WO2018124048A1 - Imaging device, camera, and imaging method - Google Patents
Imaging device, camera, and imaging method Download PDFInfo
- Publication number
- WO2018124048A1 WO2018124048A1 PCT/JP2017/046592 JP2017046592W WO2018124048A1 WO 2018124048 A1 WO2018124048 A1 WO 2018124048A1 JP 2017046592 W JP2017046592 W JP 2017046592W WO 2018124048 A1 WO2018124048 A1 WO 2018124048A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- imaging
- voltage
- period
- predetermined range
- image
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 174
- 238000006243 chemical reaction Methods 0.000 claims description 47
- 230000000694 effects Effects 0.000 claims description 24
- 239000010409 thin film Substances 0.000 claims description 7
- 230000006870 function Effects 0.000 description 20
- 238000000034 method Methods 0.000 description 20
- 238000009825 accumulation Methods 0.000 description 12
- 230000003287 optical effect Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 230000003321 amplification Effects 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 239000000470 constituent Substances 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000007792 addition Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/50—Control of the SSIS exposure
- H04N25/53—Control of the integration time
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
Definitions
- the present invention relates to an imaging apparatus, a camera, and an imaging method for imaging an image.
- Patent Document 1 An imaging apparatus that captures an image using an image sensor is known (see, for example, Patent Document 1).
- Imaging devices that have various imaging effects are desired.
- an object of the present disclosure to provide an imaging apparatus, a camera, and an imaging method that can realize imaging that exhibits various imaging effects as compared with the conventional art.
- An imaging apparatus includes an imaging element that continuously captures a plurality of frame images, and a control unit that controls an exposure state of the imaging element, and the imaging element responds to the control. Thus, exposure is performed a plurality of times during the imaging period of one frame image.
- a camera includes the imaging device and a lens that collects external light on the imaging device.
- An imaging method is an imaging method performed by an imaging apparatus including an imaging element and a control unit that controls the imaging element, and the imaging element continuously captures a plurality of frame images.
- a plurality of imaging devices are arranged during an imaging period of one frame image according to the control. Repeat exposure.
- the imaging apparatus the camera, and the imaging method according to the present disclosure, it is possible to realize imaging capable of obtaining various imaging effects as compared with the conventional art.
- FIG. 1 is a block diagram illustrating a configuration of a camera according to an embodiment.
- FIG. 2 is a block diagram illustrating a configuration of the image sensor according to the embodiment.
- FIG. 3A is a plan view of the photoelectric conversion element according to the embodiment.
- FIG. 3B is a side view of the photoelectric conversion element according to the embodiment.
- FIG. 4 is a block diagram illustrating a configuration of the pixel circuit according to the embodiment.
- FIG. 5A is a timing diagram of the frame switching signal.
- FIG. 5B is a timing diagram illustrating an operation of the image sensor according to the embodiment.
- FIG. 5C is a timing chart of the exposure state output pulse.
- FIG. 5D is a timing diagram illustrating a state of the photoelectric conversion element according to the embodiment.
- FIG. 6 is a flowchart of the multiple exposure imaging process according to the embodiment.
- FIG. 7A is a perspective view of a digital still camera according to a modification.
- FIG. 7B is
- FIG. 1 is a block diagram showing a configuration of a camera 200 according to the embodiment.
- the camera 200 includes a lens barrel 230 and the imaging device 1.
- the lens barrel 230 includes an optical system 210 and a lens driving unit 220.
- the optical system 210 is composed of one or more lenses that collect external light on the imaging device 10 of the imaging device 1.
- the optical system 210 includes a zoom lens 211, a camera shake correction lens 212, a focus lens 213, and a diaphragm 214.
- the subject image can be enlarged or reduced by moving the zoom lens 211 along the optical axis 210A.
- the focus of the subject image can be adjusted by moving the focus lens 213 along the optical axis 210A.
- the camera shake correction lens 212 is movable in a plane perpendicular to the optical axis 210A of the optical system 210. By moving the camera shake correction lens 212 in a direction to cancel the camera 200 shake, the influence of the camera 200 shake on the captured image can be reduced.
- the diaphragm 214 has an opening 214A located on the optical axis 210A, and adjusts the size of the opening 214A according to the setting of the user or automatically to adjust the amount of transmitted light.
- the lens driving unit 220 includes a zoom actuator that drives the zoom lens 211, a camera shake correction actuator that drives the camera shake correction lens 212, a focus actuator that drives the focus lens 213, and a diaphragm actuator that drives the diaphragm 214.
- the lens driving unit 220 controls the zoom actuator, the focus actuator, the camera shake correction actuator, and the aperture actuator.
- the imaging device 1 includes an imaging device 10, a control unit 20, an image processing unit 260, a memory 270, a card slot 290, an internal memory 340, an operation member 310, and a display monitor 320. .
- the image sensor 10 continuously captures a plurality of frame images.
- the image processing unit 260 performs various processes on the image data generated by the image sensor 10, generates image data to be displayed on the display monitor 320, and generates image data to be stored in the memory card 300. To do. For example, the image processing unit 260 performs various processes such as gamma correction and white balance correction on the image data generated by the image sensor 10. Further, the image processing unit 260 converts the image data generated by the image sensor 10 into H.264. It compresses by the compression format etc. based on H.264 standard or MPEG2 standard. For example, the image processing unit 260 is realized by a processor (not shown) executing a program stored in a memory (not shown).
- the control unit 20 controls the exposure state in the image sensor 10.
- the control unit 20 controls the entire camera 200.
- the control unit 20 is realized by developing a program recorded in the internal memory 340 in the memory 270 that temporarily stores the program and executing a processor (not shown) in the control unit 20. .
- the memory 270 also functions as a work memory for the image processing unit 360 and the control unit 20.
- the memory 270 can be realized by, for example, a DRAM or an SRAM.
- the card slot 390 holds the memory card 300 in a removable manner.
- the card slot 290 can be mechanically and electrically connected to the memory card 300.
- the memory card 300 includes a nonvolatile flash memory, a ferroelectric memory, and the like, and can store data such as an image file generated by the image processing unit 260.
- the internal memory 340 is configured by a nonvolatile flash memory, a ferroelectric memory, or the like.
- the internal memory 340 stores a control program for controlling the entire camera 200 and the like.
- the operation member 310 is a generic term for a user interface that receives an operation from a user.
- the operation member 310 includes, for example, a cross key that accepts an operation from the user, a determination button, and the like.
- the display monitor 320 includes a screen 320A that can display an image indicated by the image data generated by the image sensor 10 and an image indicated by the image data read from the memory card 300.
- the display monitor 320 can also display various menu screens for performing various settings of the camera 200 on the screen 320A.
- a touch panel 320B is arranged on the screen 320A of the display monitor 320. The touch panel 320B can be touched by the user and accept various touch operations. The instruction indicated by the touch operation on the touch panel 320B is notified to the control unit 20 and various processes are performed.
- the imaging element 10 exposes a plurality of times during the imaging period of one frame image under the control of the control unit 20.
- the image sensor 10 will be described in more detail with reference to the drawings.
- FIG. 2 is a block diagram showing the configuration of the image sensor 10.
- the image sensor 10 includes a photoelectric conversion element 110, a pixel circuit array 120, a readout circuit 130, an output circuit 140, a row scanning circuit 150, a timing control circuit 160, and a voltage application circuit. 170.
- FIG. 3A is a plan view of the photoelectric conversion element 110
- FIG. 3B is a side view of the photoelectric conversion element 110.
- the photoelectric conversion element 110 is in close contact with the thin-film photoelectric conversion member 111, the upper transparent electrode 112 that is in close contact with the upper surface of the photoelectric conversion member 111, and the lower surface of the photoelectric conversion member 111.
- N ⁇ M lower pixel electrodes 113 arranged in a two-dimensional array of N rows and M columns (N and M are integers of 1 or more).
- the photoelectric conversion member 111 generates light due to the internal photoelectric effect by receiving light in a state where a voltage of 0V and a first predetermined range not including the insensitive area is applied, and 0V and a voltage of the second predetermined range that is the insensitive area. Even if light is received in a state where is applied, charges due to the internal photoelectric effect are not generated.
- the photoelectric conversion member 111 is an organic thin film having the above characteristics. That is, in this embodiment, the image pickup device 10 is an example of an organic CMOS image sensor that uses an organic thin film as a photoelectric conversion member.
- the upper transparent electrode 112 is a transparent electrode that applies a voltage that generates a potential difference including 0 V to the lower surface over the entire upper surface of the photoelectric conversion member 111.
- the lower pixel electrode 113 is an electrode arranged in a two-dimensional array of N rows and M columns so as to cover the entire lower surface of the photoelectric conversion member 111.
- the lower pixel electrode 113 is formed in the vicinity of itself when a charge is generated on the upper surface of the photoelectric conversion member 111 so as to generate a positive potential difference with respect to the lower surface. Among the generated charges, positive charges are collected.
- the photoelectric conversion element 110 configured as described above, when a voltage that causes a positive potential difference within a range in which the internal photoelectric effect is generated is applied to the upper surface of the photoelectric conversion member 111 with respect to the lower surface, the internal photoelectric effect due to light reception is applied.
- Each of the lower pixel electrodes 113 collects the positive charges generated by the above.
- the upper surface of the photoelectric conversion member 111 has substantially the same potential as the lower surface, even if it receives light, no charge is generated due to the internal photoelectric effect. There is no current collection.
- a period in which a voltage causing a positive potential difference in a range in which the internal photoelectric effect occurs is applied to the upper surface of the photoelectric conversion member 111 as an exposure period.
- a period in which a voltage in a range where the internal photoelectric effect does not occur is applied to the lower surface is referred to as a light shielding period.
- the pixel circuit array 120 is a semiconductor device in which N ⁇ M pixel circuits 21 are arranged in a two-dimensional array of N rows and M columns, and the photoelectric conversion element 110 is arranged on the lower surface side of the photoelectric conversion element 110. Arranged in a superimposed manner.
- each pixel circuit 21 is arranged so that the position of each pixel circuit 21 overlaps with the position of each lower pixel electrode 113 in a one-to-one correspondence when the imaging device 10 is viewed in plan. Has been.
- FIG. 4 is a block diagram showing the configuration of the pixel circuit 21. As shown in FIG. 4
- the pixel circuit 21 includes a reset transistor 22, an amplification transistor 23, a selection transistor 24, and a charge storage node 25.
- the charge storage node 25 is connected to the lower pixel electrode 113 corresponding to the pixel circuit 21 to which the charge storage node 25 belongs, the source of the reset transistor 22, and the gate of the amplification transistor 23, and is collected by the connected lower pixel electrode 113. Accumulate positive charge.
- the reset transistor 22 has a gate connected to the reset signal line 51, a drain supplied with a reset voltage VRST, and a source connected to the charge storage node 25.
- the reset transistor 22 is turned on by a reset signal delivered from the row scanning circuit 150 (described later) via the reset signal line 51, thereby resetting (initializing) the amount of charge accumulated in the charge accumulation node 25. To do.
- the charge storage node 25 is connected to the gate, the power supply voltage VDD is supplied to the drain, and the drain of the selection transistor 24 is connected to the source.
- a voltage corresponding to the charge accumulated in the charge accumulation node 25 is applied to the gate of the amplification transistor 23.
- the amplifying transistor 23 functions as a current source for supplying a current corresponding to the charge stored in the charge storage node 25 when the selection transistor 24 is in the ON state.
- the selection signal line 52 is connected to the gate, the source of the amplification transistor 23 is connected to the drain, and the vertical signal line 32 is connected to the source.
- the selection transistor 24 is turned on by a selection signal delivered from the row scanning circuit 150 (described later) via the selection signal line 52, thereby outputting a current flowing through the amplification transistor 23 to the vertical signal line 32.
- the pixel circuit 21 reads the amount of charges accumulated in the charge accumulation node 25 in a non-destructive manner with the above configuration.
- the row scanning circuit 150 has the following stored charge amount reset function and the following readout pixel circuit selection function.
- the stored charge amount reset function is performed one by one from the row farthest to the readout circuit 130 (first row) to the row closest to the readout circuit 130 (Nth row).
- a reset signal line for resetting positive charges accumulated in the charge accumulation nodes 25 in each pixel circuit 21 belonging to the corresponding row at a predetermined time t1 interval is connected to each pixel circuit 21 belonging to the relevant row. This is a function of delivering via 51.
