WO2018124056A1 - Imaging device and control method therefor - Google Patents

Imaging device and control method therefor Download PDF

Info

Publication number
WO2018124056A1
WO2018124056A1 PCT/JP2017/046600 JP2017046600W WO2018124056A1 WO 2018124056 A1 WO2018124056 A1 WO 2018124056A1 JP 2017046600 W JP2017046600 W JP 2017046600W WO 2018124056 A1 WO2018124056 A1 WO 2018124056A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image
shielded
correction
difference
Prior art date
Application number
PCT/JP2017/046600
Other languages
French (fr)
Japanese (ja)
Inventor
直人 末廣
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018124056A1 publication Critical patent/WO2018124056A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/63Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • the present disclosure relates to an imaging apparatus and a control method thereof.
  • Patent Document 1 A technique described in Patent Document 1 is known as an image sensor using an organic photoelectric conversion element.
  • the imaging apparatus processing for correcting a change in black level caused by dark current is performed. Specifically, the imaging device reduces the influence of dark current by subtracting a light-shielded image taken in a light-shielded state from the main image.
  • the dark current amount may change due to, for example, a change in temperature between when the main image is captured and when the light-shielded image is captured. In this case, the influence of dark current cannot be completely eliminated by the above correction.
  • an object of the present disclosure is to provide an imaging apparatus that can reduce the influence of the dark current amount or a control method thereof.
  • An imaging apparatus includes: an imaging element that can perform nondestructive reading; an imaging system that collects light on the imaging element; a light-blocking unit that blocks light from the imaging system; and the imaging element.
  • a correction unit that generates a corrected image by subtracting a correction image from the obtained main image, and the correction unit is obtained by the imaging device by one exposure in a light-shielding state, and each has a different exposure time.
  • a plurality of shaded images are acquired using nondestructive readout, and the correction image is generated using at least one of the plurality of shaded images.
  • the present disclosure can provide an imaging apparatus or a control method thereof that can reduce the influence of the dark current amount.
  • FIG. 1 is a block diagram of the imaging apparatus according to the first embodiment.
  • FIG. 2A is a diagram illustrating an appearance example of the imaging apparatus according to Embodiment 1.
  • FIG. 2B is a diagram illustrating an appearance example of the imaging apparatus according to Embodiment 1.
  • FIG. 3 is a diagram illustrating a configuration of the image sensor according to the first embodiment.
  • FIG. 4 is a circuit diagram illustrating a configuration of a pixel according to Embodiment 1.
  • FIG. 5 is a flowchart illustrating the operation of the imaging apparatus according to the first embodiment.
  • FIG. 6 is a diagram illustrating the operation of the imaging apparatus according to the first embodiment.
  • FIG. 7 is a diagram illustrating an example of the main image according to the first embodiment.
  • FIG. 1 is a block diagram of the imaging apparatus according to the first embodiment.
  • FIG. 2A is a diagram illustrating an appearance example of the imaging apparatus according to Embodiment 1.
  • FIG. 2B is a diagram illustrating an appearance example of
  • FIG. 8 is a diagram illustrating an example of a plurality of light-shielded images according to the first embodiment.
  • FIG. 9 is a diagram illustrating a calculation process of the corrected image according to the first embodiment.
  • FIG. 10 is a flowchart illustrating the operation of the imaging apparatus according to the second embodiment.
  • FIG. 11 is a diagram illustrating the operation of the imaging apparatus according to the second embodiment.
  • FIG. 12 is a flowchart illustrating the operation of the imaging apparatus according to the modification of the second embodiment.
  • FIG. 13 is a diagram illustrating the operation of the imaging apparatus according to the modification of the second embodiment.
  • FIG. 14 is a flowchart illustrating the operation of the imaging apparatus according to the third embodiment.
  • FIG. 15 is a diagram illustrating the operation of the imaging apparatus according to the third embodiment.
  • FIG. 16 is a flowchart illustrating the operation of the imaging apparatus according to the modification of the third embodiment.
  • FIG. 17 is a diagram illustrating the operation of the imaging apparatus according to the modification
  • FIG. 1 is a block diagram illustrating a configuration of an imaging apparatus 100 according to the present embodiment.
  • 2A and 2B are diagrams illustrating an example of the appearance of the imaging apparatus 100.
  • the imaging apparatus 100 is a camera such as a digital still camera or a digital video camera.
  • the imaging device 101 is a solid-state imaging device (solid-state imaging device) that converts incident light into an electrical signal (image) and outputs the obtained electrical signal.
  • the imaging device 101 is an organic sensor using an organic photoelectric conversion device.
  • the control unit 102 controls the image sensor 101.
  • the control unit 102 performs various signal processing on the image obtained by the imaging element 101, and displays the obtained image on the display unit 103 or stores it in the storage unit 104.
  • the image output from the control unit 102 may be output to the outside of the imaging apparatus 100 via an input / output interface (not shown).
  • control unit 102 includes a correction unit 105 that corrects an image obtained by the image sensor 101.
  • the imaging system 106 includes, for example, one or a plurality of lenses, and condenses light from the outside of the imaging apparatus 100 on the imaging element 101.
  • the light shielding unit 107 is, for example, a mechanical shutter, and shields light from the imaging system 106.
  • FIG. 3 is a block diagram illustrating a configuration of the image sensor 101.
  • 3 includes a plurality of pixels (unit pixel cells) 201 arranged in a matrix, a vertical scanning unit 202, a column signal processing unit 203, a horizontal readout unit 204, and a row.
  • Each of the plurality of pixels 201 outputs a signal corresponding to the incident light to the vertical signal line 207 provided in the corresponding column.
  • the vertical scanning unit 202 resets the plurality of pixels 201 via the plurality of reset control lines 205.
  • the vertical scanning unit 202 sequentially selects the plurality of pixels 201 in units of rows via the plurality of address control lines 206.
  • the column signal processing unit 203 performs signal processing on the signals output to the plurality of vertical signal lines 207, and outputs the plurality of signals obtained by the signal processing to the horizontal reading unit 204.
  • the column signal processing unit 203 performs noise suppression signal processing represented by correlated double sampling, analog / digital conversion processing, and the like.
  • the horizontal readout unit 204 sequentially outputs a plurality of signals after the signal processing by the plurality of column signal processing units 203 to the horizontal output terminal 208.
  • FIG. 4 is a circuit diagram illustrating a configuration of the pixel 201.
  • the pixel 201 includes a photoelectric conversion unit 211, a charge storage unit 212, a reset transistor 213, an amplification transistor 214 (source follower transistor), and a selection transistor 215.
  • the photoelectric conversion unit 211 generates signal charges by photoelectrically converting incident light. A voltage Voe is applied to one end of the photoelectric conversion unit 211.
  • the photoelectric conversion unit 211 includes a photoelectric conversion layer made of an organic material.
  • the photoelectric conversion layer may include a layer made of an organic material and a layer made of an inorganic material.
  • the charge storage unit 212 is connected to the photoelectric conversion unit 211 and stores the signal charge generated by the photoelectric conversion unit 211. Note that the charge storage unit 212 may be configured with a parasitic capacitance such as a wiring capacitance instead of a dedicated capacitance element.
  • the reset transistor 213 is used to reset the potential of the signal charge.
  • the gate of the reset transistor 213 is connected to the reset control line 205, the source is connected to the charge storage unit 212, and the reset voltage Vreset is applied to the drain.
  • drain and source generally depend on circuit operation, and are often not specified from the element structure.
  • one of the source and the drain is referred to as a source and the other of the source and the drain is referred to as a drain.
  • the drain may be replaced with the source and the source may be replaced with the drain.
  • the amplification transistor 214 amplifies the voltage of the charge storage unit 212 and outputs a signal corresponding to the voltage to the vertical signal line 207.
  • the gate of the amplification transistor 214 is connected to the charge storage unit 212, and the power supply voltage Vdd or the ground voltage Vss is applied to the drain.
  • the selection transistor 215 is connected in series with the amplification transistor 214, and switches whether to output the signal amplified by the amplification transistor 214 to the vertical signal line 207.
  • the selection transistor 215 has a gate connected to the address control line 206, a drain connected to the source of the amplification transistor 214, and a source connected to the vertical signal line 207.
  • the voltage Voe, the reset voltage Vreset, and the power supply voltage Vdd are voltages commonly used in all the pixels 201.
  • Non-destructive reading is a process of reading image data during an exposure period and continuing exposure.
  • conventional readout hereinafter referred to as destructive readout
  • nondestructive reading it is possible to read the image data exposed up to that time during the exposure period and continue the exposure. Thereby, a plurality of images having different exposure times can be obtained by one exposure.
  • the electronic ND control is a process for electrically controlling the transmittance of the image sensor.
  • the transmittance means the proportion of light that is converted into an electrical signal in the incident light. That is, by setting the transmittance to 0%, it is possible to electrically shield the light.
  • the transmittance is controlled by controlling the voltage Voe shown in FIG. Thereby, exposure can be electrically terminated without using a mechanical shutter.
  • the image sensor 101 includes a mechanical shutter and may use both electronic ND control and light shielding by the mechanical shutter, or may use light shielding by the mechanical shutter without using the electronic ND control.
  • the image sensor 101 is an organic sensor.
  • the image sensor 101 only needs to realize nondestructive reading or electronic ND control, and may be other than an organic sensor.
  • the photoelectric conversion layer included in the photoelectric conversion unit 211 may be made of an inorganic material.
  • the photoelectric conversion layer may be made of amorphous silicon or chalcopyrite semiconductor.
  • FIG. 5 is a flowchart showing an operation flow of the imaging apparatus 100.
  • FIG. 6 is a diagram for explaining the operation of the imaging apparatus 100. For example, this operation is used when a night sky or a night view is exposed for a long time.
  • the imaging device 100 first captures the main image 121 (S101). Specifically, as shown in FIG. 6, normal exposure is performed from time t1, and then the main image 121 is read by destructive reading.
  • the imaging apparatus 100 starts light-shielding exposure for generating the correction image 141 at time t2 (S102).
  • the light-shielding exposure is to perform exposure in a light-shielded state.
  • light shielding is performed by the above-described electronic ND control or a mechanical shutter.
  • the light-shielded image 131 photographed in such a light-shielded state shows a pixel value (luminance value) corresponding to the dark current amount.
  • the imaging apparatus 100 generates a plurality of light-shielded images 131 by performing non-destructive readout a predetermined number of times during the light-shielding exposure period (S103). Specifically, the imaging apparatus 100 repeatedly performs nondestructive reading at a predetermined cycle T4 after a predetermined time T3 has elapsed after the start of light-shielding exposure.
  • the exposure time T2 of the light-shielding exposure is predetermined and is longer than the main exposure time T1, for example.
  • FIG. 7 is a diagram illustrating an example of the main image 121.
  • FIG. 8 is a diagram illustrating an example of the plurality of light-shielded images 131.
  • the main image 121 includes an effective area 122 for outputting an electrical signal corresponding to incident light, and an OB (optical black) area (also referred to as a light shielding area) 123 that is always shielded. Including.
  • the light-shielded image 131 includes an effective area 132 and an OB area 133.
  • the luminance values indicating the dark current amount (black level) are different.
  • the imaging apparatus 100 converts, from the plurality of light-shielded images 131, the light-shielded image 131 in which the pixel value (luminance value) of the OB area 123 included in the main image 121 is close to the pixel value of the OB area 133, and the correction image 141. (S104). That is, the imaging apparatus 100 has a light-shielded image in which the difference between the pixel value of the light-shielded image 131 and the pixel value of the OB area 123 included in the main image 121 is less than a predetermined threshold among the plurality of light-shielded images 131. 131 is selected. For example, the imaging apparatus 100 selects the light-shielded image 131 having the smallest difference.
  • this difference is, for example, a difference between an average value of a plurality of pixel values in the OB area 123 and an average value of a plurality of pixel values in the OB area 133.
  • a maximum value, a minimum value, or a median value may be used instead of the average value.
  • the region used for comparison may be the entire OB region, a part of the OB region may be used, or a specific pixel included in the OB region may be used.
  • region used for a comparison is the same area
  • the imaging apparatus 100 generates a corrected image 142 by subtracting the correction image 141 from the main image 121 (S105). Specifically, the pixel value of the pixel at the same position in the correction image 141 is subtracted from the pixel value of each pixel of the main image 121. Thereby, the influence of the dark current at the time of long exposure is reduced.
  • the environment for example, temperature
  • the environment may change between the main exposure and the light-shielding exposure.
  • the detected dark current amount may be different.
  • the correction image 141 by selecting, as the correction image 141, a light-shielded image 131 having a pixel value in the OB area that is close to the light-shielded image 131 having different exposure times obtained by nondestructive readout. It is possible to suppress a difference in the amount of dark current between the main exposure and the light-shielding exposure.
  • FIG. 6 shows an example in which the non-destructive read cycle T4 is constant, it may not be constant.
  • the non-destructive readout interval at the time when the light shielding exposure time approaches the exposure time T1 of the main exposure may be shortened.
  • nondestructive reading is performed after a predetermined time has elapsed, but nondestructive reading may be performed periodically from the start of light-shielding exposure.
