WO2018123790A1 - Catalyst layer, gas diffusion electrode, membrane-catalyst layer assembly, membrane-electrode assembly, fuel cell stack, and composition for forming catalyst layer - Google Patents

Catalyst layer, gas diffusion electrode, membrane-catalyst layer assembly, membrane-electrode assembly, fuel cell stack, and composition for forming catalyst layer Download PDF

Info

Publication number
WO2018123790A1
WO2018123790A1 PCT/JP2017/045864 JP2017045864W WO2018123790A1 WO 2018123790 A1 WO2018123790 A1 WO 2018123790A1 JP 2017045864 W JP2017045864 W JP 2017045864W WO 2018123790 A1 WO2018123790 A1 WO 2018123790A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
core
shell
catalyst layer
gas diffusion
Prior art date
Application number
PCT/JP2017/045864
Other languages
French (fr)
Japanese (ja)
Inventor
聖崇 永森
中村 葉子
五十嵐 寛
安宏 関
Original Assignee
エヌ・イー ケムキャット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌ・イー ケムキャット株式会社 filed Critical エヌ・イー ケムキャット株式会社
Publication of WO2018123790A1 publication Critical patent/WO2018123790A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • B01J35/51
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a catalyst layer of a gas diffusion electrode provided in a polymer electrolyte fuel cell.
  • the present invention also relates to a gas diffusion electrode, a membrane / catalyst layer assembly, a membrane / electrode assembly, a fuel cell stack, and a composition for forming a catalyst layer on which the catalyst layer is mounted.
  • PEFC polymer electrolyte fuel cell
  • a noble metal catalyst composed of noble metal particles of a platinum group element such as platinum (Pt) is used.
  • Pt-supported carbon catalyst which is a powder of catalyst particles in which Pt fine particles are supported on conductive carbon powder (hereinafter referred to as “Pt / C catalyst” if necessary). It has been known.
  • Pt / C catalyst a Pt / C catalyst having a Pt loading rate of 50 wt% manufactured by NE CHEMCAT, trade name: “SA50BK” is known.
  • Non-Patent Document 1 describes an outline of development so far.
  • Patent Document 1 discloses a particle composite material (a core-shell catalyst particle having a structure in which palladium (Pd) or a Pd alloy (corresponding to a core part) is covered with an atomic thin layer (corresponding to a shell part) of Pt atoms. Equivalent). Furthermore, this patent document 1 describes, as an example, core-shell catalyst particles having a layer structure in which the core portion is made of Pd particles and the shell portion is made of Pt.
  • Patent Document 2 flooding can be reliably prevented even when a large current (for example, a current density exceeding 2000 mA / cm 2 ) is passed, and the amount of expensive catalytic metal components such as platinum is reduced.
  • a catalytic metal component is supported on a support carbon material made of a porous carbon material.
  • a catalyst obtained by mixing a catalytic metal-supporting carbon material and a non-catalytic metal-supporting carbon material made of a dendritic graphitic carbon material that does not support a catalytic metal component has been proposed.
  • the carrier carbon material of the catalyst-supporting carbon material has a mesopore specific surface area (S 4-10 nm ) of 100 nm 2 / g or more with a pore diameter of 4 nm or more and less than 10 nm measured by nitrogen adsorption measurement.
  • the dendritic graphitic carbon material not supporting the catalytic metal component has a BET specific surface area (S BET ) of 80 m 2 / g or more and 220 m 2 / g or less, and a DBP oil absorption (O DBP ) of 80 mL / 100 g.
  • the above is 170 mL / 100 g or less, and the crystallite size (Lc) by X-ray diffraction is 5 nm or more and 10 nm or less.
  • a platinum-supported carbon material platinum catalyst
  • platinum catalyst is disclosed as the catalyst-supported carbon material (see, for example, Patent Document 2, paragraphs 0045 to 0063).
  • GDE gas diffusion electrode
  • MEA membrane / catalyst layer membrane assembly
  • This invention is made
  • Another object of the present invention is to provide a gas diffusion electrode, a membrane / catalyst layer membrane assembly, a membrane / electrode assembly, and a fuel cell stack on which the catalyst layer is mounted. Furthermore, this invention aims at providing the composition for catalyst layer formation containing the core-shell catalyst which can manufacture the above-mentioned catalyst layer of this invention more easily.
  • a core-shell catalyst (a catalyst having a configuration including a support made of a conductive carbon material and catalyst particles having a core-shell structure supported on the support). ) And a conductive carbon material in which catalyst particles having a core-shell structure are not supported, and the core-shell catalyst support and the conductive carbon material in which no catalyst particles are supported are the same.
  • the present inventors have found that the construction of a material is effective in improving the catalytic activity and have completed the present invention. More specifically, the present invention includes the following technical matters.
  • a catalyst layer of a gas diffusion electrode provided in a polymer electrolyte fuel cell A core-shell catalyst comprising: a first support made of a conductive carbon material; and catalyst particles having a core-shell structure supported on the first support; A polymer electrolyte; A second support made of a conductive carbon material on which the catalyst particles are not supported; Contains The conductive carbon material of the first carrier and the conductive carbon material of the second carrier are the same; A catalyst layer is provided.
  • the “core-shell catalyst including catalyst particles having a core-shell structure” is a catalyst (powder) having a configuration having catalyst particles formed on a carrier, and the catalyst particles are placed on the carrier.
  • the catalyst which has the structure which has the core part formed and the shell part formed so that at least one part of the surface of this core part may be covered is shown. A more detailed configuration will be described later with reference to FIGS.
  • the catalyst layer of the present invention can be used as a catalyst layer for the PEFC anode and can also be used as a cathode catalyst layer.
  • the conventional catalyst layer including the Pt / C catalyst and the conventional catalyst layer including the core-shell catalyst have excellent performance.
  • the catalyst layer can be easily configured.
  • the catalyst layer of the present invention is substantially equivalent to the above two conventional catalyst layers even if the amount of catalyst supported (mass of precious metal per unit area / mg ⁇ cm ⁇ 2 ) is reduced. Excellent performance can be demonstrated.
  • the catalyst loading amount in the catalyst layer of the present invention may be 50% or less of the catalyst loading amount of the conventional catalyst layer containing the Pt / C catalyst.
  • the catalyst loading amount (Pt loading amount) in the catalyst layer of the present invention is: It may be 0.05 mg ⁇ cm ⁇ 2 or less.
  • the average value of the crystallite size measured by powder X-ray diffraction (XRD) of the core-shell catalyst is preferably 3 to 16.0 nm. If the average value of the crystallite size of the catalyst particles of the core-shell catalyst is less than 3 nm, it becomes extremely difficult to form particles that become the core portion on the support, and thus it is extremely difficult to form the catalyst particles on the support. become. Further, when the average value of the crystallite size of the catalyst particles of the core-shell catalyst exceeds 16.0 nm, it becomes extremely difficult to form the particles serving as the core portion on the support in a highly dispersed state, and sufficient catalytic activity is obtained. It becomes extremely difficult.
  • the peak of the Pt (111) plane cannot be seen by XRD.
  • the average value calculated from the peak of the surface is the average value of the crystallite size of the catalyst particles.
  • the catalyst particles of the core-shell catalyst have a core part formed on the carrier and a shell part formed so as to cover at least a part of the surface of the core part;
  • the core part includes Pd (zero-valent metal state Pd), and the shell part includes Pt (zero-valent metal state Pt),
  • the Pt loading of the core-shell catalyst is 0.6-33.0 wt%,
  • the core shell catalyst has a Pd loading of 4.7 to 47.0 wt%; It is preferable that the loading ratio of the noble metal combined with Pt and Pd of the core-shell catalyst is 5.6 to 66.5 Wt%.
  • the Pt loading is less than 0.6 wt%, the tendency that sufficient catalytic activity cannot be obtained increases.
  • the average thickness of the shell portion becomes excessively thin, and the surface of the core portion is not sufficiently covered with the shell portion, so that the constituent material of the core portion is eluted and the tendency to maintain the core-shell structure is increased.
  • the Pt loading exceeds 33.0 wt%, it tends to be extremely difficult to form catalyst particles having a core-shell structure in a highly dispersed state on the support.
  • the average thickness of the shell portion becomes excessively thick, making it difficult to exhibit a so-called base effect (ligand effect) of the core portion, and it is difficult to obtain a catalytic activity exceeding that of a conventional Pt / C catalyst. The tendency to become becomes large.
  • the Pd loading is less than 4.7 wt%
  • the number of particles forming the core portion on the support is reduced, and the shell portion formed on the core portion is also reduced, so that sufficient catalytic activity is obtained.
  • the tendency to disappear increases.
  • the Pd loading rate exceeds 47.0 wt%, it becomes extremely difficult to carry the particles that will become the core portion on the carrier in a highly dispersed state. As a result, the tendency that it becomes extremely difficult to form catalyst particles having a core-shell structure in a highly dispersed state increases.
  • the supporting rate of the noble metal combined with Pt and Pd of the catalyst particles is less than 5.6 Wt%, there is a tendency that sufficient catalytic activity cannot be obtained. If the loading ratio of the noble metal combined with Pt and Pd exceeds 66.5 Wt%, it tends to be extremely difficult to form catalyst particles having a core-shell structure in a highly dispersed state. In addition, the value measured by ICP emission analysis using the electrode catalyst is adopted for the Pt loading rate and the Pd loading rate.
  • configuration of catalyst particles supported on the support (main constituent material) / configuration of conductive support main It is written " More specifically, it is expressed as “shell configuration / core configuration / support configuration”.
  • configuration of the electrode catalyst includes “a shell portion made of Pt, a core portion made of Pd, and a carrier made of conductive carbon”, it is expressed as “Pt / Pd / C”.
  • the core portion of the core-shell catalyst is made of Pd from the viewpoint of more reliably obtaining excellent catalytic activity.
  • Pd oxide may be included in the core part as long as the catalyst particles can exhibit excellent catalytic activity.
  • the shell part of the core-shell catalyst is made of Pt.
  • Pt oxide may be contained in the shell portion as long as the catalyst particles can exhibit excellent catalytic activity.
  • the core part of the core-shell catalyst is made of Pd and the shell part is made of Pt.
  • the present invention provides: A gas diffusion electrode provided in a polymer electrolyte fuel cell, A gas diffusion layer; A catalyst layer disposed on the gas diffusion layer; Have The catalyst layer is the catalyst layer of the present invention described above, A gas diffusion electrode is provided.
  • the gas diffusion electrode of the present invention includes the catalyst layer of the present invention. Therefore, it becomes easy to set it as the structure which has the outstanding catalyst activity (polarization characteristic) which can contribute to the cost reduction of PEFC.
  • the gas diffusion electrode of this invention can be used as an anode and can also be used as a cathode.
  • the present invention provides: A membrane-catalyst layer assembly (CCM) provided in a polymer electrolyte fuel cell, A solid polymer electrolyte membrane; A catalyst layer disposed on at least one surface of the solid polymer electrolyte membrane; Have The catalyst layer is the catalyst layer of the present invention described above, A membrane-catalyst layer assembly (CCM) is provided. Since the membrane / catalyst layer assembly (CCM) of the present invention includes the catalyst layer of the present invention for anode and / or cathode, it has excellent catalytic activity (cell characteristics) that can contribute to cost reduction of PEFC. It becomes easy to set it as having a structure.
  • CCM membrane-catalyst layer assembly
  • the present invention provides: A membrane-electrode assembly (MEA) provided in a polymer electrolyte fuel cell, A solid polymer electrolyte membrane; A gas diffusion electrode disposed on at least one surface of the solid polymer electrolyte membrane; Have The gas diffusion electrode is the gas diffusion electrode of the present invention described above, A membrane-electrode assembly (MEA) is provided. Since the membrane / electrode assembly (MEA) of the present invention includes the catalyst layer of the present invention and the gas diffusion electrode of the present invention, the membrane / electrode assembly (MEA) has an excellent battery characteristic that can contribute to the cost reduction of PEFC. It becomes easy.
  • the present invention also provides: Provided is a fuel cell stack including the membrane-electrode assembly (MEA) of the present invention described above. Since the fuel cell stack of the present invention includes the catalyst layer of the present invention and the membrane-electrode assembly (MEA) of the present invention, the fuel cell stack has excellent battery characteristics that can contribute to the cost reduction of PEFC. It becomes easy.
  • MEA membrane-electrode assembly
  • the present invention provides A composition for forming a catalyst layer for forming a catalyst layer of a gas diffusion electrode provided in a polymer electrolyte fuel cell,
  • a core-shell catalyst comprising: a first support made of a conductive carbon material; and catalyst particles having a core-shell structure supported on the first support; A polymer electrolyte; A second support made of a conductive carbon material on which the catalyst particles are not supported; Contains The conductive carbon material of the first carrier and the conductive carbon material of the second carrier are the same; A composition for forming a catalyst layer is provided.
  • composition for forming a gas diffusion electrode of the present invention a conventional catalyst layer containing a Pt / C catalyst, a conventional catalyst layer containing a core-shell catalyst (a catalyst layer containing no conductive carbon material other than the core-shell catalyst support)
  • a catalyst layer having excellent performance can be easily and reliably produced.
  • the catalyst layer which has the outstanding performance containing a core-shell catalyst can be provided. Further, according to the present invention, there are provided GDL, CCM, MEA, and fuel cell stack having such excellent catalytic activity that can contribute to the cost reduction of PEFC, including such a catalyst layer. Furthermore, according to this invention, the composition for catalyst layer formation which can manufacture the catalyst layer of this invention easily and reliably is provided.
  • FIG. 2 is a schematic cross-sectional view showing a preferred embodiment of a core-shell catalyst included in at least one of the cathode catalyst layer and the anode catalyst layer of the MEA shown in FIG. 1.
  • FIG. 2 is a schematic cross-sectional view showing another preferred embodiment of the core-shell catalyst included in at least one of the cathode catalyst layer and the anode catalyst layer of the MEA shown in FIG. 1.
  • FIG. 6 is a schematic cross-sectional view showing still another preferred embodiment of the core-shell catalyst included in at least one of the cathode catalyst layer and the anode catalyst layer of the MEA shown in FIG. 1.
  • FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of a core-shell catalyst included in at least one of the cathode catalyst layer and the anode catalyst layer of the MEA shown in FIG. 1.
  • FIG. 6 is a schematic cross-sectional view showing still another preferred embodiment of the core-shell catalyst included in at least one of the cathode catalyst layer and the anode catalyst layer of the MEA shown in FIG. 1. It is a schematic cross section which shows another suitable one form of MEA of this invention. It is a schematic cross section which shows one suitable form of CCM of this invention. It is a schematic cross section which shows another suitable one form of CCM of this invention. It is a schematic cross section which shows one suitable form of GDE of this invention. It is a schematic cross section which shows another suitable one form of GDE of this invention. It is a schematic diagram which shows suitable one Embodiment of the fuel cell stack of this invention.
  • FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of the MEA of the present invention.
  • the MEA 10 shown in FIG. 1 includes two plate-like gas diffusion electrodes (cathode 1 and anode 2) arranged in a state of facing each other, and a polymer electrolyte membrane (Polymer) arranged between the cathode 1 and the anode 2.
  • Electrolyte Membrane hereinafter referred to as “PEM” 3 as required).
  • the MEA 10 has a configuration in which at least one of the cathode 1 and the anode 2 contains a core-shell catalyst described later.
  • the MEA 10 can be manufactured by laminating the cathode 1, the anode 2 and the PEM 3 as shown in FIG.
  • the cathode 1 which is a gas diffusion electrode has a configuration including a gas diffusion layer 1gd and a catalyst layer 1c formed on the surface of the gas diffusion layer 1gd on the PEM3 side. Further, the cathode 1 has a water-repellent layer (Micro Porous Layer, hereinafter referred to as “MPL” if necessary) 1 m disposed between the gas diffusion layer 1 gd and the catalyst layer 1 c.
  • MPL Water-repellent layer
  • the anode 2 that is a gas diffusion electrode also has a gas diffusion layer 2 gd, a catalyst layer 2 c formed on the surface of the gas diffusion layer 2 gd on the PEM 3 side, and between the gas diffusion layer 2 gd and the catalyst layer 2 c. It has a configuration with an MPL2m arranged.
  • the catalyst layer 1c is a layer in which a reaction in which water is generated from air (oxygen gas) sent from the gas diffusion layer 1gd and hydrogen ions moving from the anode 2 through the PEM 3 proceeds.
  • the catalyst layer 2c is a layer in which a reaction for generating hydrogen ions and electrons from the hydrogen gas sent from the gas diffusion layer 2gd proceeds.
  • At least one of the catalyst layer 1c of the cathode 1 and the catalyst layer 2c of the anode 2 contains a core-shell catalyst.
  • FIG. 2 is a schematic cross-sectional view showing a preferred embodiment 20 of the core-shell catalyst included in at least one of the cathode catalyst layer 1c and the anode catalyst layer 2c of the MEA 10 shown in FIG.
  • the core-shell catalyst 20 includes a first carrier 22 and catalyst particles 23 having a so-called “core-shell structure” supported on the first carrier 22.
  • the catalyst particle 23 has a core part 24 and a shell part 26 formed so as to cover at least a part of the surface of the core part 24.
  • the core-shell catalyst 20 has catalyst particles 23 supported on the first carrier 22, and the catalyst particles 23 have the core portion 24 as a core and the shell portion 26 as a shell. It has a structure (core shell structure) covering at least a part of the surface of 24.
  • the constituent element (chemical composition) of the core portion and the constituent element (chemical composition) of the shell portion are different.
  • the configuration of the core-shell catalyst 20 is not particularly limited as long as the shell portion 26 is formed on at least a part of the surface of the core portion 24 of the catalyst particle 23.
  • the core-shell catalyst 20 is in a state where substantially the entire surface of the core portion 24 is covered by the shell portion 26. It is preferable.
  • FIG. 3 is a schematic cross-sectional view showing another preferred embodiment 20A of the core-shell catalyst included in at least one of the cathode catalyst layer 1c and the anode catalyst layer 2c of the MEA 10 shown in FIG.
  • the core-shell catalyst 20A illustrated in FIG. 3 includes a core portion 24 and catalyst particles 23a configured from a shell portion 26 that covers a part of the surface of the core portion 24.
  • the core-shell catalyst 20A is partially covered by the shell portion 26, and a part of the surface of the core portion 24 (core portion exposed surface 24s). May be exposed. That is, as long as the effects of the present invention can be obtained, the core-shell catalyst 20A only needs to have the shell part 26a or 26b formed on at least a part of the surface of the core part 24.
  • FIG. 4 is a schematic cross-sectional view showing still another preferred embodiment 20B of the core-shell catalyst included in at least one of the cathode catalyst layer 1c and the anode catalyst layer 2c of the MEA 10 shown in FIG.
  • the core-shell catalyst 20B shown in FIG. 4 has a core part 24 and catalyst particles 23b having a shell part 26b that covers substantially the entire surface of the core part 24.
  • the shell portion 26 b has a configuration including a first shell portion 25 that covers substantially the entire surface of the core portion 24 and a second shell portion 27 that covers substantially the entire outer surface of the first shell portion 25.
  • the constituent element (chemical composition) of the core portion 24, the constituent element (chemical composition) of the first shell portion 25, and the constituent element (chemical composition) of the second shell portion 27 are different from each other. .
  • the shell part 26 b in the core-shell catalyst 20 ⁇ / b> B may have a configuration in which another shell part is arranged inside the second shell part 27 in addition to the first shell part 25 and the second shell part 27.
  • the core-shell catalyst 20B is preferably in a state where substantially the entire surface of the core portion 24 is covered by the shell portion 26b.
  • FIG. 5 is a schematic cross-sectional view showing yet another preferred embodiment 20C of the core-shell catalyst included in at least one of the cathode catalyst layer and the anode catalyst layer of the MEA 10 shown in FIG.
  • the core-shell catalyst 20 ⁇ / b> C illustrated in FIG. 5 includes catalyst particles 23 c having a core portion 24 and a shell portion 26 c that covers a part of the surface of the core portion 24.
  • the shell part 26 c shown in FIG. 5 has a two-layer structure including a first shell part 25 and a second shell part 27. In the shell portion 26c constituting the catalyst particle 23c shown in FIG. 5, there is a first shell portion 25 that is not covered by the second shell portion 27.
  • the shell portion 26 c of the catalyst particle 23 c it is preferable that substantially the entire area of the first shell portion 25 is covered with the second shell portion 27.
  • the surface of the first shell portion 25 of the shell portion 26c is partially exposed (for example, a portion 25s of the surface of the first shell portion 25 shown in FIG. 5). May be exposed).
  • the core-shell catalyst is a composite of the core part and the shell part in a state where substantially the entire surface of the core part is covered with the shell part on the first support, A state where “a composite of a core part and a shell part in which a part of the surface of the core part is covered with the shell part” may be mixed.
  • the core-shell catalysts 20B and 20C shown in FIGS. 4 and 5 may be mixed.
  • the core-shell catalyst of the present invention is in a state where at least two of the core-shell catalysts 20, 20A, 20B and 20C shown in FIGS. May be.
  • the core-shell catalysts 20, 20A, 20B, and 20C shown in FIGS. 2 to 5 are provided on the first support 22 within the range in which the effects of the present invention can be obtained, and the catalysts shown in FIGS.
  • the catalysts shown in FIGS. In addition to at least one of the particles 23, 23a, 23b, and 23c, a state in which “particles including only a core portion in which the core portion is not covered by the shell portion” is supported may be included (FIG. Not shown).
  • the core-shell catalysts 20, 20A, 20B, and 20C shown in FIGS. 2 to 5 include the catalyst shown in FIGS.