- the resetting of the charges accumulated in the charge accumulation nodes 25 of all the pixel circuits 21 included in the pixel circuit array 120 is sequentially executed in units of rows from the first row to the Nth row.
- a period of N ⁇ t1 is required from the start of the reset for the pixel circuit 21 belonging to No. 1 to the completion of the reset for the pixel circuit 21 belonging to the Nth row.
- the readout pixel circuit selection function turns on the selection transistor 24 in each of the pixel circuits 21 belonging to the corresponding row at predetermined time intervals t1 in order from the first row to the Nth row. This is a function for delivering a selection signal for selection via a selection signal line 52 connected to each of the pixel circuits 21 belonging to the corresponding row.
- the reading of the charge amount accumulated in the charge accumulation nodes 25 of all the pixel circuits 21 included in the pixel circuit array 120 is sequentially executed in units of rows from the first row to the N-th row.
- a period of N ⁇ t1 is required from the start of reading for the pixel circuit 21 belonging to the eye to the completion of reading for the pixel circuit 21 belonging to the Nth row.
- the readout circuit 130 reads out the amount of charge accumulated in each of the pixel circuits 21 constituting the pixel circuit array 120.
- the readout circuit 130 is configured to include M column readout circuits 31 corresponding to the M columns of the pixel circuit array 120, respectively.
- the column readout circuit 31 includes a selection transistor 24 that is turned on by a selection signal via a vertical signal line 32 connected to each of the pixel circuits 21 belonging to the corresponding column (this pixel circuit 21). Is also referred to as “a pixel circuit 21 to be read”.), By detecting the amount of current flowing through the amplification transistor 23, the amount of charge accumulated in the charge accumulation node 25 of the pixel circuit 21 to be read is read. Then, a digital signal of K bits (K is a positive integer, for example, 8) indicating the amount of the read electric charge is output as a pixel value of the pixel circuit 21 to be read.
- the output circuit 140 outputs the pixel value output from the column readout circuit 31 to the outside.
- the voltage application circuit 170 applies a voltage to the photoelectric conversion member 111. More specifically, the voltage application circuit 170 controls the voltage applied to the upper transparent electrode 112 so that (1) the lower surface of the photoelectric conversion member 111 has a positive potential difference that causes the internal photoelectric effect.
- the photoelectric conversion element 110 is set as an exposure period during the applied state, and (2) a potential difference that does not cause a positive potential difference that causes an internal photoelectric effect with respect to the lower surface (here) Then, by applying a predetermined second voltage that generates the same potential as the lower surface), the photoelectric conversion element 110 is set as a light shielding period during the applied state.
- the timing control circuit 160 controls the operation timing of the row scanning circuit 150, the operation timing of the readout circuit 130, and the operation timing of the voltage application circuit 170. That is, the timing control circuit 160 controls the timing for executing the stored charge amount reset function and the timing for executing the readout pixel circuit selection function by the row scanning circuit 150, and is selected by the selection signal by the readout circuit 130. The timing at which the amount of charge accumulated in the charge accumulation node 25 of the pixel circuit 21 is read is controlled, the timing at which the voltage conversion circuit 110 sets the photoelectric conversion element 110 as the exposure period, and the photoelectric conversion element 110 as the light shielding period. Control the timing.
- the control unit 20 has the following frame image continuous imaging function and the following exposure control function.
- the frame image continuous imaging function is a function for causing the image sensor 10 to continuously capture frame images every predetermined frame period T1 (for example, 1/60 seconds). More specifically, by outputting a frame switching signal to the image sensor 10 every frame period T1, the image sensor 10 is caused to perform continuous imaging of the frame image.
- FIG. 5A is a timing diagram of a frame switching signal output by the control unit 20.
- control unit 20 outputs a frame switching signal to the image sensor 10 every frame period T1.
- the timing control circuit 160 controls the operation timing of the row scanning circuit 150 and the operation timing of the readout circuit 130, thereby causing a frame start signal. Is read out from the charge storage nodes 25 for all the pixel circuits 21 constituting the pixel circuit array 120.
- FIG. 5B is a timing chart showing the operation of the image sensor 10.
- the reading of the amount of charge accumulated in the charge accumulation nodes 25 of all the pixel circuits 21 included in the pixel circuit array 120 is delayed by t1 in order from the first row to the Nth row. It is executed at the timing.
- the image sensor 10 configures the pixel circuit array 120 at a timing delayed by ⁇ t after the timing control circuit 160 controls the operation timing of the row scanning circuit 150 to start reading the charge amount.
- the resetting (initialization) of the amount of charge accumulated in the charge accumulation node 25 is started for all the pixel circuits 21 to be performed.
- the reset of the charge amount accumulated in the charge accumulation nodes 25 of all the pixel circuits 21 included in the pixel circuit array 120 is delayed by t1 in order from the first row to the Nth row. It is executed at the timing.
- control unit 20 Referring back to FIG. 1 again, the description of the control unit 20 will be continued.
- the frame image is applied to the imaging device 10 so that the exposure amount in each frame becomes a designated exposure amount specified by the user using the imaging device 1.
- the designated exposure amount is limited to a range less than the maximum exposure amount that is the exposure amount of the photoelectric conversion element 110 when the entire frame period is the exposure period. More specifically, the control unit 20 calculates (1) a ratio of the designated exposure amount when the maximum exposure amount is 1 (hereinafter, this ratio is referred to as “designated exposure amount ratio”).
- FIG. 5C is a timing chart of the exposure state output pulse output by the control unit 20.
- the control unit 20 outputs an exposure amount control pulse train having a cycle of T1 ⁇ 1 / L and a duty ratio of the designated exposure amount ratio to the image sensor 10.
- the timing control circuit 160 controls the voltage application circuit 170 to expose the photoelectric conversion device 110 during the period when the exposure state control pulse is high.
- the exposure period control pulse is low, and the photoelectric conversion element 110 is a light shielding period.
- FIG. 5D is a timing chart showing the state of the photoelectric conversion element 110.
- the photoelectric conversion element 110 has an exposure period when the exposure state control pulse is high, an exposure period, and a low period when the exposure state control pulse is low.
- the image sensor 10 captures a frame image having the designated exposure amount by performing exposure for each high period in the exposure state control pulse train determined by the designated exposure amount ratio L times within the frame period T1.
- the imaging apparatus 1 performs multiple exposure imaging processing as a characteristic operation.
- FIG. 6 is a flowchart of the multiple exposure imaging process.
- the multiple exposure imaging process is started when an operation for starting the multiple exposure imaging process from a user using the imaging apparatus 1 is received by the operation member 310.
- the operation member 310 receives the operation from the user, and acquires the designated exposure amount specified by the user (step S10).
- control unit 20 determines whether or not the designated exposure amount is less than the maximum exposure amount that is the exposure amount of the photoelectric conversion element 110 when the entire frame period is the exposure period. Is determined (step S20).
- step S20 when the designated exposure amount is less than the maximum exposure amount (step S20: Yes), the control unit 20 designates the designated exposure amount ratio that is a ratio of the designated exposure amount when the maximum exposure amount is 1. Is calculated (step S30).
- the control unit 20 starts outputting an exposure state control pulse train that has a cycle of 1 / L of the frame period T1 and uses the calculated designated exposure amount ratio as a duty ratio (step S1). S40), continuous output of the frame switching signal for each frame period T1 is started (step S50).
- the image sensor 10 When the output of the exposure state control pulse train and the continuous output of the frame switching signal are started, the image sensor 10 is set to the high period in the exposure state control pulse train that is determined by the designated exposure amount ratio L times within the frame period T1. By performing exposure, continuous imaging of a frame image having a designated exposure amount is started (step S60).
- Step S70 No is repeated.
- step S70: No When the imaging end operation is received (step S70: No is repeated and then the process proceeds to step S70: Yes), the control unit 20 ends the continuous output of the frame switching signal (step S80), and outputs the exposure state control pulse train. The process ends (step S90).
- the imaging device ends the continuous imaging of the frame image (step S100).
- the imaging device 1 ends the multiple exposure process when the process of step S100 is completed and when the designated exposure amount is not less than the maximum exposure amount in the process of step S20 (step S20: No).
- the imaging apparatus 1 when a plurality of frame images are continuously captured, it is possible to perform multiple exposures during the imaging period of each frame image. For this reason, when the subject is moving at a relatively high speed, in each frame image, an image in which the positions of the subject during the imaging period of the frame image are averaged is captured. As a result, when the subject is moving at a relatively high speed, the video composed of the images captured by the imaging device 1 is captured by a conventional imaging device that is exposed only once during the imaging period of each frame image. The movement of the subject appears to be more natural than that of a video image.
- the imaging apparatus 1 it is possible to realize imaging having various imaging effects as compared with the conventional art.
- the imaging apparatus 1 can adjust the exposure amount in each frame image by controlling the duty ratio of the exposure state control pulse train. For this reason, the imaging apparatus 1 can realize an ND (Neutral Density) function without using a diaphragm for adjusting the light amount.
- ND Neutral Density
- the ND function can be realized without using an aperture
- the aperture can be used exclusively for subject depth adjustment.
- the exposure amount can be adjusted by controlling the duty ratio of the exposure state control pulse train, the linear exposure amount can be adjusted relatively easily and accurately by using the imaging device 1. Is possible.
- the photoelectric conversion member 111 generates light due to the internal photoelectric effect by receiving light in a state where a voltage in the first predetermined range is applied, and the voltage in the second predetermined range. It has been described that the organic thin film has a function that does not generate charges due to the internal photoelectric effect even when light is received in a state where is applied.
- the photoelectric conversion member 111 is not necessarily limited to the organic thin film as long as the presence or absence of charge generation due to the internal photoelectric effect can be controlled by the applied voltage.
- the imaging device 1 may be an example in which the photoelectric conversion member 111 is a diode having a PN junction surface.
- the imaging apparatus 1 has been described on the assumption that the frame period T1 is 1/60 seconds, for example, and the number of pulses L of the exposure state control pulse train in the frame period T1 is 10, for example.
- the frame period T1 is not necessarily limited to 1/60 seconds, and the number of pulses L of the exposure state control pulse train in the frame period T1 is not necessarily limited to 10.
- the imaging apparatus 1 may be an example in which the frame period T1 is 1/50 second, an example in which the frame period T1 is set by a user who uses the imaging apparatus 1, and the like. Further, as an example, the imaging apparatus 1 may be an example in which the number of pulses L of the exposure state control pulse train in the frame period T1 is 100, an example set by a user using the imaging apparatus 1, and the like.
- the present disclosure includes an electronic device in which the imaging device 1 according to the embodiment is incorporated.
- Such an electronic device is realized, for example, as a digital still camera shown in FIG. 7A or a video camera shown in FIG. 7B.
- the imaging apparatus 1 has been described as having a configuration separate from the optical system 210.
- the imaging device 1 is not necessarily limited to a configuration that is separate from the optical system 210.
- the imaging device 1 may be a camera with a lens including the optical system 210 and the lens driving unit 220.
- Each component (functional block) in the imaging apparatus 1 may be individually made into one chip by a semiconductor device such as an IC (Integrated Circuit), an LSI (Large Scale Integration), or a part or all of them. Thus, it may be made into one chip. Further, the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used. Furthermore, if integrated circuit technology that replaces LSI appears as a result of progress in semiconductor technology or other derived technology, functional blocks may be integrated using this technology. Biotechnology can be applied as a possibility.
- IC Integrated Circuit
- LSI Large Scale Integration
- all or part of the various processes described above may be realized by hardware such as an electronic circuit or may be realized by using software.
- the processing by software is realized by a processor included in the imaging apparatus 1 executing a program stored in the memory.
- the program may be recorded on a recording medium and distributed or distributed. For example, by installing the distributed program in a device having another processor and causing the processor to execute the program, it is possible to cause the device to perform each of the above processes.
- the imaging device 1 includes the imaging device 10 that continuously captures a plurality of frame images, and the control unit 20 that controls the exposure state of the imaging device 10. Is exposed a plurality of times during the imaging period of one frame image in accordance with the control.
- This imaging device 1 exposes a plurality of times during the imaging period of one frame image. For this reason, when the subject is moving at a relatively high speed, in each frame image, an image in which the positions of the subject during the imaging period of the frame image are averaged is captured. As a result, when the subject is moving at a relatively high speed, a video composed of images captured by the imaging device 1 is captured by a conventional imaging device that is exposed only once during the imaging period of each frame image. The movement of the subject appears to be more natural than that of an image composed of images.