  • the imaging apparatus 100 includes the imaging element 101 capable of nondestructive reading, the imaging system 106 that collects light on the imaging element 101, and the light shielding that blocks the light of the imaging system 106. And a correction unit 105 that generates a corrected image 142 by subtracting the correction image 141 from the main image 121 obtained by the image sensor 101.
  • the correction unit 105 obtains a plurality of light-shielded images 131 obtained by the image sensor 101 by one exposure in a light-shielded state, each having a different exposure time by using nondestructive reading, and obtains at least one of the plurality of light-shielded images 131.
  • the correction image 141 is generated using the correction image 141.
  • the function of shielding the light of the imaging system 106 is not limited to a method using a mechanical shutter, and may be a method using another mechanism such as electronic ND control. That is, the light shielding unit that shields the light of the imaging system 106 is not limited to the light shielding unit 107 (mechanical shutter or the like) illustrated in FIG. 1, and may be a mechanism for performing electronic ND control or the like.
  • the correction unit 105 also includes a light-shielded image 131 in which the difference between the pixel value of the light-shielded image 131 and the pixel value of the light-shielded region (OB region 123) included in the main image 121 is less than a threshold value. From this, a correction image 141 is generated. As a result, the correction image 141 can be generated using the light-shielded image 131 that has a small difference in dark current amount from the main image 121, so that the difference in dark current amount between the main image 121 and the correction image 141 can be reduced.
  • the correction unit 105 calculates the pixel value of the light shielding area (OB area 133) of the light shielding image 131 and the pixel value of the light shielding area (OB area 123) included in the main image 121 among the plurality of light shielding images 131.
  • a correction image 141 is generated from the light-shielded image whose difference is less than the threshold. That is, pixel values in the same region are compared. Thereby, the light-shielding image 131 with a similar dark current amount can be selected with high accuracy.
  • the dark current amount of the light-shielded image 131 is dynamically determined, and the light-shielding exposure ends at the timing when the light-shielded image 131 having a dark current amount similar to the main image 121 is obtained. Thereby, compared with Embodiment 1, it can suppress that unnecessary nondestructive reading is performed.
  • FIG. 10 is a flowchart showing an operation flow of the imaging apparatus 100 according to the present embodiment.
  • FIG. 11 is a diagram for explaining this operation.
  • the imaging apparatus 100 captures the main image 121 as in the first embodiment, and starts light-shielding exposure at time t2 (S112).
  • the imaging apparatus 100 performs nondestructive readout during the light-shielding exposure period (S113).
  • the imaging apparatus 100 determines whether the pixel value of the OB area 133 of the light-shielded image 131 obtained by nondestructive reading is close to the pixel value of the OB area 123 of the main image 121 (S114). Specifically, the imaging apparatus 100 determines whether the difference between the pixel value of the OB area 133 of the light-shielded image 131 and the pixel value of the OB area 123 of the main image 121 is less than a predetermined threshold value.
  • the imaging apparatus 100 ends the light-shielding exposure (S115), and finally selects the light-shielded image 131 read by nondestructive readout as the correction image 141. (S116). For example, in the example illustrated in FIG. 11, at time t3, the difference is determined to be less than the threshold value, and the light-shielded image 131 is selected as the correction image 141.
  • the imaging apparatus 100 generates a corrected image 142 by subtracting the correction image 141 from the main image 121 (S117).
  • the correction unit 105 repeats nondestructive reading until the difference between the pixel value of the light-shielded image 131 and the pixel value of the OB area 123 included in the main image 121 is less than the threshold, and the difference is less than the threshold.
  • the shaded image 131 that has become is selected as the correction image 141.
  • FIG. 12 is a flowchart showing the operation of the imaging apparatus 100 in this case.
  • FIG. 13 is a diagram for explaining this operation.
  • the process shown in FIG. 12 includes step S116A instead of step S116 with respect to the process shown in FIG. That is, when the difference is less than the threshold (Yes in S114), the imaging apparatus 100 ends the light-shielding exposure (S115), and acquires the correction image 141 by destructive reading (S116A).
  • the difference is determined to be less than the threshold value.
  • the imaging apparatus 100 acquires the correction image 141 by destructive reading.
  • destructive readout is performed immediately after the determination, but may not be immediately after.
  • the correction unit 105 repeats nondestructive reading until the difference between the pixel value of the light-shielded image 131 and the pixel value of the OB area 123 included in the main image 121 is less than the threshold, and the difference is less than the threshold.
  • a light-shielded image is acquired from the image sensor 101 by destructive readout, and the light-shielded image acquired by the destructive readout is selected as the correction image 141.
  • Embodiment 3 In the present embodiment, modified examples of the first and second embodiments will be described.
  • Embodiments 1 and 2 the example in which one light-shielded image 131 obtained by nondestructive readout or destructive readout is used as it is as the correction image 141 has been described.
  • an example in which a correction image 141 is generated using a plurality of shaded images 131 will be described.
  • FIG. 14 is a flowchart showing the operation of the modification of the first embodiment.
  • the process shown in FIG. 14 includes step S104A instead of step S104 with respect to the process shown in FIG.
  • FIG. 15 is a diagram for explaining this operation.
  • step S ⁇ b> 104 ⁇ / b> A the imaging apparatus 100 uses a plurality of light-shielded images 131 obtained by nondestructive readout to have a plurality of light-shielded images 131 in which the pixel value of the OB area 123 included in the main image 121 is close to the pixel value of the OB area 133. Is used to generate the correction image 141 (S104A).
  • the imaging apparatus 100 includes a plurality of shaded images 131 in which a difference between a pixel value of the shaded image 131 and a pixel value of the OB area 123 included in the main image 121 is less than a predetermined threshold.
  • a correction image 141 is generated using the light-shielded image 131.
  • the correction unit 105 generates the correction image 141 by averaging the plurality of light shielding images 131 whose difference is less than the threshold among the plurality of light shielding images 131.
  • the method of reducing random noise using a plurality of images is not limited to the averaging.
  • the pixel value of a pixel in which random noise is generated is a value that is distant from the pixel value of a pixel at the same position in another plurality of images. Therefore, the imaging apparatus 100 determines whether or not random noise is generated in each pixel of each image based on the variation in the pixel value of each pixel between images, and a pixel in which random noise is not generated. May be combined to generate the correction image 141.
  • the imaging apparatus 100 may generate the correction image 141 by adding and averaging a plurality of light-shielded images 131 excluding pixels where random noise is generated.
  • the plurality of light-shielded images 131 may include images that have been read out in a destructive manner.
  • FIG. 16 is a flowchart showing the operation of the imaging apparatus 100 in this case.
  • FIG. 17 is a diagram for explaining this operation.
  • the process shown in FIG. 16 includes steps S116B and S116C instead of step S116A with respect to the process shown in FIG.
  • the imaging apparatus 100 ends the light-shielding exposure (S115), and after performing nondestructive reading continuously, performs destructive reading, thereby The shaded image 131 is acquired (S116B).
  • the imaging apparatus 100 generates the correction image 141 using the plurality of light-shielded images 131 obtained in step S116B.
  • the method for generating the correction image 141 is the same as that in step S104A, for example.
  • the non-destructive read interval T5 after the above difference is determined to be less than the threshold (after time t3) is shorter than the previous non-destructive read interval T4. That is, the correction unit 105 repeats nondestructive reading at the first interval T4 until the difference becomes less than the threshold, and when the difference becomes less than the threshold, the nondestructive reading is performed at the second interval T5 shorter than the first interval.
  • the correction image 141 may be generated by repeating the above and averaging the plurality of shaded images 131 acquired by destructive readout at the second interval T5.
  • the correction image 141 can be generated using a plurality of light-shielded images 131 with a small difference in dark current amount from the main image 121, so that the difference in dark current amount between the main image 121 and the correction image 141 can be reduced. .
  • An imaging apparatus 100 includes an imaging element 101 capable of nondestructive readout, an imaging system 106 that collects light on the imaging element 101, a light shielding unit 107 that shields light from the imaging system 106, A correction unit 105 that generates a post-correction image 142 by subtracting the correction image 141 from the main image 121 obtained by the image pickup device 101.
  • a plurality of shaded images 131 obtained with different exposure times are obtained using nondestructive readout, and a correction image 141 is generated using at least one of the plurality of shaded images 131.
  • the correction unit 105 corrects the correction image 141 from the light-shielded image 131 in which the difference between the pixel value of the light-shielded image 131 and the pixel value of the light-shielded area included in the main image 121 is less than the threshold among the plurality of light-shielded images 131. May be generated.
  • the correction image 141 can be generated using the light-shielded image 131 with a small difference in dark current amount from the main image 121, the difference in dark current amount between the main image 121 and the correction image 141 can be reduced.
  • the correction unit 105 may repeat non-destructive reading until the difference is less than the threshold, and may select the light-shielded image 131 in which the difference is less than the threshold as the correction image 141.
  • the correction unit 105 repeats nondestructive reading until the difference between the pixel value of the read light-shielding image 131 and the pixel value of the light-shielding area included in the main image 121 is less than the threshold, and the difference is less than the threshold.
  • the shaded image 131 may be acquired from the image sensor 101 by destructive readout, and the shaded image 131 obtained by destructive readout may be selected as the correction image 141.
  • the correction unit 105 may generate the correction image 141 by averaging the plurality of light shielding images 131 whose difference is less than the threshold among the plurality of light shielding images 131.
  • the correction unit 105 repeats nondestructive reading at a first interval until the difference becomes less than a threshold, and when the difference becomes less than the threshold, repeats nondestructive reading at a second interval shorter than the first interval.
  • the correction image 141 may be generated by averaging the plurality of light-shielded images 131 obtained by nondestructive reading at the second interval.
  • the correction image 141 can be generated using a plurality of light-shielded images 131 with a small difference in dark current amount from the main image 121, the difference in dark current amount between the main image 121 and the correction image 141 is reduced. Can be reduced.
  • the correction unit 105 corrects a light-shielded image 131 in which the difference between the pixel value of the light-shielded area of the light-shielded image 131 and the pixel value of the light-shielded area included in the main image 121 is less than the threshold among the plurality of light-shielded images 131.
  • a work image 141 may be generated.
  • the light-shielded image 131 having a similar dark current amount can thereby be selected with high accuracy.
  • the image sensor 101 may be an organic sensor.
  • a control method includes an imaging element 101 capable of nondestructive reading, an imaging system 106 that collects light on the imaging element 101, and a light shielding unit 107 that shields light from the imaging system 106.
  • the control method of the imaging apparatus 100 includes a correction step of generating a corrected image 142 by subtracting the correction image 141 from the main image 121 obtained by the imaging element 101.
  • the light shielding state is performed once.
  • a plurality of light-shielded images 131 obtained by the image sensor 101 by the above exposure and having different exposure times are acquired using nondestructive readout, and a correction image 141 is generated using at least one of the plurality of light-shielded images 131.
  • the imaging device according to the embodiment of the present disclosure has been described above, but the present disclosure is not limited to this embodiment.
  • each processing unit included in the imaging apparatus is typically realized as an LSI that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • circuits are not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the present disclosure may be realized as a control method executed by the imaging apparatus.
  • circuit configuration shown in the circuit diagram is an example, and the present disclosure is not limited to the circuit configuration. That is, similar to the circuit configuration described above, a circuit that can realize the characteristic function of the present disclosure is also included in the present disclosure. Moreover, all the numbers used above are illustrated for specifically explaining the present disclosure, and the present disclosure is not limited to the illustrated numbers.
  • division of functional blocks in the block diagram is an example, and a plurality of functional blocks can be realized as one functional block, a single functional block can be divided into a plurality of functions, or some functions can be transferred to other functional blocks. May be.
  • functions of a plurality of functional blocks having similar functions may be processed in parallel or time-division by a single hardware or software.
  • the imaging device has been described based on the embodiment, but the present disclosure is not limited to this embodiment. Unless it deviates from the gist of the present disclosure, various modifications conceived by those skilled in the art have been made in this embodiment, and forms constructed by combining components in different embodiments are also within the scope of one or more aspects. May be included.
  • the present disclosure can be applied to an imaging apparatus such as a digital still camera or a digital video camera.
  • DESCRIPTION OF SYMBOLS 100 Image pick-up device 101 Image pick-up element 102 Control part 103 Display part 104 Storage part 105 Correction part 106 Imaging system 107 Light-shielding part 121 Main image 122,132 Effective area 123, 133 OB area 131 Light-shielded image 141 Image for correction 142 Image after correction 201 Pixel 202 vertical scanning unit 203 column signal processing unit 204 horizontal readout unit 205 reset control line 206 address control line 207 vertical signal line 208 horizontal output terminal 211 photoelectric conversion unit 212 charge storage unit 213 reset transistor 214 amplification transistor 215 selection transistor