  • the core-shell catalysts 20, 20A, 20B, and 20C shown in FIGS. 2 to 5 are provided on the first support 22 within the range in which the effects of the present invention can be obtained, and the catalysts shown in FIGS. In addition to at least one of the particles 23, 23 a, 23 b, and 23 c, “particles of only the core portion not covered with the shell portion” and “particles composed only of the constituent elements of the shell portion” are independent of each other.
  • the state carried by the first carrier 22 may be included (not shown).
  • the core-shell catalysts 20, 20A, 20B, and 20C shown in FIGS. 2 to 5 preferably satisfy the following conditions from the viewpoint of obtaining the effects of the present invention more reliably. That is, as described above, the core-shell catalysts 20, 20A, 20B, and 20C shown in FIGS. 2 to 5 preferably have an average crystallite size measured by powder X-ray diffraction (XRD). 3 to 16.0 nm.
  • the core portion 24 preferably contains Pd.
  • the core portion 24 is composed of Pd (zero-valent metal state Pd) as a main component (50 wt% or more). It is more preferable that it is composed of Pd (Pd in a zero-valent metal state).
  • the shell portions 26 and 26a preferably contain Pt.
  • the shell portions 26 and 26a are composed mainly of Pt (zero-valent metal state Pt) (50 wt% or more). It is preferable that it is made of Pt (zero-valent metal state Pt).
  • the first shell portion 25 preferably contains Pd. Further, from the viewpoints of obtaining the effects of the present invention more reliably and ease of manufacture, the first shell portion 25 is configured with Pd (zero-valent metal state Pd) as a main component (50 wt% or more). It is preferable that it is made of Pd (zero-valent metal state Pd).
  • the second shell portion 27 preferably contains Pt.
  • the second shell portion 27 is composed of Pt (zero-valent metal state Pt) as a main component (50 wt% or more). It is preferable that it is made of Pt (zero-valent metal state Pt).
  • a third shell portion (not shown) may be further formed at least partly between the core portion 24 and the first shell portion 25. Good.
  • the third shell portion has a chemical composition different from that of the core portion 24, the first shell portion 25, and the second shell portion 26, and this configuration is not particularly limited as long as it has electronic conductivity.
  • the core-shell catalysts 20, 20A, 20B, and 20C shown in FIGS. 2 to 5 have a Pt loading rate of preferably 0.6 to 33.0 wt%. The loading rate is preferably 4.7 to 47.0 wt%. Further, as described above, the core-shell catalysts 20, 20A, 20B, and 20C shown in FIGS. 2 to 5 preferably have a precious metal loading ratio of Pt and Pd of preferably 5.6 to 66. 5 wt%.
  • the core-shell catalysts 20, 20A, 20B, and 20C shown in FIGS. 2 to 5 and the catalyst particles 23, 23a, 23b, and 23c shown in FIGS. 2 to 5 exhibit excellent catalytic activity.
  • the outermost shell portions 26, 26 a and the second shell portion 27 have sufficiently thin thicknesses that can exhibit the so-called base effect (ligand effect) of the core portion 24.
  • the average thickness of the shell portions (shell portions 26, 26a, second shell portion 27) of the core-shell catalysts 20, 20A, 20B, and 20C shown in FIGS. 2 to 5 is 0.2 to 1.0 nm. It is preferably 0.2 to 0.9 nm, more preferably 0.2 to 0.7 nm, and still more preferably 0.2 to 0.5 nm.
  • the shell part (shell part 26, 26a, second shell part 27) is a layer made of Pt
  • the Pt atomic layer has a thickness of 4 layers or less, preferably 3 layers within the above average thickness range.
  • the thickness can be made more preferably two layers or less.
  • the metal bond radius of Pt is 0.139 nm
  • the average thickness of one Pt atom layer is about 0.21 nm to 0.23 nm.
  • the surface of the core part 24 is more adequate for the shell parts (shell parts 26, 26a, second shell part 27). It is difficult to maintain the core-shell structure because the constituent material of the core portion 24 is eluted without being coated. Therefore, the tendency that sufficient catalytic activity as a core-shell catalyst cannot be obtained increases. Moreover, the tendency for durability and reliability to become insufficient increases.
  • the average thickness of the shell portions (shell portions 26 and 26a, second shell portion 27) exceeds 1.0 nm, the tendency to be unable to contribute to the cost reduction (low platinumization) of PEFC increases. Further, in this case, the tendency to make it difficult to exhibit the so-called base effect (ligand effect) of the core portion 24 is increased, and the tendency to obtain a catalytic activity exceeding the conventional Pt / C catalyst is increased. .
  • the average thickness of the shell parts is, for example, an SEM image (Scanning Electron Microscopy image) or an average particle diameter of the catalyst particles and an average particle diameter of the core part, respectively. It can be determined by evaluating a TEM image (Transmission Electron Microscopy image). That is, it can be determined by the difference between the average particle diameter of the catalyst particles (23, 23a, 23b, 23c) and the average particle diameter of the core portion 24.
  • the average thickness of the shell portions is, for example, TEM-EDX (Transmission Electron Microscopy-Energy Dispersive X-ray Spectroscopy: transmission electron) in the particle size direction of the catalyst particles.
  • the catalyst particles (23, 23a) are analyzed by line analysis using a microscope energy dispersive X-ray analysis) or TEM-EDX (Transmission Electron Microscopy-Energy Dispersive X-ray Spectroscopy). , 23b, 23c) and the average particle diameter of the core portion 24 can be obtained.
  • the first carrier 22 is not particularly limited as long as the first carrier 22 can carry a composite composed of the core portion 24 and the shell portion 26 (or the shell portions 26a, 26b, and 26c) and has a relatively large surface area. Further, the first carrier 22 has good dispersibility in the gas diffusion electrode forming composition containing the core-shell catalyst 20 (or 20A, 20B, and 20C), and has excellent conductivity. Preferably there is.
  • the first carrier 22 is made of glassy carbon (GC), fine carbon, carbon black, graphite, carbon fiber, activated carbon, activated carbon, a carbon-based material such as carbon nanofiber or carbon nanotube, or a glass-based or ceramic such as oxide. It can be appropriately selected from a system material. Among these, a carbon-based material is preferable from the viewpoint of the adsorptivity with the core portion 24 and the BET specific surface area of the first support 22. Furthermore, as the carbon-based material, conductive carbon is preferable, and as the conductive carbon, conductive carbon black is particularly preferable. Examples of the conductive carbon black include trade names “Ketjen Black EC300J”, “Ketjen Black EC600”, “Carbon EPC” and the like (manufactured by Lion Chemical Co., Ltd.).
  • the production method of the core-shell catalysts 20, 20A, 20B, and 20C is not particularly limited and can be produced by a known method.
  • the core particle containing Pd forms a Pd / C particle (powder) supported on a first carrier containing a conductive carbon material as a constituent component, and a core part forming process.
  • the manufacturing method which has a structure including the "shell part formation process" which forms the shell part containing Pt so that at least one part of the surface of the said core particle of the obtained said Pd / C particle
  • the core-shell catalysts 20 and 20A can be manufactured by sequentially supporting the core part 24 and the shell parts 26 and 26a constituting the catalyst particles 23 and 23a on the first carrier 22.
  • an impregnation method in which a solution containing a catalyst component is brought into contact with the first support 22 and the first support 22 is impregnated with the catalyst component
  • a liquid phase reduction method in which a reducing agent is added to the solution containing the catalyst component
  • electrochemical deposition methods such as potential deposition (UPD), chemical reduction, reduction deposition with adsorbed hydrogen, surface leaching of alloy catalysts, displacement plating, sputtering, and vacuum deposition. can do.
  • the polymer electrolyte contained in the catalyst layer 1c and the catalyst layer 2c is not particularly limited as long as it has hydrogen ion conductivity, and a known one can be used.
  • the polymer electrolyte can be exemplified by a perfluorocarbon resin having a known sulfonic acid group or carboxylic acid group.
  • a perfluorocarbon resin having a known sulfonic acid group or carboxylic acid group.
  • As readily available polymer electrolytes having hydrogen ion conductivity Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.) It can be illustrated preferably.
  • the catalyst includes at least one of the catalyst layer 1c of the cathode 1 and the catalyst layer 2c of the anode 2 shown in FIG. 1 and includes a core-shell contact (any one of the core-shell catalysts 20, 20A, 20B, and 20C).
  • the layer includes a second carrier made of a conductive carbon material on which catalyst particles (catalyst particles 23, 23a, 23b, and 23c) are not supported.
  • the conductive carbon material of the second carrier is the same as the conductive carbon material of the first carrier.
  • the gas diffusion layer 1gd provided in the cathode 1 shown in FIG. 1 is a layer provided for supplying an oxidant gas (for example, oxygen gas, air) to the catalyst layer 1c. Further, the gas diffusion layer 1gd has a role of supporting the catalyst layer 1c.
  • the gas diffusion layer 2gd provided in the anode 2 is a layer provided for supplying a reducing agent gas (for example, hydrogen gas) to the catalyst layer 2c. Further, the gas diffusion layer 2gd has a role of supporting the catalyst layer 2c.
  • the gas diffusion layers (1c, 2c) shown in FIG. 1 have a function / structure that allows hydrogen gas or air (oxygen gas) to pass through well and reach the catalyst layer. For this reason, it is preferable that the gas diffusion layer has water repellency.
  • the gas diffusion layer has a water repellent component such as polyethylene terephthalate (PTFE).
  • the member that can be used for the gas diffusion layer (1c, 2c) is not particularly limited, and a known member can be used.
  • a known member can be used.
  • carbon paper, carbon paper as a main raw material, and carbon powder, ion-exchanged water as an optional component, and an auxiliary material made of polyethylene terephthalate dispersion as a binder are preferably applied to carbon paper.
  • Water repellent layer (MPL) As shown in FIG. 1, in the cathode 1, a water repellent layer (MPL) 1m is disposed between the gas diffusion layer 1gd and the catalyst layer 1c.
  • the water repellent layer 1m has electronic conductivity, water repellency, and gas diffusibility, and is provided to promote the diffusion of the oxidizing gas into the catalyst layer 1gd and the discharge of the reaction product water generated in the catalyst layer 1gd. It is what.
  • the configuration of the water repellent layer 1m is not particularly limited, and a known configuration can be adopted.
  • the polymer electrolyte membrane (PEM) 3 shown in FIG. 1 is not particularly limited as long as it has hydrogen ion conductivity, and a known one conventionally used for PEFC can be adopted.
  • PEFC Polymer electrolyte membrane
  • it may be a film containing the constituents exemplified as the polymer electrolyte contained in the catalyst layer 1c and the catalyst layer 2c described above.
  • FIG. 6 is a schematic cross-sectional view showing another preferred embodiment of the MEA of the present invention.
  • the MEA 11 shown in FIG. 6 has a configuration in which a gas diffusion electrode (GDE) 1A having the same configuration as that of the cathode 1 in the MEA 10 shown in FIG. 1 is disposed only on one surface of the polymer electrolyte membrane (PEM) 3.
  • GDE gas diffusion electrode
  • the catalyst layer 1c of the gas diffusion electrode (GDE) 1A has the configuration of the catalyst layer of the present invention. That is, in the catalyst layer 1c of GDE1A, the mass ratio N / C between the mass C of the support of the core-shell catalyst and the mass N of the polymer electrolyte is 0.5 to 1.2, more preferably 0.7 to 1.0. ing.
  • FIG. 7 is a schematic cross-sectional view showing a preferred embodiment of the CCM of the present invention.
  • the CCM 12 shown in FIG. 7 has a configuration in which a polymer electrolyte membrane (PEM) 3 is disposed between the cathode catalyst layer 1c and the anode catalyst layer 2c. At least one of the cathode catalyst layer 1c and the anode catalyst layer 2c has the configuration of the catalyst layer of the present invention.
  • PEM polymer electrolyte membrane
  • At least one of the cathode catalyst layer 1c and the anode catalyst layer 2c has a mass ratio N / C between the mass C of the core-shell catalyst support and the mass N of the polymer electrolyte of 0.5 to 1.2, more preferably. Is set to 0.7 to 1.0.
  • FIG. 8 is a schematic cross-sectional view showing another preferred embodiment of the CCM of the present invention.
  • the CCM 13 shown in FIG. 8 has a configuration in which a catalyst layer 1c having the same configuration as that of the cathode 1 in the CCM 12 shown in FIG. 7 is disposed only on one surface of the polymer electrolyte membrane (PEM) 3.
  • PEM polymer electrolyte membrane
  • the catalyst layer 1c of the gas diffusion electrode (GDE) 1A has the configuration of the catalyst layer of the present invention. That is, in the catalyst layer 1c of the CCM 13, the mass ratio N / C between the mass C of the support of the core-shell catalyst and the mass N of the polymer electrolyte is 0.5 to 1.2, more preferably 0.7 to 1.0. ing.
  • FIG. 9 is a schematic cross-sectional view showing a preferred embodiment of the GDE of the present invention.
  • the gas diffusion electrode (GDE) 1B shown in FIG. 9 has the same configuration as the cathode 1 mounted on the MEA 10 shown in FIG.
  • the catalyst layer 1c of the gas diffusion electrode (GDE) 1B has the configuration of the catalyst layer of the present invention.
  • the mass ratio N / C between the mass C of the support of the core-shell catalyst and the mass N of the polymer electrolyte is 0.5 to 1.2, more preferably 0.7. To 1.0.
  • FIG. 10 is a schematic cross-sectional view showing another preferred embodiment of the GDE of the present invention.
  • the GDE 1C illustrated in FIG. 10 has a configuration in which a water repellent layer (MPL) is not disposed between the catalyst layer 1c and the gas diffusion layer 1gd as compared with the GDE 1B illustrated in FIG.
  • MPL water repellent layer
  • the composition for forming a catalyst layer of the present embodiment includes a core-shell catalyst, a polymer electrolyte, and main components, and a mass ratio N / C between the mass C of the core-shell catalyst carrier and the mass N of the polymer electrolyte is 0.5 to 1.2, more preferably 0.7 to 1.0.
  • the composition of the liquid containing the polymer electrolyte is not particularly limited.
  • the liquid containing the polymer electrolyte may contain the above-described polymer electrolyte having hydrogen ion conductivity, water, and alcohol.
  • the composition ratio of the core-shell catalyst, polymer electrolyte, and other components (water, alcohol, etc.) contained in the catalyst layer-forming composition is such that the core-shell catalyst is well dispersed in the resulting catalyst layer and includes the catalyst layer. It is set as appropriate so that the power generation performance of the MEA can be improved.
  • the composition for forming a catalyst layer can be prepared by mixing and stirring a liquid containing a core-shell catalyst and a polymer electrolyte. You may contain polyhydric alcohols, such as glycerol, and / or water from a viewpoint of adjusting applicability
  • a pulverizing mixer such as a ball mill or an ultrasonic disperser may be used.
  • At least one of the catalyst layer 1c of the cathode 1 and the catalyst layer 2c of the anode 2 shown in FIG. 1 can be formed using a preferred embodiment of the composition for forming a catalyst layer of the present invention.
  • the gas diffusion electrode should just be formed so that the catalyst layer of this invention may be included, and the manufacturing method can employ
  • FIG. 11 is a schematic diagram showing a preferred embodiment of the fuel cell stack of the present invention.
  • the fuel cell stack 30 shown in FIG. 11 has a configuration in which the MEA 10 shown in FIG. 1 is a unit cell and a plurality of the unit cells are stacked.
  • the fuel cell stack 30 has a configuration in which the MEA 10 is disposed between the separator 4 and the separator 5. A gas flow path is formed in each of the separator 4 and the separator 5.
  • Pt / Pd / C powder As this Pt / Pd / C powder, the following Pd / C powder is used, and a coating film made of Cu is formed on the surface of the core particles made of Pd / C Pd by a general Cu-UPD method. It was prepared by allowing galvanic substitution reaction of Cu and Pt to proceed using potassium platinate.
  • Pd / C powder Pd / C powder ⁇ Pd loading 30 wt%, trade name “NE-F00230-D”, manufactured by NE CHEMCAT) ⁇ in which core particles made of Pd were supported on carbon black powder was prepared.
  • Pd / C powder a mixture of commercially available carbon black powder (specific surface area 750 to 800 m 2 / g), sodium tetrachloropalladium (II) and water is prepared, and a reducing agent is added thereto. Prepared by reducing palladium ions in the liquid obtained.
  • Pt / Pd / C powder As this Pt / Pd / C powder, the following Pd / C powder is used, and a coating film made of Cu is formed on the surface of the core particles made of Pd / C Pd by a general Cu-UPD method. It was prepared by allowing galvanic substitution reaction of Cu and Pt to proceed using potassium platinate.
  • Pd / C powder Pd / C powder ⁇ Pd loading 30 wt%, trade name “NE-F00230-D”, manufactured by NE CHEMCAT) ⁇ in which core particles made of Pd were supported on carbon black powder was prepared.
  • Pd / C powder a mixture of commercially available carbon black powder (specific surface area 750 to 800 m 2 / g), sodium tetrachloropalladium (II) and water is prepared, and a reducing agent is added thereto. Prepared by reducing palladium ions in the liquid obtained.
  • Pt / Pd / C powder As this Pt / Pd / C powder, the following Pd / C powder is used, and a coating film made of Cu is formed on the surface of the core particles made of Pd / C Pd by a general Cu-UPD method. It was prepared by allowing galvanic substitution reaction of Cu and Pt to proceed using potassium platinate.
  • Pd / C powder Pd / C powder ⁇ Pd loading 30 wt%, trade name “NE-F00230-C”, manufactured by NE CHEMCAT) ⁇ in which core particles made of Pd were supported on carbon black powder was prepared.
  • Pd / C powder a mixture of commercially available carbon black powder (specific surface area 750 to 800 m 2 / g), sodium tetrachloropalladium (II) and water is prepared, and a reducing agent is added thereto. Prepared by reducing palladium ions in the liquid obtained.
  • Pt / C catalyst used for cathode of MEA of Comparative Example 5 and Comparative Example 6
  • Pt / C catalyst Pt / C catalyst with a Pt loading rate of 50 wt% manufactured by NE CHEMCAT (trade name) : “SA50BK”).
  • SA50BK NE CHEMCAT
  • the Pt / C catalyst was subjected to XRD analysis with the above core-shell catalyst. As a result, the average value of the crystallite size was 2.6 nm.
  • Pd / Pd / C powder As this Pt / Pd / C powder, the following Pd / C powder is used, and a coating film made of Cu is formed on the surface of the core particles made of Pd / C Pd by a general Cu-UPD method. It was prepared by allowing galvanic substitution reaction of Cu and Pt to proceed using potassium platinate.
  • Pd / C powder Pd / C powder ⁇ Pd loading 25.3 wt%, trade name “NE-F00225-F”, manufactured by NE CHEMCAT) ⁇ having core particles made of Pd supported on carbon black powder was prepared.
  • Pd / C powder a mixture of commercially available carbon black powder (specific surface area 750 to 800 m 2 / g), sodium tetrachloropalladium (II) and water is prepared, and a reducing agent is added thereto. Prepared by reducing palladium ions in the liquid obtained.
  • Example 1 The MEA having the same configuration as the MEA 10 shown in FIG. (1) Creation of cathode GDL of cathode Carbon paper (trade name “TGP-H-60” manufactured by Toray Industries, Inc.) was prepared as GDL.
  • Cathode MPL forming ink In a Teflon (registered trademark) ball mill container containing Teflon (registered trademark) balls, 1.5 g of carbon powder (trade name “DENKA BLACK” manufactured by Denki Kagaku Kogyo Co., Ltd.) and ion exchange 1.1 g of water and 6.0 g of a surfactant (trade name “Triton” (35 wt% aqueous solution) manufactured by Dow Chemical Company) were added and mixed.
  • PTFE polytetrafluoroethylene
  • the ratio of the core-shell catalyst A to the second support was set to 5: 1 (mass ratio).
  • Cathode catalyst layer (CL) The cathode catalyst layer forming ink was applied to the surface of the MPL of the laminate in which the MPL was formed on the GDL described above by a bar coating method to form a coating film. This coating film was dried at room temperature for 30 minutes, and then dried at 60 ° C. for 1.0 hour to obtain a catalyst layer. In this way, a cathode as a gas diffusion electrode was produced. The amount of Pt supported on the cathode catalyst layer was set to the values shown in Table 1.
  • PTFE polytetrafluoroethylene
  • Anode catalyst layer (CL) The anode catalyst layer forming ink described above was applied to the surface of the MPL of the laminate in which MPL was formed on the GDL described above by the bar coating method to form a coating film. This coating film was dried at room temperature for 30 minutes, and then dried at 60 ° C. for 1.0 hour to obtain a catalyst layer. In this way, an anode as a gas diffusion electrode was produced. The amount of Pt supported on the anode catalyst layer was 0.30 mg / cm 2 .
  • a polymer electrolyte membrane (trade name “Nafion NR212” manufactured by DuPont) was prepared. A laminate in which this polymer electrolyte membrane was disposed between the cathode and the anode was prepared and heat-pressed by a hot press machine to prepare an MEA. The thermocompression bonding was performed by pressing at 140 ° C. and 18.5 bar for 5 minutes, and further at 140 ° C. and 88.8 bar for 3 minutes.
  • Example 2 For the cathode catalyst layer, the same conditions as in Example 1 except that the composition of the cathode catalyst layer forming ink and the coating conditions of the ink were adjusted so that the Pt loading was the value shown in Table 1. Each MEA was made according to the procedure.
  • Example 3 For the cathode catalyst layer, instead of the core-shell catalyst A, the above-described core-shell catalyst D was used, and the composition of the cathode catalyst layer-forming ink was adjusted so that the amount of Pt supported was the value shown in Table 1. Each MEA was prepared under the same conditions and procedures as in Example 1 except that the coating conditions were adjusted.
