WO2018124163A1 - Toilet - Google Patents

Toilet Download PDF

Info

Publication number
WO2018124163A1
WO2018124163A1 PCT/JP2017/046849 JP2017046849W WO2018124163A1 WO 2018124163 A1 WO2018124163 A1 WO 2018124163A1 JP 2017046849 W JP2017046849 W JP 2017046849W WO 2018124163 A1 WO2018124163 A1 WO 2018124163A1
Authority
WO
WIPO (PCT)
Prior art keywords
toilet
water
overflow water
unit
imaging unit
Prior art date
Application number
PCT/JP2017/046849
Other languages
French (fr)
Japanese (ja)
Inventor
宏次 小栗
晴生 山▲崎▼
季朗 嶋津
治樹 河中
直伸 辻元
千鶴 本多
Original Assignee
株式会社Lixil
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Lixil filed Critical 株式会社Lixil
Publication of WO2018124163A1 publication Critical patent/WO2018124163A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D11/00Other component parts of water-closets, e.g. noise-reducing means in the flushing system, flushing pipes mounted in the bowl, seals for the bowl outlet, devices preventing overflow of the bowl contents; devices forming a water seal in the bowl after flushing, devices eliminating obstructions in the bowl outlet or preventing backflow of water and excrements from the waterpipe
    • E03D11/02Water-closet bowls ; Bowls with a double odour seal optionally with provisions for a good siphonic action; siphons as part of the bowl
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D9/00Sanitary or other accessories for lavatories ; Devices for cleaning or disinfecting the toilet room or the toilet bowl; Devices for eliminating smells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow

Definitions

  • the present invention relates to a toilet bowl.
  • toilets having a function of measuring urine volume have been desired from the viewpoint of user health management and the like.
  • a toilet unit having a function of estimating the amount of urine based on the fluctuation of the water level of a ball (toilet bowl, water storage unit) that receives a user's urine has been proposed (for example, see Patent Document 1). .
  • Patent Document 1 estimates the amount of urine based on the water level fluctuation in the toilet bowl, there is a problem that the estimation accuracy varies when the toilet bowl shape varies greatly. there were. In particular, in the toilet bowl made of earthenware, the above-mentioned problem becomes remarkable because a large variation occurs in the shape after manufacture even in the same type.
  • the shape of the toilet bowl is also greatly different, and there is a problem that an algorithm needs to be set for each shape when the technology is applied to multiple types of products.
  • the technique disclosed in Patent Document 1 requires a control mechanism that adjusts the water level of the stored water in the toilet bowl, and thus has a problem that the entire system becomes complicated.
  • the technique disclosed in Patent Document 1 needs to adjust the water level before the user urinates, the user must wait for urination until the water level is adjusted, which is inconvenient. There was also.
  • the present invention has been made in view of the above, and an object thereof is to provide a toilet that can accurately measure the amount of urine regardless of the shape of the toilet bowl.
  • the present invention is connected to a toilet bowl (for example, a toilet bowl 10 described later) having a reservoir (for example, a reservoir 11 described later) and a bottom of the reservoir.
  • a toilet drainage channel for example, a toilet drainage channel 13 to be described later
  • a sealed water part for example, a part of a rising channel 15 to be described later
  • overflow water for example, overflow water F to be described later
  • Measuring unit for example, measuring unit 50 described later
  • the measuring unit is arranged in the toilet drainage channel and can capture the overflow water overflowing from the sealed water unit (for example, ,
  • a toilet for example, a flushing later described
  • a calculation unit for example, a calculation unit 130 to be described later
  • the toilet drainage channel is configured such that the overflow water imaged by the imaging unit flows along an inner surface of the toilet drainage channel.
  • the toilet drainage channel includes an ascending channel (for example, an ascending channel 15 described later) connected to the water reservoir, and a downstream end of the ascending channel , And a part of which is configured to include a descending channel (for example, a below-described descending channel 16) configured by a drain socket (for example, a below-mentioned drain socket 20). It is preferable to arrange in the socket.
  • an ascending channel for example, an ascending channel 15 described later
  • a downstream end of the ascending channel And a part of which is configured to include a descending channel (for example, a below-described descending channel 16) configured by a drain socket (for example, a below-mentioned drain socket 20). It is preferable to arrange in the socket.
  • the toilet drainage channel is provided with a groove (for example, a groove 21 to be described later) provided at an approximately center in the width direction on the bottom surface and extending from the upstream side toward the downstream side at least in the imaging region. It is preferable to have.
  • a groove for example, a groove 21 to be described later
  • the toilet drainage channel preferably has a scale display unit (for example, a scale display unit 25 described later) formed at least in the imaging region and representing a water level. .
  • a scale display unit for example, a scale display unit 25 described later
  • the imaging unit is disposed to face the surface of the overflow water.
  • the toilet drainage channel is configured to discharge the overflow water into the air so as to draw a substantially parabola at a predetermined position, and the imaging unit draws the substantially parabola.
  • the overflowing water released into the air is imaged, and the calculation unit calculates the amount of urine based on the image information of the overflowing water released into the air so as to draw a substantially parabola imaged by the imaging unit. Is preferred.
  • the toilet drainage channel is formed so as to protrude from the bottom surface at the most downstream portion of the sealing portion, and the convex portion (for example, a convex portion 70 described later) that discharges the overflow water into the air. It is preferable to have.
  • the imaging unit is arranged to face a side surface of the overflow water discharged into the air so as to draw a substantially parabola.
  • the toilet further includes a cleaning mechanism capable of cleaning the imaging unit.
  • the toilet preferably further includes an illumination mechanism (for example, an illumination mechanism 30 described later) that is disposed in the toilet drainage channel and illuminates the overflow water.
  • an illumination mechanism for example, an illumination mechanism 30 described later
  • the measurement unit measures the overflow water overflowing from the sealed water portion after overflowing the overflow water from the sealed water portion before the measurement. It is preferable to be configured to do so.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is a control block diagram of the flush toilet in 1st Embodiment. It is a figure explaining the urine volume measurement operation
  • FIG. 1 is a cross-sectional view showing a flush toilet in the first embodiment.
  • 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is a control block diagram of the flush toilet in the first embodiment.
  • FIG. 4 is a diagram for explaining the urine volume measurement operation in the first embodiment.
  • FIG. 5 is a flowchart for explaining the urine volume measurement operation in the first embodiment.
  • the flush toilet 1 includes a toilet bowl 10 having a reservoir 11, a water supply unit 12, a toilet drainage channel 13, an illumination mechanism 30, and a measurement unit 50 having an imaging unit 40, Is provided.
  • the flush toilet 1 in this embodiment is a neo-vortex type.
  • the toilet bowl 10 is formed in a substantially bowl shape.
  • the toilet bowl 10 includes an opening 10a formed on the upper surface and a water storage portion 11 formed on the bottom side.
  • the opening 10 a is an opening for introducing urine and filth into the water reservoir 11.
  • the opening 10a is changed between an open state and a closed state by a lid (not shown).
  • the water storage part 11 is a part for receiving urine and filth, and a part for storing cleaning water as the water storage W.
  • a downstream passage 15 in the toilet drainage channel 13, which will be described later, is continuously arranged downstream of the reservoir 11. That is, the water reservoir 11 is constituted by a portion from the surface of the water reservoir to the entrance of the ascending flow path 15. In the present embodiment, the water reservoir 11 is full of water when used together with a rising channel 15 described later.
  • the water supply unit 12 supplies cleaning water to the toilet bowl 10.
  • the water supply part 12 is arrange
  • the toilet drainage channel 13 is connected to the bottom of the reservoir 11.
  • the toilet drainage 13 discharges urine and filth in the toilet bowl 10 together with the washing water.
  • the toilet drainage channel 13 is a portion through which overflow water F corresponding to urination flows.
  • the toilet drainage channel 13 is configured such that overflow water F imaged by the imaging unit 40 described later flows along the inner surface of the toilet drainage channel 13.
  • the inner surface includes a standing surface and a bottom surface.
  • the overflow water F flows along these standing surfaces and the bottom surface according to the inclination of the toilet drainage channel 13.
  • the overflow water F flows along the bottom surface of the toilet drainage channel 13 (a drainage socket 20 described later).
  • the toilet drainage channel 13 includes an ascending channel 15 and a descending channel 16.
  • the ascending flow path 15 is formed continuously downstream of the water reservoir 11 and extends upward.
  • the ascending channel 15 is disposed on the rear side (left side in FIG. 1) of the toilet bowl 10.
  • the sealed water part is constituted by a part of the ascending channel 15. In the state where the ascending flow path 15 is sealed with water, the sealed portion and the water storage portion 11 are in a full state. Since the sealed water part and the water storage part 11 are full, the overflow water F overflowed by urination corresponds to the amount of urine.
  • the descending flow path 16 is formed continuously downstream of the ascending flow path 15 and extends toward the rear side of the toilet bowl 10.
  • a part of the descending flow path 16 is constituted by a drain socket 20.
  • the drain socket 20 is an area where the overflow water F flows.
  • the drain socket 20 is a portion where the illumination mechanism 30 and the imaging unit 40 are arranged.
  • the drain socket 20 is a portion where the overflow water F is illuminated by the illumination mechanism 30 and imaged by the imaging unit 40.
  • the illumination mechanism 30 and the imaging unit 40 will be described in detail later.
  • the drain socket 20 is inclined downward and extends toward the downstream side. That is, the drain socket 20 is disposed so as to extend obliquely downward.
  • the drain socket 20 has a groove 21 provided at a substantially center in the width direction on the bottom surface and extending from the upstream side toward the downstream side.
  • the groove 21 is an area where the overflow water F flows.
  • the groove 21 has a V-shaped cross section perpendicular to the direction in which the groove extends.
  • the groove 21 of the present embodiment is configured such that the cross-sectional shape of the recess formed by the groove is an equilateral triangle when viewed from the direction in which the groove extends.
  • the groove 21 is formed over the entire area of the drain socket 20 in the longitudinal direction.
  • the groove 21 of the present embodiment is formed inside the drainage socket 20 constituting the toilet drainage channel 13. More specifically, the groove 21 is formed inside the drain socket 20 in the thick bottom portion where the thickness of the bottom wall is set large. Thereby, since the convex part which protrudes outside from the outer surface of the drain socket 20 is not formed, for example, the downstream side is higher at the connection portion with the drain pipe connected to the downstream end of the drain socket 20. No step is formed. For this reason, it is possible to avoid sewage, filth and residue on the stepped portion.
  • the drain socket 20 has a scale display unit 25 formed in an imaging region where the imaging unit 40 described later overflows and images the water F.
  • the scale display portion 25 is formed on the inclined side surface of the groove 21 along the direction in which the groove 21 extends.
  • the scale display unit 25 represents the water level, and contributes to simplification and higher accuracy of urine volume calculation in the calculation unit 130 described later.
  • the drain socket 20 is made of resin, for example. Therefore, the drain socket 20 having the same shape can be manufactured with high accuracy. That is, the water level of the overflow water F flowing in the groove 21 of the drain socket 20 becomes constant according to the flow rate of the overflow water F regardless of the difference in shape in the toilet bowl 10 and the variation after manufacture.
  • an illumination mechanism 30 is disposed in the drain socket 20 (toilet drain 13).
  • the illumination mechanism 30 illuminates the overflow water F.
  • the illumination mechanism 30 illuminates the surface (upper surface) of the overflow water F.
  • the illumination mechanism 30 is arranged to brightly illuminate an area captured by the imaging unit 40 in the overflow water F.
  • the measurement unit 50 includes an imaging unit 40 and a calculation unit 130 (described later).
  • the measurement part 50 is comprised so that the overflow water F which overflows from a sealing part can be measured.
  • the imaging unit 40 is disposed in the toilet drainage channel 13 and is configured by, for example, a camera.
  • the imaging unit 40 is disposed in the drain socket 20.
  • the imaging unit 40 is disposed in the drain socket 20 so as to face the surface (upper surface) of the overflow water F flowing through the groove 21.
  • the imaging unit 40 images the overflow water F overflowing from the sealed portion.
  • the imaging unit 40 images, for example, a change in the water level of the overflow water F.
  • the imaging unit 40 images the surface (upper surface) of the overflow water F and the scale display unit 25. Then, the imaging unit 40 outputs image information obtained by imaging to the calculation unit 130 described later.
  • the calculation unit 130 (see FIG. 3) is configured to be able to calculate the urine volume based on image information captured by the imaging unit 40.
  • the calculation unit 130 may be disposed in the same device integrally with the imaging unit 40, or may be included in a control unit separate from the imaging unit 40. In the present embodiment, the calculation unit 130 is included in the control unit 100 that is separate from the imaging unit 40.
  • the flush toilet 1 includes an illumination mechanism 30 and an imaging unit 40 that constitute the measuring unit 50, a control unit 100, and a storage unit 200.
  • the illumination mechanism 30 and the imaging unit 40 are as described above.
  • the control unit 100 includes an illumination control unit 110, an imaging control unit 120, and a calculation unit 130.
  • the illumination control unit 110 controls turning on / off of the illumination mechanism 30. For example, when the use of the flush toilet 1 is detected by a sensor (not shown), the illumination control unit 110 controls the illumination mechanism 30 to be lit.
  • the image capturing control unit 120 controls the image capturing start / image capturing end of the image capturing unit 40. For example, when the use of the flush toilet 1 is detected by a sensor (not shown), the imaging control unit 120 controls the imaging unit 40 to start imaging.
  • the calculation unit 130 calculates the urine volume based on the image information from the imaging unit 40.
  • the calculation unit 130 extracts information on the scale display unit 25 and the water level of the overflow water F from the acquired image information, and calculates the flow rate and the change in the flow rate. Then, the calculation unit 130 calculates the urine volume based on the flow rate information and the time information.
  • it also serves as a part of the measurement unit 50. Details of the calculation unit 130 will be described later.
  • the storage unit 200 stores various types of information and information related to the urine volume output from the calculation unit 130.
  • the information on the amount of urine stored in the storage unit 200 is, for example, a display unit provided in a functional unit (washing device or the like) disposed in the rear part of the flush toilet 1 or a display unit of a remote controller (not shown). Is displayed.
  • step ST10 the user starts urination.
  • a sensor (not shown) detects a user, the illumination mechanism 30 starts illumination, and the imaging unit 40 starts imaging.
  • the overflow water F is not flowing into the groove 21 as shown in FIG.
  • step ST20 the overflow water F starts to flow through the groove 21 of the drain socket 20 by urination.
  • the flow rate of the overflow water F from the start to the end of urination changes from (b) in FIG. 4 to (e) in FIG. That is, the water level of the overflow water F changes with time.
  • step ST30 the imaging unit 40 that has already started imaging continuously images the water level (change) of the overflow water F and the scale display unit 25. Then, the imaging unit 40 outputs the acquired image information to the calculation unit 130.
  • step ST40 the calculation unit 130 calculates the urine volume based on the image information from the imaging unit 40. Specifically, as described above, the calculation unit 130 extracts information on the scale display unit 25 and the water level of the overflow water F from the acquired image information, and calculates the flow rate and the change in the flow rate. Then, the calculation unit 130 calculates the urine volume based on the flow rate information and the time information.
  • the calculation process in step ST40 will be described in detail later.
  • step ST50 the calculation unit 130 outputs the calculated urine volume information to the storage unit 200. Then, the storage unit 200 stores the urine volume information acquired from the calculation unit 130. Thus, the present process is terminated.
  • FIGS. 6 to 9 are diagrams for explaining a calculation model of calculation processing by the calculation unit 130 in the present embodiment.
  • the calculation process by the calculation unit 130 is based on a multiple triangular prism model.
  • the overflow water F flowing in the groove 21 is constituted by an overlap of a plurality of triangular prisms.
  • the sum total of the volume of a some triangular prism is calculated
  • the cross-sectional shape of the recess formed by the groove is an equilateral triangle when the groove 21 is viewed from the direction in which the groove extends.
  • the overflow water F flowing in the groove 21 is viewed from the direction in which the groove 21 extends, it becomes a regular triangle as shown in FIG. 7, where the height of the regular triangle is h and the length of the base is b.
  • the height h of the equilateral triangle is obtained. That is, the cross-sectional area S is obtained from the image information of the imaging unit 40.
  • FIG. 12 is a diagram illustrating a binary image of an image captured by the imaging unit 40 in the present embodiment.
  • step ST401 a background image is read. Reading of the background image is executed in advance when the overflow water F is not flowing and is not used. Subsequently, in step ST402, noise processing is performed on the background image read in ST401 using a Gaussian filter. Thereby, the noise of the background image is removed.
  • step ST403 the average luminance value of the background image subjected to noise processing in step ST402 is calculated. Specifically, the luminance value for each pixel of the background image is obtained, and the average value is calculated.
  • step ST404 pattern classification of the background image is executed. Specifically, the background image is classified by pattern based on the average luminance value calculated in step ST403. Note that the processing from the above steps ST401 to ST404 is executed at a predetermined cycle in advance when the flush toilet 1 is not used.
  • step ST405 reading of a liquid image (image when overflowing water F flows in the groove 21) is executed.
  • the reading of the liquid image is executed when the flush toilet 1 is used.
  • step ST406 noise processing is executed by a Gaussian filter on the liquid image read in ST405. Thereby, the noise of the liquid image is removed.
  • step ST407 an average luminance value of the liquid image subjected to noise processing in step ST406 is calculated. Specifically, the luminance value for each pixel of the liquid image is obtained, and the average value is calculated.
  • step ST408 the optimum background pattern is read. Specifically, a background pattern having an average luminance value closest to the average luminance value of the liquid image is selected from the background images classified by pattern.
  • step ST409 a difference image is generated. Specifically, a difference image between the liquid image subjected to noise processing in step ST406 and the background image of the optimum background pattern selected in step ST408 is generated. Subsequently, in step ST410, the difference image generated in step ST409 is binarized to obtain a binary image as shown in FIG.
  • step ST411 the region of interest ROI in the binary image acquired in step ST410 is cut out.
  • the region surrounded by the two-dot chain line is the region of interest centered on the central axis of the groove 21, this region is cut out as the region of interest ROI.
  • the number of pixels in the horizontal direction u ′ is 1280, and the vertical direction v ′.
  • the number of pixels is 730.
  • the start point is appropriately set so that the center of the coordinate in the horizontal direction coincides with the center axis of the groove 21. Then, a region with less noise is visually determined, and a 300 ⁇ 200 region of interest ROI is determined from the periphery thereof.
  • the range of the region of interest ROI is determined according to the width of the groove 21 that appears in the image. That is, when the camera is installed at a height of 10 cm from the groove 21, a range of 300 ⁇ 200 is set, but the range of the region of interest ROI is set according to the height at which the camera is installed.
  • step ST412 the vertical direction v 'is cut out by 200 pixels, and in step ST413, the horizontal direction u' is cut out by 300 pixels.
  • the cut out image of the region of interest ROI is as shown in FIG.
  • step ST414 in the image cut out in step ST413, the u ′ coordinate (most_left [v]) of the leftmost white pixel among the white pixels existing in the v ′ row of the region of interest ROI is changed to most_left [ v] is the smallest value (the u ′ coordinate of the leftmost white pixel in the ROI) (min (white_pix)).
  • the u ′ coordinate (most_right [v]) of the rightmost white image among the white pixels existing in the v ′ line of the region of interest ROI is set to the largest value in most_right [v] (in the ROI).
  • the rightmost u ′ coordinate of the white pixel (max (white_pix)).
  • step ST415 the standard deviation of most_left [v] (std_most_left) and the standard deviation of most_right [v] (std_most_right) are calculated. These standard deviations are used to calculate the liquid width, as will be described later.
  • step ST416 it is determined whether or not the standard deviation (std_most_left) of the coordinates of the leftmost pixel calculated in step ST415 is smaller than the standard deviation (std_most_right) of the coordinates of the rightmost pixel. If this determination is YES, the process proceeds to step ST417, and the average value (mean_most_left) of the leftmost pixel (most_left [v]) having a smaller standard deviation and a smaller variation from the center u ′ coordinate 150 of the region of interest ROI is calculated. The absolute value (
  • step ST4108 the average value (mean_most_right) of the rightmost pixel (most_right [v]) having a smaller standard deviation and a smaller variation from the center u ′ coordinate 150 of the region of interest ROI. ) Is subtracted from the absolute value (
  • the half-value width (half_width) calculation method is not limited to the above.
  • the half width (half_width)
  • 150-min using the u ′ coordinate ( min) of the white pixel present at the leftmost end of the liquid width.
  • the liquid width may be calculated as
  • the full width at half maximum means the full width at half maximum when the overflow water F is viewed from above (corresponding to the length b of the bottom side).
  • step ST419 the half-value width acquired in step ST417 or 418 is set to a width when the overflow water F is viewed from above (width, corresponding to the above-described bottom length b).
  • the flush toilet 1 includes a toilet bowl 10 having a reservoir 11, a toilet drainage channel 13 connected to the bottom of the reservoir 11 and having a sealed portion (upflow channel 15), and sealed water And a measuring unit 50 capable of measuring the overflow water F overflowing from the unit.
  • the measurement unit 50 can calculate the amount of urine based on the image capturing unit 40 that is disposed in the toilet drainage channel 13 and can capture the overflow water F that overflows from the sealing unit, and image information captured by the image capturing unit 40. And a calculation unit 130.
  • the urine volume is calculated regardless of the shape of the toilet bowl 10 because the urine volume is calculated based on the image information obtained by imaging the overflow water F that is not affected by the difference in the toilet bowl shape.
  • a flush toilet 1 capable of measuring with high accuracy can be provided.
  • the toilet drainage channel 13 is configured such that the overflow water F imaged by the imaging unit 40 flows along the inner surface of the toilet drainage channel 13.
  • the overflow water F imaged by the imaging unit 40 flows along the inner surface of the toilet drainage channel 13.
  • region by the imaging part 40 in the toilet drainage channel 13 inclines below and extends as it goes downstream.
  • the overflow water F flows naturally and stably toward the downstream.
  • the flush toilet 1 can grasp
  • the toilet drainage channel 13 is connected to the rising channel 15 connected to the water reservoir 11 and the lower channel connected to the downstream end of the rising channel 15, and a part thereof is constituted by the drain socket 20.
  • the imaging unit 40 is disposed in the drain socket 20. According to this embodiment, the imaging part 40 can be arrange
  • the toilet drainage channel 13 has a groove 21 provided at approximately the center in the width direction on the bottom surface and extending from the upstream side toward the downstream side at least in the imaging region. According to this embodiment, since the overflow water F can be collected in the groove 21, it is easy to grasp the water level change of the overflow water F. Thereby, the flush toilet 1 can recognize the water level change of the overflow water F with higher accuracy, and can calculate the urine volume with higher accuracy.
  • the groove 21 has a V-shaped cross section perpendicular to the direction in which the groove 21 extends. According to this embodiment, since the groove 21 in which the overflow water F gathers has a V-shaped cross section, it is easier to grasp the water level change of the overflow water F. Thereby, the flush toilet 1 can recognize the water level change of the overflow water F with higher accuracy, and can calculate the urine volume with higher accuracy.
  • the toilet drainage channel 13 has the scale display part 25 formed in an imaging area and showing the water level.
  • the scale display unit 25 can more reliably grasp the water level change of the overflow water F.
  • the flush toilet 1 can recognize the water level change of the overflow water F with higher accuracy, and can calculate the urine volume with higher accuracy.
  • the imaging unit 40 is disposed to face the surface of the overflow water F. According to this embodiment, since the overflow water F is imaged from above, it is easy to grasp the water level of the overflow water F. Thereby, the flush toilet 1 can calculate the amount of urine with higher accuracy.
  • FIG. 13 is a diagram showing a modification of the first embodiment and showing an example when there are a plurality of illumination mechanisms.
  • FIG. 13A shows an example in which two lights are arranged along the direction in which overflowing water F flows.
  • B shows an example in which two lights are arranged along a direction orthogonal to the direction in which the overflowing water F flows.
  • the illumination mechanism 30 and the illumination mechanism 31 are arrange
  • the illumination mechanism 30 and the illumination mechanism 31 are disposed with the imaging unit 40 interposed therebetween.
  • the surface of the overflow water F is illuminated by two illumination mechanisms. Therefore, the imaging unit 40 can capture the water level of the overflow water F and the change in the water level more accurately. Thereby, the flush toilet can calculate the amount of urine more accurately.
  • the illumination mechanism 30 and the illumination mechanism 31 are arranged along a direction (width direction) orthogonal to the direction in which the overflow water F flows.
  • the illumination mechanism 30 and the illumination mechanism 31 are disposed with the imaging unit 40 interposed therebetween.
  • the predetermined imaging position on the surface of the overflow water F is intensively illuminated by two illumination mechanisms. Therefore, the imaging unit 40 can capture the water level of the overflow water F and the change in the water level more accurately. Thereby, the flush toilet can calculate the amount of urine more accurately.
  • FIG. 14 is a block diagram illustrating an example in which the imaging unit and the calculation unit are arranged in the same measurement unit as a modification of the first embodiment.
  • the measurement unit 50A includes an illumination mechanism 30, an imaging unit 40, and a calculation unit 130A.
  • the calculation unit 130A is arranged not in the control unit 100A but in the same unit as the illumination mechanism 30 and the imaging unit 40.
  • the illumination mechanism 30, the imaging unit 40, and the calculation unit 130 ⁇ / b> A may be housed and arranged in the same device, or may be integrally connected to each other.
  • the system for measuring urine volume can be configured separately from the various flush toilet bodies, and thus is excellent in versatility.
  • FIG. 15 is a cross-sectional view illustrating a modification of the first embodiment and a case of a siphon type flush toilet.
  • the flush toilet 1A is a siphon type, and overflow water F2 in the reservoir 18 downstream of the descending flow path 16A, as well as overflow water F1 at the downstream end of the sealing section of the rising flow path 15A. There is.
  • the flush toilet 1A includes an illumination mechanism 30A and an imaging unit 40A that are disposed to face the overflow water F2 in the pool portion 18.
  • the illumination mechanism 30A and the imaging unit 40A have the same arrangement as the illumination mechanism 30 and the imaging unit 40 in the first embodiment.
  • the present modification is different from the first embodiment in that the overflow water F2 is not overflowed directly from the sealed water portion, but is water overflowed from the reservoir portion 18 (water indirectly overflowed).
  • the calculation unit calculates the urine volume based on the image information from the imaging unit 40A. Even the overflow water F2 overflowing from the reservoir 18 is not affected by the difference in the shape of the toilet bowl 10A, like the overflow water F1 overflowing from the sealed water portion. Therefore, the present invention can also be applied to a siphon type faucet toilet as in this modification.
  • FIG. 16 is a cross-sectional view showing a flush toilet in the second embodiment.
  • FIG. 17 is a diagram for explaining the urine volume measurement operation in the second embodiment.
  • configurations different from those of the first embodiment will be described, and the same configurations as those of the first embodiment will be denoted by the same reference numerals, and description thereof will be omitted.
  • the flush toilet 1B has a P trap type drainage structure.
  • the flush toilet 1B has a convex portion 70 formed at the most downstream portion of the sealed portion in the rising channel 15B of the toilet drainage channel 13B.
  • the convex portion 70 is formed to protrude from the bottom surface.
  • the convex part 70 is a part which discharges the overflow water F in the air.
  • the convex part 70 should just be a shape which can discharge
  • it is good also as a shape which formed the groove part dented toward the outer side of the cross-sectional radial direction of a flow path at the vertex of the sealing part, and protruded this groove part toward the downstream.
  • a groove portion is formed by arranging two convex portions extending from the upstream side toward the downstream side and projecting toward the inner side in the cross-sectional radial direction of the flow path. May be protruded toward the downstream side.
  • the overflow water F is discharged into the air (in the toilet drainage channel 13B) so as to draw a substantially parabola by the convex portion 70 having the shape as described above.
  • the imaging unit 40B images not the surface (upper surface) of the overflow water F but the substantially parabolic overflow water F from the side surface.
  • the illumination mechanism 30B and the imaging unit 40B are disposed in the vicinity of the downstream end of the sealing unit.
  • the illumination mechanism 30 ⁇ / b> B and the imaging unit 40 ⁇ / b> B are arranged to face the side surface (the side on which the thickness of the overflow water F can be seen) of the overflow water F flowing in the air in a substantially parabolic shape by the convex portion 70.
  • the imaging unit 40B images the overflow water F released into the air so as to draw a substantially parabola.
  • the imaging unit 40B acquires image information including information on the shape, position, and thickness of the substantially parabola in the substantially parabolic overflow water F.
  • the calculation unit calculates the urine volume based on the image information of the overflow water discharged into the air so as to draw a substantially parabola imaged by the imaging unit 40B.
  • the calculation unit acquires information about the shape, position, thickness, and changes of the substantially parabola in the substantially parabolic overflow water F acquired by the imaging unit 40B, and calculates the amount of urine based on the acquired information. To do.
  • the urine volume measurement operation in the flush toilet 1B will be described with reference to FIG. First, the user starts urinating.
  • a sensor (not shown) detects a user, the illumination mechanism 30 starts illumination, and the imaging unit 40B starts imaging.
  • the overflow water F is not flowing.
  • overflowing water F starts to flow due to urination.
  • the overflow water F from the start to the end of urination changes in shape, position and thickness as shown in FIG. 17 (b) to FIG. 17 (e).
  • the imaging unit 40B continuously images the shape, position, and thickness (and changes thereof) of the substantially parabola in the overflow water F. Then, the imaging unit 40B outputs the acquired image information to the calculation unit.
  • the calculation unit calculates the urine volume based on the image information from the imaging unit 40B. Specifically, the calculation unit extracts information about the shape, position, and thickness (and changes thereof) of the substantially parabola in the overflow water F from the acquired image information. The calculation unit calculates the flow rate of the overflow water F and the change in the flow rate based on information on the shape, position, and thickness (and changes thereof) of the substantially parabola in the extracted overflow water F. Then, the calculation unit calculates the urine volume based on the flow rate information and the time information. The calculation unit outputs urine volume information, which is the calculated result, to the storage unit. The storage unit stores urine volume information acquired from the calculation unit.
  • FIGS. 18 and 19 are diagrams for explaining a calculation model of calculation processing by the calculation unit in the present embodiment.
  • the calculation process by the calculation unit is based on a multiple cylinder model.
  • the overflow water F discharged into the air so as to draw a substantially parabola is configured by overlapping a number of cylinders equal to the number of frames (n in FIG. 18). That is, it is assumed that the imaging unit 40B captures an image from right next to the overflow water F and is a substantially parabola with no twist.
  • the total volume of the cylinders equal to the number of frames (for example, 200) of the image captured by the imaging unit 40B is obtained, and the total value is calculated as the flow rate of the overflow water F, that is, the urine volume
  • the total volume of the cylinders equal to the number of frames (for example, 200) of the image captured by the imaging unit 40B
  • a binary image obtained by binarizing the captured image of the overflow water F is acquired as in the first embodiment.
  • the diameter in the frame i that is, the diameter of the cross-sectional area of each cylinder is Di
  • the height Hi of each cylinder is equal to the distance traveled by the liquid (overflow water F) between one frame. Therefore, an approximate quadratic equation of a parabola in a binary image is obtained, and the gradient is defined as speed I.
  • the same image processing as in the calculation process flow (FIGS. 10 and 11) of the first embodiment can be applied. That is, by obtaining the width of the overflow water F in the difference image between the background image and the liquid image subjected to noise processing, the diameter Di of the cross-sectional area of the cylinder is obtained.
  • the toilet drainage channel 13B is configured to discharge the overflow water F into the air so as to draw a substantially parabola at a predetermined position.
  • the imaging unit 40B images the overflow water F discharged in the air so as to draw a substantially parabola
  • the calculation unit overflows the water F discharged in the air so as to draw a substantially parabola imaged by the imaging unit 40B.
  • the urine volume is calculated based on the image information.
  • the flow rate of the overflow water F that is, the amount of urine is calculated based on the image information obtained by imaging the overflow water F released in the air so as to draw a substantially parabola.
  • the position of the parabola is defined by the structure of the toilet drainage channel 13B, depth information or the like is not necessary, and the urine volume can be calculated simply by imaging with one imaging unit (camera) from right next to the parabola.
  • the toilet drainage channel 13B has a convex portion 70 that is formed to protrude from the bottom surface at the most downstream portion of the sealed water portion and discharges the overflow water F into the air.
  • the convex part 70 by having the convex part 70, the overflow water F can be discharge
  • the imaging part 40B is arrange
  • the position, shape, thickness, and the like of the parabola of the overflow water F discharged into the air so that the imaging unit 40B draws a substantially parabola can be captured.
  • flush toilet 1B can calculate the amount of urine by imaging overflow water F.
  • FIG. 20 is a cross-sectional view illustrating a modification of the second embodiment and a case of an S trap type flush toilet.
  • the flush toilet 1C is of the S trap type, and the downstream descending flow path 16C in the toilet drainage channel 13C is formed so as to extend vertically downward. Unlike the flush toilet 1B, the other parts have the same configuration.
  • a convex portion 70C is formed at the downstream end of the sealed portion, and the overflow water F is discharged into the air so as to draw a substantially parabola.
  • the imaging unit 40C images the position, shape, thickness, and the like of the parabola of the overflow water F discharged into the air so as to draw a substantially parabola.
  • the calculation unit extracts information about the shape, position, and thickness (and changes thereof) of the substantially parabola in the overflow water F from the acquired image information. And a calculation part calculates the flow volume of the overflow water F, and the change of a flow volume based on the information of the shape of the substantially parabola in the extracted overflow water F, a position, and thickness (and these changes).
  • the groove 21 is formed over the entire region in the longitudinal direction of the drain socket 20, but is not limited thereto, and may be formed only in a region imaged by the imaging unit 40.
  • the groove 21 is formed in the drain socket 20 which is an area imaged by the imaging unit 40, but the present invention is not limited to this, and a configuration in which no groove is formed may be used.
  • the flush toilet of the above embodiment may further include a cleaning mechanism that can clean the imaging unit.
  • a cleaning mechanism that can clean the imaging unit.
  • the imaging unit is disposed on an extension line of the jet hole of the jet mechanism.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Bidet-Like Cleaning Device And Other Flush Toilet Accessories (AREA)
  • Sanitary Device For Flush Toilet (AREA)