Abstract

This imaging device (100) is provided with: an imaging element (101) which can be non-destructively read; an imaging system (106) which focuses light on the imaging element (101); a light shielding unit (107) which shields the light of the imaging system (106); and a correction unit (105) which generates a corrected image (142) by subtracting a correcting image (141) from a main image (121) obtained by the imaging element (101). The correction unit (105) uses non-destructive reading to acquire a plurality of light-shielded images (131), which are obtained by the imaging element (101) as a result of one exposure in a light-shielded state, and which each have different exposure times, and uses at least one of the plurality of light-shielded images (131) to generate the correcting image (141).

Description

撮像装置及びその制御方法Imaging apparatus and control method thereof
 本開示は、撮像装置及びその制御方法に関する。 The present disclosure relates to an imaging apparatus and a control method thereof.
 有機光電変換素子を用いた撮像素子として、特許文献1に記載の技術が知られている。 A technique described in Patent Document 1 is known as an image sensor using an organic photoelectric conversion element.
特開2008-042180号公報JP 2008-042180 A
 撮像装置において、暗電流に起因する黒レベルの変化を補正するための処理が行われている。具体的には、撮像装置は、本画像から、遮光状態で撮影した遮光画像を差し引くことで、暗電流の影響を低減する。 In the imaging apparatus, processing for correcting a change in black level caused by dark current is performed. Specifically, the imaging device reduces the influence of dark current by subtracting a light-shielded image taken in a light-shielded state from the main image.
 しかしながら、本画像の撮影時と遮光画像の撮影時とで、例えば温度が変化することにより暗電流量が変化する場合がある。この場合には、上記の補正により暗電流の影響を完全になくすことができない。 However, the dark current amount may change due to, for example, a change in temperature between when the main image is captured and when the light-shielded image is captured. In this case, the influence of dark current cannot be completely eliminated by the above correction.
 そこで、本開示は、暗電流量の影響を低減できる撮像装置又はその制御方法を提供することを目的とする。 Therefore, an object of the present disclosure is to provide an imaging apparatus that can reduce the influence of the dark current amount or a control method thereof.
 本開示の一態様に係る撮像装置は、非破壊読み出しが可能な撮像素子と、光を前記撮像素子に集光する撮像系と、前記撮像系の光を遮光する遮光部と、前記撮像素子で得られた本画像から補正用画像を差し引くことで補正後画像を生成する補正部とを備え、前記補正部は、遮光状態の1回の露光により前記撮像素子で得られ、それぞれ露光時間が異なる複数の遮光画像を非破壊読み出しを用いて取得し、前記複数の遮光画像の少なくとも一つを用いて前記補正用画像を生成する。 An imaging apparatus according to an aspect of the present disclosure includes: an imaging element that can perform nondestructive reading; an imaging system that collects light on the imaging element; a light-blocking unit that blocks light from the imaging system; and the imaging element. A correction unit that generates a corrected image by subtracting a correction image from the obtained main image, and the correction unit is obtained by the imaging device by one exposure in a light-shielding state, and each has a different exposure time. A plurality of shaded images are acquired using nondestructive readout, and the correction image is generated using at least one of the plurality of shaded images.
 本開示は、暗電流量の影響を低減できる撮像装置又はその制御方法を提供できる。 The present disclosure can provide an imaging apparatus or a control method thereof that can reduce the influence of the dark current amount.
図1は、実施の形態1に係る撮像装置のブロック図である。FIG. 1 is a block diagram of the imaging apparatus according to the first embodiment. 図2Aは、実施の形態1に係る撮像装置の外観例を示す図である。FIG. 2A is a diagram illustrating an appearance example of the imaging apparatus according to Embodiment 1. 図2Bは、実施の形態1に係る撮像装置の外観例を示す図である。FIG. 2B is a diagram illustrating an appearance example of the imaging apparatus according to Embodiment 1. 図3は、実施の形態1に係る撮像素子の構成を示す図である。FIG. 3 is a diagram illustrating a configuration of the image sensor according to the first embodiment. 図4は、実施の形態1に係る画素の構成を示す回路図である。FIG. 4 is a circuit diagram illustrating a configuration of a pixel according to Embodiment 1. 図5は、実施の形態1に係る撮像装置の動作を示すフローチャートである。FIG. 5 is a flowchart illustrating the operation of the imaging apparatus according to the first embodiment. 図6は、実施の形態1に係る撮像装置の動作を示す図である。FIG. 6 is a diagram illustrating the operation of the imaging apparatus according to the first embodiment. 図7は、実施の形態1に係る本画像の一例を示す図である。FIG. 7 is a diagram illustrating an example of the main image according to the first embodiment. 図8は、実施の形態1に係る複数の遮光画像の一例を示す図である。FIG. 8 is a diagram illustrating an example of a plurality of light-shielded images according to the first embodiment. 図9は、実施の形態1に係る補正後画像の算出処理を示す図である。FIG. 9 is a diagram illustrating a calculation process of the corrected image according to the first embodiment. 図10は、実施の形態2に係る撮像装置の動作を示すフローチャートである。FIG. 10 is a flowchart illustrating the operation of the imaging apparatus according to the second embodiment. 図11は、実施の形態2に係る撮像装置の動作を示す図である。FIG. 11 is a diagram illustrating the operation of the imaging apparatus according to the second embodiment. 図12は、実施の形態2の変形例に係る撮像装置の動作を示すフローチャートである。FIG. 12 is a flowchart illustrating the operation of the imaging apparatus according to the modification of the second embodiment. 図13は、実施の形態2の変形例に係る撮像装置の動作を示す図である。FIG. 13 is a diagram illustrating the operation of the imaging apparatus according to the modification of the second embodiment. 図14は、実施の形態3に係る撮像装置の動作を示すフローチャートである。FIG. 14 is a flowchart illustrating the operation of the imaging apparatus according to the third embodiment. 図15は、実施の形態3に係る撮像装置の動作を示す図である。FIG. 15 is a diagram illustrating the operation of the imaging apparatus according to the third embodiment. 図16は、実施の形態3の変形例に係る撮像装置の動作を示すフローチャートである。FIG. 16 is a flowchart illustrating the operation of the imaging apparatus according to the modification of the third embodiment. 図17は、実施の形態3の変形例に係る撮像装置の動作を示す図である。FIG. 17 is a diagram illustrating the operation of the imaging apparatus according to the modification of the third embodiment.
 以下、本開示の実施の形態について、図面を参照しながら説明する。以下に説明する実施の形態は、いずれも本開示の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Each of the embodiments described below shows a preferred specific example of the present disclosure. Therefore, the numerical values, shapes, materials, components, component arrangement positions, connection forms, and the like shown in the following embodiments are merely examples, and are not intended to limit the present disclosure. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept of the present disclosure are described as arbitrary constituent elements.
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected to the substantially same structure, The overlapping description is abbreviate | omitted or simplified.
 (実施の形態1)
 [撮像装置の構成]
 まず、本開示の実施の形態に係る撮像装置の構成を説明する。図1は、本実施の形態に係る撮像装置100の構成を示すブロック図である。また、図2A及び図2Bは、撮像装置100の外観の例を示す図である。例えば、図2A及び図2Bに示すように、撮像装置100は、デジタルスチルカメラ又はデジタルビデオカメラ等のカメラである。
(Embodiment 1)
[Configuration of imaging device]
First, the configuration of the imaging device according to the embodiment of the present disclosure will be described. FIG. 1 is a block diagram illustrating a configuration of an imaging apparatus 100 according to the present embodiment. 2A and 2B are diagrams illustrating an example of the appearance of the imaging apparatus 100. FIG. For example, as illustrated in FIGS. 2A and 2B, the imaging apparatus 100 is a camera such as a digital still camera or a digital video camera.
 図1に示す撮像装置100は、撮像素子101と、制御部102と、表示部103と、記憶部104と、撮像系106と、遮光部107とを備える。撮像素子101は、入射光を電気信号(画像)に変換し、得られた電気信号を出力する固体撮像素子(固体撮像装置)であり、例えば、有機光電変換素子を用いた有機センサである。 1 includes an imaging element 101, a control unit 102, a display unit 103, a storage unit 104, an imaging system 106, and a light shielding unit 107. The imaging device 101 is a solid-state imaging device (solid-state imaging device) that converts incident light into an electrical signal (image) and outputs the obtained electrical signal. For example, the imaging device 101 is an organic sensor using an organic photoelectric conversion device.
 制御部102は、撮像素子101の制御を行う。また、制御部102は、撮像素子101で得られた画像に対して各種信号処理を施し、得られた画像を表示部103に表示したり、記憶部104に記憶したりする。なお、制御部102から出力された画像は、図示しない入出力インタフェースを介して撮像装置100の外部に出力されてもよい。 The control unit 102 controls the image sensor 101. In addition, the control unit 102 performs various signal processing on the image obtained by the imaging element 101, and displays the obtained image on the display unit 103 or stores it in the storage unit 104. Note that the image output from the control unit 102 may be output to the outside of the imaging apparatus 100 via an input / output interface (not shown).
 また、制御部102は、撮像素子101で得られた画像を補正する補正部105を備える。 In addition, the control unit 102 includes a correction unit 105 that corrects an image obtained by the image sensor 101.
 撮像系106は、例えば、1又は複数のレンズを含み、撮像装置100の外部からの光を撮像素子101に集光する。 The imaging system 106 includes, for example, one or a plurality of lenses, and condenses light from the outside of the imaging apparatus 100 on the imaging element 101.
 遮光部107は、例えば、メカシャッタであり、撮像系106の光を遮光する。 The light shielding unit 107 is, for example, a mechanical shutter, and shields light from the imaging system 106.
 [撮像素子の構成]
 次に、撮像素子101の構成を説明する。図3は、撮像素子101の構成を示すブロック図である。
[Configuration of image sensor]
Next, the configuration of the image sensor 101 will be described. FIG. 3 is a block diagram illustrating a configuration of the image sensor 101.
 図3に示す撮像素子101は、行列状に配置された複数の画素(単位画素セル)201と、垂直走査部202と、カラム信号処理部203と、水平読み出し部204と、行毎に設けられている複数のリセット制御線205と、行毎に設けられている複数のアドレス制御線206と、列毎に設けられている複数の垂直信号線207と、水平出力端子208とを備える。 3 includes a plurality of pixels (unit pixel cells) 201 arranged in a matrix, a vertical scanning unit 202, a column signal processing unit 203, a horizontal readout unit 204, and a row. A plurality of reset control lines 205, a plurality of address control lines 206 provided for each row, a plurality of vertical signal lines 207 provided for each column, and a horizontal output terminal 208.
 複数の画素201の各々は、入射光に応じた信号を、対応する列に設けられている垂直信号線207に出力する。 Each of the plurality of pixels 201 outputs a signal corresponding to the incident light to the vertical signal line 207 provided in the corresponding column.
 垂直走査部202は、複数のリセット制御線205を介して複数の画素201をリセットする。また、垂直走査部202は、複数のアドレス制御線206を介して、複数の画素201を行単位で順次選択する。 The vertical scanning unit 202 resets the plurality of pixels 201 via the plurality of reset control lines 205. The vertical scanning unit 202 sequentially selects the plurality of pixels 201 in units of rows via the plurality of address control lines 206.
 カラム信号処理部203は、複数の垂直信号線207に出力された信号に信号処理を行い、当該信号処理により得られた複数の信号を水平読み出し部204へ出力する。例えば、カラム信号処理部203は、相関二重サンプリングに代表される雑音抑圧信号処理及び、アナログ/デジタル変換処理等を行う。 The column signal processing unit 203 performs signal processing on the signals output to the plurality of vertical signal lines 207, and outputs the plurality of signals obtained by the signal processing to the horizontal reading unit 204. For example, the column signal processing unit 203 performs noise suppression signal processing represented by correlated double sampling, analog / digital conversion processing, and the like.
 水平読み出し部204は、複数のカラム信号処理部203で信号処理された後の複数の信号を順次水平出力端子208に出力する。 The horizontal readout unit 204 sequentially outputs a plurality of signals after the signal processing by the plurality of column signal processing units 203 to the horizontal output terminal 208.
 以下、画素201の構成を説明する。図4は、画素201の構成を示す回路図である。 Hereinafter, the configuration of the pixel 201 will be described. FIG. 4 is a circuit diagram illustrating a configuration of the pixel 201.
 図4に示すように画素201は、光電変換部211と、電荷蓄積部212と、リセットトランジスタ213と、増幅トランジスタ214(ソースフォロアトランジスタ)と、選択トランジスタ215とを備える。 As shown in FIG. 4, the pixel 201 includes a photoelectric conversion unit 211, a charge storage unit 212, a reset transistor 213, an amplification transistor 214 (source follower transistor), and a selection transistor 215.
 光電変換部211は、入射光を光電変換することにより信号電荷を生成する。光電変換部211の一端には電圧Voeが印加されている。具体的には、光電変換部211は、有機材料で構成される光電変換層を含む。なお、この光電変換層は、有機材料で構成される層と無機材料で構成される層とを含んでもよい。 The photoelectric conversion unit 211 generates signal charges by photoelectrically converting incident light. A voltage Voe is applied to one end of the photoelectric conversion unit 211. Specifically, the photoelectric conversion unit 211 includes a photoelectric conversion layer made of an organic material. The photoelectric conversion layer may include a layer made of an organic material and a layer made of an inorganic material.
 電荷蓄積部212は、光電変換部211に接続されており、光電変換部211で生成された信号電荷を蓄積する。なお、電荷蓄積部212は、専用の容量素子ではなく、配線容量等の寄生容量で構成されてもよい。 The charge storage unit 212 is connected to the photoelectric conversion unit 211 and stores the signal charge generated by the photoelectric conversion unit 211. Note that the charge storage unit 212 may be configured with a parasitic capacitance such as a wiring capacitance instead of a dedicated capacitance element.
 リセットトランジスタ213は、信号電荷の電位をリセットするために用いられる。リセットトランジスタ213のゲートはリセット制御線205に接続されており、ソースは電荷蓄積部212に接続されており、ドレインにはリセット電圧Vresetが印加される。 The reset transistor 213 is used to reset the potential of the signal charge. The gate of the reset transistor 213 is connected to the reset control line 205, the source is connected to the charge storage unit 212, and the reset voltage Vreset is applied to the drain.
 なお、ドレイン及びソースの定義は、一般的に回路動作に依存するものであり、素子構造からは特定できない場合が多い。本実施の形態では、便宜的にソース及びドレインの一方をソースと呼び、ソース及びドレインの他方をドレインと呼ぶが、本実施の形態におけるドレインをソース、ソースをドレインと置き換えてもよい。 Note that the definitions of drain and source generally depend on circuit operation, and are often not specified from the element structure. In this embodiment, for convenience, one of the source and the drain is referred to as a source and the other of the source and the drain is referred to as a drain. However, in this embodiment, the drain may be replaced with the source and the source may be replaced with the drain.
