WO2018124148A1 - グリセリン酸エステルの製造方法 - Google Patents

グリセリン酸エステルの製造方法 Download PDF

Info

Publication number
WO2018124148A1
WO2018124148A1 PCT/JP2017/046814 JP2017046814W WO2018124148A1 WO 2018124148 A1 WO2018124148 A1 WO 2018124148A1 JP 2017046814 W JP2017046814 W JP 2017046814W WO 2018124148 A1 WO2018124148 A1 WO 2018124148A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
compound represented
methyl
dioxolane
Prior art date
Application number
PCT/JP2017/046814
Other languages
English (en)
French (fr)
Inventor
青木 崇
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to US16/473,167 priority Critical patent/US10822329B2/en
Priority to CN201780050662.1A priority patent/CN109641866B/zh
Priority to PCT/JP2017/046814 priority patent/WO2018124148A1/ja
Priority to EP17885459.2A priority patent/EP3564226B1/en
Publication of WO2018124148A1 publication Critical patent/WO2018124148A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/72Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 spiro-condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/65Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by splitting-off hydrogen atoms or functional groups; by hydrogenolysis of functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/09Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/31Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • C07D319/061,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/12Formation or introduction of functional groups containing oxygen of carboxylic acid ester groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/04Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated
    • C07C215/06Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic
    • C07C215/10Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic with one amino group and at least two hydroxy groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/04Saturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/17Saturated compounds containing keto groups bound to acyclic carbon atoms containing hydroxy groups