Abstract

The purpose of the present invention is to provide a toilet that can measure the amount of urine with good accuracy regardless of the shape of a toilet bowl. A flush toilet 1 comprises a toilet bowl 10 that has a water reservoir 11, a toilet water discharge channel 13 that has a rising flow path 15 constituting a water seal portion and that is connected to the bottom of the water reservoir 11, and a measurement unit 50 that can measure the overflow from the water seal portion. The measurement unit 50 has an imaging unit 40 that is disposed in the toilet water discharge channel 13 and that can image the overflow from the water seal portion, and a calculation unit 130 that can calculate the amount of urine on the basis of imaging information captured by the imaging unit 40.

Description

便器Toilet bowl
 本発明は、便器に関する。 The present invention relates to a toilet bowl.
 近年、使用者の健康管理等の観点から、尿量の測定機能を有する便器が望まれている。これに関して、例えば、使用者の尿を受けるボール(便鉢、貯水部)の水位変動に基づいて、尿量を推定する機能を有する大便器ユニットが提案されている(例えば、特許文献1参照)。 In recent years, toilets having a function of measuring urine volume have been desired from the viewpoint of user health management and the like. In this regard, for example, a toilet unit having a function of estimating the amount of urine based on the fluctuation of the water level of a ball (toilet bowl, water storage unit) that receives a user's urine has been proposed (for example, see Patent Document 1). .
特許第3876919号公報Japanese Patent No. 3876919
 しかしながら、特許文献1に開示された技術は、便鉢における水位変動に基づいて尿量を推定するため、便鉢の形状にバラつきが大きい場合には、その推定精度にもバラつきが生じるという問題があった。特に、陶器製の便器においては、同じ型であっても製造後における形状に大きなバラつきが生じるため、上述の問題が顕著となる。 However, since the technique disclosed in Patent Document 1 estimates the amount of urine based on the water level fluctuation in the toilet bowl, there is a problem that the estimation accuracy varies when the toilet bowl shape varies greatly. there were. In particular, in the toilet bowl made of earthenware, the above-mentioned problem becomes remarkable because a large variation occurs in the shape after manufacture even in the same type.
 また、洗浄方式が異なる場合等には便鉢の形状も大きく異なるため、当該技術を複数タイプの製品に展開する場合、形状ごとにアルゴリズムを設定する必要があるという問題があった。 Also, when the cleaning method is different, the shape of the toilet bowl is also greatly different, and there is a problem that an algorithm needs to be set for each shape when the technology is applied to multiple types of products.
 また、特許文献1に開示された技術は、便鉢における溜水の水位を調整する制御機構が必要になるため、システム全体として複雑化するという問題があった。また、特許文献1に開示された技術は、使用者が排尿する前に水位を調整する必要があるため、使用者は水位が調整されるまで排尿を待たなければならず、使い勝手が悪いという問題もあった。 Also, the technique disclosed in Patent Document 1 requires a control mechanism that adjusts the water level of the stored water in the toilet bowl, and thus has a problem that the entire system becomes complicated. In addition, since the technique disclosed in Patent Document 1 needs to adjust the water level before the user urinates, the user must wait for urination until the water level is adjusted, which is inconvenient. There was also.
 本発明は上記に鑑みてなされたものであり、その目的は、便鉢の形状にかかわらず尿量を精度良く測定可能な便器を提供することにある。 The present invention has been made in view of the above, and an object thereof is to provide a toilet that can accurately measure the amount of urine regardless of the shape of the toilet bowl.
 (1) 上記目的を達成するため本発明は、溜水部(例えば、後述の溜水部11)を有する便鉢(例えば、後述の便鉢10)と、前記溜水部の底部に連結され封水部(例えば、後述の上昇流路15の一部)を有する便器排水路(例えば、後述の便器排水路13)と、前記封水部から溢れ出る溢れ水(例えば、後述の溢れ水F)を測定可能な測定部(例えば、後述の測定部50)と、を備え、前記測定部は、前記便器排水路に配置され前記封水部から溢れ出る溢れ水を撮像可能な撮像部(例えば、後述の撮像部40)と、前記撮像部により撮像された画像情報に基づいて尿量を算出可能な算出部(例えば、後述の算出部130)と、を有する便器(例えば、後述の水洗大便器1)を提供する。 (1) In order to achieve the above object, the present invention is connected to a toilet bowl (for example, a toilet bowl 10 described later) having a reservoir (for example, a reservoir 11 described later) and a bottom of the reservoir. A toilet drainage channel (for example, a toilet drainage channel 13 to be described later) having a sealed water part (for example, a part of a rising channel 15 to be described later) and overflow water (for example, overflow water F to be described later) overflowing from the sealed water part. ) Measuring unit (for example, measuring unit 50 described later), and the measuring unit is arranged in the toilet drainage channel and can capture the overflow water overflowing from the sealed water unit (for example, , A toilet (for example, a flushing later described) having an imaging unit (to be described later) and a calculation unit (for example, a calculation unit 130 to be described later) capable of calculating urine volume based on image information captured by the imaging unit. Toilet 1) is provided.
 (2) (1)の発明において、前記便器排水路は、前記撮像部により撮像される前記溢れ水が該便器排水路の内側面に沿って流れるように構成されることが好ましい。 (2) In the invention of (1), it is preferable that the toilet drainage channel is configured such that the overflow water imaged by the imaging unit flows along an inner surface of the toilet drainage channel.
 (3) (1)又は(2)の発明において、前記便器排水路は、前記溜水部に連結される上昇流路(例えば、後述の上昇流路15)と、該上昇流路の下流端に連結されその一部が排水ソケット(例えば、後述の排水ソケット20)で構成される下降流路(例えば、後述の下降流路16)と、を含んで構成され、前記撮像部は、前記排水ソケットに配置されることが好ましい。 (3) In the invention of (1) or (2), the toilet drainage channel includes an ascending channel (for example, an ascending channel 15 described later) connected to the water reservoir, and a downstream end of the ascending channel , And a part of which is configured to include a descending channel (for example, a below-described descending channel 16) configured by a drain socket (for example, a below-mentioned drain socket 20). It is preferable to arrange in the socket.
 (4) (3)の発明において、前記便器排水路は、少なくとも前記撮像領域において、底面における幅方向略中央に設けられ上流側から下流側に向かって延びる溝(例えば、後述の溝21)を有することが好ましい。 (4) In the invention of (3), the toilet drainage channel is provided with a groove (for example, a groove 21 to be described later) provided at an approximately center in the width direction on the bottom surface and extending from the upstream side toward the downstream side at least in the imaging region. It is preferable to have.
 (5) (1)から(4)いずれかの発明において、前記便器排水路は、少なくとも前記撮像領域に形成され水位を表す目盛り表示部(例えば、後述の目盛り表示部25)を有することが好ましい。 (5) In any one of the inventions (1) to (4), the toilet drainage channel preferably has a scale display unit (for example, a scale display unit 25 described later) formed at least in the imaging region and representing a water level. .
 (6) (1)から(5)いずれかの発明において、前記撮像部は、前記溢れ水の表面に対向して配置されることが好ましい。 (6) In any one of the inventions (1) to (5), it is preferable that the imaging unit is disposed to face the surface of the overflow water.
 (7) (1)の発明において、前記便器排水路は、所定位置において前記溢れ水を略放物線を描くように空中に放出させるように構成され、前記撮像部は、前記略放物線を描くように空中に放出された前記溢れ水を撮像し、前記算出部は、前記撮像部により撮像された略放物線を描くように空中に放出された前記溢れ水の画像情報に基づいて尿量を算出することが好ましい。 (7) In the invention of (1), the toilet drainage channel is configured to discharge the overflow water into the air so as to draw a substantially parabola at a predetermined position, and the imaging unit draws the substantially parabola. The overflowing water released into the air is imaged, and the calculation unit calculates the amount of urine based on the image information of the overflowing water released into the air so as to draw a substantially parabola imaged by the imaging unit. Is preferred.
 (8) (7)の発明において、前記便器排水路は、前記封水部の最下流部において底面から突出して形成され前記溢れ水を空中に放出させる凸部(例えば、後述の凸部70)を有することが好ましい。 (8) In the invention of (7), the toilet drainage channel is formed so as to protrude from the bottom surface at the most downstream portion of the sealing portion, and the convex portion (for example, a convex portion 70 described later) that discharges the overflow water into the air. It is preferable to have.
 (9) (7)又は(8)の発明において、前記撮像部は、略放物線を描くように空中に放出された前記溢れ水の側面に対向して配置されることが好ましい。 (9) In the invention of (7) or (8), it is preferable that the imaging unit is arranged to face a side surface of the overflow water discharged into the air so as to draw a substantially parabola.
 (10) (1)から(9)いずれかの発明において、前記便器は、前記撮像部を洗浄可能な洗浄機構をさらに備えることが好ましい。 (10) In any one of the inventions (1) to (9), it is preferable that the toilet further includes a cleaning mechanism capable of cleaning the imaging unit.
 (11) (1)から(10)いずれかの発明において、前記便器は、前記便器排水路に配置され前記溢れ水を照明する照明機構(例えば、後述の照明機構30)をさらに備えることが好ましい。 (11) In any one of the inventions (1) to (10), the toilet preferably further includes an illumination mechanism (for example, an illumination mechanism 30 described later) that is disposed in the toilet drainage channel and illuminates the overflow water. .
 (12) (1)から(11)いずれかの発明において、前記測定部は、その測定前に前記封水部から溢れ水を一旦溢れさせた後に、前記封水部から溢れ出る溢れ水を測定するように構成されることが好ましい。 (12) In the invention of any one of (1) to (11), the measurement unit measures the overflow water overflowing from the sealed water portion after overflowing the overflow water from the sealed water portion before the measurement. It is preferable to be configured to do so.
 本発明によれば、便鉢の形状にかかわらず尿量を精度良く測定可能な便器を提供できる。 According to the present invention, it is possible to provide a toilet that can accurately measure the amount of urine regardless of the shape of the toilet bowl.
第1実施形態における水洗大便器を示す断面図である。It is sectional drawing which shows the flush toilet in 1st Embodiment. 図1におけるA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 第1実施形態における水洗大便器の制御ブロック図である。It is a control block diagram of the flush toilet in 1st Embodiment. 第1実施形態における尿量測定動作を説明する図である。It is a figure explaining the urine volume measurement operation | movement in 1st Embodiment. 第1実施形態における尿量測定動作を説明するフロー図である。It is a flowchart explaining the urine volume measurement operation | movement in 1st Embodiment. 第1実施形態における算出部による算出処理の算出モデルを説明するための図である。It is a figure for demonstrating the calculation model of the calculation process by the calculation part in 1st Embodiment. 第1実施形態における算出部による算出処理の算出モデルを説明するための図である。It is a figure for demonstrating the calculation model of the calculation process by the calculation part in 1st Embodiment. 第1実施形態における算出部による算出処理の算出モデルを説明するための図である。It is a figure for demonstrating the calculation model of the calculation process by the calculation part in 1st Embodiment. 第1実施形態における算出部による算出処理の算出モデルを説明するための図である。It is a figure for demonstrating the calculation model of the calculation process by the calculation part in 1st Embodiment. 第1実施形態における算出部による算出処理の手順を示すフロー図である。It is a flowchart which shows the procedure of the calculation process by the calculation part in 1st Embodiment. 第1実施形態における算出部による算出処理の手順を示すフロー図である。It is a flowchart which shows the procedure of the calculation process by the calculation part in 1st Embodiment. 第1実施形態における撮像部により撮像された画像の2値画像を示す図である。It is a figure which shows the binary image of the image imaged by the imaging part in 1st Embodiment. 第1実施形態における変形例であって照明機構が複数ある場合の例を示す図である。It is a figure which is a modification in 1st Embodiment, and shows an example in case there exist multiple illumination mechanisms. 第1実施形態における変形例であって撮像部と算出部とが同じ測定ユニットに配置された例を説明するブロック図である。It is a block diagram explaining the example which is a modification in 1st Embodiment, and the imaging part and the calculation part are arrange | positioned at the same measurement unit. 第1実施形態における変形例であってサイフォンタイプの水洗大便器の場合を説明する断面図である。It is a modification in a 1st embodiment, and is a sectional view explaining the case of a siphon type flush toilet. 第2実施形態における水洗大便器を示す断面図である。It is sectional drawing which shows the flush toilet in 2nd Embodiment. 第2実施形態における尿量測定動作を説明する図である。It is a figure explaining the urine volume measurement operation | movement in 2nd Embodiment. 第2実施形態における算出部による算出処理の算出モデルを説明するための図である。It is a figure for demonstrating the calculation model of the calculation process by the calculation part in 2nd Embodiment. 第2実施形態における算出部による算出処理の算出モデルを説明するための図である。It is a figure for demonstrating the calculation model of the calculation process by the calculation part in 2nd Embodiment. 第2実施形態における変形例であってSトラップタイプの水洗大便器の場合を説明する断面図である。It is sectional drawing explaining the case of the flush toilet bowl of the S trap type which is a modification in 2nd Embodiment.
 以下、本発明の実施形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[第1実施形態]
 まず、図1から図5を参照して、第1実施形態における水洗大便器1について説明する。図1は、第1実施形態における水洗大便器を示す断面図である。図2は、図1におけるA-A断面図である。図3は、第1実施形態における水洗大便器の制御ブロック図である。図4は、第1実施形態における尿量測定動作を説明する図である。図5は、第1実施形態における尿量測定動作を説明するフロー図である。
[First Embodiment]
First, with reference to FIGS. 1-5, the flush toilet 1 in 1st Embodiment is demonstrated. FIG. 1 is a cross-sectional view showing a flush toilet in the first embodiment. 2 is a cross-sectional view taken along the line AA in FIG. FIG. 3 is a control block diagram of the flush toilet in the first embodiment. FIG. 4 is a diagram for explaining the urine volume measurement operation in the first embodiment. FIG. 5 is a flowchart for explaining the urine volume measurement operation in the first embodiment.
 図1に示すように、水洗大便器1は、溜水部11を有する便鉢10と、給水部12と、便器排水路13と、照明機構30と、撮像部40を有する測定部50と、を備える。本実施形態における水洗大便器1は、ネオボルテックスタイプである。 As shown in FIG. 1, the flush toilet 1 includes a toilet bowl 10 having a reservoir 11, a water supply unit 12, a toilet drainage channel 13, an illumination mechanism 30, and a measurement unit 50 having an imaging unit 40, Is provided. The flush toilet 1 in this embodiment is a neo-vortex type.
 便鉢10は、略擂鉢状に形成される。便鉢10は、上面に形成される開口部10aと、底部側に形成される溜水部11と、を有して構成される。
 開口部10aは、排尿や汚物を溜水部11に投入するための開口部である。この開口部10aは、不図示の蓋部により開放状態と閉状態とに状態変化される。
The toilet bowl 10 is formed in a substantially bowl shape. The toilet bowl 10 includes an opening 10a formed on the upper surface and a water storage portion 11 formed on the bottom side.
The opening 10 a is an opening for introducing urine and filth into the water reservoir 11. The opening 10a is changed between an open state and a closed state by a lid (not shown).
 溜水部11は、尿や汚物を受け止める部分であると共に、洗浄水を溜水Wとして溜める部分である。溜水部11における下流には、便器排水路13における後述の上昇流路15が連続して配置されている。すなわち、溜水部11は、溜水表面から上昇流路15の入り口までの部分で構成される。本実施形態において、溜水部11は、後述の上昇流路15と共に使用時には満水となっている。 The water storage part 11 is a part for receiving urine and filth, and a part for storing cleaning water as the water storage W. A downstream passage 15 in the toilet drainage channel 13, which will be described later, is continuously arranged downstream of the reservoir 11. That is, the water reservoir 11 is constituted by a portion from the surface of the water reservoir to the entrance of the ascending flow path 15. In the present embodiment, the water reservoir 11 is full of water when used together with a rising channel 15 described later.
 給水部12は、便鉢10に洗浄水を供給する。給水部12は、便鉢10の上面における後方側(図1における左側)に配置される。 The water supply unit 12 supplies cleaning water to the toilet bowl 10. The water supply part 12 is arrange | positioned in the back side in the upper surface of the toilet bowl 10 (left side in FIG. 1).
 便器排水路13は、溜水部11の底部に連結される。便器排水路13は、便鉢10内の尿や汚物を洗浄水と一緒に排出する。本実施形態においては、便器排水路13は、排尿に対応した溢れ水Fが流れる部分である。便器排水路13は、後述する撮像部40に撮像される溢れ水Fが該便器排水路13の内側面に沿って流れるように構成される。ここで、内側面には、立ち面と、底面とが含まれる。溢れ水Fは、便器排水路13の傾斜度に応じて、これら立ち面や底面に沿って流れる。本実施形態においては、溢れ水Fは、便器排水路13(後述する排水ソケット20)の底面に沿って流れる。 The toilet drainage channel 13 is connected to the bottom of the reservoir 11. The toilet drainage 13 discharges urine and filth in the toilet bowl 10 together with the washing water. In the present embodiment, the toilet drainage channel 13 is a portion through which overflow water F corresponding to urination flows. The toilet drainage channel 13 is configured such that overflow water F imaged by the imaging unit 40 described later flows along the inner surface of the toilet drainage channel 13. Here, the inner surface includes a standing surface and a bottom surface. The overflow water F flows along these standing surfaces and the bottom surface according to the inclination of the toilet drainage channel 13. In this embodiment, the overflow water F flows along the bottom surface of the toilet drainage channel 13 (a drainage socket 20 described later).
 便器排水路13は、上昇流路15と、下降流路16と、を有する。
 上昇流路15は、溜水部11の下流に連続して形成され、上方に延びている。上昇流路15は、便鉢10の後方側(図1における左側)に配置される。封水部は、この上昇流路15の一部により構成される。上昇流路15が水封された状態において、封水部および溜水部11は、満水状態である。封水部および溜水部11が満水状態であるので、排尿により溢れた溢れ水Fは、尿量に相当する。
The toilet drainage channel 13 includes an ascending channel 15 and a descending channel 16.
The ascending flow path 15 is formed continuously downstream of the water reservoir 11 and extends upward. The ascending channel 15 is disposed on the rear side (left side in FIG. 1) of the toilet bowl 10. The sealed water part is constituted by a part of the ascending channel 15. In the state where the ascending flow path 15 is sealed with water, the sealed portion and the water storage portion 11 are in a full state. Since the sealed water part and the water storage part 11 are full, the overflow water F overflowed by urination corresponds to the amount of urine.
 下降流路16は、上昇流路15の下流側に連続して形成され、便鉢10の後方側に向かって延びている。この下降流路16の一部は、排水ソケット20で構成される。排水ソケット20は、上述の溢れ水Fが流れる領域である。 The descending flow path 16 is formed continuously downstream of the ascending flow path 15 and extends toward the rear side of the toilet bowl 10. A part of the descending flow path 16 is constituted by a drain socket 20. The drain socket 20 is an area where the overflow water F flows.
 また、排水ソケット20は、照明機構30および撮像部40が配置される部分である。言い換えると、排水ソケット20は、溢れ水Fが照明機構30により照明され、撮像部40により撮像される部分である。照明機構30および撮像部40については、後に詳述する。 Further, the drain socket 20 is a portion where the illumination mechanism 30 and the imaging unit 40 are arranged. In other words, the drain socket 20 is a portion where the overflow water F is illuminated by the illumination mechanism 30 and imaged by the imaging unit 40. The illumination mechanism 30 and the imaging unit 40 will be described in detail later.
 本実施形態において、排水ソケット20は、下流側に向かうに従い下方に傾斜して延びている。すなわち、排水ソケット20は、斜め下方向に延びるように配置されている。 In the present embodiment, the drain socket 20 is inclined downward and extends toward the downstream side. That is, the drain socket 20 is disposed so as to extend obliquely downward.