- the imaging apparatus 1 it is possible to realize imaging having various imaging effects as compared with the conventional art.
- the imaging device 10 generates charges due to the internal photoelectric effect by receiving light in a state where a voltage in the first predetermined range is applied, and receives light in a state where a voltage in the second predetermined range is applied.
- the control unit 20 includes a photoelectric conversion member 111 that does not generate charges due to the internal photoelectric effect, and the control unit 20 applies the voltage within the first predetermined range and the second predetermined range to the photoelectric conversion member 111 during the imaging period of the one frame image.
- the control may be performed by alternately applying a voltage within a range.
- the imaging apparatus 1 can realize the control of the exposure state of the imaging element without using a mechanical shutter.
- the image sensor 10 may be an organic CMOS image sensor using an organic thin film as a photoelectric conversion member 111.
- control unit 20 may perform the control so that the application of the voltage in the first predetermined range and the application of the voltage in the second predetermined range are switched at a constant period.
- control of voltage application to the photoelectric conversion member 111 can be realized relatively easily.
- the control unit 20 when applying a voltage in the first predetermined range to the image sensor 10, applies a first specific voltage in the first predetermined range and sets the voltage in the second predetermined range.
- a second specific voltage within the second predetermined range is applied, and in the control, a period for applying the first specific voltage and a period for applying the second specific voltage to the image sensor 10.
- the exposure amount of the image sensor 10 during the imaging period of the one frame image may be adjusted by changing the duty ratio in the fixed period.
- the camera 200 includes the imaging device 1 and a lens that collects external light on the imaging element 10.
- This camera 200 exposes a plurality of times during the imaging period of one frame image. For this reason, when the subject is moving at a relatively high speed, in each frame image, an image in which the positions of the subject during the imaging period of the frame image are averaged is captured. As a result, when the subject is moving at a relatively high speed, an image formed by the image captured by the camera 200 is an image captured by a conventional camera that is exposed only once during the imaging period of each frame image. The movement of the subject looks more natural than the video consisting of
- the camera 200 it is possible to realize imaging having various imaging effects as compared with the conventional art.
- the imaging apparatus 1 using this imaging method exposes a plurality of times during the imaging period of one frame image. For this reason, when the subject is moving at a relatively high speed, in each frame image, an image in which the positions of the subject during the imaging period of the frame image are averaged is captured. As a result, when the subject is moving at a relatively high speed, a video composed of images captured by the imaging device 1 using this imaging method is exposed only once during the imaging period of each frame image. The movement of the subject appears to be more natural than that of a video composed of an image captured by an imaging apparatus that uses the imaging method.
- the present disclosure can be widely used for imaging devices that capture images.
- Imaging device 10 Imaging element 20 Control part 21 Pixel circuit 110 Photoelectric conversion element 111 Photoelectric conversion member 112 Upper transparent electrode 113 Lower pixel electrode 120 Pixel circuit array 130 Reading circuit 140 Output circuit 150 Row scanning circuit 160 Timing control circuit 170 Voltage application circuit 200 Camera 211 Zoom lens 212 Camera shake correction lens 213 Focus lens
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Studio Devices (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
An imaging device (1) is provided with an imaging element (10) that successively captures a plurality of frame images, and a control unit (20) that controls the exposure state in the imaging element (10). The imaging element (10) performs exposures multiple times during a single–frame image capture period in accordance with the control.
Description
画像を撮像する撮像装置、カメラ、及び撮像方法に関する。
The present invention relates to an imaging apparatus, a camera, and an imaging method for imaging an image.
従来、イメージセンサを用いて画像を撮像する撮像装置が知られている(例えば、特許文献1参照)。
2. Description of the Related Art Conventionally, an imaging apparatus that captures an image using an image sensor is known (see, for example, Patent Document 1).
撮像装置には、多様な撮像効果を奏する撮像が望まれる。
Imaging devices that have various imaging effects are desired.
そこで、本開示は、従来よりも多様な撮像効果を奏する撮像を実現し得る撮像装置、カメラ、及び撮像方法を提供することを目的とする。
Therefore, it is an object of the present disclosure to provide an imaging apparatus, a camera, and an imaging method that can realize imaging that exhibits various imaging effects as compared with the conventional art.
本開示の一態様に係る撮像装置は、複数のフレーム画像を連続して撮像する撮像素子と、前記撮像素子における露光状態の制御を行う制御部とを備え、前記撮像素子は、前記制御に応じて、1フレーム画像の撮像期間中に複数回露光する。
An imaging apparatus according to an aspect of the present disclosure includes an imaging element that continuously captures a plurality of frame images, and a control unit that controls an exposure state of the imaging element, and the imaging element responds to the control. Thus, exposure is performed a plurality of times during the imaging period of one frame image.
本開示の一態様に係るカメラは、上記撮像装置と、前記撮像素子に外部の光を集光するレンズとを備える。
A camera according to an aspect of the present disclosure includes the imaging device and a lens that collects external light on the imaging device.
本開示の一態様に係る撮像方法は、撮像素子と、当該撮像素子を制御する制御部とを備える撮像装置が行う撮像方法であって、前記撮像素子が、複数のフレーム画像を連続して撮像する撮像ステップと、前記制御部が、前記撮像素子の露光状態を制御する制御ステップとを含み、前記撮像ステップでは、前記撮像素子が、前記制御に応じて、1フレーム画像の撮像期間中に複数回露光する。
An imaging method according to an aspect of the present disclosure is an imaging method performed by an imaging apparatus including an imaging element and a control unit that controls the imaging element, and the imaging element continuously captures a plurality of frame images. An imaging step and a control step in which the control unit controls an exposure state of the imaging device. In the imaging step, a plurality of imaging devices are arranged during an imaging period of one frame image according to the control. Repeat exposure.
上記本開示に係る撮像装置、カメラ、及び撮像方法によると、従来よりも多様な撮像効果が得られる撮像を実現することが可能となる。
According to the imaging apparatus, the camera, and the imaging method according to the present disclosure, it is possible to realize imaging capable of obtaining various imaging effects as compared with the conventional art.
以下、実施の形態について詳細に説明する。なお、以下で説明する実施の形態は、いずれも本開示の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。本開示は、請求の範囲だけによって限定される。よって、以下の実施の形態における構成要素のうち、本開示の独立請求項に記載されていない構成要素については、本開示の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。
Hereinafter, embodiments will be described in detail. Note that each of the embodiments described below shows a preferred specific example of the present disclosure. Numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present disclosure. The present disclosure is limited only by the claims. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims of the present disclosure are not necessarily required to achieve the problems of the present disclosure, but constitute more preferable embodiments. It is explained as a thing.
(実施の形態)
ここでは、画像を撮像する撮像装置1について、図面を参照しながら説明する。 (Embodiment)
Here, theimaging apparatus 1 that captures an image will be described with reference to the drawings.
ここでは、画像を撮像する撮像装置1について、図面を参照しながら説明する。 (Embodiment)
Here, the
[1.構成]
図1は、実施の形態に係るカメラ200の構成を示すブロック図である。 [1. Constitution]
FIG. 1 is a block diagram showing a configuration of acamera 200 according to the embodiment.
図1は、実施の形態に係るカメラ200の構成を示すブロック図である。 [1. Constitution]
FIG. 1 is a block diagram showing a configuration of a
カメラ200は、レンズ鏡筒230と、撮像装置1とを備えている。そして、レンズ鏡筒230は、光学系210と、レンズ駆動部220とを備えている。
The camera 200 includes a lens barrel 230 and the imaging device 1. The lens barrel 230 includes an optical system 210 and a lens driving unit 220.
光学系210は、撮像装置1の撮像素子10に外部の光を集光する1以上のレンズから構成されている。具体的には、光学系210は、ズームレンズ211、手振れ補正レンズ212、フォーカスレンズ213、絞り214により構成される。ズームレンズ211を光軸210Aに沿って移動させることにより、被写体像の拡大、縮小をすることができる。また、フォーカスレンズ213を光軸210Aに沿って移動させることにより被写体像のフォーカスを調整することができる。また、手振れ補正レンズ212は、光学系210の光軸210Aに垂直な面内で移動可能である。カメラ200のブレを打ち消す方向に手振れ補正レンズ212を移動することで、カメラ200のブレが撮像画像に与える影響を低減できる。また、絞り214は光軸210A上に位置する開口部214Aを有し、使用者の設定に応じて若しくは自動で開口部214Aの大きさを調整し、透過する光の量を調整する。
The optical system 210 is composed of one or more lenses that collect external light on the imaging device 10 of the imaging device 1. Specifically, the optical system 210 includes a zoom lens 211, a camera shake correction lens 212, a focus lens 213, and a diaphragm 214. The subject image can be enlarged or reduced by moving the zoom lens 211 along the optical axis 210A. The focus of the subject image can be adjusted by moving the focus lens 213 along the optical axis 210A. The camera shake correction lens 212 is movable in a plane perpendicular to the optical axis 210A of the optical system 210. By moving the camera shake correction lens 212 in a direction to cancel the camera 200 shake, the influence of the camera 200 shake on the captured image can be reduced. The diaphragm 214 has an opening 214A located on the optical axis 210A, and adjusts the size of the opening 214A according to the setting of the user or automatically to adjust the amount of transmitted light.
レンズ駆動部220は、ズームレンズ211を駆動するズームアクチュエータや、手振れ補正レンズ212を駆動する手ブレ補正アクチュエータや、フォーカスレンズ213を駆動するフォーカスアクチュエータや、絞り214を駆動する絞りアクチュエータを含む。そして、レンズ駆動部220は、上記のズームアクチュエータや、フォーカスアクチュエータや、手ブレ補正アクチュエータや、絞りアクチュエータを制御する。
The lens driving unit 220 includes a zoom actuator that drives the zoom lens 211, a camera shake correction actuator that drives the camera shake correction lens 212, a focus actuator that drives the focus lens 213, and a diaphragm actuator that drives the diaphragm 214. The lens driving unit 220 controls the zoom actuator, the focus actuator, the camera shake correction actuator, and the aperture actuator.
撮像装置1は、撮像素子10と、制御部20と、画像処理部260と、メモリ270と、カードスロット290と、内部メモリ340と、操作部材310と、表示モニタ320とを含んで構成される。
The imaging device 1 includes an imaging device 10, a control unit 20, an image processing unit 260, a memory 270, a card slot 290, an internal memory 340, an operation member 310, and a display monitor 320. .
撮像素子10は、複数のフレーム画像を連続して撮像する。
The image sensor 10 continuously captures a plurality of frame images.
画像処理部260は、撮像素子10で生成された画像データに対して各種処理を施し、表示モニタ320に表示するための画像データを生成したり、メモリカード300に格納するための画像データを生成したりする。例えば、画像処理部260は、撮像素子10で生成された画像データに対して、ガンマ補正、ホワイトバランス補正などの各種処理を行う。また、画像処理部260は、撮像素子10で生成された画像データを、H.264規格やMPEG2規格に準拠した圧縮形式等により圧縮する。画像処理部260は、一例として、メモリ(図示されず。)に記憶されるプログラムをプロセッサ(図示されず。)が実行することによって実現される。
The image processing unit 260 performs various processes on the image data generated by the image sensor 10, generates image data to be displayed on the display monitor 320, and generates image data to be stored in the memory card 300. To do. For example, the image processing unit 260 performs various processes such as gamma correction and white balance correction on the image data generated by the image sensor 10. Further, the image processing unit 260 converts the image data generated by the image sensor 10 into H.264. It compresses by the compression format etc. based on H.264 standard or MPEG2 standard. For example, the image processing unit 260 is realized by a processor (not shown) executing a program stored in a memory (not shown).
制御部20は、撮像素子10における露光状態の制御を行う。また、制御部20は、カメラ200全体を制御する。制御部20は、一例として、内部メモリ340に記録されたプログラムを、一時的な記憶を行うメモリ270に展開し、制御部20内のプロセッサ(図示されず。)が実行することによって実現される。
The control unit 20 controls the exposure state in the image sensor 10. The control unit 20 controls the entire camera 200. For example, the control unit 20 is realized by developing a program recorded in the internal memory 340 in the memory 270 that temporarily stores the program and executing a processor (not shown) in the control unit 20. .