Definitions

  • the present invention relates to a method for producing a glyceric acid ester.
  • Compounds having a glyceric acid skeleton in which the hydroxyl groups at the 2-position and 3-position are protected as cyclic acetal groups include, for example, synthetic intermediates such as glyceric acid and esters thereof that are used as raw materials for various pharmaceuticals, cosmetics, detergents, polymers, etc. Useful as a body.
  • Examples of compounds having a glyceric acid skeleton in which the hydroxyl groups at the 2-position and the 3-position are protected as cyclic acetal groups include, for example, Synlett, Vol. 10, pp. 1565-1566, 2001 (Non-patent Document 1), The Journal of Organic Chemistry, Vol.
  • Non-Patent Document 4 4-hydroxymethyl-2, which can be produced from glycerol and acetone, 2-dimethyl-1,3-dioxolane or Is a 2,2-dimethyl-1,3-dioxolane-4-carboxylic acid (2,2-dimethyl-) by dimerization reaction of its oxidant 4-formyl-2,2-dimethyl-1,3-dioxolane.
  • 1,3-dioxolan-4-yl) methyl ester is described.
  • the present invention relates to a method for producing a compound represented by the following formula (II), which comprises a step of oxidative esterification of a compound represented by the following formula (I).
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent hydrocarbon group, or R 1 and R 2 are bonded to each other to form a ring structure. Represents a divalent hydrocarbon group for forming R 1 except that R 1 and R 2 are methyl groups at the same time.
  • the present invention relates to a compound represented by the following formula (II).
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent hydrocarbon group, or R 1 and R 2 are bonded to each other to form a ring structure. (However, the case where R 1 and R 2 are simultaneously methyl groups is excluded.)
  • the compound represented by the following formula (II) of the present invention is a novel glyceric acid ester (hereinafter also referred to as “the glyceric acid ester of the present invention” or “the ester dimer of the present invention”).
  • Glyceric acid and its ester form can be produced from the glyceric acid ester of the present invention.
  • R 1 is a hydrogen atom, it can be produced in high yield, and further, in each step up to its production and use as an intermediate, acetalization Proceeds rapidly and the stability of the acetal group is high.
  • R 1 and R 2 are monovalent carbon atoms or divalent hydrocarbon groups in which R 1 and R 2 are bonded to form a ring structure, the recovery rate in the washing step after the reaction is high, There is also an excellent effect that there is little work addition at the time.
  • Non-Patent Documents 1 to 4 The process for producing 2,2-dimethyl-1,3-dioxolane-4-carboxylic acid (2,2-dimethyl-1,3-dioxolan-4-yl) methyl ester described in Non-Patent Documents 1 to 4 is as follows. Is as follows.
  • Non-Patent Documents 1 to 4 are documents describing the development of a novel dimerization reaction method or dimer compounds obtained as by-products. The hydroxyl groups at the 2- and 3-positions are protected as cyclic acetal groups. There is no description on substrate selection and reaction conditions for realizing the production of a compound having a glyceric acid skeleton or industrialization of subsequent derivative development.
  • a step of washing the organic layer with water is generally performed for the purpose of efficiently removing byproducts such as catalysts and inorganic salts derived from the auxiliary materials.
  • the water solubility of the target compound is high, the yield decreases in the washing step, which is economically disadvantageous, or the work load for recovering the target compound from the aqueous phase increases.
  • the present invention relates to providing a novel glyceric acid ester that can be produced in high yield and expected to be applied as a synthetic intermediate, and a method for producing the same.
  • the present invention relates to providing a novel glyceric acid ester that is expected to be applied as a synthetic intermediate and has a high recovery rate in the water washing step after the reaction, little work addition during production, and a method for producing the same.
  • ADVANTAGE OF THE INVENTION According to this invention, the novel glycerol ester which can be manufactured with a high yield and the application as a synthetic intermediate is anticipated, and its manufacturing method can be provided.
  • a novel glyceric acid ester expected to be applied as a synthetic intermediate which has a high recovery rate in the water washing step after the reaction, has little work addition during production, and a method for producing the same. Can do.
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent hydrocarbon group, or R 1 and R 2 are bonded to each other to form a ring structure. (However, the case where R 1 and R 2 are simultaneously methyl groups is excluded.)
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent hydrocarbon group, or R 1 and R 2 are bonded to each other to form a ring structure. Represents a hydrocarbon group.
  • R 1 and R 2 from the viewpoints of availability and reactivity of raw materials, stability of dioxolane and the ester dimer of the present invention, and ease of recovery of ketones by-produced by acetal decomposition of the ester dimer of the present invention.
  • R 1 and R 2 are preferably monovalent hydrocarbon groups having 1 to 8 carbon atoms, more preferably R 1 is a monovalent hydrocarbon group having 1 to 8 carbon atoms, and R 2 is 2 or more carbon atoms.
  • a monovalent hydrocarbon group of 8 or less more preferably R 1 is an alkyl group having 1 to 8 carbon atoms, and R 2 is an alkyl group having 2 to 8 carbon atoms, more preferably R 1 is 1 or less carbon atoms.
  • R 1 is an alkyl group having 1 to 8 carbon atoms
  • R 2 is an alkyl group having 2 to 8 carbon atoms, more preferably R 1 is 1 or less carbon atoms.
  • 2 alkyl group and R 2 is an alkyl group having 2 to 6 carbon atoms, more preferably R 1 is an alkyl group having 1 or 2 carbon atoms and R 2 is an alkyl group having 2 to 4 carbon atoms, still more preferably.
  • R 1 is methyl
  • R 2 is an ethyl group.
  • R 1 and R 2 is a divalent hydrocarbon group that forms a ring structure with each other, from the point of view, preferably 2 or more carbon atoms 7
  • the following divalent hydrocarbon group more preferably a divalent hydrocarbon group having 3 to 6 carbon atoms, more preferably a divalent hydrocarbon group having 4 to 5 carbon atoms, still more preferably 5 carbon atoms.
  • These are divalent hydrocarbon groups. That is, the ring structure containing R 1 and R 2 is preferably a 3- to 8-membered ring, more preferably a 4- to 7-membered ring, still more preferably a 5- to 6-membered ring, and even more preferably a 6-membered ring.
  • the ring structure containing R 1 and R 2 is preferably a cycloalkane structure, more preferably a ring structure having 5 or 6 carbon atoms (cyclopentane ring or cyclohexane ring), and a cyclohexane ring. More preferably it is.
  • R A represents a divalent hydrocarbon group forming a ring structure.
  • the ring structure containing R A is preferably a 3- to 8-membered ring, more preferably a 4- to 7-membered ring, still more preferably a 5- to 6-membered ring, and even more preferably a 6-membered ring.
  • the ring structure containing R A is preferably a cycloalkane structure, more preferably a cyclopentane ring or a cyclohexane ring as described above, and a cyclohexane ring formed. Is more preferable.
  • R A is preferably an ethylene group (— (CH 2 ) 2 —), a trimethylene group (— (CH 2 ) 3 —), a tetramethylene group (— (CH 2 ) 4 —), a pentamethylene group (— (CH 2 ) 5 —), hexamethylene group (— (CH 2 ) 6 —) or heptamethylene group (— (CH 2 ) 7 —), more preferably trimethylene group, tetramethylene group, pentamethylene group or hexamethylene More preferably a tetramethylene group or a pentamethylene group, still more preferably a pentamethylene group.
  • R 2 is a hydrogen atom
  • R 1 represents a hydrogen atom or a monovalent hydrocarbon group
  • R 1 is preferably a hydrogen atom or having 1 to 20 carbon atoms. It is a hydrocarbon group.
  • the hydrocarbon group is preferably an alkyl group or an aryl group.
  • the number of carbon atoms of the alkyl group is preferably 1 or more, preferably 20 or less, more preferably 18 or less, still more preferably 16 or less, still more preferably 14 or less, still more preferably 12 or less, and still more preferably 10 In the following, it is more preferably 8 or less, still more preferably 6 or less, still more preferably 4 or less, and still more preferably 2 or less.
  • These alkyl groups may be linear or branched.
  • the carbon number of the aryl group is preferably 6 or more, preferably 20 or less, more preferably 18 or less, still more preferably 16 or less, still more preferably 14 or less, still more preferably 12 or less, and even more preferably.
  • R 1 is preferably a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms, more preferably a hydrogen atom, a linear alkyl group having 1 to 8 carbon atoms, or 1 carbon atom.
  • the compound represented by the formula (II) has two or more asymmetric carbon atoms, when the number of asymmetric carbon atoms is n, the mixture is a maximum of 2 n (2 to the power of n) types of stereoisomers. .
  • the compound represented by the formula (II) may be a stereoisomer mixture and is not particularly limited.
  • the method for producing the ester dimer of the present invention is not particularly limited, but it is preferably produced by subjecting a compound represented by the following formula (I) (hereinafter also referred to as “dioxolane”) to an oxidative esterification reaction.
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent hydrocarbon group, or R 1 and R 2 are bonded to each other to form a ring structure. (Except for the case where R 1 and R 2 are methyl groups at the same time.)
  • dioxolane the compound represented by the above formula (I) may be used alone, and the compound represented by the formula (I) and the compound represented by the formula (V) described below (hereinafter, A mixture with “dioxane”) may also be used.
  • the mixture of the compound represented by the formula (I) and the compound represented by the formula (V) may be a commercially available product, or, as described later, in the formula (I)
  • a mixture of the compound represented by formula (V) and the compound represented by formula (V) may be produced and used, but is not particularly limited. From the viewpoint of producing at a low cost, a mixture of dioxolane and dioxane is produced (synthesized). , Preferably used.
  • the production method of dioxolane (compound represented by the formula (I)) used in the present invention is not particularly limited, and glycerol and a compound represented by the following formula (III) are generally well-known methods. Alternatively, it is produced by a method of acetalizing a multimer in the presence of an acid catalyst (Method 1) or a method of acetal exchange of a compound represented by the following formula (IV) with glycerol in the presence of an acid catalyst (Method 2). It is preferable from the viewpoint of availability of raw materials, yield, and ease of reaction operation.
  • the manufacturing method of the glycerol ester of this invention includes the following process 1 and process 2.
  • Step 1 Step of acetalizing glycerol and a compound represented by the following formula (III) or a multimer thereof in the presence of an acid catalyst (step 1-1), or glycerol and a compound represented by the following formula (IV) Of acetal exchange in the presence of an acid catalyst (step 1-2)
  • Step 2 Oxidative esterification of a mixture of a compound represented by the following formula (I) and a compound represented by the following formula (V)
  • R 1 and R 2 are each R 1 and R 2 synonymous in Formula (II), wherein (IV), R 3 is independently a monovalent Represents a hydrocarbon group of
  • R 3 in formula (IV) is each independently a monovalent hydrocarbon group, preferably from 1 to 8 carbon atoms, from the viewpoint of availability of raw materials, and by-produced by an acetal exchange reaction. From the viewpoint of accelerating the reaction by distilling alcohol out of the reaction system, more preferably a monovalent hydrocarbon group having 1 to 3 carbon atoms, still more preferably a monovalent alkyl group having 1 to 3 carbon atoms, Even more preferred is a methyl group.
  • the multimer of the compound represented by the formula (III) when R 1 or R 2 is a hydrogen atom, the multimer of the compound represented by the formula (III) includes paraformaldehyde, which is a formaldehyde multimer, and a cyclic trimer of acetaldehyde. And paraaldehyde (also known as 2,4,6-trimethyl-1,3,5-trioxane) is exemplified. In consideration of ease of handling, etc., the compound represented by formula (III) or a multimer thereof may be appropriately selected and used.
  • the dioxolane obtained by the acetalization or acetal exchange method is obtained as a mixture with a compound (dioxane) represented by the following formula (V) as shown in the following reaction formula.
  • a compound (dioxane) represented by the following formula (V) as shown in the following reaction formula.
  • the isomer ratio of dioxolane is so preferable that it is high.
  • the isomer ratio of dioxolane is preferably 40% or more and 60% or less.
  • the dioxolane obtained from the compound represented by the above formula (III) and the compound represented by the formula (IV) is: An isomerization ratio of 95% or more is obtained.
  • a mixture of dioxolane (compound represented by formula (I)) and dioxane (compound represented by formula (V)) obtained by the above method 1 (step 1-1) or method 2 (step 1-2) is: It can be used as a raw material for the next step as it is or after purification, but it is preferable to purify the mixture and remove unreacted raw materials from the viewpoint of the yield in the next step, and distillation purification from the viewpoint of ease of purification. More preferably. In addition, since it is difficult to separate dioxolane and dioxane by purification, it is preferable to use as a raw material for the next step in the state of a mixture of dioxolane and dioxane.
  • the glyceric acid ester of the present invention can be obtained by oxidative esterification of the above dioxolane (compound represented by the formula (I)).
  • Oxidative esterification is a kind of oxidation reaction for obtaining an ester from a primary alcohol and an alcohol in a broad sense, and more generally a reaction for obtaining one molecule of an ester dimer from two molecules of the same primary alcohol. There are also other names such as quantification.
  • oxidative esterification means carrying out a reaction for obtaining the ester dimer (compound represented by formula (II)) of the present invention from dioxolane (compound represented by formula (I)).
  • Examples of the oxidative esterification method include a method using a homogeneous or heterogeneous metal catalyst, and 4-acetamido-2,2,6,6-tetramethyl-1-oxopiperidinium described in Non-Patent Document 2.
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl
  • the dioxolane used in the present invention is usually a mixture with dioxane, but in the oxidative esterification step, formyl dioxolane (a compound represented by the formula (VII)) is by-produced from dioxolane depending on the reaction conditions.
  • formyl dioxolane a compound represented by the formula (VII)
  • the yield of formyldioxolane produced from dioxolane is preferably 20% or less, more preferably 10% or less. More preferably, it is 5% or less, still more preferably substantially 0%, and still more preferably 0%.
  • a preferable production method described later may be followed.
  • dioxanone a compound represented by the above formula (VI) from dioxane in which dioxane does not react depending on the reaction conditions. May be produced, or a compound other than dioxanone may be produced, or a mixture of these compounds may be obtained.
  • the production amount and production ratio of these compounds are affected. There is no limit.
  • any oxidative esterification method can be used as long as the compound represented by the formula (II) is obtained.
  • an organic compound as described in Non-Patent Document 2 is used. From an oxidative esterification method using a salt containing a nitroxyl radical containing an oxoammonium cation and a base, and an organic nitroxyl radical, its N-hydroxy form and a salt containing those oxoammonium cations as in Non-Patent Document 4.
  • oxidative esterification method selected from oxidative esterification methods (hereinafter also referred to as “nitroxyl radical methods”) using a selected compound, an oxidizing agent, and a base is preferable, and the yield of the ester dimer of the present invention is
  • the nitroxyl radical method is preferred from the viewpoint of high yield and low yield of formyldioxolane.
  • Sill a radical and / or an N- hydroxy body, an oxidizing agent, oxidative esterification method using a base is preferable.
  • the nitroxyl radical species is selected from any organic nitroxyl radical that has an oxidative esterification activity for dioxolane in combination with an oxidizing agent, its N-hydroxy form, and salts containing their oxoammonium cations.
  • Compounds can be used. That is, as the nitroxyl radical species, it is preferable to use at least one compound selected from an organic nitroxyl radical, an N-hydroxy form thereof, and a salt containing an oxoammonium cation thereof.
  • the organic nitroxyl radical is a compound represented by the following formula (VIII), a compound represented by the following formula (IX) or a compound represented by the following formula (X). It is preferable that That is, the nitroxyl radical species includes a compound represented by the following formula (VIII), a compound represented by the following formula (IX) or a compound represented by the following formula (X), an N-hydroxy form thereof, and It is preferable that it is a compound chosen from the salt containing the oxoammonium cation.
  • R 4 is a hydrogen atom, a halogen atom, a hydroxyl group, an alkoxy group, an acyloxy group, an alkoxycarbonyl group, an amino group, an acylamino group, a sulfonyloxy group, an N-alkylcarbamoyloxy group, a carboxy group, a cyano group.
  • R 5 and R 6 each independently represents a hydrogen atom or a methyl group
  • R 7 and R 8 represent Each independently represents a hydrogen atom or a methyl group.
  • R 4 represents a hydrogen atom, a halogen atom, a hydroxyl group (—OH), an alkoxy group, an acyloxy group, an alkoxycarbonyl group, an amino group, an acylamino group, a sulfonyloxy group, an N-alkylcarbamoyloxy group, a carboxy group.
  • —C ( ⁇ O) —OH a cyano group
  • R 4 is preferably an alkoxy group, an acyloxy group, or an acylamino group from the viewpoint of availability and high yield of the ester dimer of the present invention.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom, a chlorine atom, or a bromine atom is preferable from the viewpoint of easy acquisition or preparation and low molecular weight.
  • the alkoxy group is represented by —OR 9 and R 9 represents a monovalent hydrocarbon group, and is preferably an alkyl group having 1 to 12 carbon atoms or a carbon number from the viewpoint of easy acquisition or preparation and low molecular weight.
  • part of the hydrogen atoms may be substituted with a halogen atom.
  • the acyloxy group is represented by —O (C ⁇ O) —R 10 , and R 10 is preferably a hydrogen atom, an alkyl group having 1 to 12 carbon atoms from the viewpoint of easy acquisition or preparation and low molecular weight, An alkenyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 20 carbon atoms, more preferably a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an aryl group having 6 to 14 carbon atoms, still more preferably a hydrogen atom.
  • the acylamino group is represented by —NH (C ⁇ O) —R 11 , and R 11 is preferably a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, from the viewpoint of easy acquisition or preparation and low molecular weight, Or an aryl group having 6 to 20 carbon atoms, more preferably a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an aryl group having 6 to 14 carbon atoms, still more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • an aryl group having 6 to 10 carbon atoms more preferably a methyl group, an ethyl group, or a phenyl group, and still more preferably a methyl group.
  • the sulfonyloxy group is represented by —O (O ⁇ S ⁇ O) —R 12 , and R 12 is preferably an alkyl group having 1 to 12 carbon atoms from the viewpoint of easy acquisition or preparation and low molecular weight, Or an aryl group having 6 to 20 carbon atoms, more preferably an alkyl group having 1 to 8 carbon atoms, or an aryl group having 6 to 14 carbon atoms, still more preferably an alkyl group having 1 to 4 carbon atoms, or 6 to 6 carbon atoms 10 aryl groups, more preferably a methyl group, an ethyl group, or a paratolyl group, still more preferably a methyl group or a paratolyl group.
  • nitroxyl radical species include TEMPO, 4-hydroxy TEMPO, 4-amino-TEMPO, 4-methoxy-TEMPO (hereinafter also referred to as “4-OMe-TEMPO”), 4-ethoxy-TEMPO.
  • -NHAc-TEMPO 4-methylsulfonyloxy-TEMPO (hereinafter also referred to as” 4-OMs-TEMPO "), 4-paratoluenesulfonyloxy-TEMPO, 4-oxo-TEMPO, 2-aza Adamantane-N-hydroxyl (hereinafter referred to as “AZADOL”) (Also referred to as “trademark” manufactured by Nissan Chemical Industries, Ltd.), 2-azaadamantane-N-oxyl (hereinafter also referred to as “AZADO”), 1-methyl-2-azaadamantane-N-oxyl (hereinafter referred to as “trademark”).
  • AZADOL 2-aza Adamantane-N-hydroxyl
  • AZADO 2-azaadamantane-N-oxyl
  • trademark 1-methyl-2-azaadamantane-N-oxyl
  • nitroxyl radical species include 4-methoxy-TEMPO, 4-benzoyloxy-TEMPO, 4-acetamido-TEMPO, 4-methylsulfonyloxy-TEMPO.
  • a compound selected from AZADOL and a compound selected from 4-benzoyloxy-TEMPO, 4-acetamido-TEMPO, 4-methylsulfonyloxy-TEMPO, and AZADOL is more preferable.
  • Preferred compounds are exemplified below, but in the present invention, the nitroxyl radical species is not limited to these compounds.
  • the amount of the compound selected from the organic nitroxyl radical, its N-hydroxy form and a salt containing oxoammonium cation thereof is used with respect to dioxolane or a mixture of dioxolane and dioxane.
  • the molar ratio is preferably 0.0001 or more, more preferably the molar ratio is 0.0002 or more, and still more preferably the molar ratio is 0.0005 or more. From the viewpoint of economy, the molar ratio is preferably 0.1 or less, more preferably the molar ratio is 0.05 or less, and still more preferably the molar ratio is 0.02 or less.
  • an oxidizing agent is preferably used together with the above-described nitroxyl radical species from the viewpoint of reactivity.
  • the oxidizing agent any oxidizing agent capable of oxidizing an organic nitroxyl radical or an N-hydroxy form thereof to an oxoammonium cation can be used.
  • the yield of the ester dimer of the present invention is reduced by hydration or hydrolysis.
  • an oxidizing agent composed of a halogen-containing compound that can be used in an organic solvent hereinafter also referred to as “halogen-containing oxidizing agent” is preferable.
  • halogen-containing oxidizing agent examples include sodium hypochlorite pentahydrate, metachloroperbenzoic acid, trichloroisocyanuric acid (hereinafter, also referred to as “TCCA”), tertiary butyl hypochlorite (hereinafter, “t BuOCl”).
  • chlorine-containing oxidant an oxidant composed of a compound containing chlorine such as N-chlorosuccinimide
  • bromine-containing oxidizing agent an oxidant composed of a compound containing bromine
  • halogen-containing oxidizing agent having a plurality of halogen elements such as “bromine-containing oxidizing agent” and (dichloroiodo) benzene is exemplified.
  • Halogen-containing oxidizing agent in view of obtaining an ester dimers of the present invention in high yield, as well as stability of the oxidizing agent, from the viewpoint of safety and ease of handling, preferably chlorine-containing oxidizing agent, selected from TCCA and t BuOCl
  • the oxidizing agent is more preferable, and TCCA is more preferable from the viewpoint of availability.
  • the oxidizing agent of the present invention includes a compound represented by the formula (VIII), a compound represented by the formula (IX), or an oxoammonium cation obtained by one-electron oxidation of the compound represented by the formula (X). And the organic nitroxyl radical or the oxoammonium cation of the N-hydroxy form thereof is excluded.
  • the molar ratio of the oxidizing active species to dioxolane or a mixture of dioxolane and dioxane is preferably 1.0 or more, more preferably. Is 1.1 or more. Further, from the viewpoint of economy and reduction of waste amount, the molar ratio is preferably 2.0 or less, more preferably 1.5 or less.
  • the oxidation active species means a chlorine atom in the case of a chlorine-containing oxidant, and in the case of TCCA, there are 3 mol of oxidation active species in 1 mol of the molecule.
  • a base is used for the purpose of neutralizing an acid produced as a by-product due to consumption of the oxidizing agent.
  • Any base can be used as long as it does not interfere with the desired oxidation reaction, but it is weakly basic and side reactions are suppressed as it causes a direct side reaction with dioxolane or a mixture of dioxolane and dioxane, a catalyst or an oxidizing agent.
  • a heterocyclic aromatic amine having a pyridine skeleton is preferable.
  • the heterocyclic aromatic amine having a pyridine skeleton may be used in combination with an inorganic base in order to suppress the amount used, but has a pyridine skeleton from the viewpoint of obtaining the ester dimer of the present invention in a high yield. More preferably, the heterocyclic aromatic amine is used alone.
  • the heterocyclic aromatic amine having a pyridine skeleton include pyridine, alkyl-substituted pyridines, polycyclic quinolines, bipyridyls that are pyridine dimers, and the like.
  • heterocyclic aromatic amines having a pyridine skeleton it is preferable to select and use a heterocyclic aromatic amine having a pyridine skeleton that has a large boiling point difference from dioxanone and the ester dimer of the present invention and is easily separated by distillation.
  • an amine selected from pyridine and 5-ethyl-2-methylpyridine is preferable.
  • a water-insoluble pyridine skeleton is formed.
  • Preferred amines are pyridine, 3,5-lutidine, 3-ethylpyridine, 4-ethylpyridine and 5-ethyl-2. Amines selected from methyl pyridine is more preferred.
  • the molar ratio of the base to dioxolane or a mixture of dioxolane and dioxane is preferably 1.0 or more. More preferably, it is 1.1 or more, More preferably, it is 1.2 or more, More preferably, it is 1.3 or more. In addition, from the viewpoints of economy and ease of recovery of excess base, the molar ratio is preferably 2.5 or less, more preferably 2.0 or less, and even more preferably 1.7 or less.
  • solvent use conditions are preferred. Any solvent can be used as long as it is inactive with respect to dioxolane or a mixture of dioxolane and dioxane, an oxidizing agent and a base. And preferably a solvent selected from acetone, 2-butanone, cyclopentanone, acetonitrile and dichloromethane, more preferably a solvent selected from acetone, 2-butanone, acetonitrile and dichloromethane, still more preferably selected from acetone and 2-butanone. Solvent. Moreover, acetonitrile is more preferable from the viewpoint of the productivity of the ester dimer of the present invention.
  • a solvent may be used individually by 1 type and may use 2 or more types together.