 増幅トランジスタ214は、電荷蓄積部212の電圧を増幅することで、当該電圧に応じた信号を垂直信号線207へ出力する。増幅トランジスタ214のゲートは電荷蓄積部212に接続されており、ドレインに電源電圧Vddまたは接地電圧Vssが印加される。 The amplification transistor 214 amplifies the voltage of the charge storage unit 212 and outputs a signal corresponding to the voltage to the vertical signal line 207. The gate of the amplification transistor 214 is connected to the charge storage unit 212, and the power supply voltage Vdd or the ground voltage Vss is applied to the drain.
 選択トランジスタ215は、増幅トランジスタ214と直列に接続されており、増幅トランジスタ214が増幅した信号を垂直信号線207に出力するか否かを切り替える。選択トランジスタ215のゲートはアドレス制御線206に接続されており、ドレインは増幅トランジスタ214のソースに接続されており、ソースは垂直信号線207に接続されている。 The selection transistor 215 is connected in series with the amplification transistor 214, and switches whether to output the signal amplified by the amplification transistor 214 to the vertical signal line 207. The selection transistor 215 has a gate connected to the address control line 206, a drain connected to the source of the amplification transistor 214, and a source connected to the vertical signal line 207.
 また、例えば、電圧Voe、リセット電圧Vreset及び電源電圧Vddは、全画素201で共通に用いられる電圧である。 Further, for example, the voltage Voe, the reset voltage Vreset, and the power supply voltage Vdd are voltages commonly used in all the pixels 201.
 また、有機センサの特徴として、非破壊読み出しと、電子ND(Neutral Density)制御とがある。非破壊読み出しとは、露光期間中に画像データを読み出し、引き続き露光を継続する処理である。従来の読み出し(以下、破壊読み出しと呼ぶ)では、読み出しを行う際には露光を終了する必要があった。つまり、1回の露光により1枚の画像しか得ることができなかった。これに対して、非破壊読み出しを用いることで、露光期間中に、その時刻までに露光された画像データを読み出し、引き続き露光を継続することができる。これにより、1回の露光で露光時間の異なる複数の画像を得ることができる。 The characteristics of the organic sensor include non-destructive readout and electronic ND (Neutral Density) control. Non-destructive reading is a process of reading image data during an exposure period and continuing exposure. In conventional readout (hereinafter referred to as destructive readout), it is necessary to end exposure when performing readout. That is, only one image could be obtained by one exposure. On the other hand, by using nondestructive reading, it is possible to read the image data exposed up to that time during the exposure period and continue the exposure. Thereby, a plurality of images having different exposure times can be obtained by one exposure.
 また、電子ND制御とは、電気的に撮像素子の透過率を制御する処理である。ここで透過率とは、入射光のうち電気信号に変換される光の割合を意味する。つまり、透過率を0%に設定することで、電気的に遮光を実現できる。具体的には、図4に示す電圧Voeが制御されることで透過率が制御される。これにより、メカシャッタを用いることなく、電気的に露光を終了させることができる。 The electronic ND control is a process for electrically controlling the transmittance of the image sensor. Here, the transmittance means the proportion of light that is converted into an electrical signal in the incident light. That is, by setting the transmittance to 0%, it is possible to electrically shield the light. Specifically, the transmittance is controlled by controlling the voltage Voe shown in FIG. Thereby, exposure can be electrically terminated without using a mechanical shutter.
 なお、撮像素子101は、メカシャッタを備え、電子ND制御とメカシャッタによる遮光とを併用してもよいし、電子ND制御を用いずに、メカシャッタによる遮光を用いてもよい。 Note that the image sensor 101 includes a mechanical shutter and may use both electronic ND control and light shielding by the mechanical shutter, or may use light shielding by the mechanical shutter without using the electronic ND control.
 また、ここでは、撮像素子101が有機センサである例を述べるが、撮像素子101は、非破壊読み出し、又は電子ND制御を実現できればよく、有機センサ以外であってもよい。つまり、光電変換部211に含まれる光電変換層は無機材料で構成されてもよい。例えば、光電変換層はアモルファスシリコン又はカルコパイライト系半導体等で構成されてもよい。 In addition, here, an example in which the image sensor 101 is an organic sensor will be described. However, the image sensor 101 only needs to realize nondestructive reading or electronic ND control, and may be other than an organic sensor. That is, the photoelectric conversion layer included in the photoelectric conversion unit 211 may be made of an inorganic material. For example, the photoelectric conversion layer may be made of amorphous silicon or chalcopyrite semiconductor.
 [撮像装置の動作]
 次に、本実施の形態に係る撮像装置100の動作を説明する。図5は、撮像装置100の動作の流れを示すフローチャートである。図6は、撮像装置100の動作を説明するための図である。例えば、この動作は、夜空又は夜景などを長秒露光する際に用いられる。
[Operation of imaging device]
Next, the operation of the imaging apparatus 100 according to the present embodiment will be described. FIG. 5 is a flowchart showing an operation flow of the imaging apparatus 100. FIG. 6 is a diagram for explaining the operation of the imaging apparatus 100. For example, this operation is used when a night sky or a night view is exposed for a long time.
 図5に示すように、撮像装置100は、まず、本画像121を撮影する(S101)。具体的には、図6に示すように、時刻t1から通常の露光が行われ、その後、破壊読み出しにより本画像121が読み出される。 As shown in FIG. 5, the imaging device 100 first captures the main image 121 (S101). Specifically, as shown in FIG. 6, normal exposure is performed from time t1, and then the main image 121 is read by destructive reading.
 次に、撮像装置100は、時刻t2において、補正用画像141を生成するための遮光露光を開始する(S102)。具体的には、遮光露光とは、遮光状態において露光を行うことであり、例えば、上述した電子ND制御、又は、メカシャッタにより遮光が行われる。また、このような遮光状態において撮影された遮光画像131は、暗電流量に相当する画素値(輝度値)を示す。 Next, the imaging apparatus 100 starts light-shielding exposure for generating the correction image 141 at time t2 (S102). Specifically, the light-shielding exposure is to perform exposure in a light-shielded state. For example, light shielding is performed by the above-described electronic ND control or a mechanical shutter. Further, the light-shielded image 131 photographed in such a light-shielded state shows a pixel value (luminance value) corresponding to the dark current amount.
 次に、撮像装置100は、この遮光露光期間中に予め定められた回数の非破壊読み出しを行うことで、複数の遮光画像131を生成する(S103)。具体的には、撮像装置100は、遮光露光開始後、所定の時間T3が経過した後、予め定められた周期T4で非破壊読み出しを繰り返し行う。 Next, the imaging apparatus 100 generates a plurality of light-shielded images 131 by performing non-destructive readout a predetermined number of times during the light-shielding exposure period (S103). Specifically, the imaging apparatus 100 repeatedly performs nondestructive reading at a predetermined cycle T4 after a predetermined time T3 has elapsed after the start of light-shielding exposure.
 また、遮光露光の露光時間T2は、予め定められており、例えば、本露光時間T1より長い。 Further, the exposure time T2 of the light-shielding exposure is predetermined and is longer than the main exposure time T1, for example.
 図7は、本画像121の一例を示す図である。図8は、複数の遮光画像131の一例を示す図である。図7に示すように、本画像121は、入射光に応じた電気信号を出力するための有効領域122と、常に遮光されているOB(オプティカル・ブラック)領域(遮光領域とも呼ぶ)123とを含む。同様に、遮光画像131も、有効領域132とOB領域133とを含む。また、複数の遮光画像131は、互いに露光時間が異なるため暗電流量(黒レベル)を示す輝度値が異なる。 FIG. 7 is a diagram illustrating an example of the main image 121. FIG. 8 is a diagram illustrating an example of the plurality of light-shielded images 131. As shown in FIG. 7, the main image 121 includes an effective area 122 for outputting an electrical signal corresponding to incident light, and an OB (optical black) area (also referred to as a light shielding area) 123 that is always shielded. Including. Similarly, the light-shielded image 131 includes an effective area 132 and an OB area 133. In addition, since the plurality of light-shielded images 131 have different exposure times, the luminance values indicating the dark current amount (black level) are different.
 次に、撮像装置100は、複数の遮光画像131から、本画像121に含まれるOB領域123の画素値(輝度値)と、OB領域133の画素値が近い遮光画像131を、補正用画像141として選択する(S104)。つまり、撮像装置100は、複数の遮光画像131のうち、当該遮光画像131の画素値と、本画像121に含まれるOB領域123の画素値との差が、予め定められた閾値未満の遮光画像131を選択する。例えば、撮像装置100は、当該差が最も小さい遮光画像131を選択する。 Next, the imaging apparatus 100 converts, from the plurality of light-shielded images 131, the light-shielded image 131 in which the pixel value (luminance value) of the OB area 123 included in the main image 121 is close to the pixel value of the OB area 133, and the correction image 141. (S104). That is, the imaging apparatus 100 has a light-shielded image in which the difference between the pixel value of the light-shielded image 131 and the pixel value of the OB area 123 included in the main image 121 is less than a predetermined threshold among the plurality of light-shielded images 131. 131 is selected. For example, the imaging apparatus 100 selects the light-shielded image 131 having the smallest difference.
 また、この差は、例えば、OB領域123の複数の画素値の平均値と、OB領域133の複数の画素値の平均値との差である。なお、平均値の代わりに、最大値、最小値又は中央値等が用いられてもよい。また、比較に用いられる領域は、OB領域全体であってもよいし、OB領域の一部が用いられてもよいし、OB領域に含まれる特定の一画素が用いられてもよい。なお、比較に用いられる領域は同一の領域であることが好ましい。 Further, this difference is, for example, a difference between an average value of a plurality of pixel values in the OB area 123 and an average value of a plurality of pixel values in the OB area 133. Note that a maximum value, a minimum value, or a median value may be used instead of the average value. The region used for comparison may be the entire OB region, a part of the OB region may be used, or a specific pixel included in the OB region may be used. In addition, it is preferable that the area | region used for a comparison is the same area | region.
 次に、撮像装置100は、図9に示すように、本画像121から補正用画像141を差し引くことで補正後画像142を生成する(S105)。具体的には、本画像121の各画素の画素値から補正用画像141の同位置の画素の画素値が減算される。これにより、長秒露光時等における暗電流の影響が低減される。 Next, as illustrated in FIG. 9, the imaging apparatus 100 generates a corrected image 142 by subtracting the correction image 141 from the main image 121 (S105). Specifically, the pixel value of the pixel at the same position in the correction image 141 is subtracted from the pixel value of each pixel of the main image 121. Thereby, the influence of the dark current at the time of long exposure is reduced.
 また、長秒露光時等においては、本露光時と遮光露光時とにおいて環境(例えば温度)が変化する場合がある。これにより、本露光と遮光露光との露光時間を同一にした場合でも、検出される暗電流量が異なる場合がある。一方で、本実施の形態のように、非破壊読み出しにより得られた互いに露光時間の異なる複数の遮光画像131から、OB領域の画素値が近い遮光画像131を補正用画像141として選択することで、本露光時と遮光露光時の暗電流量に差が生じることを抑制できる。 Also, during long-second exposure, the environment (for example, temperature) may change between the main exposure and the light-shielding exposure. Thereby, even when the exposure times of the main exposure and the light-shielding exposure are the same, the detected dark current amount may be different. On the other hand, as in the present embodiment, by selecting, as the correction image 141, a light-shielded image 131 having a pixel value in the OB area that is close to the light-shielded image 131 having different exposure times obtained by nondestructive readout. It is possible to suppress a difference in the amount of dark current between the main exposure and the light-shielding exposure.
 なお、図6において、非破壊読み出しの周期T4が一定である例を示しているが一定でなくてもよい。例えば、遮光露光時間が本露光の露光時間T1に近づく時刻における非破壊読み出しの間隔を短くしてもよい。 Although FIG. 6 shows an example in which the non-destructive read cycle T4 is constant, it may not be constant. For example, the non-destructive readout interval at the time when the light shielding exposure time approaches the exposure time T1 of the main exposure may be shortened.
 また、図6では、所定時間経過後に、非破壊読み出しを行っているが、遮光露光開始から周期的に非破壊読み出しを行ってもよい。 In FIG. 6, nondestructive reading is performed after a predetermined time has elapsed, but nondestructive reading may be performed periodically from the start of light-shielding exposure.
 また、図6では、複数の遮光画像131の全てが非破壊読み出しにより得られているが、最後の1回の読み出しは破壊読み出しであってもよい。 In FIG. 6, all of the plurality of light-shielded images 131 are obtained by non-destructive reading, but the last one reading may be destructive reading.
 以上のように、本実施の形態に係る撮像装置100は、非破壊読み出しが可能な撮像素子101と、光を撮像素子101に集光する撮像系106と、撮像系106の光を遮光する遮光部107と、撮像素子101で得られた本画像121から補正用画像141を差し引くことで補正後画像142を生成する補正部105とを備える。補正部105は、遮光状態の1回の露光により撮像素子101で得られ、それぞれ露光時間が異なる複数の遮光画像131を非破壊読み出しを用いて取得し、複数の遮光画像131の少なくとも一つを用いて補正用画像141を生成する。 As described above, the imaging apparatus 100 according to the present embodiment includes the imaging element 101 capable of nondestructive reading, the imaging system 106 that collects light on the imaging element 101, and the light shielding that blocks the light of the imaging system 106. And a correction unit 105 that generates a corrected image 142 by subtracting the correction image 141 from the main image 121 obtained by the image sensor 101. The correction unit 105 obtains a plurality of light-shielded images 131 obtained by the image sensor 101 by one exposure in a light-shielded state, each having a different exposure time by using nondestructive reading, and obtains at least one of the plurality of light-shielded images 131. The correction image 141 is generated using the correction image 141.
 これにより、温度変化等に起因して生じる、本露光時と遮光露光時との暗電流量の差を低減できる。よって、暗電流の影響を低減できるので、補正後画像142の画質を改善できる。 This makes it possible to reduce the difference in dark current amount between the main exposure and the light-shielding exposure, which is caused by a temperature change or the like. Therefore, since the influence of dark current can be reduced, the image quality of the corrected image 142 can be improved.
 なお、撮像系106の光を遮光する機能は、メカシャッタを用いた手法に限らず、電子ND制御等の他の機構を用いた手法であってもよい。つまり、撮像系106の光を遮光する遮光部とは、図1に示す遮光部107(メカシャッタ等)に限らず、電子ND制御等を行うための機構であってもよい。 Note that the function of shielding the light of the imaging system 106 is not limited to a method using a mechanical shutter, and may be a method using another mechanism such as electronic ND control. That is, the light shielding unit that shields the light of the imaging system 106 is not limited to the light shielding unit 107 (mechanical shutter or the like) illustrated in FIG. 1, and may be a mechanism for performing electronic ND control or the like.
