WO2018124097A1 - Perforated base board production method and perforated base board production system - Google Patents

Perforated base board production method and perforated base board production system Download PDF

Info

Publication number
WO2018124097A1
WO2018124097A1 PCT/JP2017/046710 JP2017046710W WO2018124097A1 WO 2018124097 A1 WO2018124097 A1 WO 2018124097A1 JP 2017046710 W JP2017046710 W JP 2017046710W WO 2018124097 A1 WO2018124097 A1 WO 2018124097A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
metal
manufacturing
perforated
hole
Prior art date
Application number
PCT/JP2017/046710
Other languages
French (fr)
Japanese (ja)
Inventor
壮太 松坂
拓樹 青山
小高 大樹
拓史 川村
Original Assignee
国立大学法人千葉大学
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人千葉大学, ウシオ電機株式会社 filed Critical 国立大学法人千葉大学
Priority to CN201780072424.0A priority Critical patent/CN109996768A/en
Priority to JP2018559527A priority patent/JPWO2018124097A1/en
Publication of WO2018124097A1 publication Critical patent/WO2018124097A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/18Acidic compositions for etching copper or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/30Acidic compositions for etching other metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks

Definitions

  • the present invention relates to a method for manufacturing a perforated substrate and a system for manufacturing a perforated substrate.
  • Patent Document 1 uses a three-dimensional stage to scan the focal position of the laser beam in order to form a modified region in the thickness direction of the substrate. It takes time to settle, and the processing speed is difficult.
  • the wet processing is a method in which a mask having an opening and a non-opening is placed on a substrate, and an etching solution enters the substrate through the opening of the mask. Since the etching proceeds isotropically, the etching proceeds not only to the substrate immediately below the opening of the mask but also to the substrate immediately below the non-opening. For this reason, in the wet processing, the hole diameter is likely to widen, and it is difficult to form a micro-sized hole. Therefore, an object of the present invention is to provide a method for manufacturing a perforated substrate and a system for manufacturing a perforated substrate that can efficiently form a micro-sized hole in the substrate.
  • one aspect of a method for manufacturing a perforated substrate according to the present invention is to inject a metal disposed on a part of the surface of the substrate into the substrate by applying a voltage, A deposition step of depositing in the substrate by applying the same or different voltage as the voltage application, and a hole forming step of forming a hole in the substrate by melting the metal deposited in the substrate by etching.
  • the deposition step is a step of depositing the metal on an outer edge portion of the region where the metal is injected, and the hole forming step melts the metal deposited on the outer edge portion by etching.
  • This may be a step of removing the region from the substrate and forming a hole in the substrate.
  • the metal injection region is removed so as to be peeled off from the substrate, so that the processing efficiency is good.
  • the deposition step may be a step of depositing the metal as a dendritic crystal extending inside the region into which the metal is implanted.
  • etching progresses along the dendrite, so that the etchant quickly penetrates into the substrate and the processing efficiency is good.
  • the deposition step may be a step of applying a voltage having a reverse polarity between the metal injection and the deposition. It may be a step of applying a voltage having the same polarity.
  • a reverse polarity voltage is applied in the deposition step, a bottomed hole is formed in the substrate, and when a voltage of the same polarity is applied in the deposition step, a through hole is formed in the substrate.
  • the deposition step uses a laminated substrate in which a plurality of sub-substrates are stacked as the substrate, and the metal is deeper than the sub-substrate on the surface on which the metal is disposed. It is a process including the process part to inject
  • an aqueous solution in which at least one medium selected from hydrofluoric acid, alkali metal hydroxide, and alkaline earth metal hydroxide is dissolved is used. It may be a process used for etching. According to such a method for manufacturing a holed substrate, holes are efficiently formed in a glass substrate.
  • the substrate may be a substrate containing an alkali metal. According to such a method for manufacturing a perforated substrate, metal is efficiently injected into the substrate in the injection step.
  • the substrate may be a glass substrate. A glass substrate is preferable because of its high versatility.
  • the metal may be selected from silver, copper, and alloys thereof. When these metals are used, the metals are rapidly injected into the substrate.
  • the metal may be formed of a paste-like metal material, and further, the metal may be formed by applying nano ink. .
  • the adhesion between the metal and the substrate surface is high, and the time for injecting the metal into the substrate is shortened.
  • nano ink when nano ink is used, a metal is accurately formed at a minute portion on the surface of the substrate, and the metal thickness is also highly accurate.
  • the metal may be formed by removing a part of a metal film formed on the surface of the substrate. According to such a method for manufacturing a perforated substrate, the adhesion between the metal and the substrate surface is high, and the removal of the metal film is efficiently performed by etching or the like.
  • the metal may be formed at an opening portion of a mask that partially covers the surface of the substrate. According to such a method for manufacturing a perforated substrate, the metal is limited to a desired location.
  • the metal forms a resist layer on the surface of the substrate and selectively removes a part of the resist layer to form a resist pattern as the mask. Formed through a forming step, a film forming step for forming a metal film on a surface of the substrate not covered with the resist pattern, and a pattern removing step for removing the resist pattern from the surface of the substrate It may be what was done. According to such a perforated substrate manufacturing method, a highly accurate mask can be obtained by using a resist pattern, so that metal formation accuracy is also high.
  • one aspect of the perforated substrate manufacturing system is to inject a metal disposed on a part of the surface of the substrate into the substrate by applying a voltage, A deposition apparatus that deposits in the substrate by applying the same voltage as or different from the voltage application, and an etching apparatus that forms holes in the substrate by melting the metal deposited in the substrate by etching.
  • FIG. 1 is a diagram showing an embodiment of a perforated substrate manufacturing system according to the present invention.
  • a perforated substrate manufacturing system 1 shown in FIG. 1 is a system including a voltage applying device 10 and an etching device 20.
  • the voltage applying device 10 is a device for locally depositing metal inside the work W by applying a voltage to the work W such as a glass substrate.
  • the etching apparatus 20 is an apparatus that forms a hole in the work W by performing an etching process on the work W on which metal is locally deposited.
  • the workpiece W is transported from the voltage application device 10 to the etching device 20 by a handler (not shown).
  • the voltage application device 10 includes a vacuum chamber 101 and a vacuum pump 102, and the inside of the vacuum chamber 101 is in a low pressure environment such as 10 ⁇ 3 Pa.
  • the voltage application device 10 includes DC power supplies 103 and 104 and, for example, copper electrodes 105 and 106, and a DC voltage is applied between the electrodes 105 and 106 by the DC power supplies 103 and 104.
  • two DC power sources 103 and 104 having different polarities are provided as the DC power sources 103 and 104, and the DC power sources 103 and 104 are switched by the switch 107, so that they are applied between the electrodes 105 and 106.
  • the polarity of the applied voltage is switched.
  • a workpiece (substrate) W is disposed between the electrodes 105 and 106, and a metal layer M such as silver or copper is formed at a desired location on the surface of the workpiece W.
  • the voltage application device 10 includes a plate heater 108 and a tungsten heater 109, and the workpiece W is heated to a temperature suitable for processing.
  • the voltage application device 10 of the present embodiment is provided with an aluminum sheet 110 that prevents contact between the workpiece W and the electrode 106.
  • the voltage application device 10 is provided with a fixture 111 for fixing the workpiece W and the metal layer M between the electrodes 105 and 106, and the fixture 111 moves the electrode 105 downward through an insulator 112. The workpiece W and the metal layer M are fixed by pressing.
  • the voltage application device 10 functions as a deposition device according to the present invention and executes the injection step and the deposition step according to the present invention.
  • the function and the like of the voltage application device 10 will be described in detail later, but the metal of the metal layer M is locally injected into the work W processed by the voltage application device 10 at a location where a hole is desired to be formed. It has been deposited.
  • the etching apparatus 20 includes a processing tank 202 that stores the etchant 201 therein, and a temperature controller 203 that maintains the temperature of the etchant 201 at an appropriate temperature.
  • a processing tank 202 that stores the etchant 201 therein
  • a temperature controller 203 that maintains the temperature of the etchant 201 at an appropriate temperature.
  • the etchant 201 for example, an aqueous solution such as HF or KOH is used.
  • the workpiece W processed by the voltage application device 10 is immersed in the etchant 201 in the processing tank 202, whereby the workpiece W is etched and a hole is formed at a desired location.
  • the etchant 201 in the processing tank 202, whereby the workpiece W is etched and a hole is formed at a desired location.
  • FIG. 2 to 4 are process diagrams showing the drilling process in the perforated substrate manufacturing system 1 shown in FIG. 2 shows a process A and a process B in drilling, FIG. 3 shows a process C and a process D, and FIG. 4 shows a process E, a process F, and a process G.
  • step A shown in FIG. 2 a voltage is applied by sandwiching a workpiece W, which is a glass substrate, for example, between the electrodes 105 and 106 by the voltage applying device 10 shown in FIG.
  • a metal layer M is locally formed at a place where a hole is desired to be formed.
  • the polarity of the voltage is as shown by the arrow in FIG. Polarity toward the side.
  • the glass substrate which is the workpiece W contains alkali metal ions such as Na + .
  • the metal (for example, silver) of the metal layer M is injected into the workpiece W as metal ions (for example, Ag + ) so as to push out alkali metal ions.
  • metal ions for example, Ag +
  • a metal ion implantation region 120 is formed in the workpiece W. Since alkali metal ions are contained in the work W, the metal of the metal layer M is efficiently injected into the work W.
  • the metal of the metal layer M is injected into the workpiece W even if it is an alloy of silver and copper, gold, cobalt, chrome, etc., but silver, copper and their alloys If it is, the speed
  • Step A and step B shown in FIG. 2 correspond to an example of the injection step according to the present invention.
  • Such formation of the injection region 120 is efficient in processing because the formation proceeds simultaneously in the entire work W even when the metal layer M is formed at a plurality of locations on the surface of the work W.
  • the injection region 120 is locally formed immediately below the location where the metal layer M is disposed. As a result, the effect of spreading the implantation region 120 outside the range of the metal layer M due to diffusion or the like is small.
  • the polarity of the voltage applied between the electrodes 105 and 106 is reversed so that the polarity goes from the workpiece W side to the metal layer M side.
  • electrons are supplied to the injection region 120 with the metal layer M side serving as a cathode, and metal is deposited in the workpiece W.
  • the metal deposited in the workpiece W is in the form of a deposited layer 121 along the outer edge of the implanted region 120, a dendrite 122 extending into the implanted region 120 along the direction of the electric field, and the like.
  • Step C and step D shown in FIG. 3 correspond to an example of the precipitation step referred to in the present invention.
  • step E shown in FIG. 4 the workpiece W is transferred to the etching apparatus 20 shown in FIG. 1 and immersed in the etchant 201.