メモリ270は、画像処理部360及び制御部20のワークメモリとしても機能する。メモリ270は、例えば、DRAM、SRAMなどで実現できる。
The memory 270 also functions as a work memory for the image processing unit 360 and the control unit 20. The memory 270 can be realized by, for example, a DRAM or an SRAM.
カードスロット390はメモリカード300を着脱可能に保持する。カードスロット290は機械的及び電気的にメモリカード300と接続可能である。メモリカード300は不揮発性フラッシュメモリや強誘電体メモリなどを内部に含み、画像処理部260で生成された画像ファイル等のデータを格納できる。
The card slot 390 holds the memory card 300 in a removable manner. The card slot 290 can be mechanically and electrically connected to the memory card 300. The memory card 300 includes a nonvolatile flash memory, a ferroelectric memory, and the like, and can store data such as an image file generated by the image processing unit 260.
内部メモリ340は、不揮発性フラッシュメモリや強誘電体メモリなどで構成される。内部メモリ340は、カメラ200全体を制御するための制御プログラム等を記憶する。
The internal memory 340 is configured by a nonvolatile flash memory, a ferroelectric memory, or the like. The internal memory 340 stores a control program for controlling the entire camera 200 and the like.
操作部材310は使用者からの操作を受け付けるユーザーインターフェースの総称である。操作部材310は、例えば、使用者からの操作を受け付ける十字キーや決定釦等を含む。
The operation member 310 is a generic term for a user interface that receives an operation from a user. The operation member 310 includes, for example, a cross key that accepts an operation from the user, a determination button, and the like.
表示モニタ320は、撮像素子10で生成された画像データが示す画像や、メモリカード300から読み出された画像データが示す画像を表示できる画面320Aを有する。また、表示モニタ320は、カメラ200の各種設定を行うための各種メニュー画面等も画面320Aに表示できる。表示モニタ320の画面320A上にはタッチパネル320Bが配置されている。タッチパネル320Bはユーザによりタッチされて各種タッチ操作を受け付けることができる。タッチパネル320Bに対するタッチ操作が示す指示は制御部20に通知され各種処理が行われる。
The display monitor 320 includes a screen 320A that can display an image indicated by the image data generated by the image sensor 10 and an image indicated by the image data read from the memory card 300. The display monitor 320 can also display various menu screens for performing various settings of the camera 200 on the screen 320A. A touch panel 320B is arranged on the screen 320A of the display monitor 320. The touch panel 320B can be touched by the user and accept various touch operations. The instruction indicated by the touch operation on the touch panel 320B is notified to the control unit 20 and various processes are performed.
撮像装置1では、撮像素子10は、制御部20の制御に応じて、1フレーム画像の撮像期間中に複数回露光する。以下、撮像素子10について、図面を用いてさらに詳細に説明する。
In the imaging apparatus 1, the imaging element 10 exposes a plurality of times during the imaging period of one frame image under the control of the control unit 20. Hereinafter, the image sensor 10 will be described in more detail with reference to the drawings.
図2は、撮像素子10の構成を示すブロック図である。
FIG. 2 is a block diagram showing the configuration of the image sensor 10.
同図に示されるように、撮像素子10は、光電変換素子110と、画素回路アレイ120と、読み出し回路130と、出力回路140と、行走査回路150と、タイミング制御回路160と、電圧印加回路170とを含んで構成される。
As shown in the figure, the image sensor 10 includes a photoelectric conversion element 110, a pixel circuit array 120, a readout circuit 130, an output circuit 140, a row scanning circuit 150, a timing control circuit 160, and a voltage application circuit. 170.
図3Aは、光電変換素子110の平面図であり、図3Bは、光電変換素子110の側面図である。
3A is a plan view of the photoelectric conversion element 110, and FIG. 3B is a side view of the photoelectric conversion element 110.
図3A、図3Bに示されるように、光電変換素子110は、薄膜状の光電変換部材111と、光電変換部材111の上面に密着する上部透明電極112と、光電変換部材111の下面に密着する、N行M列(N、Mは、1以上の整数。)の二次元アレイ状に配置されたN×M枚の下部画素電極113とを含んで構成される。
As shown in FIGS. 3A and 3B, the photoelectric conversion element 110 is in close contact with the thin-film photoelectric conversion member 111, the upper transparent electrode 112 that is in close contact with the upper surface of the photoelectric conversion member 111, and the lower surface of the photoelectric conversion member 111. , N × M lower pixel electrodes 113 arranged in a two-dimensional array of N rows and M columns (N and M are integers of 1 or more).
光電変換部材111は、0Vと不感領域を含まない第1所定範囲の電圧が印加された状態において受光することで内部光電効果による電荷を生成し、0Vと不感領域である第2所定範囲の電圧が印加された状態において受光しても内部光電効果による電荷を生成しない。
The photoelectric conversion member 111 generates light due to the internal photoelectric effect by receiving light in a state where a voltage of 0V and a first predetermined range not including the insensitive area is applied, and 0V and a voltage of the second predetermined range that is the insensitive area. Even if light is received in a state where is applied, charges due to the internal photoelectric effect are not generated.
ここでは、光電変換部材111が、上記特性を有する有機薄膜であるとして説明する。すなわち、この実施の形態においては、撮像素子10が、有機薄膜を光電変換部材とする有機CMOSイメージセンサである場合の例となっている。
Here, description will be made assuming that the photoelectric conversion member 111 is an organic thin film having the above characteristics. That is, in this embodiment, the image pickup device 10 is an example of an organic CMOS image sensor that uses an organic thin film as a photoelectric conversion member.
上部透明電極112は、光電変換部材111の上面の全体に、下面に対して0Vを含む電位差を生じさせる電圧を印加する、透明な電極である。
The upper transparent electrode 112 is a transparent electrode that applies a voltage that generates a potential difference including 0 V to the lower surface over the entire upper surface of the photoelectric conversion member 111.
下部画素電極113は、光電変換部材111の下面の全体を覆うように、N行M列の二次元アレイ状に配置された電極である。
The lower pixel electrode 113 is an electrode arranged in a two-dimensional array of N rows and M columns so as to cover the entire lower surface of the photoelectric conversion member 111.
下部画素電極113は、光電変換部材111の上面に、下面に対して正の電位差を生じさせる電圧が印加されている場合において、光電変換部材111で電荷が生成されるときに、自身の近傍において生成される電荷のうち、正の電荷を集電する。
The lower pixel electrode 113 is formed in the vicinity of itself when a charge is generated on the upper surface of the photoelectric conversion member 111 so as to generate a positive potential difference with respect to the lower surface. Among the generated charges, positive charges are collected.
上記構成の光電変換素子110は、光電変換部材111の上面に、下面に対して、内部光電効果が生ずる範囲の正の電位差を生じさせる電圧が印加されている場合には、受光による内部光電効果によって生成される正の電荷を、下部画素電極113のそれぞれが集電する。これに対して、光電変換部材111の上面が、下面と略同電位である場合には、受光しても、内部光電効果による電荷が生成されず、従って、下部画素電極113のそれぞれが電荷を集電することはない。
In the photoelectric conversion element 110 configured as described above, when a voltage that causes a positive potential difference within a range in which the internal photoelectric effect is generated is applied to the upper surface of the photoelectric conversion member 111 with respect to the lower surface, the internal photoelectric effect due to light reception is applied. Each of the lower pixel electrodes 113 collects the positive charges generated by the above. On the other hand, when the upper surface of the photoelectric conversion member 111 has substantially the same potential as the lower surface, even if it receives light, no charge is generated due to the internal photoelectric effect. There is no current collection.
以下、光電変換部材111の上面に、下面に対して、内部光電効果が生ずる範囲の正の電位差を生じさせる電圧が印加されている期間のことを露光期間と呼び、光電変換部材111の上面に、下面に対して、内部光電効果が生じない範囲の電圧(ここでは、下面と略同電位の電圧)が印加されている期間のことを遮光期間と呼ぶ。
Hereinafter, a period in which a voltage causing a positive potential difference in a range in which the internal photoelectric effect occurs is applied to the upper surface of the photoelectric conversion member 111 as an exposure period. A period in which a voltage in a range where the internal photoelectric effect does not occur (here, a voltage having substantially the same potential as the lower surface) is applied to the lower surface is referred to as a light shielding period.
再び、図2に戻って、撮像素子10の説明を続ける。
2 again, the description of the image sensor 10 will be continued.
画素回路アレイ120は、N×M個の画素回路21が、N行M列の二次元アレイ状に配置されてなる半導体デバイスであって、光電変換素子110の下面側に、光電変換素子110に重ね合わされて配置される。
The pixel circuit array 120 is a semiconductor device in which N × M pixel circuits 21 are arranged in a two-dimensional array of N rows and M columns, and the photoelectric conversion element 110 is arranged on the lower surface side of the photoelectric conversion element 110. Arranged in a superimposed manner.
画素回路アレイ120において、各画素回路21は、撮像素子10を平面視した場合において、画素回路21それぞれの位置が、下部画素電極113それぞれの位置と、一対一に対応付けられて重なるように配置されている。
In the pixel circuit array 120, each pixel circuit 21 is arranged so that the position of each pixel circuit 21 overlaps with the position of each lower pixel electrode 113 in a one-to-one correspondence when the imaging device 10 is viewed in plan. Has been.
図4は、画素回路21の構成を示すブロック図である。
FIG. 4 is a block diagram showing the configuration of the pixel circuit 21. As shown in FIG.
同図に示されるように、画素回路21は、リセットトランジスタ22と、増幅トランジスタ23と、選択トランジスタ24と、電荷蓄積ノード25とを含んで構成される。
As shown in the figure, the pixel circuit 21 includes a reset transistor 22, an amplification transistor 23, a selection transistor 24, and a charge storage node 25.
電荷蓄積ノード25は、自身の属する画素回路21に対応する下部画素電極113と、リセットトランジスタ22のソースと、増幅トランジスタ23のゲートとに接続され、接続される下部画素電極113によって集電された正の電荷を蓄積する。
The charge storage node 25 is connected to the lower pixel electrode 113 corresponding to the pixel circuit 21 to which the charge storage node 25 belongs, the source of the reset transistor 22, and the gate of the amplification transistor 23, and is collected by the connected lower pixel electrode 113. Accumulate positive charge.
リセットトランジスタ22は、ゲートにリセット信号線51が接続され、ドレインにリセット電圧VRSTが供給され、ソースに電荷蓄積ノード25が接続される。
The reset transistor 22 has a gate connected to the reset signal line 51, a drain supplied with a reset voltage VRST, and a source connected to the charge storage node 25.
リセットトランジスタ22は、行走査回路150(後述)からリセット信号線51を介して配送されるリセット信号によってオンにされることで、電荷蓄積ノード25に蓄積された電荷の量をリセット(初期化)する。
The reset transistor 22 is turned on by a reset signal delivered from the row scanning circuit 150 (described later) via the reset signal line 51, thereby resetting (initializing) the amount of charge accumulated in the charge accumulation node 25. To do.
増幅トランジスタ23は、ゲートに電荷蓄積ノード25が接続され、ドレインに電源電圧VDDが供給され、ソースに選択トランジスタ24のドレインが接続される。
In the amplifying transistor 23, the charge storage node 25 is connected to the gate, the power supply voltage VDD is supplied to the drain, and the drain of the selection transistor 24 is connected to the source.
増幅トランジスタ23のゲートには、電荷蓄積ノード25に蓄積される電荷に応じた電圧が印加される。
A voltage corresponding to the charge accumulated in the charge accumulation node 25 is applied to the gate of the amplification transistor 23.
このため、増幅トランジスタ23は、選択トランジスタ24がオン状態の場合に、電荷蓄積ノード25に蓄積された電荷に応じた電流を流す電流源として機能する。
For this reason, the amplifying transistor 23 functions as a current source for supplying a current corresponding to the charge stored in the charge storage node 25 when the selection transistor 24 is in the ON state.
選択トランジスタ24は、ゲートに選択信号線52が接続され、ドレインに増幅トランジスタ23のソースが接続され、ソースに垂直信号線32が接続される。
In the selection transistor 24, the selection signal line 52 is connected to the gate, the source of the amplification transistor 23 is connected to the drain, and the vertical signal line 32 is connected to the source.