 また、補正部105は、複数の遮光画像131のうち、当該遮光画像131の画素値と、本画像121に含まれる遮光領域(OB領域123)の画素値との差が閾値未満の遮光画像131から補正用画像141を生成する。これにより、本画像121と暗電流量の差が少ない遮光画像131を用いて補正用画像141を生成できるので、本画像121と補正用画像141との暗電流量の差を低減できる。 The correction unit 105 also includes a light-shielded image 131 in which the difference between the pixel value of the light-shielded image 131 and the pixel value of the light-shielded region (OB region 123) included in the main image 121 is less than a threshold value. From this, a correction image 141 is generated. As a result, the correction image 141 can be generated using the light-shielded image 131 that has a small difference in dark current amount from the main image 121, so that the difference in dark current amount between the main image 121 and the correction image 141 can be reduced.
 また、補正部105は、複数の遮光画像131のうち、当該遮光画像131の遮光領域(OB領域133)の画素値と、本画像121に含まれる遮光領域(OB領域123)の画素値との差が閾値未満の遮光画像から補正用画像141を生成する。つまり、同じ領域の画素値が比較される。これにより、暗電流量が類似する遮光画像131を精度よく選択できる。 Further, the correction unit 105 calculates the pixel value of the light shielding area (OB area 133) of the light shielding image 131 and the pixel value of the light shielding area (OB area 123) included in the main image 121 among the plurality of light shielding images 131. A correction image 141 is generated from the light-shielded image whose difference is less than the threshold. That is, pixel values in the same region are compared. Thereby, the light-shielding image 131 with a similar dark current amount can be selected with high accuracy.
 (実施の形態2)
 本実施の形態では、上記実施の形態1の変形例について説明する。なお、以下では、先の実施の形態との相違点を主に説明し、重複する説明は省略する。
(Embodiment 2)
In the present embodiment, a modification of the first embodiment will be described. In the following description, differences from the previous embodiment will be mainly described, and redundant description will be omitted.
 実施の形態1では、遮光露光の露光期間T2及び非破壊読み出しされる遮光画像131の数が予め定められている例を述べた。本実施の形態では、動的に遮光画像131の暗電流量を判定し、本画像121と暗電流量が類似する遮光画像131が得られたタイミングで遮光露光を終了する。これにより、実施の形態1に比べ、不必要な非破壊読み出しが行われることを抑制できる。 In the first embodiment, the example in which the exposure period T2 of the light shielding exposure and the number of the light shielding images 131 to be read nondestructively are set in advance has been described. In the present embodiment, the dark current amount of the light-shielded image 131 is dynamically determined, and the light-shielding exposure ends at the timing when the light-shielded image 131 having a dark current amount similar to the main image 121 is obtained. Thereby, compared with Embodiment 1, it can suppress that unnecessary nondestructive reading is performed.
 図10は、本実施の形態に係る撮像装置100の動作の流れを示すフローチャートである。図11は、この動作を説明するための図である。まず、撮像装置100は、実施の形態1と同様に、本画像121を撮影し、時刻t2において遮光露光を開始する(S112)。 FIG. 10 is a flowchart showing an operation flow of the imaging apparatus 100 according to the present embodiment. FIG. 11 is a diagram for explaining this operation. First, the imaging apparatus 100 captures the main image 121 as in the first embodiment, and starts light-shielding exposure at time t2 (S112).
 次に、撮像装置100は、遮光露光期間中に非破壊読み出しを行う(S113)。次に、撮像装置100は、非破壊読み出しにより得られた遮光画像131のOB領域133の画素値と、本画像121のOB領域123の画素値とが近いかを判定する(S114)。具体的には、撮像装置100は、遮光画像131のOB領域133の画素値と、本画像121のOB領域123の画素値との差が予め定められた閾値未満かを判定する。 Next, the imaging apparatus 100 performs nondestructive readout during the light-shielding exposure period (S113). Next, the imaging apparatus 100 determines whether the pixel value of the OB area 133 of the light-shielded image 131 obtained by nondestructive reading is close to the pixel value of the OB area 123 of the main image 121 (S114). Specifically, the imaging apparatus 100 determines whether the difference between the pixel value of the OB area 133 of the light-shielded image 131 and the pixel value of the OB area 123 of the main image 121 is less than a predetermined threshold value.
 当該差が閾値未満でない場合には(S114でNo)、再度、非破壊読み出しが行われ(S113)、同様の判定処理が再度行われる(S114)。 If the difference is not less than the threshold (No in S114), nondestructive reading is performed again (S113), and the same determination process is performed again (S114).
 一方、当該差が閾値未満の場合には(S114でYes)、撮像装置100は、遮光露光を終了するとともに(S115)、最後に非破壊読み出しにより読み出した遮光画像131を補正用画像141として選択する(S116)。例えば、図11に示す例では、時刻t3において、上記差が閾値未満と判定され、この遮光画像131が補正用画像141として選択される。 On the other hand, when the difference is less than the threshold (Yes in S114), the imaging apparatus 100 ends the light-shielding exposure (S115), and finally selects the light-shielded image 131 read by nondestructive readout as the correction image 141. (S116). For example, in the example illustrated in FIG. 11, at time t3, the difference is determined to be less than the threshold value, and the light-shielded image 131 is selected as the correction image 141.
 次に、撮像装置100は、本画像121から補正用画像141を差し引くことで補正後画像142を生成する(S117)。 Next, the imaging apparatus 100 generates a corrected image 142 by subtracting the correction image 141 from the main image 121 (S117).
 このように、補正部105は、遮光画像131の画素値と、本画像121に含まれるOB領域123の画素値との差が閾値未満になるまで、非破壊読み出しを繰り返し、当該差が閾値未満になった遮光画像131を補正用画像141として選択する。 As described above, the correction unit 105 repeats nondestructive reading until the difference between the pixel value of the light-shielded image 131 and the pixel value of the OB area 123 included in the main image 121 is less than the threshold, and the difference is less than the threshold. The shaded image 131 that has become is selected as the correction image 141.
 これにより、実施の形態1に比べ、不必要な非破壊読み出しが行われることを抑制できる。 Thereby, it is possible to suppress unnecessary nondestructive reading from being performed as compared with the first embodiment.
 なお、撮像装置100は、上記差が閾値未満になった場合に、破壊読み出しを行い、得られた画像を補正用画像141として用いてもよい。図12は、この場合の撮像装置100の動作を示すフローチャートである。図13は、この動作を説明するための図である。 Note that the imaging apparatus 100 may perform destructive reading when the difference is less than the threshold, and use the obtained image as the correction image 141. FIG. 12 is a flowchart showing the operation of the imaging apparatus 100 in this case. FIG. 13 is a diagram for explaining this operation.
 図12に示す処理は、図10に示す処理に対して、ステップS116の代わりにステップS116Aを含む。つまり、撮像装置100は、上記差が閾値未満の場合には(S114でYes)、遮光露光を終了するとともに(S115)、破壊読み出しにより補正用画像141を取得する(S116A)。 The process shown in FIG. 12 includes step S116A instead of step S116 with respect to the process shown in FIG. That is, when the difference is less than the threshold (Yes in S114), the imaging apparatus 100 ends the light-shielding exposure (S115), and acquires the correction image 141 by destructive reading (S116A).
 例えば、図13に示す例では、時刻t3において、上記差が閾値未満と判定される。その後、撮像装置100は、破壊読み出しにより補正用画像141を取得する。なお、図13では、判定の直後に破壊読み出しが行われているが、直後でなくてもよい。 For example, in the example shown in FIG. 13, at time t3, the difference is determined to be less than the threshold value. Thereafter, the imaging apparatus 100 acquires the correction image 141 by destructive reading. In FIG. 13, destructive readout is performed immediately after the determination, but may not be immediately after.
 このように、補正部105は、遮光画像131の画素値と、本画像121に含まれるOB領域123の画素値との差が閾値未満になるまで、非破壊読み出しを繰り返し、当該差が閾値未満になった場合、破壊読み出しにより撮像素子101から遮光画像を取得し、当該破壊読み出しにより取得された遮光画像を補正用画像141として選択する。 As described above, the correction unit 105 repeats nondestructive reading until the difference between the pixel value of the light-shielded image 131 and the pixel value of the OB area 123 included in the main image 121 is less than the threshold, and the difference is less than the threshold. In this case, a light-shielded image is acquired from the image sensor 101 by destructive readout, and the light-shielded image acquired by the destructive readout is selected as the correction image 141.
 ここで、一般に、非破壊読み出しでは、破壊読み出し時に行われるノイズ除去処理等の一部の処理が行われない。つまり、破壊読み出しで得られた画像は、非破壊読み出しで得られた画像よりも画質が高い。よって、非破壊読み出しで得られた画像を判定処理に用い、破壊読み出しで得られた画像を補正用画像141として用いることで、暗電流量をより正確に示す補正用画像141を得ることができる。これにより、補正後画像142の画質も向上できる。 Here, in general, in non-destructive reading, some processing such as noise removal processing performed at the time of destructive reading is not performed. That is, an image obtained by destructive readout has higher image quality than an image obtained by nondestructive readout. Therefore, by using the image obtained by nondestructive readout for the determination process and using the image obtained by destructive readout as the correction image 141, it is possible to obtain a correction image 141 that shows the dark current amount more accurately. . Thereby, the image quality of the corrected image 142 can also be improved.
 (実施の形態3)
 本実施の形態では、上記実施の形態1及び2の変形例について説明する。実施の形態1及び2では、非破壊読み出し又は破壊読み出しで得られた1枚の遮光画像131をそのまま補正用画像141として用いる例を述べた。本実施の形態では、複数の遮光画像131を用いて補正用画像141を生成する例について説明する。
(Embodiment 3)
In the present embodiment, modified examples of the first and second embodiments will be described. In Embodiments 1 and 2, the example in which one light-shielded image 131 obtained by nondestructive readout or destructive readout is used as it is as the correction image 141 has been described. In this embodiment, an example in which a correction image 141 is generated using a plurality of shaded images 131 will be described.
 図14は、実施の形態1の変形例の動作を示すフローチャートである。図14に示す処理は、図5に示す処理に対して、ステップS104の代わりにステップS104Aを含む。図15は、この動作を説明するための図である。 FIG. 14 is a flowchart showing the operation of the modification of the first embodiment. The process shown in FIG. 14 includes step S104A instead of step S104 with respect to the process shown in FIG. FIG. 15 is a diagram for explaining this operation.
 ステップS104Aでは、撮像装置100は、非破壊読み出しで得られた複数の遮光画像131から、本画像121に含まれるOB領域123の画素値と、OB領域133の画素値が近い複数の遮光画像131を用いて補正用画像141を生成する(S104A)。 In step S <b> 104 </ b> A, the imaging apparatus 100 uses a plurality of light-shielded images 131 obtained by nondestructive readout to have a plurality of light-shielded images 131 in which the pixel value of the OB area 123 included in the main image 121 is close to the pixel value of the OB area 133. Is used to generate the correction image 141 (S104A).
 例えば、撮像装置100は、複数の遮光画像131のうち、当該遮光画像131の画素値と、本画像121に含まれるOB領域123の画素値との差が、予め定められた閾値未満の複数の遮光画像131を用いて、補正用画像141を生成する。例えば、補正部105は、複数の遮光画像131のうち、上記差が閾値未満の複数の遮光画像131を加算平均することで補正用画像141を生成する。 For example, the imaging apparatus 100 includes a plurality of shaded images 131 in which a difference between a pixel value of the shaded image 131 and a pixel value of the OB area 123 included in the main image 121 is less than a predetermined threshold. A correction image 141 is generated using the light-shielded image 131. For example, the correction unit 105 generates the correction image 141 by averaging the plurality of light shielding images 131 whose difference is less than the threshold among the plurality of light shielding images 131.
 例えば、図15に示す例では、時刻t3及びt4において読み出された遮光画像131に対して、上記差が閾値未満と判定される。そしてこの2枚の遮光画像131を用いて補正用画像141が生成される。 For example, in the example shown in FIG. 15, it is determined that the difference is less than the threshold for the light-shielded image 131 read at times t3 and t4. Then, a correction image 141 is generated using the two light-shielded images 131.
 このように、加算平均を行うことで、例えば、信号読み出し経路において発生するランダムノイズを低減することができる。なお、複数の画像を用いてランダムノイズを低減する方法は、加算平均に限らない。例えば、ランダムノイズが発生している画素の画素値は、他の複数の画像の同一位置の画素の画素値から離れた値となる。よって、撮像装置100は、このような画像間の各画素の画素値のばらつきに基づき、各画像の各画素にランダムノイズが発生しているか否かを判定し、ランダムノイズが発生していない画素を組み合わせて補正用画像141を生成してもよい。または、撮像装置100は、ランダムノイズが発生している画素を除いた複数の遮光画像131の加算平均により補正用画像141を生成してもよい。 Thus, by performing the averaging, for example, random noise generated in the signal readout path can be reduced. Note that the method of reducing random noise using a plurality of images is not limited to the averaging. For example, the pixel value of a pixel in which random noise is generated is a value that is distant from the pixel value of a pixel at the same position in another plurality of images. Therefore, the imaging apparatus 100 determines whether or not random noise is generated in each pixel of each image based on the variation in the pixel value of each pixel between images, and a pixel in which random noise is not generated. May be combined to generate the correction image 141. Alternatively, the imaging apparatus 100 may generate the correction image 141 by adding and averaging a plurality of light-shielded images 131 excluding pixels where random noise is generated.
 また、実施の形態1の変形例と同様に、複数の遮光画像131には、破壊読み出しされた画像が含まれてもよい。 As in the modification of the first embodiment, the plurality of light-shielded images 131 may include images that have been read out in a destructive manner.
 次に、実施の形態2に対して同様の変形例を適用した場合について説明する。図16は、この場合の撮像装置100の動作を示すフローチャートである。図17は、この動作を説明するための図である。 Next, a case where a similar modification is applied to the second embodiment will be described. FIG. 16 is a flowchart showing the operation of the imaging apparatus 100 in this case. FIG. 17 is a diagram for explaining this operation.
 図16に示す処理は、図12に示す処理に対して、ステップS116Aの代わりにステップS116B及びS116Cを含む。 The process shown in FIG. 16 includes steps S116B and S116C instead of step S116A with respect to the process shown in FIG.
 撮像装置100は、上記差が閾値未満の場合には(S114でYes)、遮光露光を終了するとともに(S115)、連続的に非破壊読み出しを行った後、破壊読み出しを行うことで、複数の遮光画像131を取得する(S116B)。次に、撮像装置100は、ステップS116Bで得られた複数の遮光画像131を用いて補正用画像141を生成する。なお、補正用画像141を生成方法は、例えば、上記ステップS104Aと同様である。 When the difference is less than the threshold value (Yes in S114), the imaging apparatus 100 ends the light-shielding exposure (S115), and after performing nondestructive reading continuously, performs destructive reading, thereby The shaded image 131 is acquired (S116B). Next, the imaging apparatus 100 generates the correction image 141 using the plurality of light-shielded images 131 obtained in step S116B. The method for generating the correction image 141 is the same as that in step S104A, for example.