 図2に示すように、排水ソケット20は、底面における幅方向略中央に設けられ上流側から下流側に向かって延びる溝21を有する。溝21は、溢れ水Fが流れる領域である。また、溝21は、該溝が延びる方向に垂直な断面形状がV字状である。例えば本実施形態の溝21は、該溝が延びる方向から見たときに、該溝により形成される凹部の断面形状が正三角形となるように構成される。また、本実施形態において、溝21は、排水ソケット20の長手方向における全域にわたって形成されている。 As shown in FIG. 2, the drain socket 20 has a groove 21 provided at a substantially center in the width direction on the bottom surface and extending from the upstream side toward the downstream side. The groove 21 is an area where the overflow water F flows. The groove 21 has a V-shaped cross section perpendicular to the direction in which the groove extends. For example, the groove 21 of the present embodiment is configured such that the cross-sectional shape of the recess formed by the groove is an equilateral triangle when viewed from the direction in which the groove extends. In the present embodiment, the groove 21 is formed over the entire area of the drain socket 20 in the longitudinal direction.
 図2に示すように、本実施形態の溝21は、便器排水路13を構成する排水ソケット20の内側に形成される。より詳しくは、排水ソケット20の内側において、底壁の厚みが大きく設定された厚底部内に溝21が形成される。これにより、排水ソケット20の外側面から外側に突出する凸部が形成されることが無いため、例えば排水ソケット20の下流端に連結される排水管との接続部に、下流側の方が高い段差が形成されることがない。そのため、段差部に汚水や汚物や残留するのを回避できるようになっている。 As shown in FIG. 2, the groove 21 of the present embodiment is formed inside the drainage socket 20 constituting the toilet drainage channel 13. More specifically, the groove 21 is formed inside the drain socket 20 in the thick bottom portion where the thickness of the bottom wall is set large. Thereby, since the convex part which protrudes outside from the outer surface of the drain socket 20 is not formed, for example, the downstream side is higher at the connection portion with the drain pipe connected to the downstream end of the drain socket 20. No step is formed. For this reason, it is possible to avoid sewage, filth and residue on the stepped portion.
 また、排水ソケット20は、後述する撮像部40が溢れ水Fを撮像する撮像領域において形成される目盛り表示部25を有する。本実施形態において、目盛り表示部25は、溝21における傾斜した側面に、溝21の延びる方向に沿って形成される。目盛り表示部25は、水位を表し、後述する算出部130における尿量の算出の簡易化および高精度化に寄与する。 Further, the drain socket 20 has a scale display unit 25 formed in an imaging region where the imaging unit 40 described later overflows and images the water F. In the present embodiment, the scale display portion 25 is formed on the inclined side surface of the groove 21 along the direction in which the groove 21 extends. The scale display unit 25 represents the water level, and contributes to simplification and higher accuracy of urine volume calculation in the calculation unit 130 described later.
 ここで、排水ソケット20は、例えば、樹脂製である。そのため、排水ソケット20は、同じ形状のものが高精度で製造可能である。つまり、排水ソケット20の溝21に流れる溢れ水Fの水位等は、便鉢10における形状の差異や製造後のバラつきに関係なく、溢れ水Fの流量に応じて一定になる。 Here, the drain socket 20 is made of resin, for example. Therefore, the drain socket 20 having the same shape can be manufactured with high accuracy. That is, the water level of the overflow water F flowing in the groove 21 of the drain socket 20 becomes constant according to the flow rate of the overflow water F regardless of the difference in shape in the toilet bowl 10 and the variation after manufacture.
 図1および図2に示すように、排水ソケット20(便器排水路13)には、照明機構30が配置される。照明機構30は、溢れ水Fを照明する。本実施形態においては、照明機構30は、溢れ水Fの表面(上面)を照明する。照明機構30は、溢れ水Fにおける撮像部40により撮像される領域を明るく照らすために配置される。 As shown in FIGS. 1 and 2, an illumination mechanism 30 is disposed in the drain socket 20 (toilet drain 13). The illumination mechanism 30 illuminates the overflow water F. In the present embodiment, the illumination mechanism 30 illuminates the surface (upper surface) of the overflow water F. The illumination mechanism 30 is arranged to brightly illuminate an area captured by the imaging unit 40 in the overflow water F.
 図1および図2に示すように、測定部50は、撮像部40と、算出部130(後述)と、を有する。測定部50は、封水部から溢れ出る溢れ水Fを測定可能に構成される。 As shown in FIGS. 1 and 2, the measurement unit 50 includes an imaging unit 40 and a calculation unit 130 (described later). The measurement part 50 is comprised so that the overflow water F which overflows from a sealing part can be measured.
 撮像部40は、便器排水路13に配置され、例えばカメラで構成される。本実施形態において、撮像部40は、排水ソケット20に配置される。撮像部40は、排水ソケット20において、溝21を流れる溢れ水Fの表面(上面)に対向して配置される。撮像部40は、封水部から溢れ出た溢れ水Fを撮像する。撮像部40は、例えば、溢れ水Fの水位の変化を撮像する。本実施形態においては、撮像部40は、溢れ水Fの表面(上面)および目盛り表示部25を撮像する。そして、撮像部40は、撮像して得た画像情報を後述する算出部130に出力する。 The imaging unit 40 is disposed in the toilet drainage channel 13 and is configured by, for example, a camera. In the present embodiment, the imaging unit 40 is disposed in the drain socket 20. The imaging unit 40 is disposed in the drain socket 20 so as to face the surface (upper surface) of the overflow water F flowing through the groove 21. The imaging unit 40 images the overflow water F overflowing from the sealed portion. The imaging unit 40 images, for example, a change in the water level of the overflow water F. In the present embodiment, the imaging unit 40 images the surface (upper surface) of the overflow water F and the scale display unit 25. Then, the imaging unit 40 outputs image information obtained by imaging to the calculation unit 130 described later.
 算出部130(図3参照)は、撮像部40により撮像された画像情報に基づいて尿量を算出可能に構成される。算出部130は、撮像部40と一体的に同じ装置に配置されていてもよく、撮像部40と別体の制御部に含まれていてもよい。本実施形態においては、算出部130は、撮像部40と別体の制御部100に含まれている。 The calculation unit 130 (see FIG. 3) is configured to be able to calculate the urine volume based on image information captured by the imaging unit 40. The calculation unit 130 may be disposed in the same device integrally with the imaging unit 40, or may be included in a control unit separate from the imaging unit 40. In the present embodiment, the calculation unit 130 is included in the control unit 100 that is separate from the imaging unit 40.
 続けて、図3により、水洗大便器1における制御ブロックについて説明する。
 図3に示すように、水洗大便器1は、測定部50を構成する照明機構30および撮像部40と、制御部100と、記憶部200と、を有する。照明機構30および撮像部40については、上述の通りである。
Next, the control block in the flush toilet 1 will be described with reference to FIG.
As shown in FIG. 3, the flush toilet 1 includes an illumination mechanism 30 and an imaging unit 40 that constitute the measuring unit 50, a control unit 100, and a storage unit 200. The illumination mechanism 30 and the imaging unit 40 are as described above.
 制御部100は、照明制御部110と、撮像制御部120と、算出部130と、を有する。
 照明制御部110は、照明機構30の点灯/消灯を制御する。照明制御部110は、例えば、不図示のセンサにより水洗大便器1の使用が検知された場合、照明機構30を点灯させるよう制御する。
The control unit 100 includes an illumination control unit 110, an imaging control unit 120, and a calculation unit 130.
The illumination control unit 110 controls turning on / off of the illumination mechanism 30. For example, when the use of the flush toilet 1 is detected by a sensor (not shown), the illumination control unit 110 controls the illumination mechanism 30 to be lit.
 撮像制御部120は、撮像部40の撮像開始/撮像終了を制御する。撮像制御部120は、例えば、不図示のセンサにより水洗大便器1の使用が検知された場合、撮像を開始させるよう撮像部40を制御する。 The image capturing control unit 120 controls the image capturing start / image capturing end of the image capturing unit 40. For example, when the use of the flush toilet 1 is detected by a sensor (not shown), the imaging control unit 120 controls the imaging unit 40 to start imaging.
 算出部130は、撮像部40からの画像情報に基づいて尿量を算出する。本実施形態において、算出部130は、取得した画像情報から目盛り表示部25と溢れ水Fの水位に関する情報を抽出して流量および流量の変化を算出する。そして、算出部130は、流量情報と時間情報とにより、尿量を算出する。ここで、本実施形態においては、測定部50の一部を兼ねる。算出部130の詳細については、後述する。 The calculation unit 130 calculates the urine volume based on the image information from the imaging unit 40. In the present embodiment, the calculation unit 130 extracts information on the scale display unit 25 and the water level of the overflow water F from the acquired image information, and calculates the flow rate and the change in the flow rate. Then, the calculation unit 130 calculates the urine volume based on the flow rate information and the time information. Here, in this embodiment, it also serves as a part of the measurement unit 50. Details of the calculation unit 130 will be described later.
 記憶部200は、各種情報を記憶すると共に、算出部130から出力された尿量に関する情報を記憶する。
 なお、記憶部200に記憶された尿量に関する情報は、例えば、水洗大便器1の後方部に配置される機能部(洗浄装置等)に設けられた表示部や、図示しないリモートコントローラの表示部に表示される。
The storage unit 200 stores various types of information and information related to the urine volume output from the calculation unit 130.
The information on the amount of urine stored in the storage unit 200 is, for example, a display unit provided in a functional unit (washing device or the like) disposed in the rear part of the flush toilet 1 or a display unit of a remote controller (not shown). Is displayed.
 続けて、図4および図5により、水洗大便器1における尿量測定動作を説明する。
 まず、図5に示すように、ステップST10において、使用者が排尿を開始する。水洗大便器1においては、不図示のセンサが使用者を検知し、照明機構30が照明を開始すると共に、撮像部40が撮像を開始する。排尿が開始された直後においては、図4の(a)に示すように、溢れ水Fは溝21に流れていない状態である。
Next, the urine volume measurement operation in the flush toilet 1 will be described with reference to FIGS. 4 and 5.
First, as shown in FIG. 5, in step ST10, the user starts urination. In the flush toilet 1, a sensor (not shown) detects a user, the illumination mechanism 30 starts illumination, and the imaging unit 40 starts imaging. Immediately after urination is started, the overflow water F is not flowing into the groove 21 as shown in FIG.
 続けて、図5に示すように、ステップST20において、排尿により溢れ水Fが排水ソケット20の溝21を流れ始める。排尿の開始から終了までの溢れ水Fは、図4の(b)から図4の(e)に示すように流量が変化する。すなわち、溢れ水Fの水位が経時的に変化する。 Subsequently, as shown in FIG. 5, in step ST20, the overflow water F starts to flow through the groove 21 of the drain socket 20 by urination. The flow rate of the overflow water F from the start to the end of urination changes from (b) in FIG. 4 to (e) in FIG. That is, the water level of the overflow water F changes with time.
 ここで、ステップST30において、既に撮像を開始している撮像部40は、溢れ水Fの水位(の変化)および目盛り表示部25を連続的に撮像する。そして、撮像部40は、取得した画像情報を算出部130に出力する。 Here, in step ST30, the imaging unit 40 that has already started imaging continuously images the water level (change) of the overflow water F and the scale display unit 25. Then, the imaging unit 40 outputs the acquired image information to the calculation unit 130.
 続けて、ステップST40において、算出部130は、撮像部40からの画像情報に基づいて、尿量を算出する。具体的には、算出部130は、上述の通り、取得した画像情報から目盛り表示部25と溢れ水Fの水位に関する情報を抽出して流量および流量の変化を算出する。そして、算出部130は、流量情報と時間情報とにより、尿量を算出する。このステップST40の算出処理については、後段で詳述する。 Subsequently, in step ST40, the calculation unit 130 calculates the urine volume based on the image information from the imaging unit 40. Specifically, as described above, the calculation unit 130 extracts information on the scale display unit 25 and the water level of the overflow water F from the acquired image information, and calculates the flow rate and the change in the flow rate. Then, the calculation unit 130 calculates the urine volume based on the flow rate information and the time information. The calculation process in step ST40 will be described in detail later.
 続けて、ステップST50において、算出部130は、算出した結果である尿量情報を記憶部200に出力する。そして、記憶部200は、算出部130から取得した尿量情報を記憶する。以上により、本処理を終了する。 Subsequently, in step ST50, the calculation unit 130 outputs the calculated urine volume information to the storage unit 200. Then, the storage unit 200 stores the urine volume information acquired from the calculation unit 130. Thus, the present process is terminated.
 次に、ステップST40で実行される算出部130による尿量の算出処理について、図6~図12を参照して詳しく説明する。
 図6~図9は、本実施形態における算出部130による算出処理の算出モデルを説明するための図である。図6に示すように、算出部130による算出処理は、多重三角柱モデルに基づく。この多重三角柱モデルでは、溝21内を流通する溢れ水Fを、複数の三角柱の重なりにより構成されるものと仮定する。そして、複数の三角柱の体積の合計を求め、その合計値を溢れ水Fの流量、すなわち尿量とする。
Next, the urine volume calculation processing by the calculation unit 130 executed in step ST40 will be described in detail with reference to FIGS.
6 to 9 are diagrams for explaining a calculation model of calculation processing by the calculation unit 130 in the present embodiment. As shown in FIG. 6, the calculation process by the calculation unit 130 is based on a multiple triangular prism model. In this multi-triangular prism model, it is assumed that the overflow water F flowing in the groove 21 is constituted by an overlap of a plurality of triangular prisms. And the sum total of the volume of a some triangular prism is calculated | required, and let the total value be the flow volume of the overflow water F, ie, urine volume.
 ここで、溝21を該溝の延びる方向から見たときに、該溝により形成される凹部の断面形状が正三角形の場合を考える。この場合、溝21内を流れる溢れ水Fを溝21の延びる方向から見ると、図7に示すような正三角形となり、該正三角形の高さをh、底辺の長さをbとすると、その面積(断面積)Sは、S=bh/2で求められる。
 またこのとき、図8に示すように、底辺の長さbは、b=2h/31/2であり、溝21を上方から見たときに見える目盛り表示部25の目盛り線251の本数から、正三角形の高さhが求められる。すなわち、撮像部40の画像情報から、上記断面積Sが求められる。
Here, consider a case where the cross-sectional shape of the recess formed by the groove is an equilateral triangle when the groove 21 is viewed from the direction in which the groove extends. In this case, when the overflow water F flowing in the groove 21 is viewed from the direction in which the groove 21 extends, it becomes a regular triangle as shown in FIG. 7, where the height of the regular triangle is h and the length of the base is b. The area (cross-sectional area) S is obtained by S = bh / 2.
Further, at this time, as shown in FIG. 8, the length b of the bottom side is b = 2h / 31/2 , and the number of scale lines 251 of the scale display section 25 that can be seen when the groove 21 is viewed from above. The height h of the equilateral triangle is obtained. That is, the cross-sectional area S is obtained from the image information of the imaging unit 40.
 また、図9に示すように、三角柱の長さ(溝21の延びる方向の長さ)dは、一定又は溢れ水Fの流量と相関があることが実験結果から分かっており、予め所定の値に設定される。従って、各三角柱の体積Vは、V=S×d=bh/2d=(3)1/2d/4で表されることから、撮像部40の画像情報から、上記体積Vが求められる。 Further, as shown in FIG. 9, it is known from experimental results that the length of the triangular prism (length in the extending direction of the groove 21) d is constant or correlated with the flow rate of the overflow water F, and has a predetermined value in advance. Set to Therefore, since the volume V of each triangular prism is expressed by V = S × d = bh / 2d = (3) 1/2 b 2 d / 4, the volume V is obtained from the image information of the imaging unit 40. It is done.
 次に、ステップST40の算出処理の手順について、図10~図12を参照して説明する。図10および図11は、本実施形態における算出部による算出処理の手順を示すフロー図である。図12は、本実施形態における撮像部40により撮像された画像の2値画像を示す図である。 Next, the calculation processing procedure in step ST40 will be described with reference to FIGS. 10 and 11 are flowcharts showing the procedure of the calculation process by the calculation unit in the present embodiment. FIG. 12 is a diagram illustrating a binary image of an image captured by the imaging unit 40 in the present embodiment.
 先ず、図10に示すようにステップST401において、背景画像の読み込みを実行する。背景画像の読み込みは、溢れ水Fが流れていない未使用時に予め実行される。
 続けて、ステップST402において、ST401で読み込んだ背景画像に対して、ガウシアンフィルタによりノイズ処理を実行する。これにより、背景画像のノイズが除去される。
First, as shown in FIG. 10, in step ST401, a background image is read. Reading of the background image is executed in advance when the overflow water F is not flowing and is not used.
Subsequently, in step ST402, noise processing is performed on the background image read in ST401 using a Gaussian filter. Thereby, the noise of the background image is removed.
 続けて、ステップST403において、ステップST402でノイズ処理された背景画像の平均輝度値を算出する。具体的には、背景画像の1画素ごとの輝度値を求め、その平均値を算出する。
 続けて、ステップST404において、背景画像のパターン分類を実行する。具体的には、ステップST403で算出された平均輝度値に基づいて、背景画像をパターン別に分類する。
 なお、以上のステップST401~404までの処理は、水洗大便器1の未使用時に予め所定の周期で実行される。
Subsequently, in step ST403, the average luminance value of the background image subjected to noise processing in step ST402 is calculated. Specifically, the luminance value for each pixel of the background image is obtained, and the average value is calculated.
Subsequently, in step ST404, pattern classification of the background image is executed. Specifically, the background image is classified by pattern based on the average luminance value calculated in step ST403.
Note that the processing from the above steps ST401 to ST404 is executed at a predetermined cycle in advance when the flush toilet 1 is not used.
 続けて、ステップST405において、液体画像(溝21に溢れ水Fが流れているときの画像)の読み込みを実行する。液体画像の読み込みは、水洗大便器1の使用時に実行される。
 続けて、ステップST406において、ST405で読み込んだ液体画像に対して、ガウシアンフィルタによりノイズ処理を実行する。これにより、液体画像のノイズが除去される。
Subsequently, in step ST405, reading of a liquid image (image when overflowing water F flows in the groove 21) is executed. The reading of the liquid image is executed when the flush toilet 1 is used.
Subsequently, in step ST406, noise processing is executed by a Gaussian filter on the liquid image read in ST405. Thereby, the noise of the liquid image is removed.
 続けて、ステップST407において、ステップST406でノイズ処理された液体画像の平均輝度値を算出する。具体的には、液体画像の1画素ごとの輝度値を求め、その平均値を算出する。
 続けて、ステップST408において、最適背景パターンの読み込みを実行する。具体的には、パターン別に分類された背景画像の中から、液体画像の平均輝度値に最も近い平均輝度値の背景パターンを選択する。
Subsequently, in step ST407, an average luminance value of the liquid image subjected to noise processing in step ST406 is calculated. Specifically, the luminance value for each pixel of the liquid image is obtained, and the average value is calculated.
Subsequently, in step ST408, the optimum background pattern is read. Specifically, a background pattern having an average luminance value closest to the average luminance value of the liquid image is selected from the background images classified by pattern.
 続けて、ステップST409において、差分画像を生成する。具体的には、ステップST406でノイズ処理された液体画像と、ステップST408で選択された最適背景パターンの背景画像との差分画像を生成する。
 続けて、ステップST410において、ステップST409で生成された差分画像を2値化し、図12に示すような2値画像を取得する。
Subsequently, in step ST409, a difference image is generated. Specifically, a difference image between the liquid image subjected to noise processing in step ST406 and the background image of the optimum background pattern selected in step ST408 is generated.
Subsequently, in step ST410, the difference image generated in step ST409 is binarized to obtain a binary image as shown in FIG.
 続けて、図11に示すようにステップST411において、ステップST410で取得した2値画像における関心領域ROIの切り取りを実行する。具体的には、図12の(a)中、2点鎖線で囲まれた領域が溝21の中心軸を中心とした関心領域であることから、かかる領域を関心領域ROIとして切り取る。具体的には、例えば、2値画像の横方向をu’、縦方向をv’としたときに、図12に示す例では、横方向u’の画素数が1280であり、縦方向v’の画素数が730である。そして、関心領域ROIの切り取り開始点は(u’、v’)=(515、200)であり、切り取る領域の画素数は、300(横)×縦200(縦)である。 Subsequently, as shown in FIG. 11, in step ST411, the region of interest ROI in the binary image acquired in step ST410 is cut out. Specifically, in FIG. 12A, since the region surrounded by the two-dot chain line is the region of interest centered on the central axis of the groove 21, this region is cut out as the region of interest ROI. Specifically, for example, when the horizontal direction of the binary image is u ′ and the vertical direction is v ′, in the example shown in FIG. 12, the number of pixels in the horizontal direction u ′ is 1280, and the vertical direction v ′. The number of pixels is 730. The cutting start point of the region of interest ROI is (u ′, v ′) = (515, 200), and the number of pixels in the cutting region is 300 (horizontal) × vertical 200 (vertical).