選択トランジスタ24は、行走査回路150(後述)から選択信号線52を介して配送される選択信号によってオンにされることで、増幅トランジスタ23に流れる電流を垂直信号線32に出力する。
The selection transistor 24 is turned on by a selection signal delivered from the row scanning circuit 150 (described later) via the selection signal line 52, thereby outputting a current flowing through the amplification transistor 23 to the vertical signal line 32.
後述するように、垂直信号線32に出力される電流の電流量が、列読み出し回路31(後述)によって検知されることで、選択信号によってオンされた選択トランジスタ24を含む画素回路21の電荷蓄積ノード25に蓄積された電荷の量が読み出される。
As will be described later, when the amount of current output to the vertical signal line 32 is detected by a column readout circuit 31 (described later), the charge accumulation of the pixel circuit 21 including the selection transistor 24 turned on by the selection signal. The amount of charge stored in the node 25 is read out.
画素回路21は、上記構成により、電荷蓄積ノード25に蓄積された電荷の量が非破壊で読み出される。
The pixel circuit 21 reads the amount of charges accumulated in the charge accumulation node 25 in a non-destructive manner with the above configuration.
再び、図2に戻って、撮像素子10の説明を続ける。
2 again, the description of the image sensor 10 will be continued.
行走査回路150は、下記蓄積電荷量リセット機能と下記読み出し画素回路選択機能とを有する。
The row scanning circuit 150 has the following stored charge amount reset function and the following readout pixel circuit selection function.
蓄積電荷量リセット機能は、画素回路アレイ120において、読み出し回路130に最も遠い側の行(第1行)から、読み出し回路130に最も近い側の行(第N行)へと1行ずつ順に、所定時間t1間隔で、該当行に属する画素回路21それぞれにおける電荷蓄積ノード25に蓄積された正の電荷をリセットするためのリセット信号を、該当行に属する画素回路21それぞれに接続されるリセット信号線51を介して配送する機能である。
In the pixel circuit array 120, the stored charge amount reset function is performed one by one from the row farthest to the readout circuit 130 (first row) to the row closest to the readout circuit 130 (Nth row). A reset signal line for resetting positive charges accumulated in the charge accumulation nodes 25 in each pixel circuit 21 belonging to the corresponding row at a predetermined time t1 interval is connected to each pixel circuit 21 belonging to the relevant row. This is a function of delivering via 51.
これにより、画素回路アレイ120に含まれる全ての画素回路21の電荷蓄積ノード25に蓄積された電荷のリセットは、第1行目から第N行目まで行単位で順に実行され、第1行目に属する画素回路21についてのリセットが開始されてから、第N行目に属する画素回路21についてのリセットが完了するまで、N×t1の期間を要する。
As a result, the resetting of the charges accumulated in the charge accumulation nodes 25 of all the pixel circuits 21 included in the pixel circuit array 120 is sequentially executed in units of rows from the first row to the Nth row. A period of N × t1 is required from the start of the reset for the pixel circuit 21 belonging to No. 1 to the completion of the reset for the pixel circuit 21 belonging to the Nth row.
読み出し画素回路選択機能とは、画素回路アレイ120において、第1行から第N行へと1行ずつ順に、所定時間t1間隔で、該当行に属する画素回路21それぞれにおける選択トランジスタ24をオンにするための選択信号を、該当行に属する画素回路21それぞれに接続される選択信号線52を介して配送する機能である。
In the pixel circuit array 120, the readout pixel circuit selection function turns on the selection transistor 24 in each of the pixel circuits 21 belonging to the corresponding row at predetermined time intervals t1 in order from the first row to the Nth row. This is a function for delivering a selection signal for selection via a selection signal line 52 connected to each of the pixel circuits 21 belonging to the corresponding row.
これにより、画素回路アレイ120に含まれる全ての画素回路21の電荷蓄積ノード25に蓄積された電荷量の読み出しは、第1行目から第N行目まで行単位で順に実行され、第1行目に属する画素回路21についての読み出しが開始されてから、第N行目に属する画素回路21についての読み出しが完了するまで、N×t1の期間を要する。
As a result, the reading of the charge amount accumulated in the charge accumulation nodes 25 of all the pixel circuits 21 included in the pixel circuit array 120 is sequentially executed in units of rows from the first row to the N-th row. A period of N × t1 is required from the start of reading for the pixel circuit 21 belonging to the eye to the completion of reading for the pixel circuit 21 belonging to the Nth row.
読み出し回路130は、画素回路アレイ120を構成する画素回路21のそれぞれに蓄積されている電荷の量を読み出す。
The readout circuit 130 reads out the amount of charge accumulated in each of the pixel circuits 21 constituting the pixel circuit array 120.
読み出し回路130は、画素回路アレイ120のM個の列それぞれに対応するM個の列読み出し回路31を含んで構成される。
The readout circuit 130 is configured to include M column readout circuits 31 corresponding to the M columns of the pixel circuit array 120, respectively.
列読み出し回路31は、対応する列に属する画素回路21それぞれに接続される垂直信号線32を介して、選択信号によってオンとなっている選択トランジスタ24を含む画素回路21(この画素回路21のことを、「読み出し対象の画素回路21」とも呼ぶ。)の増幅トランジスタ23に流れる電流量を検知することで、読み出し対象の画素回路21の電荷蓄積ノード25に蓄積されている電荷の量を読み出して、読み出した電荷の量を示すKビット(Kは、正の整数、例えば8)のデジタル信号を、読み出し対象の画素回路21の画素値として出力する。
The column readout circuit 31 includes a selection transistor 24 that is turned on by a selection signal via a vertical signal line 32 connected to each of the pixel circuits 21 belonging to the corresponding column (this pixel circuit 21). Is also referred to as “a pixel circuit 21 to be read”.), By detecting the amount of current flowing through the amplification transistor 23, the amount of charge accumulated in the charge accumulation node 25 of the pixel circuit 21 to be read is read. Then, a digital signal of K bits (K is a positive integer, for example, 8) indicating the amount of the read electric charge is output as a pixel value of the pixel circuit 21 to be read.
出力回路140は、列読み出し回路31から出力された画素値を外部に出力する。
The output circuit 140 outputs the pixel value output from the column readout circuit 31 to the outside.
電圧印加回路170は、光電変換部材111に電圧を印加する。より具体的には、電圧印加回路170は、上部透明電極112に印加する電圧を制御して、光電変換部材111の上面に、(1)下面に対して、内部光電効果が生ずる正の電位差を生じさせる所定の第1電圧を印加することで、その印加状態の期間、光電変換素子110を露光期間とし、(2)下面に対して、内部光電効果が生ずる正の電位差を生じさせない電位差(ここでは、下面と同電位)を生じさせる所定の第2電圧を印加することで、その印加状態の期間、光電変換素子110を遮光期間とする。
The voltage application circuit 170 applies a voltage to the photoelectric conversion member 111. More specifically, the voltage application circuit 170 controls the voltage applied to the upper transparent electrode 112 so that (1) the lower surface of the photoelectric conversion member 111 has a positive potential difference that causes the internal photoelectric effect. By applying a predetermined first voltage to be generated, the photoelectric conversion element 110 is set as an exposure period during the applied state, and (2) a potential difference that does not cause a positive potential difference that causes an internal photoelectric effect with respect to the lower surface (here) Then, by applying a predetermined second voltage that generates the same potential as the lower surface), the photoelectric conversion element 110 is set as a light shielding period during the applied state.
タイミング制御回路160は、行走査回路150の動作タイミングと、読み出し回路130の動作タイミングと、電圧印加回路170の動作タイミングとを制御する。すなわち、タイミング制御回路160は、行走査回路150による、蓄積電荷量リセット機能を実行するタイミングと、読み出し画素回路選択機能を実行するタイミングとを制御し、読み出し回路130による、選択信号によって選択された画素回路21の電荷蓄積ノード25に蓄積されている電荷の量を読み出すタイミングを制御し、電圧印加回路170による、光電変換素子110を露光期間とするタイミングと、光電変換素子110を遮光期間とするタイミングとを制御する。
The timing control circuit 160 controls the operation timing of the row scanning circuit 150, the operation timing of the readout circuit 130, and the operation timing of the voltage application circuit 170. That is, the timing control circuit 160 controls the timing for executing the stored charge amount reset function and the timing for executing the readout pixel circuit selection function by the row scanning circuit 150, and is selected by the selection signal by the readout circuit 130. The timing at which the amount of charge accumulated in the charge accumulation node 25 of the pixel circuit 21 is read is controlled, the timing at which the voltage conversion circuit 110 sets the photoelectric conversion element 110 as the exposure period, and the photoelectric conversion element 110 as the light shielding period. Control the timing.
再び、図1に戻って、撮像装置1の説明を続ける。
Again returning to FIG. 1, the description of the imaging device 1 will be continued.
制御部20は、下記フレーム画像連続撮像機能と下記露光制御機能とを有する。
The control unit 20 has the following frame image continuous imaging function and the following exposure control function.
フレーム画像連続撮像機能は、所定のフレーム期間T1(例えば、1/60秒)毎に、撮像素子10にフレーム画像を連続して撮像させる機能である。より具体的には、撮像素子10に対して、フレーム期間T1毎に、フレーム切替信号を出力することで、撮像素子10に上記フレーム画像の連続撮像を実行させる。
The frame image continuous imaging function is a function for causing the image sensor 10 to continuously capture frame images every predetermined frame period T1 (for example, 1/60 seconds). More specifically, by outputting a frame switching signal to the image sensor 10 every frame period T1, the image sensor 10 is caused to perform continuous imaging of the frame image.
図5Aは、制御部20によって出力されるフレーム切替信号のタイミング図である。
FIG. 5A is a timing diagram of a frame switching signal output by the control unit 20.
図5Aに示されるように、制御部20は、撮像素子10に対して、フレーム期間T1毎に、フレーム切替信号を出力する。
As shown in FIG. 5A, the control unit 20 outputs a frame switching signal to the image sensor 10 every frame period T1.
撮像素子10は、制御部20から出力されたフレーム切替信号を受け取ると、タイミング制御回路160が、行走査回路150の動作タイミングと、読み出し回路130の動作タイミングとを制御することで、フレーム開始信号を受け取るタイミングで、画素回路アレイ120を構成する全画素回路21に対する、電荷蓄積ノード25に蓄積されている電荷の量の読み出しを開始する。
When the imaging device 10 receives the frame switching signal output from the control unit 20, the timing control circuit 160 controls the operation timing of the row scanning circuit 150 and the operation timing of the readout circuit 130, thereby causing a frame start signal. Is read out from the charge storage nodes 25 for all the pixel circuits 21 constituting the pixel circuit array 120.
図5Bは、撮像素子10の動作を示すタイミング図である。
FIG. 5B is a timing chart showing the operation of the image sensor 10.
図5Bに示されるように、画素回路アレイ120に含まれる全ての画素回路21の電荷蓄積ノード25に蓄積された電荷量の読み出しは、第1行から第N行まで行単位で順にt1ずつ遅れたタイミングで実行される。
As shown in FIG. 5B, the reading of the amount of charge accumulated in the charge accumulation nodes 25 of all the pixel circuits 21 included in the pixel circuit array 120 is delayed by t1 in order from the first row to the Nth row. It is executed at the timing.
また、撮像素子10は、タイミング制御回路160が、行走査回路150の動作タイミングを制御することで、上記電荷量の読み出しを開始してから、Δtだけ遅延するタイミングで、画素回路アレイ120を構成する全画素回路21に対する、電荷蓄積ノード25に蓄積されている電荷の量のリセット(初期化)を開始する。
In addition, the image sensor 10 configures the pixel circuit array 120 at a timing delayed by Δt after the timing control circuit 160 controls the operation timing of the row scanning circuit 150 to start reading the charge amount. The resetting (initialization) of the amount of charge accumulated in the charge accumulation node 25 is started for all the pixel circuits 21 to be performed.
図5Bに示されるように、画素回路アレイ120に含まれる全ての画素回路21の電荷蓄積ノード25に蓄積された電荷量のリセットは、第1行から第N行まで行単位で順にt1毎遅れたタイミングで実行される。
As shown in FIG. 5B, the reset of the charge amount accumulated in the charge accumulation nodes 25 of all the pixel circuits 21 included in the pixel circuit array 120 is delayed by t1 in order from the first row to the Nth row. It is executed at the timing.
再び図1に戻って、制御部20の説明を続ける。
Referring back to FIG. 1 again, the description of the control unit 20 will be continued.