 また、図15に示すように、上記差が閾値未満であると判定された後(時刻t3以降)の非破壊読み出しの間隔T5は、それ以前の非破壊読み出しの間隔T4より短い。つまり、補正部105は、上記差が閾値未満になるまで、第1間隔T4で非破壊読み出しを繰り返し、上記差が閾値未満になった場合、第1間隔より短い第2間隔T5で非破壊読み出しを繰り返し、第2間隔T5での破壊読み出しにより取得された複数の遮光画像131を加算平均することで補正用画像141を生成してもよい。 Further, as shown in FIG. 15, the non-destructive read interval T5 after the above difference is determined to be less than the threshold (after time t3) is shorter than the previous non-destructive read interval T4. That is, the correction unit 105 repeats nondestructive reading at the first interval T4 until the difference becomes less than the threshold, and when the difference becomes less than the threshold, the nondestructive reading is performed at the second interval T5 shorter than the first interval. The correction image 141 may be generated by repeating the above and averaging the plurality of shaded images 131 acquired by destructive readout at the second interval T5.
 これにより、本画像121との暗電流量の差が少ない複数の遮光画像131を用いて補正用画像141を生成できるので、本画像121と補正用画像141との暗電流量の差を低減できる。 As a result, the correction image 141 can be generated using a plurality of light-shielded images 131 with a small difference in dark current amount from the main image 121, so that the difference in dark current amount between the main image 121 and the correction image 141 can be reduced. .
 なお、図17に示す例では、最後に破壊読み出しが行われているが行われなくてもよい。また、図17に示す例では、露光終了後に連続した非破壊読み出しが行われているが、露光中に非破壊読み出しが行われてもよい。 In the example shown in FIG. 17, destructive reading is performed at the end, but it may not be performed. In the example shown in FIG. 17, continuous nondestructive reading is performed after the exposure is completed, but nondestructive reading may be performed during the exposure.
 本開示の一態様に係る撮像装置100は、非破壊読み出しが可能な撮像素子101と、光を撮像素子101に集光する撮像系106と、撮像系106の光を遮光する遮光部107と、撮像素子101で得られた本画像121から補正用画像141を差し引くことで補正後画像142を生成する補正部105とを備え、補正部105は、遮光状態の1回の露光により撮像素子101で得られ、それぞれ露光時間が異なる複数の遮光画像131を非破壊読み出しを用いて取得し、複数の遮光画像131の少なくとも一つを用いて補正用画像141を生成する。 An imaging apparatus 100 according to an aspect of the present disclosure includes an imaging element 101 capable of nondestructive readout, an imaging system 106 that collects light on the imaging element 101, a light shielding unit 107 that shields light from the imaging system 106, A correction unit 105 that generates a post-correction image 142 by subtracting the correction image 141 from the main image 121 obtained by the image pickup device 101. A plurality of shaded images 131 obtained with different exposure times are obtained using nondestructive readout, and a correction image 141 is generated using at least one of the plurality of shaded images 131.
 これによれば、温度変化等に起因して生じる、本露光時と遮光露光時との暗電流量の差を低減できる。よって、暗電流量の影響を低減し、補正後画像142の画質を改善できる。 According to this, it is possible to reduce a difference in dark current amount between the main exposure and the light-shielding exposure, which is caused by a temperature change or the like. Therefore, the influence of the dark current amount can be reduced, and the image quality of the corrected image 142 can be improved.
 例えば、補正部105は、複数の遮光画像131のうち、当該遮光画像131の画素値と、本画像121に含まれる遮光領域の画素値との差が閾値未満の遮光画像131から補正用画像141を生成してもよい。 For example, the correction unit 105 corrects the correction image 141 from the light-shielded image 131 in which the difference between the pixel value of the light-shielded image 131 and the pixel value of the light-shielded area included in the main image 121 is less than the threshold among the plurality of light-shielded images 131. May be generated.
 これによれば、本画像121と暗電流量の差が少ない遮光画像131を用いて補正用画像141を生成できるので、本画像121と補正用画像141との暗電流量の差を低減できる。 According to this, since the correction image 141 can be generated using the light-shielded image 131 with a small difference in dark current amount from the main image 121, the difference in dark current amount between the main image 121 and the correction image 141 can be reduced.
 例えば、補正部105は、前記差が閾値未満になるまで、非破壊読み出しを繰り返し、前記差が閾値未満になった遮光画像131を補正用画像141として選択してもよい。 For example, the correction unit 105 may repeat non-destructive reading until the difference is less than the threshold, and may select the light-shielded image 131 in which the difference is less than the threshold as the correction image 141.
 これによれば、不必要な非破壊読み出しが行われることを抑制できる。そのため、続けて撮影する場合などでは、シャッターチャンスを逃すことを抑制できる。 According to this, it is possible to suppress unnecessary nondestructive reading. Therefore, it is possible to suppress missing a photo opportunity when shooting continuously.
 例えば、補正部105は、読み出した遮光画像131の画素値と、本画像121に含まれる遮光領域の画素値との差が閾値未満になるまで、非破壊読み出しを繰り返し、前記差が閾値未満になった場合、破壊読み出しにより撮像素子101から遮光画像131を取得し、破壊読み出しにより取得された遮光画像131を前記補正用画像141として選択してもよい。 For example, the correction unit 105 repeats nondestructive reading until the difference between the pixel value of the read light-shielding image 131 and the pixel value of the light-shielding area included in the main image 121 is less than the threshold, and the difference is less than the threshold. In such a case, the shaded image 131 may be acquired from the image sensor 101 by destructive readout, and the shaded image 131 obtained by destructive readout may be selected as the correction image 141.
 これによれば、暗電流量をより正確に示す補正用画像141を得ることができるので、補正後画像142の画質を向上できる。 According to this, it is possible to obtain the correction image 141 that indicates the dark current amount more accurately, so that the image quality of the post-correction image 142 can be improved.
 例えば、補正部105は、複数の遮光画像131のうち、前記差が閾値未満の複数の遮光画像131を加算平均することで補正用画像141を生成してもよい。 For example, the correction unit 105 may generate the correction image 141 by averaging the plurality of light shielding images 131 whose difference is less than the threshold among the plurality of light shielding images 131.
 これによれば、例えば、信号読み出し経路等において発生するランダムノイズを低減することができる。 According to this, it is possible to reduce, for example, random noise generated in the signal readout path or the like.
 例えば、補正部105は、前記差が閾値未満になるまで、第1間隔で非破壊読み出しを繰り返し、前記差が閾値未満になった場合、第1間隔より短い第2間隔で非破壊読み出しを繰り返し、第2間隔での非破壊読み出しにより取得された複数の遮光画像131を加算平均することで補正用画像141を生成してもよい。 For example, the correction unit 105 repeats nondestructive reading at a first interval until the difference becomes less than a threshold, and when the difference becomes less than the threshold, repeats nondestructive reading at a second interval shorter than the first interval. The correction image 141 may be generated by averaging the plurality of light-shielded images 131 obtained by nondestructive reading at the second interval.
 これによれば、本画像121との暗電流量の差が少ない複数の遮光画像131を用いて補正用画像141を生成できるので、本画像121と補正用画像141との暗電流量の差を低減できる。 According to this, since the correction image 141 can be generated using a plurality of light-shielded images 131 with a small difference in dark current amount from the main image 121, the difference in dark current amount between the main image 121 and the correction image 141 is reduced. Can be reduced.
 例えば、補正部105は、複数の遮光画像131のうち、当該遮光画像131の遮光領域の画素値と、本画像121に含まれる遮光領域の画素値との差が閾値未満の遮光画像131から補正用画像141を生成してもよい。 For example, the correction unit 105 corrects a light-shielded image 131 in which the difference between the pixel value of the light-shielded area of the light-shielded image 131 and the pixel value of the light-shielded area included in the main image 121 is less than the threshold among the plurality of light-shielded images 131. A work image 141 may be generated.
 これによれば、これにより、暗電流量が類似する遮光画像131を精度よく選択できる。 According to this, the light-shielded image 131 having a similar dark current amount can thereby be selected with high accuracy.
 例えば、撮像素子101は、有機センサであってもよい。 For example, the image sensor 101 may be an organic sensor.
 本開示の一態様に係る制御方法は、非破壊読み出しが可能な撮像素子101と、光を撮像素子101に集光する撮像系106と、撮像系106の光を遮光する遮光部107とを備える撮像装置100の制御方法であって、撮像素子101で得られた本画像121から補正用画像141を差し引くことで補正後画像142を生成する補正ステップを含み、補正ステップでは、遮光状態の1回の露光により撮像素子101で得られ、それぞれ露光時間が異なる複数の遮光画像131を非破壊読み出しを用いて取得し、複数の遮光画像131の少なくとも一つを用いて補正用画像141を生成する。 A control method according to an aspect of the present disclosure includes an imaging element 101 capable of nondestructive reading, an imaging system 106 that collects light on the imaging element 101, and a light shielding unit 107 that shields light from the imaging system 106. The control method of the imaging apparatus 100 includes a correction step of generating a corrected image 142 by subtracting the correction image 141 from the main image 121 obtained by the imaging element 101. In the correction step, the light shielding state is performed once. A plurality of light-shielded images 131 obtained by the image sensor 101 by the above exposure and having different exposure times are acquired using nondestructive readout, and a correction image 141 is generated using at least one of the plurality of light-shielded images 131.
 これによれば、温度変化等に起因して生じる、本露光時と遮光露光時との暗電流量の差を低減できる。よって、暗電流量の影響を低減し、補正後画像142の画質を改善できる。 According to this, it is possible to reduce a difference in dark current amount between the main exposure and the light-shielding exposure, which is caused by a temperature change or the like. Therefore, the influence of the dark current amount can be reduced, and the image quality of the corrected image 142 can be improved.
 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 Note that these comprehensive or specific modes may be realized by a system, a method, an integrated circuit, a computer program, or a recording medium such as a computer-readable CD-ROM, and the system, method, integrated circuit, and computer program. Also, any combination of recording media may be realized.
 以上、本開示の実施の形態に係る撮像装置について説明したが、本開示は、この実施の形態に限定されるものではない。 The imaging device according to the embodiment of the present disclosure has been described above, but the present disclosure is not limited to this embodiment.
 例えば、上記実施の形態に係る撮像装置に含まれる各処理部は典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。 For example, each processing unit included in the imaging apparatus according to the above embodiment is typically realized as an LSI that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
 また、集積回路化はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Further, the integration of circuits is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 また、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 Further, in each of the above embodiments, each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component. Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
 また、本開示は、撮像装置により実行される制御方法として実現されてもよい。 Also, the present disclosure may be realized as a control method executed by the imaging apparatus.
 また、上記回路図に示す回路構成は、一例であり、本開示は上記回路構成に限定されない。つまり、上記回路構成と同様に、本開示の特徴的な機能を実現できる回路も本開示に含まれる。また、上記で用いた数字は、全て本開示を具体的に説明するために例示するものであり、本開示は例示された数字に制限されない。 The circuit configuration shown in the circuit diagram is an example, and the present disclosure is not limited to the circuit configuration. That is, similar to the circuit configuration described above, a circuit that can realize the characteristic function of the present disclosure is also included in the present disclosure. Moreover, all the numbers used above are illustrated for specifically explaining the present disclosure, and the present disclosure is not limited to the illustrated numbers.
 また、ブロック図における機能ブロックの分割は一例であり、複数の機能ブロックを一つの機能ブロックとして実現したり、一つの機能ブロックを複数に分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を単一のハードウェア又はソフトウェアが並列又は時分割に処理してもよい。 In addition, division of functional blocks in the block diagram is an example, and a plurality of functional blocks can be realized as one functional block, a single functional block can be divided into a plurality of functions, or some functions can be transferred to other functional blocks. May be. In addition, functions of a plurality of functional blocks having similar functions may be processed in parallel or time-division by a single hardware or software.
 また、フローチャートにおける各ステップが実行される順序は、本開示を具体的に説明するために例示するためのものであり、上記以外の順序であってもよい。また、上記ステップの一部が、他のステップと同時(並列)に実行されてもよい。 In addition, the order in which the steps in the flowchart are executed is for illustration in order to specifically describe the present disclosure, and may be in an order other than the above. Also, some of the above steps may be executed simultaneously (in parallel) with other steps.
 以上、一つまたは複数の態様に係る撮像装置について、実施の形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。 As described above, the imaging device according to one or more aspects has been described based on the embodiment, but the present disclosure is not limited to this embodiment. Unless it deviates from the gist of the present disclosure, various modifications conceived by those skilled in the art have been made in this embodiment, and forms constructed by combining components in different embodiments are also within the scope of one or more aspects. May be included.
 本開示は、デジタルスチルカメラ又はデジタルビデオカメラ等の撮像装置に適用できる。 The present disclosure can be applied to an imaging apparatus such as a digital still camera or a digital video camera.
 100 撮像装置
 101 撮像素子
 102 制御部
 103 表示部
 104 記憶部
 105 補正部
 106 撮像系
 107 遮光部
 121 本画像
 122、132 有効領域
 123、133 OB領域
 131 遮光画像
 141 補正用画像
 142 補正後画像
 201 画素
 202 垂直走査部
 203 カラム信号処理部
 204 水平読み出し部
 205 リセット制御線
 206 アドレス制御線
 207 垂直信号線
 208 水平出力端子
 211 光電変換部
 212 電荷蓄積部
 213 リセットトランジスタ
 214 増幅トランジスタ
 215 選択トランジスタ
DESCRIPTION OF SYMBOLS 100 Image pick-up device 101 Image pick-up element 102 Control part 103 Display part 104 Storage part 105 Correction part 106 Imaging system 107 Light-shielding part 121 Main image 122,132 Effective area 123, 133 OB area 131 Light-shielded image 141 Image for correction 142 Image after correction 201 Pixel 202 vertical scanning unit 203 column signal processing unit 204 horizontal readout unit 205 reset control line 206 address control line 207 vertical signal line 208 horizontal output terminal 211 photoelectric conversion unit 212 charge storage unit 213 reset transistor 214 amplification transistor 215 selection transistor