  • Example 1 Each MEA was prepared under the same conditions and procedures as in Example 1 except that the following conditions were changed for the catalyst layer of the cathode. That is, in creating the cathode catalyst layer forming ink, -Instead of the core-shell catalyst A, the core-shell catalyst B described above was used. A cathode catalyst-forming ink was prepared using only the core-shell catalyst B without using the second carrier on which the catalyst particles were not supported. The composition of the cathode catalyst layer forming ink and the coating conditions of the ink were adjusted so that the amount of Pt supported was the value shown in Table 1.
  • Example 5> to ⁇ Comparative Example 6> Each MEA was prepared under the same conditions and procedures as in Example 1 except that the following conditions were changed for the catalyst layer of the cathode. That is, in creating the cathode catalyst layer forming ink, -Instead of the core-shell catalyst A, the P / C catalyst (trade name: “SA50BK”) described above was used. -Instead of 10 wt% Nafion aqueous dispersion, 5 wt% Nafion alcohol dispersion (DuPont brand name "DE520CS"; 1-propanol 48wt% containing) was used.
  • Example 7> ⁇ Comparative Example 7> to ⁇ Comparative Example 8>
  • Each MEA was prepared under the same conditions and procedures as in Example 1 except that the core-shell catalyst A was used for the catalyst layer of the cathode and the following conditions were changed.
  • a cathode catalyst-forming ink was prepared using only the core-shell catalyst A without using the second carrier on which the catalyst particles were not supported.
  • the composition of the cathode catalyst layer forming ink and the coating conditions of the ink were adjusted so that the amount of Pt supported was the value shown in Table 1.
  • the battery performances of the MEAs in Examples 1 and 2 and Comparative Examples 1 to 6 were carried out by the following battery performance evaluation method.
  • the MEAs produced in Examples 1 and 2 and Comparative Examples 1 to 6 were installed in a fuel cell single cell evaluation apparatus (manufactured by Chino Corporation).
  • the power generation reaction in the MEA was advanced under the following conditions. That is, the single cell (MEA) temperature was 80 ° C.
  • the single cell (MEA) temperature was 80 ° C.
  • 1.0 atm of pure hydrogen humidified with saturated steam was supplied with the flow rate adjusted to 70%.
  • 1.0 atm of pure oxygen humidified with saturated steam at 80 ° C. was supplied to the cathode at a flow rate adjusted to 50%.
  • the single cell (MEA) is evaluated by controlling the current with an electronic load device attached to the fuel cell single cell evaluation device, and a current-voltage curve obtained by scanning the current value from 0 to 1.0 A / cm 2 is obtained. Obtained as data.
  • a graph plotting the X-axis (current density) as a logarithmic scale was created from the current-voltage curve data (not shown), and a current density value (current value per unit area of the electrode) at a voltage of 850 mV was obtained. .
  • the activity per unit weight (Mass. Act.) Of platinum contained in the cathode was calculated and contained in the cathode.
  • Table 1 shows Mass. Obtained in Comparative Example 4. Act. As a relative value (relative ratio) with reference (1.0) as a reference, Mass. Obtained in other examples and comparative examples. Act. The result of having compared is shown.
  • the catalyst layer of the present invention includes a core-shell catalyst and exhibits excellent catalytic activity.
  • the GDL, CCM, MEA, and fuel cell stack including the catalyst layer of the present invention exhibit excellent battery characteristics that can contribute to the cost reduction of PEFC. Therefore, the present invention can be applied not only to the electrical equipment industry such as fuel cells, fuel cell vehicles, and portable mobiles but also to energy farms, cogeneration systems, etc., and contributes to development related to the energy industry and environmental technology.
  • GDE Gas diffusion electrode
  • 1c catalyst layer (CL), 1 m ... water repellent layer (MPL), 1 gd: gas diffusion layer (GDL), 2 ... anode, 2c ... catalyst layer (CL), 2 m ... water repellent layer (MPL), 2 gd ... gas diffusion layer (GDL), 3 ... Polymer electrolyte membrane (PEM), 4, 5 ... Separator 10, 11 ... Membrane / electrode assembly (MEA), 12, 13 ... Membrane / catalyst layer assembly (CCM) 20, 20A, 20B, 20C ... core-shell catalyst, 22 ... carrier, 23, 23a, 23b, 23c ... catalyst particles, 24 ... Core part, 24 s ... exposed surface of the core part, 25 ... 1st shell part, 25s ... exposed surface of the first shell, 26, 26a, 26b, 26c ... shell part, 27 ... second shell part, 30 ... Fuel cell stack,

Abstract

Provided is a catalyst layer which contains a core shell catalyst and exhibits excellent performance. The present invention relates to a catalyst layer of a gas diffusion electrode that is provided in a solid polymer fuel cell, and the present invention comprises: a core shell catalyst which contains a first carrier that is formed from a conductive carbon material and catalyst particles that are supported by the first carrier and have a core shell structure; a polymer electrolyte; and a second carrier that is formed from a conductive carbon material and does not support the catalyst particles. In addition, this catalyst layer is configured such that the conductive carbon material of the first carrier and the conductive carbon material of the second carrier are the same as each other.

Description

触媒層、ガス拡散電極、膜・触媒層接合体、膜・電極接合体、燃料電池スタック、触媒層形成用組成物Catalyst layer, gas diffusion electrode, membrane / catalyst layer assembly, membrane / electrode assembly, fuel cell stack, catalyst layer forming composition
 本発明は、固体高分子形燃料電池に備えられるガス拡散電極の触媒層に関する。
 また本発明は、上記触媒層が搭載された、ガス拡散電極、膜・触媒層接合体、膜・電極接合体、及び、燃料電池スタック、並びに、触媒層形成用組成物に関する。
The present invention relates to a catalyst layer of a gas diffusion electrode provided in a polymer electrolyte fuel cell.
The present invention also relates to a gas diffusion electrode, a membrane / catalyst layer assembly, a membrane / electrode assembly, a fuel cell stack, and a composition for forming a catalyst layer on which the catalyst layer is mounted.
 固体高分子形燃料電池(Polymer Electrolyte Fuel Cell:以下、必要に応じて「PEFC」という)は、燃料電池自動車、家庭用コジェネレーションシステムの電源としての研究開発が行われている。 The polymer electrolyte fuel cell (hereinafter referred to as “PEFC” as required) is being researched and developed as a power source for fuel cell vehicles and household cogeneration systems.
 PEFCのガス拡散電極に使用される触媒には、白金(Pt)等の白金族元素の貴金属粒子からなる貴金属触媒が用いられている。
 例えば、典型的な従来の触媒としては、導電性カーボン粉末上にPt微粒子を担持させた触媒粒子の粉体である「Pt担持カーボン触媒」(以下、必要に応じ「Pt/C触媒」という)が知られている。
 例えば、Pt/C触媒としては、N.E.CHEMCAT社製のPt担持率50wt%のPt/C触媒、商品名:「SA50BK」が知られている。
 PEFCの製造コストの中でPt等の貴金属触媒が占めるコストの割合は大きく、PEFCの低コスト化、PEFCの普及に向けた課題になっている。
 この課題を解決するために、PEFCの触媒層のPt削減化のための開発が進められている。例えば、非特許文献1にはこれまでの開発の概要が記載されている。
As a catalyst used for a PEFC gas diffusion electrode, a noble metal catalyst composed of noble metal particles of a platinum group element such as platinum (Pt) is used.
For example, as a typical conventional catalyst, “Pt-supported carbon catalyst” which is a powder of catalyst particles in which Pt fine particles are supported on conductive carbon powder (hereinafter referred to as “Pt / C catalyst” if necessary). It has been known.
For example, as a Pt / C catalyst, a Pt / C catalyst having a Pt loading rate of 50 wt% manufactured by NE CHEMCAT, trade name: “SA50BK” is known.
The ratio of the cost occupied by the noble metal catalyst such as Pt is large in the manufacturing cost of PEFC, which is a problem for reducing the cost of PEFC and popularizing PEFC.
In order to solve this problem, development for reducing the Pt of the PEFC catalyst layer has been underway. For example, Non-Patent Document 1 describes an outline of development so far.
 これらの研究開発の中で、白金の使用量を低減するため、従来、非白金元素からなるコア部とPtからなるシェル部から形成されるコアシェル構造を有する触媒粒子(以下、必要に応じ「コアシェル触媒粒子」という)の粉体(以下、必要に応じ「コアシェル触媒」という)が検討されており、多数の報告がなされている。
 例えば、特許文献1には、パラジウム(Pd)又はPd合金(コア部に相当)がPt原子の原子的薄層(シェル部に相当)によって被覆された構成を有する粒子複合材(コアシェル触媒粒子に相当)が開示されている。更に、この特許文献1には、実施例としてコア部がPd粒子で、シェル部がPtからなる層の構成を有するコアシェル触媒粒子が記載されている。
In these research and development, in order to reduce the amount of platinum used, conventionally, catalyst particles having a core-shell structure formed from a core portion made of a non-platinum element and a shell portion made of Pt (hereinafter referred to as “core shell if necessary”). Catalyst particles ”(hereinafter referred to as“ core-shell catalysts ”as necessary) have been studied and many reports have been made.
For example, Patent Document 1 discloses a particle composite material (a core-shell catalyst particle having a structure in which palladium (Pd) or a Pd alloy (corresponding to a core part) is covered with an atomic thin layer (corresponding to a shell part) of Pt atoms. Equivalent). Furthermore, this patent document 1 describes, as an example, core-shell catalyst particles having a layer structure in which the core portion is made of Pd particles and the shell portion is made of Pt.
 また、例えば、特許文献2には、大電流(例えば2000mA/cmを超える電流密度)を流しても確実にフラッディングを防止することができ、高価な白金等の触媒金属成分の使用量を低減してコストダウンが可能な固体高分子形燃料電池を製造する上で有用なPEFCの電極触媒を提供することを意図して、多孔質炭素材料からなる担体炭素材料に触媒金属成分を担持させた触媒金属担持炭素材料と、触媒金属成分を担持していない樹状黒鉛質炭素材料からなる触媒金属非担持炭素材料とを混合して得られた触媒が提案されている。
 特許文献2において、触媒担持炭素材料の担体炭素材料は、窒素吸着測定により測定された細孔直径4nm以上10nm未満のメソ孔比表面積(S4-10nm)が100m/g以上とされている。また、触媒金属成分を担持していない樹状黒鉛質炭素材料は、BET比表面積(SBET)が80m/g以上220m/g以下であり、DBP吸油量(ODBP)が80mL/100g以上170mL/100g以下であり、また、X線回折による結晶子サイズ(Lc)が5nm以上10nm以下とされている。触媒担持炭素材料として具体的には白金担持炭素材料(白金触媒)が開示されている(例えば、特許文献2、段落番号0045~0063を参照)。
Further, for example, in Patent Document 2, flooding can be reliably prevented even when a large current (for example, a current density exceeding 2000 mA / cm 2 ) is passed, and the amount of expensive catalytic metal components such as platinum is reduced. In order to provide a PEFC electrocatalyst useful for manufacturing a polymer electrolyte fuel cell capable of reducing the cost, a catalytic metal component is supported on a support carbon material made of a porous carbon material. A catalyst obtained by mixing a catalytic metal-supporting carbon material and a non-catalytic metal-supporting carbon material made of a dendritic graphitic carbon material that does not support a catalytic metal component has been proposed.
In Patent Document 2, the carrier carbon material of the catalyst-supporting carbon material has a mesopore specific surface area (S 4-10 nm ) of 100 nm 2 / g or more with a pore diameter of 4 nm or more and less than 10 nm measured by nitrogen adsorption measurement. . Further, the dendritic graphitic carbon material not supporting the catalytic metal component has a BET specific surface area (S BET ) of 80 m 2 / g or more and 220 m 2 / g or less, and a DBP oil absorption (O DBP ) of 80 mL / 100 g. The above is 170 mL / 100 g or less, and the crystallite size (Lc) by X-ray diffraction is 5 nm or more and 10 nm or less. Specifically, a platinum-supported carbon material (platinum catalyst) is disclosed as the catalyst-supported carbon material (see, for example, Patent Document 2, paragraphs 0045 to 0063).
 なお、本件特許出願人は、上記文献公知発明が記載された刊行物として、以下の刊行物を提示する。 In addition, this patent applicant presents the following publications as publications in which the above-mentioned literature known invention is described.
米国特許出願公開第2007/31722号公報US Patent Application Publication No. 2007/31722 特開2016-100262号公報JP 2016-1000026 A
 PEFCの普及に向けてコアシェル触媒を採用する場合、これを用いて製造される触媒層、並びに、当該触媒層を搭載した、ガス拡散電極(GDE)、膜・触媒層膜接合体(Catalyst Coated Membrane、以下、必要に応じて「CCM」という)、膜・電極接合体(Membrane Electrode Assembly、以下、必要に応じて「MEA」という)をコアシェル触媒に適した構成とすることが重要である。
 しかしながら、コアシェル触媒を含む優れた性能を有する触媒層の構成については未だ改善の余地があった。
When adopting a core-shell catalyst for the spread of PEFC, the catalyst layer produced using the catalyst and the gas diffusion electrode (GDE), membrane / catalyst layer membrane assembly (Catalyst Coated Membrane) Hereinafter, it is important that the membrane / electrode assembly (hereinafter referred to as “MEA” if necessary) has a configuration suitable for the core-shell catalyst.
However, there is still room for improvement in the configuration of the catalyst layer having excellent performance including the core-shell catalyst.
 本発明は、かかる技術的事情に鑑みてなされたものであって、コアシェル触媒を含む優れた性能を有する触媒層を提供することを目的とする。
 また、本発明は、上記触媒層を搭載した、ガス拡散電極、膜・触媒層膜接合体、膜・電極接合体、及び、燃料電池スタックを提供することを目的とする。
 更に、本発明は、上述の本発明の触媒層をより容易に製造することのできるコアシェル触媒を含む触媒層形成用組成物を提供することを目的とする。
This invention is made | formed in view of this technical situation, Comprising: It aims at providing the catalyst layer which has the outstanding performance containing a core-shell catalyst.
Another object of the present invention is to provide a gas diffusion electrode, a membrane / catalyst layer membrane assembly, a membrane / electrode assembly, and a fuel cell stack on which the catalyst layer is mounted.
Furthermore, this invention aims at providing the composition for catalyst layer formation containing the core-shell catalyst which can manufacture the above-mentioned catalyst layer of this invention more easily.
 本発明者等は、コアシェル触媒を含む構成の触媒層について検討した結果、コアシェル触媒(導電性炭素材料からなる担体とこの担体上に担持されるコアシェル構造を有する触媒粒子とを含む構成を有する触媒)と、コアシェル構造を有する触媒粒子が担持されていない導電性炭素材料との2成分が含まれており、かつ、コアシェル触媒の担体と触媒粒子が担持されていない導電性炭素材料とが同一の材料である構成とすることが触媒活性の向上に有効であることを見出し、本発明を完成するに至った。
 より具体的には、本発明は、以下の技術的事項から構成される。
As a result of studying a catalyst layer including a core-shell catalyst, the present inventors have determined that a core-shell catalyst (a catalyst having a configuration including a support made of a conductive carbon material and catalyst particles having a core-shell structure supported on the support). ) And a conductive carbon material in which catalyst particles having a core-shell structure are not supported, and the core-shell catalyst support and the conductive carbon material in which no catalyst particles are supported are the same. The present inventors have found that the construction of a material is effective in improving the catalytic activity and have completed the present invention.
More specifically, the present invention includes the following technical matters.
 すなわち、本発明は、
 固体高分子形燃料電池に備えられるガス拡散電極の触媒層であって、
 導電性炭素材料からなる第1担体と前記第1担体上に担持されるコアシェル構造を有する触媒粒子とを含むコアシェル触媒と、
 高分子電解質と、
 前記触媒粒子が担持されていない導電性炭素材料からなる第2担体と、
を含んでおり、
 前記第1担体の導電性炭素材料と前記第2担体の導電性炭素材料が同一である、
触媒層を提供する。
That is, the present invention
A catalyst layer of a gas diffusion electrode provided in a polymer electrolyte fuel cell,
A core-shell catalyst comprising: a first support made of a conductive carbon material; and catalyst particles having a core-shell structure supported on the first support;
A polymer electrolyte;
A second support made of a conductive carbon material on which the catalyst particles are not supported;
Contains
The conductive carbon material of the first carrier and the conductive carbon material of the second carrier are the same;
A catalyst layer is provided.
 ここで、「コアシェル構造を有する触媒粒子を含むコアシェル触媒」とは、担体上に形成される触媒粒子を有する構成を有する触媒(粉体)であって、かつ、この触媒粒子が、担体上に形成されるコア部と、このコア部の表面の少なくとも一部を覆うように形成されるシェル部と、を有する構成を有する触媒を示す。より詳しい構成については、図2~図5を用いて後述する。
 なお、本発明の触媒層は、PEFCのアノードの触媒層として用いることができ、カソードの触媒層としても用いることができる。
 この構成とすることにより、Pt/C触媒を含む従来の触媒層、コアシェル触媒を含む従来の触媒層(コアシェル触媒の担体以外の導電性炭素材料を含まない触媒層)に対して優れた性能を有する触媒層を容易に構成することができる。
 特に本発明の触媒層は、上記の2つの従来の触媒層に対し、触媒担持量(単位面積当たりの触媒粒子を構成する貴金属の質量/mg・cm-2)を低減してもほぼ同等の優れた性能を発揮することができる。
 以上の観点から、本発明の触媒層における触媒担持量は、Pt/C触媒を含む従来の触媒層の触媒担持量の50%以下であってもよい。また、本発明の触媒層において、コアシェル触媒のシェル部にPt(0価の金属状態のPt)が含まれている場合には、本発明の触媒層における触媒担持量(Pt担持量)は、0.05mg・cm-2以下であってもよい。
Here, the “core-shell catalyst including catalyst particles having a core-shell structure” is a catalyst (powder) having a configuration having catalyst particles formed on a carrier, and the catalyst particles are placed on the carrier. The catalyst which has the structure which has the core part formed and the shell part formed so that at least one part of the surface of this core part may be covered is shown. A more detailed configuration will be described later with reference to FIGS.
The catalyst layer of the present invention can be used as a catalyst layer for the PEFC anode and can also be used as a cathode catalyst layer.
By adopting this configuration, the conventional catalyst layer including the Pt / C catalyst and the conventional catalyst layer including the core-shell catalyst (the catalyst layer not including the conductive carbon material other than the core-shell catalyst support) have excellent performance. The catalyst layer can be easily configured.
In particular, the catalyst layer of the present invention is substantially equivalent to the above two conventional catalyst layers even if the amount of catalyst supported (mass of precious metal per unit area / mg · cm −2 ) is reduced. Excellent performance can be demonstrated.
From the above viewpoint, the catalyst loading amount in the catalyst layer of the present invention may be 50% or less of the catalyst loading amount of the conventional catalyst layer containing the Pt / C catalyst. In the catalyst layer of the present invention, when Pt (zero-valent metal state Pt) is contained in the shell portion of the core-shell catalyst, the catalyst loading amount (Pt loading amount) in the catalyst layer of the present invention is: It may be 0.05 mg · cm −2 or less.
 また、本発明の触媒層においては、コアシェル触媒の粉末X線回折(XRD)により測定される結晶子サイズの平均値が3~16.0nmであることが好ましい。
 コアシェル触媒の触媒粒子の結晶子サイズの平均値が3nm未満であると、担体上にコア部となる粒子を形成することが極めて困難になり、ひいては担体上に触媒粒子を形成することが極めて困難になる。
 また、コアシェル触媒の触媒粒子の結晶子サイズの平均値が16.0nmを超えると、担体上にコア部となる粒子を高分散状態で形成することが極めて困難になり、十分な触媒活性を得ることが極めて困難になる。
 なお、本発明においては、触媒粒子のPtからなるシュル部がPt原子層で1層~2層となる場合、XRDによってPt(111)面のピークがみえないので、コア部のPd(111)面のピークから算出した平均値を触媒粒子の結晶子サイズの平均値としている。
In the catalyst layer of the present invention, the average value of the crystallite size measured by powder X-ray diffraction (XRD) of the core-shell catalyst is preferably 3 to 16.0 nm.
If the average value of the crystallite size of the catalyst particles of the core-shell catalyst is less than 3 nm, it becomes extremely difficult to form particles that become the core portion on the support, and thus it is extremely difficult to form the catalyst particles on the support. become.
Further, when the average value of the crystallite size of the catalyst particles of the core-shell catalyst exceeds 16.0 nm, it becomes extremely difficult to form the particles serving as the core portion on the support in a highly dispersed state, and sufficient catalytic activity is obtained. It becomes extremely difficult.
In the present invention, when the surreal part made of Pt of the catalyst particles has one or two Pt atomic layers, the peak of the Pt (111) plane cannot be seen by XRD. The average value calculated from the peak of the surface is the average value of the crystallite size of the catalyst particles.
 また、本発明の触媒層においては、
 前記コアシェル触媒の前記触媒粒子が、前記担体上に形成されるコア部と、前記コア部の表面の少なくとも一部を覆うように形成されるシェル部と、を有しており、
 前記コア部にはPd(0価の金属状態のPd)が含まれており、前記シェル部にはPt(0価の金属状態のPt)が含まれており、
 前記コアシェル触媒のPt担持率が0.6~33.0wt%であり、
 前記コアシェル触媒のPd担持率が4.7~47.0wt%であり、
 前記コアシェル触媒のPtとPdとを合わせた貴金属の担持率が5.6~66.5Wt%であることが好ましい。
In the catalyst layer of the present invention,
The catalyst particles of the core-shell catalyst have a core part formed on the carrier and a shell part formed so as to cover at least a part of the surface of the core part;
The core part includes Pd (zero-valent metal state Pd), and the shell part includes Pt (zero-valent metal state Pt),
The Pt loading of the core-shell catalyst is 0.6-33.0 wt%,
The core shell catalyst has a Pd loading of 4.7 to 47.0 wt%;
It is preferable that the loading ratio of the noble metal combined with Pt and Pd of the core-shell catalyst is 5.6 to 66.5 Wt%.
 Pt担持率の0.6wt%未満であると、十分な触媒活性が得られなくなる傾向が大きくなる。また、シェル部の平均厚さが過度に薄くなり、コア部の表面がシェル部により十分に被覆されずコア部の構成材料の溶出が発生しコアシェル構造の維持が困難になる傾向が大きくなる。
 更に、Pt担持率が33.0wt%を超えると、担体上に、コアシェル構造を有する触媒粒子を高分散状態で形成することが極めて困難になる傾向が大きくなる。また、この場合、シェル部の平均厚さが過度に厚くなり、コア部のいわゆる下地効果(リガンド効果)を発揮することが困難となり、従来のPt/C触媒を超える触媒活性を得ることが困難となる傾向が大きくなる。
When the Pt loading is less than 0.6 wt%, the tendency that sufficient catalytic activity cannot be obtained increases. In addition, the average thickness of the shell portion becomes excessively thin, and the surface of the core portion is not sufficiently covered with the shell portion, so that the constituent material of the core portion is eluted and the tendency to maintain the core-shell structure is increased.
Furthermore, when the Pt loading exceeds 33.0 wt%, it tends to be extremely difficult to form catalyst particles having a core-shell structure in a highly dispersed state on the support. Further, in this case, the average thickness of the shell portion becomes excessively thick, making it difficult to exhibit a so-called base effect (ligand effect) of the core portion, and it is difficult to obtain a catalytic activity exceeding that of a conventional Pt / C catalyst. The tendency to become becomes large.
 また、Pd担持率が4.7wt%未満であると、担体上に形成されるコア部となる粒子が少なくなり、コア部上に形成されるシェル部も少なくなるため十分な触媒活性が得られなくなる傾向が大きくなる。
 Pd担持率が47.0wt%を超えると、担体上に、コア部となる粒子を高分散状態で担持することが極めて困難になる。その結果、コアシェル構造を有する触媒粒子を高分散状態で形成することが極めて困難になる傾向が大きくなる。
In addition, when the Pd loading is less than 4.7 wt%, the number of particles forming the core portion on the support is reduced, and the shell portion formed on the core portion is also reduced, so that sufficient catalytic activity is obtained. The tendency to disappear increases.
When the Pd loading rate exceeds 47.0 wt%, it becomes extremely difficult to carry the particles that will become the core portion on the carrier in a highly dispersed state. As a result, the tendency that it becomes extremely difficult to form catalyst particles having a core-shell structure in a highly dispersed state increases.
 更に、触媒粒子のPtとPdとを合わせた貴金属の担持率が5.6Wt%未満であると、十分な触媒活性が得られなくなる傾向が大きくなる。
 PtとPdとを合わせた貴金属の担持率が66.5Wt%を超えると、コアシェル構造を有する触媒粒子を高分散状態で形成することが極めて困難になる傾向が大きくなる。
 なお、Pt担持率及びPd担持率は電極用触媒用いたICP発光分析により測定される値を採用する。
Furthermore, when the supporting rate of the noble metal combined with Pt and Pd of the catalyst particles is less than 5.6 Wt%, there is a tendency that sufficient catalytic activity cannot be obtained.
If the loading ratio of the noble metal combined with Pt and Pd exceeds 66.5 Wt%, it tends to be extremely difficult to form catalyst particles having a core-shell structure in a highly dispersed state.
In addition, the value measured by ICP emission analysis using the electrode catalyst is adopted for the Pt loading rate and the Pd loading rate.
 また、本明細書において、電極用触媒の構成を説明する際に、必要に応じて、「担体上に担持される触媒粒子の構成(主な構成材料)/導電性を有する担体の構成(主な構成材料)」と表記する。より詳しくは、「シェル部の構成/コア部の構成/担体の構成」と表記する。
 例えば、電極用触媒の構成が、「Ptからなるシェル部、Pdからなるコア部、導電性カーボンからなる担体」を有する構成の場合、「Pt/Pd/C」と表記する。
Further, in the present specification, when describing the configuration of the electrode catalyst, if necessary, “configuration of catalyst particles supported on the support (main constituent material) / configuration of conductive support (main It is written " More specifically, it is expressed as “shell configuration / core configuration / support configuration”.
For example, when the configuration of the electrode catalyst includes “a shell portion made of Pt, a core portion made of Pd, and a carrier made of conductive carbon”, it is expressed as “Pt / Pd / C”.
 更に、本発明の触媒層においては、優れた触媒活性をより確実に得る観点から、コアシェル触媒の前記コア部がPdからなることが好ましい。なお、この場合、触媒粒子が優れた触媒活性を発揮しうる範囲で、コア部にはPd酸化物が含まれていてもよい。
 また、本発明の触媒層においては、優れた触媒活性をより確実に得る観点から、
 コアシェル触媒の前記シェル部がPtからなる、ことが好ましい。なお、この場合、触媒粒子が優れた触媒活性を発揮しうる範囲で、シェル部にはPt酸化物が含まれていてもよい。
 更に、本発明の触媒層においては、優れた触媒活性をより確実に得る観点から、
 コアシェル触媒の前記コア部がPdからなり、かつ、前記シェル部がPtからなる、ことが好ましい。
Furthermore, in the catalyst layer of the present invention, it is preferable that the core portion of the core-shell catalyst is made of Pd from the viewpoint of more reliably obtaining excellent catalytic activity. In this case, Pd oxide may be included in the core part as long as the catalyst particles can exhibit excellent catalytic activity.
Further, in the catalyst layer of the present invention, from the viewpoint of more reliably obtaining excellent catalytic activity,
It is preferable that the shell part of the core-shell catalyst is made of Pt. In this case, Pt oxide may be contained in the shell portion as long as the catalyst particles can exhibit excellent catalytic activity.
Furthermore, in the catalyst layer of the present invention, from the viewpoint of more reliably obtaining excellent catalytic activity,
It is preferable that the core part of the core-shell catalyst is made of Pd and the shell part is made of Pt.
 さらに、本発明は、
 固体高分子形燃料電池に備えられるガス拡散電極であって、
 ガス拡散層と、         
 前記ガス拡散層上に配置される触媒層と、
を有しており、
 前記触媒層が上述の本発明の触媒層である、
ガス拡散電極を提供する。
Furthermore, the present invention provides:
A gas diffusion electrode provided in a polymer electrolyte fuel cell,
A gas diffusion layer;
A catalyst layer disposed on the gas diffusion layer;
Have
The catalyst layer is the catalyst layer of the present invention described above,
A gas diffusion electrode is provided.
 本発明のガス拡散電極は、本発明の触媒層を含んで構成されている。そのため、PEFCの低コスト化に寄与できる優れた触媒活性(分極特性)を有する構成とすることが容易となる。
 なお、本発明のガス拡散電極は、アノードとして用いることができ、カソードとしても用いることができる。
The gas diffusion electrode of the present invention includes the catalyst layer of the present invention. Therefore, it becomes easy to set it as the structure which has the outstanding catalyst activity (polarization characteristic) which can contribute to the cost reduction of PEFC.
In addition, the gas diffusion electrode of this invention can be used as an anode and can also be used as a cathode.
 さらに、本発明は、
 固体高分子形燃料電池に備えられる膜・触媒層接合体(CCM)であって、
 固体高分子電解質膜と、
 前記固体高分子電解質膜の少なくとも一方の面上に配置される触媒層と、
を有しており、
 前記触媒層が上述の本発明の触媒層である、
膜・触媒層接合体(CCM)を提供する。
 本発明の膜・触媒層接合体(CCM)は、本発明の触媒層をアノード用及び/又はカソード用として含んでいるため、PEFCの低コスト化に寄与できる優れた触媒活性(電池特性)を有する構成とすることが容易となる。
Furthermore, the present invention provides:
A membrane-catalyst layer assembly (CCM) provided in a polymer electrolyte fuel cell,
A solid polymer electrolyte membrane;
A catalyst layer disposed on at least one surface of the solid polymer electrolyte membrane;
Have
The catalyst layer is the catalyst layer of the present invention described above,
A membrane-catalyst layer assembly (CCM) is provided.
Since the membrane / catalyst layer assembly (CCM) of the present invention includes the catalyst layer of the present invention for anode and / or cathode, it has excellent catalytic activity (cell characteristics) that can contribute to cost reduction of PEFC. It becomes easy to set it as having a structure.
 さらに、本発明は、
 固体高分子形燃料電池に備えられる膜・電極接合体(MEA)であって、
 固体高分子電解質膜と、
 前記固体高分子電解質膜の少なくとも一方の面上に配置されるガス拡散電極と、
を有しており、
 前記ガス拡散電極が上述の本発明のガス拡散電極である、
膜・電極接合体(MEA)を提供する。
 本発明の膜・電極接合体(MEA)は、本発明の触媒層及び本発明のガス拡散電極を含んでいるため、PEFCの低コスト化に寄与できる優れた電池特性を有する構成とすることが容易となる。
Furthermore, the present invention provides:
A membrane-electrode assembly (MEA) provided in a polymer electrolyte fuel cell,
A solid polymer electrolyte membrane;
A gas diffusion electrode disposed on at least one surface of the solid polymer electrolyte membrane;
Have
The gas diffusion electrode is the gas diffusion electrode of the present invention described above,
A membrane-electrode assembly (MEA) is provided.
Since the membrane / electrode assembly (MEA) of the present invention includes the catalyst layer of the present invention and the gas diffusion electrode of the present invention, the membrane / electrode assembly (MEA) has an excellent battery characteristic that can contribute to the cost reduction of PEFC. It becomes easy.
 また、本発明は、
 上述の本発明の膜・電極接合体(MEA)が含まれていることを特徴とする燃料電池スタックを提供する。
 本発明の燃料電池スタックによれば、本発明の触媒層及び本発明の膜・電極接合体(MEA)を含んでいるため、PEFCの低コスト化に寄与できる優れた電池特性を有する構成とすることが容易となる。
The present invention also provides:
Provided is a fuel cell stack including the membrane-electrode assembly (MEA) of the present invention described above.
Since the fuel cell stack of the present invention includes the catalyst layer of the present invention and the membrane-electrode assembly (MEA) of the present invention, the fuel cell stack has excellent battery characteristics that can contribute to the cost reduction of PEFC. It becomes easy.
 更に、本発明は、
 固体高分子形燃料電池に備えられるガス拡散電極の触媒層を形成するための触媒層形成用組成物であって、
 導電性炭素材料からなる第1担体と前記第1担体上に担持されるコアシェル構造を有する触媒粒子とを含むコアシェル触媒と、
 高分子電解質と、
 前記触媒粒子が担持されていない導電性炭素材料からなる第2担体と、
を含んでおり、
 前記第1担体の導電性炭素材料と前記第2担体の導電性炭素材料が同一である、
触媒層形成用組成物を提供する。
 本発明のガス拡散電極形成用組成物によれば、Pt/C触媒を含む従来の触媒層、コアシェル触媒を含む従来の触媒層(コアシェル触媒の担体以外の導電性炭素材料を含まない触媒層)に対して優れた性能を有する触媒層を容易かつ確実に製造することができる。
Furthermore, the present invention provides
A composition for forming a catalyst layer for forming a catalyst layer of a gas diffusion electrode provided in a polymer electrolyte fuel cell,
A core-shell catalyst comprising: a first support made of a conductive carbon material; and catalyst particles having a core-shell structure supported on the first support;
A polymer electrolyte;
A second support made of a conductive carbon material on which the catalyst particles are not supported;
Contains
The conductive carbon material of the first carrier and the conductive carbon material of the second carrier are the same;
A composition for forming a catalyst layer is provided.
According to the composition for forming a gas diffusion electrode of the present invention, a conventional catalyst layer containing a Pt / C catalyst, a conventional catalyst layer containing a core-shell catalyst (a catalyst layer containing no conductive carbon material other than the core-shell catalyst support) Thus, a catalyst layer having excellent performance can be easily and reliably produced.
 本発明によれば、コアシェル触媒を含む優れた性能を有する触媒層を提供することができる。
 また、本発明によれば、かかる触媒層を含む、PEFCの低コスト化に寄与できる優れた触媒活性を有するGDL、CCM、MEA、及び、燃料電池スタックが提供される。
 更に、本発明によれば、本発明の触媒層を容易かつ確実に製造できる触媒層形成用組成物が提供される。
ADVANTAGE OF THE INVENTION According to this invention, the catalyst layer which has the outstanding performance containing a core-shell catalyst can be provided.
Further, according to the present invention, there are provided GDL, CCM, MEA, and fuel cell stack having such excellent catalytic activity that can contribute to the cost reduction of PEFC, including such a catalyst layer.
Furthermore, according to this invention, the composition for catalyst layer formation which can manufacture the catalyst layer of this invention easily and reliably is provided.
本発明のMEAの好適な一形態を示す模式断面図である。It is a schematic cross section which shows one suitable form of MEA of this invention. 図1に示したMEAのカソード触媒層及びアノード触媒層のうちの少なくとも一方に含まれるコアシェル触媒の好適な一形態を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing a preferred embodiment of a core-shell catalyst included in at least one of the cathode catalyst layer and the anode catalyst layer of the MEA shown in FIG. 1. 図1に示したMEAのカソード触媒層及びアノード触媒層のうちの少なくとも一方に含まれるコアシェル触媒の別の好適な一形態を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing another preferred embodiment of the core-shell catalyst included in at least one of the cathode catalyst layer and the anode catalyst layer of the MEA shown in FIG. 1. 図1に示したMEAのカソード触媒層及びアノード触媒層のうちの少なくとも一方に含まれるコアシェル触媒の更に別の好適な一形態を示す模式断面図である。FIG. 6 is a schematic cross-sectional view showing still another preferred embodiment of the core-shell catalyst included in at least one of the cathode catalyst layer and the anode catalyst layer of the MEA shown in FIG. 1. 図1に示したMEAのカソード触媒層及びアノード触媒層のうちの少なくとも一方に含まれるコアシェル触媒の更に別の好適な一形態を示す模式断面図である。FIG. 6 is a schematic cross-sectional view showing still another preferred embodiment of the core-shell catalyst included in at least one of the cathode catalyst layer and the anode catalyst layer of the MEA shown in FIG. 1. 本発明のMEAの別の好適な一形態を示す模式断面図である。It is a schematic cross section which shows another suitable one form of MEA of this invention. 本発明のCCMの好適な一形態を示す模式断面図である。It is a schematic cross section which shows one suitable form of CCM of this invention. 本発明のCCMの別の好適な一形態を示す模式断面図である。It is a schematic cross section which shows another suitable one form of CCM of this invention. 本発明のGDEの好適な一形態を示す模式断面図である。It is a schematic cross section which shows one suitable form of GDE of this invention. 本発明のGDEの別の好適な一形態を示す模式断面図である。It is a schematic cross section which shows another suitable one form of GDE of this invention. 本発明の燃料電池スタックの好適な一実施形態を示す模式図である。It is a schematic diagram which shows suitable one Embodiment of the fuel cell stack of this invention.
 以下、適宜図面を参照しながら、本発明の好適な実施形態について詳細に説明する。
 <膜・電極接合体(MEA)>
 図1は、本発明のMEAの好適な一形態を示す模式断面図である。
 図1に示すMEA10は、互いに対向した状態で配置された平板状の2つのガス拡散電極(カソード1及びアノード2)と、カソード1とアノード2との間に配置された高分子電解質膜(Polymer Electrolyte Membrane、以下、必要に応じて「PEM」という)3とを備えた構成を有している。
 このMEA10の場合、カソード1及びアノード2のうちのすくなくとも一方に後述するコアシェル触媒が含有された構成を有している。
 MEA10は、カソード1、アノード2、及び、PEM3を図1に示すように積層させた後、圧着することにより製造することができる。
Hereinafter, preferred embodiments of the present invention will be described in detail with appropriate reference to the drawings.
<Membrane / electrode assembly (MEA)>
FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of the MEA of the present invention.
The MEA 10 shown in FIG. 1 includes two plate-like gas diffusion electrodes (cathode 1 and anode 2) arranged in a state of facing each other, and a polymer electrolyte membrane (Polymer) arranged between the cathode 1 and the anode 2. Electrolyte Membrane, hereinafter referred to as “PEM” 3 as required).
The MEA 10 has a configuration in which at least one of the cathode 1 and the anode 2 contains a core-shell catalyst described later.
The MEA 10 can be manufactured by laminating the cathode 1, the anode 2 and the PEM 3 as shown in FIG.
<ガス拡散電極(GDE)>
 ガス拡散電極であるカソード1は、ガス拡散層1gdと、ガス拡散層1gdのPEM3側の面に形成された触媒層1cと、を備えた構成を有している。更に、カソード1はガス拡散層1gdと触媒層1cとの間に配置された撥水層(Micro Porous Layer、以下、必要に応じて「MPL」という)1mを有している。
 ガス拡散電極であるアノード2もカソード1と同様に、ガス拡散層2gdと、ガス拡散層2gdのPEM3側の面に形成された触媒層2cと、ガス拡散層2gdと触媒層2cとの間に配置されたMPL2mを備えた構成を有している。
<Gas diffusion electrode (GDE)>
The cathode 1 which is a gas diffusion electrode has a configuration including a gas diffusion layer 1gd and a catalyst layer 1c formed on the surface of the gas diffusion layer 1gd on the PEM3 side. Further, the cathode 1 has a water-repellent layer (Micro Porous Layer, hereinafter referred to as “MPL” if necessary) 1 m disposed between the gas diffusion layer 1 gd and the catalyst layer 1 c.
Similarly to the cathode 1, the anode 2 that is a gas diffusion electrode also has a gas diffusion layer 2 gd, a catalyst layer 2 c formed on the surface of the gas diffusion layer 2 gd on the PEM 3 side, and between the gas diffusion layer 2 gd and the catalyst layer 2 c. It has a configuration with an MPL2m arranged.
(触媒層(CL))
 カソード1において、触媒層1cは、ガス拡散層1gdから送られる空気(酸素ガス)と、アノード2からPEM3中を移動してくる水素イオンとから水が生成する反応が進行する層である。
 また、アノード2において、触媒層2cは、ガス拡散層2gdから送られる水素ガスから水素イオンと電子を生成する反応が進行する層である。
 カソード1の触媒層1c及びアノード2の触媒層2cのうちの少なくとも一方にはコアシェル触媒が含まれている。
(Catalyst layer (CL))
In the cathode 1, the catalyst layer 1c is a layer in which a reaction in which water is generated from air (oxygen gas) sent from the gas diffusion layer 1gd and hydrogen ions moving from the anode 2 through the PEM 3 proceeds.
In the anode 2, the catalyst layer 2c is a layer in which a reaction for generating hydrogen ions and electrons from the hydrogen gas sent from the gas diffusion layer 2gd proceeds.
At least one of the catalyst layer 1c of the cathode 1 and the catalyst layer 2c of the anode 2 contains a core-shell catalyst.
(コアシェル触媒)
 以下、図2~図5を用いて、コアシェル触媒について説明する。
 図2は、図1に示したMEA10のカソード触媒層1c及びアノード触媒層2cのうちの少なくとも一方に含まれるコアシェル触媒の好適な一形態20を示す模式断面図である。
 図2に示すように、コアシェル触媒20は、第1担体22と、第1担体22上に担持された、いわゆる「コアシェル構造」を有する触媒粒子23とを含んでいる。
 更に、触媒粒子23は、コア部24と、コア部24の表面の少なくとも一部を被覆するように形成されたシェル部26とを有している。
 すなわち、コアシェル触媒20は、第1担体22に担持された触媒粒子23を有しており、この触媒粒子23は、コア部24を核(コア)とし、シェル部26がシェルとなってコア部24の表面の少なくとも一部を被覆している構造(コアシェル構造)を有している。
(Core shell catalyst)
Hereinafter, the core-shell catalyst will be described with reference to FIGS.
FIG. 2 is a schematic cross-sectional view showing a preferred embodiment 20 of the core-shell catalyst included in at least one of the cathode catalyst layer 1c and the anode catalyst layer 2c of the MEA 10 shown in FIG.
As shown in FIG. 2, the core-shell catalyst 20 includes a first carrier 22 and catalyst particles 23 having a so-called “core-shell structure” supported on the first carrier 22.
Further, the catalyst particle 23 has a core part 24 and a shell part 26 formed so as to cover at least a part of the surface of the core part 24.
That is, the core-shell catalyst 20 has catalyst particles 23 supported on the first carrier 22, and the catalyst particles 23 have the core portion 24 as a core and the shell portion 26 as a shell. It has a structure (core shell structure) covering at least a part of the surface of 24.
 また、コア部の構成元素(化学組成)と、シェル部の構成元素(化学組成)は異なる構成となっている。
 コアシェル触媒20の構成は、触媒粒子23のコア部24の表面の少なくとも一部の上にシェル部26が形成されていればよく、特に限定されるものではない。
 例えば、優れた触媒活性と耐久性とをより確実に得る観点からは、図2に示すように、コアシェル触媒20は、シェル部26によってコア部24の表面の略全域が被覆された状態であることが好ましい。
In addition, the constituent element (chemical composition) of the core portion and the constituent element (chemical composition) of the shell portion are different.
The configuration of the core-shell catalyst 20 is not particularly limited as long as the shell portion 26 is formed on at least a part of the surface of the core portion 24 of the catalyst particle 23.
For example, from the viewpoint of more surely obtaining excellent catalytic activity and durability, as shown in FIG. 2, the core-shell catalyst 20 is in a state where substantially the entire surface of the core portion 24 is covered by the shell portion 26. It is preferable.
 図3は、図1に示したMEA10のカソード触媒層1c及びアノード触媒層2cのうちの少なくとも一方に含まれるコアシェル触媒の別の好適な一形態20Aを示す模式断面図である。
 図3に示したコアシェル触媒20Aは、コア部24と、コア部24の表面の一部を被覆するシェル部26とから構成される触媒粒子23aとを有している。
 このように、本発明の効果を得られる範囲において、コアシェル触媒20Aは、シェル部26によってコア部24の表面の一部が被覆され、コア部24の表面の一部(コア部露出面24s)が露出した状態であってもよい。
 すなわち、本発明の効果を得られる範囲において、コアシェル触媒20Aは、コア部24の表面の少なくとも一部にシェル部26a又は26bが形成されていればよい。
FIG. 3 is a schematic cross-sectional view showing another preferred embodiment 20A of the core-shell catalyst included in at least one of the cathode catalyst layer 1c and the anode catalyst layer 2c of the MEA 10 shown in FIG.
The core-shell catalyst 20A illustrated in FIG. 3 includes a core portion 24 and catalyst particles 23a configured from a shell portion 26 that covers a part of the surface of the core portion 24.
Thus, in the range in which the effect of the present invention can be obtained, the core-shell catalyst 20A is partially covered by the shell portion 26, and a part of the surface of the core portion 24 (core portion exposed surface 24s). May be exposed.
That is, as long as the effects of the present invention can be obtained, the core-shell catalyst 20A only needs to have the shell part 26a or 26b formed on at least a part of the surface of the core part 24.
 図4は、図1に示したMEA10のカソード触媒層1c及びアノード触媒層2cのうちの少なくとも一方に含まれるコアシェル触媒の更に別の好適な一形態20Bを示す模式断面図である。
 図4に示したコアシェル触媒20Bは、コア部24と、コア部24の表面の略全域を被覆するシェル部26bとを有する触媒粒子23bと、を有している。
 更に、シェル部26bは、コア部24の表面の略全域を被覆する第1シェル部25と、第1シェル部25の外表面の略全域を被覆する第2シェル部27と有する構成を有する。
 なお、コア部24の構成元素(化学組成)と、第1シェル部25の構成元素(化学組成)と、第2シェル部27の構成元素(化学組成)とは、それぞれ異なる構成となっている。
FIG. 4 is a schematic cross-sectional view showing still another preferred embodiment 20B of the core-shell catalyst included in at least one of the cathode catalyst layer 1c and the anode catalyst layer 2c of the MEA 10 shown in FIG.
The core-shell catalyst 20B shown in FIG. 4 has a core part 24 and catalyst particles 23b having a shell part 26b that covers substantially the entire surface of the core part 24.
Furthermore, the shell portion 26 b has a configuration including a first shell portion 25 that covers substantially the entire surface of the core portion 24 and a second shell portion 27 that covers substantially the entire outer surface of the first shell portion 25.
The constituent element (chemical composition) of the core portion 24, the constituent element (chemical composition) of the first shell portion 25, and the constituent element (chemical composition) of the second shell portion 27 are different from each other. .
 また、コアシェル触媒20Bにおけるシェル部26bは、第1シェル部25、第2シェル部27に加えて、さらに別のシェル部が第2シェル部27の内側に配置された構成を有していてもよい。
 本発明の効果をより確実に得る観点からは、図4に示すように、コアシェル触媒20Bは、シェル部26bによってコア部24の表面の略全域が被覆された状態であることが好ましい。
Further, the shell part 26 b in the core-shell catalyst 20 </ b> B may have a configuration in which another shell part is arranged inside the second shell part 27 in addition to the first shell part 25 and the second shell part 27. Good.
From the viewpoint of more reliably obtaining the effects of the present invention, as shown in FIG. 4, the core-shell catalyst 20B is preferably in a state where substantially the entire surface of the core portion 24 is covered by the shell portion 26b.
 図5は、図1に示したMEA10のカソード触媒層及びアノード触媒層のうちの少なくとも一方に含まれるコアシェル触媒の更に別の好適な一形態20Cを示す模式断面図である。
 図5に示したコアシェル触媒20Cは、コア部24と、コア部24の表面の一部を被覆するシェル部26cを有する触媒粒子23cを有している。
 更に、図5に示したシェル部26cは、第1シェル部25と、第2シェル部27とを備えた二層構造を有している。
 図5に示した触媒粒子23cを構成するシェル部26cにおいては、第2シェル部27によって被覆されていない第1シェル部25が存在する。第2シェル部27によって被覆されていない第1シェル部25の外表面の一部が第1シェル部露出面25sとなる。
 ここで、触媒粒子23cのシェル部26cについて、第1シェル部25の略全域が第2シェル部27によって被覆された状態であることが好ましい。ただし、本発明の効果を得られる範囲において、シェル部26cの第1シェル部25の表面が部分的に露出した状態(例えば、図5に示された第1シェル部25の表面の一部25sが露出した状態)であってもよい。
FIG. 5 is a schematic cross-sectional view showing yet another preferred embodiment 20C of the core-shell catalyst included in at least one of the cathode catalyst layer and the anode catalyst layer of the MEA 10 shown in FIG.
The core-shell catalyst 20 </ b> C illustrated in FIG. 5 includes catalyst particles 23 c having a core portion 24 and a shell portion 26 c that covers a part of the surface of the core portion 24.
Furthermore, the shell part 26 c shown in FIG. 5 has a two-layer structure including a first shell part 25 and a second shell part 27.
In the shell portion 26c constituting the catalyst particle 23c shown in FIG. 5, there is a first shell portion 25 that is not covered by the second shell portion 27. A part of the outer surface of the first shell portion 25 not covered by the second shell portion 27 becomes the first shell portion exposed surface 25s.
Here, regarding the shell portion 26 c of the catalyst particle 23 c, it is preferable that substantially the entire area of the first shell portion 25 is covered with the second shell portion 27. However, as long as the effects of the present invention can be obtained, the surface of the first shell portion 25 of the shell portion 26c is partially exposed (for example, a portion 25s of the surface of the first shell portion 25 shown in FIG. 5). May be exposed).
 また、本発明の効果を得られる範囲において、コアシェル触媒は、第1担体上に、「シェル部によってコア部の表面の略全域が被覆された状態のコア部及びシェル部の複合体」と、「シェル部によってコア部の表面の一部が被覆された状態のコア部及びシェル部の複合体」とが混在した状態であってもよい。
 例えば、図4及び図5に示したコアシェル触媒20B及び20Cが混在した状態であってもよい。更に、本発明のコアシェル触媒は、本発明の効果を得られる範囲において、図2~図5に示したコアシェル触媒20、20A、20B、及び、20Cのうちの少なくとも2種が混在した状態であってもよい。
In addition, in the range where the effect of the present invention can be obtained, the core-shell catalyst is a composite of the core part and the shell part in a state where substantially the entire surface of the core part is covered with the shell part on the first support, A state where “a composite of a core part and a shell part in which a part of the surface of the core part is covered with the shell part” may be mixed.
For example, the core-shell catalysts 20B and 20C shown in FIGS. 4 and 5 may be mixed. Furthermore, the core-shell catalyst of the present invention is in a state where at least two of the core-shell catalysts 20, 20A, 20B and 20C shown in FIGS. May be.
 また、本発明の効果を得られる範囲において、図2~図5に示したコアシェル触媒20、20A、20B、及び、20Cには、第1担体22上に、図2~図5に示した触媒粒子23、23a、23b、23cのうちの少なくとも1種に加えて、「コア部がシェル部によって被覆されていないコア部のみからなる粒子」が担持された状態が含まれていてもよい(図示せず)。
 更に、本発明の効果を得られる範囲において、図2~図5に示したコアシェル触媒20、20A、20B、及び、20Cには、第1担体22上に、図2~図5に示した触媒粒子23、23a、23b、23cのうちの少なくとも1種に加えて、「シェル部の構成元素のみからなる粒子」がコア部に接触しない状態で第1担体に担持された状態が含まれていてもよい(図示せず)。
In addition, the core-shell catalysts 20, 20A, 20B, and 20C shown in FIGS. 2 to 5 are provided on the first support 22 within the range in which the effects of the present invention can be obtained, and the catalysts shown in FIGS. In addition to at least one of the particles 23, 23a, 23b, and 23c, a state in which “particles including only a core portion in which the core portion is not covered by the shell portion” is supported may be included (FIG. Not shown).
Furthermore, within the range in which the effects of the present invention can be obtained, the core-shell catalysts 20, 20A, 20B, and 20C shown in FIGS. 2 to 5 include the catalyst shown in FIGS. In addition to at least one of the particles 23, 23 a, 23 b, and 23 c, a state in which “particles composed only of constituent elements of the shell portion” are supported on the first carrier without contacting the core portion is included. It is good (not shown).
 また、本発明の効果を得られる範囲において、図2~図5に示したコアシェル触媒20、20A、20B、及び、20Cには、第1担体22上に、図2~図5に示した触媒粒子23、23a、23b、23cのうちの少なくとも1種に加えて、「シェル部に被覆されていないコア部のみの粒子」と、「シェル部の構成元素のみからなる粒子」とが、それぞれ独立に第1担体22に担持された状態が含まれていてもよい(図示せず)。
 また、図2~図5に示したコアシェル触媒20、20A、20B、及び、20Cは、本発明の効果をより確実に得る観点から以下の条件を満たしていることが好ましい。
 すなわち、先に述べたように、図2~図5に示したコアシェル触媒20、20A、20B、及び、20Cは、粉末X線回折(XRD)により測定される結晶子サイズの平均値が好ましくは3~16.0nmとされている。
In addition, the core-shell catalysts 20, 20A, 20B, and 20C shown in FIGS. 2 to 5 are provided on the first support 22 within the range in which the effects of the present invention can be obtained, and the catalysts shown in FIGS. In addition to at least one of the particles 23, 23 a, 23 b, and 23 c, “particles of only the core portion not covered with the shell portion” and “particles composed only of the constituent elements of the shell portion” are independent of each other. The state carried by the first carrier 22 may be included (not shown).
In addition, the core-shell catalysts 20, 20A, 20B, and 20C shown in FIGS. 2 to 5 preferably satisfy the following conditions from the viewpoint of obtaining the effects of the present invention more reliably.
That is, as described above, the core-shell catalysts 20, 20A, 20B, and 20C shown in FIGS. 2 to 5 preferably have an average crystallite size measured by powder X-ray diffraction (XRD). 3 to 16.0 nm.
 図2及び図3に示したコアシェル触媒20及び20Aにおいて、コア部24はPdが含まれていることが好ましい。また、本発明の効果をより確実に得る観点、製造容易性などの観点から、コア部24は、Pd(0価の金属状態のPd)を主成分(50wt%以上)として構成されていることが好ましく、Pd(0価の金属状態のPd)から構成されていることがより好ましい。
 図2及び図3に示したコアシェル触媒20及び20Aにおいて、シェル部26及び26aはPtが含まれていることが好ましい。また、本発明の効果をより確実に得る観点、製造容易性などの観点から、シェル部26及び26aは、Pt(0価の金属状態のPt)を主成分(50wt%以上)として構成されていることが好ましく、Pt(0価の金属状態のPt)から構成されていることがより好ましい。
In the core-shell catalysts 20 and 20A shown in FIGS. 2 and 3, the core portion 24 preferably contains Pd. In addition, from the viewpoints of obtaining the effects of the present invention more reliably and ease of manufacture, the core portion 24 is composed of Pd (zero-valent metal state Pd) as a main component (50 wt% or more). It is more preferable that it is composed of Pd (Pd in a zero-valent metal state).
In the core-shell catalysts 20 and 20A shown in FIGS. 2 and 3, the shell portions 26 and 26a preferably contain Pt. In addition, from the viewpoints of obtaining the effects of the present invention more reliably and manufacturability, the shell portions 26 and 26a are composed mainly of Pt (zero-valent metal state Pt) (50 wt% or more). It is preferable that it is made of Pt (zero-valent metal state Pt).
 図4及び図5に示したコアシェル触媒20B及び20Cにおいて、第1シェル部25はPdが含まれていることが好ましい。また、本発明の効果をより確実に得る観点、製造容易性などの観点から、第1シェル部25は、Pd(0価の金属状態のPd)を主成分(50wt%以上)として構成されていることが好ましく、Pd(0価の金属状態のPd)から構成されていることがより好ましい。
 図4及び図5に示したコアシェル触媒20B及び20Cにおいて、第2シェル部27はPtが含まれていることが好ましい。また、本発明の効果をより確実に得る観点、製造容易性などの観点から、第2シェル部27は、Pt(0価の金属状態のPt)を主成分(50wt%以上)として構成されていることが好ましく、Pt(0価の金属状態のPt)から構成されていることがより好ましい。
 図4及び図5に示したコアシェル触媒20B及び20Cにおいて、コア部24と第1シェル部25との間の少なくとも一部には、第3シェル部(図示せず)が更に形成されていてもよい。この第3シェル部は、コア部24、第1シェル部25、第2シェル部26と異なる化学組成を有し、電子伝導性を有していればこの構成は特に限定されない。
In the core-shell catalysts 20B and 20C shown in FIGS. 4 and 5, the first shell portion 25 preferably contains Pd. Further, from the viewpoints of obtaining the effects of the present invention more reliably and ease of manufacture, the first shell portion 25 is configured with Pd (zero-valent metal state Pd) as a main component (50 wt% or more). It is preferable that it is made of Pd (zero-valent metal state Pd).
In the core-shell catalysts 20B and 20C shown in FIGS. 4 and 5, the second shell portion 27 preferably contains Pt. Further, from the viewpoints of obtaining the effects of the present invention more reliably and ease of manufacture, the second shell portion 27 is composed of Pt (zero-valent metal state Pt) as a main component (50 wt% or more). It is preferable that it is made of Pt (zero-valent metal state Pt).
In the core-shell catalysts 20B and 20C shown in FIGS. 4 and 5, a third shell portion (not shown) may be further formed at least partly between the core portion 24 and the first shell portion 25. Good. The third shell portion has a chemical composition different from that of the core portion 24, the first shell portion 25, and the second shell portion 26, and this configuration is not particularly limited as long as it has electronic conductivity.
 また、先に述べたように、図2~図5に示したコアシェル触媒20、20A、20B、及び、20Cは、Pt担持率が好ましくは0.6~33.0wt%とされており、Pd担持率が好ましくは4.7~47.0wt%とされている。
 更に、先に述べたように、図2~図5に示したコアシェル触媒20、20A、20B、及び、20Cは、PtとPdとを合わせた貴金属の担持率が好ましくは5.6~66.5wt%とされている。
 図2~図5に示したコアシェル触媒20、20A、20B、及び、20Cの図2~図5に示した触媒粒子23、23a、23b、23cは、優れた触媒活性を発揮するため、各々の最も外側にあるシェル部26、26a、第2シェル部27の厚さはコア部24のいわゆる下地効果(リガンド効果)を発揮できる水準の十分に薄い厚さを有している。
As described above, the core-shell catalysts 20, 20A, 20B, and 20C shown in FIGS. 2 to 5 have a Pt loading rate of preferably 0.6 to 33.0 wt%. The loading rate is preferably 4.7 to 47.0 wt%.
Further, as described above, the core-shell catalysts 20, 20A, 20B, and 20C shown in FIGS. 2 to 5 preferably have a precious metal loading ratio of Pt and Pd of preferably 5.6 to 66. 5 wt%.
The core-shell catalysts 20, 20A, 20B, and 20C shown in FIGS. 2 to 5 and the catalyst particles 23, 23a, 23b, and 23c shown in FIGS. 2 to 5 exhibit excellent catalytic activity. The outermost shell portions 26, 26 a and the second shell portion 27 have sufficiently thin thicknesses that can exhibit the so-called base effect (ligand effect) of the core portion 24.
 すなわち、図2~図5に示したコアシェル触媒20、20A、20B、及び、20Cのシェル部(シェル部26、26a、第2シェル部27)の平均厚さは、0.2~1.0nmであり、好ましくは0.2~0.9nm、より好ましくは0.2~0.7nm、更に好ましくは0.2~0.5nmである。
 例えば、シェル部(シェル部26、26a、第2シェル部27)がPtからなる層の場合、上記の平均厚さの範囲であればPt原子層で4層以下の厚さ、好ましくは3層以下、より好ましくは2層以下の厚さとできる。その理由は、Ptの金属結合半径は0.139nmであため、Pt原子1層の平均厚さは0.21nm~0.23nm程度となるからである。または、Ptの格子定数(K)をK=0.39231nmとした場合、白金の面間隔(d111)は0.2265nm(=k/√3)となるからである。
That is, the average thickness of the shell portions (shell portions 26, 26a, second shell portion 27) of the core-shell catalysts 20, 20A, 20B, and 20C shown in FIGS. 2 to 5 is 0.2 to 1.0 nm. It is preferably 0.2 to 0.9 nm, more preferably 0.2 to 0.7 nm, and still more preferably 0.2 to 0.5 nm.
For example, when the shell part (shell part 26, 26a, second shell part 27) is a layer made of Pt, the Pt atomic layer has a thickness of 4 layers or less, preferably 3 layers within the above average thickness range. Hereinafter, the thickness can be made more preferably two layers or less. The reason is that since the metal bond radius of Pt is 0.139 nm, the average thickness of one Pt atom layer is about 0.21 nm to 0.23 nm. Or, when the lattice constant (K) of Pt is K = 0.39231 nm, the plane spacing (d111) of platinum is 0.2265 nm (= k / √3).
 シェル部(シェル部26、26a、第2シェル部27)の平均厚さが0.2nm未満となると、コア部24の表面がシェル部(シェル部26、26a、第2シェル部27)により十分に被覆されずコア部24の構成材料の溶出が発生しコアシェル構造の維持が困難になる。そのため、コアシェル触媒としての十分な触媒活性が得られなくなる傾向が大きくなる。また、耐久性、信頼性も不十分となる傾向が大きくなる。
 また、シェル部(シェル部26、26a、第2シェル部27)の平均厚さが1.0nmを超えると、PEFCの低コスト化(低白金化)に寄与できなくなる傾向が大きくなる。また、この場合、コア部24のいわゆる下地効果(リガンド効果)を発揮することが困難となる傾向が大きくなり、従来のPt/C触媒を超える触媒活性を得ることが困難となる傾向が大きくなる。
When the average thickness of the shell parts (shell parts 26, 26a, second shell part 27) is less than 0.2 nm, the surface of the core part 24 is more adequate for the shell parts (shell parts 26, 26a, second shell part 27). It is difficult to maintain the core-shell structure because the constituent material of the core portion 24 is eluted without being coated. Therefore, the tendency that sufficient catalytic activity as a core-shell catalyst cannot be obtained increases. Moreover, the tendency for durability and reliability to become insufficient increases.
In addition, when the average thickness of the shell portions (shell portions 26 and 26a, second shell portion 27) exceeds 1.0 nm, the tendency to be unable to contribute to the cost reduction (low platinumization) of PEFC increases. Further, in this case, the tendency to make it difficult to exhibit the so-called base effect (ligand effect) of the core portion 24 is increased, and the tendency to obtain a catalytic activity exceeding the conventional Pt / C catalyst is increased. .
 更に、シェル部(シェル部26、26a、第2シェル部27)の平均厚さは、例えば、触媒粒子の平均粒子径とコア部の平均粒子径とをそれぞれSEM像(Scanning Electron Microscopy image)又はTEM像(Transmission Electron Microscopy image)を評価することにより求めることができる。すなわち、触媒粒子(23、23a、23b、23c)の平均粒子径とコア部24の平均粒子径との差により求めることができる。
 また、シェル部(シェル部26、26a、第2シェル部27)の平均厚さは、例えば、触媒粒子の粒径方向にTEM-EDX(Transmission Electron Microscopy-Energy Dispersive X-ray Spectroscopy:透過型電子顕微鏡エネルギー分散型X線分析法)、又は、TEM-EDX(Transmission Electron Microscopy-Energy Dispersive X-ray Spectroscopy:透過型電子顕微鏡エネルギー分散型X線分析法)によるライン分析によって、触媒粒子(23、23a、23b、23c)の平均粒子径とコア部24の平均粒子径を求めることにより得ることもできる。
Furthermore, the average thickness of the shell parts (shell parts 26, 26a, second shell part 27) is, for example, an SEM image (Scanning Electron Microscopy image) or an average particle diameter of the catalyst particles and an average particle diameter of the core part, respectively. It can be determined by evaluating a TEM image (Transmission Electron Microscopy image). That is, it can be determined by the difference between the average particle diameter of the catalyst particles (23, 23a, 23b, 23c) and the average particle diameter of the core portion 24.
The average thickness of the shell portions (shell portions 26, 26a, second shell portion 27) is, for example, TEM-EDX (Transmission Electron Microscopy-Energy Dispersive X-ray Spectroscopy: transmission electron) in the particle size direction of the catalyst particles. The catalyst particles (23, 23a) are analyzed by line analysis using a microscope energy dispersive X-ray analysis) or TEM-EDX (Transmission Electron Microscopy-Energy Dispersive X-ray Spectroscopy). , 23b, 23c) and the average particle diameter of the core portion 24 can be obtained.
 第1担体22は、コア部24とシェル部26(又はシェル部26a、26b、26c)とからなる複合体を担持することができ、かつ表面積が比較的大きいものであれば特に制限されない。
 さらに、第1担体22は、コアシェル触媒20(又は、20A、20B、及び、20C)を含んだガス拡散電極形成用組成物中で良好な分散性を有し、優れた導電性を有するものであることが好ましい。
The first carrier 22 is not particularly limited as long as the first carrier 22 can carry a composite composed of the core portion 24 and the shell portion 26 (or the shell portions 26a, 26b, and 26c) and has a relatively large surface area.
Further, the first carrier 22 has good dispersibility in the gas diffusion electrode forming composition containing the core-shell catalyst 20 (or 20A, 20B, and 20C), and has excellent conductivity. Preferably there is.
 第1担体22は、グラッシーカーボン(GC)、ファインカーボン、カーボンブラック、黒鉛、炭素繊維、活性炭、活性炭の粉砕物、カーボンナノファイバー、カーボンナノチューブ等の炭素系材料や酸化物等のガラス系あるいはセラミックス系材料などから適宜採択することができる。
 これらの中で、コア部24との吸着性及び第1担体22が有するBET比表面積の観点から、炭素系材料が好ましい。
 更に、炭素系材料としては、導電性カーボンが好ましく、特に、導電性カーボンとしては、導電性カーボンブラックが好ましい。
 導電性カーボンブラックとしては、商品名「ケッチェンブラックEC300J」、「ケッチェンブラックEC600」、「カーボンEPC」等(ライオン化学株式会社製)を例示することができる。
The first carrier 22 is made of glassy carbon (GC), fine carbon, carbon black, graphite, carbon fiber, activated carbon, activated carbon, a carbon-based material such as carbon nanofiber or carbon nanotube, or a glass-based or ceramic such as oxide. It can be appropriately selected from a system material.
Among these, a carbon-based material is preferable from the viewpoint of the adsorptivity with the core portion 24 and the BET specific surface area of the first support 22.
Furthermore, as the carbon-based material, conductive carbon is preferable, and as the conductive carbon, conductive carbon black is particularly preferable.
Examples of the conductive carbon black include trade names “Ketjen Black EC300J”, “Ketjen Black EC600”, “Carbon EPC” and the like (manufactured by Lion Chemical Co., Ltd.).
 コアシェル触媒20、20A、20B、及び、20Cの製造方法としては、特に限定されず公知の方法で製造することができる。例えば、Pdを含むコア粒子が導電性炭素材料を構成成分として含む第1担体上に担持されたPd/C粒子(粉体)を形成する「コア部形成工程」と、コア部形成工程を経て得られる前記Pd/C粒子(粉体)の前記コア粒子の表面の少なくとも一部を覆うように、Ptを含むシェル部を形成する「シェル部形成工程」とを含む構成を有する製造方法が挙げられる。
 コアシェル触媒20及び20Aは、触媒粒子23、23aを構成する、コア部24、シェル部26、26aを第1担体22に順次担持させることより製造することができる。
 例えば、第1担体22に触媒成分を含有する溶液を接触させ、第1担体22に触媒成分を含浸させる含浸法、触媒成分を含有する溶液に還元剤を投入して行う液相還元法、アンダーポテンシャル析出(UPD)法等の電気化学的析出法、化学還元法、吸着水素による還元析出法、合金触媒の表面浸出法、置換めっき法、スパッタリング法、真空蒸着法等を採用した製造方法を例示することができる。
The production method of the core-shell catalysts 20, 20A, 20B, and 20C is not particularly limited and can be produced by a known method. For example, the core particle containing Pd forms a Pd / C particle (powder) supported on a first carrier containing a conductive carbon material as a constituent component, and a core part forming process. The manufacturing method which has a structure including the "shell part formation process" which forms the shell part containing Pt so that at least one part of the surface of the said core particle of the obtained said Pd / C particle | grain (powder) may be covered is mentioned. It is done.
The core-shell catalysts 20 and 20A can be manufactured by sequentially supporting the core part 24 and the shell parts 26 and 26a constituting the catalyst particles 23 and 23a on the first carrier 22.
For example, an impregnation method in which a solution containing a catalyst component is brought into contact with the first support 22 and the first support 22 is impregnated with the catalyst component, a liquid phase reduction method in which a reducing agent is added to the solution containing the catalyst component, Examples include electrochemical deposition methods such as potential deposition (UPD), chemical reduction, reduction deposition with adsorbed hydrogen, surface leaching of alloy catalysts, displacement plating, sputtering, and vacuum deposition. can do.
 触媒層1c、触媒層2cに含有される高分子電解質は、水素イオン伝導性を有していれば特に限定されず、公知のものを使用することができる。例えば、高分子電解質は、公知のスルホン酸基、カルボン酸基を有するパーフルオロカーボン樹脂を例示することができる。容易に入手可能な水素イオン伝導性を有する高分子電解質としては、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)を好ましく例示することができる。 The polymer electrolyte contained in the catalyst layer 1c and the catalyst layer 2c is not particularly limited as long as it has hydrogen ion conductivity, and a known one can be used. For example, the polymer electrolyte can be exemplified by a perfluorocarbon resin having a known sulfonic acid group or carboxylic acid group. As readily available polymer electrolytes having hydrogen ion conductivity, Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.) It can be illustrated preferably.
 そして、図1に示したカソード1の触媒層1c及びアノード2の触媒層2cのうちの少なくとも一方であってコアシェル触(コアシェル触媒20、20A、20B、及び、20Cの何れか)が含まれる触媒層には、触媒粒子(触媒粒子23、23a、23b、23c)が担持されていない導電性炭素材料からなる第2担体が含まれている。
 ここで、第2担体の導電性炭素材料は、第1担体の導電性炭素材料と同一とされている。
The catalyst includes at least one of the catalyst layer 1c of the cathode 1 and the catalyst layer 2c of the anode 2 shown in FIG. 1 and includes a core-shell contact (any one of the core-shell catalysts 20, 20A, 20B, and 20C). The layer includes a second carrier made of a conductive carbon material on which catalyst particles (catalyst particles 23, 23a, 23b, and 23c) are not supported.
Here, the conductive carbon material of the second carrier is the same as the conductive carbon material of the first carrier.
(ガス拡散層(GDL))
 図1に示すカソード1に備えられるガス拡散層1gdは、触媒層1cへ酸化剤ガス(例えば、酸素ガス、空気)を供給するために設けられている層である。また、ガス拡散層1gdは、触媒層1cを支持する役割を有している。
 また、アノード2に備えられるガス拡散層2gdは、触媒層2cへ還元剤ガス(例えば、水素ガス)を供給するために設けられている層である。また、ガス拡散層2gdは、触媒層2cを支持する役割を有している。
(Gas diffusion layer (GDL))
The gas diffusion layer 1gd provided in the cathode 1 shown in FIG. 1 is a layer provided for supplying an oxidant gas (for example, oxygen gas, air) to the catalyst layer 1c. Further, the gas diffusion layer 1gd has a role of supporting the catalyst layer 1c.
The gas diffusion layer 2gd provided in the anode 2 is a layer provided for supplying a reducing agent gas (for example, hydrogen gas) to the catalyst layer 2c. Further, the gas diffusion layer 2gd has a role of supporting the catalyst layer 2c.
 図1に示すガス拡散層(1c、2c)は、水素ガス又は空気(酸素ガス)を良好に通過させて触媒層に到達させる機能・構造を有している。このため、ガス拡散層は撥水性を有していることが好ましい。例えば、ガス拡散層は、ポリエチレンテレフタレート(PTFE)等の撥水成分を有している。 The gas diffusion layers (1c, 2c) shown in FIG. 1 have a function / structure that allows hydrogen gas or air (oxygen gas) to pass through well and reach the catalyst layer. For this reason, it is preferable that the gas diffusion layer has water repellency. For example, the gas diffusion layer has a water repellent component such as polyethylene terephthalate (PTFE).
 ガス拡散層(1c、2c)に用いることができる部材は、特に制限されるものではなく、公知の部材を使用することができる。例えば、カーボンペーパー、カーボンペーパーを主原料とし、その任意成分としてカーボン粉末、イオン交換水、バインダーとしてポリエチレンテレフタレートディスパージョンからなる副原料をカーボンペーパーに塗布したものが好ましく挙げられる。 The member that can be used for the gas diffusion layer (1c, 2c) is not particularly limited, and a known member can be used. For example, carbon paper, carbon paper as a main raw material, and carbon powder, ion-exchanged water as an optional component, and an auxiliary material made of polyethylene terephthalate dispersion as a binder are preferably applied to carbon paper.
(撥水層(MPL))
 図1に示すように、カソード1には、ガス拡散層1gdと触媒層1cとの間に撥水層(MPL)1mが配置されている。撥水層1mは電子電導性、撥水性、ガス拡散性を有し、触媒層1gdへの酸化剤ガスの拡散と触媒層1gdで発生する反応生成水の排出とを促進するために設けられているものである。撥水層1mの構成は特に限定されず公知の構成を採用することができる。
(Water repellent layer (MPL))
As shown in FIG. 1, in the cathode 1, a water repellent layer (MPL) 1m is disposed between the gas diffusion layer 1gd and the catalyst layer 1c. The water repellent layer 1m has electronic conductivity, water repellency, and gas diffusibility, and is provided to promote the diffusion of the oxidizing gas into the catalyst layer 1gd and the discharge of the reaction product water generated in the catalyst layer 1gd. It is what. The configuration of the water repellent layer 1m is not particularly limited, and a known configuration can be adopted.
(高分子電解質膜(PEM))
 図1に示す高分子電解質膜(PEM)3は、水素イオン伝導性を有していれば特に限定されず、従来からPEFCに使用されている公知のものを採用することができる。例えば、先に述べた触媒層1c、触媒層2cに含有される高分子電解質として例示されたものを構成成分として含む膜であってもよい。
(Polymer electrolyte membrane (PEM))
The polymer electrolyte membrane (PEM) 3 shown in FIG. 1 is not particularly limited as long as it has hydrogen ion conductivity, and a known one conventionally used for PEFC can be adopted. For example, it may be a film containing the constituents exemplified as the polymer electrolyte contained in the catalyst layer 1c and the catalyst layer 2c described above.
<MEAの変形態様>
 以上、本発明のMEA(及び、本発明の触媒層、本発明のガス拡散電極)の好適な実施形態について説明したが、本発明のMEAは図1に示したMEA10の構成に限定されない。
 例えば、本発明のMEAは、図6に示すMEA11の構成を有していてもよい。
 図6は本発明のMEAの別の好適な一形態を示す模式断面図である。図6に示したMEA11は高分子電解質膜(PEM)3の片面のみに、図1に示したMEA10におけるカソード1と同様の構成を有するガス拡散電極(GDE)1Aを配置した構成を有する。ただし、ガス拡散電極(GDE)1Aの触媒層1cは本発明の触媒層の構成を有している。すなわち、GDE1Aの触媒層1cはコアシェル触媒の担体の質量Cと高分子電解質の質量Nとの質量比N/Cが0.5~1.2、より好ましくは0.7~1.0とされている。
<Deformation mode of MEA>
The preferred embodiments of the MEA of the present invention (and the catalyst layer of the present invention and the gas diffusion electrode of the present invention) have been described above, but the MEA of the present invention is not limited to the configuration of the MEA 10 shown in FIG.
For example, the MEA of the present invention may have the configuration of the MEA 11 shown in FIG.
FIG. 6 is a schematic cross-sectional view showing another preferred embodiment of the MEA of the present invention. The MEA 11 shown in FIG. 6 has a configuration in which a gas diffusion electrode (GDE) 1A having the same configuration as that of the cathode 1 in the MEA 10 shown in FIG. 1 is disposed only on one surface of the polymer electrolyte membrane (PEM) 3. However, the catalyst layer 1c of the gas diffusion electrode (GDE) 1A has the configuration of the catalyst layer of the present invention. That is, in the catalyst layer 1c of GDE1A, the mass ratio N / C between the mass C of the support of the core-shell catalyst and the mass N of the polymer electrolyte is 0.5 to 1.2, more preferably 0.7 to 1.0. ing.
<膜・触媒層接合体(CCM)>
 次に、本発明の膜・触媒層接合体(CCM)の好適な実施形態について説明する。
 図7は本発明のCCMの好適な一形態を示す模式断面図である。図7に示すCCM12は、カソード触媒層1cと、アノード触媒層2cとの間に高分子電解質膜(PEM)3が配置された構成を有している。そして、カソード触媒層1c及びアノード触媒層2cのうちの少なくとも一方は、本発明の触媒層の構成を有する。すなわち、カソード触媒層1c及びアノード触媒層2cのうちの少なくとも一方は、コアシェル触媒の担体の質量Cと高分子電解質の質量Nとの質量比N/Cが0.5~1.2、より好ましくは0.7~1.0とされている。
<Membrane / catalyst layer assembly (CCM)>
Next, a preferred embodiment of the membrane / catalyst layer assembly (CCM) of the present invention will be described.
FIG. 7 is a schematic cross-sectional view showing a preferred embodiment of the CCM of the present invention. The CCM 12 shown in FIG. 7 has a configuration in which a polymer electrolyte membrane (PEM) 3 is disposed between the cathode catalyst layer 1c and the anode catalyst layer 2c. At least one of the cathode catalyst layer 1c and the anode catalyst layer 2c has the configuration of the catalyst layer of the present invention. That is, at least one of the cathode catalyst layer 1c and the anode catalyst layer 2c has a mass ratio N / C between the mass C of the core-shell catalyst support and the mass N of the polymer electrolyte of 0.5 to 1.2, more preferably. Is set to 0.7 to 1.0.
<膜・触媒層接合体(CCM)の変形態様>
 以上、本発明のCCMの好適な実施形態について説明したが、本発明のCCMは図7に示したCCM12の構成に限定されない。
 例えば、本発明のCCMは、図8に示すCCM13の構成を有していてもよい。
 図8は本発明のCCMの別の好適な一形態を示す模式断面図である。図8に示したCCM13は高分子電解質膜(PEM)3の片面のみに、図7に示したCCM12におけるカソード1と同様の構成を有する触媒層1cを配置した構成を有する。ただし、ガス拡散電極(GDE)1Aの触媒層1cは本発明の触媒層の構成を有している。すなわち、CCM13の触媒層1cはコアシェル触媒の担体の質量Cと高分子電解質の質量Nとの質量比N/Cが0.5~1.2、より好ましくは0.7~1.0とされている。
<Deformation of membrane / catalyst layer assembly (CCM)>
The preferred embodiment of the CCM of the present invention has been described above, but the CCM of the present invention is not limited to the configuration of the CCM 12 shown in FIG.
For example, the CCM of the present invention may have the configuration of the CCM 13 shown in FIG.
FIG. 8 is a schematic cross-sectional view showing another preferred embodiment of the CCM of the present invention. The CCM 13 shown in FIG. 8 has a configuration in which a catalyst layer 1c having the same configuration as that of the cathode 1 in the CCM 12 shown in FIG. 7 is disposed only on one surface of the polymer electrolyte membrane (PEM) 3. However, the catalyst layer 1c of the gas diffusion electrode (GDE) 1A has the configuration of the catalyst layer of the present invention. That is, in the catalyst layer 1c of the CCM 13, the mass ratio N / C between the mass C of the support of the core-shell catalyst and the mass N of the polymer electrolyte is 0.5 to 1.2, more preferably 0.7 to 1.0. ing.
<ガス拡散電極(GDE)>
 次に、本発明のガス拡散電極(GDE)の好適な実施形態について説明する。
 図9は、本発明のGDEの好適な一形態を示す模式断面図である。図9に示すガス拡散電極(GDE)1Bは、図1に示したMEA10に搭載されたカソード1と同様の構成を有する。ただし、ただし、ガス拡散電極(GDE)1Bの触媒層1cは本発明の触媒層の構成を有している。すなわち、ガス拡散電極(GDE)1Bの触媒層1cはコアシェル触媒の担体の質量Cと高分子電解質の質量Nとの質量比N/Cが0.5~1.2、より好ましくは0.7~1.0とされている。
<Gas diffusion electrode (GDE)>
Next, a preferred embodiment of the gas diffusion electrode (GDE) of the present invention will be described.
FIG. 9 is a schematic cross-sectional view showing a preferred embodiment of the GDE of the present invention. The gas diffusion electrode (GDE) 1B shown in FIG. 9 has the same configuration as the cathode 1 mounted on the MEA 10 shown in FIG. However, the catalyst layer 1c of the gas diffusion electrode (GDE) 1B has the configuration of the catalyst layer of the present invention. That is, in the catalyst layer 1c of the gas diffusion electrode (GDE) 1B, the mass ratio N / C between the mass C of the support of the core-shell catalyst and the mass N of the polymer electrolyte is 0.5 to 1.2, more preferably 0.7. To 1.0.
<ガス拡散電極(GDE)の変形態様>
 以上、本発明のGDEの好適な実施形態について説明したが、本発明のGDEは図9に示したGDE1Bの構成に限定されない。
 例えば、本発明のGDEは、図10に示すGDE1Cの構成を有していてもよい。
 図10は本発明のGDEの別の好適な一形態を示す模式断面図である。図10に示したGDE1Cは、図9に示したGDE1Bと比較して触媒層1cとガス拡散層1gdとの間に撥水層(MPL)が配置されていない構成となってきる。
<Modification of Gas Diffusion Electrode (GDE)>
Although the preferred embodiment of the GDE of the present invention has been described above, the GDE of the present invention is not limited to the configuration of the GDE 1B shown in FIG.
For example, the GDE of the present invention may have the configuration of GDE 1C shown in FIG.
FIG. 10 is a schematic cross-sectional view showing another preferred embodiment of the GDE of the present invention. The GDE 1C illustrated in FIG. 10 has a configuration in which a water repellent layer (MPL) is not disposed between the catalyst layer 1c and the gas diffusion layer 1gd as compared with the GDE 1B illustrated in FIG.
<触媒層形成用組成物>
 次に、本発明の触媒層形成用組成物の好適な実施形態について説明する。
 本実施形態の触媒層形成用組成物は、コアシェル触媒と、高分子電解質と、主成分を含んでおり、コアシェル触媒の担体の質量Cと高分子電解質の質量Nとの質量比N/Cが0.5~1.2、より好ましくは0.7~1.0とされている。
 ここで、高分子電解質を含む液の組成は特に限定されない。例えば、高分子電解質を含む液には、先に述べた水素イオン伝導性を有する高分子電解質と水とアルコールとが含有されていてもよい。
<Composition for forming catalyst layer>
Next, a preferred embodiment of the composition for forming a catalyst layer of the present invention will be described.
The composition for forming a catalyst layer of the present embodiment includes a core-shell catalyst, a polymer electrolyte, and main components, and a mass ratio N / C between the mass C of the core-shell catalyst carrier and the mass N of the polymer electrolyte is 0.5 to 1.2, more preferably 0.7 to 1.0.
Here, the composition of the liquid containing the polymer electrolyte is not particularly limited. For example, the liquid containing the polymer electrolyte may contain the above-described polymer electrolyte having hydrogen ion conductivity, water, and alcohol.
 触媒層形成用組成物に含まれるコアシェル触媒、高分子電解質、その他の成分(水、アルコールなど)の組成比は、得られる触媒層内におけるコアシェル触媒の分散状態が良好となり、当該触媒層を含むMEAの発電性能を向上させることができるように適宜設定される。
 触媒層形成用組成物は、コアシェル触媒、高分子電解質を含む液を混合し、撹拌することにより調製することができる。塗工性を調整する観点からグリセリンなどの多価アルコール及び/又は水を含有させてもよい。コアシェル触媒、高分子電解質を含む液を混合する場合、ボールミル、超音波分散機等の粉砕混合機を使用してもよい。
 図1に示したカソード1の触媒層1c及びアノード2の触媒層2cのうちの少なくとも一方は、本発明の触媒層形成用組成物の好適な実施形態を用いて形成することができる。
The composition ratio of the core-shell catalyst, polymer electrolyte, and other components (water, alcohol, etc.) contained in the catalyst layer-forming composition is such that the core-shell catalyst is well dispersed in the resulting catalyst layer and includes the catalyst layer. It is set as appropriate so that the power generation performance of the MEA can be improved.
The composition for forming a catalyst layer can be prepared by mixing and stirring a liquid containing a core-shell catalyst and a polymer electrolyte. You may contain polyhydric alcohols, such as glycerol, and / or water from a viewpoint of adjusting applicability | paintability. When mixing the liquid containing the core-shell catalyst and the polymer electrolyte, a pulverizing mixer such as a ball mill or an ultrasonic disperser may be used.
At least one of the catalyst layer 1c of the cathode 1 and the catalyst layer 2c of the anode 2 shown in FIG. 1 can be formed using a preferred embodiment of the composition for forming a catalyst layer of the present invention.
(ガス拡散電極の製造方法)
 次に、本発明のガス拡散電極の製造方法の一例について説明する。ガス拡散電極は本発明の触媒層を含むように形成されていればよく、その製造方法は公知の方法を採用することができる。本発明の触媒層形成用組成物を用いればより確実に製造することができる。
 例えば、触媒層形成用組成物をガス拡散層(又はガス拡散層上に撥水層を形成した積層体の当該撥水層)上に塗布し、乾燥させることにより製造してもよい。
(Manufacturing method of gas diffusion electrode)
Next, an example of the manufacturing method of the gas diffusion electrode of this invention is demonstrated. The gas diffusion electrode should just be formed so that the catalyst layer of this invention may be included, and the manufacturing method can employ | adopt a well-known method. If the composition for forming a catalyst layer of the present invention is used, it can be more reliably produced.
For example, you may manufacture by apply | coating the composition for catalyst layer formation on a gas diffusion layer (or the said water-repellent layer of the laminated body which formed the water-repellent layer on the gas diffusion layer), and making it dry.
<燃料電池スタック>
 図11は本発明の燃料電池スタックの好適な一実施形態を示す模式図である。
 図11に示された燃料電池スタック30は、図1に示したMEA10を一単位セルとし、この一単位セルを複数積み重ねた構成を有している。また、燃料電池スタック30は、セパレータ4とセパレータ5との間にMEA10が配置された構成を有している。セパレータ4とセパレータ5とにはそれぞれガス流路が形成されている。
<Fuel cell stack>
FIG. 11 is a schematic diagram showing a preferred embodiment of the fuel cell stack of the present invention.
The fuel cell stack 30 shown in FIG. 11 has a configuration in which the MEA 10 shown in FIG. 1 is a unit cell and a plurality of the unit cells are stacked. The fuel cell stack 30 has a configuration in which the MEA 10 is disposed between the separator 4 and the separator 5. A gas flow path is formed in each of the separator 4 and the separator 5.
 以下、実施例により本発明を更に具体的に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
(I)MEAのカソードの触媒層に使用する電極触媒の準備
(1)実施例1、実施例2、比較例7及び比較例8のMEAのカソードに使用するコアシェル触媒の製造
[Pd/C上にPtからなるシェル部を形成した「Pt/Pd/C」粉末]
 下記の「Pd/C」粉末の粒子のPd上にPtからなるシェル部が形成された「Pt/Pd/C」粉末{Pt担持率16.8wt%(ICP分析結果),商品名「NE-F10217-BD」、N.E.CHEMCAT社製)}をコアシェル触媒(以下、「コアシェル触媒A」という)として用意した。
 このPt/Pd/C粉末は、下記のPd/C粉末を用い、一般的なCu-UPD法により、Pd/CのPdからなるコア粒子の表面にCuからなる被膜を形成し、その後、塩化白金酸カリウムを用いて、CuとPtとのガルバニ置換反応進行させることにより調製した。
[コア粒子担持カーボン「Pd/C」粉末]
 Pdからなるコア粒子がカーボンブラック粉末上に担持されたPd/C粉末{Pd担持率30wt%,商品名「NE-F00230-D」、N.E.CHEMCAT社製)}を用意した。
 このPd/C粉末は、市販のカーボンブラック粉末(比表面積750~800m/g)と、テトラクロロパラジウム(II)酸ナトリウムと、水との混合液を調製し、これに還元剤を添加して得られる液中でパラジウムイオンを還元処理することにより調製したものである。
(I) Preparation of Electrocatalyst Used for MEA Cathode Catalyst Layer (1) Production of Core-Shell Catalyst Used for MEA Cathodes of Examples 1, 2, 2, and 8 [on Pd / C] "Pt / Pd / C" powder in which a shell portion made of Pt is formed on]
“Pt / Pd / C” powder in which a shell portion made of Pt is formed on Pd of the following “Pd / C” powder particles {Pt loading 16.8 wt% (ICP analysis result), trade name “NE- F10217-BD "(manufactured by NE CHEMCAT)} was prepared as a core-shell catalyst (hereinafter referred to as" core-shell catalyst A ").
As this Pt / Pd / C powder, the following Pd / C powder is used, and a coating film made of Cu is formed on the surface of the core particles made of Pd / C Pd by a general Cu-UPD method. It was prepared by allowing galvanic substitution reaction of Cu and Pt to proceed using potassium platinate.
[Core particle supported carbon “Pd / C” powder]
Pd / C powder {Pd loading 30 wt%, trade name “NE-F00230-D”, manufactured by NE CHEMCAT)} in which core particles made of Pd were supported on carbon black powder was prepared.
For this Pd / C powder, a mixture of commercially available carbon black powder (specific surface area 750 to 800 m 2 / g), sodium tetrachloropalladium (II) and water is prepared, and a reducing agent is added thereto. Prepared by reducing palladium ions in the liquid obtained.
<担持率の測定(ICP分析)>
 このコアシェル触媒Aについて、Pt担持率(wt%)と、Pd担持率(wt%)を以下の方法で測定した。
 コアシェル触媒Aを王水に浸し、金属を溶解させた。次に、王水から不溶成分のカーボンを除去した。次に、カーボンを除いた王水をICP分析した。
 ICP分析の結果、このコアシェル触媒については、Pt担持率が16.8wt%と、Pd担持率が25.0wt%であった。
<Measurement of loading rate (ICP analysis)>
With respect to this core-shell catalyst A, the Pt loading rate (wt%) and the Pd loading rate (wt%) were measured by the following methods.
The core-shell catalyst A was immersed in aqua regia to dissolve the metal. Next, insoluble component carbon was removed from the aqua regia. Next, aqua regia without carbon was analyzed by ICP.
As a result of ICP analysis, this core-shell catalyst had a Pt loading rate of 16.8 wt% and a Pd loading rate of 25.0 wt%.
<結晶子サイズの平均値の測定(XRD分析)>
 このコアシェル触媒Aについて、粉末X線回折(XRD)により測定される結晶子サイズの平均値(コア部のPd(111)面のピークから算出した平均値)を測定した。その結果、このコアシェル触媒Aの結晶子サイズの平均値は、4.4nmであった。
<Measurement of average value of crystallite size (XRD analysis)>
With respect to the core-shell catalyst A, the average value of crystallite sizes (average value calculated from the peak of the Pd (111) plane of the core part) measured by powder X-ray diffraction (XRD) was measured. As a result, the average value of the crystallite size of the core-shell catalyst A was 4.4 nm.
<電極用触媒の表面観察・構造観察>
 このコアシェル触媒Aについて、STEM-HAADF 像、EDS elemental mapping 像を確認した。その結果、Pdからなるコア部の粒子の表面の少なくとも一部に、Ptからなるシェル部の層が形成されたコアシェル構造を有する触媒粒子が導電性カーボン担体に担持されている構成を有していることが確認できた。
<Surface observation and structure observation of electrode catalyst>
For this core-shell catalyst A, a STEM-HAADF image and an EDS elementary mapping image were confirmed. As a result, catalyst particles having a core-shell structure in which a shell layer layer made of Pt is formed on at least a part of the surface of the core particle particles made of Pd are supported on a conductive carbon carrier. It was confirmed that
(2)比較例1のMEAのカソードに使用するコアシェル触媒の製造
[Pd/C上にPtからなるシェル部を形成した「Pt/Pd/C」粉末]
 下記の「Pd/C」粉末の粒子のPd上にPtからなるシェル部が形成された「Pt/Pd/C」粉末{Pt担持率16.4wt%(ICP分析結果),商品名「NE-F10216-BD」、N.E.CHEMCAT社製)}をコアシェル触媒(以下、「コアシェル触媒B」という)として用意した。
 このPt/Pd/C粉末は、下記のPd/C粉末を用い、一般的なCu-UPD法により、Pd/CのPdからなるコア粒子の表面にCuからなる被膜を形成し、その後、塩化白金酸カリウムを用いて、CuとPtとのガルバニ置換反応進行させることにより調製した。
[コア粒子担持カーボン「Pd/C」粉末]
 Pdからなるコア粒子がカーボンブラック粉末上に担持されたPd/C粉末{Pd担持率30wt%,商品名「NE-F00230-D」、N.E.CHEMCAT社製)}を用意した。
 このPd/C粉末は、市販のカーボンブラック粉末(比表面積750~800m/g)と、テトラクロロパラジウム(II)酸ナトリウムと、水との混合液を調製し、これに還元剤を添加して得られる液中でパラジウムイオンを還元処理することにより調製したものである。
(2) Manufacture of core-shell catalyst used for MEA cathode of Comparative Example 1 [Pt / Pd / C powder with Pt / C formed shell part]
“Pt / Pd / C” powder in which a shell portion made of Pt is formed on Pd of the following “Pd / C” powder particles {Pt loading 16.4 wt% (ICP analysis result), trade name “NE- F10216-BD "(manufactured by NE CHEMCAT)} was prepared as a core-shell catalyst (hereinafter referred to as" core-shell catalyst B ").
As this Pt / Pd / C powder, the following Pd / C powder is used, and a coating film made of Cu is formed on the surface of the core particles made of Pd / C Pd by a general Cu-UPD method. It was prepared by allowing galvanic substitution reaction of Cu and Pt to proceed using potassium platinate.
[Core particle supported carbon “Pd / C” powder]
Pd / C powder {Pd loading 30 wt%, trade name “NE-F00230-D”, manufactured by NE CHEMCAT)} in which core particles made of Pd were supported on carbon black powder was prepared.
For this Pd / C powder, a mixture of commercially available carbon black powder (specific surface area 750 to 800 m 2 / g), sodium tetrachloropalladium (II) and water is prepared, and a reducing agent is added thereto. Prepared by reducing palladium ions in the liquid obtained.
<担持率の測定(ICP分析)>
 このコアシェル触媒Aについて、Pt担持率(wt%)と、Pd担持率(wt%)を以下の方法で測定した。
 コアシェル触媒Aを王水に浸し、金属を溶解させた。次に、王水から不溶成分のカーボンを除去した。次に、カーボンを除いた王水をICP分析した。
 ICP分析の結果、このコアシェル触媒については、Pt担持率が16.4wt%と、Pd担持率が25.1wt%であった。
<Measurement of loading rate (ICP analysis)>
With respect to this core-shell catalyst A, the Pt loading rate (wt%) and the Pd loading rate (wt%) were measured by the following methods.
The core-shell catalyst A was immersed in aqua regia to dissolve the metal. Next, insoluble component carbon was removed from the aqua regia. Next, aqua regia without carbon was analyzed by ICP.
As a result of ICP analysis, this core-shell catalyst had a Pt loading rate of 16.4 wt% and a Pd loading rate of 25.1 wt%.
<結晶子サイズの平均値の測定(XRD分析)>
 このコアシェル触媒Aについて、粉末X線回折(XRD)により測定される結晶子サイズの平均値(コア部のPd(111)面のピークから算出した平均値)を測定した。その結果、このコアシェル触媒Aの結晶子サイズの平均値は、4.5nmであった。
<Measurement of average value of crystallite size (XRD analysis)>
With respect to the core-shell catalyst A, the average value of crystallite sizes (average value calculated from the peak of the Pd (111) plane of the core part) measured by powder X-ray diffraction (XRD) was measured. As a result, the average value of the crystallite size of the core-shell catalyst A was 4.5 nm.
<電極用触媒の表面観察・構造観察>
 このコアシェル触媒Aについて、STEM-HAADF 像、EDS elemental mapping 像を確認した。その結果、Pdからなるコア部の粒子の表面の少なくとも一部に、Ptからなるシェル部の層が形成されたコアシェル構造を有する触媒粒子が導電性カーボン担体に担持されている構成を有していることが確認できた。
<Surface observation and structure observation of electrode catalyst>
For this core-shell catalyst A, a STEM-HAADF image and an EDS elementary mapping image were confirmed. As a result, catalyst particles having a core-shell structure in which a shell layer layer made of Pt is formed on at least a part of the surface of the core particle particles made of Pd are supported on a conductive carbon carrier. It was confirmed that
(3)比較例2~比較例4のMEAのカソードに使用するコアシェル触媒の製造
[Pd/C上にPtからなるシェル部を形成した「Pt/Pd/C」粉末]
 下記の「Pd/C」粉末の粒子のPd上にPtからなるシェル部が形成された「Pt/Pd/C」粉末{Pt担持率24.3wt%(ICP分析結果),商品名「NE-F10224-BC」、N.E.CHEMCAT社製)}をコアシェル触媒(以下、「コアシェル触媒C」という)として用意した。
 このPt/Pd/C粉末は、下記のPd/C粉末を用い、一般的なCu-UPD法により、Pd/CのPdからなるコア粒子の表面にCuからなる被膜を形成し、その後、塩化白金酸カリウムを用いて、CuとPtとのガルバニ置換反応進行させることにより調製した。
[コア粒子担持カーボン「Pd/C」粉末]
 Pdからなるコア粒子がカーボンブラック粉末上に担持されたPd/C粉末{Pd担持率30wt%,商品名「NE-F00230-C」、N.E.CHEMCAT社製)}を用意した。
 このPd/C粉末は、市販のカーボンブラック粉末(比表面積750~800m/g)と、テトラクロロパラジウム(II)酸ナトリウムと、水との混合液を調製し、これに還元剤を添加して得られる液中でパラジウムイオンを還元処理することにより調製したものである。
(3) Manufacture of core-shell catalyst used for MEA cathodes of Comparative Examples 2 to 4 [“Pt / Pd / C” powder with Pt / C formed shell part]
“Pt / Pd / C” powder in which a shell portion made of Pt is formed on Pd of the following “Pd / C” powder particles {Pt loading 24.3 wt% (ICP analysis result), trade name “NE- F10224-BC "(manufactured by NE CHEMCAT)} was prepared as a core-shell catalyst (hereinafter referred to as" core-shell catalyst C ").
As this Pt / Pd / C powder, the following Pd / C powder is used, and a coating film made of Cu is formed on the surface of the core particles made of Pd / C Pd by a general Cu-UPD method. It was prepared by allowing galvanic substitution reaction of Cu and Pt to proceed using potassium platinate.
[Core particle supported carbon “Pd / C” powder]
Pd / C powder {Pd loading 30 wt%, trade name “NE-F00230-C”, manufactured by NE CHEMCAT)} in which core particles made of Pd were supported on carbon black powder was prepared.
For this Pd / C powder, a mixture of commercially available carbon black powder (specific surface area 750 to 800 m 2 / g), sodium tetrachloropalladium (II) and water is prepared, and a reducing agent is added thereto. Prepared by reducing palladium ions in the liquid obtained.
<担持率の測定(ICP分析)>
 このコアシェル触媒Aについて、Pt担持率(wt%)と、Pd担持率(wt%)を以下の方法で測定した。
 コアシェル触媒Aを王水に浸し、金属を溶解させた。次に、王水から不溶成分のカーボンを除去した。次に、カーボンを除いた王水をICP分析した。
 ICP分析の結果、このコアシェル触媒については、Pt担持率が24.3(wt%)と、Pd担持率が21.1wt%であった。
<Measurement of loading rate (ICP analysis)>
With respect to this core-shell catalyst A, the Pt loading rate (wt%) and the Pd loading rate (wt%) were measured by the following methods.
The core-shell catalyst A was immersed in aqua regia to dissolve the metal. Next, insoluble component carbon was removed from the aqua regia. Next, aqua regia without carbon was analyzed by ICP.
As a result of ICP analysis, this core-shell catalyst had a Pt loading rate of 24.3 (wt%) and a Pd loading rate of 21.1 wt%.
<結晶子サイズの平均値の測定(XRD分析)>
 このコアシェル触媒Aについて、粉末X線回折(XRD)により測定される結晶子サイズの平均値(コア部のPd(111)面のピークから算出した平均値)を測定した。その結果、このコアシェル触媒Aの結晶子サイズの平均値は、4.9nmであった。
<Measurement of average value of crystallite size (XRD analysis)>
With respect to the core-shell catalyst A, the average value of crystallite sizes (average value calculated from the peak of the Pd (111) plane of the core part) measured by powder X-ray diffraction (XRD) was measured. As a result, the average value of the crystallite size of the core-shell catalyst A was 4.9 nm.
<電極用触媒の表面観察・構造観察>
 このコアシェル触媒Aについて、STEM-HAADF 像、EDS elemental mapping 像を確認した。その結果、Pdからなるコア部の粒子の表面の少なくとも一部に、Ptからなるシェル部の層が形成されたコアシェル構造を有する触媒粒子が導電性カーボン担体に担持されている構成を有していることが確認できた。
<Surface observation and structure observation of electrode catalyst>
For this core-shell catalyst A, a STEM-HAADF image and an EDS elementary mapping image were confirmed. As a result, catalyst particles having a core-shell structure in which a shell layer layer made of Pt is formed on at least a part of the surface of the core particle particles made of Pd are supported on a conductive carbon carrier. It was confirmed that
(4)比較例5及び比較例6のMEAのカソードに使用するPt/C触媒の準備
 Pt/C触媒として、N.E.CHEMCAT社製のPt担持率50wt%のPt/C触媒(商品名:「SA50BK」)を用意した。
 このPt/C触媒について、上述のコアシェル触媒とXRD分析を実施した。その結果、結晶子サイズの平均値は、2.6nmであった。
(1)実施例3のMEAのカソードに使用するコアシェル触媒の製造
[Pd/C上にPtからなるシェル部を形成した「Pt/Pd/C」粉末]
 下記の「Pd/C」粉末の粒子のPd上にPtからなるシェル部が形成された「Pt/Pd/C」粉末{Pt担持率18.2wt%(ICP分析結果),商品名「NE-F10218-BF」、N.E.CHEMCAT社製)}をコアシェル触媒(以下、「コアシェル触媒D」という)として用意した。
 このPt/Pd/C粉末は、下記のPd/C粉末を用い、一般的なCu-UPD法により、Pd/CのPdからなるコア粒子の表面にCuからなる被膜を形成し、その後、塩化白金酸カリウムを用いて、CuとPtとのガルバニ置換反応進行させることにより調製した。
[コア粒子担持カーボン「Pd/C」粉末]
 Pdからなるコア粒子がカーボンブラック粉末上に担持されたPd/C粉末{Pd担持率25.3wt%,商品名「NE-F00225-F」、N.E.CHEMCAT社製)}を用意した。
 このPd/C粉末は、市販のカーボンブラック粉末(比表面積750~800m/g)と、テトラクロロパラジウム(II)酸ナトリウムと、水との混合液を調製し、これに還元剤を添加して得られる液中でパラジウムイオンを還元処理することにより調製したものである。
(4) Preparation of Pt / C catalyst used for cathode of MEA of Comparative Example 5 and Comparative Example 6 As Pt / C catalyst, Pt / C catalyst with a Pt loading rate of 50 wt% manufactured by NE CHEMCAT (trade name) : “SA50BK”).
The Pt / C catalyst was subjected to XRD analysis with the above core-shell catalyst. As a result, the average value of the crystallite size was 2.6 nm.
(1) Production of core-shell catalyst used for MEA cathode of Example 3 [Pt / Pd / C powder with Pt / C formed shell part]
“Pt / Pd / C” powder in which a shell portion made of Pt is formed on Pd of the following “Pd / C” powder particles {Pt loading rate 18.2 wt% (ICP analysis result), trade name “NE- F10218-BF "(manufactured by NE CHEMCAT)} was prepared as a core-shell catalyst (hereinafter referred to as" core-shell catalyst D ").
As this Pt / Pd / C powder, the following Pd / C powder is used, and a coating film made of Cu is formed on the surface of the core particles made of Pd / C Pd by a general Cu-UPD method. It was prepared by allowing galvanic substitution reaction of Cu and Pt to proceed using potassium platinate.
[Core particle supported carbon “Pd / C” powder]
Pd / C powder {Pd loading 25.3 wt%, trade name “NE-F00225-F”, manufactured by NE CHEMCAT)} having core particles made of Pd supported on carbon black powder was prepared.
For this Pd / C powder, a mixture of commercially available carbon black powder (specific surface area 750 to 800 m 2 / g), sodium tetrachloropalladium (II) and water is prepared, and a reducing agent is added thereto. Prepared by reducing palladium ions in the liquid obtained.
<担持率の測定(ICP分析)>
 このコアシェル触媒Aについて、Pt担持率(wt%)と、Pd担持率(wt%)を以下の方法で測定した。
 コアシェル触媒Aを王水に浸し、金属を溶解させた。次に、王水から不溶成分のカーボンを除去した。次に、カーボンを除いた王水をICP分析した。
 ICP分析の結果、このコアシェル触媒については、Pt担持率が18.2wt%と、Pd担持率が25.3wt%であった。
<Measurement of loading rate (ICP analysis)>
With respect to this core-shell catalyst A, the Pt loading rate (wt%) and the Pd loading rate (wt%) were measured by the following methods.
The core-shell catalyst A was immersed in aqua regia to dissolve the metal. Next, insoluble component carbon was removed from the aqua regia. Next, aqua regia without carbon was analyzed by ICP.
As a result of ICP analysis, this core-shell catalyst had a Pt loading rate of 18.2 wt% and a Pd loading rate of 25.3 wt%.
<結晶子サイズの平均値の測定(XRD分析)>
 このコアシェル触媒Aについて、粉末X線回折(XRD)により測定される結晶子サイズの平均値(コア部のPd(111)面のピークから算出した平均値)を測定した。その結果、このコアシェル触媒Aの結晶子サイズの平均値は、4.7nmであった。
<Measurement of average value of crystallite size (XRD analysis)>
With respect to the core-shell catalyst A, the average value of crystallite sizes (average value calculated from the peak of the Pd (111) plane of the core part) measured by powder X-ray diffraction (XRD) was measured. As a result, the average value of the crystallite size of the core-shell catalyst A was 4.7 nm.
<電極用触媒の表面観察・構造観察>
 このコアシェル触媒Aについて、STEM-HAADF 像、EDS elemental mapping 像を確認した。その結果、Pdからなるコア部の粒子の表面の少なくとも一部に、Ptからなるシェル部の層が形成されたコアシェル構造を有する触媒粒子が導電性カーボン担体に担持されている構成を有していることが確認できた。
<Surface observation and structure observation of electrode catalyst>
For this core-shell catalyst A, a STEM-HAADF image and an EDS elementary mapping image were confirmed. As a result, catalyst particles having a core-shell structure in which a shell layer layer made of Pt is formed on at least a part of the surface of the core particle particles made of Pd are supported on a conductive carbon carrier. It was confirmed that
(II)実施例1~3、比較例1~8のMEAのアノードに使用するP/C触媒の準備
 Pt/C触媒として、N.E.CHEMCAT社製のPt担持率50wt%のPt/C触媒(商品名:「SA50BK」)を用意した。
 このPt/C触媒について、上述のコアシェル触媒とXRD分析を実施した。その結果、結晶子サイズの平均値は、2.6nmであった。
(II) Preparation of P / C catalyst used for anode of MEA in Examples 1 to 3 and Comparative Examples 1 to 8 Pt / C having a Pt loading rate of 50 wt% manufactured by NE CHEMCAT as Pt / C catalyst A catalyst (trade name: “SA50BK”) was prepared.