露光制御機能は、撮像素子10による複数のフレーム画像の連続撮像において、各フレームにおける露光量が、撮像装置1を利用するユーザによって指定された指定露光量となるように、撮像素子10にフレーム画像を撮像させる機能である。ここで、この指定露光量は、フレーム期間の全てを露光期間とする場合における、光電変換素子110の露光量である最大露光量未満の範囲に限られる。より具体的には、制御部20は、(1)最大露光量を1とした場合における指定露光量の比率(以下、この比率のことを「指定露光量比率」と呼ぶ。)を算出して、(2)フレーム期間T1の1/L(Lは2より大きな数、ここでは、例えば、10)の周期であって、算出した指定露光量比率をデューティ比とする露光状態制御パルス列を生成し、(3)生成した露光量制御パルス列を、撮像素子10に対して出力することで、撮像素子10に指定露光量となるフレーム画像の撮像を実行させる。
In the exposure control function, in the continuous imaging of a plurality of frame images by the imaging device 10, the frame image is applied to the imaging device 10 so that the exposure amount in each frame becomes a designated exposure amount specified by the user using the imaging device 1. This is a function for imaging. Here, the designated exposure amount is limited to a range less than the maximum exposure amount that is the exposure amount of the photoelectric conversion element 110 when the entire frame period is the exposure period. More specifically, the control unit 20 calculates (1) a ratio of the designated exposure amount when the maximum exposure amount is 1 (hereinafter, this ratio is referred to as “designated exposure amount ratio”). (2) 1 / L of the frame period T1 (L is a number larger than 2, for example, 10 in this case), and an exposure state control pulse train is generated with the calculated designated exposure amount ratio as a duty ratio. (3) By outputting the generated exposure amount control pulse train to the image sensor 10, the image sensor 10 is caused to execute imaging of a frame image having a designated exposure amount.
図5Cは、制御部20によって出力される露光状態出力パルスのタイミング図である。
FIG. 5C is a timing chart of the exposure state output pulse output by the control unit 20.
図5Cに示されるように、制御部20は、撮像素子10に対して、周期がT1×1/Lで、デューティ比が指定露光量比率となる露光量制御パルス列を出力する。
As shown in FIG. 5C, the control unit 20 outputs an exposure amount control pulse train having a cycle of T1 × 1 / L and a duty ratio of the designated exposure amount ratio to the image sensor 10.
撮像素子10は、制御部20から出力された露光状態制御パルスを受け取ると、タイミング制御回路160が、電圧印加回路170を制御して、露光状態制御パルスがハイの期間、光電変換素子110を露光期間とし、露光状態制御パルスがロウの期間、光電変換素子110を遮光期間とする。
When the imaging device 10 receives the exposure state control pulse output from the control unit 20, the timing control circuit 160 controls the voltage application circuit 170 to expose the photoelectric conversion device 110 during the period when the exposure state control pulse is high. The exposure period control pulse is low, and the photoelectric conversion element 110 is a light shielding period.
図5Dは、光電変換素子110の状態を示すタイミング図である。
FIG. 5D is a timing chart showing the state of the photoelectric conversion element 110.
図5Dに示されるように、光電変換素子110は、露光状態制御パルスがハイの期間、露光期間となり、露光状態制御パルスがロウの期間、遮光期間となる。
As shown in FIG. 5D, the photoelectric conversion element 110 has an exposure period when the exposure state control pulse is high, an exposure period, and a low period when the exposure state control pulse is low.
このように、撮像素子10は、フレーム期間T1内にL回、指定露光量比率で定められる、露光状態制御パルス列におけるハイの期間ずつ露光することで、指定露光量となるフレーム画像を撮像する。
As described above, the image sensor 10 captures a frame image having the designated exposure amount by performing exposure for each high period in the exposure state control pulse train determined by the designated exposure amount ratio L times within the frame period T1.
上記構成の撮像装置1が行う動作について、以下、図面を参照しながら説明する。
The operation performed by the imaging apparatus 1 having the above configuration will be described below with reference to the drawings.
[2.動作]
撮像装置1は、その特徴的な動作として、多重露光撮像処理を行う。 [2. Operation]
Theimaging apparatus 1 performs multiple exposure imaging processing as a characteristic operation.
撮像装置1は、その特徴的な動作として、多重露光撮像処理を行う。 [2. Operation]
The
多重露光撮像処理は、各フレーム画像の撮像期間中に、指定露光量比率で定められる期間ずつ複数回露光することで、撮像装置1を利用するユーザによって指定された指定露光量となるように、複数のフレーム画像を連続して撮像する処理である。
In the multiple exposure imaging process, during the imaging period of each frame image, exposure is performed a plurality of times for a period determined by the specified exposure amount ratio, so that the specified exposure amount specified by the user using the imaging device 1 is obtained. This is a process of continuously capturing a plurality of frame images.
図6は、多重露光撮像処理のフローチャートである。
FIG. 6 is a flowchart of the multiple exposure imaging process.
この多重露光撮像処理は、操作部材310によって、撮像装置1を利用するユーザからの多重露光撮像処理を開始する旨の操作が受け付けられることで開始される。
The multiple exposure imaging process is started when an operation for starting the multiple exposure imaging process from a user using the imaging apparatus 1 is received by the operation member 310.
多重露光撮像処理が開始されると、操作部材310は、ユーザからの操作を受け付けることで、ユーザによって指定される指定露光量を取得する(ステップS10)。
When the multiple exposure imaging process is started, the operation member 310 receives the operation from the user, and acquires the designated exposure amount specified by the user (step S10).
指定露光量が取得されると、制御部20は、その指定露光量が、フレーム期間の全てを露光期間とする場合における、光電変換素子110の露光量である最大露光量未満であるか否かを判定する(ステップS20)。
When the designated exposure amount is acquired, the control unit 20 determines whether or not the designated exposure amount is less than the maximum exposure amount that is the exposure amount of the photoelectric conversion element 110 when the entire frame period is the exposure period. Is determined (step S20).
ステップS20の処理において、指定露光量が最大露光量未満である場合に(ステップS20:Yes)、制御部20は、最大露光量を1とした場合における指定露光量の比率である指定露光量比率を算出する(ステップS30)。
In the process of step S20, when the designated exposure amount is less than the maximum exposure amount (step S20: Yes), the control unit 20 designates the designated exposure amount ratio that is a ratio of the designated exposure amount when the maximum exposure amount is 1. Is calculated (step S30).
指定露光量比率が算出されると、制御部20は、フレーム期間T1の1/Lの周期であって、算出した指定露光量比率をデューティ比とする露光状態制御パルス列の出力を開始し(ステップS40)、フレーム期間T1毎のフレーム切替信号の連続出力を開始する(ステップS50)。
When the designated exposure amount ratio is calculated, the control unit 20 starts outputting an exposure state control pulse train that has a cycle of 1 / L of the frame period T1 and uses the calculated designated exposure amount ratio as a duty ratio (step S1). S40), continuous output of the frame switching signal for each frame period T1 is started (step S50).
露光状態制御パルス列の出力と、フレーム切替信号の連続出力が開始されると、撮像素子10は、フレーム期間T1内にL回、指定露光量比率で定められる、露光状態制御パルス列におけるハイの期間ずつ露光することで、指定露光量となるフレーム画像の連続撮像を開始する(ステップS60)。
When the output of the exposure state control pulse train and the continuous output of the frame switching signal are started, the image sensor 10 is set to the high period in the exposure state control pulse train that is determined by the designated exposure amount ratio L times within the frame period T1. By performing exposure, continuous imaging of a frame image having a designated exposure amount is started (step S60).
フレーム画像の連続撮像が開始されると、制御部20は、ユーザからの、操作部材310を用いて行われる、多重露光撮像処理を終了する旨の撮像終了操作が受け付けられたか否かを繰り返し調べる(ステップS70:Noを繰り返す)。
When the continuous imaging of the frame images is started, the control unit 20 repeatedly checks whether or not an imaging end operation for ending the multiple exposure imaging process performed by the user using the operation member 310 is accepted. (Step S70: No is repeated).
撮像終了操作が受け付けられると(ステップS70:Noを繰り返した後ステップS70:Yesへ進む)、制御部20は、フレーム切替信号の連続出力を終了し(ステップS80)、露光状態制御パルス列の出力を終了する(ステップS90)。
When the imaging end operation is received (step S70: No is repeated and then the process proceeds to step S70: Yes), the control unit 20 ends the continuous output of the frame switching signal (step S80), and outputs the exposure state control pulse train. The process ends (step S90).
フレーム切替信号の連続出力と、露光状態制御パルス列の出力とが終了すると、撮像素子は、フレーム画像の連続撮像を終了する(ステップS100)。
When the continuous output of the frame switching signal and the output of the exposure state control pulse train are completed, the imaging device ends the continuous imaging of the frame image (step S100).
ステップS100の処理が終了した場合と、ステップS20の処理において、指定露光量が最大露光量未満でない場合とに(ステップS20:No)、撮像装置1は、その多重露光処理を終了する。
The imaging device 1 ends the multiple exposure process when the process of step S100 is completed and when the designated exposure amount is not less than the maximum exposure amount in the process of step S20 (step S20: No).
[3.効果等]
上述したように、撮像装置1によると、複数のフレーム画像を連続撮像する際に、各フレーム画像の撮像期間中に、複数回露光することが可能となる。このため、被写体が比較的高速で動いている場合には、各フレーム画像において、そのフレーム画像の撮像期間中の被写体の位置が平均化された画像が撮像されることとなる。このことにより、被写体が比較的高速で動いている場合において、撮像装置1によって撮像された画像からなる映像は、各フレーム画像の撮像期間中に1回しか露光しない従来の撮像装置によって撮像された画像からなる映像よりも、被写体の動きがより自然な動きに見えるようになる。 [3. Effect]
As described above, according to theimaging apparatus 1, when a plurality of frame images are continuously captured, it is possible to perform multiple exposures during the imaging period of each frame image. For this reason, when the subject is moving at a relatively high speed, in each frame image, an image in which the positions of the subject during the imaging period of the frame image are averaged is captured. As a result, when the subject is moving at a relatively high speed, the video composed of the images captured by the imaging device 1 is captured by a conventional imaging device that is exposed only once during the imaging period of each frame image. The movement of the subject appears to be more natural than that of a video image.
上述したように、撮像装置1によると、複数のフレーム画像を連続撮像する際に、各フレーム画像の撮像期間中に、複数回露光することが可能となる。このため、被写体が比較的高速で動いている場合には、各フレーム画像において、そのフレーム画像の撮像期間中の被写体の位置が平均化された画像が撮像されることとなる。このことにより、被写体が比較的高速で動いている場合において、撮像装置1によって撮像された画像からなる映像は、各フレーム画像の撮像期間中に1回しか露光しない従来の撮像装置によって撮像された画像からなる映像よりも、被写体の動きがより自然な動きに見えるようになる。 [3. Effect]
As described above, according to the
このように、撮像装置1によると、従来よりも多様な撮像効果を奏する撮像を実現することが可能となる。
As described above, according to the imaging apparatus 1, it is possible to realize imaging having various imaging effects as compared with the conventional art.
また、上述したように、撮像装置1は、露光状態制御パルス列のデューティ比を制御することで、各フレーム画像における露光量を調整することができる。このため、撮像装置1は、光量調整用の絞りを用いなくても、ND(Neutral Density)機能を実現することが可能となる。
Also, as described above, the imaging apparatus 1 can adjust the exposure amount in each frame image by controlling the duty ratio of the exposure state control pulse train. For this reason, the imaging apparatus 1 can realize an ND (Neutral Density) function without using a diaphragm for adjusting the light amount.
また、絞りを用いずにND機能を実現することが可能となることから、撮像装置1が絞りを備えている場合には、その絞りを、被写体の深度調整専用に利用することが可能となる。
In addition, since the ND function can be realized without using an aperture, when the imaging apparatus 1 includes an aperture, the aperture can be used exclusively for subject depth adjustment. .
また、露光状態制御パルス列のデューティ比を制御することで露光量の調整が可能となることから、撮像装置1を用いることで、比較的容易かつ正確に、リニアな露光量の調整を実現することが可能となる。
Further, since the exposure amount can be adjusted by controlling the duty ratio of the exposure state control pulse train, the linear exposure amount can be adjusted relatively easily and accurately by using the imaging device 1. Is possible.