 このとき、関心領域ROIは、その横方向の座標の中心と溝21の中心軸とが一致するように、上記開始点が適宜設定される。そして、目視でノイズの少ない領域を判断し、その周辺から300×200の関心領域ROIが決定される。なお、関心領域ROIの範囲の設定については、画像内に写り込む溝21の幅に応じて決定される。すなわち、溝21から10cmの高さにカメラを設置した場合には、300×200の範囲が設定されるが、関心領域ROIの範囲はカメラを設置する高さに応じて設定される。 At this time, in the region of interest ROI, the start point is appropriately set so that the center of the coordinate in the horizontal direction coincides with the center axis of the groove 21. Then, a region with less noise is visually determined, and a 300 × 200 region of interest ROI is determined from the periphery thereof. The range of the region of interest ROI is determined according to the width of the groove 21 that appears in the image. That is, when the camera is installed at a height of 10 cm from the groove 21, a range of 300 × 200 is set, but the range of the region of interest ROI is set according to the height at which the camera is installed.
 続けて、ステップST412において縦方向v’を200画素切り取り、ステップST413において横方向u’を300画素切り取る。切り取った関心領域ROIの画像は、図12の(b)に示す通りである。 Subsequently, in step ST412, the vertical direction v 'is cut out by 200 pixels, and in step ST413, the horizontal direction u' is cut out by 300 pixels. The cut out image of the region of interest ROI is as shown in FIG.
 続けて、ステップST414において、ステップST413で切り取った画像において、関心領域ROIのv’行目に存在する白色画素のうち最も左側にある白色画素のu’座標(most_left[v])を、most_left[v]の中で最も小さい値(ROIの中で最も左にある白色画素のu’座標)(min(white_pix))とする。同様に、関心領域ROIのv’行目に存在する白色画素のうち最も右側にある白色画像のu’座標(most_right[v])を、most_right[v]の中で最も大きい値(ROIの中で最も右にある白色画素のu’座標)(max(white_pix))とする。 Subsequently, in step ST414, in the image cut out in step ST413, the u ′ coordinate (most_left [v]) of the leftmost white pixel among the white pixels existing in the v ′ row of the region of interest ROI is changed to most_left [ v] is the smallest value (the u ′ coordinate of the leftmost white pixel in the ROI) (min (white_pix)). Similarly, the u ′ coordinate (most_right [v]) of the rightmost white image among the white pixels existing in the v ′ line of the region of interest ROI is set to the largest value in most_right [v] (in the ROI). The rightmost u ′ coordinate of the white pixel (max (white_pix)).
 続けて、ステップST415において、most_left[v]の標準偏差(std_most_left)と、most_right[v]の標準偏差(std_most_right)を算出する。これら標準偏差は、後述するように、液体幅を算出するために用いられる。 Subsequently, in step ST415, the standard deviation of most_left [v] (std_most_left) and the standard deviation of most_right [v] (std_most_right) are calculated. These standard deviations are used to calculate the liquid width, as will be described later.
 続けて、ステップST416において、ステップST415で算出された最も左側の画素の座標の標準偏差(std_most_left)が、最も右側の画素の座標の標準偏差(std_most_right)よりも小さいか否かを判別する。この判別がYESの場合には、ステップST417に進み、関心領域ROIの中心u’座標150から、より標準偏差が小さくバラつきが小さい最も左側の画素(most_left[v])の平均値(mean_most_left)を差し引いた絶対値(|150-mean_most_left|)を、半値幅(half_width)とする。また、この判別がNOの場合には、ステップST418に進み、関心領域ROIの中心u’座標150から、より標準偏差が小さくバラつきが小さい最も右側の画素(most_right[v])の平均値(mean_most_right)を差し引いた絶対値(|150-mean_most_right|)を、半値幅(half_width)とする。 Subsequently, in step ST416, it is determined whether or not the standard deviation (std_most_left) of the coordinates of the leftmost pixel calculated in step ST415 is smaller than the standard deviation (std_most_right) of the coordinates of the rightmost pixel. If this determination is YES, the process proceeds to step ST417, and the average value (mean_most_left) of the leftmost pixel (most_left [v]) having a smaller standard deviation and a smaller variation from the center u ′ coordinate 150 of the region of interest ROI is calculated. The absolute value (| 150−mean_most_left |) after subtraction is set as the half width (half_width). If this determination is NO, the process proceeds to step ST418, and the average value (mean_most_right) of the rightmost pixel (most_right [v]) having a smaller standard deviation and a smaller variation from the center u ′ coordinate 150 of the region of interest ROI. ) Is subtracted from the absolute value (| 150−mean_most_right |) as the half width (half_width).
 なお、半値幅(half_width)の算出方法としては、上記に限定されない。例えば、(most_left[v])の標準偏差の方が小さい場合に、液体幅の最も左端に存在する白色画素のu’座標(=min)を用いて、半値幅(half_width)=|150-min|として液体幅を算出してもよい。一方、(most_right[v])の標準偏差の方が小さい場合に、液体幅の最も右側に存在する白色画素のu’座標(=max)を用いて、半値幅(half_width)=|150-max|として液体幅を算出してもよい。
 ここで、半値幅は、溢れ水Fを上方から見たときの幅(上述の底辺の長さbに相当)の半値幅を意味する。
Note that the half-value width (half_width) calculation method is not limited to the above. For example, when the standard deviation of (most_left [v]) is smaller, the half width (half_width) = | 150-min using the u ′ coordinate (= min) of the white pixel present at the leftmost end of the liquid width. The liquid width may be calculated as |. On the other hand, when the standard deviation of (most_right [v]) is smaller, the half width (half_width) = | 150-max using the u ′ coordinate (= max) of the white pixel present on the rightmost side of the liquid width. The liquid width may be calculated as |.
Here, the full width at half maximum means the full width at half maximum when the overflow water F is viewed from above (corresponding to the length b of the bottom side).
 続けて、ステップST419において、ステップST417又は418で取得された半値幅を、溢れ水Fを上方から見たときの幅(width、上述の底辺の長さbに相当)とする。
 続けて、ステップST420において、溢れ水Fの体積Vを求める。具体的には、上述した三角柱の体積V=(3)1/2d/4に従って、多重三角柱の体積V、すなわち溢れ水Fの流量を求める。以上により、本処理を終了する。
Subsequently, in step ST419, the half-value width acquired in step ST417 or 418 is set to a width when the overflow water F is viewed from above (width, corresponding to the above-described bottom length b).
Subsequently, in step ST420, the volume V of the overflow water F is obtained. Specifically, the volume V of the multiple triangular prisms, that is, the flow rate of the overflow water F is obtained according to the above-described triangular prism volume V = (3) 1/2 b 2 d / 4. Thus, the present process is terminated.
 本実施形態の水洗大便器1によれば、以下の効果を奏する。
 本実施形態では、水洗大便器1は、溜水部11を有する便鉢10と、溜水部11の底部に連結され封水部(上昇流路15)を有する便器排水路13と、封水部から溢れ出る溢れ水Fを測定可能な測定部50と、を備える。また、測定部50は、便器排水路13に配置され封水部から溢れ出る溢れ水Fを撮像可能な撮像部40と、撮像部40により撮像された画像情報に基づいて尿量を算出可能な算出部130と、を有する。
 本実施形態によれば、便器の形状の違いによる影響を受けない溢れ水Fを撮像して得られた画像情報に基づいて尿量を算出するため、便鉢10の形状にかかわらず尿量を精度良く測定可能な水洗大便器1を提供できる。
According to the flush toilet 1 of the present embodiment, the following effects can be obtained.
In this embodiment, the flush toilet 1 includes a toilet bowl 10 having a reservoir 11, a toilet drainage channel 13 connected to the bottom of the reservoir 11 and having a sealed portion (upflow channel 15), and sealed water And a measuring unit 50 capable of measuring the overflow water F overflowing from the unit. The measurement unit 50 can calculate the amount of urine based on the image capturing unit 40 that is disposed in the toilet drainage channel 13 and can capture the overflow water F that overflows from the sealing unit, and image information captured by the image capturing unit 40. And a calculation unit 130.
According to the present embodiment, the urine volume is calculated regardless of the shape of the toilet bowl 10 because the urine volume is calculated based on the image information obtained by imaging the overflow water F that is not affected by the difference in the toilet bowl shape. A flush toilet 1 capable of measuring with high accuracy can be provided.
 また、本実施形態では、便器排水路13は、撮像部40により撮像される溢れ水Fが該便器排水路13の内側面に沿って流れるように構成される。
 本実施形態によれば、内側面に沿って流れる溢れ水Fを撮像すればよいため、撮像部40が配置可能な領域が多く、設置の自由度が高い。また、本実施形態によれば、溢れ水Fが内側面に沿って安定して流れるため、溢れ水Fの水位および水位の変化を容易に把握できる。これにより、水洗大便器1は、尿量をより高精度で算出可能である。
In the present embodiment, the toilet drainage channel 13 is configured such that the overflow water F imaged by the imaging unit 40 flows along the inner surface of the toilet drainage channel 13.
According to this embodiment, since it is only necessary to image the overflow water F flowing along the inner surface, there are many areas where the imaging unit 40 can be arranged, and the degree of freedom of installation is high. Moreover, according to this embodiment, since overflow water F flows stably along an inner surface, the water level of overflow water F and the change of a water level can be grasped | ascertained easily. Thereby, the flush toilet 1 can calculate the amount of urine with higher accuracy.
 また、本実施形態では、便器排水路13における撮像部40による撮像領域は、下流側に向かうに従い下方に傾斜して延びている。
 本実施形態によれば、溢れ水Fが自然と下流に向かって安定して流れる。これにより、水洗大便器1は、撮像部40により水位の変化をより容易に把握でき、尿量をより高精度で算出可能である。
Moreover, in this embodiment, the imaging area | region by the imaging part 40 in the toilet drainage channel 13 inclines below and extends as it goes downstream.
According to this embodiment, the overflow water F flows naturally and stably toward the downstream. Thereby, the flush toilet 1 can grasp | ascertain the change of a water level more easily by the imaging part 40, and can calculate the amount of urine with higher precision.
 また、本実施形態では、便器排水路13は、溜水部11に連結される上昇流路15と、該上昇流路15の下流端に連結されその一部が排水ソケット20で構成される下降流路16と、を含んで構成され、撮像部40は、排水ソケット20に配置される。
 本実施形態によれば、樹脂製で成型精度の高い排水ソケット20に撮像部40を配置することができる。これにより、水洗大便器1は、溢れ水Fの水位をより高精度で認識でき、尿量をより高精度で算出可能である。
In the present embodiment, the toilet drainage channel 13 is connected to the rising channel 15 connected to the water reservoir 11 and the lower channel connected to the downstream end of the rising channel 15, and a part thereof is constituted by the drain socket 20. The imaging unit 40 is disposed in the drain socket 20.
According to this embodiment, the imaging part 40 can be arrange | positioned to the drain socket 20 made of resin and with high molding accuracy. Thereby, the flush toilet 1 can recognize the water level of the overflow water F with higher accuracy and can calculate the amount of urine with higher accuracy.
 また、本実施形態では、便器排水路13は、少なくとも撮像領域において、底面における幅方向略中央に設けられ上流側から下流側に向かって延びる溝21を有する。
 本実施形態によれば、溢れ水Fを溝21内に集めることができるため、溢れ水Fの水位変化を把握しやすい。これにより、水洗大便器1は、溢れ水Fの水位変化をより高精度で認識でき、尿量をより高精度で算出可能である。
Further, in the present embodiment, the toilet drainage channel 13 has a groove 21 provided at approximately the center in the width direction on the bottom surface and extending from the upstream side toward the downstream side at least in the imaging region.
According to this embodiment, since the overflow water F can be collected in the groove 21, it is easy to grasp the water level change of the overflow water F. Thereby, the flush toilet 1 can recognize the water level change of the overflow water F with higher accuracy, and can calculate the urine volume with higher accuracy.
 また、本実施形態では、溝21は、該溝21が延びる方向に垂直な断面形状がV字状である。
 本実施形態によれば、溢れ水Fが集まる溝21が断面V字状であるため、溢れ水Fの水位変化をより把握しやすい。これにより、水洗大便器1は、溢れ水Fの水位変化をより高精度で認識でき、尿量をより高精度で算出可能である。
In the present embodiment, the groove 21 has a V-shaped cross section perpendicular to the direction in which the groove 21 extends.
According to this embodiment, since the groove 21 in which the overflow water F gathers has a V-shaped cross section, it is easier to grasp the water level change of the overflow water F. Thereby, the flush toilet 1 can recognize the water level change of the overflow water F with higher accuracy, and can calculate the urine volume with higher accuracy.
 また、本実施形態では、便器排水路13は、撮像領域に形成され水位を表す目盛り表示部25を有する。
 本実施形態によれば、目盛り表示部25により溢れ水Fの水位変化をより確実に把握できる。これにより、水洗大便器1は、溢れ水Fの水位変化をより高精度で認識でき、尿量をより高精度で算出可能である。
Moreover, in this embodiment, the toilet drainage channel 13 has the scale display part 25 formed in an imaging area and showing the water level.
According to the present embodiment, the scale display unit 25 can more reliably grasp the water level change of the overflow water F. Thereby, the flush toilet 1 can recognize the water level change of the overflow water F with higher accuracy, and can calculate the urine volume with higher accuracy.
 また、本実施形態では、撮像部40は、溢れ水Fの表面に対向して配置される。
 本実施形態によれば、溢れ水Fを上方から撮像するため、溢れ水Fの水位を把握しやすい。これにより、水洗大便器1は、より高精度で尿量を算出可能である。
In the present embodiment, the imaging unit 40 is disposed to face the surface of the overflow water F.
According to this embodiment, since the overflow water F is imaged from above, it is easy to grasp the water level of the overflow water F. Thereby, the flush toilet 1 can calculate the amount of urine with higher accuracy.
 続けて、図13から図15を参照して、第1実施形態における変形例について説明する。
 まず、図13により、照明機構が複数ある場合の変形例について説明する。図13は、第1実施形態における変形例であって照明機構が複数ある場合の例を示す図である。図13の(a)は、2つの照明が溢れ水Fの流れる方向に沿って配置されている例を示す。図13の(b)および図13の(c)は、2つの照明が溢れ水Fが流れる方向に直交する方向に沿って配置されている例を示す。
Subsequently, a modification of the first embodiment will be described with reference to FIGS. 13 to 15.
First, a modified example in the case where there are a plurality of illumination mechanisms will be described with reference to FIG. FIG. 13 is a diagram showing a modification of the first embodiment and showing an example when there are a plurality of illumination mechanisms. FIG. 13A shows an example in which two lights are arranged along the direction in which overflowing water F flows. (B) of FIG. 13 and (c) of FIG. 13 show an example in which two lights are arranged along a direction orthogonal to the direction in which the overflowing water F flows.
 図13の(a)に示すように、照明機構30および照明機構31は、溢れ水Fが流れる方向に沿って配置される。照明機構30および照明機構31は、撮像部40を挟んで配置される。本変形例では、2つの照明機構により、溢れ水Fの表面が照明されている。そのため、撮像部40は、溢れ水Fの水位および水位の変化をより正確に撮像することができる。これにより、水洗大便器は、より正確に尿量を算出可能である。 As shown to (a) of FIG. 13, the illumination mechanism 30 and the illumination mechanism 31 are arrange | positioned along the direction where the overflow water F flows. The illumination mechanism 30 and the illumination mechanism 31 are disposed with the imaging unit 40 interposed therebetween. In this modification, the surface of the overflow water F is illuminated by two illumination mechanisms. Therefore, the imaging unit 40 can capture the water level of the overflow water F and the change in the water level more accurately. Thereby, the flush toilet can calculate the amount of urine more accurately.
 図13の(b)および図13の(c)に示すように、照明機構30および照明機構31は、溢れ水Fが流れる方向に直交する方向(幅方向)に沿って配置される。照明機構30および照明機構31は、撮像部40を挟んで配置される。本変形例では、2つの照明機構により、溢れ水Fの表面における所定撮像位置が集中的に照明されている。そのため、撮像部40は、溢れ水Fの水位および水位の変化をより正確に撮像することができる。これにより、水洗大便器は、より正確に尿量を算出可能である。 13 (b) and 13 (c), the illumination mechanism 30 and the illumination mechanism 31 are arranged along a direction (width direction) orthogonal to the direction in which the overflow water F flows. The illumination mechanism 30 and the illumination mechanism 31 are disposed with the imaging unit 40 interposed therebetween. In this modification, the predetermined imaging position on the surface of the overflow water F is intensively illuminated by two illumination mechanisms. Therefore, the imaging unit 40 can capture the water level of the overflow water F and the change in the water level more accurately. Thereby, the flush toilet can calculate the amount of urine more accurately.
 続けて、図14により、撮像部と算出部が同じユニットに配置された場合の変形例について説明する。図14は、第1実施形態における変形例であって撮像部と算出部とが同じ測定ユニットに配置された例を説明するブロック図である。 Next, with reference to FIG. 14, a modification example in which the imaging unit and the calculation unit are arranged in the same unit will be described. FIG. 14 is a block diagram illustrating an example in which the imaging unit and the calculation unit are arranged in the same measurement unit as a modification of the first embodiment.
 図14に示すように、測定ユニット50Aは、照明機構30と、撮像部40と、算出部130Aと、を有する。本変形例においては、算出部130Aは、制御部100Aではなく、照明機構30および撮像部40と同じユニットに配置されている。例えば、照明機構30と、撮像部40と、算出部130Aとは、同じ装置に収納配置されていてもよく、互いに一体的に連結されていてもよい。本変形例によれば、尿量を測定するシステムを各種水洗大便器本体と別個に構成することができるので、汎用性に優れる。 As shown in FIG. 14, the measurement unit 50A includes an illumination mechanism 30, an imaging unit 40, and a calculation unit 130A. In the present modification, the calculation unit 130A is arranged not in the control unit 100A but in the same unit as the illumination mechanism 30 and the imaging unit 40. For example, the illumination mechanism 30, the imaging unit 40, and the calculation unit 130 </ b> A may be housed and arranged in the same device, or may be integrally connected to each other. According to the present modification, the system for measuring urine volume can be configured separately from the various flush toilet bodies, and thus is excellent in versatility.
 続けて、図15により、水洗大便器がサイフォンタイプの場合における変形例について説明する。図15は、第1実施形態における変形例であってサイフォンタイプの水洗大便器の場合を説明する断面図である。
 図15に示すように、水洗大便器1Aは、サイフォンタイプであり、上昇流路15Aの封水部の下流端における溢れ水F1の他、下降流路16Aの下流の溜まり部18における溢れ水F2がある。
Next, a modification in the case where the flush toilet is a siphon type will be described with reference to FIG. FIG. 15 is a cross-sectional view illustrating a modification of the first embodiment and a case of a siphon type flush toilet.
As shown in FIG. 15, the flush toilet 1A is a siphon type, and overflow water F2 in the reservoir 18 downstream of the descending flow path 16A, as well as overflow water F1 at the downstream end of the sealing section of the rising flow path 15A. There is.
 本変形例においては、水洗大便器1Aは、溜まり部18における溢れ水F2に対向して配置される照明機構30Aおよび撮像部40Aと、を有する。
 照明機構30Aおよび撮像部40Aは、第1実施形態における照明機構30および撮像部40と同様の配置である。本変形例においては、溢れ水F2が封水部から直接溢れたものではなく、溜まり部18から溢れ出た水(間接的に溢れ出た水)である点で第1実施形態と相違する。
In the present modification, the flush toilet 1A includes an illumination mechanism 30A and an imaging unit 40A that are disposed to face the overflow water F2 in the pool portion 18.
The illumination mechanism 30A and the imaging unit 40A have the same arrangement as the illumination mechanism 30 and the imaging unit 40 in the first embodiment. The present modification is different from the first embodiment in that the overflow water F2 is not overflowed directly from the sealed water portion, but is water overflowed from the reservoir portion 18 (water indirectly overflowed).