  • the amount of the solvent used is not particularly limited, but from the viewpoint of operability and the viewpoint of obtaining the ester dimer of the present invention in a high yield, the amount of the solvent used is preferably 20% by mass or more, more preferably 30%, based on the entire reaction system. % By mass or more, more preferably 40% by mass or more, still more preferably 50% by mass or more, and still more preferably 60% by mass or more. From the viewpoint of productivity, the amount of the solvent used for the entire reaction system is preferably It is 90 mass% or less, More preferably, it is 85 mass% or less, More preferably, it is 80 mass% or less.
  • reaction procedure In this reaction, there is no limitation on the order of charging the raw materials, but since the oxidative esterification reaction is an exothermic reaction, raw materials other than the oxidizing agent are used from the viewpoint of ease of temperature control of the reaction solution and safety.
  • the method of dripping an oxidizing agent or an oxidizing agent solution in a mixture or a mixed solution is preferable.
  • the temperature of the reaction solution during dropping of the oxidant or the oxidant solution is preferably ⁇ 15 ° C. or higher, more preferably ⁇ 10 ° C. or higher, from the viewpoint of equipment load and suppression of viscosity increase of the reaction solution.
  • the reaction is preferably 25 ° C. or less, more preferably 10 ° C. or less.
  • the reaction is continued until the total amount of dioxolane reacts or the decrease in the residual amount stops. It is preferably 5 ° C. or higher, more preferably ⁇ 5 ° C. or higher, and preferably 50 ° C. or lower, more preferably 30 ° C. or lower, from the viewpoint of suppressing side reactions.
  • reaction terminator that completely consumes the residual oxidizing agent.
  • any compound can be used as long as it does not easily react with the reaction product such as the ester dimer of the present invention and reacts with the oxidizing agent.
  • the availability and the purification of the ester dimer of the present invention are easy.
  • alcohol is preferable.
  • the alcohol is preferably a primary or secondary alcohol, and more preferably a secondary alcohol from the viewpoint of suppressing transesterification with the ester dimer of the present invention.
  • C1-C12 alcohol is preferable.
  • the addition amount of the reaction terminator is not particularly limited.
  • the ester dimer (the compound represented by the formula (II)) of the present invention after the step of oxidative esterification of dioxolane or preferably a mixture of dioxolane and dioxane.
  • the step of separating the ester dimer of the present invention from the viewpoint of efficiency, solids such as salts and reduced products of oxidants are separated by filtration or oil-water extraction, and dioxanone, formyldioxolane and residual base are distilled or column chromatography. It is preferable to separate by.
  • water-soluble by-products such as salts and reduced products of oxidizing agents
  • the washing step and the filtration step may be used in combination, or only the washing step may be performed.
  • separation by distillation is more preferable from the viewpoint of easy separation utilizing a large boiling point difference.
  • Separation by distillation can be carried out under either simple distillation conditions or rectification conditions, but it is preferable to carry out under rectification conditions from the viewpoint of obtaining a high-purity ester dimer of the present invention with a high distillation yield.
  • the rectification conditions from the viewpoint of increasing the purity of the ester dimer of the present invention, the number of theoretical columns of the rectification column is preferably 2 or more, more preferably 5 or more, and the reflux ratio is preferably 0.1 or more. More preferably, it is 0.5 or more.
  • the number of theoretical columns of the rectifying column is preferably 20 or less, more preferably 10 or less, and the reflux ratio is preferably 20 or less, more preferably 10 or less. It is.
  • the novel glyceric acid ester of the present invention is a glyceric acid ester in which the hydroxyl groups at the 2-position and 3-position are protected as cyclic acetal groups, and is a raw material for various pharmaceuticals, cosmetics, detergents, polymers It is useful as a synthetic intermediate for glyceric acid, glycerate and deprotected glyceric acid esters used as
  • Glyceric acid, glycerate, or deprotected glyceric acid ester can be produced by hydrolysis or alcoholysis of the acetal group and ester group of the ester dimer of the present invention obtained as described above.
  • the method of hydrolysis or alcoholysis is not particularly limited, but the method of decomposing using an excess amount of water or alcohol in the presence of an acid catalyst is the simplest and preferred.
  • the alcohol used for the alcoholysis is preferably a primary alcohol from the viewpoint of reactivity (particularly the decomposition of the acetal group), and more preferably from the viewpoint that the deprotected glyceric acid ester has a low boiling point and is easily purified by distillation. It is a primary alcohol having 1 to 3 carbon atoms. Further, from the viewpoint of easily reducing the polarity of the deprotected glyceric acid ester and separating and purifying the deprotected glyceric acid ester and glycerin by an oil-water extraction method, more preferably a straight chain having 4 to 8 carbon atoms. It is a chain or branched primary alcohol.
  • the obtained glyceric acid, glyceric acid salt or deprotected glyceric acid ester is separated from a by-product (glycerin, aldehyde or its acetal), preferably by distillation or column chromatography.
  • a by-product glycerin, aldehyde or its acetal
  • the present invention further discloses the following [1] to [40].
  • [1] A process for producing a compound represented by the following formula (II), comprising a step of oxidative esterification of the compound represented by the following formula (I).
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent hydrocarbon group, or R 1 and R 2 are bonded to each other to form a ring structure. Represents a divalent hydrocarbon group for forming R 1 except that R 1 and R 2 are methyl groups at the same time.
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent hydrocarbon group, or R 1 and R 2 are bonded to each other to form a ring structure. Represents a divalent hydrocarbon group for forming R 1 except that R 1 and R 2 are methyl groups at the same time.
  • a mixture of the compound represented by the formula (I) and the compound represented by the formula (V) is acetal in the presence of glycerol and a compound represented by the following formula (III) or a multimer thereof in the presence of an acid catalyst.
  • the production method according to [2] which is produced by a method (Method 1) or a method (Method 2) in which glycerol and a compound represented by the following formula (IV) are acetal exchanged in the presence of an acid catalyst.
  • R 1 and R 2 each independently represents a hydrogen atom or a monovalent hydrocarbon group, or R 1 and R 2 are bonded to each other to form a ring structure
  • R 3 is independently a monovalent hydrocarbon group, preferably a hydrocarbon group having 1 to 8 carbon atoms, More preferably, it represents a monovalent hydrocarbon group having 1 to 3 carbon atoms, more preferably a monovalent alkyl group having 1 to 3 carbon atoms, and still more preferably a methyl group.
  • Step 1 Step of acetalizing glycerol and a compound represented by the following formula (III) or a multimer thereof in the presence of an acid catalyst (step 1-1), or glycerol and a compound represented by the following formula (IV) Of acetal exchange in the presence of an acid catalyst (step 1-2)
  • Step 2 Oxidative esterification of a mixture of a compound represented by the following formula (I) and a compound represented by the following formula (V)
  • R 1 and R 2 each independently represents a hydrogen atom or a monovalent hydrocarbon group, or R 1 and R 2 are bonded to each other to form a ring structure
  • R 3 is independently a monovalent hydrocarbon group, preferably a hydrocarbon group having 1 to 8 carbon atoms, More preferably, it represents a monovalent hydrocarbon group having 1 to 3 carbon atoms, more preferably a monovalent alkyl group having 1 to 3 carbon atoms, and still more preferably a methyl group.
  • R 1 and R 2 are preferably monovalent hydrocarbon groups having 1 to 8 carbon atoms, more preferably R 1 is a monovalent hydrocarbon group having 1 to 8 carbon atoms and R 2 is carbon. number 2 to 8 monovalent hydrocarbon group, more preferably R 1 has 1 to 8 alkyl group and R 2 is an alkyl group having 2 to 8 carbon atoms atoms, even more preferably R 1 is carbon An alkyl group having 1 or 2 carbon atoms and R 2 having 2 to 6 carbon atoms, more preferably R 1 having 1 or 2 carbon atoms and R 2 having 2 to 4 carbon atoms, More preferably, the production method according to any one of [1] to [4], wherein R 1 is a methyl group and R 2 is an ethyl group.
  • the divalent hydrocarbon group in which R 1 and R 2 are bonded to each other to form a ring structure preferably a divalent hydrocarbon group having 2 to 7 carbon atoms, more preferably 3 carbon atoms.
  • R 2 is a hydrogen atom
  • R 1 is preferably a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms
  • the hydrocarbon group is preferably an alkyl group or an aryl group.
  • the number of carbon atoms of the alkyl group is preferably 1 or more, preferably 20 or less, more preferably 18 or less, still more preferably 16 or less, still more preferably 14 or less, still more preferably 12 or less, and even more preferably.
  • These alkyl groups may be linear or branched.
  • the number of carbon atoms of the aryl group is preferably 6 or more, preferably 20 or less, more preferably 18 or less, still more preferably 16 or less, and even more preferably. 14 or less, even more preferably 12 or less, even more preferably 10 or less, even more preferably 8 or less, even more preferably 6 or less, the production method according to any one of [1] to [4].
  • R 2 is a hydrogen atom
  • R 1 is preferably a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms, more preferably a hydrogen atom or a straight chain having 1 to 8 carbon atoms.
  • the yield of the formyldioxolane produced from the compound represented by the formula (I) is preferably 20% or less, more preferably 10% or less, still more preferably 5% or less, and still more preferably substantially.
  • an oxidative esterification method using a salt containing an oxoammonium cation of an organic nitroxyl radical and a base, an organic nitroxyl radical, an N-hydroxy form thereof, and the like Using an oxidative esterification method selected from an oxidative esterification method (hereinafter also referred to as “nitroxyl radical method”) using a compound selected from salts containing an oxoammonium cation, an oxidizing agent, and a base; [1] The production method according to any one of [9].
  • the organic nitroxyl radical is a compound represented by the following formula (VIII), a compound represented by the following formula (IX), or a compound represented by the following formula (X). The manufacturing method as described.
  • R 4 is a hydrogen atom, a halogen atom, a hydroxyl group, an alkoxy group, an acyloxy group, an alkoxycarbonyl group, an amino group, an acylamino group, a sulfonyloxy group, an N-alkylcarbamoyloxy group, a carboxy group, a cyano group.
  • One or more compounds selected from the organic nitroxyl radical, an N-hydroxy form thereof, and a salt containing an oxoammonium cation thereof are preferably TEMPO, 4-hydroxy TEMPO, 4-amino-TEMPO, 4 -Methoxy-TEMPO (hereinafter also referred to as “4-OMe-TEMPO”), 4-ethoxy-TEMPO, 4-phenoxy-TEMPO, 4-acetoxy-TEMPO, 4-benzoyloxy-TEMPO (hereinafter “4-OBz”) -TEMPO "), 4-methacrylate-TEMPO, 4-acetamido-TEMPO (hereinafter also referred to as" 4-NHAc-TEMPO "), 4-methylsulfonyloxy-TEMPO (hereinafter” 4-OMs-TEMPO ").
  • the amount of the compound selected from the organic nitroxyl radical, an N-hydroxy form thereof, and a salt containing an oxoammonium cation thereof is represented by the compound represented by the formula (I) or the formula (I).
  • the molar ratio is 0.0001 or more, more preferably the molar ratio is 0.0002 or more, and still more preferably the molar ratio is 0.0005 with respect to the mixture of the compound represented by formula (V). Any one of [10] to [12], wherein the molar ratio is 0.1 or less, more preferably the molar ratio is 0.05 or less, and still more preferably the molar ratio is 0.02 or less. Manufacturing method.
  • the oxidizing agent is preferably an oxidizing agent (halogen-containing oxidizing agent) composed of a halogen-containing compound, more preferably an oxidizing agent (chlorine-containing oxidizing agent) composed of a chlorine-containing compound, more preferably trichloroisocyanuric.
  • halogen-containing oxidizing agent composed of a halogen-containing compound
  • chlorine-containing oxidizing agent composed of a chlorine-containing compound, more preferably trichloroisocyanuric.
  • the molar ratio of the oxidizing active species of the oxidizing agent to the compound represented by the formula (I) or the mixture of the compound represented by the formula (I) and the compound represented by the formula (V) Is preferably 1.0 or more, more preferably 1.1 or more, preferably 2.0 or less, more preferably 1.5 or less, the production according to any one of [10] to [14] Method.
  • the heterocyclic aromatic amine having a pyridine skeleton is preferably pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine, 2,6-lutidine, 3,5-lutidine, 2,3,5-collidine, 2,4,6-collidine, 5-ethyl-2-methylpyridine, 3,5-diethylpyridine, 2,2'-bipyridyl , 2,4′-bipyridyl, 4,4′-bipyridyl, and quinoline, more preferably pyridine, 3,5-lutidine, 2,6-lutidine, 3-ethylpyridine, 4- At least one selected from ethylpyridine and 5-ethyl-2-methylpyridine, more preferably pyr
  • the molar ratio of the base to the compound represented by the formula (I) or the mixture of the compound represented by the formula (I) and the compound represented by the formula (V) is preferably 1.0 or more, more preferably 1.1 or more, still more preferably 1.2 or more, still more preferably 1.3 or more, preferably 2.5 or less, more preferably 2.0 or less, still more preferably
  • a solvent is used in the oxidative esterification step, and the solvent is preferably a solvent selected from acetone, 2-butanone, cyclopentanone, acetonitrile and dichloromethane, more preferably acetone, 2-butanone.
  • the amount of the solvent used in the entire reaction system is preferably 20% by mass or more, more preferably 30% by mass or more, still more preferably 40% by mass or more, still more preferably 50% by mass or more, and even more.
  • it is 60 mass% or more,
  • the rectification condition is such that the theoretical plate number of the rectification column is preferably 2 or more, more preferably 5 or more, and the reflux ratio is preferably 0.1 or more, more preferably 0.5 or more.
  • Glyceric acid, glycerate, or deprotected glyceric acid ester which hydrolyzes or alcoholates the compound represented by the formula (II) separated in any one of [28] to [31] Production method.
  • the manufacturing method of the glycerol acid, glycerol salt, or deprotected glycerol ester which has the process of hydrolyzing or alcohololyzing the compound which carries out.
  • R 1 and R 2 each independently represent a hydrogen atom or a monovalent hydrocarbon group, or R 1 and R 2 are bonded to each other to form a ring structure. (However, the case where R 1 and R 2 are simultaneously methyl groups is excluded.)
  • R 1 and R 2 are preferably monovalent hydrocarbon groups having 1 to 8 carbon atoms, more preferably R 1 is a monovalent hydrocarbon group having 1 to 8 carbon atoms and R 2 is carbon. number 2 to 8 monovalent hydrocarbon group, more preferably R 1 has 1 to 8 alkyl group and R 2 is an alkyl group having 2 to 8 carbon atoms atoms, even more preferably R 1 is carbon An alkyl group having 1 or 2 carbon atoms and R 2 having 2 to 6 carbon atoms, more preferably R 1 having 1 or 2 carbon atoms and R 2 having 2 to 4 carbon atoms, Even more preferably, the compound according to [36], wherein R 1 is a methyl group and R 2 is an ethyl group.
  • R 1 and R 2 represent a divalent hydrocarbon group which is bonded to each other to form a ring structure, preferably a divalent hydrocarbon group having 2 to 7 carbon atoms, more preferably a carbon number.
  • [36] which is a divalent hydrocarbon group having 3 to 6 carbon atoms, more preferably a divalent hydrocarbon group having 4 to 5 carbon atoms, still more preferably a divalent hydrocarbon group having 5 carbon atoms.
  • R 2 is a hydrogen atom
  • R 1 is preferably a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms
  • the hydrocarbon group is preferably an alkyl group or an aryl group.
  • the number of carbon atoms of the alkyl group is preferably 1 or more, preferably 20 or less, more preferably 18 or less, still more preferably 16 or less, still more preferably 14 or less, still more preferably 12 or less, and even more preferably.
  • These alkyl groups may be linear or branched.
  • the number of carbon atoms of the aryl group is preferably 6 or more, preferably 20 or less, more preferably 18 or less, still more preferably 16 or less, and even more preferably.
  • Ku is 14 or less, even more preferably 12 or less, even more preferably 10 or less, even more preferably 8 or less, even more preferably 6 or less, compounds described in [36].
  • R 2 is a hydrogen atom
  • R 1 is preferably a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms, more preferably a hydrogen atom, a straight chain having 1 to 8 carbon atoms.
  • [36] which is a chain alkyl group, a branched alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 20 carbon atoms, more preferably a hydrogen atom, a methyl group or a phenyl group, and still more preferably a hydrogen atom.
  • the described compound is a chain alkyl group, a branched alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 20 carbon atoms, more preferably a hydrogen atom, a methyl group or a phenyl group, and still more preferably a hydrogen atom.
  • Examples Each compound obtained in the following Production Examples, Examples or Comparative Examples (hereinafter also referred to as “Examples”) is a nuclear magnetic resonance apparatus (NMR, manufactured by Agilent Technologies, Inc., Model: Agilent 400-MR). DD2), infrared spectrophotometer (IR, manufactured by Horiba, Ltd., model: FT-710), gas chromatograph mass spectrometer (GC-MS, manufactured by Agilent Technologies, model: Agilent 5975C) Identified by analysis.
  • NMR nuclear magnetic resonance apparatus
  • DD2 infrared spectrophotometer
  • IR infrared spectrophotometer
  • GC-MS gas chromatograph mass spectrometer
  • the purity of the produced or purified compound was determined by analysis (GC analysis) using a gas chromatograph (manufactured by Agilent Technologies, Inc., model: Agilent 6850). Note that “%” relating to purity means “GC%”, and this value was used when converting the raw material of the reaction raw material or the high-purity sample into a pure amount.
  • Production example Production of 2,2-dialkyl-4-hydroxymethyl-2-methyl-1,3-dioxolane as a raw material
  • the reaction carried out in the production example is as follows.
  • the solution was neutralized with 3.50 g of a 20% ethanol solution of sodium ethoxide (700 mg as sodium ethoxide, 10.3 mmol).
  • a 20% ethanol solution of sodium ethoxide 700 mg as sodium ethoxide, 10.3 mmol.
  • the reaction yield of the mixture of cis and trans isomers of 2-ethyl-4-hydroxymethyl-2-methyl-1,3-dioxolane was 74%.
  • the reaction solution was transferred to a 500 mL flask equipped with a Claisen head, heated to 50 ° C. and then gradually reduced in pressure to distill off n-hexane and ethanol.
  • Production Example 1-1-1 In a 300 mL flask equipped with a 100 mL dropping funnel, 23.0 g of 2-ethyl-4-hydroxymethyl-2-methyl-1,3-dioxolane obtained in Production Example 1-1 (purity 95.3%, 150 mmol) 2-hydroxy-2-azaadamantane 23.4 mg (AZADOL, Nissan Chemical Industries, Trademark, purity 98.0%, 150 ⁇ mol), 17.9 g of pyridine (purity 99.5%, 225 mmol), acetonitrile 50 g was charged and stirred in a nitrogen atmosphere while cooling.
  • a solution prepared by dissolving 14.7 g of trichloroisocyanuric acid (TCCA, purity 95.0%, 60.0 mmol) in 50 g of acetonitrile was charged into a dropping funnel, and the reaction liquid temperature in the flask was kept in the range of ⁇ 2 ° C. to 10 ° C.
  • the dropwise addition was performed over 2 hours while adjusting the dropping rate. Stirring was further continued for 3 hours while cooling was stopped and the temperature of the reaction solution was raised to about 20 ° C.
  • 1.81 g of 2-propanol (purity 99.7%, 30.0 mmol) was added, and further 20 The reaction was completed by stirring for a minute.
  • Example 1-1-2 To a 50 mL flask equipped with a 20 mL dropping funnel, 4.60 g of 2-ethyl-4-hydroxymethyl-2-methyl-1,3-dioxolane obtained in Production Example 1-1 (purity 95.3%, 30.0 Mmol), 4.7 mg of AZADOL (purity 98.0%, 30 ⁇ mol), 4.92 g of 3,5-lutidine (purity 98.0%, 45.0 mmol), 10 g of acetonitrile, and nitrogen atmosphere while cooling Stirred under.
  • 2-ethyl-4-hydroxymethyl-2-methyl-1,3-dioxolane obtained in Production Example 1-1 (purity 95.3%, 30.0 Mmol), 4.7 mg of AZADOL (purity 98.0%, 30 ⁇ mol), 4.92 g of 3,5-lutidine (purity 98.0%, 45.0 mmol), 10 g of acetonitrile, and nitrogen atmosphere while cooling Stirred under.
  • AZADOL purity 98.0%,
  • Examples 1-3-2 and 1-3-3 Table 1 shows the results obtained by using 5.32 g of 2-hydroxymethyl-1,4-dioxaspiro [4.5] decane (purity 97.0%, 30.0 mmol) obtained in Production Example 1-3 as a reaction raw material. The same operation as in Example 1-1-2 was performed except that the reaction conditions were changed, and 1,4-dioxaspiro [4.5] decane-2-carboxylic acid (1,4-dioxaspiro [4.5] decane was obtained. A filtrate containing -2-yl) methyl ester was obtained. The table shows the reaction conditions and results of Examples 1-3-2 and 1-3-3.
  • Example 1-5 Production of ethyl glycerate The reaction carried out in Example 1-5 is as follows.
  • Production Example 2-1 Production of a mixture of 2-phenyl-1,3-dioxane-5-ol and 4-hydroxymethyl-2-phenyl-1,3-dioxolane as raw materials Reaction performed in Production Example 2-1 Is as follows.
  • Production Example 2-2 Production of a mixture of 2-phenyl-1,3-dioxan-5-ol and 4-hydroxymethyl-2-phenyl-1,3-dioxolane as raw materials Reaction performed in Production Example 2-2 Is as follows.
  • Production Example 2-3 Production of a mixture of raw materials 2-methyl-1,3-dioxane-5-ol and 4-hydroxymethyl-2-methyl-1,3-dioxolane Reaction performed in Production Example 2-3 Is as follows.
  • reaction solution As a result of analyzing the reaction solution, four isomers consisting of cis and trans-2-methyl-1,3-dioxane-5-ol and cis and trans-4-hydroxymethyl-2-methyl-1,3-dioxolane were obtained.
  • the reaction yield of the mixture was 71%.
  • the reaction solution was transferred to a 500 mL flask equipped with a Claisen head, heated to 50 ° C. and then gradually reduced in pressure to distill off n-hexane and ethanol, and then further reduced under a reduced pressure of 0.67 kPa (absolute pressure).
  • Production Example 2-4 Production of a mixture of 2-n-heptyl-1,3-dioxane-5-ol and 4-hydroxymethyl-2-n-heptyl-1,3-dioxolane as raw materials Production Example 2-4 The reaction carried out in is as follows.
  • reaction solution 4 consisting of cis and trans-2-n-heptyl-1,3-dioxane-5-ol and cis and trans-4-hydroxymethyl-2-n-heptyl-1,3-dioxolane was obtained.
  • the reaction yield of the seed isomer mixture was 100%.
  • the reaction solution was transferred to a 200 mL flask equipped with a Claisen head, heated to 50 ° C. and then gradually reduced in pressure to distill off n-hexane and ethanol.
  • Example 2-1 Production of 1,3-dioxolane-4-carboxylic acid (1,3-dioxolan-4-yl) methyl ester
  • the reaction carried out in Example 2-1 is as follows.
  • Example 2-1-1 In a 1 L flask equipped with a 100 mL dropping funnel, 63.7 g of a mixture of 1,3-dioxane-5-ol and 4-hydroxymethyl-1,3-dioxolane (product of Tokyo Chemical Industry Co., Ltd., trade name: glycerol formal, purity: 98) 0.0%, 600 mmol, isomer ratio 58:42) of 1,3-dioxane-5-ol and 4-hydroxymethyl-1,3-dioxolane determined from the information in Reference 1 and 1 H-NMR analysis, 2-Hydroxy-2-azaadamantane 93.8 mg (AZADOL, Nissan Chemical Industries, Trademark, purity 98.0%, 0.60 mmol), pyridine 71.5 g (purity 99.5%, 900 mmol), acetonitrile 150 g was charged and stirred in a nitrogen atmosphere while cooling.
  • FIG. 1 shows a GC chart of the reaction solution obtained in Example 2-1-1.
  • Example 2-1-2 In a 50 mL flask equipped with a 20 mL dropping funnel, the same glycerol formal as in Example 2-1-1 3.19 g (purity 98.0%, 30.0 mmol), AZADOL 4.7 mg (purity 98.0%, 30 micron) Mol), 4.77 g of pyridine (purity 99.5%, 60.0 mmol), and 10 g of acetonitrile were stirred and stirred in a nitrogen atmosphere while cooling.
  • Examples 2-1-3 to 2-1-11 The same operation as in Example 2-1-2 was performed, except that the type and amount of catalyst used, the type and amount of base used, or the solvent type were changed. Table 2 shows the reaction conditions and results of Examples 2-1-2 to 2-1-11.
  • Example 2-2 Preparation of 2-phenyl-1,3-dioxolane-4-carboxylic acid (2-phenyl-1,3-dioxolan-4-yl) methyl ester
  • the reaction carried out in Example 2-2 was It is as follows.
  • Examples 2-2-1 and 2-2-2 Mixture of 2-phenyl-1,3-dioxane-5-ol and 4-hydroxymethyl-2-phenyl-1,3-dioxolane obtained in Production Example 2-1 (3.60 g, purity 100%, 20.0) The same procedure as in Example 2-1-2 was carried out using 2-mmol-1,3-dioxolane-4-carboxylic acid (2-phenyl-1,3-dioxolane-4- I) A reaction solution containing methyl ester was obtained. Table 3 shows the reaction conditions and results of Examples 2-2-1 and 2-2-2.
  • FIG. 2 shows a GC chart of the reaction solution obtained in Example 2-2-1.
  • Example 2-3 Preparation of 2-methyl-1,3-dioxolane-4-carboxylic acid (2-methyl-1,3-dioxolan-4-yl) methyl ester
  • the reaction carried out in Example 2-3 was It is as follows.
  • Example 2-3-1 70.9 g (purity 100%, 600 mmol) of a mixture of 2-methyl-1,3-dioxane-5-ol and 4-hydroxymethyl-2-methyl-1,3-dioxolane obtained in Production Example 2-3 was used as a reaction raw material in the same manner as in Example 2-1-1 to obtain 66.2 g of a yellow oily crude product.
  • the conversion of 2-methyl-4-hydroxymethyl-1,3-dioxolane was 100%, and 2-methyl-1,3-dioxolane-4-carboxylic acid (2-methyl-1 , 3-Dioxolan-4-yl) methyl ester was 88%.
  • Examples 2-3-2 to 2-3-4 3.54 g of a mixture of 2-methyl-1,3-dioxane-5-ol and 4-hydroxymethyl-2-methyl-1,3-dioxolane obtained in Production Example 2-3 as a reaction raw material (purity 100%,
  • 2-methyl-1,3-dioxolane-4-carboxylic acid (2-methyl-1,3-dioxolan-4-yl) was used.
  • a reaction solution containing methyl ester was obtained.
  • Table 4 shows the reaction conditions and results of Examples 2-3-2 to 2-3-4.
  • FIG. 3 shows a GC chart of the reaction solution obtained in Example 2-3-3.
  • Example 2-4 Preparation of 2-n-heptyl-1,3-dioxolane-4-carboxylic acid (2-n-heptyl-1,3-dioxolan-4-yl) methyl ester Performed in Example 2-4 The reaction is as follows.
  • FIG. 4 shows a GC chart of the reaction solution obtained in Example 2-4.
  • Example 2-5 Production of ethyl glycerate The reaction carried out in Example 2-5 is as follows.
  • the ester dimer of the present invention (a glycerate ester in which the hydroxyl groups at the 2-position and 3-position are protected as cyclic acetal groups) has an efficient recovery rate at the time of production, such as various pharmaceuticals, cosmetics, detergents, polymers, etc. It is useful as a synthetic intermediate for glyceric acid and deprotected glyceric acid ester used as raw materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

高収率で製造でき、合成中間体としての応用が期待される新規なグリセリン酸エステル及びその製造方法を提供することに関する。また、本発明は、反応後の水洗工程における回収率が高く、製造時の作業付加が少ない、合成中間体としての応用が期待される新規なグリセリン酸エステル及びその製造方法を提供することに関する。 下記式(I)で表される化合物を酸化的エステル化する工程を有する、下記式(II)で表される化合物の製造方法。 (式(I)及び式(II)中、R及びRはそれぞれ独立して、水素原子又は一価の炭化水素基を表すか、又は、R及びRは互いに結合して環構造を形成する二価の炭化水素基を表す。ただし、R及びRが同時にメチル基である場合を除く。)

Description

グリセリン酸エステルの製造方法
 本発明は、グリセリン酸エステルの製造方法に関する。
 2位及び3位の水酸基が環状アセタール基として保護されたグリセリン酸骨格を有する化合物は、例えば、各種医薬品、化粧品、洗浄剤、ポリマーなどの原料として用途があるグリセリン酸及びそのエステルなどの合成中間体として有用である。
 2位及び3位の水酸基が環状アセタール基として保護されたグリセリン酸骨格を有する化合物の例として、例えばシンレット(Synlett)、第10巻、1565-1566頁、2001年(非特許文献1)、ザ・ジャーナル・オブ・オルガニック・ケミストリー(The Journal of Organic Chemistry)、第69巻、5116-5119頁、2004年(非特許文献2)、テトラへドロン(Tetrahedron)、第63巻、11325-11340頁、2007年(非特許文献3)、及びシンレット(Synlett)、第23巻、2261-2265頁、2012年(非特許文献4)には、グリセロールとアセトンから製造可能な4-ヒドロキシメチル-2,2-ジメチル-1,3-ジオキソラン又はその酸化体である4-ホルミル-2,2-ジメチル-1,3-ジオキソランの二量化反応による、2,2-ジメチル-1,3-ジオキソラン-4-カルボン酸(2,2-ジメチル-1,3-ジオキソラン-4-イル)メチルエステルの製造例が記載されている。
 本発明は、下記式(I)で表される化合物を酸化的エステル化する工程を有する、下記式(II)で表される化合物の製造方法に関する。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007

(式(I)及び式(II)中、R及びRはそれぞれ独立して、水素原子又は一価の炭化水素基を表すか、又は、R及びRは互いに結合して環構造を形成する二価の炭化水素基を表す。ただし、R及びRが同時にメチル基である場合を除く。)
 更に、本発明は、下記式(II)で表される化合物に関する。
Figure JPOXMLDOC01-appb-C000008

(式(II)中、R及びRはそれぞれ独立して、水素原子又は一価の炭化水素基を表すか、又は、R及びRは互いに結合して環構造を形成する二価の炭化水素基を表す。ただし、R及びRが同時にメチル基である場合を除く。)
実施例2-1-1で得られた反応液のGCチャート 実施例2-2-1で得られた反応液のGCチャート 実施例2-3-3で得られた反応液のGCチャート 実施例2-4で得られた反応液のGCチャート
発明の詳細な説明
[式(II)で表される化合物]
 本発明の下記式(II)で表される化合物は、新規なグリセリン酸エステル(以下、「本発明のグリセリン酸エステル」、又は「本発明のエステルダイマー」ともいう。)である。
 本発明のグリセリン酸エステルから、グリセリン酸及びそのエステル体を製造することができる。また、本発明のグリセリン酸エステルのうち、Rが水素原子である場合には、高収率で製造することができ、更に、その製造及び中間体としての利用までの各工程において、アセタール化が速やかに進行すると共に、アセタール基の安定性が高い。R及びRが一価の炭素原子又はR及びRが結合して環構造を形成する二価の炭化水素基である場合には、反応後の水洗工程における回収率が高く、製造時の作業付加が少ないという優れた効果も有する。
 非特許文献1~4に記載されている2,2-ジメチル-1,3-ジオキソラン-4-カルボン酸(2,2-ジメチル-1,3-ジオキソラン-4-イル)メチルエステルの製造法は、以下の通りである。
Figure JPOXMLDOC01-appb-C000009
 しかし、非特許文献1~4に記載の2位及び3位の水酸基が環状アセタール基として保護されたグリセリン酸骨格を有する化合物は、前記のアセトン由来の化合物のみである。また、この化合物は十分に高収率で得られるものではなかった。
 また、非特許文献1~4は新規な二量化反応手法の開発又は副生成物として得られた二量体化合物について記載された文献であり、2位及び3位の水酸基が環状アセタール基として保護されたグリセリン酸骨格を有する化合物の製造又はその後の誘導体展開の工業化を実現するための基質選択や反応条件に関する記述がない。
 有機溶媒を用いる各種反応においては、触媒や副原料由来の無機塩などの副生成物を効率的に除去する目的で、有機層を水洗する工程が一般的に行われる。一方、目的化合物の水溶性が高いと、水洗工程で収率が低下し、経済的に不利になる、或いは水相から目的化合物を回収するための作業負荷が大きくなる。
 本発明は、高収率で製造でき、合成中間体としての応用が期待される新規なグリセリン酸エステル及びその製造方法を提供することに関する。また、本発明は、反応後の水洗工程における回収率が高く、製造時の作業付加が少ない、合成中間体としての応用が期待される新規なグリセリン酸エステル及びその製造方法を提供することに関する。
 本発明によれば、高収率で製造でき、合成中間体としての応用が期待される新規なグリセリン酸エステル及びその製造方法を提供することができる。また、本発明によれば、反応後の水洗工程における回収率が高く、製造時の作業付加が少ない、合成中間体としての応用が期待される新規なグリセリン酸エステル及びその製造方法を提供することができる。
Figure JPOXMLDOC01-appb-C000010

(式(II)中、R及びRはそれぞれ独立して、水素原子又は一価の炭化水素基を表すか、又は、R及びRは互いに結合して環構造を形成する二価の炭化水素基を表す。ただし、R及びRが同時にメチル基である場合を除く。)
 式(II)中、R及びRはそれぞれ独立して、水素原子又は一価の炭化水素基を表すか、又は、R及びRは互いに結合して環構造を形成する二価の炭化水素基を表す。
 R及びRの好ましい一態様としては、原料の入手性と反応性、ジオキソランや本発明のエステルダイマーの安定性、本発明のエステルダイマーのアセタール分解で副生するケトン回収容易性の観点から、好ましくはR及びRが炭素数1以上8以下の一価の炭化水素基、より好ましくはRが炭素数1以上8以下の一価の炭化水素基かつRが炭素数2以上8以下の一価の炭化水素基、更に好ましくはRが炭素数1以上8以下のアルキル基かつRが炭素数2以上8以下のアルキル基、より更に好ましくはRが炭素数1又は2のアルキル基かつRが炭素数2以上6以下のアルキル基、より更に好ましくはRが炭素数1又は2のアルキル基かつRが炭素数2以上4以下のアルキル基、より更に好ましくはRがメチル基かつRがエチル基である。
 R及びRの他の好ましい一態様としては、R及びRは互いに結合して環構造を形成する二価の炭化水素基であり、前記の観点から、好ましくは炭素数2以上7以下の二価の炭化水素基、より好ましくは炭素数3以上6以下の二価の炭化水素基、更に好ましくは炭素数4以上5以下の二価の炭化水素基、より更に好ましくは炭素数5の二価の炭化水素基である。すなわち、R及びRを含む環構造が、好ましくは3~8員環、より好ましくは4~7員環、更に好ましくは5~6員環、より更に好ましくは6員環である。R及びRを含む環構造は、シクロアルカン構造であることが好ましく、炭素数5又は6の環構造(シクロペンタン環又はシクロへキサン環)であることがより好ましく、シクロへキサン環であることが更に好ましい。
 なお、式(II)中、R及びRが互いに結合して環構造を形成した場合、式(II)は、式(II’)となる。
Figure JPOXMLDOC01-appb-C000011