(補足)
以上のように、本出願において開示する技術の例示として、実施の形態について説明した。しかしながら、本開示における技術は、これらに限定されず、適宜、変更、置き換え、付加、省略等を行った実施の形態にも適用可能である。 (Supplement)
As described above, the embodiments have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to these, and can be applied to embodiments in which changes, replacements, additions, omissions, and the like are appropriately performed.
以上のように、本出願において開示する技術の例示として、実施の形態について説明した。しかしながら、本開示における技術は、これらに限定されず、適宜、変更、置き換え、付加、省略等を行った実施の形態にも適用可能である。 (Supplement)
As described above, the embodiments have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to these, and can be applied to embodiments in which changes, replacements, additions, omissions, and the like are appropriately performed.
(1)実施の形態において、撮像装置1は、光電変換部材111が、第1所定範囲の電圧が印加された状態において受光することで内部光電効果による電荷を生成し、第2所定範囲の電圧が印加された状態において受光しても内部光電効果による電荷を生成しない機能を有する有機薄膜であるとして説明した。
(1) In the embodiment, in the imaging apparatus 1, the photoelectric conversion member 111 generates light due to the internal photoelectric effect by receiving light in a state where a voltage in the first predetermined range is applied, and the voltage in the second predetermined range. It has been described that the organic thin film has a function that does not generate charges due to the internal photoelectric effect even when light is received in a state where is applied.
しかしながら、光電変換部材111は、内部光電効果による電荷の生成の有無を、印加電圧によって制御することができる部材であれば、必ずしも上記有機薄膜に限定される必要はない。一例として、撮像装置1は、光電変換部材111が、PN接合面を有するダイオードである例等が考えられる。
However, the photoelectric conversion member 111 is not necessarily limited to the organic thin film as long as the presence or absence of charge generation due to the internal photoelectric effect can be controlled by the applied voltage. As an example, the imaging device 1 may be an example in which the photoelectric conversion member 111 is a diode having a PN junction surface.
(2)実施の形態において、撮像装置1は、フレーム期間T1が、例えば1/60秒であり、フレーム期間T1における露光状態制御パルス列のパルス数Lが、例えば10であるとして説明した。
(2) In the embodiment, the imaging apparatus 1 has been described on the assumption that the frame period T1 is 1/60 seconds, for example, and the number of pulses L of the exposure state control pulse train in the frame period T1 is 10, for example.
しかしながら、フレーム期間T1は、必ずしも1/60秒に限定される必要はなく、フレーム期間T1における露光状態制御パルス列のパルス数Lは、必ずしも10に限定される必要はない。
However, the frame period T1 is not necessarily limited to 1/60 seconds, and the number of pulses L of the exposure state control pulse train in the frame period T1 is not necessarily limited to 10.
一例として、撮像装置1は、フレーム期間T1が、1/50秒である例、フレーム期間T1が、撮像装置1を利用するユーザによって設定される例等が考えらえる。また、一例として、撮像装置1は、フレーム期間T1における露光状態制御パルス列のパルス数Lが、100である例、撮像装置1を利用するユーザによって設定される例等が考えられる。
As an example, the imaging apparatus 1 may be an example in which the frame period T1 is 1/50 second, an example in which the frame period T1 is set by a user who uses the imaging apparatus 1, and the like. Further, as an example, the imaging apparatus 1 may be an example in which the number of pulses L of the exposure state control pulse train in the frame period T1 is 100, an example set by a user using the imaging apparatus 1, and the like.
(3)本開示には、実施の形態における撮像装置1が内蔵された電子機器も含まれるのは言うまでもない。
(3) Needless to say, the present disclosure includes an electronic device in which the imaging device 1 according to the embodiment is incorporated.
このような電子機器は、例えば、図7Aに示されるデジタルスチルカメラや、図7Bに示されるビデオカメラとして実現される。
Such an electronic device is realized, for example, as a digital still camera shown in FIG. 7A or a video camera shown in FIG. 7B.
(4)実施の形態において、図1に示されるように、撮像装置1は、光学系210とは別体となる構成であるとして説明した。しかしながら、撮像装置1は、必ずしも光学系210と別体となる構成に限定されない。例えば、撮像装置1は、光学系210とレンズ駆動部220とを含む、レンズ付きカメラであっても構わない。
(4) In the embodiment, as illustrated in FIG. 1, the imaging apparatus 1 has been described as having a configuration separate from the optical system 210. However, the imaging device 1 is not necessarily limited to a configuration that is separate from the optical system 210. For example, the imaging device 1 may be a camera with a lens including the optical system 210 and the lens driving unit 220.
(5)撮像装置1における各構成要素(機能ブロック)は、IC(Integrated Circuit)、LSI(Large Scale Integration)等の半導体装置により個別に1チップ化されてもよいし、一部又は全部を含むように1チップ化されてもよい。また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。更には、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてあり得る。
(5) Each component (functional block) in the imaging apparatus 1 may be individually made into one chip by a semiconductor device such as an IC (Integrated Circuit), an LSI (Large Scale Integration), or a part or all of them. Thus, it may be made into one chip. Further, the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used. Furthermore, if integrated circuit technology that replaces LSI appears as a result of progress in semiconductor technology or other derived technology, functional blocks may be integrated using this technology. Biotechnology can be applied as a possibility.
また、上記各種処理の全部又は一部は、電子回路等のハードウェアにより実現されても、ソフトウェアを用いて実現されてもよい。なお、ソフトウェアによる処理は、撮像装置1に含まれるプロセッサがメモリに記憶されたプログラムを実行することにより実現されるものである。また、そのプログラムを記録媒体に記録して頒布や流通させてもよい。例えば、頒布されたプログラムを、他のプロセッサを有する装置にインストールして、そのプログラムをそのプロセッサに実行させることで、その装置に、上記各処理を行わせることが可能となる。
In addition, all or part of the various processes described above may be realized by hardware such as an electronic circuit or may be realized by using software. The processing by software is realized by a processor included in the imaging apparatus 1 executing a program stored in the memory. Further, the program may be recorded on a recording medium and distributed or distributed. For example, by installing the distributed program in a device having another processor and causing the processor to execute the program, it is possible to cause the device to perform each of the above processes.
また、上述した実施の形態で示した構成要素及び機能を任意に組み合わせることで実現される形態も本開示の範囲に含まれる。
Also, a form realized by arbitrarily combining the constituent elements and functions shown in the above-described embodiments is also included in the scope of the present disclosure.
(6)本開示の一態様に係る撮像装置1は、複数のフレーム画像を連続して撮像する撮像素子10と、撮像素子10における露光状態の制御を行う制御部20とを備え、撮像素子10は、前記制御に応じて、1フレーム画像の撮像期間中に複数回露光する。
(6) The imaging device 1 according to an aspect of the present disclosure includes the imaging device 10 that continuously captures a plurality of frame images, and the control unit 20 that controls the exposure state of the imaging device 10. Is exposed a plurality of times during the imaging period of one frame image in accordance with the control.
この撮像装置1は、1フレーム画像の撮像期間中に複数回露光する。このため、被写体が比較的高速で動いている場合には、各フレーム画像において、そのフレーム画像の撮像期間中の被写体の位置が平均化された画像が撮像されることとなる。このことにより、被写体が比較的高速で動いている場合において、この撮像装置1によって撮像された画像からなる映像は、各フレーム画像の撮像期間中に1回しか露光しない従来の撮像装置によって撮像された画像からなる映像よりも、被写体の動きがより自然な動きに見えるようになる。
This imaging device 1 exposes a plurality of times during the imaging period of one frame image. For this reason, when the subject is moving at a relatively high speed, in each frame image, an image in which the positions of the subject during the imaging period of the frame image are averaged is captured. As a result, when the subject is moving at a relatively high speed, a video composed of images captured by the imaging device 1 is captured by a conventional imaging device that is exposed only once during the imaging period of each frame image. The movement of the subject appears to be more natural than that of an image composed of images.
このように、この撮像装置1によると、従来よりも多様な撮像効果を奏する撮像を実現することが可能となる。
As described above, according to the imaging apparatus 1, it is possible to realize imaging having various imaging effects as compared with the conventional art.
また、例えば、撮像素子10は、第1所定範囲の電圧が印加された状態において受光することで内部光電効果による電荷を生成し、第2所定範囲の電圧が印加された状態において受光しても内部光電効果による電荷を生成しない光電変換部材111を含み、制御部20は、前記1フレーム画像の撮像期間中に、光電変換部材111に対して、前記第1所定範囲の電圧と前記第2所定範囲の電圧とを交互に印加することで、前記制御を行うとしてもよい。
Further, for example, the imaging device 10 generates charges due to the internal photoelectric effect by receiving light in a state where a voltage in the first predetermined range is applied, and receives light in a state where a voltage in the second predetermined range is applied. The control unit 20 includes a photoelectric conversion member 111 that does not generate charges due to the internal photoelectric effect, and the control unit 20 applies the voltage within the first predetermined range and the second predetermined range to the photoelectric conversion member 111 during the imaging period of the one frame image. The control may be performed by alternately applying a voltage within a range.
これにより、この撮像装置1は、機械的なシャッターを用いなくても、撮像素子の露光状態の制御を実現することが可能となる。
Thereby, the imaging apparatus 1 can realize the control of the exposure state of the imaging element without using a mechanical shutter.
また、例えば、撮像素子10は、有機薄膜を光電変換部材111とする有機CMOSイメージセンサであるとしてもよい。
Further, for example, the image sensor 10 may be an organic CMOS image sensor using an organic thin film as a photoelectric conversion member 111.
これにより、撮像素子10の高集積化を実現することが可能となる。
Thereby, high integration of the image sensor 10 can be realized.
また、例えば、制御部20は、前記第1所定範囲の電圧の印加と前記第2所定範囲の電圧の印加とが一定周期で切り替わるように、前記制御を行うとしてもよい。
Also, for example, the control unit 20 may perform the control so that the application of the voltage in the first predetermined range and the application of the voltage in the second predetermined range are switched at a constant period.
これにより、光電変換部材111への電圧印加の制御を、比較的平易に実現することが可能となる。
Thereby, control of voltage application to the photoelectric conversion member 111 can be realized relatively easily.
また、例えば、制御部20は、撮像素子10に前記第1所定範囲の電圧を印加する場合には、前記第1所定範囲内における第1特定電圧を印加し、前記第2所定範囲の電圧を印加する場合には、前記第2所定範囲内における第2特定電圧を印加し、前記制御において、撮像素子10に対して、前記第1特定電圧を印加する期間と第2特定電圧を印加する期間との、前記一定周期におけるデューティ比を変更することで、前記1フレーム画像の撮像期間中における撮像素子10の露光量を調整するとしてもよい。
Further, for example, when applying a voltage in the first predetermined range to the image sensor 10, the control unit 20 applies a first specific voltage in the first predetermined range and sets the voltage in the second predetermined range. In the case of applying, a second specific voltage within the second predetermined range is applied, and in the control, a period for applying the first specific voltage and a period for applying the second specific voltage to the image sensor 10. The exposure amount of the image sensor 10 during the imaging period of the one frame image may be adjusted by changing the duty ratio in the fixed period.
これにより、撮像素子10における露光量のリニアな制御を、比較的平易に実現することが可能となる。
Thereby, linear control of the exposure amount in the image sensor 10 can be realized relatively easily.
本開示の一態様に係るカメラ200は、撮像装置1と、撮像素子10に外部の光を集光するレンズとを備える。
The camera 200 according to an aspect of the present disclosure includes the imaging device 1 and a lens that collects external light on the imaging element 10.
このカメラ200は、1フレーム画像の撮像期間中に複数回露光する。このため、被写体が比較的高速で動いている場合には、各フレーム画像において、そのフレーム画像の撮像期間中の被写体の位置が平均化された画像が撮像されることとなる。このことにより、被写体が比較的高速で動いている場合において、このカメラ200によって撮像された画像からなる映像は、各フレーム画像の撮像期間中に1回しか露光しない従来のカメラによって撮像された画像からなる映像よりも、被写体の動きがより自然な動きに見えるようになる。
This camera 200 exposes a plurality of times during the imaging period of one frame image. For this reason, when the subject is moving at a relatively high speed, in each frame image, an image in which the positions of the subject during the imaging period of the frame image are averaged is captured. As a result, when the subject is moving at a relatively high speed, an image formed by the image captured by the camera 200 is an image captured by a conventional camera that is exposed only once during the imaging period of each frame image. The movement of the subject looks more natural than the video consisting of
このように、このカメラ200によると、従来よりも多様な撮像効果を奏する撮像を実現することが可能となる。
As described above, according to the camera 200, it is possible to realize imaging having various imaging effects as compared with the conventional art.