  • the etching rate by the etchant 201 is high in the locations along the deposited layer 121 and the dendritic crystal 122, and etching proceeds selectively.
  • process F etching proceeds rapidly along the deposited layer 121 at the outer edge of the implantation region 120, and a large amount of the etchant 201 is guided into the work W.
  • the inside of the implantation region 120 is rapidly etched at a location along the dendrite crystal 122, and the etchant 201 quickly penetrates into the implantation region 120. In contrast, the etching hardly progresses outside the implantation region 120.
  • etchant 201 is an aqueous solution in which one or more media selected from hydrofluoric acid, alkali metal hydroxide, and alkaline earth metal hydroxide are dissolved, precipitation layer 121 and dendritic crystal 122 are rapidly dissolved. At the same time, the glass portion that has become fine due to the presence of the deposited layer 121 and the dendritic crystal 122 is melted, so that the efficiency of the etching process is high.
  • step G the inner portion 123 covered with the deposited layer 121 is removed from the workpiece W so as to peel off, and a hole H is formed in the workpiece W.
  • the hole H is a hole with a bottom.
  • Steps E to G shown in FIG. 4 correspond to an example of the hole forming step referred to in the present invention.
  • FIG. 5 is a diagram illustrating formation of a metal layer using a paste-like metal material.
  • the paste-like metal material for example, there is a silver paste, but here, nano ink is used. Compared to other paste-like metal materials, printing with nano ink enables formation with high accuracy in terms of formation location and thickness.
  • the nano ink 301 is printed on the workpiece W by the nozzle 302, and the metal layer M is accurately formed at a desired location.
  • the nano ink 301 can be printed with minute droplets, it is possible to form a metal layer M having a minute size, for example, a sub-millimeter or less, thereby forming a minute hole.
  • the thickness of the metal layer M is also realized with high accuracy by adjusting the discharge amount by the nozzle 302 or performing repeated printing, thereby obtaining a hole having a desired depth.
  • the circular metal layer M is easily formed by dropping the nano ink 301, and cracking of the substrate is suppressed.
  • FIG. 6 is a diagram illustrating a method for forming the metal layer M by patterning.
  • a plating layer 302 is formed on the entire surface of the substrate 301. Such a plating layer 302 has high adhesion to the surface of the substrate 301.
  • the plating layer 302 is formed with a uniform thickness.
  • a protective layer 303 is partially formed on the plating layer 302. A location where the protective layer 303 is formed corresponds to a location where a hole is formed in the substrate 301.
  • step C etching is performed, and a portion of the plating layer 302 excluding the portion protected by the protective layer 303 is removed from the surface of the substrate 301. Since the removal of the plating layer 302 by such etching proceeds simultaneously on the entire surface of the substrate 301, the processing efficiency is good. Finally, the protective layer 303 is removed in the step D, whereby the metal layer M corresponding to the hole forming portion is obtained.
  • FIG. 7 is a diagram illustrating a method for forming the metal layer M by lift-off.
  • the metal layer M is formed at a desired location by limiting the deposition location with a mask.
  • a mask 304 is formed on the substrate 301 with a resist pattern.
  • the formation location of the mask 304 is a location excluding the formation location of the hole in the substrate 301.
  • the mask 304 is formed with high accuracy by a known formation procedure that undergoes processes such as exposure and cleaning, and a micro-sized hole can also be formed.
  • the mask 304 is preferably a resist pattern, but a mask other than the resist pattern may be used.
  • Step B sputtering is performed in Step B, and a metal layer M is formed on the substrate 301 at a portion not covered with the mask 304.
  • the metal layer M formed by sputtering also has high adhesion to the surface of the substrate 301.
  • sputtering is easier to control the film thickness than the film formation by plating, there is an advantage that the hole shape can be easily controlled.
  • the metal layer M is also formed on the upper surface of the mask 304, but is difficult to form on the side surface of the mask 304, and the metal layer M on the substrate 301 and the metal layer M on the upper surface of the mask 304 are separated. ing. Therefore, the removal of the mask 304 in the step C removes the metal layer M formed on the upper surface of the mask 304, and the lift-off in which the metal layer M is formed only at a desired location on the substrate 301 is ensured. Realized. Since the metal layer M is not formed on the lower surface of the mask 304 from the beginning, no metal residue or the like is generated. Next, a method for forming a through hole in the substrate will be described.
  • FIG. 8 is a diagram illustrating a first forming method for forming a through hole.
  • a laminated substrate 402 in which a plurality of sub-substrates 401 are laminated is used as a workpiece.
  • a metal layer M is formed on the surface of the sub-substrate 401 located at the uppermost layer of the multilayer substrate 402.
  • the laminated substrate 402 which is a workpiece
  • a metal injection region 403 is formed in the multilayer substrate 402 as in step B.
  • the implantation region 403 is formed so as to reach the second and subsequent sub-substrates 401 deeper than the uppermost sub-substrate 401 of the multilayer substrate 402. In the example shown in FIG. 8, the injection region 403 reaches the sub-substrate 401 located at the lowermost layer of the multilayer substrate 402.
  • the sub-substrate 401 located at the lowermost layer is a sub-substrate thicker than the other sub-substrates so that the depth of the injection region 403 can be easily controlled.
  • a combination of the process A and the process B shown in FIG. 8 corresponds to an example of the injection process according to the present invention.
  • step C a bottomed hole H is formed in the laminated substrate 402 by performing metal deposition and etching as in each step shown in FIGS. 3 and 4.
  • Step C shown in FIG. 8 corresponds to an example in which the precipitation step and the hole forming step referred to in the present invention are combined.
  • step D the laminated substrate 402 is divided into sub-substrates 401.
  • each of the other sub substrates 401 excluding the sub substrate 401 located at the bottom of the hole H becomes a perforated substrate having the through hole TH.
  • Step D shown in FIG. 8 corresponds to an example of a separation step according to the present invention.
  • FIG. 9 is a diagram showing a second forming method for forming the through hole.
  • step A a substrate 501 having a metal layer M formed on the surface is sandwiched between electrodes 105 and 106, and a voltage in the direction of the arrow in the figure is applied. As a result, a metal injection region 502 is formed in the substrate 501 as in step B. In the case of the second forming method shown in FIG. 9, the metal injection is continued until the injection region 502 reaches the electrode 106 located on the side opposite to the metal layer M.
  • a combination of the process A and the process B shown in FIG. 9 corresponds to an example of the injection process according to the present invention.
  • Step C a voltage having the same polarity as the voltage in the process A and the process B is continuously applied, whereby electrons are supplied from the electrode 106 located on the side opposite to the metal layer M, and the metal is deposited.
  • the deposited layer 503 is formed on the outer edge portion of the implantation region 502.
  • Step C shown in FIG. 9 corresponds to an example of the precipitation step referred to in the present invention.
  • the etching process is performed as in the process shown in FIG. 4, and the through hole TH is formed in the substrate 501.
  • FIG. 10 is a diagram illustrating a forming method for forming bottomed holes having different depths.
  • a substrate 602 on which a metal layer 601 having different thicknesses is formed on the surface is used as a workpiece.
  • a metal layer 601 is formed, for example, by printing with nano ink as described in FIG.
  • step A a voltage is applied with the substrate 602 sandwiched between the electrodes 105 and 106.
  • step B a metal injection region 603 is formed in the substrate 602 as in step B.
  • the implantation region 603 becomes deeper and the thickness of the metal layer 601 decreases. And like process C, when metal layer 601 disappears, expansion of implantation field 603 stops.
  • aluminum or the like is used for the electrode 105 in contact with the metal layer 601, and the metal of the electrode 105 is not injected into the substrate 602 even when the electrode 105 contacts the substrate 602. Shall.
  • a combination of the steps A to C shown in FIG. 10 corresponds to an example of the implantation step according to the present invention.
  • step D metal deposition and etching are performed in the same manner as in each step shown in FIGS. 3 and 4, and a bottomed hole H having a different depth in each part is formed in the substrate 602.
  • the depth of each part of the hole H is a depth corresponding to the thickness of each part in the metal layer 601.
  • the hole H having each desired depth is formed in the substrate 602 by adjusting the thickness of each part in the metal layer 601.
  • the process D shown in FIG. 10 corresponds to an example in which the precipitation process and the hole forming process referred to in the present invention are combined.
  • the substrate 602 in which the holes H are formed by the forming method shown in FIG. 10 is applied to, for example, a microchannel device. Next, a method for forming a hole suitable for drilling with a high aspect ratio will be described.
  • FIG. 11 is a diagram showing the seepage of the injection region 120.
  • the flux of metal ions in the glass on which an electric field acts is given by the following formula (1).
  • J ion flux
  • D diffusion coefficient
  • q ion charge
  • k Boltzmann constant
  • T temperature
  • E electric field
  • C ion concentration
  • the electrode 106 on the back surface side of the workpiece W spreads over the entire back surface, so that as shown by the dotted arrow in FIG.
  • the electric field spreads. Due to such spread of the electric field, drift of ions from directly under the metal layer M to the outside occurs, and the seepage d of the implantation region 120 exceeding the range of the metal layer M occurs.
  • FIG. 12 is a diagram illustrating a technique for suppressing the seepage d of the injection region 120.
  • a guard made of a film of a conductive material (for example, metal or filler-added resin) that is more difficult to inject into the workpiece W than the metal of the metal layer M on the metal layer M in order to suppress the seepage d of the injection region 120.
  • the electrode G is formed on the entire surface of the workpiece W.
  • the guard electrode G is formed in this way, the electric field becomes a uniform electric field as shown by a dotted arrow in FIG.
  • the injection region 120 is formed immediately below the metal layer M, and hole processing with a high aspect ratio is possible.
  • the guard electrode G As a conductive material desirable as the guard electrode G, when the workpiece W is glass, a metal other than silver or copper, such as platinum, nickel, or aluminum, can be considered.
  • the formation range of the guard electrode G is not limited to the entire surface of the workpiece W, and may be a range that covers the place where the metal layer M is disposed and extends outward from the place where the metal layer M is disposed.
  • substrate with which this invention is applied a glass substrate with high versatility is suitable, but a resin board
  • SYMBOLS 1 Perforated substrate manufacturing system, 10 ... Voltage application apparatus, 20 ... Etching apparatus, 103, 104 ... DC power supply, 105, 106 ... Electrode, W ... Workpiece, M, 601 ... Metal layer, 201 ... Etchant, 202 ... Processing Tank, 120, 403, 502, 603 ... injection region, 121, 503 ... deposition layer, 122 ... dendritic crystal, 301 ... nano ink, 301, 501, 602 ... substrate, 302 ... plating layer, 303 ... protective layer, 304 ... mask , 401 ... sub-board, 402 ... laminated board, H ... bottomed hole, TH ... through hole, G ... guard electrode

Abstract

The objective of the invention is to efficiently form minute holes in a base board. In one aspect, the perforated base board production method comprises: a depositing step of injecting a metal disposed in a portion of the base board surface into the base board through the application of a voltage, and depositing the injected metal within the base board through the application of a voltage that is identical to or different from the previously applied voltage; and a hole-forming step of melting by etching the metal deposited within the base board, thereby forming the hole in the base board.

Description

穴あき基板の製造方法および穴あき基板製造システムPerforated board manufacturing method and perforated board manufacturing system
 本発明は、穴あき基板の製造方法および穴あき基板製造システムに関する。 The present invention relates to a method for manufacturing a perforated substrate and a system for manufacturing a perforated substrate.
 基板(例えばガラス基板)に対して穴を形成する方法としては、ドリルを用いた切削加工、レーザによる破砕加工、ウェットエッチングによる加工(ウェット加工)、特許文献1に開示されたレーザ支援加工などといった各種の方法が知られている。 As a method for forming a hole in a substrate (for example, a glass substrate), cutting using a drill, crushing by laser, processing by wet etching (wet processing), laser assisted processing disclosed in Patent Document 1, and the like Various methods are known.
特許第4880820号公報Japanese Patent No. 4880820
 しかし、切削加工は、ドリルを使用するために加工面を平滑面にすることが困難である。レーザによる破砕加工は、アブレーションによりクラックが入る可能性が高い。特許文献1の方法は、基板の厚み方向に改質領域を形成するために3次元ステージを用いてレーザビームの焦点位置を走査するので、ステージのコストが高いことに加え、ステージの位置調整・整定に時間を要し処理速度に難がある。 However, in the cutting process, it is difficult to make the machined surface smooth because a drill is used. In the crushing process by laser, there is a high possibility that cracks will occur due to ablation. The method of Patent Document 1 uses a three-dimensional stage to scan the focal position of the laser beam in order to form a modified region in the thickness direction of the substrate. It takes time to settle, and the processing speed is difficult.
 ウェット加工は、開口部と非開口部を持つマスクを基板上に設置し、マスクの開口部を通じてエッチング液を基板に対して侵入させる方法である。エッチングは等方的に進むため、マスクの開口部直下の基板だけでなく非開口部直下の基板に対してもエッチングが進む。このためウェット加工では、穴径が広がり易く、微小サイズの穴を形成することが困難である。
 そこで、本発明は、基板に微小サイズの穴を効率よく形成することができる穴あき基板の製造方法および穴あき基板製造システムを提供することを課題とする。
The wet processing is a method in which a mask having an opening and a non-opening is placed on a substrate, and an etching solution enters the substrate through the opening of the mask. Since the etching proceeds isotropically, the etching proceeds not only to the substrate immediately below the opening of the mask but also to the substrate immediately below the non-opening. For this reason, in the wet processing, the hole diameter is likely to widen, and it is difficult to form a micro-sized hole.
Therefore, an object of the present invention is to provide a method for manufacturing a perforated substrate and a system for manufacturing a perforated substrate that can efficiently form a micro-sized hole in the substrate.
 上記課題を解決するために、本発明に係る穴あき基板の製造方法の一態様は、基板の表面の一部に配置された金属をその基板内に電圧印加で注入し、注入した金属をその基板内に、上記電圧印加と同じ又は異なる電圧印加で析出させる析出工程と、上記基板内に析出した金属をエッチングで溶かすことにより上記基板に穴を形成する穴形成工程と、を備える。 In order to solve the above problems, one aspect of a method for manufacturing a perforated substrate according to the present invention is to inject a metal disposed on a part of the surface of the substrate into the substrate by applying a voltage, A deposition step of depositing in the substrate by applying the same or different voltage as the voltage application, and a hole forming step of forming a hole in the substrate by melting the metal deposited in the substrate by etching.
 このような穴あき基板の製造方法によれば、所望の箇所に限定して金属が析出されることで微小サイズの穴が形成可能であるとともに、析出やエッチングの処理は基板全体に対して同時に進行するので効率がいい。 According to such a method for manufacturing a substrate with a hole, it is possible to form a minute hole by depositing a metal only at a desired location, and the deposition and etching processes can be performed simultaneously on the entire substrate. It is efficient because it progresses.
 上記穴あき基板の製造方法において、上記析出工程は、上記金属が注入された領域の外縁部分にその金属を析出させる工程で、上記穴形成工程が、上記外縁部分に析出した金属をエッチングで溶かすことにより上記領域を上記基板から除去してその基板に穴を形成する工程であってもよい。
 このような穴あき基板の製造方法によれば、金属の注入領域が基板からまとめて剥離されるように除去されるので処理の効率が良い。
In the method for manufacturing a perforated substrate, the deposition step is a step of depositing the metal on an outer edge portion of the region where the metal is injected, and the hole forming step melts the metal deposited on the outer edge portion by etching. This may be a step of removing the region from the substrate and forming a hole in the substrate.
According to such a method for manufacturing a perforated substrate, the metal injection region is removed so as to be peeled off from the substrate, so that the processing efficiency is good.
 また、上記穴あき基板の製造方法において、上記析出工程は、上記金属が注入された領域の内部に延びた樹枝結晶としてその金属を析出させる工程であってもよい。
 このような穴あき基板の製造方法によれば、樹枝結晶に沿ってエッチングが進むことで基板内部にエッチャントが迅速に浸透し、処理の効率が良い。
In the method for manufacturing a perforated substrate, the deposition step may be a step of depositing the metal as a dendritic crystal extending inside the region into which the metal is implanted.
According to such a perforated substrate manufacturing method, etching progresses along the dendrite, so that the etchant quickly penetrates into the substrate and the processing efficiency is good.
 また、上記穴あき基板の製造方法において、上記析出工程が、上記金属の注入時と析出時とでは逆極性の電圧を印加する工程であってもよく、上記金属の注入時と析出時とで同じ極性の電圧を印加する工程であってもよい。析出工程で逆極性の電圧が印加される場合には基板に有底の穴が形成され、析出工程で同極性の電圧が印加される場合には基板に貫通孔が形成される。 Further, in the method for manufacturing a perforated substrate, the deposition step may be a step of applying a voltage having a reverse polarity between the metal injection and the deposition. It may be a step of applying a voltage having the same polarity. When a reverse polarity voltage is applied in the deposition step, a bottomed hole is formed in the substrate, and when a voltage of the same polarity is applied in the deposition step, a through hole is formed in the substrate.
 また、上記穴あき基板の製造方法において、上記析出工程が、複数のサブ基板が積み重ねられた積層基板を上記基板として用いて、上記金属が配置された表面のサブ基板よりも深くまでその金属を注入する工程部分を含む工程であり、上記穴形成工程の後に、上記積層基板を上記サブ基板に分離する分離工程を備えてもよい。
 このような穴あき基板の製造方法によれば、貫通孔を有する穴あき基板を製造することができる。
In the method for manufacturing a perforated substrate, the deposition step uses a laminated substrate in which a plurality of sub-substrates are stacked as the substrate, and the metal is deeper than the sub-substrate on the surface on which the metal is disposed. It is a process including the process part to inject | pour, and you may provide the isolation | separation process which isolate | separates the said laminated substrate into the said sub board | substrate after the said hole formation process.
According to such a method for manufacturing a perforated substrate, a perforated substrate having a through hole can be manufactured.
 また、上記穴あき基板の製造方法において、上記穴形成工程が、フッ酸、アルカリ金属水酸化物、およびアルカリ土類金属水酸化物のうちから選択された1以上の媒質が溶解した水溶液を上記エッチングに用いる工程であってもよい。このような穴あき基板の製造方法によれば、ガラスの基板にも効率よく穴が形成される。 In the method for manufacturing a perforated substrate, in the hole forming step, an aqueous solution in which at least one medium selected from hydrofluoric acid, alkali metal hydroxide, and alkaline earth metal hydroxide is dissolved is used. It may be a process used for etching. According to such a method for manufacturing a holed substrate, holes are efficiently formed in a glass substrate.
 また、上記穴あき基板の製造方法において、上記基板がアルカリ金属を含んだ基板であってもよい。このような穴あき基板の製造方法によれば、注入工程で金属が基板内に効率よく注入される。
 また、上記穴あき基板の製造方法において、上記基板がガラス基板であってもよい。ガラス基板は汎用性が高いので好ましい。
In the method for manufacturing a perforated substrate, the substrate may be a substrate containing an alkali metal. According to such a method for manufacturing a perforated substrate, metal is efficiently injected into the substrate in the injection step.
In the method for manufacturing a perforated substrate, the substrate may be a glass substrate. A glass substrate is preferable because of its high versatility.
 また、上記穴あき基板の製造方法において、上記金属が、銀、銅、およびそれらの合金のうちから選択されたものであってもよい。これらの金属が用いられると基板内に金属が迅速に注入される。 In the method for manufacturing a perforated substrate, the metal may be selected from silver, copper, and alloys thereof. When these metals are used, the metals are rapidly injected into the substrate.
 また、上記穴あき基板の製造方法において、上記金属が、ペースト状の金属材料で形成されたものであってもよく、更に、上記金属が、ナノインクの塗布で形成されたものであってもよい。このような穴あき基板の製造方法によれば、金属と基板表面との密着性が高く、基板への金属注入時間が短縮される。特に、ナノインクが用いられる場合には、基板表面の微小箇所に精度良く金属が形成されるとともに、金属の厚さについても精度が高い。 In the method for manufacturing a perforated substrate, the metal may be formed of a paste-like metal material, and further, the metal may be formed by applying nano ink. . According to such a method for manufacturing a perforated substrate, the adhesion between the metal and the substrate surface is high, and the time for injecting the metal into the substrate is shortened. In particular, when nano ink is used, a metal is accurately formed at a minute portion on the surface of the substrate, and the metal thickness is also highly accurate.
 また、上記穴あき基板の製造方法において、上記金属は、上記基板の表面に成膜された金属膜の一部が除去されて形成されたものであってもよい。このような穴あき基板の製造方法によれば、金属と基板表面との密着性が高いとともに、金属膜の除去がエッチングなどによって効率よく実行される。 In the method for manufacturing a substrate with a hole, the metal may be formed by removing a part of a metal film formed on the surface of the substrate. According to such a method for manufacturing a perforated substrate, the adhesion between the metal and the substrate surface is high, and the removal of the metal film is efficiently performed by etching or the like.
 また、上記穴あき基板の製造方法において、上記金属は、上記基板の表面を部分的に覆ったマスクの開口箇所に形成されたものであってもよい。このような穴あき基板の製造方法によれば、金属が所望の箇所に限定されて形成される。 In the method for manufacturing a perforated substrate, the metal may be formed at an opening portion of a mask that partially covers the surface of the substrate. According to such a method for manufacturing a perforated substrate, the metal is limited to a desired location.
 また、上記穴あき基板の製造方法において、上記金属は、上記基板の表面にレジスト層を形成し、そのレジスト層の一部を選択的に除去して、上記マスクとしてのレジストパターンを形成するパターン形成工程と、上記基板の表面における、上記レジストパターンで覆われていない箇所に金属膜を成膜する成膜工程と、上記レジストパターンを上記基板の表面から除去するパターン除去工程と、を経て形成されたものであってもよい。
 このような穴あき基板の製造方法によれば、レジストパターンによって精度の高いマスクが得られるので金属の形成精度も高い。
Further, in the method for manufacturing a perforated substrate, the metal forms a resist layer on the surface of the substrate and selectively removes a part of the resist layer to form a resist pattern as the mask. Formed through a forming step, a film forming step for forming a metal film on a surface of the substrate not covered with the resist pattern, and a pattern removing step for removing the resist pattern from the surface of the substrate It may be what was done.
According to such a perforated substrate manufacturing method, a highly accurate mask can be obtained by using a resist pattern, so that metal formation accuracy is also high.
 さらに、上記課題を解決するために、本発明に係る穴あき基板製造システムの一態様は、基板の表面の一部に配置された金属をその基板内に電圧印加で注入し、注入した金属をその基板内に、上記電圧印加と同じ又は別の電圧印加で析出させる析出装置と、上記基板内に析出した金属をエッチングで溶かすことにより上記基板に穴を形成するエッチング装置と、を備える。 Furthermore, in order to solve the above problems, one aspect of the perforated substrate manufacturing system according to the present invention is to inject a metal disposed on a part of the surface of the substrate into the substrate by applying a voltage, A deposition apparatus that deposits in the substrate by applying the same voltage as or different from the voltage application, and an etching apparatus that forms holes in the substrate by melting the metal deposited in the substrate by etching.
 このような穴あき基板製造システムによれば、析出装置によって所望の箇所に限定して金属が析出されることで微小サイズの穴が形成可能であるとともに、析出装置およびエッチング装置による処理は基板全体に対して同時に進行するので効率がいい。 According to such a perforated substrate manufacturing system, it is possible to form a small-sized hole by depositing a metal limited to a desired location by the deposition apparatus, and the deposition apparatus and the etching apparatus can process the entire substrate. It is efficient because it proceeds at the same time.
 本発明によれば、基板に微小サイズの穴を効率よく形成することができる。 According to the present invention, it is possible to efficiently form micro-sized holes in the substrate.