(式(II’)中、Rは環構造を形成する二価の炭化水素基を表す。)
 式(II’)中、Rを含む環構造は、好ましくは3~8員環、より好ましくは4~7員環、更に好ましくは5~6員環、より更に好ましくは6員環である。Rを含む環構造は、シクロアルカン構造であることが好ましく、上述したように、シクロペンタン環又はシクロへキサン環を形成していることがより好ましく、シクロへキサン環を形成していることが更に好ましい。
 すなわち、Rは、好ましくはエチレン基(-(CH-)、トリメチレン基(-(CH-)、テトラメチレン基(-(CH-)、ペンタメチレン基(-(CH-)、ヘキサメチレン基(-(CH-)又はヘプタメチレン基(-(CH-)、より好ましくはトリメチレン基、テトラメチレン基、ペンタメチレン基又はヘキサメチレン基、更に好ましくはテトラメチレン基又はペンタメチレン基、より更に好ましくはペンタメチレン基である。
 R及びRの更に他の好ましい一態様としては、式(II)中、Rは水素原子であり、Rは水素原子又は一価の炭化水素基を表し、アルデヒド原料の入手性と反応性、ジオキソランや本発明のエステルダイマーの安定性、本発明のエステルダイマーのアセタール分解で副生するアルデヒド回収容易性の観点から、Rは、好ましくは水素原子又は炭素数1以上20以下の炭化水素基である。炭化水素基としては、好ましくはアルキル基又はアリール基である。アルキル基の炭素数は、好ましくは1以上であり、好ましくは20以下、より好ましくは18以下、更に好ましくは16以下、より更に好ましくは14以下、より更に好ましくは12以下、より更に好ましくは10以下、より更に好ましくは8以下、より更に好ましくは6以下、より更に好ましくは4以下、より更に好ましくは2以下である。これらのアルキル基は直鎖であっても分岐であってもよい。また、アリール基の炭素数は、好ましくは6以上であり、好ましくは20以下、より好ましくは18以下、更に好ましくは16以下、より更に好ましくは14以下、より更に好ましくは12以下、より更に好ましくは10以下、より更に好ましくは8以下、より更に好ましくは6以下である。
 前記Rは、前記の観点から、好ましくは水素原子又は炭素数1以上20以下の一価の炭化水素基、より好ましくは水素原子、炭素数1以上8以下の直鎖アルキル基、炭素数1以上8以下の分岐アルキル基又は炭素数6以上20以下のアリール基、より更に好ましくは水素原子、メチル基又はフェニル基、より更に好ましくは水素原子である。
 式(II)で表される化合物には、不斉炭素が2つ以上存在するため、不斉炭素数がnの場合、最多で2(2のn乗)種の立体異性体混合物となる。本発明において、式(II)で表される化合物は立体異性体混合物であってもよく、特に限定されない。
<式(II)で表される化合物の製造方法>
 本発明のエステルダイマーの製造方法は特に限定されないが、下記式(I)で表される化合物(以下、「ジオキソラン」ともいう。)を酸化的エステル化反応して製造することが好ましい。
Figure JPOXMLDOC01-appb-C000012

(式(I)中、R及びRはそれぞれ独立して、水素原子又は一価の炭化水素基を表すか、又は、R及びRは互いに結合して環構造を形成する二価の炭化水素基を表す。ただし、R及びRが同時にメチル基である場合を除く。)
 本発明において、ジオキソランとして、上記式(I)で表される化合物を単品で使用してもよく、式(I)で表される化合物と後述する式(V)で表される化合物(以下、「ジオキサン」ともいう。)との混合物を使用してもよい。なお、式(I)で表される化合物と式(V)で表される化合物の混合物は、混合物として市販されている製品を使用してもよいし、後述するように、式(I)で表される化合物と式(V)で表される化合物の混合物を製造して使用してもよく、特に限定されないが、安価に製造する観点から、ジオキソランとジオキサンの混合物を製造(合成)して、使用することが好ましい。
〔ジオキソランの製造方法〕
 本発明で使用するジオキソラン(式(I)で表される化合物)の製造方法は特に限定されず、一般的に広く知られている方法である、グリセロールと下記式(III)で表される化合物又はその多量体を、酸触媒存在下でアセタール化する方法(方法1)、又はグリセロールと下記式(IV)で表される化合物を、酸触媒存在下でアセタール交換する方法(方法2)によって製造することが、原料の入手性、収率、及び反応操作の容易性の観点から好ましい。
 すなわち、本発明のグリセリン酸エステルの製造方法は、下記工程1及び工程2を含むことが好ましい。
 工程1:グリセロールと下記式(III)で表される化合物、又はその多量体を酸触媒存在下でアセタール化する工程(工程1-1)、又はグリセロールと下記式(IV)で表される化合物を酸触媒存在下でアセタール交換する工程(工程1-2)
 工程2:下記式(I)で表される化合物及び下記式(V)で表される化合物の混合物を酸化的エステル化する工程
Figure JPOXMLDOC01-appb-C000013

(式(III)及び式(IV)中、R及びRは、式(II)におけるR及びRとそれぞれ同義であり、式(IV)中、Rはそれぞれ独立に、一価の炭化水素基を表す。)
 式(IV)中のRはそれぞれ独立に、一価の炭化水素基であり、原料の入手性の観点から、好ましくは炭素数1以上8以下の炭化水素基、アセタール交換反応で副生するアルコールを反応系外へ留去して反応を促進する観点から、より好ましくは炭素数1以上3以下の一価の炭化水素基、更に好ましくは炭素数1以上3以下の一価のアルキル基、より更に好ましくはメチル基である。
 上記式(III)中、R又はRが水素原子である場合、上記式(III)で表される化合物の多量体としては、ホルムアルデヒドの多量体であるパラホルムアルデヒド、アセトアルデヒドの環状三量体であるパラアルデヒド(別名:2,4,6-トリメチル-1,3,5-トリオキサン)が例示される。取り扱いの容易性等を考慮して、式(III)で表される化合物又はその多量体を適宜選択して使用すればよい。
 通常、前記のアセタール化又はアセタール交換法で得られるジオキソランは、下記の反応式で示されるように、下記式(V)で表される化合物(ジオキサン)との混合物として得られる。本発明に用いるジオキソランとジオキサンの異性体比率に制限はないが、生産性及び経済性の観点から、ジオキソランの異性体比率が高いほど好ましい。
 式(III)中、少なくともR及びRの一方が水素原子である場合、ジオキソランの異性体比率は、好ましくは40%以上60%以下である。
 また、式(III)中、R及びRが一価の炭化水素基である場合、上記式(III)で表される化合物及び式(IV)で表される化合物から得られるジオキソランは、95%以上の異性体化比率が得られる。
Figure JPOXMLDOC01-appb-C000014
 上記方法1(工程1-1)又は方法2(工程1-2)で得られたジオキソラン(式(I)で表される化合物)とジオキサン(式(V)で表される化合物)の混合物は、そのまま又は精製した後に次工程の原料として用いることができるが、次工程での収率の観点から混合物を精製し未反応原料などを除去することが好ましく、精製の容易性の観点から蒸留精製することがより好ましい。
 なお、精製により、ジオキソランとジオキサンとを分離することは困難であることから、ジオキソランとジオキサンの混合物の状態で、次工程の原料とすることが好ましい。
〔酸化的エステル化〕
 本発明のグリセリン酸エステルは、上記ジオキソラン(式(I)で表される化合物)を酸化的エステル化することによって得られる。
 酸化的エステル化とは、広義には一級アルコールとアルコールからエステルを得る酸化反応の1種で、より一般的には同一の一級アルコール2分子からエステルダイマー1分子を得る反応であり、酸化的二量化などの別称もある。本発明において酸化的エステル化するとは、ジオキソラン(式(I)で表される化合物)から本発明のエステルダイマー(式(II)で表される化合物)を得る反応を行うこと意味する。
 酸化的エステル化の方法としては、例えば均一系又は不均一系金属触媒を用いる方法、非特許文献2に記載の4-アセトアミド-2,2,6,6-テトラメチル-1-オキソピペリジニウムテトラフルオロボラートとピリジンを用いる方法、非特許文献4に記載の触媒量の2,2,6,6-テトラメチルピペリジン-1-オキシル(以下、「TEMPO」ともいう。)、酸化剤及びピリジンを用いる方法などがある。
 なお、前記ジオキソラン(式(I)で表される化合物)とジオキサン(式(V)で表される化合物)との混合物を酸化的エステル化すると、代表的には以下のような反応が生じる。
Figure JPOXMLDOC01-appb-C000015

(式中、R及びRは、上述したとおりである。)
 上述の通り、本発明に用いるジオキソランは通常ジオキサンとの混合物であるが、酸化的エステル化工程において、反応条件によってはジオキソランからホルミルジオキソラン(式(VII)で表される化合物)が副生することがある。ホルミルジオキソランの副生量に制限はないが、本発明のエステルダイマーを高収率で得る観点から、ジオキソランから生成するホルミルジオキソランの収率は、好ましくは20%以下、より好ましくは10%以下、更に好ましくは5%以下、より更に好ましくは実質的に0%、より更に好ましくは0%である。ホルミルジオキソランの副生量を低下させるためには、後述する好ましい製造方法に従えばよい。
 同様に、ジオキソランとジオキサンの混合物を酸化的エステル化する工程において、反応条件に応じてジオキサンが反応しない、ジオキサンから上記式(VI)で表される化合物(以下、「ジオキサノン」ともいう。)が生成する、或いはジオキサノン以外の化合物が生成する、或いはこれら化合物の混合物が得られることがあるが、本発明のエステルダイマーの精製工程に悪影響を及ぼさない限りは、これら化合物の生成量や生成比に制限はない。
 本発明においては、式(II)で表される化合物が得られる限り、どのような酸化的エステル化方法も用いることができるが、高い反応活性を得る観点から、非特許文献2のような有機ニトロキシルラジカルのオキソアンモニウムカチオンを含む塩と、塩基とを用いる酸化的エステル化法、並びに非特許文献4のような有機ニトロキシルラジカル、そのN-ヒドロキシ体及びそれらのオキソアンモニウムカチオンを含む塩から選ばれる化合物と、酸化剤と、塩基とを用いる酸化的エステル化法(以下、「ニトロキシルラジカル法」ともいう。)から選ばれる酸化的エステル化法が好ましく、本発明のエステルダイマーの収率が高く、ホルミルジオキソランの収率が低い観点から、ニトロキシルラジカル法が好ましく、その中でも、有機ニトロキシルラジカル及び/又はそのN-ヒドロキシ体と、酸化剤と、塩基とを用いる酸化的エステル化法がより好ましい。
(ニトロキシルラジカル法)
〔ニトロキシルラジカル種〕
 本反応においては、ニトロキシルラジカル種として、酸化剤と組み合わせることでジオキソランに対する酸化的エステル化活性があるいずれの有機ニトロキシルラジカル、そのN-ヒドロキシ体及びそれらのオキソアンモニウムカチオンを含む塩から選ばれる化合物を用いることができる。
 すなわち、ニトロキシルラジカル種として、有機ニトロキシルラジカル、そのN-ヒドロキシ体、及びそれらのオキソアンモニウムカチオンを含む塩から選ばれる少なくとも1つの化合物を使用することが好ましい。
 高い酸化的エステル化活性が得られる観点から、有機ニトロキシルラジカルが、下記式(VIII)で表される化合物、下記式(IX)で表される化合物又は下記式(X)で表される化合物であることが好ましい。すなわち、ニトロキシルラジカル種は、下記式(VIII)で表される化合物、下記式(IX)で表される化合物又は下記式(X)で表される化合物、それらのN-ヒドロキシ体、及びそれらのオキソアンモニウムカチオンを含む塩から選ばれる化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000016

(式(VIII)中、Rは水素原子、ハロゲン原子、水酸基、アルコキシ基、アシルオキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基、スルホニルオキシ基、N-アルキルカルバモイルオキシ基、カルボキシ基、シアノ基、イソシアナト基、イソチオシアナト基、又はオキソ基を表す。式(IX)中、R及びRはそれぞれ独立して、水素原子又はメチル基を表す。式(X)中、R及びRはそれぞれ独立して、水素原子又はメチル基を表す。)
 式(VIII)中、Rは水素原子、ハロゲン原子、水酸基(-OH)、アルコキシ基、アシルオキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基、スルホニルオキシ基、N-アルキルカルバモイルオキシ基、カルボキシ基(-C(=O)-OH)、シアノ基(-C≡N)、イソシアナト基(-N=C=O)、イソチオシアナト基(-N=C=S)、又はオキソ(=O)基を表す。式(VIII)中、Rは、入手性及び高収率で本発明のエステルダイマーを得る観点から、好ましくはアルコキシ基、アシルオキシ基、又はアシルアミノ基である。
※これでよければ段落
 前記ハロゲン原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、入手又は調製が容易で低分子量である観点から、フッ素原子、塩素原子又は臭素原子が好ましい。
 前記アルコキシ基は、-ORで表され、Rは一価の炭化水素基を表し、入手又は調製が容易で低分子量である観点から、好ましくは炭素数1~12のアルキル基、炭素数2~12のアルケニル基、炭素数2~12のアルキニル基、又は炭素数6~20のアリール基、より好ましくは炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、又は炭素数6~14のアリール基、更に好ましくは炭素数1~4のアルキル基、炭素数2~4のアルケニル基、炭素数2~4のアルキニル基、又は炭素数6~10のアリール基、より更に好ましくはメチル基である。前記Rは、水素原子の一部がハロゲン原子で置換されていてもよい。
 前記アシルオキシ基は、-O(C=O)-R10で表され、R10は、入手又は調製が容易で低分子量である観点から、好ましくは水素原子、炭素数1~12のアルキル基、炭素数1~12のアルケニル基、又は炭素数6~20のアリール基、より好ましくは水素原子、炭素数1~8のアルキル基、又は炭素数6~14のアリール基、更に好ましくは、水素原子、炭素数1~4のアルキル基、又は炭素数6~10のアリール基、より更に好ましくはメチル基、エチル基、又はフェニル基、より更に好ましくはフェニル基である。
 前記アシルアミノ基は、-NH(C=O)-R11で表され、R11は、入手又は調製が容易で低分子量である観点から、好ましくは水素原子、炭素数1~12のアルキル基、又は炭素数6~20のアリール基、より好ましくは水素原子、炭素数1~8のアルキル基、又は炭素数6~14のアリール基、更に好ましくは、水素原子、炭素数1~4のアルキル基、又は炭素数6~10のアリール基、より更に好ましくはメチル基、エチル基、又はフェニル基、より更に好ましくはメチル基である。
 前記スルホニルオキシ基は、-O(O=S=O)-R12で表され、R12は、入手又は調製が容易で低分子量である観点から、好ましくは炭素数1~12のアルキル基、又は炭素数6~20のアリール基、より好ましくは炭素数1~8のアルキル基、又は炭素数6~14のアリール基、更に好ましくは、炭素数1~4のアルキル基、又は炭素数6~10のアリール基、より更に好ましくはメチル基、エチル基、又はパラトリル基、より更に好ましくはメチル基又はパラトリル基である。
 ニトロキシルラジカル種としては、具体的には、TEMPO、4-ヒドロキシTEMPO、4-アミノ-TEMPO、4-メトキシ-TEMPO(以下、「4-OMe-TEMPO」ともいう。)、4-エトキシ-TEMPO、4-フェノキシ-TEMPO、4-アセトキシ-TEMPO、4-ベンゾイルオキシ-TEMPO(以下、「4-OBz-TEMPO」ともいう。)、4-メタクリレート-TEMPO、4-アセトアミド-TEMPO(以下、「4-NHAc-TEMPO」ともいう。)、4-メチルスルホニルオキシ-TEMPO(以下、「4-OMs-TEMPO」ともいう。)、4-パラトルエンスルホニルオキシ-TEMPO、4-オキソ-TEMPO、2-アザアダマンタン-N-ヒドロキシル(以下、「AZADOL」(日産化学工業株式会社製、商標)ともいう。)、2-アザアダマンタン-N-オキシル(以下、「AZADO」ともいう。)、1-メチル-2-アザアダマンタン-N-オキシル(以下、「1-Me-AZADO」ともいう。)、9-アザノルアダマンタン-N-オキシル(以下、「nor-AZADO」ともいう。)、1,5-ジメチル-9-アザノルアダマンタン-N-オキシル(以下、「DMM-AZADO」ともいう。)などが例示される。
 入手性及び高収率で本発明のエステルダイマーを得る観点から、ニトロキシルラジカル種としては、4-メトキシ-TEMPO、4-ベンゾイルオキシ-TEMPO、4-アセトアミド-TEMPO、4-メチルスルホニルオキシ-TEMPO、及びAZADOLから選ばれる化合物が好ましく、4-ベンゾイルオキシ-TEMPO、4-アセトアミド-TEMPO、4-メチルスルホニルオキシ-TEMPO、及びAZADOLから選ばれる化合物がより好ましい。
 好ましい化合物を以下に例示するが、本発明において、ニトロキシルラジカル種は、これらの化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000017
 有機ニトロキシルラジカル、そのN-ヒドロキシ体及びそれらのオキソアンモニウムカチオンを含む塩から選ばれる化合物の使用量は、十分な酸化的エステル化活性を確保する観点から、ジオキソラン又はジオキソランとジオキサンの混合物に対して、好ましくはモル比が0.0001以上、より好ましくはモル比が0.0002以上、更に好ましくはモル比が0.0005以上である。また、経済性の観点から、好ましくはモル比が0.1以下、より好ましくはモル比が0.05以下、更に好ましくはモル比が0.02以下である。
〔酸化剤〕
 本反応においては、反応性の観点から好ましくは上述したニトロキシルラジカル種と共に、酸化剤を使用する。該酸化剤としては、有機ニトロキシルラジカル又はそのN-ヒドロキシ体をオキソアンモニウムカチオンに酸化できるいずれの酸化剤も用いることができるが、本発明のエステルダイマーの水和や加水分解による収率低下を抑制する観点から、有機溶媒中で用いることができるハロゲンを含有する化合物からなる酸化剤(以下、「含ハロゲン酸化剤」ともいう。)が好ましい。含ハロゲン酸化剤としては、次亜塩素酸ナトリウム五水和物、メタクロロ過安息香酸、トリクロロイソシアヌル酸(以下、「TCCA」ともいう。)、次亜塩素酸ターシャリーブチル(以下、「BuOCl」ともいう。)、N-クロロスクシンイミド等の塩素を含有する化合物からなる酸化剤(以下、「含塩素酸化剤」ともいう。)、N-ブロモスクシンイミド等の臭素を含有する化合物からなる酸化剤(以下、「含臭素酸化剤」ともいう。)、(ジクロロヨード)ベンゼン等の複数のハロゲン元素を有する含ハロゲン酸化剤、が例示される。含ハロゲン酸化剤は、本発明のエステルダイマーを高収率で得る観点、並びに、酸化剤の安定性、安全性及び取り扱い容易性の観点から、含塩素酸化剤が好ましく、TCCA及びBuOClから選ばれる酸化剤がより好ましく、入手性の観点から、TCCAが更に好ましい。
 なお、本発明の酸化剤としては、式(VIII)で表される化合物、式(IX)で表される化合物又は式(X)で表される化合物が一電子酸化されたオキソアンモニウムカチオンを始めとする、有機ニトロキシルラジカル又はそのN-ヒドロキシ体のオキソアンモニウムカチオンを除く。
 ジオキソラン又はジオキソランとジオキサンの混合物の高い反応転化率とホルミルジオキソランの生成量抑制を両立する観点から、ジオキソラン又はジオキソランとジオキサンの混合物に対する酸化活性種のモル比は、好ましくは1.0以上、より好ましくは1.1以上である。また、経済性及び廃棄物量低減の観点から、前記モル比は、好ましくは2.0以下、より好ましくは1.5以下である。
 なお、酸化活性種とは、含塩素酸化剤の場合には塩素原子を意味し、TCCAの場合には、分子1モル中に3モルの酸化活性種が存在する。
〔塩基〕
 本反応においては、酸化剤の消費によって副生する酸を中和するなどの目的で塩基を使用する。塩基はジオキソラン若しくはジオキソランとジオキサンの混合物、触媒又は酸化剤と直接副反応を起こし、目的の酸化反応を阻害しない限りはいずれの塩基も用いることができるが、弱塩基性で副反応が抑制される観点から、ピリジン骨格を有する複素環式芳香族アミンが好ましい。前記ピリジン骨格を有する複素環式芳香族アミンは、その使用量を抑制するために、無機塩基と併用してもよいが、本発明のエステルダイマーを高収率で得る観点から、ピリジン骨格を有する複素環式芳香族アミンを単独で使用することがより好ましい。
 ピリジン骨格を有する複素環式芳香族アミンとしては、ピリジン、アルキル置換ピリジン、多環式のキノリン類、ピリジン二量体であるビピリジル類等が例示される。具体的には、ピリジン、2-メチルピリジン、3-メチルピリジン、4-メチルピリジン、2-エチルピリジン、3-エチルピリジン、4-エチルピリジン、2,6-ルチジン、3,5-ルチジン、2,3,5-コリジン、2,4,6-コリジン、5-エチル-2-メチルピリジン、3,5-ジエチルピリジン、2,2’-ビピリジル、2,4’-ビピリジル、4,4’-ビピリジル、キノリン等が挙げられる。
 ピリジン骨格を有する複素環式芳香族アミンの中でも、ジオキサノンや本発明のエステルダイマーとの沸点差が大きく蒸留による分離が容易なピリジン骨格を有する複素環式芳香族アミンを選択して用いることが好ましく、入手性の観点から、ピリジン及び5-エチル-2-メチルピリジンから選ばれるアミンが好ましく、反応終了後にアミン塩からアミンを再生した際の回収容易性の観点から、非水溶性のピリジン骨格を有する複素環式芳香族アミンが好ましく、収率の観点から、ピリジン、3,5-ルチジン、2,6-ルチジン、3-エチルピリジン、4-エチルピリジン及び5-エチル-2-メチルピリジンから選ばれるアミンが好ましく、ピリジン、3,5-ルチジン、3-エチルピリジン、4-エチルピリジン及び5-エチル-2-メチルピリジンから選ばれるアミンがより好ましい。
 酸化剤由来の酸を完全に中和し、ジオキソラン及び本発明のエステルダイマーのアセタール基の分解を抑制する観点から、ジオキソラン又はジオキソランとジオキサンの混合物に対する塩基のモル比は、好ましくは1.0以上、より好ましくは1.1以上、更に好ましくは1.2以上、より更に好ましくは1.3以上である。また、経済性及び余剰塩基の回収容易性の観点から、前記モル比は、好ましくは2.5以下、より好ましくは2.0以下、更に好ましくは1.7以下である。
〔溶媒〕
 本反応においては、無溶媒又は溶媒使用条件のいずれでも実施可能だが、使用する酸化剤や反応時に副生する酸化剤由来の還元物や塩が固体の場合にそれらを溶解させる観点、及び反応液の粘度を下げ撹拌を容易にする観点から、溶媒使用条件が好ましい。ジオキソラン又はジオキソランとジオキサンの混合物、酸化剤及び塩基に対して不活性な限りはいずれの溶媒も用いることができるが、例えば、酸化剤としてTCCAを用いる場合は、TCCAの溶解性及び入手性の観点から、好ましくはアセトン、2-ブタノン、シクロペンタノン、アセトニトリル及びジクロロメタンから選ばれる溶媒、より好ましくはアセトン、2-ブタノン、アセトニトリル及びジクロロメタンから選ばれる溶媒が、更に好ましくはアセトン及び2-ブタノンから選ばれる溶媒である。また、本発明のエステルダイマーの生産性の観点から、アセトニトリルが更に好ましい。
 溶媒は、1種単独で使用してもよく、2種以上を併用してもよい。
 溶媒の使用量は特に限定されないが、操作性の観点及び本発明のエステルダイマーを高収率で得る観点から、反応系全体に対する溶媒の使用量が、好ましくは20質量%以上、より好ましくは30質量%以上、更に好ましくは40質量%以上、より更に好ましくは50質量%以上、より更に好ましくは60質量%以上であり、生産性の観点から、反応系全体に対する溶媒の使用量が、好ましくは90質量%以下、より好ましくは85質量%以下、更に好ましくは80質量%以下である。
〔反応手順〕
 本反応において、各原料の仕込み順などに制限はないが、酸化的エステル化反応が発熱的な反応であるため、反応液の温度制御の容易性及び安全性の観点から、酸化剤以外の原料の混合物又は混合溶液に酸化剤又は酸化剤溶液を滴下する方法が好ましい。
 酸化剤又は酸化剤溶液滴下中の反応液の温度は、設備負荷及び反応液の粘度上昇抑制の観点から、好ましくは-15℃以上、より好ましくは-10℃以上である。また、高温下での分解などの副反応を抑制し、本発明のエステルダイマーを高収率で得る観点から、好ましくは25℃以下、より好ましくは10℃以下である。酸化剤又は酸化剤溶液滴下終了後は、ジオキソラン全量が反応する、又は残存量の低下が停止するまで反応を継続するが、反応液の温度は、ジオキソランの反応促進の観点から、好ましくは-10℃以上、より好ましくは-5℃以上であり、副反応抑制の観点から、好ましくは50℃以下、より好ましくは30℃以下である。
 反応終了時には、副反応抑制及び安全性の観点から、残留酸化剤を完全に消費する反応停止剤を添加することが好ましい。反応停止剤は、本発明のエステルダイマーなどの反応生成物と反応しにくく、かつ酸化剤と反応する限りはいずれの化合物も用いることができるが、入手性及び本発明のエステルダイマーの精製を容易にする観点から、アルコールが好ましい。前記アルコールは、好ましくは一級又は二級のアルコールであり、本発明のエステルダイマーとのエステル交換を抑制する観点から、より好ましくは二級アルコールである。また、炭素数1以上12以下のアルコールが好ましい。
 反応停止剤の添加量は、特に限定されない。
〔式(I)で表される化合物の分離〕
 本発明において、ジオキソラン又は、好ましくはジオキソランとジオキサンの混合物を酸化的エステル化する工程の後に、本発明のエステルダイマー(式(II)で表される化合物)を分離する工程を有することが好ましい。
 本発明のエステルダイマーを分離する工程において、効率性の観点から、塩や酸化剤の還元物などの固形物は濾過又は油水抽出で分離し、ジオキサノン、ホルミルジオキソラン及び残留塩基は蒸留又はカラムクロマトグラフィーで分離することが好ましい。塩や酸化剤の還元物などの水溶性副生物に関しては、除去の効率性の観点から、水洗により水溶性副生物を除去する水洗工程を行うことが好ましい。水溶性副生物の除去に関し、水洗工程と濾過工程とを併用してもよく、また、水洗工程のみを行ってもよい。
 ジオキサノンと本発明のエステルダイマーとの分離においては、大きな沸点差を利用して容易に分離可能な観点から、蒸留による分離がより好ましい。蒸留による分離は、単蒸留条件でも精留条件でも実施可能であるが、高純度な本発明のエステルダイマーを高い蒸留収率で得る観点から、精留条件で行うことが好ましい。精留条件としては、本発明のエステルダイマーの高純度化の観点から、精留塔の理論段数が好ましくは2段以上、より好ましくは5段以上であり、還流比が好ましくは0.1以上、より好ましくは0.5以上である。また、本発明のエステルダイマー精製の生産性の観点から、精留塔の理論段数が好ましくは20段以下、より好ましくは10段以下であり、還流比が好ましくは20以下、より好ましくは10以下である。
 本発明の新規なグリセリン酸エステル(本発明のエステルダイマー)は、2位及び3位の水酸基が環状アセタール基として保護されたグリセリン酸エステルであり、各種医薬品、化粧品、洗浄剤、ポリマーなどの原料として使用されるグリセリン酸、グリセリン酸塩及び脱保護されたグリセリン酸エステルなどの合成中間体として有用である。
[グリセリン酸、グリセリン酸塩又は脱保護されたグリセリン酸エステルの製造方法]
 上記のように得られた本発明のエステルダイマーのアセタール基及びエステル基の加水分解又は加アルコール分解によって、グリセリン酸、グリセリン酸塩又は脱保護されたグリセリン酸エステルを製造することができる。加水分解又は加アルコール分解の方法は特に限定されないが、酸触媒存在下で過剰量の水又はアルコールを用いて分解する方法が最も簡便で好ましい。
 加アルコール分解に用いるアルコールとしては、反応性(特にアセタール基の分解)の観点から、好ましくは一級アルコールであり、脱保護されたグリセリン酸エステルの沸点が低く蒸留精製しやすい観点から、より好ましくは炭素数1以上3以下の一級アルコールである。
 また、脱保護されたグリセリン酸エステルの極性を十分に下げて、脱保護されたグリセリン酸エステルとグリセリンを油水抽出法で分離精製しやすくする観点から、より好ましくは炭素数4以上8以下の直鎖又は分岐鎖一級アルコールである。
 得られたグリセリン酸、グリセリン酸塩又は脱保護されたグリセリン酸エステルは、好ましくは蒸留やカラムクロマトグラフィーなどによって、副生成物(グリセリン、アルデヒド又はそのアセタール)と分離する。
 本発明は、更に、以下の[1]~[40]を開示する。
[1] 下記式(I)で表される化合物を酸化的エステル化する工程を有する、下記式(II)で表される化合物の製造方法。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019

(式(I)及び式(II)中、R及びRはそれぞれ独立して、水素原子又は一価の炭化水素基を表すか、又は、R及びRは互いに結合して環構造を形成する二価の炭化水素基を表す。ただし、R及びRが同時にメチル基である場合を除く。)
 [2] 下記式(I)で表される化合物及び下記式(V)で表される化合物の混合物を酸化的エステル化する工程を有する、[1]に記載の製造方法。
Figure JPOXMLDOC01-appb-C000020

(式(I)及び式(V)中、R及びRはそれぞれ独立して、水素原子又は一価の炭化水素基を表すか、又は、R及びRは互いに結合して環構造を形成する二価の炭化水素基を表す。ただし、R及びRが同時にメチル基である場合を除く。)
 [3] 式(I)で表される化合物と式(V)で表される化合物の混合物が、グリセロールと下記式(III)で表される化合物、又はその多量体を酸触媒存在下でアセタール化する方法(方法1)、又はグリセロールと下記式(IV)で表される化合物を酸触媒存在下でアセタール交換する方法(方法2)によって製造される、[2]に記載の製造方法。
Figure JPOXMLDOC01-appb-C000021

(式中、R及びRはそれぞれ独立して、水素原子又は一価の炭化水素基を表すか、又は、R及びRは互いに結合して環構造を形成する二価の炭化水素基を表す。ただし、R及びRが同時にメチル基である場合を除く。また、Rはそれぞれ独立に、一価の炭化水素基、好ましくは炭素数1以上8以下の炭化水素基、より好ましくは炭素数1以上3以下の一価の炭化水素基、更に好ましくは炭素数1以上3以下の一価のアルキル基、より更に好ましくはメチル基を表す。)
 [4] 下記工程1及び工程2を含む、[2]又は[3]に記載の製造方法。
 工程1:グリセロールと下記式(III)で表される化合物、又はその多量体を酸触媒存在下でアセタール化する工程(工程1-1)、又はグリセロールと下記式(IV)で表される化合物を酸触媒存在下でアセタール交換する工程(工程1-2)
 工程2:下記式(I)で表される化合物及び下記式(V)で表される化合物の混合物を酸化的エステル化する工程
Figure JPOXMLDOC01-appb-C000022

(式中、R及びRはそれぞれ独立して、水素原子又は一価の炭化水素基を表すか、又は、R及びRは互いに結合して環構造を形成する二価の炭化水素基を表す。ただし、R及びRが同時にメチル基である場合を除く。また、Rはそれぞれ独立に、一価の炭化水素基、好ましくは炭素数1以上8以下の炭化水素基、より好ましくは炭素数1以上3以下の一価の炭化水素基、更に好ましくは炭素数1以上3以下の一価のアルキル基、より更に好ましくはメチル基を表す。)
 [5] 前記R及びRが好ましくは炭素数1以上8以下の一価の炭化水素基、より好ましくはRが炭素数1以上8以下の一価の炭化水素基かつRが炭素数2以上8以下の一価の炭化水素基、更に好ましくはRが炭素数1以上8以下のアルキル基かつRが炭素数2以上8以下のアルキル基、より更に好ましくはRが炭素数1又は2のアルキル基かつRが炭素数2以上6以下のアルキル基、より更に好ましくはRが炭素数1又は2のアルキル基かつRが炭素数2以上4以下のアルキル基、より更に好ましくはRがメチル基かつRがエチル基である、[1]~[4]のいずれかに記載の製造方法。
 [6] 前記R及びRが互いに結合して環構造を形成する二価の炭化水素基を表し、好ましくは炭素数2以上7以下の二価の炭化水素基、より好ましくは炭素数3以上6以下の二価の炭化水素基、更に好ましくは炭素数4以上5以下の二価の炭化水素基、より更に好ましくは炭素数5の二価の炭化水素基である、[1]~[4]のいずれかに記載の製造方法。
 [7] 前記Rが水素原子であり、Rが好ましくは水素原子又は炭素数1以上20以下の一価の炭化水素基であり、炭化水素基としては、好ましくはアルキル基又はアリール基であり、アルキル基の炭素数は、好ましくは1以上であり、好ましくは20以下、より好ましくは18以下、更に好ましくは16以下、より更に好ましくは14以下、より更に好ましくは12以下、より更に好ましくは10以下、より更に好ましくは8以下、より更に好ましくは6以下、より更に好ましくは4以下、より更に好ましくは2以下であり、これらのアルキル基は直鎖であっても分岐であってもよく、また、アリール基の炭素数は、好ましくは6以上であり、好ましくは20以下、より好ましくは18以下、更に好ましくは16以下、より更に好ましくは14以下、より更に好ましくは12以下、より更に好ましくは10以下、より更に好ましくは8以下、より更に好ましくは6以下である、[1]~[4]のいずれかに記載の製造方法。
 [8] 前記Rが水素原子であり、前記Rが、好ましくは水素原子又は炭素数1以上20以下の一価の炭化水素基、より好ましくは水素原子、炭素数1以上8以下の直鎖アルキル基、炭素数1以上8以下の分岐アルキル基又は炭素数6以上20以下のアリール基、更に好ましくは水素原子、メチル基又はフェニル基、より更に好ましくは水素原子である、[1]~[4]のいずれかに記載の製造方法。
 [9] 前記式(I)で表される化合物から生成する前記ホルミルジオキソランの収率が、好ましくは20%以下、より好ましくは10%以下、更に好ましくは5%以下、より更に好ましくは実質的に0%、より更に好ましくは0%である、[1]~[8]のいずれかに記載の製造方法。
 [10] 前記酸化的エステル化する工程において、好ましくは有機ニトロキシルラジカルのオキソアンモニウムカチオンを含む塩と、塩基とを用いる酸化的エステル化法、並びに有機ニトロキシルラジカル、そのN-ヒドロキシ体及びそれらのオキソアンモニウムカチオンを含む塩から選ばれる化合物と、酸化剤と、塩基とを用いる酸化的エステル化法(以下、「ニトロキシルラジカル法」ともいう。)から選ばれる酸化的エステル化法を用いる、[1]~[9]のいずれかに記載の製造方法。
 [11] 前記有機ニトロキシルラジカルが、下記式(VIII)で表される化合物、下記式(IX)で表される化合物、又は下記式(X)で表される化合物である、[10]に記載の製造方法。
Figure JPOXMLDOC01-appb-C000023

(式(VIII)中、Rは水素原子、ハロゲン原子、水酸基、アルコキシ基、アシルオキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基、スルホニルオキシ基、N-アルキルカルバモイルオキシ基、カルボキシ基、シアノ基、イソシアナト基、イソチオシアナト基、又はオキソ基を表し、好ましくはアルコキシ基、アシルオキシ基、又はアシルアミノ基を表す。式(IX)中、R及びRはそれぞれ独立して、水素原子又はメチル基を表す。式(X)中、R及びRはそれぞれ独立して、水素原子又はメチル基を表す。)
 [12] 前記有機ニトロキシルラジカル、そのN-ヒドロキシ体、及びそれらのオキソアンモニウムカチオンを含む塩から選ばれる1種以上の化合物が、好ましくはTEMPO、4-ヒドロキシTEMPO、4-アミノ-TEMPO、4-メトキシ-TEMPO(以下、「4-OMe-TEMPO」ともいう。)、4-エトキシ-TEMPO、4-フェノキシ-TEMPO、4-アセトキシ-TEMPO、4-ベンゾイルオキシ-TEMPO(以下、「4-OBz-TEMPO」ともいう。)、4-メタクリレート-TEMPO、4-アセトアミド-TEMPO(以下、「4-NHAc-TEMPO」ともいう。)、4-メチルスルホニルオキシ-TEMPO(以下、「4-OMs-TEMPO」ともいう。)、4-パラトルエンスルホニルオキシ-TEMPO、4-オキソ-TEMPO、2-アザアダマンタン-N-ヒドロキシル(以下、「AZADOL」ともいう。)、2-アザアダマンタン-N-オキシル(以下、「AZADO」ともいう。)、1-メチル-2-アザアダマンタン-N-オキシル(以下、「1-Me-AZADO」ともいう。)、9-アザノルアダマンタン-N-オキシル(以下、「nor-AZADO」ともいう。)、1,5-ジメチル-9-アザノルアダマンタン-N-オキシル(以下、「DMM-AZADO」ともいう。)、より好ましくは4-メトキシ-TEMPO、4-ベンゾイルオキシ-TEMPO、4-アセトアミド-TEMPO、4-メチルスルホニルオキシ-TEMPO、及びAZADOLから選ばれる化合物、更に好ましくは4-ベンゾイルオキシ-TEMPO、4-アセトアミド-TEMPO、4-メチルスルホニルオキシ-TEMPO、及びAZADOLから選ばれる化合物である、[10]又は[11]に記載の製造方法。
 [13] 前記有機ニトロキシルラジカル、そのN-ヒドロキシ体及びそれらのオキソアンモニウムカチオンを含む塩から選ばれる化合物の使用量が、前記式(I)で表される化合物又は前記式(I)で表される化合物と前記式(V)で表される化合物の混合物に対して、好ましくはモル比が0.0001以上、より好ましくはモル比が0.0002以上、更に好ましくはモル比が0.0005以上であり、好ましくはモル比が0.1以下、より好ましくはモル比が0.05以下、更に好ましくはモル比が0.02以下である、[10]~[12]のいずれかに記載の製造方法。
 [14] 前記酸化剤が、好ましくはハロゲンを含有する化合物からなる酸化剤(含ハロゲン酸化剤)、より好ましくは塩素を含有する化合物からなる酸化剤(含塩素酸化剤)、更に好ましくはトリクロロイソシアヌル酸及び次亜塩素酸ターシャリーブチルから選ばれる酸化剤、より更に好ましくはトリクロロイソシアヌル酸である、[10]~[13]のいずれかに記載の製造方法。
 [15] 前記式(I)で表される化合物又は前記式(I)で表される化合物と前記式(V)で表される化合物の混合物に対して、酸化剤の酸化活性種のモル比が、好ましくは1.0以上、より好ましくは1.1以上であり、好ましくは2.0以下、より好ましくは1.5以下である、[10]~[14]のいずれかに記載の製造方法。
 [16] 前記塩基がピリジン骨格を有する複素環式芳香族アミンである、[10]~[15]のいずれかに記載の製造方法。
 [17] 前記ピリジン骨格を有する複素環式芳香族アミンが、好ましくはピリジン、2-メチルピリジン、3-メチルピリジン、4-メチルピリジン、2-エチルピリジン、3-エチルピリジン、4-エチルピリジン、2,6-ルチジン、3,5-ルチジン、2,3,5-コリジン、2,4,6-コリジン、5-エチル-2-メチルピリジン、3,5-ジエチルピリジン、2,2’-ビピリジル、2,4’-ビピリジル、4,4’-ビピリジル、及びキノリンから選択される少なくとも1つ、より好ましくは、ピリジン、3,5-ルチジン、2,6-ルチジン、3-エチルピリジン、4-エチルピリジン及び5-エチル-2-メチルピリジンから選ばれる少なくとも1つ、更に好ましくはピリジン、3,5-ルチジン、3-エチルピリジン、4-エチルピリジン及び5-エチル-2-メチルピリジンから選ばれる少なくとも1つである、[16]に記載の製造方法。
 [18] 前記式(I)で表される化合物又は前記式(I)で表される化合物と前記式(V)で表される化合物の混合物に対して、前記塩基のモル比が、好ましくは1.0以上、より好ましくは1.1以上、更に好ましくは1.2以上、より更に好ましくは1.3以上であり、好ましくは2.5以下、より好ましくは2.0以下、更に好ましくは1.7以下である、[10]~[17]のいずれかに記載の製造方法。
 [19] 前記酸化的エステル化する工程において好ましくは溶媒を使用し、その溶媒が、好ましくはアセトン、2-ブタノン、シクロペンタノン、アセトニトリル及びジクロロメタンから選ばれる溶媒、より好ましくはアセトン、2-ブタノン、アセトニトリル及びジクロロメタンから選ばれる溶媒、更に好ましくはアセトン及び2-ブタノンから選ばれる溶媒である、[1]~[18]のいずれかに記載の製造方法。
 [20] 反応系全体における前記溶媒の使用量が、好ましくは20質量%以上、より好ましくは30質量%以上、更に好ましくは40質量%以上であり、より更に好ましくは50質量%以上、より更に好ましくは60質量%以上であり、好ましくは90質量%以下、より好ましくは85質量%以下、更に好ましくは80質量%以下である、[19]に記載の製造方法。
 [21] 前記酸化的エステル化する工程において、好ましくは酸化剤以外の原料の混合物又は混合溶液に、酸化剤又は酸化剤溶液を滴下する、[10]~[20]のいずれかに記載の製造方法。
 [22] 前記酸化剤又は酸化剤溶液滴下中の反応液の温度が、好ましくは-15℃以上、より好ましくは-10℃以上であり、好ましくは25℃以下、より好ましくは10℃以下である、[21]に記載の製造方法。
 [23] 前記酸化剤又は酸化剤溶液滴下終了後、ジオキソラン全量が反応する、又は残存量の低下が停止するまで反応を継続する、[21]又は[22]に記載の製造方法。
 [24] 前記反応液の温度が、好ましくは-10℃以上、より好ましくは-5℃以上であり、好ましくは50℃以下、より好ましくは30℃以下である、[23]に記載の製造方法。
 [25] 好ましくはアルコールを反応停止剤として用いる、[1]~[24]のいずれかに記載の製造方法。
 [26] 前記反応停止剤が、好ましくは一級又は二級のアルコールであり、より好ましくは二級アルコールである、[25]に記載の製造方法。
 [27] 前記反応停止剤が、好ましくは炭素数1以上12以下のアルコールである、[25]又は[26]に記載の製造方法。
 [28] 前記式(I)で表される化合物、好ましくは前記式(I)で表される化合物と前記式(V)で表される化合物の混合物を酸化的エステル化する工程の後に前記式(II)で表される化合物を分離する工程を有する、[1]~[27]のいずれかに記載の製造方法。
 [29] 前記式(II)で表される化合物を分離する工程における分離が、蒸留による分離である、[28]に記載の製造方法。
 [30] 前記蒸留による分離を、好ましくは精留条件で行う、[29]に記載の製造方法。
 [31] 前記精留条件は、精留塔の理論段数が好ましくは2段以上、より好ましくは5段以上であり、還流比が好ましくは0.1以上、より好ましくは0.5以上であり、精留塔の理論段数が好ましくは20段以下、より好ましくは10段以下であり、還流比が好ましくは20以下、より好ましくは10以下である、[30]に記載の製造方法。
 [32] [28]~[31]のいずれかにおいて分離した前記式(II)で表される化合物を加水分解又は加アルコール分解する、グリセリン酸、グリセリン酸塩又は脱保護されたグリセリン酸エステルの製造方法。
 [33] [1]~[31]のいずれかに記載の製造方法で、前記式(II)で表される化合物を製造する工程、及び、該工程で製造した前記式(II)で表される化合物を加水分解又は加アルコール分解する工程を有する、グリセリン酸、グリセリン酸塩又は脱保護されたグリセリン酸エステルの製造方法。
 [34] 前記加アルコール分解に用いるアルコールが、好ましくは一級アルコールであり、より好ましくは炭素数1以上3以下の一級アルコールである、[32]又は[33]に記載の製造方法。
 [35] 前記加アルコール分解に用いるアルコールが、より好ましくは炭素数4以上8以下の直鎖又は分岐鎖一級アルコールである、[32]又は[33]に記載の製造方法。
 [36] 下記式(II)で表される化合物。
Figure JPOXMLDOC01-appb-C000024

(式(II)中、R及びRはそれぞれ独立して、水素原子又は一価の炭化水素基を表すか、又は、R及びRは互いに結合して環構造を形成する二価の炭化水素基を表す。ただし、R及びRが同時にメチル基である場合を除く。)
 [37] 前記R及びRが好ましくは炭素数1以上8以下の一価の炭化水素基、より好ましくはRが炭素数1以上8以下の一価の炭化水素基かつRが炭素数2以上8以下の一価の炭化水素基、更に好ましくはRが炭素数1以上8以下のアルキル基かつRが炭素数2以上8以下のアルキル基、より更に好ましくはRが炭素数1又は2のアルキル基かつRが炭素数2以上6以下のアルキル基、より更に好ましくはRが炭素数1又は2のアルキル基かつRが炭素数2以上4以下のアルキル基、より更に好ましくはRがメチル基かつRがエチル基である、[36]に記載の化合物。
 [38] 前記R及びRが、互いに結合して環構造を形成する二価の炭化水素基を表し、好ましくは炭素数2以上7以下の二価の炭化水素基、より好ましくは炭素数3以上6以下の二価の炭化水素基、更に好ましくは炭素数4以上5以下の二価の炭化水素基、より更に好ましくは炭素数5の二価の炭化水素基である、[36]に記載の化合物。
 [39] 前記Rが水素原子であり、Rが好ましくは水素原子又は炭素数1以上20以下の一価の炭化水素基であり、炭化水素基としては、好ましくはアルキル基又はアリール基であり、アルキル基の炭素数は、好ましくは1以上であり、好ましくは20以下、より好ましくは18以下、更に好ましくは16以下、より更に好ましくは14以下、より更に好ましくは12以下、より更に好ましくは10以下、より更に好ましくは8以下、より更に好ましくは6以下、より更に好ましくは4以下、より更に好ましくは2以下であり、これらのアルキル基は直鎖であっても分岐であってもよく、また、アリール基の炭素数は、好ましくは6以上であり、好ましくは20以下、より好ましくは18以下、更に好ましくは16以下、より更に好ましくは14以下、より更に好ましくは12以下、より更に好ましくは10以下、より更に好ましくは8以下、より更に好ましくは6以下である、[36]に記載の化合物。
 [40] 前記Rが水素原子であり、前記Rが、好ましくは水素原子又は炭素数1以上20以下の一価の炭化水素基、より好ましくは水素原子、炭素数1以上8以下の直鎖アルキル基、炭素数1以上8以下の分岐アルキル基又は炭素数6以上20以下のアリール基、更に好ましくは水素原子、メチル基又はフェニル基、より更に好ましくは水素原子である、[36]に記載の化合物。
[化合物の同定]
 以下の製造例、実施例又は比較例(以下、「実施例等」ともいう。)で得られた各化合物は、核磁気共鳴装置(NMR、アジレント・テクノロジー株式会社製、型式:Agilent 400-MR DD2)、赤外分光光度計(IR、株式会社堀場製作所製、型式:FT-710)、ガスクロマトグラフ質量分析計(GC-MS、アジレント・テクノロジー株式会社製、型式:Agilent 5975C)を用いてスペクトル分析により同定した。
[製造又は精製した化合物の純度]
 以下の実施例等において、製造又は精製した化合物の純度は、ガスクロマトグラフ(アジレント・テクノロジー株式会社製、型式:Agilent 6850)を用いた分析(GC分析)により求めた。なお、純度に関する「%」は「GC%」を意味し、反応原料や高純度標品の純分量換算時には、この数値を用いた。
[単位、転化率及び収率]
 以下の実施例等に示した反応原料の転化率及び生成物の収率は、内部標準法定量GC分析によって求めた。定量分析に必要な検量線は、市販標品又は反応混合物から蒸留やシリカゲルカラムクロマトグラフィーで精製した高純度標品を用いて作成した。ただし、ホルミルジオキソランの収率は、対応するジオキサノンの検量線を代用して算出した。
[GC及びGC-MSの測定条件]
 カラム:Ultra ALLOY-1(MS/HT)(フロンティア・ラボ社、商標、内径0.25mm、膜厚0.15μm、長さ30m)
 キャリアガス:ヘリウム、1.0mL/min
 注入条件:250℃、スプリット比1/50
 検出条件:FID方式、220℃
 カラム温度条件:40℃で5分保持後、10℃/分で350℃まで昇温
 内部標準化合物:n-ドデカン
 イオン化モード:EI
 イオン源温度:230℃
 インターフェース温度:350℃
製造例: 原料である2,2-ジアルキル-4-ヒドロキシメチル-2-メチル-1,3-ジオキソランの製造
 製造例において行った反応は、以下の通りである。
Figure JPOXMLDOC01-appb-C000025
製造例1-1: 原料である2-エチル-4-ヒドロキシメチル-2-メチル-1,3-ジオキソラン(R=Me、R=Et)の製造
 ディーン・スターク装置を取り付けた1Lフラスコに、グリセロール 184g(純度100%、2.00モル)、2-ブタノン 162g(純度98.0%、2.20モル)、メタンスルホン酸 981mg(純度98.0%、10.0ミリモル)、n-ヘキサン 50gを仕込み、反応で副生する水を反応系外に除去しながら5時間還流させた。冷却後にナトリウムエトキシドの20%エタノール溶液 3.50g(ナトリウムエトキシドとして700mg、10.3ミリモル)で中和した。反応液をGC分析した結果、2-エチル-4-ヒドロキシメチル-2-メチル-1,3-ジオキソランのシス及びトランス異性体混合物の反応収率は74%であった。
 続いて反応液を、クライゼンヘッドを取り付けた500mLフラスコに移送し、50℃に加熱後に徐々に減圧してn-ヘキサンとエタノールを留去し、更に0.13kPa(絶対圧)の減圧下で単蒸留を行い、留分温度91~94℃で無色液体として留出する立体異性体混合物220gを得た。純度95.3%、蒸留収率97%であった。
<立体異性体混合物のスペクトルデータ>
・IR(neat、cm-1):3465(br)、2973、2935、2883、1466、1375、1190、1078、1041、876。
・MS(m/z):131、117、57、43。
製造例1-2: 原料である2-イソブチル-4-ヒドロキシメチル-2-メチル-1,3-ジオキソラン(R=Me、RBu)の製造
 4-メチル-2-ペンタノン 221g(純度99.5%、2.20モル)を反応原料として用いて、製造例1と同様の操作を行い、反応収率68%で2-イソブチル-4-ヒドロキシメチル-2-メチル-1,3-ジオキソランのシス及びトランス異性体混合物を得た。
 更に0.13kPa(絶対圧)の減圧下で単蒸留を行い、留分温度117~123℃で無色液体として留出する立体異性体混合物246gを得た。純度97.4%、蒸留収率92%であった。
<立体異性体混合物のスペクトルデータ>
・IR(neat、cm-1):3446(br)、2952、2871、1466、1375、1184、1090、1041。
・MS(m/z):159、143、117、99、85、57、43。
製造例1-3: 原料である2-ヒドロキシメチル-1,4-ジオキサスピロ[4.5]デカン(R、R=-(CH-)の製造
 シクロヘキサノン 218g(純度99.0%、2.20モル)を反応原料として用いて、製造例1と同様の操作を行い、反応収率80%で2-ヒドロキシメチル-1,4-ジオキサスピロ[4.5]デカンを得た。
 更に0.13kPa(絶対圧)の減圧下で単蒸留を行い、留分温度123~126℃で留出する無色液体297gを得た。純度97.0%、蒸留収率95%であった。
<スペクトルデータ>
H-NMR(400MHz、CDCl、δppm):1.37-1.42(2H、m)、1.54-1.63(8H、m)、2.30(1H、s)、3.56-3.61(1H、m)、3.70-3.80(2H、m)、4.02-4.05(1H、m)、4.21-4.25(1H、m)。
13C-NMR(100MHz、CDCl、δppm):23.7、24.0、25.1、34.7、36.3、63.1、65.3、75.7、110.0。
・IR(neat、cm-1):3423(br)、2933、2860、1448、1365、1281、1163、1097、1039、926。
・MS(m/z):172(M)、143、129、116、81、73、55、41、31。
製造例1-4: 原料である2-エチル-4-ヒドロキシメチル-2-ペンチル-1,3-ジオキソラン(R=Et、R=Pentyl)の製造
 3-オクタノン 288g(純度98.0%、2.20モル)を反応原料として用いて、製造例1と同様の操作を行い、反応収率73%で2-エチル-4-ヒドロキシメチル-2-ペンチル-1,3-ジオキソランのシス及びトランス異性体混合物を得た。
 更に0.13kPa(絶対圧)の減圧下で単蒸留を行い、留分温度143~146℃で無色液体として留出する立体異性体混合物284gを得た。純度97.4%、蒸留収率85%であった。
<立体異性体混合物のスペクトルデータ>
・IR(neat、cm-1):3450(br)、2933、2871、1963、1464、1165、1047、912。
・MS(m/z、GC上の2ピーク共通):202(M)、173、131、99、71、57、43。
実施例: 2,2-ジアルキル-1,3-ジオキソラン-4-カルボン酸(2,2-ジアルキル-1,3-ジオキソラン-4-イル)メチルエステルの製造
 実施例において行った反応は、以下の通りである。
Figure JPOXMLDOC01-appb-C000026
実施例1-1: 2-エチル-2-メチル-1,3-ジオキソラン-4-カルボン酸(2-エチル-2-メチル-1,3-ジオキソラン-4-イル)メチルエステル(R=Me、R=Et)の製造
実施例1-1-1
 100mL滴下ロートを取り付けた300mLフラスコに、製造例1-1で得られた2-エチル-4-ヒドロキシメチル-2-メチル-1,3-ジオキソラン 23.0g(純度95.3%、150ミリモル)、2-ヒドロキシ-2-アザアダマンタン 23.4mg(AZADOL、日産化学工業株式会社、商標、純度98.0%、150マイクロモル)、ピリジン 17.9g(純度99.5%、225ミリモル)、アセトニトリル 50gを仕込み、冷却しながら窒素雰囲気下で撹拌した。トリクロロイソシアヌル酸 14.7g(TCCA、純度95.0%、60.0ミリモル)をアセトニトリル 50gに溶かした溶液を滴下ロートに仕込み、フラスコ内の反応液温度が-2℃~10℃の範囲に収まるように滴下速度を調節しながら2時間かけて滴下した。冷却を停止して反応液温度を20℃付近まで昇温しながら更に3時間撹拌を続け、最後に2-プロパノール 1.81g(純度99.7%、30.0ミリモル)を添加して更に20分撹拌して反応を完結させた。副生した粉末状固体を濾別後に濾液をGC分析した結果、2-エチル-4-ヒドロキシメチル-2-メチル-1,3-ジオキソランの転化率は100%、2-エチル-2-メチル-1,3-ジオキソラン-4-カルボン酸(2-エチル-2-メチル-1,3-ジオキソラン-4-イル)メチルエステルの収率は74%であった。
 濾液からアセトニトリルを留去した後に析出した粉末状固体を除去するため、tert-ブチルメチルエーテル 100gとイオン交換水 50gを加え抽出した。静置分層後に下層水を抜出し、再度イオン交換水 50gを加えて抽出から下層水抜出しまでを繰り返した。得られた有機層を無水硫酸ナトリウム 20gで乾燥し、濾過後にtert-ブチルメチルエーテルを留去して赤色オイル状粗生成物 19.8gを得た。粗生成物をGC分析した結果、2-エチル-2-メチル-1,3-ジオキソラン-4-カルボン酸(2-エチル-2-メチル-1,3-ジオキソラン-4-イル)メチルエステルの収率は72%であり、水洗前後の回収率は97%であった。
 続いて粗生成物 17.0gを、クライゼンヘッドを取り付けた50mLフラスコに移送し、0.13kPa(絶対圧)の減圧下で単蒸留を行い、留分温度119~122℃で薄黄色液体として留出する2-エチル-2-メチル-1,3-ジオキソラン-4-カルボン酸(2-エチル-2-メチル-1,3-ジオキソラン-4-イル)メチルエステル 11.6gを得た。純度98.1%、蒸留収率80%であった。GC-MS分析より、このエステルダイマーは少なくとも3組のラセミ体からなる6種の立体異性体混合物であることを確認した。他の2組のラセミ体については、ピークが重なり、検出できなかったものと推定される。
<立体異性体混合物のスペクトルデータ>
・IR(neat、cm-1):2979、2939、2883、1761、1736、1377、1186、1072、874。
・MS(m/z、GC上の3ピーク共通):287、273、259、115、57、43。
実施例1-1-2
 20mL滴下ロートを取り付けた50mLフラスコに、製造例1-1で得られた2-エチル-4-ヒドロキシメチル-2-メチル-1,3-ジオキソラン 4.60g(純度95.3%、30.0ミリモル)、AZADOL 4.7mg(純度98.0%、30マイクロモル)、3,5-ルチジン 4.92g(純度98.0%、45.0ミリモル)、アセトニトリル 10gを仕込み、冷却しながら窒素雰囲気下で撹拌した。TCCA 2.94g(純度95.0%、12.0ミリモル)をアセトニトリル 10gに溶かした溶液を滴下ロートに仕込み、フラスコ内の反応液温度が-10℃~10℃の範囲に収まるように滴下速度を調節しながら1時間かけて滴下した。冷却を停止して反応液温度を25℃付近まで昇温しながら更に1時間撹拌を続け、最後に2-プロパノール 0.20g(純度99.7%、3.3ミリモル)を添加して更に10分撹拌して反応を完結させた。副生した粉末状固体を濾別後に濾液をGC分析した結果、2-エチル-4-ヒドロキシメチル-2-メチル-1,3-ジオキソランの転化率は100%、2-エチル-2-メチル-1,3-ジオキソラン-4-カルボン酸(2-エチル-2-メチル-1,3-ジオキソラン-4-イル)メチルエステルの収率は73%であった。
実施例1-2: 2-イソブチル-2-メチル-1,3-ジオキソラン-4-カルボン酸(2-イソブチル-2-メチル-1,3-ジオキソラン-4-イル)メチルエステル(R=Me、RBu)の製造
 製造例1-2で得られた2-イソブチル-4-ヒドロキシメチル-2-メチル-1,3-ジオキソラン 26.8g(純度97.4%、150ミリモル)を反応原料として用いて、実施例1-1-1と同様の操作を行った。濾液をGC分析した結果、2-イソブチル-4-ヒドロキシメチル-2-メチル-1,3-ジオキソランの転化率は100%、2-イソブチル-2-メチル-1,3-ジオキソラン-4-カルボン酸(2-イソブチル-2-メチル-1,3-ジオキソラン-4-イル)メチルエステルの収率は75%であった。濃褐色オイル状粗生成物 25.9gのGC分析によって求めた収率も75%であり、濾液の分析時から収率ロスがないことがわかった。
 続いて40Pa(絶対圧)の減圧下で粗生成物 20.0gの単蒸留を行い、留分温度116~124℃で黄色液体として留出する2-イソブチル-2-メチル-1,3-ジオキソラン-4-カルボン酸(2-イソブチル-2-メチル-1,3-ジオキソラン-4-イル)メチルエステル 10.6gを得た。純度98.9%、蒸留収率70%であった。GC-MS分析より、このエステルダイマーは8組のラセミ体からなる16種の立体異性体混合物であることがわかった。
<立体異性体混合物のスペクトルデータ>
・IR(neat、cm-1):2933、2871、1763、1736、1468、1377、1182、1099。
・MS(m/z、GC上の8ピーク共通):343、329、287、187、143、115、85、57、43。
実施例1-3: 1,4-ジオキサスピロ[4.5]デカン-2-カルボン酸(1,4-ジオキサスピロ[4.5]デカン-2-イル)メチルエステル(R、R=-(CH-)の製造
実施例1-3-1
 製造例1-3で得られた2-ヒドロキシメチル-1,4-ジオキサスピロ[4.5]デカン 26.6g(純度97.0%、150ミリモル)を反応原料として用いて、実施例1-1-1と同様の操作を行った。濾液をGC分析した結果、2-ヒドロキシメチル-1,4-ジオキサスピロ[4.5]デカンの転化率は100%、1,4-ジオキサスピロ[4.5]デカン-2-カルボン酸(1,4-ジオキサスピロ[4.5]デカン-2-イル)メチルエステルの収率は66%であった。濃オレンジ色オイル状粗生成物 23.5gのGC分析によって求めた収率も66%であり、濾液の分析時から収率ロスがないことがわかった。
 続いてクーゲルロール蒸留装置を用いて40Pa(絶対圧)の減圧下で粗生成物 6.50gの蒸留を行い、装置温度225~240℃でオレンジ色液体として留出する1,4-ジオキサスピロ[4.5]デカン-2-カルボン酸(1,4-ジオキサスピロ[4.5]デカン-2-イル)メチルエステル 2.89gを得た。純度95.6%、蒸留収率60%であった。13C-NMR分析より、このエステルダイマーは2組のラセミ体からなる4種の立体異性体混合物であることがわかった。
<立体異性体混合物のスペクトルデータ>
・IR(neat、cm-1):2933、2862、1761、1738、1448、1367、1161、1097、922。
・MS(m/z):340(M)、311、297、242、199、141、127、55。
実施例1-3-2及び1-3-3
 製造例1-3で得られた2-ヒドロキシメチル-1,4-ジオキサスピロ[4.5]デカン 5.32g(純度97.0%、30.0ミリモル)を反応原料として用いて、表1に示す反応条件に変更した以外は実施例1-1-2と同様の操作を行い、1,4-ジオキサスピロ[4.5]デカン-2-カルボン酸(1,4-ジオキサスピロ[4.5]デカン-2-イル)メチルエステルを含む濾液を得た。表に実施例1-3-2及び1-3-3の反応条件と結果を示す。
実施例1-3-4
 製造例1-3で得られた2-ヒドロキシメチル-1,4-ジオキサスピロ[4.5]デカン 888g(純度97.0%、5.00ミリモル)、4-アセトアミド-2,2,6,6-テトラメチル-1-オキソピペリジニウムテトラフルオロボラート3.95g(純度95.0%、12.5ミリモル)、あらかじめ真空加熱条件下で乾燥させたモレキュラーシーブ4A 1.0g、及びジクロロメタン10gを、滴下ロートを取り付けた50mLフラスコに仕込み、窒素雰囲気下室温で撹拌した。ピリジン0.914g(純度99.5%、11.5ミリモル)とジクロロメタン5gからなる溶液を滴下ロートに仕込み、20分かけて滴下した。更に室温で3時間撹拌を続けた後、最後にメタノール0.10g(純度99.8%、3.1ミリモル)を添加して更に10分撹拌して反応を完結させた。モレキュラーシーブ4Aと副生した粉末状固体を濾別後に濾液をGC分析した結果、2-ヒドロキシメチル-1,4-ジオキサスピロ[4.5]デカンの転化率は100%、1,4-ジオキサスピロ[4.5]デカン-2-カルボン酸(1,4-ジオキサスピロ[4.5]デカン-2-イル)メチルエステルの収率は64%であった。
実施例1-4: 2-エチル-2-ペンチル-1,3-ジオキソラン-4-カルボン酸(2-エチル-2-ペンチル-1,3-ジオキソラン-4-イル)メチルエステル(R=Et、R=Pentyl)の製造
 製造例1-4で得られた2-エチル-4-ヒドロキシメチル-2-ペンチル-1,3-ジオキソラン 31.2g(純度97.4%、150ミリモル)を反応原料として用いて、実施例1-1-1と同様の操作を行った。濾液をGC分析した結果、2-エチル-4-ヒドロキシメチル-2-ペンチル-1,3-ジオキソランの転化率は100%、2-エチル-2-ペンチル-1,3-ジオキソラン-4-カルボン酸(2-エチル-2-ペンチル-1,3-ジオキソラン-4-イル)メチルエステルの収率は73%であった。濃褐色オイル状粗生成物 33.0gのGC分析によって求めた収率は70%であり、濾液の分析時から収率3%分をロスしたことがわかった。
 続いてクーゲルロール蒸留装置を用いて40Pa(絶対圧)の減圧下で粗生成物 6.05gの蒸留を行い、装置温度180~210℃でオレンジ色液体として留出する2-エチル-2-ペンチル-1,3-ジオキソラン-4-カルボン酸(2-エチル-2-ペンチル-1,3-ジオキソラン-4-イル)メチルエステル 2.03gを得た。純度90.6%、蒸留収率48%であった。GC-MS分析より、このエステルダイマーは8組のラセミ体からなる16種の異性体混合物であることがわかった。
<立体異性体混合物のスペクトルデータ>
・IR(neat、cm-1):2931、2875、1763、1736、1466、1190、1165、1105、908。
・MS(m/z、GC上の8ピーク共通):400(M)、371、329、171、129、99、71、57、43。
比較例1-1: 2,2-ジメチル-1,3-ジオキソラン-4-カルボン酸(2,2-ジメチル-1,3-ジオキソラン-4-イル)メチルエステル(R、R=Me)の製造
 2,2-ジメチル-4-ヒドロキシメチル-1,3-ジオキソラン 20.2g(東京化成工業株式会社商品、商品名2,2-ジメチル-1,3-ジオキソラン-4-メタノール、純度98.0%、150ミリモル)を反応原料として用いて、実施例1-1-1と同様の操作を行った。濾液をGC分析した結果、2,2-ジメチル-4-ヒドロキシメチル-1,3-ジオキソランの転化率は100%、2,2-ジメチル-1,3-ジオキソラン-4-カルボン酸(2,2-ジメチル-1,3-ジオキソラン-4-イル)メチルエステルの収率は70%であった。濃オレンジ色オイル状粗生成物 15.1gのGC分析によって求めた収率は59%であり、濾液の分析時から収率11%分をロスしたことがわかった。
 続いて0.13kPa(絶対圧)の減圧下で粗生成物 14.1gの単蒸留を行い、留分温度103~106℃で無色液体として留出する2,2-ジメチル-1,3-ジオキソラン-4-カルボン酸(2,2-ジメチル-1,3-ジオキソラン-4-イル)メチルエステル 8.20gを得た。純度98.7%、蒸留収率97%であった。13C-NMR分析より、このエステルダイマーは2組のラセミ体からなる4種の立体異性体混合物であることがわかった。
<立体異性体混合物のスペクトルデータ>
・IR(neat、cm-1):2987、2939、1759、1734、1371、1192、1153、1099、1066、837。
・MS(m/z):259、245、186、130、115、101、73、59、43。
 以下の表に実施例1-1~1-4と比較例1-1の反応条件と結果を示す。
Figure JPOXMLDOC01-appb-T000027
実施例1-5: グリセリン酸エチルの製造
 実施例1-5において行った反応は、以下の通りである。
Figure JPOXMLDOC01-appb-C000028
 実施例1-1-1で得られた2-エチル-2-メチル-1,3-ジオキソラン-4-カルボン酸(2-エチル-2-メチル-1,3-ジオキソラン-4-イル)メチルエステル 5.00g(純度98.1%、17.0ミリモル)、メタンスルホン酸 83mg(純度98.0%、0.85ミリモル)、エタノール 39.4g(純度99.5%、850ミリモル)を、100mLフラスコに仕込み、2時間還流した。冷却後にナトリウムエトキシドの20%エタノール溶液 290mg(ナトリウムエトキシドとして58mg、0.85ミリモル)で中和し、エタノールを留去した。続いて、得られたオレンジ色オイル状粗生成物8.75gをクーゲルロール蒸留装置で精製した。0.13kPa(絶対圧)、装置温度150~155℃の条件下で、無色液体として留出するグリセリン酸エチル 1.53gを得た。純度93.5%、収率63%であった。
<グリセリン酸エチルのスペクトルデータ>
H-NMR(400MHz、CDCl、δppm):1.31(3H、t、J=6.8Hz)、3.82-3.92(2H、m)、4.24-4.30(3H、m)、なお、水酸基のHピークは、ブロードとなり検出できなかった。
13C-NMR(100MHz、CDCl、δppm):14.1、62.0、64.1、71.8、173.0。
・IR(neat、cm-1):3425(br)、2974、2935、1728、1201、1111、1063、1020。
・MS(m/z):134(M)、104、76、61、43、31。
製造例2-1: 原料である2-フェニル-1,3-ジオキサン-5-オールと4-ヒドロキシメチル-2-フェニル-1,3-ジオキソランの混合物の製造
 製造例2-1において行った反応は、以下の通りである。
Figure JPOXMLDOC01-appb-C000029
 ディーン・スターク装置を取り付けた1Lフラスコに、グリセロール 184g(純度100%、2.00モル)、ベンズアルデヒド 238g(純度98.0%、2.20モル)、アンバーリスト15DRY 18g(強酸性陽イオン交換樹脂、ダウ・ケミカル社、商標)、n-ヘキサン 50gを仕込み、反応で副生する水を反応系外に除去しながら6時間還流させた。冷却後にイオン交換樹脂を濾別し、濾液をGC分析した結果、シス及びトランス-2-フェニル-1,3-ジオキサン-5-オールとシス及びトランス-4-ヒドロキシメチル-2-フェニル-1,3-ジオキソランからなる4種の異性体混合物の反応収率は91%であった。
 続いて濾液を、クライゼンヘッドを取り付けた500mLフラスコに移送し、50℃に加熱後に徐々に減圧してn-ヘキサンを留去し、更に0.13kPa(絶対圧)の減圧下で単蒸留を行い、留分温度110~120℃で無色液体として留出する異性体混合物 317gを得た。純度100%、蒸留収率97%であった。
 参考文献1(ジャーナル・オブ・カタリシス(Journal of Catalysis)、第245巻、428-435頁、2007年)には、各異性体の2位のプロトンのH-NMRシグナル帰属が記載されている。この情報とH-NMR分析より求めた、2-フェニル-1,3-ジオキサン-5-オールと4-ヒドロキシメチル-2-フェニル-1,3-ジオキソランの異性体比率は49対51であった。
<異性体混合物のスペクトルデータ>
・IR(neat、cm-1):3429(br)、2991,2937,2856,1408,
1151,1082,1039。
製造例2-2: 原料である2-フェニル-1,3-ジオキサン-5-オールと4-ヒドロキシメチル-2-フェニル-1,3-ジオキソランの混合物の製造
 製造例2-2において行った反応は、以下の通りである。
Figure JPOXMLDOC01-appb-C000030
 100mLフラスコに、グリセロール 9.21g(純度100%、100ミリモル)、ベンズアルデヒドジメチルアセタール 17.1g(純度98.0%、110ミリモル)、アンバーリスト36 0.50g(強酸性陽イオン交換樹脂、ダウ・ケミカル社、商標)、ジクロロメタン 23gを仕込み、窒素雰囲気下、25℃で6時間撹拌した。イオン交換樹脂を濾別し、濾液からジクロロメタンを留去した後にGC分析した結果、シス及びトランス-2-フェニル-1,3-ジオキサン-5-オールとシス及びトランス-4-ヒドロキシメチル-2-フェニル-1,3-ジオキソランからなる4種の異性体混合物の反応収率は77%であった。また、参考文献1の情報とH-NMR分析より求めた、2-フェニル-1,3-ジオキサン-5-オールと4-ヒドロキシメチル-2-フェニル-1,3-ジオキソランの異性体比率は55対45であった。
製造例2-3: 原料である2-メチル-1,3-ジオキサン-5-オールと4-ヒドロキシメチル-2-メチル-1,3-ジオキソランの混合物の製造
 製造例2-3において行った反応は、以下の通りである。
Figure JPOXMLDOC01-appb-C000031
 ディーン・スターク装置を取り付けた500mLフラスコに、グリセロール 184g(純度100%、2.00モル)、パラアルデヒド 117g(純度98.0%、868ミリモル)、メタンスルホン酸 981mg(純度98.0%、10.0ミリモル)、n-ヘキサン 40gを仕込み、反応で副生する水を反応系外に除去しながら5時間還流させた。冷却後にナトリウムエトキシドの20%エタノール溶液 3.50g(ナトリウムエトキシドとして700mg、10.3ミリモル)で中和した。反応液を分析した結果、シス及びトランス-2-メチル-1,3-ジオキサン-5-オールとシス及びトランス-4-ヒドロキシメチル-2-メチル-1,3-ジオキソランからなる4種の異性体混合物の反応収率は71%であった。
 続いて反応液を、クライゼンヘッドを取り付けた500mLフラスコに移送し、50℃に加熱後に徐々に減圧してn-ヘキサンとエタノールを留去し、更に0.67kPa(絶対圧)の減圧下で単蒸留を行い、留分温度62~70℃で無色液体として留出する異性体混合物 160gを得た。純度100%、蒸留収率96%であった。
 参考文献2(テトラへドロン(Tetrahedron)、第71巻、第20号、3032-3038頁、2015年)には、各異性体の2位のプロトンのH-NMRシグナル帰属が記載されている。この情報とH-NMR分析より求めた、2-メチル-1,3-ジオキサン-5-オールと4-ヒドロキシメチル-2-メチル-1,3-ジオキソランの異性体比率は70対30であった。
<異性体混合物のスペクトルデータ>
・IR(neat、cm-1):3415(br)、2856,1456,1394,1149,1086。
製造例2-4: 原料である2-n-ヘプチル-1,3-ジオキサン-5-オールと4-ヒドロキシメチル-2-n-ヘプチル-1,3-ジオキソランの混合物の製造
 製造例2-4において行った反応は、以下の通りである。
Figure JPOXMLDOC01-appb-C000032
 ディーン・スターク装置を取り付けた300mLフラスコに、グリセロール 69.1g(純度100%、750ミリモル)、n-オクタナール 98.1g(純度98.0%、750ミリモル)、メタンスルホン酸 368mg(純度98.0%、3.75ミリモル)、n-ヘキサン 18gを仕込み、反応で副生する水を反応系外に除去しながら3時間還流させた。冷却後にナトリウムエトキシドの20%エタノール溶液 1.30g(ナトリウムエトキシドとして260mg、3.82ミリモル)で中和した。反応液を分析した結果、シス及びトランス-2-n-ヘプチル-1,3-ジオキサン-5-オールとシス及びトランス-4-ヒドロキシメチル-2-n-ヘプチル-1,3-ジオキソランからなる4種の異性体混合物の反応収率は100%であった。
 続いて反応液を、クライゼンヘッドを取り付けた200mLフラスコに移送し、50℃に加熱後に徐々に減圧してn-ヘキサンとエタノールを留去し、更に67Pa(絶対圧)の減圧下で単蒸留を行い、留分温度95~102℃で無色液体として留出するシス及びトランス-2-n-ヘプチル-1,3-ジオキサン-5-オールとシス及びトランス-4-ヒドロキシメチル-2-n-ヘプチル-1,3-ジオキソランからなる4種の異性体混合物 135gを得た。純度99%、蒸留収率89%であった。
 参考文献3(グリーン・ケミストリー(Green Chemistry)、第12巻、2225-2231頁、2010年)には、各異性体の2位のプロトンのH-NMRシグナル帰属が記載されている。この情報とH-NMR分析より求めた、2-ヘプチル-1,3-ジオキサン-5-オールと4-ヒドロキシメチル-2-ヘプチル-1,3-ジオキソランの異性体比率は57対43であった。
<異性体混合物のスペクトルデータ>
・IR(neat、cm-1):3479(br)、2954、2854、1462、1394、1146、1043。
実施例2-1: 1,3-ジオキソラン-4-カルボン酸(1,3-ジオキソラン-4-イル)メチルエステルの製造
 実施例2-1において行った反応は、以下の通りである。
Figure JPOXMLDOC01-appb-C000033
実施例2-1-1
 100mL滴下ロートを取り付けた1Lフラスコに、1,3-ジオキサン-5-オールと4-ヒドロキシメチル-1,3-ジオキソランの混合物 63.7g(東京化成工業株式会社商品、商品名グリセロールホルマール、純度98.0%、600ミリモル、参考文献1の情報とH-NMR分析より求めた1,3-ジオキサン-5-オールと4-ヒドロキシメチル-1,3-ジオキソランの異性体比率58対42)、2-ヒドロキシ-2-アザアダマンタン 93.8mg(AZADOL、日産化学工業株式会社、商標、純度98.0%、0.60ミリモル)、ピリジン 71.5g(純度99.5%、900ミリモル)、アセトニトリル 150gを仕込み、冷却しながら窒素雰囲気下で撹拌した。トリクロロイソシアヌル酸 58.7g(TCCA、純度95.0%、240ミリモル)をアセトニトリル 150gに溶かした溶液を3回に分けて滴下ロートに仕込み、フラスコ内の反応液温度が-2℃~2℃の範囲に収まるように滴下速度を調節しながら3.5時間かけて滴下した。冷却を停止して反応液温度を20℃付近まで昇温しながら更に4時間撹拌を続け、最後に2-プロパノール 7.23g(純度99.7%、120ミリモル)を添加して更に20分撹拌して反応を完結させた。副生した粉末状固体を濾別後にアセトニトリルを留去した反応液にtert-ブチルメチルエーテル 100gを添加し、析出した粉末状固体の濾別と溶媒留去を2回繰り返し、オレンジ色オイル状粗生成物 70.5gを得た。粗生成物をGC分析した結果、4-ヒドロキシメチル-1,3-ジオキソランの転化率は100%、1,3-ジオキソラン-4-カルボン酸(1,3-ジオキソラン-4-イル)メチルエステルの収率は95%であった。
 理論段6段の充填式蒸留塔(充填物:ヘリパックパッキンNo.2)を取り付けた200mLナシ型フラスコに粗生成物 65.0gを仕込み、0.13kPa(絶対圧)、還流比0.1の条件下で、留分温度89~91℃で薄黄色液体として留出する1,3-ジオキソラン-4-カルボン酸(1,3-ジオキソラン-4-イル)メチルエステル 21.9gを得た。純度98.8%、蒸留収率96%であった。13C-NMR分析より、このエステルダイマーは2組のラセミ体からなる4種の立体異性体混合物であることが示唆された。
 図1に実施例2-1-1で得られた反応液のGCチャートを示す。
<1,3-ジオキソラン-4-カルボン酸(1,3-ジオキソラン-4-イル)メチルエステル(立体異性体混合物)のスペクトルデータ>
・IR(neat、cm-1):2956、2856、1751、1284、1151、1082、1016、916。
・MS(m/z):204(M)、159、129、86、73、57、45。
実施例2-1-2
 20mL滴下ロートを取り付けた50mLフラスコに、実施例2-1-1と同じグリセロールホルマール 3.19g(純度98.0%、30.0ミリモル)、AZADOL 4.7mg(純度98.0%、30マイクロモル)、ピリジン 4.77g(純度99.5%、60.0ミリモル)、アセトニトリル 10gを仕込み、冷却しながら窒素雰囲気下で撹拌した。TCCA 2.94g(純度95.0%、12.0ミリモル)をアセトニトリル 10gに溶かした溶液を滴下ロートに仕込み、フラスコ内の反応液温度が-10℃~10℃の範囲に収まるように滴下速度を調節しながら1時間かけて滴下した。冷却を停止して反応液温度を25℃付近まで昇温しながら更に2時間撹拌を続け、最後に2-プロパノール 0.20g(純度99.7%、3.3ミリモル)を添加して更に10分撹拌して反応を完結させた。副生した粉末状固体を濾別後に濾液をGC分析した結果、4-ヒドロキシメチル-1,3-ジオキソランの転化率は100%、1,3-ジオキソラン-4-カルボン酸(1,3-ジオキソラン-4-イル)メチルエステルの収率は99%であった。
実施例2-1-3~2-1-11
 触媒の種類や使用量、塩基の種類や使用量、又は溶媒種を変えた以外は実施例2-1-2と同様の操作を行った。表2に実施例2-1-2~2-1-11の反応条件と結果を示す。
Figure JPOXMLDOC01-appb-T000034
実施例2-2: 2-フェニル-1,3-ジオキソラン-4-カルボン酸(2-フェニル-1,3-ジオキソラン-4-イル)メチルエステルの製造
 実施例2-2において行った反応は、以下の通りである。
Figure JPOXMLDOC01-appb-C000035
実施例2-2-1及び2-2-2
 製造例2-1で得られた2-フェニル-1,3-ジオキサン-5-オールと4-ヒドロキシメチル-2-フェニル-1,3-ジオキソランの混合物 3.60g(純度100%、20.0ミリモル)を反応原料として用いて、実施例2-1-2と同様の操作を行い、2-フェニル-1,3-ジオキソラン-4-カルボン酸(2-フェニル-1,3-ジオキソラン-4-イル)メチルエステルを含む反応液を得た。表3に実施例2-2-1及び2-2-2の反応条件と結果を示す。
 実施例2-2-1及び2-2-2で得られた反応液を混合し、0.13kPa(絶対圧)の減圧下で単蒸留を行い、2-フェニル-1,3-ジオキサン-5-オンなどの低沸成分を留去した。続いて、濃褐色オイル状の単蒸留残渣のシリカゲルカラムクロマトグラフィー(展開溶媒n-ヘキサン/酢酸エチル=3)によってRf値0.24の成分を分離し、溶媒留去及び真空乾燥後にオレンジ色液体状の2-フェニル-1,3-ジオキソラン-4-カルボン酸(2-フェニル-1,3-ジオキソラン-4-イル)メチルエステル 2.58gを得た。純度90.6%、精製収率78%であった。GC-MS分析より、このエステルダイマーは少なくとも6組のラセミ体からなる立体異性体混合物であることを確認した。なお、他の2組のラセミ体については、ピークが重なり、検出できなかったものと推定される。
 図2に実施例2-2-1で得られた反応液のGCチャートを示す。
<2-フェニル-1,3-ジオキソラン-4-カルボン酸(2-フェニル-1,3-ジオキソラン-4-イル)メチルエステル(立体異性体混合物)のスペクトルデータ>
・IR(neat、cm-1):2881、1751、1734、1458、1394、1200、1080、648。
・MS(m/z、GC上の6ピーク共通):356(M)、250、233、149、129、105、91、77、55。
Figure JPOXMLDOC01-appb-T000036
実施例2-3: 2-メチル-1,3-ジオキソラン-4-カルボン酸(2-メチル-1,3-ジオキソラン-4-イル)メチルエステルの製造
 実施例2-3において行った反応は、以下の通りである。
Figure JPOXMLDOC01-appb-C000037
実施例2-3-1
 製造例2-3で得られた2-メチル-1,3-ジオキサン-5-オールと4-ヒドロキシメチル-2-メチル-1,3-ジオキソランの混合物 70.9g(純度100%、600ミリモル)を反応原料として用いて、実施例2-1-1と同様の操作を行い、黄色オイル状粗生成物 66.2gを得た。粗生成物をGC分析した結果、2-メチル-4-ヒドロキシメチル-1,3-ジオキソランの転化率は100%、2-メチル-1,3-ジオキソラン-4-カルボン酸(2-メチル-1,3-ジオキソラン-4-イル)メチルエステルの収率は88%であった。
 理論段6段の充填式蒸留塔(充填物:ヘリパックパッキンNo.2)を取り付けた100mLナシ型フラスコに粗生成物 60.0gを仕込み、0.13kPa(絶対圧)、還流比0.5の条件下で、留分温度110~113℃で薄黄色液体として留出する2-メチル-1,3-ジオキソラン-4-カルボン酸(2-メチル-1,3-ジオキソラン-4-イル)メチルエステル 16.1gを得た。純度98.6%、蒸留収率95%であった。13C-NMR及びGC-MS分析より、このエステルダイマーは2組のラセミ体からなる4種の立体異性体混合物であることが示唆された。なお、他の2組のラセミ体については、ピークが重なり、検出できなかったものと推定される。
<2-メチル-1,3-ジオキソラン-4-カルボン酸(2-メチル-1,3-ジオキソラン-4-イル)メチルエステル(立体異性体混合物)のスペクトルデータ>
・IR(neat、cm-1):2991、2864、1751、1408、1201、1146、1088、1076、858。
・MS(m/z、GC上の2ピーク共通):232(M)、217、173、129、101、87、59、43。
実施例2-3-2~2-3-4
 反応原料に製造例2-3で得られた2-メチル-1,3-ジオキサン-5-オールと4-ヒドロキシメチル-2-メチル-1,3-ジオキソランの混合物 3.54g(純度100%、30.0ミリモル)を用い、実施例2-1-2と同様の操作を行い、2-メチル-1,3-ジオキソラン-4-カルボン酸(2-メチル-1,3-ジオキソラン-4-イル)メチルエステルを含む反応液を得た。表4に実施例2-3-2~2-3-4の反応条件と結果を示す。
 図3に実施例2-3-3で得られた反応液のGCチャートを示す。
Figure JPOXMLDOC01-appb-T000038
実施例2-4: 2-n-ヘプチル-1,3-ジオキソラン-4-カルボン酸(2-n-ヘプチル-1,3-ジオキソラン-4-イル)メチルエステルの製造
 実施例2-4において行った反応は、以下の通りである。
Figure JPOXMLDOC01-appb-C000039
 製造例2-4で得られた2-n-ヘプチル-1,3-ジオキサン-5-オールと4-ヒドロキシメチル-2-n-ヘプチル-1,3-ジオキソランの混合物 4.34g(純度99.2%、21.3ミリモル)を反応原料として用いて、実施例2-1-1と同様の反応操作を行った。粉末状固体の濾過とアセトニトリルの留去後に再析出した粉末状固体を除去するため、tert-ブチルメチルエーテル 20gとイオン交換水 10gを加え、更に水層のpHが8になるまで飽和炭酸水素ナトリウム水溶液を加えた後に抽出した。静置分層後に下層水を抜出し、飽和塩化ナトリウム水溶液 20gを加えて抽出から下層水抜出しまでを繰り返した。得られた有機層を無水硫酸ナトリウム 10gで乾燥し、濾過後にtert-ブチルメチルエーテルを留去して薄黄色オイル状粗生成物 5.40gを得た。粗生成物をGC分析した結果、2-n-ヘプチル-1,3-ジオキサン-5-オールの転化率は93%、2-n-ヘプチル-1,3-ジオキサン-5-オンの収率は74%、2-n-ヘプチル-4-ヒドロキシメチル-1,3-ジオキソランの転化率は100%、2-n-ヘプチル-1,3-ジオキソラン-4-カルボン酸(2-n-ヘプチル-1,3-ジオキソラン-4-イル)メチルエステルの収率は98%、4-ホルミル-n-ヘプチル-1,3-ジオキソランの収率は2%であった。
 続いてクーゲルロール蒸留装置を用いて40Pa(絶対圧)の減圧下で粗生成物 5.00gの蒸留を行い、装置温度140~160℃で無色液体として留出する2-n-ヘプチル-1,3-ジオキサン-5-オン 1.35gを得た。純度97%、蒸留収率78%であった。また、黄色ゲル状の蒸留残渣 1.86中の2-n-ヘプチル-1,3-ジオキソラン-4-カルボン酸(2-n-ヘプチル-1,3-ジオキソラン-4-イル)メチルエステル純度は87%、蒸留回収率は95%であった。13C-NMR及びGC-MS分析より、このエステルダイマーは8組のラセミ体からなる16種の立体異性体混合物であることが確認された。
<2-n-ヘプチル-1,3-ジオキサン-5-オンのスペクトルデータ>
H-NMR(400MHz、CDCl、δppm):0.88(3H、t、J=6.8Hz)、1.23-1.37(8H、m)、1.40-1.47(2H、m)、1.69-1.74(2H、m)、4.28(2H、d、J=18.2Hz)4.40(2H、d、J=18.2Hz)、4.86(1H、t、J=5.0Hz)。
13C-NMR(100MHz、CDCl、δppm):14.0、22.6、24.0、29.1、29.3、31.7、34.0、72.2、100.4、204.5。
・IR(neat、cm-1):2956、2858、1741、1134、1053、957。
・MS(m/z):200(M)、101、71、55、43。
<2-n-ヘプチル-1,3-ジオキソラン-4-カルボン酸(2-n-ヘプチル-1,3-ジオキソラン-4-イル)メチルエステル(立体異性体混合物)のスペクトルデータ>
・IR(neat、cm-1):2925、2854、1747、1458、1198、1147、949。
・MS(m/z、GC上の8ピーク共通):400(M)、301、173、157、101、69、57、43。
<4-ホルミル-n-ヘプチル-1,3-ジオキソラン(立体異性体混合物)のスペクトルデータ>
・MS(m/z、GC上の2ピーク共通):200(M)、171、101、69、55、41。
 図4に実施例2-4で得られた反応液のGCチャートを示す。
実施例2-5: グリセリン酸エチルの製造
 実施例2-5において行った反応は、以下の通りである。
Figure JPOXMLDOC01-appb-C000040
 実施例2-2-1及び2-2-2で得られた2-フェニル-1,3-ジオキソラン-4-カルボン酸(2-フェニル-1,3-ジオキソラン-4-イル)メチルエステル 2.00g(純度90.6%、5.08ミリモル)、メタンスルホン酸 100mg(純度98.0%、1.02ミリモル)、エタノール 10.0g(純度99.5%、216ミリモル)を、30mLフラスコに仕込み、3時間還流した。冷却後に1モル/L水酸化ナトリウム溶液で中和し、エタノールを留去した。残留物にイオン交換水 20mLを加え、tert-ブチルメチルエーテル 50mLで2回抽出して非水溶性生成物を除去した後に、水を留去した。続いて、得られた濃オレンジ色オイル状粗生成物 827mgをクーゲルロール蒸留装置で精製した。0.13kPa(絶対圧)、装置設定温度150~155℃の条件下で、無色液体として留出するグリセリン酸エチル 548mgを得た。純度97.0%、収率78%であった。
<グリセリン酸エチルのスペクトルデータ>
H-NMR(400MHz、CDCl、δppm):1.31(3H、t、J=6.8Hz)、3.82-3.92(2H、m)、4.24-4.30(3H、m)、なお、水酸基のHピークは、ブロードとなり検出できなかった。
13C-NMR(100MHz、CDCl、δppm):14.1、62.0、64.1、71.8、173.0。
・IR(neat、cm-1):3425(br)、2974、2935、1728、1201、1111、1063、1020。
・MS(m/z):134(M)、104、76、61、43、31。
 本発明のエステルダイマー(2位及び3位の水酸基が環状アセタール基として保護されたグリセリン酸エステル)は、製造時の回収率が効率的であり、例えば、各種医薬品、化粧品、洗浄剤、ポリマーなどの原料として使用されるグリセリン酸及び脱保護されたグリセリン酸エステルなどの合成中間体として有用である。

Claims (15)

  1.  下記式(I)で表される化合物を酸化的エステル化する工程を有する、下記式(II)で表される化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    (式(I)及び式(II)中、R及びRはそれぞれ独立して、水素原子又は一価の炭化水素基を表すか、又は、R及びRは互いに結合して環構造を形成する二価の炭化水素基を表す。ただし、R及びRが同時にメチル基である場合を除く。)
  2.  下記式(I)で表される化合物及び下記式(V)で表される化合物の混合物を酸化的エステル化する工程を有する、請求項1に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000003

    (式(I)及び式(V)中、R及びRはそれぞれ独立して、水素原子又は一価の炭化水素基を表すか、又は、R及びRは互いに結合して環構造を形成する二価の炭化水素基を表す。ただし、R及びRが同時にメチル基である場合を除く。)
  3.  前記酸化的エステル化する工程において、有機ニトロキシルラジカル、そのN-ヒドロキシ体及びそれらのオキソアンモニウムカチオンを含む塩から選ばれる化合物と、酸化剤と、塩基とを用いる、請求項1又は2に記載の製造方法。
  4.  前記塩基がピリジン骨格を有する複素環式芳香族アミンである、請求項3に記載の製造方法。
  5.  前記有機ニトロキシルラジカルが、下記式(VIII)で表される化合物、下記式(IX)で表される化合物、又は下記式(X)で表される化合物である、請求項3又は4に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000004

    (式(VIII)中、Rは水素原子、ハロゲン原子、水酸基、アルコキシ基、アシルオキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基、スルホニルオキシ基、N-アルキルカルバモイルオキシ基、カルボキシ基、シアノ基、イソシアナト基、イソチオシアナト基、又はオキソ基を表す。式(IX)中、R及びRはそれぞれ独立して、水素原子又はメチル基を表す。式(X)中、R及びRはそれぞれ独立して、水素原子又はメチル基を表す。)
  6.  前記酸化剤が塩素を含有する化合物からなる酸化剤である、請求項3~5のいずれかに記載の製造方法。
  7.  酸化的エステル化する工程の後に式(II)で表される化合物を分離する工程を有する、請求項1~6のいずれかに記載の製造方法。
  8.  前記式(II)で表される化合物を分離する工程における分離が、蒸留による分離である、請求項7に記載の製造方法。
  9.  請求項1~8いずれかに記載の製造方法で、前記式(II)で表される化合物を製造する工程、及び、該工程で製造した前記式(II)で表される化合物を、加水分解又は加アルコール分解する工程を有する、グリセリン酸、グリセリン酸塩、又は脱保護されたグリセリン酸エステルの製造方法。
  10.  下記式(II)で表される化合物
    Figure JPOXMLDOC01-appb-C000005

    (式(II)中、R及びRはそれぞれ独立して、水素原子又は一価の炭化水素基を表すか、又は、R及びRは互いに結合して環構造を形成する二価の炭化水素基を表す。ただし、R及びRが同時にメチル基である場合を除く。)
  11.  前記R及びRが炭素数1以上8以下の一価の炭化水素基である、請求項10に記載の化合物。
  12.  前記R及びRが互いに結合してシクロペンタン環又はシクロヘキサン環を形成する、請求項10に記載の化合物。
  13.  前記Rがメチル基であり、Rがエチル基である、請求項10又は11に記載の化合物。
  14.  前記Rが水素原子又は炭素数1以上20以下の一価の炭化水素基であり、Rが水素原子である、請求項10に記載の化合物。
  15.  前記Rが水素原子、メチル基、又はフェニル基であり、Rが水素原子である、請求項10又は14に記載の化合物。
     
PCT/JP2017/046814 2016-12-27 2017-12-26 グリセリン酸エステルの製造方法 WO2018124148A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/473,167 US10822329B2 (en) 2016-12-27 2017-12-26 Method for producing glyceric acid ester
CN201780050662.1A CN109641866B (zh) 2016-12-27 2017-12-26 甘油酸酯的制造方法
PCT/JP2017/046814 WO2018124148A1 (ja) 2016-12-27 2017-12-26 グリセリン酸エステルの製造方法
EP17885459.2A EP3564226B1 (en) 2016-12-27 2017-12-26 Method for producing glyceric acid ester

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2016253843 2016-12-27
JP2016-253836 2016-12-27
JP2016253833 2016-12-27
JP2016-253829 2016-12-27
JP2016253829 2016-12-27
JP2016253836 2016-12-27
JP2016-253833 2016-12-27
JP2016-253843 2016-12-27
PCT/JP2017/046814 WO2018124148A1 (ja) 2016-12-27 2017-12-26 グリセリン酸エステルの製造方法

Publications (1)

Publication Number Publication Date
WO2018124148A1 true WO2018124148A1 (ja) 2018-07-05

Family

ID=71111186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046814 WO2018124148A1 (ja) 2016-12-27 2017-12-26 グリセリン酸エステルの製造方法

Country Status (4)

Country Link
US (1) US10822329B2 (ja)
EP (1) EP3564226B1 (ja)
CN (1) CN109641866B (ja)
WO (1) WO2018124148A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3800184A1 (de) * 2019-09-24 2021-04-07 Henkel AG & Co. KGaA Acetal-/ketal-basierte duft- und insektenabwehrmittelvorläuferverbindungen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110156744A (zh) * 2019-04-29 2019-08-23 南京点元环境科技有限公司 一种六元甘油缩醛的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219406A (ja) * 2005-02-09 2006-08-24 Utsunomiya Univ 二酸化炭素の高度固定化物
WO2012041845A1 (en) * 2010-09-27 2012-04-05 The Technical University Of Denmark Method of making optoelectric devices
WO2016097840A1 (fr) * 2014-12-18 2016-06-23 Rhodia Poliamida E Especialidades Ltda Ether-ester de cetal ou d'acetal de glycerol, procedes de preparation, utilisations et compositions le comprenant

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3900479A1 (de) 1989-01-10 1990-07-12 Hoechst Ag Verfahren zur herstellung von 1,3-dioxan-5-on und dihydroxyaceton
US5821374A (en) 1995-11-21 1998-10-13 Hoffmann-La Roche Inc. Process for the oxidation of alcohols
FR2867470B1 (fr) 2004-03-12 2006-05-05 Centre Nat Rech Scient Procede de fonctionnalisation de derives olefiniques conjugues ou conjugables assistee par un mediateur electrophore du type tempo
EP1609787A1 (de) 2004-06-15 2005-12-28 Girindus AG Verfahren zur Herstellung von 4-(alpha-Hydroxyalkyl)-1,3-dioxan-5-onen
EP1669353B1 (en) 2004-12-03 2009-05-20 Daiso Co., Ltd. Process for preparing alpha, beta - unsaturated esters
CN100569749C (zh) 2005-09-30 2009-12-16 上海医药工业研究院 4-羰基-(s)-脯氨酸衍生物的制备方法
CN101412706B (zh) 2008-12-01 2012-11-14 浙江工业大学 一种由甘油制备1,3-二羟基丙酮的新方法
US8735633B2 (en) 2010-07-14 2014-05-27 Board Of Trustees Of Michigan State University Methods for making 1,3-dihydroxyacetone (DHA) from glycerol
WO2014139080A1 (en) 2013-03-12 2014-09-18 Boehringer Ingelheim International Trading (Shanghai) Co., Ltd. Novel process for the manufacture of 3-oxo-tetrahydrofuran
SI3149001T1 (sl) 2014-05-28 2019-08-30 Novartis Ag Novi derivati pirazolo pirimidina in njihova uporaba kot inhimitorji malt1

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219406A (ja) * 2005-02-09 2006-08-24 Utsunomiya Univ 二酸化炭素の高度固定化物
WO2012041845A1 (en) * 2010-09-27 2012-04-05 The Technical University Of Denmark Method of making optoelectric devices
WO2016097840A1 (fr) * 2014-12-18 2016-06-23 Rhodia Poliamida E Especialidades Ltda Ether-ester de cetal ou d'acetal de glycerol, procedes de preparation, utilisations et compositions le comprenant

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
ABRAMOVICH ADI ET AL.: "Organocatalytic oxidative dimerization of alcohols to esters", SYNLETT, vol. 23, no. 15, 20 August 2012 (2012-08-20), pages 2261 - 2265, XP055605168, ISSN: 0936-5214, DOI: 10.1055/s-0032-1317018 *
ERMOLENKO LUDMILA ET AL.: "An expedient one-step preparation of (S)-2,3-0-isopropylideneglyceraldehyde", SYNLETT, vol. 10, 2001, pages 1565 - 1566, XP002274843 *
GREEN CHEMISTRY, vol. 12, 2010, pages 2225 - 2231
HON YUNG-SON ET AL.: "Tishchenko reactions and Oppenauer oxidation reactions of aldehydes promoted by diisobutylaluminum hydride", TETRAHEDRON LETTERS, vol. 45, no. 16, 4 December 2004 (2004-12-04), pages 3313 - 331, XP004499005, ISSN: 0040-4039, DOI: 10.1016/j.tetlet.2004.02.145 *
HON YUNG-SON ET AL.: "Tishchenko reactions of aldehydes promoted by diisobutylaluminum hydride and its application to th e macrocyclic lactone formation", TETRAHEDRON, vol. 63, no. 4, 29 August 2007 (2007-08-29) - 4 October 2007 (2007-10-04), pages 11325 - 11340, XP022284165, ISSN: 0040-4020, DOI: 10.1016/j.tet.2007.08.074 *
JOURNAL OF CATALYSIS, vol. 245, 2007, pages 428 - 435
MERBOUH NABYL ET AL.: "Oxoammonium Salts. 9. Oxidative Dimerization of Polyfunctional Primary Alcohols to Esters. An Int eresting beta Oxygen Effect", JOURNAL OF ORGANIC CHEMISTRY, vol. 69, no. 15, 26 June 2004 (2004-06-26), pages 5116 - 5119, XP055605169, ISSN: 0022-3263, DOI: 10.1021/jo049461j *
See also references of EP3564226A4
SYNLETT, vol. 10, 2001, pages 1565 - 1566
SYNLETT, vol. 23, 2012, pages 2261 - 2265
TETRAHEDRON, vol. 63, 2007, pages 11325 - 11340
TETRAHEDRON, vol. 71, no. 20, 2015, pages 3032 - 3038
THE JOURNAL OF ORGANIC CHEMISTRY, vol. 69, 2004, pages 5116 - 5119

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3800184A1 (de) * 2019-09-24 2021-04-07 Henkel AG & Co. KGaA Acetal-/ketal-basierte duft- und insektenabwehrmittelvorläuferverbindungen

Also Published As

Publication number Publication date
EP3564226A4 (en) 2020-09-16
US10822329B2 (en) 2020-11-03
EP3564226B1 (en) 2021-06-02
CN109641866A (zh) 2019-04-16
US20200087290A1 (en) 2020-03-19
EP3564226A1 (en) 2019-11-06
CN109641866B (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
Santi et al. Stereoselective selenium catalyzed dihydroxylation and hydroxymethoxylation of alkenes
Trost et al. The palladium-catalyzed enyne cycloisomerization reaction in a general approach to the asymmetric syntheses of the picrotoxane sesquiterpenes. Part I. First-generation total synthesis of corianin and formal syntheses of picrotoxinin and picrotin
Rafiee et al. Cs2. 5H0. 5PW12O40 catalyzed diastereoselective synthesis of β-amino ketones via three component Mannich-type reaction in water
WO2018124148A1 (ja) グリセリン酸エステルの製造方法
JP6402238B2 (ja) グリセリン酸エステルの製造方法
JP6402239B2 (ja) グリセリン酸エステルの製造方法
Ghosh et al. Ketal-tethered ring-closing metathesis. An unconventional approach to constructing spiroketals and total synthesis of an insect pheromone
JP6393396B2 (ja) グリセリン酸エステルの製造方法
CN109641865B (zh) 甘油酸酯的制造方法
JP6405443B2 (ja) 1,3−ジオキサン−5−オン類の製造方法
WO2018124147A1 (ja) 1,3-ジオキサン-5-オン類の製造方法
Bulanov et al. Highly efficient microwave assisted synthesis of polyfunctional 1, 3-dioxolanes from γ-hydroxypropynals
Yadav et al. [bmim] PF 6/CuBr: a novel and recyclable catalytic system for the synthesis of propargyl amines
Srivastava et al. A novel method for the protection of amino alcohols and carbonyl compounds over a heterogeneous, reusable catalyst
Chen et al. Total synthesis of γ-trifluoromethylated analogs of goniothalamin and their derivatives
Shin et al. Convenient synthesis of 3-aminocoumarin derivatives by the condensation of 1, 4-diacetyl-or 3-substituent-2, 5-piperazinediones with various salicylaldehyde derivatives.
JP7467421B2 (ja) シス-α,β置換シクロペンタノンの製造方法
Kende et al. Total synthesis of 15-deoxoclerocidin
Soorukram et al. Reactions of the vicinal dianion of di-(-)-menthyl succinate with carbonyl compounds and benzyl bromide
JP2008120690A (ja) 環状アセタール化合物の製造法
Budragchaa et al. New tartrate based cyclic phosphoric acids as organocatalysts in Mannich reactions
Fleming et al. Photochemistry of alkenyl‐and acetal‐substituted pyridines
JP2003073376A (ja) 環状アセタールの製造方法
JPH0552313B2 (ja)
MX2009001381A (es) Proceso para producir 2,2,3-trimetilciclopent-3-enecarbaldehido (aldehido camfolitico).

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017885459

Country of ref document: EP

Effective date: 20190729