本開示の一態様に係る撮像方法は、撮像素子10と、撮像素子10を制御する制御部20とを備える撮像装置1が行う撮像方法であって、撮像素子10が、複数のフレーム画像を連続して撮像する撮像ステップと、20制御部が、撮像素子10の露光状態を制御する制御ステップとを含み、前記撮像ステップでは、撮像素子10が、前記制御に応じて、1フレーム画像の撮像期間中に複数回露光する。
An imaging method according to an aspect of the present disclosure is an imaging method performed by the imaging device 1 including the imaging element 10 and the control unit 20 that controls the imaging element 10, and the imaging element 10 continuously captures a plurality of frame images. An image capturing step for capturing an image, and a control step for controlling an exposure state of the image sensor 10 by a 20 control unit. In the image capturing step, the image sensor 10 captures a one-frame image according to the control. During multiple exposures.
この撮像方法を利用する撮像装置1は、1フレーム画像の撮像期間中に複数回露光する。このため、被写体が比較的高速で動いている場合には、各フレーム画像において、そのフレーム画像の撮像期間中の被写体の位置が平均化された画像が撮像されることとなる。このことにより、被写体が比較的高速で動いている場合において、この撮像方法を利用する撮像装置1によって撮像された画像からなる映像は、各フレーム画像の撮像期間中に1回しか露光しない従来の撮像方法を利用する撮像装置によって撮像された画像からなる映像よりも、被写体の動きがより自然な動きに見えるようになる。
The imaging apparatus 1 using this imaging method exposes a plurality of times during the imaging period of one frame image. For this reason, when the subject is moving at a relatively high speed, in each frame image, an image in which the positions of the subject during the imaging period of the frame image are averaged is captured. As a result, when the subject is moving at a relatively high speed, a video composed of images captured by the imaging device 1 using this imaging method is exposed only once during the imaging period of each frame image. The movement of the subject appears to be more natural than that of a video composed of an image captured by an imaging apparatus that uses the imaging method.
このように、この撮像方法によると、従来よりも多様な撮像効果を奏する撮像を実現することが可能となる。
As described above, according to this imaging method, it is possible to realize imaging having various imaging effects as compared with the conventional art.
本開示は、画像を撮像する撮像装置に広く利用可能である。
The present disclosure can be widely used for imaging devices that capture images.
1 撮像装置
10 撮像素子
20 制御部
21 画素回路
110 光電変換素子
111 光電変換部材
112 上部透明電極
113 下部画素電極
120 画素回路アレイ
130 読み出し回路
140 出力回路
150 行走査回路
160 タイミング制御回路
170 電圧印加回路
200 カメラ
211 ズームレンズ
212 手振れ補正レンズ
213 フォーカスレンズ DESCRIPTION OFSYMBOLS 1 Imaging device 10 Imaging element 20 Control part 21 Pixel circuit 110 Photoelectric conversion element 111 Photoelectric conversion member 112 Upper transparent electrode 113 Lower pixel electrode 120 Pixel circuit array 130 Reading circuit 140 Output circuit 150 Row scanning circuit 160 Timing control circuit 170 Voltage application circuit 200 Camera 211 Zoom lens 212 Camera shake correction lens 213 Focus lens
10 撮像素子
20 制御部
21 画素回路
110 光電変換素子
111 光電変換部材
112 上部透明電極
113 下部画素電極
120 画素回路アレイ
130 読み出し回路
140 出力回路
150 行走査回路
160 タイミング制御回路
170 電圧印加回路
200 カメラ
211 ズームレンズ
212 手振れ補正レンズ
213 フォーカスレンズ DESCRIPTION OF
Claims (7)
- 複数のフレーム画像を連続して撮像する撮像素子と、
前記撮像素子における露光状態の制御を行う制御部とを備え、
前記撮像素子は、前記制御に応じて、1フレーム画像の撮像期間中に複数回露光する
撮像装置。 An image sensor that continuously captures a plurality of frame images;
A control unit for controlling an exposure state in the image sensor,
The imaging device exposes a plurality of times during the imaging period of one frame image according to the control. - 前記撮像素子は、第1所定範囲の電圧が印加された状態において受光することで内部光電効果による電荷を生成し、第2所定範囲の電圧が印加された状態において受光しても内部光電効果による電荷を生成しない光電変換部材を含み、
前記制御部は、前記1フレーム画像の撮像期間中に、前記光電変換部材に対して、前記第1所定範囲の電圧と前記第2所定範囲の電圧とを交互に印加することで、前記制御を行う
請求項1に記載の撮像装置。 The image pickup device generates charges due to the internal photoelectric effect by receiving light in a state where a voltage in the first predetermined range is applied, and generates light due to the internal photoelectric effect even if light is received in a state where a voltage in the second predetermined range is applied. Including a photoelectric conversion member that does not generate charges,
The control unit performs the control by alternately applying the voltage of the first predetermined range and the voltage of the second predetermined range to the photoelectric conversion member during the imaging period of the one frame image. The imaging apparatus according to claim 1. - 前記撮像素子は、有機薄膜を前記光電変換部材とする有機CMOSイメージセンサである
請求項2に記載の撮像装置。 The imaging device according to claim 2, wherein the imaging element is an organic CMOS image sensor using an organic thin film as the photoelectric conversion member. - 前記制御部は、前記第1所定範囲の電圧の印加と前記第2所定範囲の電圧の印加とが一定周期で切り替わるように、前記制御を行う
請求項2又は3に記載の撮像装置。 The imaging device according to claim 2, wherein the control unit performs the control so that the application of the voltage in the first predetermined range and the application of the voltage in the second predetermined range are switched at a constant cycle. - 前記制御部は、
前記撮像素子に前記第1所定範囲の電圧を印加する場合には、前記第1所定範囲内における第1特定電圧を印加し、前記第2所定範囲の電圧を印加する場合には、前記第2所定範囲内における第2特定電圧を印加し、
前記制御において、前記撮像素子に対して、前記第1特定電圧を印加する期間と第2特定電圧を印加する期間との、前記一定周期におけるデューティ比を変更することで、前記1フレーム画像の撮像期間中における前記撮像素子の露光量を調整する
請求項4に記載の撮像装置。 The controller is
When applying a voltage within the first predetermined range to the image sensor, apply a first specific voltage within the first predetermined range, and when applying a voltage within the second predetermined range, Applying a second specific voltage within a predetermined range;
In the control, the imaging of the one-frame image is performed by changing a duty ratio in the fixed period between a period in which the first specific voltage is applied and a period in which the second specific voltage is applied to the imaging element. The imaging apparatus according to claim 4, wherein an exposure amount of the imaging element during the period is adjusted. - 請求項1~5のいずれか1項に記載の撮像装置と、
前記撮像素子に外部の光を集光するレンズとを備える
カメラ。 An imaging device according to any one of claims 1 to 5,
A camera comprising: a lens that collects external light on the image sensor. - 撮像素子と、当該撮像素子を制御する制御部とを備える撮像装置が行う撮像方法であって、
前記撮像素子が、複数のフレーム画像を連続して撮像する撮像ステップと、
前記制御部が、前記撮像素子の露光状態を制御する制御ステップとを含み、
前記撮像ステップでは、前記撮像素子が、前記制御に応じて、1フレーム画像の撮像期間中に複数回露光する
撮像方法。 An imaging method performed by an imaging device including an imaging element and a control unit that controls the imaging element,
An imaging step in which the imaging element continuously captures a plurality of frame images;
The control unit includes a control step of controlling an exposure state of the imaging element;
In the imaging step, the imaging element exposes a plurality of times during an imaging period of one frame image according to the control.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-254495 | 2016-12-27 | ||
JP2016254495A JP2020031258A (en) | 2016-12-27 | 2016-12-27 | Imaging apparatus, camera, and imaging method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018124048A1 true WO2018124048A1 (en) | 2018-07-05 |
Family
ID=62709492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/046592 WO2018124048A1 (en) | 2016-12-27 | 2017-12-26 | Imaging device, camera, and imaging method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020031258A (en) |
WO (1) | WO2018124048A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005223798A (en) * | 2004-02-09 | 2005-08-18 | Matsushita Electric Ind Co Ltd | Solid-state imaging apparatus |
JP2007104114A (en) * | 2005-09-30 | 2007-04-19 | Fujifilm Corp | Imaging element of sensitivity variable type and imaging apparatus mounted with the same |
JP2011060830A (en) * | 2009-09-07 | 2011-03-24 | Japan Advanced Institute Of Science & Technology Hokuriku | Film having permittivity variable by light irradiation and electronic device using that film |
WO2014024581A1 (en) * | 2012-08-09 | 2014-02-13 | ソニー株式会社 | Photoelectric conversion element, imaging device, and optical sensor |
JP2016034101A (en) * | 2014-07-31 | 2016-03-10 | キヤノン株式会社 | Photoelectric conversion device and photoelectric conversion system |
JP2016086407A (en) * | 2014-10-23 | 2016-05-19 | パナソニックIpマネジメント株式会社 | Imaging device and image acquisition apparatus |
-
2016
- 2016-12-27 JP JP2016254495A patent/JP2020031258A/en active Pending
-
2017
- 2017-12-26 WO PCT/JP2017/046592 patent/WO2018124048A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005223798A (en) * | 2004-02-09 | 2005-08-18 | Matsushita Electric Ind Co Ltd | Solid-state imaging apparatus |
JP2007104114A (en) * | 2005-09-30 | 2007-04-19 | Fujifilm Corp | Imaging element of sensitivity variable type and imaging apparatus mounted with the same |
JP2011060830A (en) * | 2009-09-07 | 2011-03-24 | Japan Advanced Institute Of Science & Technology Hokuriku | Film having permittivity variable by light irradiation and electronic device using that film |
WO2014024581A1 (en) * | 2012-08-09 | 2014-02-13 | ソニー株式会社 | Photoelectric conversion element, imaging device, and optical sensor |
JP2016034101A (en) * | 2014-07-31 | 2016-03-10 | キヤノン株式会社 | Photoelectric conversion device and photoelectric conversion system |
JP2016086407A (en) * | 2014-10-23 | 2016-05-19 | パナソニックIpマネジメント株式会社 | Imaging device and image acquisition apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2020031258A (en) | 2020-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6731626B2 (en) | Imaging device, camera, and imaging method | |
JP2019097213A (en) | Imaging device, method for acquiring image data, and program | |
KR101321778B1 (en) | Image pickup apparatus and image sensor | |
JP2015011320A (en) | Imaging device and control method of the same | |
JP2010062638A (en) | Image capturing apparatus | |
JP6947590B2 (en) | Imaging device, control method of imaging device | |
US11381763B2 (en) | Image capture apparatus and control method thereof | |
JP2011087050A (en) | Digital camera | |
WO2018124048A1 (en) | Imaging device, camera, and imaging method | |
JP2017120971A (en) | Solid state imaging device and imaging apparatus | |
JP6706783B2 (en) | Imaging device, imaging device, camera, and imaging method | |
JP2013118474A (en) | Imaging apparatus and method for controlling imaging apparatus | |
WO2018124052A1 (en) | Imaging device and camera | |
WO2018124047A1 (en) | Imaging device and camera | |
JP6706850B2 (en) | Imaging device, camera, and imaging method | |
JP2008118378A (en) | Photographing device and its driving method | |
JP2010074547A (en) | Image sensor driving unit and imaging apparatus | |
JP6463159B2 (en) | IMAGING DEVICE, ITS CONTROL METHOD, PROGRAM, AND STORAGE MEDIUM | |
JP2015064500A (en) | Imaging device and method for controlling the same | |
JP7459279B2 (en) | IMAGING APPARATUS, DRIVING METHOD OF IMAGING APPARATUS, AND PROGRAM | |
JP6470589B2 (en) | IMAGING DEVICE, ITS CONTROL METHOD, PROGRAM, AND STORAGE MEDIUM | |
JP2004222062A (en) | Imaging device | |
JP2006325066A (en) | Imaging apparatus | |
WO2018124045A1 (en) | Image capturing device and control method for same | |
JP2009258338A (en) | Automatic focusing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17888378 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17888378 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |