector 15 Is preferably inclined, and for this purpose, it is advantageous that the transparent substrate 200 for supporting the reflective unit integrated OPV module 10 has an inclined structure.
  • the transparent substrate 200 proposed in the present invention has a protruding structure in which one side (ie, the outer wall side) arranged in the vertical direction extends in the horizontal direction for use as a wall.
  • the protruding structure may have a circular or polygonal cross-section, for example, a triangular, rectangular, or pentagonal protruding structure.
  • the protruding structure may be any shape as long as the OPV unit 13 and the reflector 15 in the reflective unit integrated OPV module 10 stacked thereon have a predetermined angle to each other.
  • the protruding structure of the transparent substrate 200 of the present invention may be a protruding structure having a triangular cross section as shown in FIG. 6.
  • the transparent substrate 200 may have a protrusion structure patterned on a bulk substrate, or two transparent substrates 200 may be connected to each other at a predetermined angle to form a protrusion structure.
  • the length of the inclined surface of the projecting structure of the transparent substrate 200 is formed to be equal to the width of at least one of the OPV portion 13 or the reflecting portion 15 of the reflective unit integrated OPV module 10, and the length of the other inclined surface is
  • the reflector 15 or the OPV unit 13 may be formed to have the same width so that the OPV unit 13 and the reflector 15 may be bonded to the transparent substrate 200.
  • the protruding structure of the transparent substrate 200 is a prism structure that can be sectioned into a triangle when viewed from the top
  • the acute angle of the triangular edge has 20 to 90 degrees
  • the reference numeral 15 reflects the incident light to the OPV section 13 sufficiently to ensure visibility when used as an outer wall.
  • the cross section of the triangle of the transparent substrate 200 on which the OPV unit 13 is disposed preferably has an angle of 0 to 45 degrees with respect to the horizontal direction of the center point.
  • the protruding structure may be any shape that corresponds to a structure in which the OPV unit 13 and the reflecting unit 15 may be disposed to form a predetermined angle, in addition to the prism structure. It is possible. According to the change of the protrusion structure, the patterning form of the OPV unit 13 and the reflector 15 may be changed if necessary. For example, in the structure in which the OPV unit 13 and the reflecting unit 15 are repeated with each other as shown in FIG. And vice versa.
  • the transparent substrate 200 used in the present invention can be used as long as the glass material used as the outer wall of the building or a transparent plastic material that can replace the glass, and is not particularly limited in the present invention.
  • the transparent substrate 200 may be tempered glass, double-sided tempered glass, semi-reinforced glass, double-sided semi-reinforced glass, laminated glass or multilayer glass.
  • tempered glass having a minimum thickness, for example, 12 mm, so that it can be safely held by external impact.
  • the transparent plastic material may be a material having both transparency due to visibility and strength (impact resistance, hardness, durability, etc.) for use as an outer wall.
  • the material mentioned in the base film 11 as described above may be used as the transparent plastic material, and among these, polycarbonate, polymethyl methacrylate, polystyrene, transparent ABS, or a combination thereof may be used. have.
  • the transparent plastic material may be manufactured in a single panel in a bulk form, or may have a structure in which two or more different materials in which a hard coating layer is formed on the surface are stacked.
  • the protruding structure of the transparent substrate 200 may be a variety of methods, for example, in the case of a glass material may be formed by etching the surface of the flat glass substrate through a dry or wet etching process.
  • the transparent plastic material may be manufactured through a molding method by molding rather than an etching method.
  • the reflective unit integrated OPV module 10 attached to the transparent substrate 200 may be folded in an accordion or bellows shape as shown in FIG. 7 to correspond to the protrusion structure of the transparent substrate 200, and then the transparent substrate 200 may be used. Attached to the top.
  • each of the OPV unit 13 and the reflector 15 is disposed on upper and lower surfaces of the protruding structure.
  • the attachment may be performed by applying an adhesive on the transparent substrate 200 and then laminating the reflective part integrated OPV module 10 and then drying.
  • the adhesive may be a transparent adhesive material as described above.
  • the integrated unit OPV module 10 of the BIPV module 100 converts the collected solar light into electrical energy by being connected to a micro inverter and a wire.
  • the wire connection is made through the clearance structure of the frame 300 is empty inside, the wire passes through the inside of the frame 300 to connect the BIPV module 100 and the micro inverter to expose the wire to the outside of the building Prevents hurting aesthetics
  • the micro inverter is preferably used for installation individually or in units of a plurality.
  • the BIPV module 100 is coupled to the plurality of spaced apart in the left and right direction between the frame 300 to perform self-power generation.
  • FIG 9 is a view showing a light reflection path in the BIPV module 100 according to the present invention.
  • each of the OPV unit 13 and the reflector 15 of the BIPV module 100 is incident on each of the OPV unit 13 and the reflector 15 of the BIPV module 100, and the light incident on the OPV unit 13 is photoelectric. Electricity is generated by the conversion mechanism.
  • the light incident on the reflector 15 is reflected by the refraction pattern Q present on the surface of the reflector 15 through various back reflection paths and is incident on the OPV unit 13.
  • the optimum refraction is easy, so that the incident light is effectively reflected to the OPV unit 13 in any direction in which light is incident, thereby ensuring photoelectric conversion efficiency with optimum efficiency.
  • the optimum refraction is easy, so that the incident light is effectively reflected to the OPV unit 13 in any direction in which light is incident, thereby ensuring photoelectric conversion efficiency with optimum efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to: an organic solar cell module having a reflecting unit-integrated structure, capable of simultaneously improving visibility and photovoltaic efficiency; and a BIPV module having the same.

Description

유기태양전지 모듈 및 이를 구비한 건물일체형 태양광발전 모듈Organic solar cell module and building integrated solar power module having same
본 발명은 반사부 일체형 구조의 유기태양전지 모듈 및 이를 구비한 건물일체형 태양광발전 모듈에 관한 것이다.The present invention relates to an organic solar cell module having a reflector integrated structure and a building integrated photovoltaic module having the same.
태양전지는 태양 에너지를 전기 에너지로 변환할 목적으로 제작된 광전지로, 태양으로부터 생성된 빛 에너지를 전기 에너지로 바꾸는 반도체 소자를 의미한다. 이러한 태양전지는 공해가 적고 자원이 무한적이며 반영구적인 수명을 가지고 있어 미래 에너지 문제를 해결할 수 있는 에너지원으로 기대되고 있다. 최근에 태양전지에 관한 기술은 발전 단가를 낮추는 저가형 태양전지에 대한 연구와 변환 효율을 높이는 고효율 태양전지에 대한 연구가 동시에 진행되고 있다.A solar cell is a photovoltaic cell manufactured for converting solar energy into electrical energy, and refers to a semiconductor device that converts light energy generated from the sun into electrical energy. Such solar cells are expected to be an energy source that can solve future energy problems due to their low pollution, infinite resources and a semi-permanent lifetime. Recently, the research on solar cell technology is being carried out at the same time research on low-cost solar cells to lower the cost of power generation and high-efficiency solar cells to increase the conversion efficiency.
태양전지를 응용하고자 하는 한 분야로서 건물일체형 태양광발전 시스템(Building Integrated Photo Voltaic system, 이하 'BIPV 시스템'라 한다)이 있다. 상기 BIPV 시스템은 BIPV 모듈을 이용하여 건축계획 초기단계부터 건물의 일부분으로서 설계되어 건물에 일체화시키는 방식이다. One field to apply solar cells is a building integrated photovoltaic system (hereinafter referred to as a 'BIPV system'). The BIPV system is designed as a part of the building from the early stage of the building plan using the BIPV module and integrated into the building.
BIPV 모듈은 건물의 외장재로 사용되어 그에 상응하는 비용을 절감할 수 있고, 건물과의 조화가 잘 이루어지므로 건물의 부가적인 가치를 향상시킬 수 있는 장점이 있다. The BIPV module can be used as a building exterior material to reduce the corresponding cost, and because it is well coordinated with the building, it has the advantage of improving the added value of the building.
현재 시공되고 있는 BIPV는 태양전지 어레이(PV array)를 구성하는 복수의 태양전지 모듈(PV module)을 포함하고, 이 태양전지 모듈은 그 태양전지 패널과 각각 전기적으로 연결되어 태양전지 패널에서 생산되는 전기를 인버터(inverter)나 배터리(battery)에 제공하는 역할을 하는 정션박스(junction box)를 포함한다.Currently constructed BIPV includes a plurality of PV modules constituting a PV array, which is electrically connected to each of the solar panels and produced in the solar panel. It includes a junction box that serves to provide electricity to an inverter or a battery.
이와 같은 건물일체형 태양광발전 시스템에서, 태양전지 모듈은 건물의 벽이나 지붕, 또는 창문과 같은 창호 등에 일체형으로 설치된다. In such a building integrated photovoltaic power generation system, the solar cell module is integrally installed on a wall or roof of a building or a window such as a window.
대한민국 특허공개 제2010-0034191호에서는 태양전지 어레이 사이에 반사부재를 배치하는 방법을 제시하여 반사부재에 의하여 외부로부터 입사된 빛이 태양전지 패널을 향하여 반사되어 집광 효율을 높일 수 있다고 언급하고 있다. 그러나 태양광발전 효율은 태양의 고도에 영향을 받을 수밖에 없어 원하는 수준의 전지 효율을 확보할 수 없다. Korean Patent Laid-Open Publication No. 2010-0034191 proposes a method of disposing a reflective member between solar cell arrays and mentions that light incident from the outside by the reflective member may be reflected toward the solar cell panel to increase the light collecting efficiency. However, photovoltaic power generation efficiency is inevitably affected by the sun's altitude, and thus it is impossible to secure a desired level of battery efficiency.
더욱이, 창문이나 창호 등의 건물 일체형으로 설치되는 BIPV의 경우 태양전지 패널로서 실리콘 태양전지를 설치할 경우 건물 내부에서 외부로의 시인각을 결코 확보할 수 없다는 단점이 있다.In addition, in the case of BIPV installed as a single-piece building such as windows or windows, there is a disadvantage in that when a silicon solar cell is installed as a solar panel, a viewing angle from the inside of the building to the outside can never be secured.
따라서 BIPV 모듈을 건물에 적용하기 위해선 높은 전지 효율과 함께 시인성의 확보가 시급하다.Therefore, in order to apply the BIPV module to a building, it is urgent to secure visibility with high battery efficiency.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
대한민국 특허공개 제2010-0034191호 (2010.04.01), 태양전지 시스템Republic of Korea Patent Publication No. 2010-0034191 (2010.04.01), solar cell system
상기 문제를 해결하기 위해, 본 발명에서는 유기태양전지에 입사되는 태양광의 광량을 높이고 시인성을 확보할 수 있도록 반사부와 유기태양전지를 일체화한 모듈을 제작하고, 이를 BIPV에 적용할 경우 시인성을 확보하면서도 전지 효율을 향상시킬 수 있으며, BIPV로서 건축물의 미관 효과를 높일 수 있었다.In order to solve the above problems, the present invention manufactures a module integrating the reflector and the organic solar cell to increase the amount of light incident to the organic solar cell and ensure visibility, and when applied to the BIPV ensures visibility In addition, it can improve battery efficiency and enhance the aesthetic effect of buildings as BIPV.
따라서, 본 발명의 목적은 반사부와 유리태양전지부가 일체화된 새로운 구조의 반사부 일체형 유기태양전지 모듈을 제공하는데 있다.Accordingly, an object of the present invention is to provide a reflector integrated organic solar cell module having a novel structure in which the reflector and the glass solar cell unit are integrated.
또한, 본 발명의 다른 목적은 시인성이 확보되며 높은 태양전지 효율을 확보할 수 있는 BIPV 모듈을 제공하는데 있다.In addition, another object of the present invention is to provide a BIPV module that can secure visibility and high solar cell efficiency.
상기 목적을 달성하기 위해, 본 발명은 In order to achieve the above object, the present invention
기재 필름;Base film;
상기 기재 필름 상에 일 방향으로 연장된 스트라이프 패턴 형상으로 형성된 유기태양전지부; 및An organic solar cell unit formed in a stripe pattern shape extending in one direction on the base film; And
상기 기재 필름 상에 상기 유기태양전지부가 형성되지 않는 나머지 영역에 이와 동일 방향으로 연장된 스트라이프 패턴 형상으로 형성된 반사부를 포함하되, It includes a reflector formed in a stripe pattern extending in the same direction in the remaining area in which the organic solar cell unit is not formed on the base film,
상기 반사부는 굴절률 차이에 의해 유기태양전지부에 입사광을 반사시킬 수 있는 반사층 및 입사광을 유기태양전지부로 반사시키기 위해 표면에 굴절 패턴이 형성된 반사층 중에서 어느 하나 이상의 반사층을 포함하는 것을 특징으로 하는 반사부 일체형 유기태양전지 모듈을 제공한다.The reflector may include at least one reflective layer including a reflective layer capable of reflecting incident light to the organic solar cell part due to a difference in refractive index, and a reflective layer having a refractive pattern formed on a surface thereof to reflect the incident light to the organic solar cell part. It provides an integrated organic solar cell module.