 本変形例においては、算出部は、撮像部40Aからの画像情報に基づいて尿量を算出する。溜まり部18から溢れ出た溢れ水F2であっても、封水部から溢れ出た溢れ水F1と同様に、便鉢10Aの形状の違いによる影響を受けない。そのため、本変形例のようなサイフォンタイプの水栓大便器においても、本発明を適用できる。 In the present modification, the calculation unit calculates the urine volume based on the image information from the imaging unit 40A. Even the overflow water F2 overflowing from the reservoir 18 is not affected by the difference in the shape of the toilet bowl 10A, like the overflow water F1 overflowing from the sealed water portion. Therefore, the present invention can also be applied to a siphon type faucet toilet as in this modification.
[第2実施形態]
 次に、図16および図17を参照して、第2実施形態における水洗大便器1Bについて説明する。図16は、第2実施形態における水洗大便器を示す断面図である。図17は、第2実施形態における尿量測定動作を説明する図である。なお、以下では、第1実施形態と相違する構成について説明し、第1実施形態と同様の構成については同様の符号を付し、その説明を省略する。
[Second Embodiment]
Next, with reference to FIG. 16 and FIG. 17, the flush toilet 1B in 2nd Embodiment is demonstrated. FIG. 16 is a cross-sectional view showing a flush toilet in the second embodiment. FIG. 17 is a diagram for explaining the urine volume measurement operation in the second embodiment. In the following description, configurations different from those of the first embodiment will be described, and the same configurations as those of the first embodiment will be denoted by the same reference numerals, and description thereof will be omitted.
 図16に示すように、水洗大便器1Bは、Pトラップタイプの排水構造を有する。水洗大便器1Bは、便器排水路13Bの上昇流路15Bにおける封水部の最下流部に形成される凸部70を有する。凸部70は、底面から突出して形成される。また、凸部70は、溢れ水Fを空中に放出させる部分である。 As shown in FIG. 16, the flush toilet 1B has a P trap type drainage structure. The flush toilet 1B has a convex portion 70 formed at the most downstream portion of the sealed portion in the rising channel 15B of the toilet drainage channel 13B. The convex portion 70 is formed to protrude from the bottom surface. Moreover, the convex part 70 is a part which discharges the overflow water F in the air.
 凸部70は、溢れ水Fを、略放物線を描くように便器排水路13B内の空中に放出できる形状であればよい。例えば、封水部の頂点において、流路の断面径方向の外側に向かって凹む溝部を形成し、該溝部を下流側に向かって突出させた形状としてもよい。また、封水部の頂点において、上流側から下流側に向かって延び、流路の断面径方向の内側に向かって突出する2つの凸部を互いに対向配置させることで溝部を形成し、該溝部を下流側に向かって突出させてもよい。 The convex part 70 should just be a shape which can discharge | emit overflow water F in the air in the toilet drainage channel 13B so that a substantially parabola may be drawn. For example, it is good also as a shape which formed the groove part dented toward the outer side of the cross-sectional radial direction of a flow path at the vertex of the sealing part, and protruded this groove part toward the downstream. Further, at the apex of the sealing portion, a groove portion is formed by arranging two convex portions extending from the upstream side toward the downstream side and projecting toward the inner side in the cross-sectional radial direction of the flow path. May be protruded toward the downstream side.
 本実施形態では、溢れ水Fは、上述のような形状を有する凸部70により、略放物線を描くように空中(便器排水路13Bの中)に放出される。
 ここで、本実施形態においては、撮像部40Bは、溢れ水Fの表面(上面)ではなく、略放物線状の溢れ水Fを側面から撮像する。
In the present embodiment, the overflow water F is discharged into the air (in the toilet drainage channel 13B) so as to draw a substantially parabola by the convex portion 70 having the shape as described above.
Here, in the present embodiment, the imaging unit 40B images not the surface (upper surface) of the overflow water F but the substantially parabolic overflow water F from the side surface.
 照明機構30Bおよび撮像部40Bは、封水部の下流端近傍に配置される。照明機構30Bおよび撮像部40Bは、凸部70により略放物線状に空中を流れる溢れ水Fの側面(溢れ水Fの太さがみえる側)に対向して配置される。 The illumination mechanism 30B and the imaging unit 40B are disposed in the vicinity of the downstream end of the sealing unit. The illumination mechanism 30 </ b> B and the imaging unit 40 </ b> B are arranged to face the side surface (the side on which the thickness of the overflow water F can be seen) of the overflow water F flowing in the air in a substantially parabolic shape by the convex portion 70.
 本実施形態において、撮像部40Bは、略放物線を描くように空中に放出された溢れ水Fを撮像する。撮像部40Bは、略放物線状の溢れ水Fにおける該略放物線の形状、位置、太さの情報を含む画像情報を取得する。 In the present embodiment, the imaging unit 40B images the overflow water F released into the air so as to draw a substantially parabola. The imaging unit 40B acquires image information including information on the shape, position, and thickness of the substantially parabola in the substantially parabolic overflow water F.
 また、本実施形態において、算出部は、撮像部40Bにより撮像された略放物線を描くように空中に放出された溢れ水の画像情報に基づいて、尿量を算出する。算出部は、撮像部40Bにより取得された略放物線状の溢れ水Fにおける該略放物線の形状、位置、太さおよびこれらの変化に関する情報を取得すると共に、取得した情報に基づいて尿量を算出する。 Further, in the present embodiment, the calculation unit calculates the urine volume based on the image information of the overflow water discharged into the air so as to draw a substantially parabola imaged by the imaging unit 40B. The calculation unit acquires information about the shape, position, thickness, and changes of the substantially parabola in the substantially parabolic overflow water F acquired by the imaging unit 40B, and calculates the amount of urine based on the acquired information. To do.
 続けて、図17により、水洗大便器1Bにおける尿量測定動作を説明する。
 まず、使用者が排尿を開始する。水洗大便器1においては、不図示のセンサが使用者を検知し、照明機構30が照明を開始すると共に、撮像部40Bが撮像を開始する。排尿が開始された直後においては、図17の(a)に示すように、溢れ水Fは流れていない状態である。
The urine volume measurement operation in the flush toilet 1B will be described with reference to FIG.
First, the user starts urinating. In the flush toilet 1, a sensor (not shown) detects a user, the illumination mechanism 30 starts illumination, and the imaging unit 40B starts imaging. Immediately after the start of urination, as shown in FIG. 17A, the overflow water F is not flowing.
 続けて、排尿により溢れ水Fが流れ始める。排尿の開始から終了までの溢れ水Fは、図17の(b)から図17の(e)に示すように、形状、位置および太さが変化する。 Next, overflowing water F starts to flow due to urination. The overflow water F from the start to the end of urination changes in shape, position and thickness as shown in FIG. 17 (b) to FIG. 17 (e).
 ここで、撮像部40Bは、溢れ水Fにおける略放物線の形状、位置および太さ(およびこれらの変化)を連続的に撮像する。そして、撮像部40Bは、取得した画像情報を算出部に出力する。 Here, the imaging unit 40B continuously images the shape, position, and thickness (and changes thereof) of the substantially parabola in the overflow water F. Then, the imaging unit 40B outputs the acquired image information to the calculation unit.
 算出部は、撮像部40Bからの画像情報に基づいて、尿量を算出する。具体的には、算出部は、取得した画像情報から溢れ水Fにおける略放物線の形状、位置および太さ(およびこれらの変化)の情報を抽出する。算出部は、抽出した溢れ水Fにおける略放物線の形状、位置および太さ(およびこれらの変化)の情報に基づいて、溢れ水Fの流量および流量の変化を算出する。そして、算出部は、流量情報と時間情報とにより、尿量を算出する。
 算出部は、算出した結果である尿量情報を記憶部に出力する。そして、記憶部は、算出部から取得した尿量情報を記憶する。
The calculation unit calculates the urine volume based on the image information from the imaging unit 40B. Specifically, the calculation unit extracts information about the shape, position, and thickness (and changes thereof) of the substantially parabola in the overflow water F from the acquired image information. The calculation unit calculates the flow rate of the overflow water F and the change in the flow rate based on information on the shape, position, and thickness (and changes thereof) of the substantially parabola in the extracted overflow water F. Then, the calculation unit calculates the urine volume based on the flow rate information and the time information.
The calculation unit outputs urine volume information, which is the calculated result, to the storage unit. The storage unit stores urine volume information acquired from the calculation unit.
 ここで、本実施形態における算出部による算出処理について、図18および図19を参照して説明する。
 図18および図19は、本実施形態における算出部による算出処理の算出モデルを説明するための図である。図18に示すように、算出部による算出処理は、多重円柱モデルに基づく。この多重円柱モデルでは、略放物線を描くように空中に放出される溢れ水Fを、フレーム数(図18ではn個)に等しい数の円柱の重なりにより構成されるものと仮定する。すなわち、撮像部40Bは溢れ水Fの真横から撮像をし、捻れ等の無い略放物線と仮定する。そして、例えば図18に示すように、撮像部40Bにより撮像される画像のフレーム数(例えば200)に等しい数の円柱の体積の合計を求め、その合計値を溢れ水Fの流量、すなわち尿量とする。
Here, calculation processing by the calculation unit in the present embodiment will be described with reference to FIGS. 18 and 19.
18 and 19 are diagrams for explaining a calculation model of calculation processing by the calculation unit in the present embodiment. As shown in FIG. 18, the calculation process by the calculation unit is based on a multiple cylinder model. In this multi-cylinder model, it is assumed that the overflow water F discharged into the air so as to draw a substantially parabola is configured by overlapping a number of cylinders equal to the number of frames (n in FIG. 18). That is, it is assumed that the imaging unit 40B captures an image from right next to the overflow water F and is a substantially parabola with no twist. Then, for example, as shown in FIG. 18, the total volume of the cylinders equal to the number of frames (for example, 200) of the image captured by the imaging unit 40B is obtained, and the total value is calculated as the flow rate of the overflow water F, that is, the urine volume And
 具体的には、図19に示すように、第1実施形態と同様に溢れ水Fの撮像画像を2値化して得られた2値画像を取得する。この2値画像において、フレームiにおける径、すなわち各円柱の断面積の径をDiとすると、各円柱の底面積Siは、Si=π×(Di/2)で求められる。そして、各円柱の高さHiは、1フレーム間に液体(溢れ水F)が進んだ距離に等しい。そのため、2値画像における放物線の近似2次方程式を求め、その傾きを速度Iとする。そして、フレーム時間をfiとすると、1フレーム間に液体(溢れ水F)が進んだ距離、すなわち各円柱の高さHiは、Hi=I×fiで求められる。従って、各円柱の体積VはSi×Hiで求められ、これにフレーム数を乗じることで、溢れ水Fの流量、すなわち尿量が求められる。 Specifically, as shown in FIG. 19, a binary image obtained by binarizing the captured image of the overflow water F is acquired as in the first embodiment. In this binary image, if the diameter in the frame i, that is, the diameter of the cross-sectional area of each cylinder is Di, the bottom area Si of each cylinder is obtained by Si = π × (Di / 2) 2 . The height Hi of each cylinder is equal to the distance traveled by the liquid (overflow water F) between one frame. Therefore, an approximate quadratic equation of a parabola in a binary image is obtained, and the gradient is defined as speed I. When the frame time is fi, the distance traveled by the liquid (overflow water F) during one frame, that is, the height Hi of each cylinder is obtained by Hi = I × fi. Accordingly, the volume V of each cylinder is obtained by Si × Hi, and by multiplying this by the number of frames, the flow rate of the overflow water F, that is, the urine volume is obtained.
 なお、本実施形態の算出処理においても、第1実施形態の算出処理のフロー(図10および図11)と同様の画像処理が適用可能である。すなわち、ノイズ処理された背景画像と液体画像の差分画像において、溢れ水Fの幅を求めることで、上記円柱の断面積の径Diが求められる。 In the calculation process of the present embodiment, the same image processing as in the calculation process flow (FIGS. 10 and 11) of the first embodiment can be applied. That is, by obtaining the width of the overflow water F in the difference image between the background image and the liquid image subjected to noise processing, the diameter Di of the cross-sectional area of the cylinder is obtained.
 本実施形態の水洗大便器1Bによれば、以下の効果を奏する。
 本実施形態では、便器排水路13Bは、所定位置において溢れ水Fを略放物線を描くように空中に放出させるように構成される。また、撮像部40Bは、略放物線を描くように空中に放出された溢れ水Fを撮像し、算出部は、撮像部40Bにより撮像された略放物線を描くように空中に放出された溢れ水Fの画像情報に基づいて、尿量を算出する。
 本実施形態によれば、略放物線を描くように空中に放出された溢れ水Fを撮像して得られた画像情報に基づいて、上述の多重円柱モデルに従って溢れ水Fの流量、すなわち尿量を算出できる。また、便器排水路13Bの構造により放物線の位置が規定されるため、奥行き情報等は不要であり、放物線の真横から1つの撮像部(カメラ)で撮像するだけで尿量を算出できる。
According to the flush toilet 1B of the present embodiment, the following effects are exhibited.
In the present embodiment, the toilet drainage channel 13B is configured to discharge the overflow water F into the air so as to draw a substantially parabola at a predetermined position. In addition, the imaging unit 40B images the overflow water F discharged in the air so as to draw a substantially parabola, and the calculation unit overflows the water F discharged in the air so as to draw a substantially parabola imaged by the imaging unit 40B. The urine volume is calculated based on the image information.
According to the present embodiment, the flow rate of the overflow water F, that is, the amount of urine is calculated based on the image information obtained by imaging the overflow water F released in the air so as to draw a substantially parabola. It can be calculated. Moreover, since the position of the parabola is defined by the structure of the toilet drainage channel 13B, depth information or the like is not necessary, and the urine volume can be calculated simply by imaging with one imaging unit (camera) from right next to the parabola.
 また、本実施形態では、便器排水路13Bは、封水部の最下流部において底面から突出して形成され溢れ水Fを空中に放出させる凸部70を有する。
 本実施形態によれば、凸部70を有することで、溢れ水Fを空中に放出させて略放物線を描くことができる。そのため、溢れ水Fの略放物線を撮像でき、尿量を算出できる。
Further, in the present embodiment, the toilet drainage channel 13B has a convex portion 70 that is formed to protrude from the bottom surface at the most downstream portion of the sealed water portion and discharges the overflow water F into the air.
According to this embodiment, by having the convex part 70, the overflow water F can be discharge | released in the air and a substantially parabola can be drawn. Therefore, a substantially parabola of the overflow water F can be imaged and the urine volume can be calculated.
 また、本実施形態では、撮像部40Bは、略放物線を描くように空中に放出された溢れ水Fの側面に対向して配置される。
 本実施形態によれば、撮像部40Bが略放物線を描くように空中に放出された溢れ水Fの該放物線の位置、形状および太さ等を撮像可能になっている。これにより、水洗大便器1Bは、溢れ水Fを撮像することで尿量を算出可能である。
Moreover, in this embodiment, the imaging part 40B is arrange | positioned facing the side surface of the overflow water F discharge | released in the air so that a substantially parabola may be drawn.
According to the present embodiment, the position, shape, thickness, and the like of the parabola of the overflow water F discharged into the air so that the imaging unit 40B draws a substantially parabola can be captured. Thereby, flush toilet 1B can calculate the amount of urine by imaging overflow water F.
 続けて、図20により、第2実施形態における変形例について説明する。図20は、第2実施形態における変形例であってSトラップタイプの水洗大便器の場合を説明する断面図である。 Subsequently, a modification of the second embodiment will be described with reference to FIG. FIG. 20 is a cross-sectional view illustrating a modification of the second embodiment and a case of an S trap type flush toilet.
 図20に示すように、水洗大便器1Cは、Sトラップタイプであり、便器排水路13Cにおける下流側の下降流路16Cが垂直下方向に延びるように形成されている点で第2実施形態の水洗大便器1Bと相違し、他の部分は同様の構成となっている。 As shown in FIG. 20, the flush toilet 1C is of the S trap type, and the downstream descending flow path 16C in the toilet drainage channel 13C is formed so as to extend vertically downward. Unlike the flush toilet 1B, the other parts have the same configuration.
 水洗大便器1Cにおいても、封水部の下流端に凸部70Cが形成されており、溢れ水Fは、略放物線を描くように空中に放出される。
 そして、第2実施形態と同様に、撮像部40Cは、略放物線を描くように空中に放出された溢れ水Fの該放物線の位置、形状および太さ等を撮像する。
Also in flush toilet 1C, a convex portion 70C is formed at the downstream end of the sealed portion, and the overflow water F is discharged into the air so as to draw a substantially parabola.
Similarly to the second embodiment, the imaging unit 40C images the position, shape, thickness, and the like of the parabola of the overflow water F discharged into the air so as to draw a substantially parabola.
 また、算出部は、取得した画像情報から溢れ水Fにおける略放物線の形状、位置および太さ(およびこれらの変化)の情報を抽出する。そして、算出部は、抽出した溢れ水Fにおける略放物線の形状、位置および太さ(およびこれらの変化)の情報に基づいて、溢れ水Fの流量および流量の変化を算出する。 Also, the calculation unit extracts information about the shape, position, and thickness (and changes thereof) of the substantially parabola in the overflow water F from the acquired image information. And a calculation part calculates the flow volume of the overflow water F, and the change of a flow volume based on the information of the shape of the substantially parabola in the extracted overflow water F, a position, and thickness (and these changes).
 なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲内での変形、改良等は本発明に含まれる。 It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
 第1実施形態において、溝21は、排水ソケット20の長手方向における全域にわたって形成されているが、これに限定されず、撮像部40により撮像される領域にのみ形成されていてもよい。 In the first embodiment, the groove 21 is formed over the entire region in the longitudinal direction of the drain socket 20, but is not limited thereto, and may be formed only in a region imaged by the imaging unit 40.
 また、第1実施形態において、撮像部40により撮像される領域である排水ソケット20に溝21が形成されているが、これに限定されず、溝が形成されていない構成でもあってもよい。 Further, in the first embodiment, the groove 21 is formed in the drain socket 20 which is an area imaged by the imaging unit 40, but the present invention is not limited to this, and a configuration in which no groove is formed may be used.
 また、上記実施形態の水洗大便器は、撮像部を洗浄可能な洗浄機構をさらに備えていてもよい。これにより、撮像部が汚物等で汚染された場合であっても、洗浄機構により撮像部を洗浄することで、尿量の測定精度を維持できる。
 例えば、第2実施形態において、水洗大便器がジェット孔から洗浄水を吐出するジェット機構を有する場合には、洗浄機構として該ジェット機構を利用してもよい。この場合には、撮像部は、ジェット機構のジェット孔の延長線上に配置される。
The flush toilet of the above embodiment may further include a cleaning mechanism that can clean the imaging unit. Thereby, even when the imaging unit is contaminated with dirt or the like, the measurement accuracy of the urine volume can be maintained by cleaning the imaging unit with the cleaning mechanism.
For example, in the second embodiment, when the flush toilet has a jet mechanism that discharges washing water from a jet hole, the jet mechanism may be used as the washing mechanism. In this case, the imaging unit is disposed on an extension line of the jet hole of the jet mechanism.
 また、上記実施形態では、本発明を大便器に適用した例を示したがこれに限定されず、本発明を小便器に適用してもよい。
 また、上記実施形態では、本発明を水洗便器に適用した例を示したがこれに限定されず、本発明を無水便器に適用してもよい。
Moreover, although the example which applied this invention to the toilet bowl was shown in the said embodiment, it is not limited to this, You may apply this invention to a urinal.
Moreover, although the example which applied this invention to the flush toilet bowl was shown in the said embodiment, it is not limited to this, You may apply this invention to an anhydrous toilet bowl.
 1   水洗大便器(便器)
 10  便鉢
 11  溜水部
 12  供給部
 13  便器排水路
 15  上昇流路(封水部)
 16  下降流路
 20  排水ソケット
 21  溝
 25  目盛り表示部
 30  照明機構
 40  撮像部
 50  測定部
 100 制御部
 130 算出部
 F   溢れ水
1 flush toilet (toilet)
DESCRIPTION OF SYMBOLS 10 Toilet bowl 11 Reservoir part 12 Supply part 13 Toilet drainage 15 Ascending flow path (sealed part)
16 Downflow path 20 Drain socket 21 Groove 25 Scale display unit 30 Illumination mechanism 40 Imaging unit 50 Measuring unit 100 Control unit 130 Calculation unit F Overflowing water