本発明の穴あき基板製造システムの一実施形態を示す図である。It is a figure which shows one Embodiment of the perforated board | substrate manufacturing system of this invention. 穴あけ加工の工程Aと工程Bを示す工程図である。It is process drawing which shows process A and process B of a boring process. 穴あけ加工の工程Cと工程Dを示す工程図である。It is process drawing which shows the process C and the process D of drilling. 穴あけ加工の工程Eと工程Fと工程Gを示す工程図である。It is process drawing which shows the process E of the drilling process, the process F, and the process G. ペースト状の金属材料による金属層の形成を示す図である。It is a figure which shows formation of the metal layer by a paste-like metal material. パターニングによる金属層の形成方法を示す図である。It is a figure which shows the formation method of the metal layer by patterning. リフトオフによる金属層の形成方法を示す図である。It is a figure which shows the formation method of the metal layer by lift-off. 貫通孔を形成する第1の形成方法を示す図である。It is a figure which shows the 1st formation method which forms a through-hole. 貫通孔を形成する第2の形成方法を示す図である。It is a figure which shows the 2nd formation method which forms a through-hole. 深さの異なる有底の穴を形成する形成方法を示す図である。It is a figure which shows the formation method which forms the bottomed hole from which depth differs. 注入領域の染み出しを示す図である。It is a figure which shows the seepage of an injection | pouring area | region. 注入領域の染み出しを抑制する手法を示す図である。It is a figure which shows the method of suppressing the seepage of an injection | pouring area | region.
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1は、本発明の穴あき基板製造システムの一実施形態を示す図である。
 図1に示す穴あき基板製造システム1は、電圧印加装置10とエッチング装置20とを備えたシステムである。
 電圧印加装置10は、例えばガラス基板のようなワークWに対して電圧を印加することによってワークW内部に局所的に金属を析出させる装置である。
 エッチング装置20は、金属が局所的に析出されたワークWにエッチング処理を施すことでワークWに穴を形成する装置である。
 ワークWは図示が省略されたハンドラによって電圧印加装置10からエッチング装置20へと運搬される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing an embodiment of a perforated substrate manufacturing system according to the present invention.
A perforated substrate manufacturing system 1 shown in FIG. 1 is a system including a voltage applying device 10 and an etching device 20.
The voltage applying device 10 is a device for locally depositing metal inside the work W by applying a voltage to the work W such as a glass substrate.
The etching apparatus 20 is an apparatus that forms a hole in the work W by performing an etching process on the work W on which metal is locally deposited.
The workpiece W is transported from the voltage application device 10 to the etching device 20 by a handler (not shown).
 電圧印加装置10には、真空チャンバ101と真空ポンプ102が備えられており、真空チャンバ101の内部は例えば10-3Paといった低圧環境となっている。 The voltage application device 10 includes a vacuum chamber 101 and a vacuum pump 102, and the inside of the vacuum chamber 101 is in a low pressure environment such as 10 −3 Pa.
 また、電圧印加装置10には、直流電源103,104と、例えば銅の電極105,106が備えられており、直流電源103,104によって電極105,106間に直流電圧が印加される。 The voltage application device 10 includes DC power supplies 103 and 104 and, for example, copper electrodes 105 and 106, and a DC voltage is applied between the electrodes 105 and 106 by the DC power supplies 103 and 104.
 本実施形態では直流電源103,104として互いに極性が異なる2つの直流電源103,104が備えられており、スイッチ107によってそれらの直流電源103,104が切り換えられることで、電極105,106間に印加される電圧の極性が切り換えられる。
 電極105,106の間にはワーク(基板)Wが配置され、ワークWの表面上の所望箇所には例えば銀や銅などといった金属層Mが形成されている。
 電圧印加装置10には、プレートヒータ108とタングステンヒータ109が備えられており、処理に適切な温度にワークWなどが加熱される。
In the present embodiment, two DC power sources 103 and 104 having different polarities are provided as the DC power sources 103 and 104, and the DC power sources 103 and 104 are switched by the switch 107, so that they are applied between the electrodes 105 and 106. The polarity of the applied voltage is switched.
A workpiece (substrate) W is disposed between the electrodes 105 and 106, and a metal layer M such as silver or copper is formed at a desired location on the surface of the workpiece W.
The voltage application device 10 includes a plate heater 108 and a tungsten heater 109, and the workpiece W is heated to a temperature suitable for processing.
 本実施形態では、導電性に優れた銅の電極106が用いられているので、ワークWと電極106とが接触すると電極106の銅が金属層Mと同様に作用してしまう。そこで、本実施形態の電圧印加装置10には、ワークWと電極106との接触を防ぐアルミシート110が備えられている。 In the present embodiment, since the copper electrode 106 having excellent conductivity is used, the copper of the electrode 106 acts in the same manner as the metal layer M when the workpiece W and the electrode 106 come into contact with each other. Therefore, the voltage application device 10 of the present embodiment is provided with an aluminum sheet 110 that prevents contact between the workpiece W and the electrode 106.
また、電圧印加装置10には、電極105,106間にワークWや金属層Mを固定するための固定具111が設けられており、固定具111は絶縁体112を介して電極105を下方に押付けてワークWや金属層Mを固定する。 In addition, the voltage application device 10 is provided with a fixture 111 for fixing the workpiece W and the metal layer M between the electrodes 105 and 106, and the fixture 111 moves the electrode 105 downward through an insulator 112. The workpiece W and the metal layer M are fixed by pressing.
 電圧印加装置10は、本発明にいう析出装置として機能して本発明にいう注入工程と析出工程を実行する。電圧印加装置10の機能などについては後で詳述するが、電圧印加装置10で処理されたワークWには、穴の形成が望まれている箇所に局所的に金属層Mの金属が注入され析出されている。 The voltage application device 10 functions as a deposition device according to the present invention and executes the injection step and the deposition step according to the present invention. The function and the like of the voltage application device 10 will be described in detail later, but the metal of the metal layer M is locally injected into the work W processed by the voltage application device 10 at a location where a hole is desired to be formed. It has been deposited.
 エッチング装置20には、エッチャント201を内部に溜める処理槽202と、エッチャント201の温度を適正温度に保つ温度制御器203が備えられている。エッチャント201としては、例えばHFやKOHなどの水溶液が用いられる。 The etching apparatus 20 includes a processing tank 202 that stores the etchant 201 therein, and a temperature controller 203 that maintains the temperature of the etchant 201 at an appropriate temperature. As the etchant 201, for example, an aqueous solution such as HF or KOH is used.
 電圧印加装置10で処理されたワークWが処理槽202内でエッチャント201に浸されることでワークWがエッチング処理され、所望の箇所に穴が形成される。
 次に、図1に示す穴あき基板製造システム1における穴あけ加工の詳細について説明する。
The workpiece W processed by the voltage application device 10 is immersed in the etchant 201 in the processing tank 202, whereby the workpiece W is etched and a hole is formed at a desired location.
Next, details of drilling in the perforated substrate manufacturing system 1 shown in FIG. 1 will be described.
 図2~図4は、図1に示す穴あき基板製造システム1における穴あけ加工の工程を示す工程図である。図2には、穴あけ加工における工程Aと工程Bが示され、図3には工程Cと工程Dが示され、図4には工程Eと工程Fと工程Gが示されている。 2 to 4 are process diagrams showing the drilling process in the perforated substrate manufacturing system 1 shown in FIG. 2 shows a process A and a process B in drilling, FIG. 3 shows a process C and a process D, and FIG. 4 shows a process E, a process F, and a process G.
 図2に示す工程Aでは、図1に示す電圧印加装置10で、例えばガラス基板であるワークWが電極105,106の間に挟まれて電圧が印加される。このワークWには、穴の形成が望まれている箇所に局所的に金属層Mが形成されており、電圧の極性としては、図2の矢印が示すように、金属層M側からワークW側へと向かう極性となっている。 In step A shown in FIG. 2, a voltage is applied by sandwiching a workpiece W, which is a glass substrate, for example, between the electrodes 105 and 106 by the voltage applying device 10 shown in FIG. In this work W, a metal layer M is locally formed at a place where a hole is desired to be formed. The polarity of the voltage is as shown by the arrow in FIG. Polarity toward the side.
 ワークWであるガラス基板には、例えばNaというようなアルカリ金属イオンが含まれている。電圧が印加されると、アルカリ金属イオンを押し出すように金属層Mの金属(例えば銀)が金属イオン(例えばAg)となってワークW内に注入される。この結果、図2に示す工程Bでは、ワークW内に金属イオンの注入領域120が形成される。ワークW内にアルカリ金属イオンが含まれていることで金属層Mの金属が効率よくワークW内に注入される。 The glass substrate which is the workpiece W contains alkali metal ions such as Na + . When a voltage is applied, the metal (for example, silver) of the metal layer M is injected into the workpiece W as metal ions (for example, Ag + ) so as to push out alkali metal ions. As a result, in step B shown in FIG. 2, a metal ion implantation region 120 is formed in the workpiece W. Since alkali metal ions are contained in the work W, the metal of the metal layer M is efficiently injected into the work W.
 なお、金属層Mの金属は、銀や銅の他に、銀と銅との合金や、金、コバルト、クロムなどであってもワークW内に注入されるが、銀や銅やそれらの合金であると注入の速度が速く、ワークW内の深くまで到達する。また、銀の方が銅よりも注入速度が速い。
 図2に示す工程Aおよび工程Bが、本発明にいう注入工程の一例に相当する。
In addition to the silver and copper, the metal of the metal layer M is injected into the workpiece W even if it is an alloy of silver and copper, gold, cobalt, chrome, etc., but silver, copper and their alloys If it is, the speed | rate of injection | pouring is quick and it reaches | attains deeply in the workpiece | work W. Also, silver has a faster injection rate than copper.
Step A and step B shown in FIG. 2 correspond to an example of the injection step according to the present invention.
 このような注入領域120の形成は、ワークW表面の複数箇所に金属層Mが形成されている場合であってもワークW全体で同時に形成が進むので処理の効率が良い。 Such formation of the injection region 120 is efficient in processing because the formation proceeds simultaneously in the entire work W even when the metal layer M is formed at a plurality of locations on the surface of the work W.
 また、金属層Mの金属は、電極105,106間に形成された電場によってワークW内に注入されるため、注入領域120は、金属層Mが配置されている箇所の直下に局所的に形成されることになり、拡散などによって注入領域120が金属層Mの範囲外に広がる作用は小さい。 Further, since the metal of the metal layer M is injected into the workpiece W by the electric field formed between the electrodes 105 and 106, the injection region 120 is locally formed immediately below the location where the metal layer M is disposed. As a result, the effect of spreading the implantation region 120 outside the range of the metal layer M due to diffusion or the like is small.
 次に、図3に示す工程Cでは、電極105,106間に印加される電圧の極性が反転されてワークW側から金属層M側へと向かう極性となる。これにより、金属層M側が陰極となって注入領域120に電子が供給され、ワークW内に金属が析出される。 Next, in the process C shown in FIG. 3, the polarity of the voltage applied between the electrodes 105 and 106 is reversed so that the polarity goes from the workpiece W side to the metal layer M side. As a result, electrons are supplied to the injection region 120 with the metal layer M side serving as a cathode, and metal is deposited in the workpiece W.
 ワークW内に析出される金属は、注入領域120の外縁に沿った析出層121や、電場の向きに沿って注入領域120の内部に延びた樹枝結晶122などといった形態となる。 The metal deposited in the workpiece W is in the form of a deposited layer 121 along the outer edge of the implanted region 120, a dendrite 122 extending into the implanted region 120 along the direction of the electric field, and the like.
 金属の析出が進むと工程Dのように、析出層121が注入領域120全体を覆うように広がり、樹枝結晶122がワークWの表面と析出層121とを繋ぐように延びるが、注入領域120の外側で析出が生じることはない。
 図3に示す工程Cおよび工程Dが本発明にいう析出工程の一例に相当する。
As the deposition of the metal proceeds, the deposition layer 121 spreads so as to cover the entire implantation region 120 and the dendrite 122 extends so as to connect the surface of the workpiece W and the deposition layer 121 as in step D. No precipitation occurs on the outside.
Step C and step D shown in FIG. 3 correspond to an example of the precipitation step referred to in the present invention.
 次に、図4に示す工程Eでは、ワークWが図1に示すエッチング装置20へと搬送され、エッチャント201に浸される。エッチャント201によるエッチングレートは、析出層121や樹枝結晶122に沿った箇所が高く、選択的にエッチングが進行する。その結果、工程Fのように、注入領域120の外縁の析出層121に沿って急速にエッチングが進み多くのエッチャント201がワークW内部へと導かれる。 Next, in step E shown in FIG. 4, the workpiece W is transferred to the etching apparatus 20 shown in FIG. 1 and immersed in the etchant 201. The etching rate by the etchant 201 is high in the locations along the deposited layer 121 and the dendritic crystal 122, and etching proceeds selectively. As a result, as in process F, etching proceeds rapidly along the deposited layer 121 at the outer edge of the implantation region 120, and a large amount of the etchant 201 is guided into the work W.
 また、注入領域120の内部についても、樹枝結晶122に沿った箇所で急速にエッチングが進み、エッチャント201が注入領域120内へ迅速に浸透する。これに対し、注入領域120の外部では殆どエッチングが進まない。 Also, the inside of the implantation region 120 is rapidly etched at a location along the dendrite crystal 122, and the etchant 201 quickly penetrates into the implantation region 120. In contrast, the etching hardly progresses outside the implantation region 120.
 エッチャント201が、フッ酸、アルカリ金属水酸化物、およびアルカリ土類金属水酸化物のうちから選択された1以上の媒質が溶解した水溶液であると、析出層121や樹枝結晶122を速やかに溶かすとともに、析出層121や樹枝結晶122の存在によって細かくなったガラス部分も溶かすのでエッチング処理の効率が良い。 When etchant 201 is an aqueous solution in which one or more media selected from hydrofluoric acid, alkali metal hydroxide, and alkaline earth metal hydroxide are dissolved, precipitation layer 121 and dendritic crystal 122 are rapidly dissolved. At the same time, the glass portion that has become fine due to the presence of the deposited layer 121 and the dendritic crystal 122 is melted, so that the efficiency of the etching process is high.
 このようにエッチングが進むと、工程Gのように、析出層121で覆われた内側部分123が剥がれるようにワークWから除去され、ワークWに穴Hが形成されることになる。ここに示す例では、穴Hは有底の穴となる。 When the etching proceeds in this way, as in step G, the inner portion 123 covered with the deposited layer 121 is removed from the workpiece W so as to peel off, and a hole H is formed in the workpiece W. In the example shown here, the hole H is a hole with a bottom.
 このようなエッチング処理はワークW全体について同時に進行するので、ワークW上の複数箇所に穴Hが形成される場合であっても一度に処理されることになり、処理の効率が良い。
 図4に示す工程E~工程Gが、本発明にいう穴形成工程の一例に相当する。
Since such etching process proceeds simultaneously for the entire workpiece W, even if holes H are formed at a plurality of locations on the workpiece W, the etching process is performed at a time, and the processing efficiency is high.
Steps E to G shown in FIG. 4 correspond to an example of the hole forming step referred to in the present invention.
 ところで、図2に示す工程Aおよび工程Bにおける金属の注入は、ワークWの表面に金属層Mが密着していると、高電圧の印加や、温度上昇や、あるいはそれら両方により、注入時間の大幅な短縮が可能となる。例えば金属層Mとして金属箔が用いられてワークWの表面に押し付けられた状態でも金属の注入は実現するが、より円滑な注入のためには、例えばペースト状の金属材料による密着した金属層Mの形成が好ましい。
 図5は、ペースト状の金属材料による金属層の形成を示す図である。
By the way, when the metal layer M is in close contact with the surface of the work W, the metal injection in the process A and the process B shown in FIG. Significant shortening is possible. For example, metal injection is realized even when a metal foil is used as the metal layer M and pressed against the surface of the workpiece W. For smooth injection, for example, a metal layer M adhered by a paste-like metal material is used. Is preferred.
FIG. 5 is a diagram illustrating formation of a metal layer using a paste-like metal material.
 ペースト状の金属材料としては例えば銀ペーストなどもあるが、ここではナノインクが用いられている。他のペースト状の金属材料に較べ、ナノインクによる印刷によれば、形成場所および厚さについて精度のよい形成が可能となる。 As the paste-like metal material, for example, there is a silver paste, but here, nano ink is used. Compared to other paste-like metal materials, printing with nano ink enables formation with high accuracy in terms of formation location and thickness.
 ナノインク301はノズル302によってワークW上に印刷され、所望の箇所に精度良く金属層Mが形成される。また、ナノインク301は微小な液滴での印刷が可能なので、例えばサブミリ以下というような微小サイズの金属層Mも形成可能であり、これにより微小サイズの穴が形成可能となる。さらに、ノズル302による吐出量の調整や重ねての印刷などによって金属層Mの厚さも精度良く実現され、これにより所望の深さの穴が得られる。また、ナノインク301の滴下によって容易に円形の金属層Mが形成され、基板の割れが抑制される。 The nano ink 301 is printed on the workpiece W by the nozzle 302, and the metal layer M is accurately formed at a desired location. In addition, since the nano ink 301 can be printed with minute droplets, it is possible to form a metal layer M having a minute size, for example, a sub-millimeter or less, thereby forming a minute hole. Furthermore, the thickness of the metal layer M is also realized with high accuracy by adjusting the discharge amount by the nozzle 302 or performing repeated printing, thereby obtaining a hole having a desired depth. Moreover, the circular metal layer M is easily formed by dropping the nano ink 301, and cracking of the substrate is suppressed.
 ワークWの表面に密着した金属層Mの形成方法としては、ワークWの表面上に成膜層を形成した後に該成膜層をパターニングする(成膜層を部分的に除去する)形成方法も好ましい。成膜層を形成する手段として、めっき、スパッタ、蒸着、CVD等が考えられる。以下では、めっきにより成膜層が形成されるものとして、パターニングで金属層Mを形成する方法について説明する。
 図6は、パターニングによる金属層Mの形成方法を示す図である。
As a method of forming the metal layer M adhered to the surface of the workpiece W, a method of forming a film formation layer on the surface of the workpiece W and then patterning the film formation layer (removing the film formation layer partially) is also possible. preferable. As means for forming the film formation layer, plating, sputtering, vapor deposition, CVD, or the like can be considered. Hereinafter, a method of forming the metal layer M by patterning will be described on the assumption that the film formation layer is formed by plating.
FIG. 6 is a diagram illustrating a method for forming the metal layer M by patterning.
 先ず工程Aで、基板301の表面全体にめっき層302が成膜される。このようなめっき層302は基板301表面との密着性が高い。また、めっき層302は均一な厚さで成膜される。
 次に工程Bでは、めっき層302上に部分的に保護層303が形成される。保護層303の形成箇所は、基板301に対する穴の形成箇所に対応している。
First, in step A, a plating layer 302 is formed on the entire surface of the substrate 301. Such a plating layer 302 has high adhesion to the surface of the substrate 301. The plating layer 302 is formed with a uniform thickness.
Next, in step B, a protective layer 303 is partially formed on the plating layer 302. A location where the protective layer 303 is formed corresponds to a location where a hole is formed in the substrate 301.
 工程Cではエッチングが施され、めっき層302のうち、保護層303によって保護された箇所を除いた部分が基板301の表面から除去される。このようなエッチングによるめっき層302の除去は、基板301の表面全体で同時に進行するので処理の効率が良い。
 最後に工程Dで保護層303が除去されることで、穴の形成箇所に対応した金属層Mが得られる。
In step C, etching is performed, and a portion of the plating layer 302 excluding the portion protected by the protective layer 303 is removed from the surface of the substrate 301. Since the removal of the plating layer 302 by such etching proceeds simultaneously on the entire surface of the substrate 301, the processing efficiency is good.
Finally, the protective layer 303 is removed in the step D, whereby the metal layer M corresponding to the hole forming portion is obtained.
 ワークWの表面に密着した金属層Mの形成方法としては、所望の部分のみに金属層を形成するリフトオフプロセスを用いることもできる。リフトオフプロセスの一例として、スパッタを用いた形成方法も好ましい。
 図7は、リフトオフによる金属層Mの形成方法を示す図である。
 リフトオフによる金属層Mの形成では、以下説明するように、マスクによって成膜箇所が制限されることで所望の箇所に金属層Mが形成される。
As a method for forming the metal layer M in close contact with the surface of the workpiece W, a lift-off process in which the metal layer is formed only at a desired portion can be used. As an example of the lift-off process, a formation method using sputtering is also preferable.
FIG. 7 is a diagram illustrating a method for forming the metal layer M by lift-off.
In the formation of the metal layer M by lift-off, as will be described below, the metal layer M is formed at a desired location by limiting the deposition location with a mask.
 先ず工程Aでは、基板301上にレジストパターンによってマスク304が形成される。このマスク304の形成箇所は、基板301に対する穴の形成箇所を除いた箇所である。 First, in step A, a mask 304 is formed on the substrate 301 with a resist pattern. The formation location of the mask 304 is a location excluding the formation location of the hole in the substrate 301.
 なお、レジストパターンによるマスク304の形成手順については図示を省略するが、露光や洗浄などの工程を経る既知の形成手順によって高い精度でマスク304が形成され、微小サイズの穴も形成可能である。また、マスク304としてはレジストパターンが好ましいが、レジストパターン以外のマスクが用いられても良い。 Note that although the illustration of the procedure for forming the mask 304 with a resist pattern is omitted, the mask 304 is formed with high accuracy by a known formation procedure that undergoes processes such as exposure and cleaning, and a micro-sized hole can also be formed. The mask 304 is preferably a resist pattern, but a mask other than the resist pattern may be used.
 次に工程Bでスパッタが施され、マスク304で覆われていない箇所について基板301上に金属層Mが成膜される。スパッタによって成膜された金属層Mも基板301表面との密着性が高い。また、スパッタでは、めっきによる成膜よりも膜厚の制御が容易であるため、穴の形状のコントロールが容易になるという利点がある。 Next, sputtering is performed in Step B, and a metal layer M is formed on the substrate 301 at a portion not covered with the mask 304. The metal layer M formed by sputtering also has high adhesion to the surface of the substrate 301. In addition, since sputtering is easier to control the film thickness than the film formation by plating, there is an advantage that the hole shape can be easily controlled.
 スパッタによれば、マスク304の上面にも金属層Mが成膜されるがマスク304の側面には成膜されにくく、基板301上の金属層Mとマスク304上面の金属層Mとは分離されている。従って、工程Cでマスク304が除去されることで、マスク304の上面に形成された金属層Mが除去され、基板301上の所望箇所に限定的に金属層Mが形成されるリフトオフが確実に実現される。マスク304の下面には初めから金属層Mが成膜されていないので、金属の残留物などが生じることもない。
 次に、基板に対して貫通孔を形成する方法について説明する。
 図8は、貫通孔を形成する第1の形成方法を示す図である。
According to sputtering, the metal layer M is also formed on the upper surface of the mask 304, but is difficult to form on the side surface of the mask 304, and the metal layer M on the substrate 301 and the metal layer M on the upper surface of the mask 304 are separated. ing. Therefore, the removal of the mask 304 in the step C removes the metal layer M formed on the upper surface of the mask 304, and the lift-off in which the metal layer M is formed only at a desired location on the substrate 301 is ensured. Realized. Since the metal layer M is not formed on the lower surface of the mask 304 from the beginning, no metal residue or the like is generated.
Next, a method for forming a through hole in the substrate will be described.
FIG. 8 is a diagram illustrating a first forming method for forming a through hole.
 この第1の形成方法では、複数のサブ基板401が積層された積層基板402がワークとして用いられる。積層基板402の最上層に位置したサブ基板401の表面には金属層Mが形成されている。 In this first forming method, a laminated substrate 402 in which a plurality of sub-substrates 401 are laminated is used as a workpiece. A metal layer M is formed on the surface of the sub-substrate 401 located at the uppermost layer of the multilayer substrate 402.
 そして、工程Aでは、電極105,106の間にワークである積層基板402が挟まれ、図の矢印方向の電圧が印加される。その結果、工程Bのように、積層基板402内に金属の注入領域403が形成される。この注入領域403は、積層基板402の最上層のサブ基板401よりも深い2番目以降のサブ基板401まで到達するように形成される。図8に示す例では注入領域403が、積層基板402の最下層に位置するサブ基板401まで到達している。また、この例では、最下層に位置するサブ基板401は、注入領域403の到達深度の制御が容易なように、他のサブ基板よりも厚めのサブ基板となっている。図8に示す工程Aと工程Bとを併せたものが、本発明にいう注入工程の一例に相当する。 And in the process A, the laminated substrate 402 which is a workpiece | work is pinched | interposed between the electrodes 105 and 106, and the voltage of the arrow direction of a figure is applied. As a result, a metal injection region 403 is formed in the multilayer substrate 402 as in step B. The implantation region 403 is formed so as to reach the second and subsequent sub-substrates 401 deeper than the uppermost sub-substrate 401 of the multilayer substrate 402. In the example shown in FIG. 8, the injection region 403 reaches the sub-substrate 401 located at the lowermost layer of the multilayer substrate 402. In this example, the sub-substrate 401 located at the lowermost layer is a sub-substrate thicker than the other sub-substrates so that the depth of the injection region 403 can be easily controlled. A combination of the process A and the process B shown in FIG. 8 corresponds to an example of the injection process according to the present invention.
 その後、工程Cでは、図3および図4に示す各工程と同様に、金属の析出とエッチング処理とが実行されることで、積層基板402に対して有底の穴Hが形成される。図8に示す工程Cは、本発明にいう析出工程と穴形成工程とを併せた一例に相当する。 Thereafter, in step C, a bottomed hole H is formed in the laminated substrate 402 by performing metal deposition and etching as in each step shown in FIGS. 3 and 4. Step C shown in FIG. 8 corresponds to an example in which the precipitation step and the hole forming step referred to in the present invention are combined.
 最後に工程Dでは、積層基板402がサブ基板401に分割される。この結果、穴Hの底に位置したサブ基板401を除いた他の各サブ基板401は、貫通孔THを有した穴あき基板となる。図8に示す工程Dは、本発明にいう分離工程の一例に相当する。 Finally, in step D, the laminated substrate 402 is divided into sub-substrates 401. As a result, each of the other sub substrates 401 excluding the sub substrate 401 located at the bottom of the hole H becomes a perforated substrate having the through hole TH. Step D shown in FIG. 8 corresponds to an example of a separation step according to the present invention.
 積層基板402として3枚以上のサブ基板401を有した積層基板402が用いられるとともに、注入領域403が積層基板402の最上層から3番目以降のサブ基板401に到達するように形成されると、複数枚の穴あき基板が同時に作成されることとなり、作成の効率が良い。
 図9は、貫通孔を形成する第2の形成方法を示す図である。
When the multilayer substrate 402 having three or more sub-substrates 401 is used as the multilayer substrate 402 and the injection region 403 is formed to reach the third and subsequent sub-substrates 401 from the uppermost layer of the multilayer substrate 402, Since a plurality of perforated substrates are created at the same time, the production efficiency is high.
FIG. 9 is a diagram showing a second forming method for forming the through hole.
 工程Aでは、表面に金属層Mが形成された基板501が電極105,106の間に挟まれて図の矢印方向の電圧が印加される。その結果、工程Bのように基板501内に金属の注入領域502が形成される。図9に示す第2の形成方法の場合には、注入領域502が、金属層Mとは反対側に位置する電極106に到達するまで、金属の注入が継続される。図9に示す工程Aと工程Bとを併せたものが、本発明にいう注入工程の一例に相当する。 In step A, a substrate 501 having a metal layer M formed on the surface is sandwiched between electrodes 105 and 106, and a voltage in the direction of the arrow in the figure is applied. As a result, a metal injection region 502 is formed in the substrate 501 as in step B. In the case of the second forming method shown in FIG. 9, the metal injection is continued until the injection region 502 reaches the electrode 106 located on the side opposite to the metal layer M. A combination of the process A and the process B shown in FIG. 9 corresponds to an example of the injection process according to the present invention.
 工程Cでは、工程Aおよび工程Bにおける電圧と同極性の電圧が継続して印加されることで、金属層Mとは反対側に位置する電極106から電子が供給されて金属が析出する。その結果、例えば析出層503が注入領域502の外縁部分に形成されることとなる。なお、この工程Cでは、一時的には、金属の析出とともに金属の注入も同時に進行する場合がある。図9に示す工程Cは、本発明にいう析出工程の一例に相当する。
 その後、工程Dでは、図4に示す工程と同様にエッチング処理が実行されて、基板501に貫通孔THが形成される。
 図8および図9に示す方法で形成される穴あき基板は、例えば貫通孔内にめっきや充填で導体が設けられることによってインターポーザ等に応用される。
 次に、基板内に深さの異なる有底の穴を形成する形成方法について説明する。
 図10は、深さの異なる有底の穴を形成する形成方法を示す図である。
In the process C, a voltage having the same polarity as the voltage in the process A and the process B is continuously applied, whereby electrons are supplied from the electrode 106 located on the side opposite to the metal layer M, and the metal is deposited. As a result, for example, the deposited layer 503 is formed on the outer edge portion of the implantation region 502. In this step C, there is a case where the metal injection proceeds simultaneously with the deposition of the metal temporarily. Step C shown in FIG. 9 corresponds to an example of the precipitation step referred to in the present invention.
Thereafter, in the process D, the etching process is performed as in the process shown in FIG. 4, and the through hole TH is formed in the substrate 501.
The perforated substrate formed by the method shown in FIGS. 8 and 9 is applied to an interposer or the like, for example, by providing a conductor in the through hole by plating or filling.
Next, a forming method for forming bottomed holes having different depths in the substrate will be described.
FIG. 10 is a diagram illustrating a forming method for forming bottomed holes having different depths.
 図10に示す形成方法では、各部の厚さが異なる金属層601が表面に形成された基板602がワークとして用いられる。このような金属層601は、例えば図5で説明したようなナノインクによる印刷などで形成される。
 工程Aでは、電極105,106の間に基板602が挟まれて電圧が印加される。そして、工程Bのように基板602内に金属の注入領域603が形成される。
In the forming method shown in FIG. 10, a substrate 602 on which a metal layer 601 having different thicknesses is formed on the surface is used as a workpiece. Such a metal layer 601 is formed, for example, by printing with nano ink as described in FIG.
In step A, a voltage is applied with the substrate 602 sandwiched between the electrodes 105 and 106. Then, a metal injection region 603 is formed in the substrate 602 as in step B.
 電圧の印加が継続されると注入領域603は深くなっていき金属層601の厚さは減少する。そして、工程Cのように、金属層601が消滅すると注入領域603の拡大は止まる。なお、図10に示す形成方法では、金属層601に接している電極105には例えばアルミニウムなどが用いられていて、電極105が基板602に接触しても電極105の金属は基板602に注入されないものとする。図10に示す工程A~工程Cを併せたものが、本発明にいう注入工程の一例に相当する。 When the voltage application is continued, the implantation region 603 becomes deeper and the thickness of the metal layer 601 decreases. And like process C, when metal layer 601 disappears, expansion of implantation field 603 stops. In the formation method illustrated in FIG. 10, for example, aluminum or the like is used for the electrode 105 in contact with the metal layer 601, and the metal of the electrode 105 is not injected into the substrate 602 even when the electrode 105 contacts the substrate 602. Shall. A combination of the steps A to C shown in FIG. 10 corresponds to an example of the implantation step according to the present invention.
 その後、工程Dでは、図3および図4に示す各工程と同様に金属の析出とエッチング処理が行われ、深さが各部で異なる有底の穴Hが基板602に形成される。穴Hの各部の深さは、金属層601における各部の厚さに対応した深さとなっている。逆に言えば、金属層601における各部の厚さが調整されることにより、各所望の深さを有した穴Hが基板602に形成される。図10に示す工程Dが、本発明にいう析出工程と穴形成工程とを併せた一例に相当する。
 図10に示す形成方法で穴Hが形成された基板602は、例えばマイクロ流路デバイスなどに応用される。
 次に、アスペクト比の高い穴加工に適した穴の形成方法について説明する。
Thereafter, in step D, metal deposition and etching are performed in the same manner as in each step shown in FIGS. 3 and 4, and a bottomed hole H having a different depth in each part is formed in the substrate 602. The depth of each part of the hole H is a depth corresponding to the thickness of each part in the metal layer 601. In other words, the hole H having each desired depth is formed in the substrate 602 by adjusting the thickness of each part in the metal layer 601. The process D shown in FIG. 10 corresponds to an example in which the precipitation process and the hole forming process referred to in the present invention are combined.
The substrate 602 in which the holes H are formed by the forming method shown in FIG. 10 is applied to, for example, a microchannel device.
Next, a method for forming a hole suitable for drilling with a high aspect ratio will be described.
 図2の説明では、アスペクト比の低い(穴径が大きく、ガラスが薄い)状況が前提であったため、注入領域120が金属Mの直下に形成されるものとして説明した。しかし、アスペクト比の高い(穴径が小さく、ガラスが厚い)穴加工では、以下説明する注入領域120の染み出しに対する対策が望まれる。
 図11は、注入領域120の染み出しを示す図である。
 電場が作用するガラス中での金属イオンの流束は、下記の式(1)で与えられる。
In the description of FIG. 2, it is assumed that the aspect ratio is low (the hole diameter is large and the glass is thin), so that the injection region 120 is formed directly below the metal M. However, in drilling with a high aspect ratio (small hole diameter and thick glass), a countermeasure against the seepage of the injection region 120 described below is desired.
FIG. 11 is a diagram showing the seepage of the injection region 120.
The flux of metal ions in the glass on which an electric field acts is given by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、J:イオン流束、D:拡散係数、q:イオン電荷、k:ボルツマン定数、T:温度、E:電場、C:イオン濃度である。すなわちイオンは、電場および濃度勾配に駆動されてガラス中を移動する。このうち、濃度勾配による拡散(右辺第2項)は抑制が困難であるが、電場によるドリフト項(右辺第1項)に比べて流束全体に対する割合は小さい。一方,電場によるドリフト項は流束に占める割合が大きく、注入領域120の意図しない拡がりを抑制するためには、電場を適切に制御することが必要である。 Here, J: ion flux, D: diffusion coefficient, q: ion charge, k: Boltzmann constant, T: temperature, E: electric field, C: ion concentration. That is, ions move through the glass driven by an electric field and concentration gradient. Among these, the diffusion due to the concentration gradient (second term on the right side) is difficult to suppress, but the ratio to the entire flux is small compared to the drift term due to the electric field (first term on the right side). On the other hand, the drift term due to the electric field has a large proportion of the flux, and in order to suppress unintended expansion of the injection region 120, it is necessary to appropriately control the electric field.
 ワークWの表面に局所的に金属層Mが配置されている場合には、ワークWの裏面側の電極106が裏面全体に広がっているため、図11に点線の矢印で示されているように電場の広がりが生じる。このような電場の広がりによって、金属層Mの直下から外側へと向かうイオンのドリフトが生じ、金属層Mの範囲を超えた注入領域120の染み出しdが発生する。 When the metal layer M is locally disposed on the surface of the workpiece W, the electrode 106 on the back surface side of the workpiece W spreads over the entire back surface, so that as shown by the dotted arrow in FIG. The electric field spreads. Due to such spread of the electric field, drift of ions from directly under the metal layer M to the outside occurs, and the seepage d of the implantation region 120 exceeding the range of the metal layer M occurs.
 アスペクト比が低い場合には、電場の広がりも小さいので注入領域120の染み出しdは無視しても良いが、アスペクト比の高い穴加工が行われる場合には染み出しdが無視できなくなり、アスペクト比および穴形状精度の低下の虞がある。そこで金属層Mの直下にのみ注入領域120を形成して外側への染み出しdを抑制する手法が望まれる。
 図12は、注入領域120の染み出しdを抑制する手法を示す図である。
When the aspect ratio is low, the spread of the electric field is also small, so that the protrusion d of the injection region 120 may be ignored. There is a risk that the ratio and hole shape accuracy may be reduced. Therefore, a method is desired in which the injection region 120 is formed only directly below the metal layer M to suppress the outward seepage d.
FIG. 12 is a diagram illustrating a technique for suppressing the seepage d of the injection region 120.
 注入領域120の染み出しdを抑制するため、金属層Mの上に、ワークWへの注入が金属層Mの金属よりも困難な導電物質(例えば金属やフィラー添加樹脂など)の膜からなるガード電極Gが、ワークWの表面全体に形成される。このようにガード電極Gが形成されると電場は、図12に点線の矢印で示されているように一様な電場となる。この結果、注入領域120は金属層Mの直下に形成されることになり、アスペクト比の高い穴加工が可能となる。 A guard made of a film of a conductive material (for example, metal or filler-added resin) that is more difficult to inject into the workpiece W than the metal of the metal layer M on the metal layer M in order to suppress the seepage d of the injection region 120. The electrode G is formed on the entire surface of the workpiece W. When the guard electrode G is formed in this way, the electric field becomes a uniform electric field as shown by a dotted arrow in FIG. As a result, the injection region 120 is formed immediately below the metal layer M, and hole processing with a high aspect ratio is possible.
 ガード電極Gとして望ましい導電物質としては、ワークWがガラスである場合には、銀や銅以外の、例えば、プラチナ、ニッケル、アルミニウム等といった金属が考えられる。また、ガード電極Gの形成範囲は、ワークWの表面全体には限定されず、金属層Mの配置箇所を覆うと共に、金属層Mの配置箇所よりも外側に広がった範囲であればよい。
 なお、本発明が適用される基板としては汎用性の高いガラス基板が好適であるが樹脂基板であってもよい。
As a conductive material desirable as the guard electrode G, when the workpiece W is glass, a metal other than silver or copper, such as platinum, nickel, or aluminum, can be considered. The formation range of the guard electrode G is not limited to the entire surface of the workpiece W, and may be a range that covers the place where the metal layer M is disposed and extends outward from the place where the metal layer M is disposed.
In addition, as a board | substrate with which this invention is applied, a glass substrate with high versatility is suitable, but a resin board | substrate may be sufficient.
1…穴あき基板製造システム、10…電圧印加装置、20…エッチング装置、103,104…直流電源、105,106…電極、W…ワーク、M,601…金属層、201…エッチャント、202…処理槽、120,403,502,603…注入領域、121,503…析出層、122…樹枝結晶、301…ナノインク、301,501,602…基板、302…めっき層、303…保護層、304…マスク、401…サブ基板、402…積層基板、H…有底の穴、TH…貫通孔、G…ガード電極 DESCRIPTION OF SYMBOLS 1 ... Perforated substrate manufacturing system, 10 ... Voltage application apparatus, 20 ... Etching apparatus, 103, 104 ... DC power supply, 105, 106 ... Electrode, W ... Workpiece, M, 601 ... Metal layer, 201 ... Etchant, 202 ... Processing Tank, 120, 403, 502, 603 ... injection region, 121, 503 ... deposition layer, 122 ... dendritic crystal, 301 ... nano ink, 301, 501, 602 ... substrate, 302 ... plating layer, 303 ... protective layer, 304 ... mask , 401 ... sub-board, 402 ... laminated board, H ... bottomed hole, TH ... through hole, G ... guard electrode

Claims (17)

  1.  基板の表面の一部に配置された金属を該基板内に電圧印加で注入し、注入した金属を該基板内に、前記電圧印加と同じ又は別の電圧印加で析出させる析出工程と、
     前記基板内に析出した金属をエッチングで溶かすことにより前記基板に穴を形成する穴形成工程と、
    を備えたことを特徴とする穴あき基板の製造方法。
    A deposition step of injecting a metal disposed on a part of the surface of the substrate into the substrate by applying a voltage, and depositing the injected metal into the substrate by applying the same or different voltage as the voltage application;
    A hole forming step of forming a hole in the substrate by dissolving the metal deposited in the substrate by etching;
    A method for manufacturing a perforated substrate, comprising:
  2.  前記析出工程は、前記金属が注入された領域の外縁部分に該金属を析出させる工程であり、
     前記穴形成工程が、前記外縁部分に析出した金属をエッチングで溶かすことにより前記領域を前記基板から除去して該基板に穴を形成する工程であることを特徴とする請求項1に記載の穴あき基板の製造方法。
    The deposition step is a step of depositing the metal on the outer edge portion of the region where the metal is injected,
    2. The hole according to claim 1, wherein the hole forming step is a step of forming the hole in the substrate by removing the region from the substrate by melting the metal deposited on the outer edge portion by etching. A method for manufacturing perforated substrates.
  3.  前記析出工程は、前記金属が注入された領域の内部に延びた樹枝結晶として該金属を析出させる工程であることを特徴とする請求項1または2に記載の穴あき基板の製造方法。 3. The method for manufacturing a perforated substrate according to claim 1, wherein the deposition step is a step of depositing the metal as a dendritic crystal extending inside the region where the metal is implanted.
  4.  前記析出工程が、前記金属の注入時と析出時とでは逆極性の電圧を印加する工程であることを特徴とする請求項1から3のいずれか1項に記載の穴あき基板の製造方法。 The method for manufacturing a perforated substrate according to any one of claims 1 to 3, wherein the deposition step is a step of applying a voltage having a reverse polarity between the injection of the metal and the deposition.
  5.  前記析出工程が、前記金属の注入時と析出時とで同じ極性の電圧を印加する工程であることを特徴とする請求項1から3のいずれか1項に記載の穴あき基板の製造方法。 The method for manufacturing a perforated substrate according to any one of claims 1 to 3, wherein the deposition step is a step of applying a voltage having the same polarity when the metal is injected and during the deposition.
  6.  前記析出工程が、複数のサブ基板が積み重ねられた積層基板を前記基板として用いて、前記金属が配置された表面のサブ基板よりも深くまで該金属を注入する工程部分を含む工程であり、
     前記穴形成工程の後に、前記積層基板を前記サブ基板に分離する分離工程を備えたことを特徴とする請求項1から5のいずれか1項に記載の穴あき基板の製造方法。
    The deposition step includes a step of injecting the metal deeper than the sub-substrate on the surface on which the metal is disposed, using a laminated substrate in which a plurality of sub-substrates are stacked as the substrate.
    The method for manufacturing a perforated substrate according to any one of claims 1 to 5, further comprising a separation step of separating the laminated substrate into the sub-substrates after the hole forming step.
  7.  前記穴形成工程が、フッ酸、アルカリ金属水酸化物、およびアルカリ土類金属水酸化物のうちから選択された1以上の媒質が溶解した水溶液を前記エッチングに用いる工程であることを特徴とする請求項1から6のいずれか1項に記載の穴あき基板の製造方法。 The hole forming step is a step of using, for the etching, an aqueous solution in which at least one medium selected from hydrofluoric acid, alkali metal hydroxide, and alkaline earth metal hydroxide is dissolved. The manufacturing method of the board | substrate with a hole of any one of Claim 1 to 6.
  8.  前記基板がアルカリ金属を含んだ基板であることを特徴とする請求項1から7のいずれか1項に記載の穴あき基板の製造方法。 The method for manufacturing a perforated substrate according to any one of claims 1 to 7, wherein the substrate is a substrate containing an alkali metal.
  9.  前記基板がガラス基板であることを特徴とする請求項1から8のいずれか1項に記載の穴あき基板の製造方法。 The method for manufacturing a perforated substrate according to any one of claims 1 to 8, wherein the substrate is a glass substrate.
  10.  前記金属が、銀、銅、およびそれらの合金のうちから選択されたものであることを特徴とする請求項1から9のいずれか1項に記載の穴あき基板の製造方法。 10. The method for manufacturing a perforated substrate according to any one of claims 1 to 9, wherein the metal is selected from silver, copper, and alloys thereof.
  11.  前記金属が、ペースト状の金属材料で形成されたものであることを特徴とする請求項1から10のいずれか1項に記載の穴あき基板の製造方法。 The method for manufacturing a perforated substrate according to any one of claims 1 to 10, wherein the metal is formed of a paste-like metal material.
  12.  前記金属が、ナノインクの塗布で形成されたものであることを特徴とする請求項11に記載の穴あき基板の製造方法。 12. The method for manufacturing a perforated substrate according to claim 11, wherein the metal is formed by applying nano ink.
  13.  前記金属は、前記基板の表面に成膜された金属膜の一部が除去されて形成されたものであることを特徴とする請求項1から10のいずれか1項に記載の穴あき基板の製造方法。 11. The perforated substrate according to claim 1, wherein the metal is formed by removing a part of a metal film formed on a surface of the substrate. Production method.
  14.  前記金属は、前記基板の表面を部分的に覆ったマスクの開口箇所に形成されたものであることを特徴とする請求項1から10のいずれか1項に記載の穴あき基板の製造方法。 The method for manufacturing a perforated substrate according to any one of claims 1 to 10, wherein the metal is formed in an opening portion of a mask partially covering the surface of the substrate.
  15.  前記金属は、
     前記基板の表面にレジスト層を形成し、該レジスト層の一部を選択的に除去して、前記マスクとしてのレジストパターンを形成するパターン形成工程と、
     前記基板の表面における、前記レジストパターンで覆われていない箇所に金属膜を成膜する成膜工程と、
     前記レジストパターンを前記基板の表面から除去するパターン除去工程と、
    を経て形成されたものであることを特徴とする請求項14に記載の穴あき基板の製造方法。
    The metal is
    Forming a resist layer on the surface of the substrate, selectively removing a part of the resist layer, and forming a resist pattern as the mask; and
    A film forming step of forming a metal film on the surface of the substrate not covered with the resist pattern;
    A pattern removing step of removing the resist pattern from the surface of the substrate;
    The method for manufacturing a perforated substrate according to claim 14, wherein the substrate is formed through a process.
  16.  前記析出工程の前に、前記金属よりも前記基板に注入されにくい導電物質を、該金属を覆うと共に該金属よりも広い範囲に亘って配置する配置工程を備えることを特徴とする請求項1に記載の穴あき基板の製造方法。 2. The method according to claim 1, further comprising an arrangement step of arranging a conductive material that is less likely to be injected into the substrate than the metal before the deposition step so as to cover the metal and cover a wider area than the metal. The manufacturing method of the perforated board | substrate of description.
  17.  基板の表面の一部に配置された金属を該基板内に電圧印加で注入し、注入した金属を該基板内に、前記電圧印加と同じ又は別の電圧印加で析出させる析出装置と、
     前記基板内に析出した金属をエッチングで溶かすことにより前記基板に穴を形成するエッチング装置と、
    を備えたことを特徴とする穴あき基板製造システム。
    A deposition apparatus for injecting a metal disposed on a part of the surface of the substrate into the substrate by applying a voltage, and depositing the injected metal into the substrate by applying the same or different voltage as the voltage application;
    An etching apparatus for forming a hole in the substrate by dissolving the metal deposited in the substrate by etching;
    A perforated substrate manufacturing system characterized by comprising:
PCT/JP2017/046710 2016-12-27 2017-12-26 Perforated base board production method and perforated base board production system WO2018124097A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780072424.0A CN109996768A (en) 2016-12-27 2017-12-26 The manufacturing method and perforate substrate manufacture system of perforate substrate
JP2018559527A JPWO2018124097A1 (en) 2016-12-27 2017-12-26 Perforated board manufacturing method and perforated board manufacturing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016253655 2016-12-27
JP2016-253655 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018124097A1 true WO2018124097A1 (en) 2018-07-05

Family

ID=62709363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046710 WO2018124097A1 (en) 2016-12-27 2017-12-26 Perforated base board production method and perforated base board production system

Country Status (3)

Country Link
JP (1) JPWO2018124097A1 (en)
CN (1) CN109996768A (en)
WO (1) WO2018124097A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313629A (en) * 1999-04-27 2000-11-14 Japan Science & Technology Corp Micro-holed glass and its production
JP2011170312A (en) * 2010-01-22 2011-09-01 Nihon Yamamura Glass Co Ltd Polarizer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4155735A (en) * 1977-11-30 1979-05-22 Ppg Industries, Inc. Electromigration method for making stained glass photomasks
GB201200890D0 (en) * 2012-01-19 2012-02-29 Univ Dundee An ion exchange substrate and metalized product and apparatus and method for production thereof
JP6007002B2 (en) * 2012-06-25 2016-10-12 アルバック成膜株式会社 Through-hole forming method and glass substrate with through-hole

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313629A (en) * 1999-04-27 2000-11-14 Japan Science & Technology Corp Micro-holed glass and its production
JP2011170312A (en) * 2010-01-22 2011-09-01 Nihon Yamamura Glass Co Ltd Polarizer

Also Published As

Publication number Publication date
JPWO2018124097A1 (en) 2019-10-31
CN109996768A (en) 2019-07-09

Similar Documents

Publication Publication Date Title
KR102282860B1 (en) Printing of three-dimensional metal structures with a sacrificial support
KR102407668B1 (en) Repair of printed circuit traces
EP1920461B1 (en) Method for producing through-contacts in semi-conductor wafers
CN102282693B (en) Method for deposition of at least one electrically conducting film on substrate
TWI296432B (en) Methods for forming interconnects in vias and microelectronic workpieces including such interconnects
TWI294160B (en) Method of plugging through-holes in silicon substrate
JP5080456B2 (en) Method for making vertical electrical contact connection in a semiconductor wafer
CN105899003A (en) Single layer circuit board, multilayer circuit board and manufacture method for single layer circuit board and multilayer circuit board
JP2010129662A (en) Method for filling metal into fine space
JP2008140861A (en) Semiconductor device and semiconductor device manufacturing method
CN104795360B (en) Pass through segmentation of the electro-discharge machining to the semiconductor element with contact metallizations
TW201627541A (en) Bottom-up electrolytic VIA plating method
WO2018124097A1 (en) Perforated base board production method and perforated base board production system
JP2010129995A (en) Method for filling metal into fine space
WO2018142720A1 (en) Method for manufacturing wiring structure
JP2010518610A (en) Method for forming a pattern on a semiconductor substrate
JP4535228B2 (en) Method and apparatus for filling metal into fine holes
JP2010161370A (en) Method and apparatus for electrochemically machining substrate
US20190394887A1 (en) Asymmetrical electrolytic plating for a conductive pattern
Datta Microfabrication by high rate anodic dissolution: fundamentals and applications
CN105514019B (en) The preparation method of flush type conductive wires
JP6007754B2 (en) Wiring structure manufacturing method
TWI532122B (en) Verfahren zur herstellung einer vielzahl von duennchips und entsprechend gefertigter duennchip
CN105645754A (en) Producing wafer thin glass sheet having structure and separating it into small thin glass sheets
JP2010186842A (en) Method of forming wiring conductor, and wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885918

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018559527

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885918

Country of ref document: EP

Kind code of ref document: A1