상기 굴절률 차이에 의해 유기태양전지부에 입사광을 반사시킬 수 있는 반사층은 적어도 하나의 필름 내부에 광 반사 또는 광 산란 입자를 포함하는 단층 또는 다층 필름; The reflective layer capable of reflecting incident light to the organic solar cell unit due to the refractive index difference may include a single layer or a multilayer film including light reflection or light scattering particles in at least one film;
서로 다른 굴절률을 갖는 필름이 2층 이상 적층된 다층 필름; 또는 A multilayer film in which two or more layers of films having different refractive indices are laminated; or
서로 다른 굴절률을 갖는 층이 적층된 다층 필름을 갖되, 이들 중 어느 하나의 층에 광반사 또는 광산란 입자가 존재하는 필름을 구비한 다층 필름인 특징을 가질 수 있다.Layers having different refractive indices may be laminated, but may have a feature of being a multilayer film having a film having light reflection or light scattering particles present in any one of these layers.
상기 광반사 또는 광산란 입자는 유리, 무기 입자 및 유기 입자로 이루어진 군에서 선택된 1종 이상의 재질을 포함하는 특징을 가질 수 있다. The light reflection or light scattering particles may have a feature including one or more materials selected from the group consisting of glass, inorganic particles, and organic particles.
상기 무기 입자는 지르코니아, 티타니아, 세리아, 알루미나, 산화철, 바나디아, 산화안티몬, 산화주석 및 알루미나/실리카로 이루어진 군에서 선택된 1종 이상인 특징을 가질 수 있다. The inorganic particles may have at least one member selected from the group consisting of zirconia, titania, ceria, alumina, iron oxide, vanadia, antimony oxide, tin oxide, and alumina / silica.
상기 유기 입자는 투명 고분자 재질을 포함하는 특징을 가질 수 있다. The organic particles may have a feature including a transparent polymer material.
상기 반사층의 굴절 패턴은 양각 또는 음각 패턴인 특징을 가질 수 있다. The refractive pattern of the reflective layer may have a feature of an embossed or intaglio pattern.
상기 굴절 패턴은 첨탑형(jagged), 다면체(multifaceted), 각추형(pyramidal), 원뿔형(conical) 또는 반구형(semi-rounded)인 특징을 가질 수 있다. The refractive pattern may have a feature of being jagged, multifaceted, pyramidal, conical or semi-rounded.
상기 양각 또는 음각 굴절 패턴이 형성된 반사층은 The reflective layer on which the embossed or negative refraction pattern is formed
하나의 필름 내부에 광 반사 또는 광 산란 입자를 포함하는 단층 또는 다층 필름; A single layer or multilayer film comprising light reflecting or light scattering particles inside one film;
서로 다른 굴절률을 갖는 필름이 2층 이상 적층된 다층 필름; 또는 A multilayer film in which two or more layers of films having different refractive indices are laminated; or
서로 다른 굴절률을 갖는 층이 적층된 다층 필름을 갖되, 이들 중 어느 하나의 층에 광반사 또는 광산란 입자가 존재하는 필름을 구비한 다층 필름;으로 형성되는 특징을 가질 수 있다. It may have a multi-layer film having a multilayer film having a layer having a different refractive index is laminated, the film having a light reflection or light scattering particles present in any one of these layers;
상기 기재 필름은 투명 고분자 재질인 특징을 가질 수 있다. The base film may have a characteristic of being a transparent polymer material.
상기 유기태양전지부는 상기 기재 필름 상에 음극, 광활성층 및 양극이 순차적으로 적층된 특징을 가질 수 있다. The organic solar cell unit may have a feature in which a cathode, a photoactive layer, and an anode are sequentially stacked on the base film.
상기 반사층은 투명 고분자 재질을 포함하는 특징을 가질 수 있다. The reflective layer may have a feature including a transparent polymer material.
또한, 본 발명은 In addition, the present invention
건물의 외벽을 형성할 수 있는 BIPV 모듈(건물일체형 태양광발전, building integrated photo voltaic) 로서,As a BIPV module (building integrated photo voltaic) that can form the outer wall of a building,
프레임 내에 횡 방향으로 연장되어 돌출 구조를 갖는 투명 기판; 및 상기 투명 기판 상에 제1항에 따른 반사부 일체형 유기태양전지 모듈이 장착하되, 유기태양전지부와 반사부가 상하로 배열되도록 배치하는 것을 특징으로 하는 BIPV 모듈을 제공한다.A transparent substrate extending laterally in the frame and having a protruding structure; And a reflective unit integrated organic solar cell module according to claim 1 mounted on the transparent substrate, wherein the organic solar cell unit and the reflective unit are arranged up and down.
상기 돌출 구조는 이에 장착된 유기태양전지부와 반사부가 소정 각도로 배치될 수 있도록 원형 또는 다각형의 단면 구조를 갖는 특징을 가질 수 있다.The protruding structure may have a circular or polygonal cross-sectional structure so that the organic solar cell unit and the reflecting unit mounted thereon may be disposed at a predetermined angle.
본 발명에 따른 반사부 일체형 유기태양전지 모듈은 반사부와 유기태양전지부를 일체형으로 제조하여 다양한 분야에 적용 가능하다.Reflective unit integrated organic solar cell module according to the present invention can be applied to a variety of fields by manufacturing the reflector and the organic solar cell unit integrally.
상기 모듈은 돌출 구조를 갖는 투명 기판에 부착되고, 이는 BIPV 시스템 시스템용으로 적용 가능하여 태양전지 모듈들에 보다 많은 양의 태양광을 입사시킬 수 있고, 이에 따라 한층 향상된 태양광 발전 효율을 보장할 수 있다.The module is attached to a transparent substrate having a protruding structure, which can be applied for a BIPV system system to inject a larger amount of sunlight into the solar cell modules, thereby ensuring further improved photovoltaic power generation efficiency. Can be.
도 1은 본 발명의 일 구현예에 따른 반사부 일체형 유기태양전지 모듈의 정면도1 is a front view of a reflector integrated organic solar cell module according to an embodiment of the present invention.
도 2는 상기 도 1의 I-I' 선을 따라 절단한 단면도FIG. 2 is a cross-sectional view taken along the line II ′ of FIG. 1.
도 3은 OPV부를 보여주는 단면도3 is a cross-sectional view showing the OPV unit
도 4는 반사부를 보여주는 단면도4 is a cross-sectional view showing a reflector
도 5는 본 발명의 일 구현예에 따른 BIPV 모듈을 보여주는 모식도5 is a schematic diagram showing a BIPV module according to an embodiment of the present invention
도 6은 투명 기판 사시도6 is a transparent substrate perspective view
도 7은 OPV 모듈의 적용을 보여주는 도면Figure 7 shows the application of the OPV module
도 8은 OPV 모듈의 투명 기판에 대한 부착을 보여주는 도면8 shows the attachment to the transparent substrate of the OPV module.
도 9는 BIPV 모듈의 입사광 및 반사광의 광 경로를 보여주는 단면도9 is a cross-sectional view showing the optical path of the incident light and reflected light of the BIPV module
이하, 첨부된 도면을 참조하여, 본 발명에 따른 바람직한 실시예에 대하여 설명한다. 본 실시예는 제한적인 것으로 의도된 것이 아니다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings. This embodiment is not intended to be limiting.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but can be implemented in various different forms, and only the embodiments make the disclosure of the present invention complete, and the general knowledge in the art to which the present invention belongs. It is provided to fully inform the person having the scope of the invention, which is defined only by the scope of the claims. Like reference numerals refer to like elements throughout.
도면에서 각 부재의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한, 각 구성요소의 크기와 면적은 실제크기나 면적을 전적으로 반영하는 것은 아니다.In the drawings, the thickness or size of each member is exaggerated, omitted, or schematically illustrated for convenience and clarity of description. In addition, the size and area of each component does not necessarily reflect the actual size or area.
본 발명에서는 시인성이 확보되면서도 태양전지 효율을 높일 수 있는 새로운 구조의 BIPV 모듈 및 여기에 사용 가능한 유기태양전지 모듈(이하 'OPV 모듈'이라 한다)을 제시한다.The present invention proposes a BIPV module having a new structure and an organic solar cell module (hereinafter, referred to as 'OPV module') that can be used therein while improving visibility and improving solar cell efficiency.
반사부 일체형 OPV 모듈 Reflective unit integrated OPV module
도 1은 본 발명의 일 구현예에 따른 반사부 일체형 OPV 모듈(10)의 정면도이고, 도 2는 상기 도 1의 I-I' 선을 따라 절단한 단면도이다.1 is a front view of a reflector integrated OPV module 10 according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line II ′ of FIG. 1.
도 1을 참조하면, 본 발명에 따른 반사부 일체형 OPV 모듈(10)은 기재 필름(11) 상에 OPV부(13)와 반사부(15)가 동일한 면 상에 형성된 구조를 갖는다. 이때 상기 OPV부(13)와 반사부(15)는 동일 방향으로 연장된 스트라이프 패턴 구조를 갖는다.Referring to FIG. 1, the reflective unit integrated OPV module 10 according to the present invention has a structure in which the OPV unit 13 and the reflective unit 15 are formed on the same surface on the base film 11. In this case, the OPV unit 13 and the reflector 15 have a stripe pattern structure extending in the same direction.
이때 스트라이프 패턴의 폭은 후속에서 설명되는 BIPV 모듈에 적용 시 투명 기판의 돌출 구조의 경사면 길이에 대응하여 형성된다. 편의상 OPV부(13)와 반사부(15)를 동일 두께로 도시하였으나, 실질적으로 상기 OPV부(13)와 반사부(15)의 폭은 서로 동일할 수도 다를 수도 있다. 바람직하기로, 시인성 확보를 위해선 반사부(15)의 폭을 두껍게 할 수도 있고, 태양광 효율을 높이기 위해선 OPV부(13)의 폭을 두껍게 설계할 수도 있다.At this time, the width of the stripe pattern is formed corresponding to the inclined surface length of the projecting structure of the transparent substrate when applied to the BIPV module described later. For convenience, the OPV unit 13 and the reflector 15 are shown to have the same thickness, but the widths of the OPV unit 13 and the reflector 15 may be the same or different. Preferably, the width of the reflector 15 may be thickened to secure visibility, or the width of the OPV 13 may be thickened to increase solar efficiency.
기재 필름(11)은 유연성 및 투명성을 갖는 것이라면 특별히 한정되지 않으며, 바람직하기로 유연하면서도 높은 화학적 안정성, 기계적 강도 및 투명도를 가지는 필름 형태의 투명 고분자 재질을 사용하는 것이 바람직하다.The base film 11 is not particularly limited as long as it has flexibility and transparency, and it is preferable to use a transparent polymer material in the form of a film that is flexible and has high chemical stability, mechanical strength and transparency.
상기 투명 고분자 재질로는 노르보르넨이나 다환 노르보르넨계 단량체와 같은 시클로올레핀을 포함하는 단량체의 단위를 갖는 시클로올레핀계 유도체들, 셀룰로오스(디아세틸셀룰로오스, 트리아세틸셀룰로오스, 아세틸셀룰로오스부틸레이트, 이소부틸에스테르셀룰로오스, 프로피오닐셀룰로오스, 부티릴셀룰로오스, 아세틸프로피오닐셀룰로오스), 에틸렌-아세트산비닐공중합체, 폴리에스테르, 폴리스티렌, 폴리아미드, 폴리에테르이미드, 폴리아크릴, 폴리이미드, 폴리에테르술폰, 폴리술폰, 폴리에틸렌, 폴리프로필렌, 폴리메틸펜텐, 폴리염화비닐, 폴리염화비닐리덴, 폴리비닐알콜, 폴리비닐아세탈, 폴리에테르케톤, 폴리에테르에테르케톤, 폴리에테르술폰, 폴리메틸메타아크릴레이트, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 폴리카보네이트, 폴리우레탄, 에폭시 등으로 이루어진 군에서 선택된 1종이상의 재질을 포함할 수 있다. 이러한 기재 필름(11)은 단층 또는 다층으로 구성이 가능하다. As the transparent polymer material, cycloolefin derivatives having a unit of a monomer containing a cycloolefin such as norbornene or a polycyclic norbornene monomer, cellulose (diacetyl cellulose, triacetyl cellulose, acetyl cellulose butyrate, isobutyl Ester cellulose, propionyl cellulose, butyryl cellulose, acetyl propionyl cellulose), ethylene-vinyl acetate copolymer, polyester, polystyrene, polyamide, polyetherimide, polyacryl, polyimide, polyethersulfone, polysulfone, polyethylene , Polypropylene, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyvinyl acetal, polyether ketone, polyether ether ketone, polyether sulfone, polymethyl methacrylate, polyethylene terephthalate, polybutyl Renterphthalate, Paul May comprise a material on the one selected from the group consisting of ethylene terephthalate, polycarbonate, polyurethane, epoxy or the like. Such a base film 11 can be comprised by a single layer or a multilayer.