Claims (9)

  1.  非破壊読み出しが可能な撮像素子と、
     光を前記撮像素子に集光する撮像系と、
     前記撮像系の光を遮光する遮光部と、
     前記撮像素子で得られた本画像から補正用画像を差し引くことで補正後画像を生成する補正部とを備え、
     前記補正部は、
     遮光状態の1回の露光により前記撮像素子で得られ、それぞれ露光時間が異なる複数の遮光画像を非破壊読み出しを用いて取得し、
     前記複数の遮光画像の少なくとも一つを用いて前記補正用画像を生成する
     撮像装置。
    An image sensor capable of non-destructive readout;
    An imaging system for condensing light on the imaging device;
    A light shielding part for shielding light of the imaging system;
    A correction unit that generates a corrected image by subtracting a correction image from the main image obtained by the imaging element;
    The correction unit is
    A plurality of light-shielded images obtained by the image sensor by one exposure in a light-shielding state, each having a different exposure time, are acquired using nondestructive readout,
    An imaging apparatus that generates the correction image using at least one of the plurality of light-shielded images.
  2.  前記補正部は、
     前記複数の遮光画像のうち、当該遮光画像の画素値と、前記本画像に含まれる遮光領域の画素値との差が閾値未満の遮光画像から前記補正用画像を生成する
     請求項1記載の撮像装置。
    The correction unit is
    The imaging according to claim 1, wherein the correction image is generated from a light-shielded image in which a difference between a pixel value of the light-shielded image and a pixel value of a light-shielded area included in the main image is less than a threshold value among the plurality of light-shielded images. apparatus.
  3.  前記補正部は、
     前記差が前記閾値未満になるまで、前記非破壊読み出しを繰り返し、
     前記差が前記閾値未満になった遮光画像を前記補正用画像として選択する
     請求項2記載の撮像装置。
    The correction unit is
    Repeat the non-destructive readout until the difference is less than the threshold,
    The imaging apparatus according to claim 2, wherein a light-shielded image in which the difference is less than the threshold is selected as the correction image.
  4.  前記補正部は、
     読み出した前記遮光画像の画素値と、前記本画像に含まれる遮光領域の画素値との差が閾値未満になるまで、前記非破壊読み出しを繰り返し、
     前記差が前記閾値未満になった場合、破壊読み出しにより前記撮像素子から遮光画像を取得し、
     前記破壊読み出しにより取得された前記遮光画像を前記補正用画像として選択する
     請求項1記載の撮像装置。
    The correction unit is
    The non-destructive reading is repeated until the difference between the pixel value of the read light-shielded image and the pixel value of the light-shielded region included in the main image is less than a threshold value,
    If the difference is less than the threshold, obtain a light-shielded image from the image sensor by destructive readout,
    The imaging apparatus according to claim 1, wherein the shaded image acquired by the destructive readout is selected as the correction image.
  5.  前記補正部は、
     前記複数の遮光画像のうち、前記差が前記閾値未満の複数の遮光画像を加算平均することで前記補正用画像を生成する
     請求項2記載の撮像装置。
    The correction unit is
    The imaging device according to claim 2, wherein among the plurality of light-shielded images, the correction image is generated by adding and averaging a plurality of light-shielded images having the difference less than the threshold value.
  6.  前記補正部は、
     前記差が前記閾値未満になるまで、第1間隔で前記非破壊読み出しを繰り返し、
     前記差が前記閾値未満になった場合、前記第1間隔より短い第2間隔で前記非破壊読み出しを繰り返し、
     前記第2間隔での前記非破壊読み出しにより取得された複数の遮光画像を加算平均することで前記補正用画像を生成する
     請求項5記載の撮像装置。
    The correction unit is
    Repeat the non-destructive readout at a first interval until the difference is less than the threshold,
    If the difference is less than the threshold, repeat the non-destructive reading at a second interval shorter than the first interval,
    The imaging apparatus according to claim 5, wherein the correction image is generated by averaging the plurality of light-shielded images acquired by the nondestructive reading at the second interval.
  7.  前記補正部は、
     前記複数の遮光画像のうち、当該遮光画像の前記遮光領域の画素値と、前記本画像に含まれる前記遮光領域の画素値との前記差が前記閾値未満の遮光画像から前記補正用画像を生成する
     請求項2記載の撮像装置。
    The correction unit is
    The correction image is generated from the light-shielded image in which the difference between the pixel value of the light-shielded area of the light-shielded image and the pixel value of the light-shielded area included in the main image is less than the threshold among the plurality of light-shielded images. The imaging device according to claim 2.
  8.  前記撮像素子は、有機センサである
     請求項1~7のいずれか1項に記載の撮像装置。
    The imaging apparatus according to any one of claims 1 to 7, wherein the imaging element is an organic sensor.
  9.  非破壊読み出しが可能な撮像素子と、光を前記撮像素子に集光する撮像系と、前記撮像系の光を遮光する遮光部とを備える撮像装置の制御方法であって、
     前記撮像素子で得られた本画像から補正用画像を差し引くことで補正後画像を生成する補正ステップを含み、
     前記補正ステップでは、
     遮光状態の1回の露光により前記撮像素子で得られ、それぞれ露光時間が異なる複数の遮光画像を非破壊読み出しを用いて取得し、
     前記複数の遮光画像の少なくとも一つを用いて前記補正用画像を生成する
     制御方法。
    An imaging device control method comprising: an imaging device capable of nondestructive readout; an imaging system that collects light on the imaging device; and a light shielding unit that shields light from the imaging system,
    Including a correction step of generating a corrected image by subtracting the correction image from the main image obtained by the imaging element;
    In the correction step,
    A plurality of light-shielded images obtained by the image sensor by one exposure in a light-shielding state, each having a different exposure time, are acquired using nondestructive readout,
    A control method for generating the correction image using at least one of the plurality of light-shielded images.
PCT/JP2017/046600 2016-12-27 2017-12-26 Imaging device and control method therefor WO2018124056A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-254452 2016-12-27
JP2016254452A JP6748979B2 (en) 2016-12-27 2016-12-27 Imaging device and control method thereof

Publications (1)

Publication Number Publication Date
WO2018124056A1 true WO2018124056A1 (en) 2018-07-05

Family

ID=62707558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046600 WO2018124056A1 (en) 2016-12-27 2017-12-26 Imaging device and control method therefor

Country Status (2)

Country Link
JP (1) JP6748979B2 (en)
WO (1) WO2018124056A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019125945A (en) * 2018-01-17 2019-07-25 キヤノン株式会社 Radiation imaging apparatus, control method of radiation imaging apparatus, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0851571A (en) * 1994-08-03 1996-02-20 Olympus Optical Co Ltd Electronic image pickup device
JP2004344249A (en) * 2003-05-20 2004-12-09 Canon Inc Radiographic apparatus, radiographic method, and program and recording medium for radiography
JP2013090088A (en) * 2011-10-17 2013-05-13 Canon Inc Imaging device, driving method for imaging device, and control program
JP2016134655A (en) * 2015-01-15 2016-07-25 キヤノン株式会社 Imaging device, control method of imaging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0851571A (en) * 1994-08-03 1996-02-20 Olympus Optical Co Ltd Electronic image pickup device
JP2004344249A (en) * 2003-05-20 2004-12-09 Canon Inc Radiographic apparatus, radiographic method, and program and recording medium for radiography
JP2013090088A (en) * 2011-10-17 2013-05-13 Canon Inc Imaging device, driving method for imaging device, and control program
JP2016134655A (en) * 2015-01-15 2016-07-25 キヤノン株式会社 Imaging device, control method of imaging device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019125945A (en) * 2018-01-17 2019-07-25 キヤノン株式会社 Radiation imaging apparatus, control method of radiation imaging apparatus, and program
JP7033932B2 (en) 2018-01-17 2022-03-11 キヤノン株式会社 Radiation image pickup device, control method and program of radiation image pickup device

Also Published As

Publication number Publication date
JP6748979B2 (en) 2020-09-02
JP2018107730A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP5499789B2 (en) Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus
JP5871496B2 (en) Imaging apparatus and driving method thereof
JP5959834B2 (en) Imaging device
JP2007013292A (en) Imaging apparatus
CN109997352B (en) Imaging device, camera, and imaging method
JP5780025B2 (en) Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus
JP2011023986A (en) Imaging device and control method for the same
JPWO2018159002A1 (en) Imaging system and imaging method
JP5222068B2 (en) Imaging device
JP6362511B2 (en) Imaging apparatus and control method thereof
JP2017216626A (en) Image pickup device and its control method and imaging apparatus and its control method
JP2008017100A (en) Solid-state imaging device
JP2016167773A (en) Imaging apparatus and processing method of the same
JP2005311736A (en) Solid-state imaging apparatus and drive method of the solid-state imaging apparatus
WO2018124056A1 (en) Imaging device and control method therefor
JP3977342B2 (en) Solid-state imaging device design method and imaging system
JP3882594B2 (en) Solid-state imaging device
JP6004656B2 (en) Imaging device, control method thereof, and control program
JP5043400B2 (en) Imaging apparatus and control method thereof
JP2013102288A (en) Imaging apparatus and control method of the same
JP5720213B2 (en) Imaging device
WO2018124054A1 (en) Imaging device and method for controlling same
WO2018124057A1 (en) Imaging device and control method therefor
WO2018124047A1 (en) Imaging device and camera
JP2013187233A (en) Solid-state imaging device, driving method thereof and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887920

Country of ref document: EP

Kind code of ref document: A1