Claims (12)

  1.  溜水部を有する便鉢と、
     前記溜水部の底部に連結され封水部を有する便器排水路と、
     前記封水部から溢れ出る溢れ水を測定可能な測定部と、を備え、
     前記測定部は、
     前記便器排水路に配置され前記封水部から溢れ出る溢れ水を撮像可能な撮像部と、
     前記撮像部により撮像された画像情報に基づいて尿量を算出可能な算出部と、を有する便器。
    A toilet bowl having a reservoir,
    A toilet drainage channel connected to the bottom of the water reservoir and having a water seal;
    A measurement unit capable of measuring overflow water overflowing from the sealed water unit,
    The measuring unit is
    An imaging unit that is arranged in the toilet drainage channel and can image the overflow water overflowing from the sealed water part;
    A toilet having a calculation unit capable of calculating urine volume based on image information captured by the imaging unit.
  2.  前記便器排水路は、前記撮像部により撮像される前記溢れ水が該便器排水路の内側面に沿って流れるように構成される請求項1に記載の便器。 The toilet bowl according to claim 1, wherein the toilet drainage channel is configured such that the overflow water imaged by the imaging unit flows along an inner surface of the toilet drainage channel.
  3.  前記便器排水路は、前記溜水部に連結される上昇流路と、該上昇流路の下流端に連結されその一部が排水ソケットで構成される下降流路と、を含んで構成され、
     前記撮像部は、前記排水ソケットに配置される請求項1又は2に記載の便器。
    The toilet drainage channel is configured to include an ascending channel connected to the water reservoir, and a descending channel connected to a downstream end of the ascending channel and a part of which is constituted by a drain socket,
    The toilet according to claim 1 or 2, wherein the imaging unit is disposed in the drain socket.
  4.  前記便器排水路は、少なくとも前記撮像領域において、底面における幅方向略中央に設けられ上流側から下流側に向かって延びる溝を有する請求項3に記載の便器。 The toilet bowl according to claim 3, wherein the toilet drainage channel has a groove provided at substantially the center in the width direction on the bottom surface and extending from the upstream side toward the downstream side at least in the imaging region.
  5.  前記便器排水路は、少なくとも前記撮像領域に形成され水位を表す目盛り表示部を有する請求項1から4のいずれかに記載の便器。 The toilet bowl according to any one of claims 1 to 4, wherein the toilet drainage channel has a scale display unit formed at least in the imaging region and indicating a water level.
  6.  前記撮像部は、前記溢れ水の表面に対向して配置される請求項1から5のいずれかに記載の便器。 The toilet according to any one of claims 1 to 5, wherein the imaging unit is disposed to face a surface of the overflow water.
  7.  前記便器排水路は、所定位置において前記溢れ水を略放物線を描くように空中に放出させるように構成され、
     前記撮像部は、前記略放物線を描くように空中に放出された前記溢れ水を撮像し、
     前記算出部は、前記撮像部により撮像された略放物線を描くように空中に放出された前記溢れ水の画像情報に基づいて尿量を算出する請求項1に記載の便器。
    The toilet drainage channel is configured to discharge the overflow water into the air so as to draw a substantially parabola at a predetermined position,
    The imaging unit images the overflow water released into the air so as to draw the substantially parabola,
    The toilet according to claim 1, wherein the calculation unit calculates a urine amount based on image information of the overflow water discharged into the air so as to draw a substantially parabola imaged by the imaging unit.
  8.  前記便器排水路は、前記封水部の最下流部において底面から突出して形成され前記溢れ水を空中に放出させる凸部を有する請求項7に記載の便器。 The toilet bowl according to claim 7, wherein the toilet drainage channel has a convex portion that is formed so as to protrude from the bottom surface at the most downstream portion of the sealed water portion and discharges the overflow water into the air.
  9.  前記撮像部は、略放物線を描くように空中に放出された前記溢れ水の側面に対向して配置される請求項7又は8に記載の便器。 The toilet according to claim 7 or 8, wherein the imaging unit is arranged to face a side surface of the overflow water discharged into the air so as to draw a substantially parabola.
  10.  前記撮像部を洗浄可能な洗浄機構をさらに備える請求項1から9のいずれかに記載の便器。 The toilet according to any one of claims 1 to 9, further comprising a cleaning mechanism capable of cleaning the imaging unit.
  11.  前記便器排水路に配置され前記溢れ水を照明する照明機構をさらに備える請求項1から10のいずれかに記載の便器。 The toilet bowl according to any one of claims 1 to 10, further comprising an illumination mechanism that is disposed in the toilet drainage channel and illuminates the overflow water.
  12.  前記測定部は、その測定前に前記封水部から溢れ水を一旦溢れさせた後に、前記封水部から溢れ出る溢れ水を測定する請求項1から11のいずれかに記載の便器。 The toilet according to any one of claims 1 to 11, wherein the measurement unit measures the overflow water overflowing from the sealed water portion after once overflowing the overflow water from the sealed water portion before the measurement.
PCT/JP2017/046849 2016-12-28 2017-12-27 Toilet WO2018124163A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016257001A JP2018109285A (en) 2016-12-28 2016-12-28 Toilet stool
JP2016-257001 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018124163A1 true WO2018124163A1 (en) 2018-07-05