상기 기재 필름(11)은 시인성을 확보하기 위해 약 400 내지 750 ㎚의 가시광 파장에서 적어도 70% 이상, 바람직하게는 80% 이상의 투과율을 갖는 것이 좋다. In order to ensure visibility, the base film 11 may have a transmittance of at least 70% or more, preferably 80% or more at a visible light wavelength of about 400 to 750 nm.
이러한 기재 필름(11)의 두께는 BIPV 모듈의 용도에 따라 달라질 수 있으며, 본 발명에서 크게 한정하지 않으며 수 마이크론에서 수 밀리미터의 두께로 제작이 가능하다. The thickness of the base film 11 may vary depending on the use of the BIPV module, and is not limited in the present invention and may be manufactured to a thickness of several millimeters at several microns.
본 발명의 반사부 일체형 OPV 모듈(10)을 구성하는 OPV부(13)는 태양광 발전을 위한 것으로, 도 3에 나타낸 바와 같이 기재 필름(11) 상에 음극(131), 광활성층(133), 및 양극(135)이 순차적으로 적층된다. 이러한 OPV부(13)의 구조 및 각 구성요소는 본 발명에서 특별히 한정하지 않으며, 이 분야에서 공지된 바의 것이면 어느 것이든 사용 가능하다.The OPV unit 13 constituting the reflective unit integrated OPV module 10 of the present invention is for photovoltaic power generation, and as shown in FIG. 3, the cathode 131 and the photoactive layer 133 on the base film 11. , And anode 135 are sequentially stacked. The structure and each component of the OPV unit 13 is not particularly limited in the present invention, any of those known in the art can be used.
구체적으로, 음극(131)은 빛이 광활성층(133)에 도달할 수 있도록 하는 경로가 되므로 높은 투명도를 가지고 약 4.5 eV 이상의 높은 일함수와 낮은 저항을 갖는 전도성 물질을 사용하는 것이 바람직하다. Specifically, since the cathode 131 is a path for light to reach the photoactive layer 133, it is preferable to use a conductive material having high transparency and having a high work function of about 4.5 eV or more and a low resistance.
상기 음극(131)으로는 인듐 주석 산화물(Indium tin oxide; ITO), 인듐 아연 산화물(Indium zinc oxide; IZO), 불소도핑 산화주석(fluorine-doped tin oxide; FTO), ZnO-Ga2O3, ZnO-Al2O3, SnO2-Sb2O3 및 이들의 조합으로 이루어진 군에서 선택되는 금속산화물 투명 전극; 전도성 고분자, 그래핀(graphene) 박막, 그래핀 산화물(graphene oxide) 박막, 탄소나노튜브 박막과 같은 유기 투명전극; 또는 금속이 결합된 탄소나노튜브 박막과 같은 유-무기 결합 투명전극 등을 사용할 수 있다.The cathode 131 may be formed of indium tin oxide (ITO), indium zinc oxide (IZO), fluorine-doped tin oxide (FTO), ZnO-Ga 2 O 3 , A metal oxide transparent electrode selected from the group consisting of ZnO-Al 2 O 3 , SnO 2 -Sb 2 O 3, and a combination thereof; Organic transparent electrodes such as conductive polymers, graphene thin films, graphene oxide thin films, and carbon nanotube thin films; Alternatively, an organic-inorganic bonded transparent electrode such as a carbon nanotube thin film bonded to a metal may be used.
이때 음극(131)의 두께는 10 내지 3000㎚일 수 있다.In this case, the thickness of the cathode 131 may be 10 to 3000 nm.
양극(135)은 은(Ag), 구리(Cu), 금(Au), 백금(Pt), 티타늄(Ti), 알루미늄(Al), 니켈(Ni), 지르코늄(Zr), 철(Fe), 망간(Mn) 등의 금속 입자; 또는 상기 금속원소를 포함하는 전구체, 예를 들면 질산은(AgNO3), Cu(HAFC)2 (Cu(hexafluoroacetylacetonate)2,), Cu(HAFC)(1,5-Cyclooctanediene), Cu(HAFC)(1,5-Dimethylcyclooctanediene), Cu(HAFC)(4-Methyl-1-pentene), Cu(HAFC)(Vinylcyclohexane), Cu(HAFC)(DMB), Cu(TMHD)2(Cu (tetramethylheptanedionate)2), DMAH(dimethylaluminum hydride), TMEDA(tetramethylethylenediamine), DMEAA(dimethylethylamine alane, NMe2Et AlH3), TMA(trimethylaluminum), TEA(triethylaluminum), TBA(triisobutylaluminum), TDMAT(tetra(dimethylamino)titanium), TDEAT(tetra(dimethylamino)titanium) 등 일 수 있다. The anode 135 includes silver (Ag), copper (Cu), gold (Au), platinum (Pt), titanium (Ti), aluminum (Al), nickel (Ni), zirconium (Zr), iron (Fe), Metal particles such as manganese (Mn); Or precursors containing the metal elements, for example silver nitrate (AgNO 3 ), Cu (HAFC) 2 (Cu (hexafluoroacetylacetonate) 2, ), Cu (HAFC) (1,5-Cyclooctanediene), Cu (HAFC) (1 , 5-Dimethylcyclooctanediene), Cu (HAFC) (4-Methyl-1-pentene), Cu (HAFC) (Vinylcyclohexane), Cu (HAFC) (DMB), Cu (TMHD) 2 (Cu (tetramethylheptanedionate) 2 ), DMAH (dimethylaluminum hydride), TMEDA (tetramethylethylenediamine), DMEAA (dimethylethylamine alane, NMe 2 Et AlH 3 ), TMA (trimethylaluminum), TEA (triethylaluminum), TBA (triisobutylaluminum), TDMAT (tetra (dimethylamino) titanium), TDEAT (tetra (tetra) dimethylamino) titanium) and the like.
광활성층(133)은 공지된 것을 제한없이 사용할 수 있다. 일례로, 광활성층(133)은 전자수용체와 전자공여체가 혼합되어 존재하는 BHJ(bulk hetero-junction) 구조를 갖거나 이들이 각각 적층된 이중층(bilayer) 구조를 가질 수 있다. The photoactive layer 133 can use a well-known thing without a restriction. For example, the photoactive layer 133 may have a bulk hetero-junction (BHJ) structure in which an electron acceptor and an electron donor are mixed, or may have a bilayer structure in which they are stacked.
이때 사용하는 전자공여체는 반도체 고분자, 공액고분자, 저분자반도체 등의 공지된 물질을 제한없이 사용할 수 있으며, 예를 들면, PPV(poly(para-phenylene vinylene)계열의 물질, 폴리티오핀(polythiophene)유도체, 프탈로시아닌(pthalocyanine)계 물질 등을 사용할 수 있다. 또한, 전자수용체로는 공지된 물질을 제한없이 사용할 수 있으며, 일례로, 전자 친화도가 큰 플러렌(C60, C70, C76, C78, C82, C90, C94, C96, C720, C860 등); 1-(3-메톡시-카르보닐)프로필-1-페닐(6,6)C61(1-(3-methoxycarbonyl) propyl-1-phenyl(6,6)C61: PCBM), C71-PCBM, C84-PCBM, bis-PCBM, ThCBM 등과 같은 플러렌 유도체들을 사용할 수 있다.At this time, the electron donor may be used without limitation, known materials such as semiconductor polymer, conjugated polymer, low molecular semiconductor, and the like, for example, PPV (poly (para-phenylene vinylene) -based material, polythiophene) derivative , Phthalocyanine-based materials, etc. In addition, as the electron acceptor, known materials can be used without limitation, and, for example, fullerenes having high electron affinity (C60, C70, C76, C78, C82, C90). , C94, C96, C720, C860, etc.); 1- (3-methoxy-carbonyl) propyl-1-phenyl (6,6) C61 (1- (3-methoxycarbonyl) propyl-1-phenyl (6,6 Fullerene derivatives such as C61: PCBM), C71-PCBM, C84-PCBM, bis-PCBM, ThCBM and the like can be used.
필요한 경우, 상기 음극(131)과 광활성층(133) 사이, 및 광활성층(133)과 양극(135) 사이에 기능층이 형성될 수 있으며, 기능층은 정공 수송층 또는 전자 수송층이 될 수 있다. If necessary, a functional layer may be formed between the cathode 131 and the photoactive layer 133, and between the photoactive layer 133 and the anode 135, and the functional layer may be a hole transport layer or an electron transport layer.
정공 수송층(Hole transfer layer, HTL)으로 이미 공지된 물질을 제한없이 사용할 수 있으며, 예를 들면, MTDATA, TDATA, NPB, PEDOT:PSS, TPD 또는 p-형 금속 산화물 등과 같은 재료를 사용하여 형성할 수 있다. p-형 금속 산화물은 일례로, MoO3 또는 V2O5일 수 있다. 또한, 정공 수송층으로 금속층의 자기조립 박막을 사용할 수 있다. Ni 같은 물질을 증착하여 열처리 하여 형성된 자기조립박막을 기능층으로 사용할 수 있다. 이외에 전기 전도성 고분자 또는 유기 저분자 반도체 물질 등과 같은 유기 반도체를 포함한다. 상기 전기 전도성 고분자는 폴리티오펜(polythiophene), 폴리페닐렌비닐렌(polyphenylenevinylene), 폴리플루오렌(polyfulorene), 폴리피롤(polypyrrole) 및 이들의 공중합체로 이루어진 군에서 선택되는 1종 이상일 수 있다. 상기 유기 저분자 반도체 물질은 펜타센(pentacene), 안트라센(anthracene), 테트라센(tetracene), 퍼릴렌(perylene), 올리고티오펜(oligothiophene) 및 이들의 유도체로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다. As a hole transfer layer (HTL), a known material may be used without limitation, and may be formed using, for example, a material such as MTDATA, TDATA, NPB, PEDOT: PSS, TPD or p-type metal oxide. Can be. The p-type metal oxide may be MoO 3 or V 2 O 5 , for example. In addition, a self-assembled thin film of a metal layer may be used as the hole transport layer. A self-assembled thin film formed by depositing and heat-treating a material such as Ni can be used as a functional layer. In addition, it includes an organic semiconductor such as an electrically conductive polymer or an organic low molecular semiconductor material. The electrically conductive polymer may be at least one selected from the group consisting of polythiophene, polyphenylenevinylene, polyfulorene, polypyrrole, and copolymers thereof. The organic low molecular weight semiconductor material includes at least one selected from the group consisting of pentacene, anthracene, tetratracene, perylene, oligothiophene, and derivatives thereof. can do.
전자 수송층(electron transfer layer, ETL)은 광활성층(133)에서 생성된 전자가 인접한 전극으로 용이하게 전달되도록 한다. 전자 수송층은 공지된 재료를 제한 없이 사용할 수 있으며, 일례로, 알루미늄 트리스(8-하이드록시퀴놀린)(aluminium tris(8-hydroxyquinoline), Alq3), 리튬플로라이드(LiF), 리튬착체(8-hydroxy-quinolinato lithium, Liq), 비공액 고분자, 비공액 고분자 전해질, 공액 고분자 전해질, 또는 n-형 금속 산화물 등과 같은 재료를 사용하여 형성할 수 있다. 상기 n-형 금속 산화물은 일례로, TiOx, ZnO 또는 Cs2CO3 일 수 있다. 또한, 상기 전자 수송층으로 금속층의 자기조립 박막을 사용할 수 있다.An electron transfer layer (ETL) allows electrons generated in the photoactive layer 133 to be easily transferred to adjacent electrodes. The electron transporting layer may use a known material without limitation, and, for example, aluminum tris (8-hydroxyquinoline), Alq3), lithium fluoride (LiF), lithium complex (8-hydroxy) -quinolinato lithium (Liq), a nonconjugated polymer, a nonconjugated polymer electrolyte, a conjugated polymer electrolyte, or an n-type metal oxide. The n-type metal oxide may be, for example, TiOx, ZnO or Cs 2 CO 3 . In addition, a self-assembled thin film of a metal layer may be used as the electron transporting layer.
상기한 구조를 갖는 OPV부(13)는 동일 층에 속하지 않는 서로 이격된 상태의 양극(135)과 음극(131)을 전기적으로 연결되도록 구성할 수 있다. 일례로, 소면적 OPV부(13)들을 마이크로미터 간격으로 형성하고 이를 다시 직렬로 연결하는 공정을 통하여 전기적으로 연결될 수 있도록 구성될 수 있다. The OPV unit 13 having the above structure may be configured to electrically connect the positive electrode 135 and the negative electrode 131 which are spaced apart from each other not belonging to the same layer. For example, the small area OPV units 13 may be configured to be electrically connected through a process of forming the micro-area OPV units 13 at micrometer intervals and connecting them in series again.
이때 전기적 연결을 위한 배선은 본 발명에서 특별히 한정하지 않으며, 공지의 다양한 방법이 사용될 수 있다. 일례로, 납땜, 용접, 도전성 접착제, 이방 전도성 필름(Anisotropic Conductive Film; ACF) 등이 가능하다. 이때 사용하는 재질은 은, 구리 등 금속 재질이 사용 가능하다.At this time, the wiring for the electrical connection is not particularly limited in the present invention, a variety of known methods can be used. For example, soldering, welding, a conductive adhesive, an anisotropic conductive film (ACF), and the like are possible. The material used at this time can use metal materials, such as silver and copper.
또한, 상기 배선은 충전기의 전원에 연결되는 충전부의 배선단자일 수도 있고, USB(Universal Serial Bus)에 연결되는 USB 충전부의 배선단자일 수 있다. 따라서, 본 발명의 유기태양전지 봉지 모듈에서는 전극에 USB 커넥터를 연결하여 일체화하므로 각종 전자기기의 충전에 사용될 수 있고, USB 충전부(Female)를 형성하여 각종 USB로 충전가능한 전자기기에 사용이 가능하다.The wiring may be a wiring terminal of a charging unit connected to a power supply of a charger, or a wiring terminal of a USB charging unit connected to a universal serial bus (USB). Therefore, the organic solar cell encapsulation module of the present invention can be used to charge various electronic devices by connecting the USB connector to the electrode and integrated, and can be used for electronic devices that can be charged with various USB by forming a USB charging unit (Female). .
반사부(15)는 OPV부(13)에 시인성을 확보하면서 투과된 광을 제외한 반사광을 입사시켜 상기 OPV에 의한 태양광 전지 효율을 높일 목적으로 사용한다. 상기 OPV부(13)의 광효율은 입사되는 태양광의 광량에 의존하며, 보다 많은 양의 광이 입사할수록 유기태양전지에 의한 광전 변환 효율이 높아진다. 이에 본 발명에서 OPV부(13)와 동일한 방향으로 반사부(15)를 스트라이프 패턴으로 형성하며, 이는 하기에서 설명되는 투명 기판 상에 부착되어 상기 반사부(15)에 입사되는 입사광을 상기 OPV부(13)의 광활성층(133)에 반사시킨다. 이로 인해 상기 광활성층(133)에 입사되는 광량이 증가하여 결과적으로 OPV부(13)에서 생산되는 광전 변환 효율을 높일 수 있다. The reflector 15 is used for the purpose of increasing the solar cell efficiency by the OPV by injecting the reflected light other than the transmitted light while ensuring visibility to the OPV unit 13. The light efficiency of the OPV unit 13 depends on the amount of light of incident sunlight, and the greater the amount of light incident, the higher the photoelectric conversion efficiency of the organic solar cell. Accordingly, in the present invention, the reflective part 15 is formed in a stripe pattern in the same direction as the OPV part 13, which is attached to the transparent substrate to be described below to receive incident light incident on the reflective part 15. It is reflected by the photoactive layer 133 of (13). As a result, the amount of light incident on the photoactive layer 133 increases, and as a result, the photoelectric conversion efficiency produced by the OPV unit 13 may be increased.
본 발명의 반사부(15)는 도 1 및 도 2에 나타낸 바와 같이, 기재 필름(11) 상에 형성될 수 있다. The reflector 15 of the present invention may be formed on the base film 11, as shown in Figs.
본 발명에서 굴절률 차이에 의해 유기태양전지부에 입사광을 반사시킬 수 있는 형태의 반사층(151)은 일예로 도 4의 (a)에 도시된 구조를 가질 수 있다. In the present invention, the reflective layer 151 of the type capable of reflecting incident light by the difference in refractive index may have the structure shown in FIG. 4A.
상기 반사층(151)은 굴절률의 차이에 의해 반사가 가능한 층이면 어느 것이든 가능하며, 본 발명에서 그 재질이나 형태를 특별히 한정하지 않는다. The reflective layer 151 may be any layer that can be reflected by a difference in refractive index, and the material or shape thereof is not particularly limited in the present invention.
본 발명의 일 구현예에 따르면 반사층(151)은 필름 내부에 광 반사 또는 광 산란이 가능한 입자를 갖는 필름일 수 있다.According to the exemplary embodiment of the present invention, the reflective layer 151 may be a film having particles capable of reflecting light or scattering light inside the film.
상기 반사층(151)의 필름은 시인성이 확보되도록 투명한 재질이 가능하며, 상기 기재 필름(11)에서 언급한 바와 동일 또는 유사한 재질을 포함한다. The film of the reflective layer 151 may be made of a transparent material to ensure visibility, and may include the same or similar material as mentioned in the base film 11.
상기 광 반사 또는 광 산란이 가능한 입자는 유리, 무기 입자, 및 유기 입자로 이루어진 군에서 선택된 1종의 재질을 포함한다. 이러한 산란 입자(Q)의 종류는 입사광을 산란시킨 후 OPV부(13)에 반사시킬 수 있는 재질이면 상기 제시한 재질의 어느 것이라도 가능하다. 필요한 경우, 상기 입자는 OPV부(13)의 광전 변환 효율을 특별히 높일 수 있는 특정 파장의 빛을 반사시킬 수 있는 재질이 선택적으로 사용될 수 있다.The particles capable of light reflection or light scattering include one material selected from the group consisting of glass, inorganic particles, and organic particles. The type of the scattering particles Q may be any of the materials listed above as long as the material can reflect the incident light to the OPV unit 13 after scattering the incident light. If necessary, the particles may be selectively used a material capable of reflecting light of a specific wavelength that can specifically increase the photoelectric conversion efficiency of the OPV unit (13).
무기 입자로는 지르코니아, 티타니아, 세리아, 알루미나, 산화철, 바나디아, 산화안티몬, 산화주석 및 알루미나/실리카로 이루어진 군에서 선택된 1종이 가능하다. 이러한 무기 입자는 저굴절 입자와 고굴절 입자를 포함하며, 선택적으로 상기 입자를 단독으로 사용하거나 이 둘을 혼합하여 사용할 수도 있다. The inorganic particles may be one selected from the group consisting of zirconia, titania, ceria, alumina, iron oxide, vanadia, antimony oxide, tin oxide and alumina / silica. Such inorganic particles include low refractive particles and high refractive particles, and optionally, the particles may be used alone, or a mixture thereof may be used.
유기 입자로는 투명 고분자 재질이 가능하며, 이는 상기 기재 필름(11)에서 언급한 바와 동일 또는 유사한 재질을 포함하다. 일례로, 폴리메틸메타크릴레이트와 같은 아크릴계 고분자 또는 실리콘계 고분자가 사용될 수 있다.The organic particles may be a transparent polymer material, and include the same or similar materials as mentioned in the base film 11. For example, an acrylic polymer or a silicone polymer such as polymethyl methacrylate may be used.
상기 반사층(151) 내 입자는 전체 반사층(151) 내 5 내지 30 중량%의 함량으로 함유되는 것이 바람직하다. 만약 그 함유량이 상기 범위 미만이면 산란 입자(Q)의 낮은 밀도로 인해 상기 OPV부(13)에 충분한 수준으로 빛을 반사시키기 어렵고, 이와 반대로 상기 범위를 초과할 경우 균일한 분산이 어려운 문제가 있다. The particles in the reflective layer 151 may be contained in an amount of 5 to 30% by weight in the total reflective layer 151. If the content is less than the above range, it is difficult to reflect light to the OPV unit 13 at a sufficient level due to the low density of the scattering particles Q. On the contrary, if the content exceeds the above range, uniform dispersion is difficult. .
이러한 입자는 입경 분포의 중앙치(메디안)가 나노미터에서 마이크로미터를 갖는 범위가 바람직하다. 만약 입경이 이 범위보다 작으면, 산란 입자가 균일하게 분산되기 어려워지고, 이 범위보다 크면, 광산란 입자의 비표면적이 작아져 산란하기 어려워진다.Such particles preferably have a range in which the median (median) of the particle size distribution has from nanometers to micrometers. If the particle diameter is smaller than this range, it is difficult for the scattering particles to be uniformly dispersed, and if larger than this range, the specific surface area of the light scattering particles becomes small and the scattering becomes difficult.
본 발명의 반사층(151)은 입자를 포함하는 단일 필름으로 형성될 수 있으며, 필요한 경우 2층 이상의 다층 필름의 구성으로 형성될 수 있다. 상기 다층 필름 구성은 입사광의 반사를 최대한 높이기 위한 방식으로 진행될 수 있으며, 일례로 유리, 무기 입자, 유기 입자 중 서로 다른 재질의 입자를 2층 이상 적층하거나, 저굴절 입자를 갖는 저굴절층/고굴절 입자를 갖는 고굴절층과 같이 서로 다른 굴절률을 갖도록 구성할 수도 있으며, 입자 크기를 서로 달리하여 구성할 수도 있다. 이러한 다층 필름의 구성은 이 분야의 통상의 지식을 가진 자에 의해 선택될 수 있으며 다양한 변형 및 변경이 가능하다. The reflective layer 151 of the present invention may be formed of a single film including particles, and may be formed of a multilayer film of two or more layers, if necessary. The multilayer film configuration may proceed in a manner to maximize the reflection of the incident light, for example, two or more layers of particles of different materials among glass, inorganic particles, and organic particles, or low refractive layer / high refractive index having low refractive particles It may be configured to have different refractive indices, such as a high refractive index layer having particles, or may be configured with different particle sizes. The construction of such multilayer films can be selected by one of ordinary skill in the art and various modifications and variations are possible.
한편, 본 발명의 다른 구현예에 따르면, 반사층(151)은 서로 다른 굴절률을 갖는 층이 적층되어, 상기 굴절률 차이에 의해 빛을 반사시킬 수 있는 다층 필름 형태일 수 있다. Meanwhile, according to another embodiment of the present invention, the reflective layer 151 may have a multilayer film in which layers having different refractive indices are stacked to reflect light by the difference in refractive indices.
서로 다른 굴절률을 갖는 층은 층의 재질이 다르거나, 연신 등의 기계적 공정을 통해 굴절률이 변경된 층이 사용될 수 있다. Layers having different refractive indices may be made of layers of different materials, or layers having a refractive index changed through mechanical processes such as stretching.
일례로, 한 층은 굴절률이 1.5인 유리 재질이 사용될 수 있고, 다른 한 층은 굴절률이 1.6인 폴리카보네이트와 같은 투명 고분자 재질이 사용될 수 있다. 이때 상기 굴절률의 차이가 너무 클 경우 반사층(151)의 헤이즈(haze)가 높아져 시인성이 저하될 수 있으므로, 굴절률의 차이를 고려하여 층의 구성을 제어할 수 있다.In one example, a glass material having a refractive index of 1.5 may be used, and in another layer, a transparent polymer material such as polycarbonate having a refractive index of 1.6 may be used. In this case, if the difference between the refractive indices is too large, the haze of the reflective layer 151 may be increased, and thus the visibility may be lowered. Therefore, the configuration of the layer may be controlled in consideration of the difference in the refractive indices.
또한, 연신 공정을 수행할 경우 일축 연신 방향(X 방향)으로 높은 굴절률을 가지고, 이는 다른 방향(Y 방향)으로 연신되어 낮은 굴절률을 갖는 필름이 각각 제조되고, 이를 합지할 경우 굴절률 차이에 의해 특정 파장의 빛을 선택적으로 반사하는 광학 간섭이 이루어질 수 있다.In addition, when performing the stretching process has a high refractive index in the uniaxial stretching direction (X direction), which is stretched in the other direction (Y direction) to produce a film having a low refractive index, respectively, when the lamination is specified by the difference in refractive index Optical interference may be made that selectively reflects light of wavelengths.
상기 다층 필름은 수 나노에서 마이크론의 두께를 가질 수 있으며, 전체 레이어 수는 2개 이상, 바람직하기로 2 내지 50개 정도를 가질 수 있다. The multilayer film may have a thickness of several nanometers to several microns, and the total number of layers may have two or more, preferably about 2 to 50.
또한, 본 발명의 또 다른 구현예에 따르면, 반사층(151)은 서로 다른 굴절률을 갖는 층이 적층된 다층 필름을 갖되, 이들 중 어느 하나의 층에 광반사 또는 광산란 입자자 존재하는 다층 필름 형태일 수 있다.In addition, according to another embodiment of the present invention, the reflective layer 151 has a multilayer film in which layers having different refractive indices are stacked, but in the form of a multilayer film having light reflection or light scattering particles present in any one of these layers. Can be.
이때 광반사 또는 광산란 입자를 갖는 하나의 필름 구성은 연신 또는 미연신 필름일 수 있으며, 상기 다층 필름의 맨 하부 또는 상부에 위치하여 반사층(151)에 의한 빛의 반사 및 산란 효과를 더욱 증가시킨다.At this time, one film configuration having light reflection or light scattering particles may be a stretched or unstretched film, and is located at the bottom or top of the multilayer film to further increase the reflection and scattering effect of light by the reflective layer 151.
본 발명에서 입사광을 유기태양전지부로 반사시키기 위해 표면에 굴절 패턴이 형성된 반사층(151)은 일예로 도 4의 (b)에 나타낸 바와 같이 표면에 굴절 패턴(Q)이 형성된 반사층(151)을 포함한다. 도 4의 (b)에서 도시한 굴절 패턴(Q)은 편의상 삼각뿔의 사면체를 도시하였으나, 하기에 설명될 바와 같이 다양한 형태가 가능하며 이에 한정하지는 않는다. In the present invention, the reflective layer 151 having the refractive pattern formed on the surface to reflect the incident light to the organic solar cell unit includes, for example, the reflective layer 151 having the refractive pattern Q formed on the surface thereof, as shown in FIG. do. Although the refractive pattern Q illustrated in FIG. 4B illustrates a tetrahedron of triangular pyramids for convenience, various forms are possible as described below, but are not limited thereto.
상기 반사층(151)은 시인성이 확보되도록 투명한 재질이 가능하며, 상기 기재 필름(11)에서 언급한 바와 동일 또는 유사한 재질을 포함한다. The reflective layer 151 may be made of a transparent material to ensure visibility, and may include the same or similar material as mentioned in the base film 11.
특히, 본 발명의 반사층(151)에서 OPV부(13)로의 반사는 도 4의 (b)에 나타낸 바와 같이 굴절 패턴(Q)을 통해 이루어진다. In particular, the reflection from the reflective layer 151 of the present invention to the OPV portion 13 is made through the refractive pattern Q as shown in FIG.
굴절 패턴(Q)의 형태는 입사광을 굴절 후 반사시킬 수 있는 형상이면 그 어떤 형태라도 가능하며, 요철(凹凸)을 갖는 형상이면 그 어떤 형태라도 가능하다. The shape of the refraction pattern Q can be any shape as long as it can reflect incident light after refraction, and can be any shape as long as the shape has irregularities.
일례로, 본 발명에 따른 굴절 패턴(Q)은 양각 또는 음각 형태의 패턴을 가지며, 이때 상기 패턴은 첨탑형(jagged), 다면체(multifaceted), 각추형(pyramidal), 원뿔형(conical) 또는 반구형(semi-rounded) 형태를 가질 수 있으며, 이외에 다양한 형태가 가능하다. 바람직하기로, 상기 굴절 패턴(Q)은 양각 패턴일 경우 각추형이 바람직하고, 음극 패턴일 경우 반구형이 바람직하다. 이때 도 5는 본 발명의 굴절 패턴(Q)의 예시를 나타내었으며, 이외에 다양한 형태가 가능하다.For example, the refractive pattern Q according to the present invention has an embossed or engraved pattern, wherein the pattern is jagged, multifaceted, pyramidal, conical or hemispherical. It may have a semi-rounded form, and various forms are possible. Preferably, the refraction pattern Q is preferably a pyramidal shape in the case of an embossed pattern, and a hemispherical shape in the case of a cathode pattern. 5 illustrates an example of the refractive pattern Q of the present invention, and various other forms are possible.
상기 굴절 패턴(Q)의 폭, 길이 또는 깊이는 입사광의 반사율을 높이는 방향으로 조절될 수 있으며, 본 발명에서 특별히 한정하지는 않는다.The width, length or depth of the refractive pattern Q may be adjusted in a direction of increasing the reflectance of the incident light, and is not particularly limited in the present invention.
일례로, 상기 굴절 패턴(Q)은 각추형일 수 있으며, 도 4의 (b)에 나타낸 바와 같이 탑부에서 보았을 때 삼각형으로 단면화될 수 있는 프리즘 구조일 수 있다. 이 각추형의 굴절 패턴(Q)으로 인해 입사되는 태양광은 굴절 패턴의 내부에서 한번 이상이 굴절이 발생하고 내부 전반사를 일으켜 입사광의 경로와는 다른 경로로 상기 굴절 패턴(Q)으로부터 방출되고, 상기 굴절 패턴(Q)으로부터 방출된 빛은 OPV부(13)로 진입한다. For example, the refractive pattern Q may have a pyramidal shape, and may have a prism structure that may be cross-sectionalized in a triangle when viewed from the top, as shown in FIG. Due to the pyramidal refracting pattern Q, the incident light is refracted at least once inside the refracting pattern and causes total internal reflection to be emitted from the refracting pattern Q in a path different from that of the incident light, Light emitted from the refraction pattern Q enters the OPV unit 13.
상기 굴절 및 내부 전반사의 조절은 굴절 패턴(Q)의 형태와 그 크기, 즉, 길이 및 각도 등의 조절을 통해 이루어질 수 있다. 상기 파라미터들은 본 발명에서 크게 한정하지 않으며, OPV부(13)에 입사광을 최대한의 광량으로 반사시킬 수 있는 수치로 제작될 수 있다. Adjustment of the refraction and total internal reflection may be performed by adjusting the shape and size of the refraction pattern Q, that is, length and angle. The parameters are not particularly limited in the present invention, and may be manufactured to a value capable of reflecting the incident light to the OPV unit 13 with the maximum amount of light.
또한, 굴절 패턴(Q)은 반사부(15) 전체에 걸쳐 형성하거나 입사광을 효과적으로 전달할 수 있도록 반사부(15)의 일부에만(예, 중앙) 형성할 수도 있다. 또한, 상기 굴절 패턴(Q)은 규칙적인 패턴으로 형성할 수 있으며, 필요한 경우 불규칙적인 패턴으로도 형성할 수 있다.In addition, the refractive pattern Q may be formed over the entire reflecting portion 15 or may be formed only on a portion (eg, the center) of the reflecting portion 15 so as to effectively transmit incident light. In addition, the refractive pattern Q may be formed in a regular pattern, and may be formed in an irregular pattern if necessary.
본 발명의 반사층의 다른 일형태는 상기 양각 또는 음각 굴절 패턴이 형성된 반사층이, Another embodiment of the reflective layer of the present invention is a reflective layer on which the embossed or negative refractive pattern is formed,
하나의 필름 내부에 광 반사 또는 광 산란 입자를 포함하는 단층 또는 다층 필름; A single layer or multilayer film comprising light reflecting or light scattering particles inside one film;
서로 다른 굴절률을 갖는 필름이 2층 이상 적층된 다층 필름; 또는 A multilayer film in which two or more layers of films having different refractive indices are laminated; or
서로 다른 굴절률을 갖는 층이 적층된 다층 필름을 갖되, 이들 중 어느 하나의 층에 광반사 또는 광산란 입자가 존재하는 필름을 구비한 다층 필름;으로 형성된 형태일 수 있다.It may have a multilayer film having a multilayer film having a layer having a different refractive index is laminated, having a film having light reflection or light scattering particles present in any one of these layers.
상기 형태의 반사층에 관한 각 구성에 대해서는 전술된 내용이 그대로 적용될 수 있다.The above description may be applied as it is to each configuration of the reflective layer of the above form.
전술한 바의 본 발명에 따른 반사층(151)을 포함하는 반사부(15)의 두께는 본 발명에서 특별히 한정하지 않으나, OPV부(13)의 두께와 거의 유사하거나 동일한 두께로 형성한다. 다만, 시인성 확보를 위해 투명성을 유지하면서도 OPV부(13)에 대한 반사율이 50% 이상, 바람직하기로 60% 이상을 갖도록 하는 것이 바람직하다.The thickness of the reflector 15 including the reflective layer 151 according to the present invention as described above is not particularly limited in the present invention, but is formed to have a thickness substantially similar to or the same as that of the OPV unit 13. However, it is preferable that the reflectance of the OPV unit 13 is 50% or more, preferably 60% or more, while maintaining transparency to ensure visibility.
OPV 모듈 제조 공정OPV module manufacturing process
전술한 바의 OPV부(13) 및 반사부(15)를 구비한 OPV 모듈(10)은 도면에서 표시한 바와 같이 OPV부(13)와 반사부(15)가 기재 필름(11) 상에 동일하게 형성된 일체화된 구조를 갖는다. 이러한 일체화된 구조는 종래 OPV부(13) 내에 별도의 반사판을 구비하거나 OPV부(13)과 별도로 반사판을 설치한 구조와는 다른 구조를 갖는다. In the OPV module 10 having the OPV unit 13 and the reflector 15 as described above, the OPV unit 13 and the reflector 15 are the same on the base film 11 as shown in the drawing. Have an integrally formed structure. This integrated structure has a structure different from the structure in which a separate reflector is provided in the OPV unit 13 or a reflector is provided separately from the OPV unit 13.
본 발명의 반사부 일체형 OPV 모듈(10)의 제조는 하기와 같이 진행될 수 있다.Manufacturing of the reflector integrated OPV module 10 of the present invention may proceed as follows.
먼저, 기재 필름(11) 상의 정해진 영역에 OPV부(13) 또는 반사부(15) 중 어느 하나를 형성한다.First, either the OPV portion 13 or the reflecting portion 15 is formed in a predetermined region on the base film 11.
다음으로, 상기 OPV부(13) 또는 반사부(15)가 형성되지 않은 영역에 반사부(15) 또는 OPV부(13)를 형성한다.Next, the reflector 15 or the OPV unit 13 is formed in a region where the OPV unit 13 or the reflector 15 is not formed.
상기 OPV(11) 및 반사부(15)의 형성 순서를 본 발명에서 특별히 한정하지 않으며, 공정 장비나 공정 효율 등을 고려하여 정한다. 일례로, 기재 필름(11) 상에 반사부(15)를 형성한 다음, OPV부(13)를 형성하는 것이 바람직하다.The order of formation of the OPV 11 and the reflector 15 is not particularly limited in the present invention, and is determined in consideration of process equipment, process efficiency, and the like. For example, it is preferable to form the reflecting portion 15 on the base film 11 and then to form the OPV portion 13.
OPV부(13)의 형성은 본 발명에서 특별히 한정하지 않으며, 공지의 OPV의 제조 공정을 따른다. The formation of the OPV portion 13 is not particularly limited in the present invention, and follows a known manufacturing process of OPV.
일례로, 기재 필름(11) 상에 음극(131)을 형성하는 단계; 상기 음극(131) 상에 광활성층(133)을 형성하는 단계; 및 상기 광활성층(133) 상에 양극(135)을 형성하는 단계를 거쳐 OPV부(13)를 제작한다.For example, forming a cathode 131 on the base film 11; Forming a photoactive layer (133) on the cathode (131); And forming an anode 135 on the photoactive layer 133 to manufacture the OPV unit 13.
음극(131) 및 양극(135)은 열 기상 증착, 전자 빔 증착, RF 또는 마그네트론 스퍼터링, 화학적 증착 또는 이와 유사한 건식 증착을 수행하거나, 코팅 또는 인쇄법 등의 습식 공정을 통해 수행할 수 있다.The cathode 131 and the anode 135 may be thermal vapor deposition, electron beam deposition, RF or magnetron sputtering, chemical vapor deposition, or similar dry deposition, or may be performed by a wet process such as coating or printing.
광활성층(133)은 전술한 바의 조성을 갖는 광활성층 형성용 조성물을 제조한 다음, 이를 습식 코팅 후 건조하는 방식에 의해 상기 음극(131) 상에 형성한다.The photoactive layer 133 is formed on the cathode 131 by preparing a composition for forming a photoactive layer having the composition described above, and then drying it after wet coating.
습식 코팅 방식은 본 발명에서 특별히 한정하지 않으며, 일례로 슬롯다이 코팅, 스핀 코팅, 그라비어 코팅, 분무 코팅, 스핀 코팅, 인쇄법, 닥터 블레이딩 등의 통상의 코팅 방법에 의해 실시될 수 있다.The wet coating method is not particularly limited in the present invention, and for example, may be performed by a conventional coating method such as slot die coating, spin coating, gravure coating, spray coating, spin coating, printing, doctor blading, and the like.
상기 코팅 용액의 코팅 후, 코팅된 기재에 대해 선택적으로 건조 또는 열처리하는 후처리 공정을 실시할 수 있다. 상기 건조는 50 내지 400, 바람직하게는 70 내지 200에서 1 내지 30분 동안 열풍건조, NIR 건조, 또는 UV 건조를 통하여 실시될 수 있다. 상기 후처리 공정의 온도 및 시간은 기재의 종류 및 물성에 따라 달라질 수 있다. After coating of the coating solution, the coated substrate may be subjected to a post treatment step of selectively drying or heat treatment. The drying may be carried out by hot air drying, NIR drying, or UV drying for 50 to 400, preferably 70 to 200 for 1 to 30 minutes. The temperature and time of the post-treatment process may vary depending on the type and physical properties of the substrate.
상기 음극(131)의 형성에 앞서 선택적으로 기재 필름(11)에 O2 플라즈마 처리법, UV/오존 세척, 산 또는 알칼리 용액을 이용한 표면 세척, 질소 플라즈마 처리법 및 코로나 방전 세척으로 이루어진 군에서 선택되는 적어도 어느 하나의 방법을 이용하여 상기 기재 필름(11)의 표면을 전처리하는 공정을 더욱 수행할 수 있다.Prior to the formation of the cathode 131, at least one selected from the group consisting of O 2 plasma treatment, UV / ozone cleaning, surface cleaning using an acid or alkaline solution, nitrogen plasma treatment and corona discharge cleaning to the substrate film 11 optionally The process of pretreating the surface of the base film 11 can be further performed using either method.
반사부(15)의 형성은 일예로, 광 반사 또는 광 산란 입자를 갖는 반사층(151), 서로 다른 굴절율을 갖는 다층 필름을 갖는 반사층(151) 또는 이들 모두가 구성된 반사층(151)을 포함하는 필름을 상기 기재 필름(11)에 코팅하거나 합지하는 공정으로 수행한다. Formation of the reflector 15 is, for example, a film including a reflective layer 151 having light reflection or light scattering particles, a reflective layer 151 having a multilayer film having different refractive indices, or a reflective layer 151 composed of both. Is carried out by the process of coating or laminating to the base film (11).
일례로, 광 반사 또는 광 산란 입자를 갖는 반사층(151)의 경우, 투명 고분자와 상기 입자를 혼합하여 슬러리 조성물을 제조한 다음, 이를 기재 필름(11) 상에 습식 코팅하는 방식으로 수행할 수 있다. For example, in the case of the reflective layer 151 having light reflection or light scattering particles, the slurry may be prepared by mixing the transparent polymer and the particles, and then performing wet coating on the base film 11. .
또한, 다층 필름의 경우 2종 이상의 필름을 각각 연신한 후 접착층에 의해 합지하여 다층 필름 구조의 반사층(151)을 제작하고, 이를 다시 기재 필름(11) 상에 접착층을 통해 합지하는 공정을 통해 제조가 가능하다. In addition, in the case of a multilayer film, two or more films are drawn, respectively, and then laminated by an adhesive layer to produce a reflective layer 151 having a multilayer film structure, which is then manufactured through a process of laminating it on the base film 11 through an adhesive layer. Is possible.
상기 사용하는 접착층은 투명한 재질의 접착 재질이 바람직하며, 용제형 접착제, 에멀젼형 접착제, 감압 접착제, 제습성 접착제, 중축합형 접착제, 무용제형 접착제, 필름형상 접착제, 핫멜트형 접착제 등이 가능하다. 일례로 폴리비닐알코올 수지, 폴리메틸메타크릴레이트 수지 등의 아크릴계 수지, 폴리스티렌 수지, 스티렌-아크릴 공중합체 수지, 폴리에틸렌 수지, 에폭시 수지, 폴리우레탄 수지, 실리콘계 수지, 폴리에스테르계 수지 등이 가능하다.The adhesive layer to be used is preferably an adhesive material of a transparent material, and may be a solvent adhesive, an emulsion adhesive, a pressure sensitive adhesive, a dehumidifying adhesive, a polycondensation adhesive, a solventless adhesive, a film adhesive, a hot melt adhesive, or the like. Examples thereof include acrylic resins such as polyvinyl alcohol resins and polymethyl methacrylate resins, polystyrene resins, styrene-acrylic copolymer resins, polyethylene resins, epoxy resins, polyurethane resins, silicone resins, polyester resins, and the like.
또한, 반사부(15)의 형성은 일예로, 반사층(151)을 기재 필름(11) 상에 형성한 후 굴절 패턴(Q)을 형성하거나 굴절 패턴(Q)을 갖는 반사층(151)의 필름을 합지하는 공정으로 수행한다. In addition, for example, the reflective part 15 may be formed by forming the reflective layer 151 on the base film 11 and then forming the refractive pattern Q or the film of the reflective layer 151 having the refractive pattern Q. It is performed by laminating process.
상기 굴절 패턴(Q)을 갖는 반사층(151)은 다양한 방법으로 제작이 가능하고, 일례로 굴절 패턴(Q)의 형상을 반사층(151) 상에 부착하거나, 상기 굴절 패턴(Q)의 반대 형상을 갖는 몰드로 임프린팅하여 반사층(151) 상에 굴절 패턴(Q)을 형성하거나, 식각 등의 공정을 통해 굴절 패턴(Q)을 형성한다. 이러한 방법은 본 발명에서 특별히 한정하지 않으며, 이 분야의 통상의 지식을 가진 자에 의해 적절히 수행될 수 있다.The reflective layer 151 having the refractive pattern Q may be manufactured in various ways, for example, attaching the shape of the refractive pattern Q to the reflective layer 151, or forming the opposite shape of the refractive pattern Q. Imprinting is performed on the reflective layer 151 to form the refractive pattern Q on the reflective layer 151, or the etching pattern Q to form the refractive pattern Q. Such a method is not particularly limited in the present invention, and may be appropriately performed by those skilled in the art.
이때 합지는 기재 필름(11)과 반사층(151) 사이에 접착층(미도시)을 도포 후 건조 또는 필요한 경우 압력을 인가하여 이루어질 수 있다.In this case, the lamination may be performed by applying an adhesive layer (not shown) between the base film 11 and the reflective layer 151 and then drying or applying pressure if necessary.
상기 사용하는 접착층은 투명한 재질의 접착 재질이 바람직하며, 용제형 접착제, 에멀젼형 접착제, 감압 접착제, 제습성 접착제, 중축합형 접착제, 무용제형 접착제, 필름형상 접착제, 핫멜트형 접착제 등이 가능하다. 일례로 폴리비닐알코올 수지, 폴리메틸메타크릴레이트 수지 등의 아크릴계 수지, 폴리스티렌 수지, 스티렌-아크릴 공중합체 수지, 폴리에틸렌 수지, 에폭시 수지, 폴리우레탄 수지, 실리콘계 수지, 폴리에스테르계 수지 등이 가능하다.The adhesive layer to be used is preferably an adhesive material of a transparent material, and may be a solvent adhesive, an emulsion adhesive, a pressure sensitive adhesive, a dehumidifying adhesive, a polycondensation adhesive, a solventless adhesive, a film adhesive, a hot melt adhesive, or the like. Examples thereof include acrylic resins such as polyvinyl alcohol resins and polymethyl methacrylate resins, polystyrene resins, styrene-acrylic copolymer resins, polyethylene resins, epoxy resins, polyurethane resins, silicone resins, polyester resins, and the like.
상기한 단계를 거쳐, 기재 필름(11) 상에 OPV부(13) 및 반사부(15)를 형성한 다음, 배선을 수행하고 밀봉하여 OPV 모듈을 제작한다. Through the above-described steps, the OPV unit 13 and the reflecting unit 15 are formed on the base film 11, and then wiring is performed to seal the OPV module.
배선은 납땜 등의 방식을 통해 이뤄질 수 있으며, 이를 통해 복수개의 단위 모듈이 전기적으로 연결된다. Wiring may be performed by soldering or the like, through which a plurality of unit modules are electrically connected.
이어, 반사부 일체형 OPV 모듈(10)을 밀봉하여 산소 및 수분을 포함하는 외부 환경으로부터 차단한다. 일례로, 상기 반사부 일체형 OPV 모듈(10) 전체를 폴리에틸렌테레프탈레이트(PET) 등의 소재로 된 투명 배리어 필름으로 라미네이팅 공정을 거쳐 제작한다. Subsequently, the reflective unit integrated OPV module 10 is sealed to block the external environment including oxygen and moisture. For example, the entire reflector-integrated OPV module 10 is fabricated through a laminating process with a transparent barrier film made of a material such as polyethylene terephthalate (PET).
이어, 모듈을 절단하여 복수 개의 단위 모듈을 하나씩 절단하여 생산한다. 이렇게 절단된 단위 모듈은 하기 설명되어질 투명 기판에 부착되어 BIPV 모듈로서 적용된다. Then, the module is cut to produce a plurality of unit modules by cutting one by one. The unit module thus cut is applied as a BIPV module attached to a transparent substrate to be described below.
BIPV 모듈BIPV Module
전술한 바의 반사부 일체형 OPV 모듈(10)은 건물의 외벽을 형성할 수 있는 BIPV 모듈에 적용 가능하다. Reflective unit integrated OPV module 10 as described above is applicable to the BIPV module that can form the outer wall of the building.
도 5는 본 발명의 일 구현예에 따른 BIPV 모듈(100)을 보여주는 도면이다. 5 illustrates a BIPV module 100 according to an embodiment of the present invention.
도 5를 참조하면, 본 발명에 따른 BIPV 모듈(100)은 프레임(300) 내에 상기 제시한 반사부 일체형 OPV 모듈(10)을 배치하되, 상기 모듈(10)이 투명 기판(200) 상에 적층된 구조를 갖는다. 이러한 BIPV 모듈(100)은 단위 모듈로 제작되어, 복수 개의 어레이 형태로 배치되어 건물의 외벽으로 사용함으로써 BIPV 시스템을 구성한다.Referring to FIG. 5, in the BIPV module 100 according to the present invention, the reflective unit integrated OPV module 10 is disposed in the frame 300, and the module 10 is stacked on the transparent substrate 200. Has a structure. The BIPV module 100 is manufactured as a unit module, arranged in a plurality of arrays, and used as an exterior wall of a building to configure a BIPV system.
특히, 본 발명의 BIPV 모듈(100)은 도 5에 나타낸 바와 같이 스트라이프 패턴으로 형성된 반사부 일체형 OPV 모듈(10)로 인한 광전 변환율을 최대로 높이기 위해, OPV부(13) 및 반사부(15)가 경사를 이루는 것이 바람직하며, 이를 위해 상기 반사부 일체형 OPV 모듈(10)을 지지하기 위한 투명 기판(200) 자체가 경사된 구조를 갖는 것이 유리하다.In particular, the BIPV module 100 of the present invention, as shown in FIG. 5, in order to maximize the photoelectric conversion rate due to the reflective unit integrated OPV module 10 formed in a stripe pattern, the OPV unit 13 and the reflector 15 Is preferably inclined, and for this purpose, it is advantageous that the transparent substrate 200 for supporting the reflective unit integrated OPV module 10 has an inclined structure.
바람직하기로, 본 발명에서 제시하는 투명 기판(200)은 벽체로 사용하기 위해 수직 방향으로 배열되는 일측(즉, 외벽측)이 횡 방향으로 연장되어 돌출 구조를 갖는다. 상기 돌출 구조는 단면부가 원형 또는 다각형의 구조일 수 있으며, 일례로 삼각형, 사각형, 오각형 이상의 돌출 구조일 수 있다. 상기 돌출 구조는 이에 적층되는 반사부 일체형 OPV 모듈(10) 내 OPV부(13)와 반사부(15)가 서로 소정의 각도를 갖는 형태면 그 어떤 형태라도 가능하다.Preferably, the transparent substrate 200 proposed in the present invention has a protruding structure in which one side (ie, the outer wall side) arranged in the vertical direction extends in the horizontal direction for use as a wall. The protruding structure may have a circular or polygonal cross-section, for example, a triangular, rectangular, or pentagonal protruding structure. The protruding structure may be any shape as long as the OPV unit 13 and the reflector 15 in the reflective unit integrated OPV module 10 stacked thereon have a predetermined angle to each other.