Family

ID=62710633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046849 WO2018124163A1 (en) 2016-12-28 2017-12-27 Toilet

Country Status (2)

Country Link
JP (1) JP2018109285A (en)
WO (1) WO2018124163A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7375839B2 (en) 2022-02-01 2023-11-08 Toto株式会社 toilet equipment
JP7435639B2 (en) 2022-02-01 2024-02-21 Toto株式会社 toilet equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554687A (en) * 1982-12-17 1985-11-26 Medical Engineering Corporation Toilet mounted urine flow meter
JP3876919B2 (en) * 2003-06-23 2007-02-07 東陶機器株式会社 Toilet bowl unit
JP2007064740A (en) * 2005-08-30 2007-03-15 Sysmex Corp Measured result management system
JP2016178966A (en) * 2015-03-23 2016-10-13 株式会社ゼオシステム Urine flow meter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554687A (en) * 1982-12-17 1985-11-26 Medical Engineering Corporation Toilet mounted urine flow meter
JP3876919B2 (en) * 2003-06-23 2007-02-07 東陶機器株式会社 Toilet bowl unit
JP2007064740A (en) * 2005-08-30 2007-03-15 Sysmex Corp Measured result management system
JP2016178966A (en) * 2015-03-23 2016-10-13 株式会社ゼオシステム Urine flow meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7375839B2 (en) 2022-02-01 2023-11-08 Toto株式会社 toilet equipment
JP7435639B2 (en) 2022-02-01 2024-02-21 Toto株式会社 toilet equipment

Also Published As

Publication number Publication date
JP2018109285A (en) 2018-07-12

Similar Documents

Publication Publication Date Title
JP7128322B2 (en) Toilet device and toilet seat device
WO2018124163A1 (en) Toilet
JPH0630945Y2 (en) Siphon wash toilet
US20170198464A1 (en) Optical Proximity Sensor Based Toilet with Fill Tube Proximity Level Sensing
CN104871034B (en) Motion detection sensor and automatic faucet
JP4765890B2 (en) Foreign object detection device
US9677255B2 (en) Person-detecting sensor and automatic water faucet
TWI592545B (en) Sensing body sensors and automatic faucets
EP1521212A3 (en) Surface reconstruction and registration with a Helmholtz reciprocal image pair
WO2010061779A1 (en) Device for measuring trolley wire wear and deviation by image processing
JP2017137708A (en) Toilet bowl device and toilet seat device
CN108331113A (en) A kind of seat formula closestool intelligent flushing system and its control method
US6757918B2 (en) Waste outlet fitting for a sanitary appliance, in particular a urinal
JP2007186877A (en) Flushing urinal equipment
JP2008077154A5 (en)
US11697932B2 (en) Toilet device
CN207749617U (en) Water inlet is embedded in the n shape pipe floor drains in water
JP2005264624A (en) Urine quantity measuring toilet bowl
JP2009030302A (en) Drain outlet unit
JP5430102B2 (en) Drainage structure, drainage structure for shower room, drainage structure for waterproof pan for washing machine
JP2010077653A (en) Washstand unit
KR20060101901A (en) Urinal device
JPH1094537A (en) Urination measuring apparatus
JP2000017716A (en) Draining structure of toilet
JP7391711B2 (en) water supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889017

Country of ref document: EP

Kind code of ref document: A1