일례로, 본 발명의 투명 기판(200)의 돌출 구조는 도 6에 나타낸 바와 같이 단면이 삼각형을 갖는 돌출 구조일 수 있다. 이때 상기 투명 기판(200)은 벌크 상태의 기판 상에 돌출 구조가 패턴화되거나, 두 개의 투명 기판(200)이 소정 각도로 연결되어 배치함으로써 돌출 구조를 형성한 것일 수 있다.For example, the protruding structure of the transparent substrate 200 of the present invention may be a protruding structure having a triangular cross section as shown in FIG. 6. In this case, the transparent substrate 200 may have a protrusion structure patterned on a bulk substrate, or two transparent substrates 200 may be connected to each other at a predetermined angle to form a protrusion structure.
투명 기판(200)의 돌출 구조의 경사면의 길이는 상기 반사부 일체형 OPV 모듈(10)의 OPV부(13) 또는 반사부(15) 중 적어도 하나의 폭과 동일하게 형성하고, 다른 경사면의 길이는 반사부(15) 또는 OPV부(13) 중 적어도 하나의 폭과 동일하게 형성하여, 상기 투명 기판(200) 상에 OPV부(13)와 반사부(15)가 접합될 수 있도록 한다.The length of the inclined surface of the projecting structure of the transparent substrate 200 is formed to be equal to the width of at least one of the OPV portion 13 or the reflecting portion 15 of the reflective unit integrated OPV module 10, and the length of the other inclined surface is The reflector 15 or the OPV unit 13 may be formed to have the same width so that the OPV unit 13 and the reflector 15 may be bonded to the transparent substrate 200.
일례로, 도 6에 나타낸 바와 같이, 투명 기판(200)의 돌출 구조가 탑부에서 보았을 때 삼각형으로 단면화될 수 있는 프리즘 구조일 경우, 삼각형 모서리의 예각이 20 내지 90도를 가져, 상기 반사부(15)가 OPV부(13)에 입사광을 충분히 반사하고, 외벽으로 사용시 시인성을 충분히 확보할 수 있도록 한다. 특히, OPV부(13)가 배치되는 투명 기판(200)의 삼각형의 단면은 중심점의 수평 방향에 대해 0 내지 45도의 각도를 갖는 것이 바람직하다. For example, as shown in FIG. 6, when the protruding structure of the transparent substrate 200 is a prism structure that can be sectioned into a triangle when viewed from the top, the acute angle of the triangular edge has 20 to 90 degrees, and the reflecting portion The reference numeral 15 reflects the incident light to the OPV section 13 sufficiently to ensure visibility when used as an outer wall. In particular, the cross section of the triangle of the transparent substrate 200 on which the OPV unit 13 is disposed preferably has an angle of 0 to 45 degrees with respect to the horizontal direction of the center point.
상기 돌출 구조는 프리즘 구조 이외에, OPV부(13)와 반사부(15)가 소정 각도를 이루도록 배치될 수 있는 구조에 대응하는 형태면 어느 것이든 가능하며, 단면으로 보았을 때 삼각형 이외에 사각형 이상의 다각형이 가능하다. 이러한 돌출 구조의 변경에 따라 필요한 경우 OPV부(13)와 반사부(15)의 패터닝 형태가 달라질 수 있다. 예를 들면, 도 1과 같이 OPV부(13)와 반사부(15)가 하나씩 서로 반복되는 구조에서, 2단의 OPV부(13)에 대해 1단의 반사부(15)가 반복되는 구조일 수 있으며, 이의 반대 형태 또한 가능하다.The protruding structure may be any shape that corresponds to a structure in which the OPV unit 13 and the reflecting unit 15 may be disposed to form a predetermined angle, in addition to the prism structure. It is possible. According to the change of the protrusion structure, the patterning form of the OPV unit 13 and the reflector 15 may be changed if necessary. For example, in the structure in which the OPV unit 13 and the reflecting unit 15 are repeated with each other as shown in FIG. And vice versa.
본 발명에서 사용하는 투명 기판(200)은 건물의 외벽으로 사용되고 있는 유리 재질 또는 유리를 대체할 수 있는 투명 플라스틱 재질이면 어느 것이든 사용 가능하며, 본 발명에서 특별히 한정하지 않는다. The transparent substrate 200 used in the present invention can be used as long as the glass material used as the outer wall of the building or a transparent plastic material that can replace the glass, and is not particularly limited in the present invention.
일례로, 상기 투명 기판(200)으로는 강화 유리, 양면 강화 유리, 반강화유리, 양면 반강화 유리, 접합유리 또는 복층 유리일 수 있다. 다만, 태풍이나 지진 등의 자연 재해로부터 건축물을 안전하게 보호하기 위해, 외부 충격에 의해서도 안전하게 버틸 수 있도록 최소한의 두께, 일례로 12mm의 강화 유리를 기본으로 한다.For example, the transparent substrate 200 may be tempered glass, double-sided tempered glass, semi-reinforced glass, double-sided semi-reinforced glass, laminated glass or multilayer glass. However, to protect the building from natural disasters such as typhoons and earthquakes, it is based on tempered glass having a minimum thickness, for example, 12 mm, so that it can be safely held by external impact.
또한, 투명 플라스틱 재질로는 시인성으로 인한 투명성과 외벽으로서 사용하기 위한 강도(내충격성, 경도, 내구성, 등)를 동시에 갖는 재질이 가능하다. 일례로, 상기 투명 플라스틱 재질로는 전술한 바의 기재 필름(11)에서 언급된 재질이 사용될 수 있으며, 그 중에서도 폴리카보네이트, 폴리메틸메타크릴레이트, 폴리스티렌, 투명 ABS 또는 이들의 조합 재질이 사용될 수 있다. 이때 상기 투명 플라스틱 재질은 벌크 형태로 단일 패널로 제작되거나, 표면에 하드 코팅층이 형성된 2층 이상의 서로 다른 재질이 적층된 구조일 수 있다.In addition, the transparent plastic material may be a material having both transparency due to visibility and strength (impact resistance, hardness, durability, etc.) for use as an outer wall. For example, the material mentioned in the base film 11 as described above may be used as the transparent plastic material, and among these, polycarbonate, polymethyl methacrylate, polystyrene, transparent ABS, or a combination thereof may be used. have. In this case, the transparent plastic material may be manufactured in a single panel in a bulk form, or may have a structure in which two or more different materials in which a hard coating layer is formed on the surface are stacked.
또한, 투명 기판(200)의 돌출 구조는 다양한 방법이 가능하며, 일례로 유리 소재의 경우 평판형 유리 기판의 표면을 건식 또는 습식 식각 공정을 통해 식각하여 형성할 수 있다. 또한, 투명 플라스틱 재질의 경우 식각 방식보다는 몰딩에 의한 성형 방법을 통해 제조가 가능하다.In addition, the protruding structure of the transparent substrate 200 may be a variety of methods, for example, in the case of a glass material may be formed by etching the surface of the flat glass substrate through a dry or wet etching process. In addition, the transparent plastic material may be manufactured through a molding method by molding rather than an etching method.
이러한 투명 기판(200)에 부착되는 반사부 일체형 OPV 모듈(10)은 상기 투명 기판(200)의 돌출 구조에 대응하도록 도 7에 나타낸 바와 같이 아코디언 또는 자바라 형태로 폴딩한 후 상기 투명 기판(200) 상에 부착된다. The reflective unit integrated OPV module 10 attached to the transparent substrate 200 may be folded in an accordion or bellows shape as shown in FIG. 7 to correspond to the protrusion structure of the transparent substrate 200, and then the transparent substrate 200 may be used. Attached to the top.
도 8은 본 발명의 일 구현예에 따라 BIPV 모듈(100)의 제작을 보여주는 모식도이다. 이때 도 8을 보면, 반사부 일체형 OPV 모듈(10)에서 OPV부(13)와 반사부(15) 각각은 상기 돌출 구조의 상하부 면에 배치된다.8 is a schematic diagram showing the manufacturing of the BIPV module 100 according to an embodiment of the present invention. 8, in the reflective unit integrated OPV module 10, each of the OPV unit 13 and the reflector 15 is disposed on upper and lower surfaces of the protruding structure.
상기 부착은 투명 기판(200) 상에 접착제를 도포한 후 반사부 일체형 OPV 모듈(10)의 합지 후 건조를 통해 수행할 수 있다. 이때 접착제는 전술한 바의 투명 접착제 재질이 사용될 수 있다.The attachment may be performed by applying an adhesive on the transparent substrate 200 and then laminating the reflective part integrated OPV module 10 and then drying. In this case, the adhesive may be a transparent adhesive material as described above.
상기 BIPV 모듈(100)에서 반사부 일체형 OPV 모듈(10)은 도면에는 도시하지 않았으나 마이크로 인버터와 전선으로 연결되어 수집된 태양광을 전기 에너지로 변환한다. 이때 전선 연결은 상기 프레임(300)은 내측이 비어 있는 통관 구조를 통해 이루고, 전선은 프레임(300)의 내측을 통과하여 BIPV 모듈(100)과 마이크로 인버터를 연결함으로써 전선이 외부로 노출되어 건물의 미관을 해치는 것을 방지한다. 상기 마이크로 인버터는 개별 또는 복수의 단위별 설치를 위해 사용되는 것이 바람직하다.Although not shown in the figure, the integrated unit OPV module 10 of the BIPV module 100 converts the collected solar light into electrical energy by being connected to a micro inverter and a wire. At this time, the wire connection is made through the clearance structure of the frame 300 is empty inside, the wire passes through the inside of the frame 300 to connect the BIPV module 100 and the micro inverter to expose the wire to the outside of the building Prevents hurting aesthetics The micro inverter is preferably used for installation individually or in units of a plurality.
이러한 BIPV 모듈(100)은 프레임(300)의 사이에 좌우 방향으로 간격을 이루며 복수로 결합됨으로써 자가발전을 행하게 된다.The BIPV module 100 is coupled to the plurality of spaced apart in the left and right direction between the frame 300 to perform self-power generation.
도 9는 본 발명에 따른 BIPV 모듈(100)에 있어서 광 반사 경로를 보여주는 도면이다. 9 is a view showing a light reflection path in the BIPV module 100 according to the present invention.
일예로, 도 9의 (a)에 나타낸 바와 같이, BIPV 모듈(100)의 OPV부(13) 및 반사부(15) 각각에 광이 입사되고, 이때 OPV부(13)에 입사된 광은 광전 변환 메카니즘에 의해 전기를 발생시킨다. 또한, 반사부(15)에 입사된 광은 상기 반사부(15)의 표면에 존재하는 굴절 패턴(Q)에 의해 다양한 다시 반사 경로를 통해 반사되어 OPV부(13)에 입사된다. For example, as shown in FIG. 9A, light is incident on each of the OPV unit 13 and the reflector 15 of the BIPV module 100, and the light incident on the OPV unit 13 is photoelectric. Electricity is generated by the conversion mechanism. In addition, the light incident on the reflector 15 is reflected by the refraction pattern Q present on the surface of the reflector 15 through various back reflection paths and is incident on the OPV unit 13.
이러한 굴절 패턴(Q)을 갖는 반사부(15)로 인해 최적 굴절이 용이하여 빛이 어느 방향으로 입사하든지 OPV부(13)에 입사광이 효과적으로 반사되어 최적 효율로 광전 변환 효율을 확보할 수 있다. Due to the reflection part 15 having the refractive pattern Q, the optimum refraction is easy, so that the incident light is effectively reflected to the OPV unit 13 in any direction in which light is incident, thereby ensuring photoelectric conversion efficiency with optimum efficiency.
또한, 일예로, 도 9의 (b)에 나타낸 바와 같이, BIPV 모듈(100)의 OPV부(13) 및 반사부(15) 각각에 광이 입사되고, 이때 OPV부(13)에 입사된 광은 광전 변환 메카니즘에 의해 전기를 발생시킨다. 또한, 반사부(15)에 입사된 광은 상기 반사부(15)의 표면에 존재하는 굴절 패턴(Q)에 의해 다양한 다시 반사 경로를 통해 반사되어 OPV부(13)에 입사된다. In addition, as an example, as shown in FIG. 9B, light is incident on each of the OPV unit 13 and the reflecting unit 15 of the BIPV module 100, and at this time, the light is incident on the OPV unit 13. Generates electricity by means of a photoelectric conversion mechanism. In addition, the light incident on the reflector 15 is reflected by the refraction pattern Q present on the surface of the reflector 15 through various back reflection paths and is incident on the OPV unit 13.
이러한 굴절 패턴(Q)을 갖는 반사부(15)로 인해 최적 굴절이 용이하여 빛이 어느 방향으로 입사하든지 OPV부(13)에 입사광이 효과적으로 반사되어 최적 효율로 광전 변환 효율을 확보할 수 있다. Due to the reflection part 15 having the refractive pattern Q, the optimum refraction is easy, so that the incident light is effectively reflected to the OPV unit 13 in any direction in which light is incident, thereby ensuring photoelectric conversion efficiency with optimum efficiency.
특히, 본 발명에서 제시하는 BIPV 모듈(100)의 다양한 배치를 통해 건축물 자체에 디자인을 형상화할 수 있다. 이러한 디자인으로 인해 건축물에 디자인을 주고 다양한 느낌의 개성을 표현할 수 있어 건축물의 아름다움을 극대화할 수 있다.In particular, it is possible to shape the design in the building itself through various arrangements of the BIPV module 100 proposed in the present invention. This design gives the building a design and can express various personalities, maximizing the beauty of the building.

Claims (13)

  1. 기재 필름;Base film;
    상기 기재 필름 상에 일 방향으로 연장된 스트라이프 패턴 형상으로 형성된 유기태양전지부; 및An organic solar cell unit formed in a stripe pattern shape extending in one direction on the base film; And
    상기 기재 필름 상에 상기 유기태양전지부가 형성되지 않는 나머지 영역에 이와 동일 방향으로 연장된 스트라이프 패턴 형상으로 형성된 반사부를 포함하되, It includes a reflector formed in a stripe pattern extending in the same direction in the remaining area in which the organic solar cell unit is not formed on the base film,
    상기 반사부는 굴절률 차이에 의해 유기태양전지부에 입사광을 반사시킬 수 있는 반사층 및 입사광을 유기태양전지부로 반사시키기 위해 표면에 굴절 패턴이 형성된 반사층 중에서 어느 하나 이상의 반사층을 포함하는 것을 특징으로 하는 반사부 일체형 유기태양전지 모듈.The reflector may include at least one reflective layer including a reflective layer capable of reflecting incident light to the organic solar cell part due to a difference in refractive index, and a reflective layer having a refractive pattern formed on a surface thereof to reflect the incident light to the organic solar cell part. Integrated organic solar cell module.
  2. 제1항에 있어서, The method of claim 1,
    상기 굴절률 차이에 의해 유기태양전지부에 입사광을 반사시킬 수 있는 반사층은 적어도 하나의 필름 내부에 광 반사 또는 광 산란 입자를 포함하는 단층 또는 다층 필름; The reflective layer capable of reflecting incident light to the organic solar cell unit due to the refractive index difference may include a single layer or a multilayer film including light reflection or light scattering particles in at least one film;
    서로 다른 굴절률을 갖는 필름이 2층 이상 적층된 다층 필름; 또는 A multilayer film in which two or more layers of films having different refractive indices are laminated; or
    서로 다른 굴절률을 갖는 층이 적층된 다층 필름을 갖되, 이들 중 어느 하나의 층에 광반사 또는 광산란 입자가 존재하는 필름을 구비한 다층 필름인 것을 특징으로 하는 반사부 일체형 유기태양전지 모듈.A multilayer integral film solar cell module having a multilayer film having layers having different refractive indices, and having a film having light reflection or light scattering particles present in any one of these layers.
  3. 제2항에 있어서, The method of claim 2,
    상기 광반사 또는 광산란 입자는 유리, 무기 입자 및 유기 입자로 이루어진 군에서 선택된 1종 이상의 재질을 포함하는 것을 특징으로 하는 반사부 일체형 유기태양전지 모듈.The light reflection or light scattering particles is a reflection unit integrated organic solar cell module, characterized in that it comprises one or more materials selected from the group consisting of glass, inorganic particles and organic particles.
  4. 제3항에 있어서, The method of claim 3,
    상기 무기 입자는 지르코니아, 티타니아, 세리아, 알루미나, 산화철, 바나디아, 산화안티몬, 산화주석 및 알루미나/실리카로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 반사부 일체형 유기태양전지 모듈.The inorganic particles are at least one member selected from the group consisting of zirconia, titania, ceria, alumina, iron oxide, vanadia, antimony oxide, tin oxide, and alumina / silica.
  5. 제3항에 있어서, The method of claim 3,
    상기 유기 입자는 투명 고분자 재질을 포함하는 것을 특징으로 하는 반사부 일체형 유기태양전지 모듈. The organic solar cell module of the reflector unit, characterized in that the organic particles comprise a transparent polymer material.
  6. 제1항에 있어서, The method of claim 1,
    상기 굴절 패턴은 양각 또는 음각 패턴인 것을 특징으로 하는 반사부 일체형 유기태양전지 모듈.The refraction pattern integrated organic solar cell module, characterized in that the embossed or intaglio pattern.
  7. 제1항에 있어서, The method of claim 1,
    상기 굴절 패턴은 첨탑형(jagged), 다면체(multifaceted), 각추형(pyramidal), 원뿔형(conical) 또는 반구형(semi-rounded)인 것을 특징으로 하는 반사부 일체형 유기태양전지 모듈. The refractive pattern is an organic solar cell module, characterized in that the jagged, polyhedral (multifaceted), pyramidal, conical (conical) or semi-rounded.
  8. 제6항에 있어서, The method of claim 6,
    상기 양각 또는 음각 굴절 패턴이 형성된 반사층은 The reflective layer on which the embossed or negative refraction pattern is formed
    하나의 필름 내부에 광 반사 또는 광 산란 입자를 포함하는 단층 또는 다층 필름; A single layer or multilayer film comprising light reflecting or light scattering particles inside one film;
    서로 다른 굴절률을 갖는 필름이 2층 이상 적층된 다층 필름; 또는 A multilayer film in which two or more layers of films having different refractive indices are laminated; or
    서로 다른 굴절률을 갖는 층이 적층된 다층 필름을 갖되, 이들 중 어느 하나의 층에 광반사 또는 광산란 입자가 존재하는 필름을 구비한 다층 필름;으로 형성되는 것을 특징으로 하는 반사부 일체형 유기태양전지 모듈.Reflective unit-integrated organic solar cell module, characterized in that formed into a multi-layer film having a multilayer film having a layer having a different refractive index laminated, the film having light reflection or light scattering particles present in any one of these layers; .
  9. 제1항에 있어서, The method of claim 1,
    상기 기재 필름은 투명 고분자 재질인 것을 특징으로 하는 반사부 일체형 유기태양전지 모듈.The base film is a reflection unit integrated organic solar cell module, characterized in that the transparent polymer material.
  10. 제1항에 있어서, The method of claim 1,
    상기 유기태양전지부는 상기 기재 필름 상에 음극, 광활성층 및 양극이 순차적으로 적층된 것을 특징으로 하는 반사부 일체형 유기태양전지 모듈.The organic solar cell unit is a reflective unit integrated organic solar cell module, characterized in that the cathode, photoactive layer and the anode are sequentially stacked on the base film.
  11. 제1항에 있어서, The method of claim 1,
    상기 반사층은 투명 고분자 재질을 포함하는 것을 특징으로 하는 반사부 일체형 유기태양전지 모듈.The reflective layer integrated organic solar cell module, characterized in that the transparent polymer material.
  12. 건물의 외벽을 형성할 수 있는 BIPV 모듈(건물일체형 태양광발전, building integrated photo voltaic) 로서,As a BIPV module (building integrated photo voltaic) that can form the outer wall of a building,
    프레임 내에 횡 방향으로 연장되어 돌출 구조를 갖는 투명 기판; 및 상기 투명 기판 상에 제1항에 따른 반사부 일체형 유기태양전지 모듈이 장착하되, 유기태양전지부와 반사부가 상하로 배열되도록 배치하는 것을 특징으로 하는 BIPV 모듈.A transparent substrate extending laterally in the frame and having a protruding structure; And a reflective unit integrated organic solar cell module according to claim 1 mounted on the transparent substrate, wherein the organic solar cell unit and the reflective unit are arranged up and down.
  13. 제12항에 있어서, The method of claim 12,
    상기 돌출 구조는 이에 장착된 유기태양전지부와 반사부가 소정 각도로 배치될 수 있도록 원형 또는 다각형의 단면 구조를 갖는 것을 특징으로 하는 BIPV 모듈. The protruding structure is a BIPV module, characterized in that it has a circular or polygonal cross-sectional structure so that the organic solar cell unit and the reflecting unit mounted thereon may be disposed at a predetermined angle.
PCT/KR2017/015448 2016-12-28 2017-12-26 Organic solar cell module and building-integrated photovoltaic module having same WO2018124683A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020160181542A KR101948993B1 (en) 2016-12-28 2016-12-28 Organic solar cell module and building integrated photo voltaic module comprising the same
KR10-2016-0181542 2016-12-28
KR10-2016-0181544 2016-12-28
KR1020160181544A KR101948994B1 (en) 2016-12-28 2016-12-28 Organic solar cell module and building integrated photo voltaic module comprising the same

Publications (1)

Publication Number Publication Date
WO2018124683A1 true WO2018124683A1 (en) 2018-07-05

Family

ID=62711018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015448 WO2018124683A1 (en) 2016-12-28 2017-12-26 Organic solar cell module and building-integrated photovoltaic module having same

Country Status (1)

Country Link
WO (1) WO2018124683A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070193620A1 (en) * 2006-01-17 2007-08-23 Hines Braden E Concentrating solar panel and related systems and methods
KR20100050791A (en) * 2008-11-06 2010-05-14 (주)엘지하우시스 Functional sheet and solar cell module comprising the same
JP5301685B2 (en) * 2009-02-23 2013-09-25 テンケーソーラー インコーポレイテッド Highly efficient renewable solar energy system
KR101466298B1 (en) * 2009-01-15 2014-12-01 엘지전자 주식회사 Sollar Cell Having Diffusion Film
KR101481534B1 (en) * 2012-12-21 2015-01-14 전자부품연구원 Building integrated solar cell module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070193620A1 (en) * 2006-01-17 2007-08-23 Hines Braden E Concentrating solar panel and related systems and methods
KR20100050791A (en) * 2008-11-06 2010-05-14 (주)엘지하우시스 Functional sheet and solar cell module comprising the same
KR101466298B1 (en) * 2009-01-15 2014-12-01 엘지전자 주식회사 Sollar Cell Having Diffusion Film
JP5301685B2 (en) * 2009-02-23 2013-09-25 テンケーソーラー インコーポレイテッド Highly efficient renewable solar energy system
KR101481534B1 (en) * 2012-12-21 2015-01-14 전자부품연구원 Building integrated solar cell module

Similar Documents

Publication Publication Date Title
JP4966653B2 (en) Tandem photovoltaic cell with shared organic electrode and method for manufacturing the same
US20150228919A1 (en) Organic photovoltaic cell and method for manufacturing the same
WO2014200312A1 (en) Organic photovoltaic cell and method for manufacturing same
WO2017105053A1 (en) Monolithic-type module of perovskite solar cell, and manufacturing method therefor
WO2011004950A1 (en) Solar cell module having interconnector and method of fabricating the same
WO2018012825A1 (en) Organic-inorganic composite solar cell
WO2014200309A1 (en) Organic photovoltaic cell and method for manufacturing same
JP2007005620A (en) Organic thin film solar cell
WO2021201614A1 (en) Method for preparing patterned metal nanosphere array layer, method for preparing electronic device comprising same, and electronic device prepared thereby
WO2015167225A1 (en) Organic solar cell and manufacturing method therefor
US20230309329A1 (en) Solar Cell Lamination
WO2009012465A9 (en) Wrapped solar cell
WO2020009506A1 (en) Organic solar cell including dual layer type charge transport layer having enhanced photostability, and manufacturing method therefor
WO2021107184A1 (en) Monolithic tandem solar cell and method for producing same
US9269916B2 (en) Organic thin-film solar cell module and sub-module
WO2017217727A1 (en) Organic solar cell and method for manufacturing same
WO2015163658A1 (en) Stacked organic solar cell
KR101948993B1 (en) Organic solar cell module and building integrated photo voltaic module comprising the same
CN104428898B (en) The filter system of Photoactive component
JP6791168B2 (en) Photoelectric conversion element and solar cell module
WO2016031293A1 (en) Organic thin-film solar cell and method for manufacturing same, and electronic device
WO2018016886A1 (en) Method for manufacturing laminate for organic-inorganic hybrid solar cell and method for manufacturing organic-inorganic hybrid solar cell
WO2018124683A1 (en) Organic solar cell module and building-integrated photovoltaic module having same
CN113826230A (en) Transparent electrode, method for producing transparent electrode, and photoelectric conversion element provided with transparent electrode
WO2011065700A2 (en) Solar cell and fabrication method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887231

Country of ref document: EP

Kind code of ref document: A1