The Pt / C catalyst was subjected to XRD analysis with the above core-shell catalyst. As a result, the average value of the crystallite size was 2.6 nm.
<実施例1>
 以下の手順で、図1に示したMEA10と同様の構成を有するMEAを作成した。
(1)カソードの作成
 カソードのGDL
 GDLとして、カーボンペーパー(東レ株式会社製 商品名「TGP-H-60」)を準備した。
 カソードのMPL形成用インク
 テフロン(登録商標)製ボールを入れたテフロン(登録商標)製のボールミル容器に、カーボン粉末(電気化学工業株式会社製 商品名「デンカブラック」)1.5gと、イオン交換水1.1gと、界面活性剤(ダウ・ケミカル社製 商品名「トライトン」(35wt%水溶液))6.0gとを入れて混合した。
 次に、ボールミル容器に、ポリテトラフルオロエチレン(PTFE)ディスパージョン(三井・デュポン フロロケミカル社製 商品名「31-JR」)1.75gを入れて混合した。これにより、カソードのMPL形成用インクを作成した。
 カソードのMPL
 GDLの片面にカソードのMPL形成用インクをバーコーターを使用して塗布し塗工膜を形成した。その後、塗工膜を乾燥器中で十分に乾燥させ、更に加熱圧着処理(360℃、3.5bar)を行い、GDL上にMPLが形成された積層体を作成した。
 カソードの触媒層形成用インク
 テフロン(登録商標)製ボールを入れたテフロン(登録商標)製のボールミル容器に、上述のコアシェル触媒Aと、イオン交換水と、10wt%ナフィオン水分散液(デュポン社製 商品名「DE1021CS」)と、グリセリンと、を入れて混合し、カソードの触媒層形成用インクを作成した。なお、このインクについて、N/C=0.7とした。また、コアシェル触媒A:イオン交換水:グリセリン=10:78:5(質量比)とした。更に、コアシェル触媒A:第2担体(コアシェル触媒A中の第1担体と同一の材料)≒5:1(質量比)とした。
 カソードの触媒層(CL)
 上述のGDL上にMPLにMPLが形成された積層体のMPLの表面に上述のカソードの触媒層形成用インクをバーコート法にて塗布し、塗布膜を形成した。この塗布膜を室温にて30分乾燥させた後、60℃にて1.0時間乾燥することにより、触媒層とした。このようにして、ガス拡散電極であるカソードを作成した。なお、カソードの触媒層のPt担持量は表1に示す数値となるようにした。
<Example 1>
The MEA having the same configuration as the MEA 10 shown in FIG.
(1) Creation of cathode GDL of cathode
Carbon paper (trade name “TGP-H-60” manufactured by Toray Industries, Inc.) was prepared as GDL.
Cathode MPL forming ink In a Teflon (registered trademark) ball mill container containing Teflon (registered trademark) balls, 1.5 g of carbon powder (trade name “DENKA BLACK” manufactured by Denki Kagaku Kogyo Co., Ltd.) and ion exchange 1.1 g of water and 6.0 g of a surfactant (trade name “Triton” (35 wt% aqueous solution) manufactured by Dow Chemical Company) were added and mixed.
Next, 1.75 g of polytetrafluoroethylene (PTFE) dispersion (trade name “31-JR” manufactured by Mitsui DuPont Fluorochemical Co., Ltd.) was placed in a ball mill container and mixed. This produced a cathode MPL forming ink.
Cathode MPL
A cathode MPL forming ink was applied to one side of the GDL using a bar coater to form a coating film. Thereafter, the coating film was sufficiently dried in a drier, and further subjected to thermocompression bonding (360 ° C., 3.5 bar) to prepare a laminate in which MPL was formed on GDL.
Cathode catalyst layer forming ink In a Teflon (registered trademark) ball mill container containing Teflon (registered trademark) balls, the core-shell catalyst A, ion-exchanged water, 10 wt% Nafion aqueous dispersion (manufactured by DuPont) A product name “DE1021CS”) and glycerin were added and mixed to prepare an ink for forming a cathode catalyst layer. For this ink, N / C = 0.7. Moreover, it was set as the core-shell catalyst A: ion-exchange water: glycerol = 10: 78: 5 (mass ratio). Further, the ratio of the core-shell catalyst A to the second support (the same material as the first support in the core-shell catalyst A) was set to 5: 1 (mass ratio).
Cathode catalyst layer (CL)
The cathode catalyst layer forming ink was applied to the surface of the MPL of the laminate in which the MPL was formed on the GDL described above by a bar coating method to form a coating film. This coating film was dried at room temperature for 30 minutes, and then dried at 60 ° C. for 1.0 hour to obtain a catalyst layer. In this way, a cathode as a gas diffusion electrode was produced. The amount of Pt supported on the cathode catalyst layer was set to the values shown in Table 1.
(2)アノードの作成
 アノードのGDL
 GDLとして、カソードと同一のカーボンペーパーを用意した。
 アノードのMPL形成用インク
 テフロン(登録商標)製ボールを入れたテフロン(登録商標)製のボールミル容器に、カーボン粉末(電気化学工業株式会社製 商品名「デンカブラック」)1.5gと、イオン交換水1.0gと、界面活性剤(ダウ・ケミカル社製 商品名「トライトン」(35wt%水溶液))6.0gとを入れて混合した。
 次に、ボールミル容器に、ポリテトラフルオロエチレン(PTFE)ディスパージョン(三井・デュポン フロロケミカル社製 商品名「31-JR」)2.5gを入れて混合した。これにより、アノード用のMPL形成用インクを作成した。
 アノードのMPL
 GDLの片面にアノードのMPL形成用インクをバーコーダーを使用して塗布し塗工膜を形成した。その後、塗工膜を乾燥器中で十分に乾燥させ、更に加熱圧着処理(360℃、13.8bar)を行い、GDL上にMPLが形成された積層体を作成した。
 アノードの触媒層形成用インク
 テフロン(登録商標)製ボールを入れたテフロン(登録商標)製のボールミル容器に、SA50BK(Pt担持率50wt%)と、イオン交換水と、5wt%ナフィオンアルコール分散液(SIGMA-ALDRICH社製 商品名「Nafion 5wt.% dispersion」、製品番号「274704」)と、グリセリンと、を入れて混合しアノードの触媒層形成用インクを作成した。なお、このインクについて、N/C=1.2とした。また、SA50BK中のカーボン:イオン交換水:グリセリン=1:6:4(質量比)とした。
 アノードの触媒層(CL)
 上述のGDL上にMPLにMPLが形成された積層体のMPLの表面に上述のアノードの触媒層形成用インクをバーコート法にて塗布し、塗布膜を形成した。この塗布膜を室温にて30分乾燥させた後、60℃にて1.0時間乾燥することにより、触媒層とした。このようにして、ガス拡散電極であるアノードを作成した。なお、アノードの触媒層のPt担持量は0.30mg/cmとした。
(2) Creation of anode GDL of anode
The same carbon paper as the cathode was prepared as GDL.
Anode MPL forming ink In a Teflon (registered trademark) ball mill container containing Teflon (registered trademark) balls, 1.5 g of carbon powder (trade name “Denka Black” manufactured by Denki Kagaku Kogyo Co., Ltd.) and ion exchange 1.0 g of water and 6.0 g of a surfactant (trade name “Triton” (35 wt% aqueous solution) manufactured by Dow Chemical Co., Ltd.) were added and mixed.
Next, 2.5 g of polytetrafluoroethylene (PTFE) dispersion (trade name “31-JR” manufactured by Mitsui DuPont Fluorochemical Co., Ltd.) was placed in a ball mill container and mixed. This produced the MPL forming ink for anodes.
Anode MPL
An anode MPL forming ink was applied to one side of the GDL using a bar coder to form a coating film. Thereafter, the coated film was sufficiently dried in a drier, and further subjected to thermocompression treatment (360 ° C., 13.8 bar) to prepare a laminate in which MPL was formed on GDL.
Ink for forming anode catalyst layer In a Teflon (registered trademark) ball mill container containing Teflon (registered trademark) balls, SA50BK (Pt loading 50 wt%), ion-exchanged water, 5 wt% Nafion alcohol dispersion ( SIGMA-ALDRICH's product name “Nafion 5 wt.% Dispersion”, product number “274704”) and glycerin were mixed and mixed to form an anode catalyst layer forming ink. For this ink, N / C = 1.2. Moreover, it was set as carbon: ion-exchange water: glycerin = 1: 6: 4 (mass ratio) in SA50BK.
Anode catalyst layer (CL)
The anode catalyst layer forming ink described above was applied to the surface of the MPL of the laminate in which MPL was formed on the GDL described above by the bar coating method to form a coating film. This coating film was dried at room temperature for 30 minutes, and then dried at 60 ° C. for 1.0 hour to obtain a catalyst layer. In this way, an anode as a gas diffusion electrode was produced. The amount of Pt supported on the anode catalyst layer was 0.30 mg / cm 2 .
(3)MEAの作成
 高分子電解質膜(デュポン社製 商品名「ナフィオンNR212」)を準備した。カソードとアノードとの間にこの高分子電解質膜を配置した積層体を作成し、ホットプレス機により加熱圧着させ、MEAを作成した。なお、加熱圧着の条件は、140℃、18.5barにて5分間、さらに140℃、88.8barにて3分間プレスした。
(3) Creation of MEA A polymer electrolyte membrane (trade name “Nafion NR212” manufactured by DuPont) was prepared. A laminate in which this polymer electrolyte membrane was disposed between the cathode and the anode was prepared and heat-pressed by a hot press machine to prepare an MEA. The thermocompression bonding was performed by pressing at 140 ° C. and 18.5 bar for 5 minutes, and further at 140 ° C. and 88.8 bar for 3 minutes.
<実施例2>
 カソードの触媒層について、Pt担持量が表1に示す数値となるようにカソードの触媒層形成インクの組成と、当該インクの塗工条件を調節したこと以外は、実施例1と同様の条件・手順にて各々のMEAを作成した。
<Example 2>
For the cathode catalyst layer, the same conditions as in Example 1 except that the composition of the cathode catalyst layer forming ink and the coating conditions of the ink were adjusted so that the Pt loading was the value shown in Table 1. Each MEA was made according to the procedure.
<実施例3>
 カソードの触媒層について、コアシェル触媒Aの代わりに、先に述べたコアシェル触媒Dを使用し、Pt担持量が表1に示す数値となるようにカソードの触媒層形成インクの組成と、当該インクの塗工条件を調節したこと以外は、実施例1と同様の条件・手順にて各々のMEAを作成した。
<Example 3>
For the cathode catalyst layer, instead of the core-shell catalyst A, the above-described core-shell catalyst D was used, and the composition of the cathode catalyst layer-forming ink was adjusted so that the amount of Pt supported was the value shown in Table 1. Each MEA was prepared under the same conditions and procedures as in Example 1 except that the coating conditions were adjusted.
<比較例1>
 カソードの触媒層について以下の条件を変更したこと以外は、実施例1と同様の条件・手順にて各々のMEAを作成した。
 すなわち、カソードの触媒層形成用インクの作成において、
・コアシェル触媒Aの代わりに、先に述べたコアシェル触媒Bを使用した。
・触媒粒子が担持されていない第2担体を使用せず、コアシェル触媒Bのみを使用してカソードの触媒形成用インクを調製した。
・Pt担持量が表1に示す数値となるようにカソードの触媒層形成インクの組成と、当該インクの塗工条件を調節した。
<Comparative Example 1>
Each MEA was prepared under the same conditions and procedures as in Example 1 except that the following conditions were changed for the catalyst layer of the cathode.
That is, in creating the cathode catalyst layer forming ink,
-Instead of the core-shell catalyst A, the core-shell catalyst B described above was used.
A cathode catalyst-forming ink was prepared using only the core-shell catalyst B without using the second carrier on which the catalyst particles were not supported.
The composition of the cathode catalyst layer forming ink and the coating conditions of the ink were adjusted so that the amount of Pt supported was the value shown in Table 1.
<比較例2>~<比較例4>
 カソードの触媒層について以下の条件を変更したこと以外は、比較例1と同様の条件・手順にて各々のMEAを作成した。
 すなわち、カソードの触媒層形成用インクの作成において、
・コアシェル触媒Bの代わりに、先に述べたコアシェル触媒Cを使用した。
・Pt担持量が表1に示す数値となるようにカソードの触媒層形成インクの組成と、当該インクの塗工条件を調節した。
<Comparative Example 2> to <Comparative Example 4>
Each MEA was prepared under the same conditions and procedures as in Comparative Example 1 except that the following conditions were changed for the cathode catalyst layer.
That is, in creating the cathode catalyst layer forming ink,
-Instead of the core-shell catalyst B, the core-shell catalyst C described above was used.
The composition of the cathode catalyst layer forming ink and the coating conditions of the ink were adjusted so that the amount of Pt supported was the value shown in Table 1.
<比較例5>~<比較例6>
 カソードの触媒層について以下の条件を変更したこと以外は、実施例1と同様の条件・手順にて各々のMEAを作成した。
 すなわち、カソードの触媒層形成用インクの作成において、
・コアシェル触媒Aの代わりに、先に述べたP/C触媒(商品名:「SA50BK」)を使用した。
・10wt%ナフィオン水分散液の代わりに5wt%ナフィオンアルコール分散液(デュポン社製 商品名「DE520CS」;1-プロパノール48wt%含有)を使用した。
・Pt担持量が表1に示す数値となるように、かつ、N/C=0.5となるようにカソードの触媒層形成インクの組成と、当該インクの塗工条件を調節した。
・P/C触媒(商品名:「SA50BK」)中のカーボン:イオン交換水:グリセリン=1:10:1(質量比)とした。
<Comparative Example 5> to <Comparative Example 6>
Each MEA was prepared under the same conditions and procedures as in Example 1 except that the following conditions were changed for the catalyst layer of the cathode.
That is, in creating the cathode catalyst layer forming ink,
-Instead of the core-shell catalyst A, the P / C catalyst (trade name: “SA50BK”) described above was used.
-Instead of 10 wt% Nafion aqueous dispersion, 5 wt% Nafion alcohol dispersion (DuPont brand name "DE520CS"; 1-propanol 48wt% containing) was used.
The composition of the cathode catalyst layer forming ink and the coating conditions of the ink were adjusted so that the amount of Pt supported was the value shown in Table 1 and N / C = 0.5.
-Carbon in a P / C catalyst (trade name: “SA50BK”): ion-exchanged water: glycerin = 1: 10: 1 (mass ratio).
<比較例7>~<比較例8>
 カソードの触媒層についてコアシェル触媒Aを使用し、以下の条件を変更したこと以外は、実施例1と同様の条件・手順にて各々のMEAを作成した。
・触媒粒子が担持されていない第2担体を使用せず、コアシェル触媒Aのみを使用してカソードの触媒形成用インクを調製した。
・Pt担持量が表1に示す数値となるようにカソードの触媒層形成インクの組成と、当該インクの塗工条件を調節した。
<Comparative Example 7> to <Comparative Example 8>
Each MEA was prepared under the same conditions and procedures as in Example 1 except that the core-shell catalyst A was used for the catalyst layer of the cathode and the following conditions were changed.
A cathode catalyst-forming ink was prepared using only the core-shell catalyst A without using the second carrier on which the catalyst particles were not supported.
The composition of the cathode catalyst layer forming ink and the coating conditions of the ink were adjusted so that the amount of Pt supported was the value shown in Table 1.
<電池性能評価>
 実施例1~2及び比較例1~6のMEAの電池性能を以下の電池性能評価方法で実施した。
 実施例1~2及び比較例1~6で製造したMEAを燃料電池単セル評価装置(チノー社製)に設置した。次に、以下の条件でMEA内での発電反応を進行させた。
 すなわち、単セル(MEA)温度を80℃とした。アノードには飽和水蒸気にて加湿した1.0気圧の純水素を利用率が70%となるように流量を調節して供給した。また、カソードには80℃の飽和水蒸気にて加湿した1.0気圧の純酸素を50%となるように流量を調節して供給した。
 単セル(MEA)の評価は、燃料電池単セル評価装置付属の電子負荷装置により電流を制御して行い、電流値を0~1.0A/cmまで走査して得られる電流-電圧曲線をデータとして取得した。
 上記電流-電圧曲線のデータからX軸(電流密度)を対数目盛としてプロットしたグラフを作成し(図示せず)、電圧850mVでの電流密度値(電極の単位面積当たりの電流値)を得た。
 このようにして得られた電流密度値をカソードの単位面積当たりの白金重量で除することにより、カソードに含有される白金についての単位重量当たり活性(Mass.Act.)として算出し、カソードに含有される触媒の酸素還元能の指標とした。その結果を表1に示す。なお、表1には、比較例4で得られたMass.Act.を基準(1.0)とした相対値(相対比)として他の実施例及び比較例で得られたMass.Act.を比較した結果を示す。
<Battery performance evaluation>
The battery performances of the MEAs in Examples 1 and 2 and Comparative Examples 1 to 6 were carried out by the following battery performance evaluation method.
The MEAs produced in Examples 1 and 2 and Comparative Examples 1 to 6 were installed in a fuel cell single cell evaluation apparatus (manufactured by Chino Corporation). Next, the power generation reaction in the MEA was advanced under the following conditions.
That is, the single cell (MEA) temperature was 80 ° C. To the anode, 1.0 atm of pure hydrogen humidified with saturated steam was supplied with the flow rate adjusted to 70%. Further, 1.0 atm of pure oxygen humidified with saturated steam at 80 ° C. was supplied to the cathode at a flow rate adjusted to 50%.
The single cell (MEA) is evaluated by controlling the current with an electronic load device attached to the fuel cell single cell evaluation device, and a current-voltage curve obtained by scanning the current value from 0 to 1.0 A / cm 2 is obtained. Obtained as data.
A graph plotting the X-axis (current density) as a logarithmic scale was created from the current-voltage curve data (not shown), and a current density value (current value per unit area of the electrode) at a voltage of 850 mV was obtained. .
By dividing the current density value thus obtained by the platinum weight per unit area of the cathode, the activity per unit weight (Mass. Act.) Of platinum contained in the cathode was calculated and contained in the cathode. It was used as an index of oxygen reduction ability of the catalyst. The results are shown in Table 1. Table 1 shows Mass. Obtained in Comparative Example 4. Act. As a relative value (relative ratio) with reference (1.0) as a reference, Mass. Obtained in other examples and comparative examples. Act. The result of having compared is shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果から、実施例1~実施例3のMEAは、比較例1~比較例7のMEAと比較し、高いPt質量活性を有していることが明らかとなった。
 例えば、比較例1~比較例3、比較例7のMEAに対し、実施例1~実施例3のMEAは、触媒担持量を約50%に低減してもほぼ同等又はそれ以上の優れた性能を発揮することが明らかとなった。
 以上の結果から、本実施例のMEA(触媒層、GDE、CCM)は、優れた触媒活性を有し、PEFCの低コスト化にも寄与できることが明らかとなった。
From the results shown in Table 1, it was clarified that the MEAs of Examples 1 to 3 have higher Pt mass activity than the MEAs of Comparative Examples 1 to 7.
For example, compared with the MEAs of Comparative Examples 1 to 3 and Comparative Example 7, the MEAs of Examples 1 to 3 have substantially the same or better performance even when the catalyst loading is reduced to about 50%. It was revealed that
From the above results, it became clear that the MEA (catalyst layer, GDE, CCM) of this example has excellent catalytic activity and can contribute to the cost reduction of PEFC.
 本発明の触媒層は、コアシェル触媒を含み優れた触媒活性を発揮する。また、本発明の触媒層を含むGDL、CCM、MEA、及び、燃料電池スタックは、PEFCの低コスト化に寄与できる優れた電池特性を発揮する。
 従って、本発明は、燃料電池、燃料電池自動車、携帯モバイル等の電機機器産業のみならず、エネファーム、コジェネレーションシステム等に適用することができ、エネルギー産業、環境技術関連の発達に寄与する。
The catalyst layer of the present invention includes a core-shell catalyst and exhibits excellent catalytic activity. In addition, the GDL, CCM, MEA, and fuel cell stack including the catalyst layer of the present invention exhibit excellent battery characteristics that can contribute to the cost reduction of PEFC.
Therefore, the present invention can be applied not only to the electrical equipment industry such as fuel cells, fuel cell vehicles, and portable mobiles but also to energy farms, cogeneration systems, etc., and contributes to development related to the energy industry and environmental technology.
 1・・・カソード、
 1A、1B、1C・・・ガス拡散電極(GDE)
 1c・・・触媒層(CL)、
 1m・・・撥水層(MPL)、
 1gd・・・ガス拡散層(GDL)、
 2・・・アノード、
 2c・・・触媒層(CL)、
 2m・・・撥水層(MPL)、
 2gd・・・ガス拡散層(GDL)、
 3・・・高分子電解質膜(PEM)、
 4、5・・・セパレータ
 10、11・・・膜・電極接合体(MEA)、
 12、13・・・膜・触媒層接合体(CCM)
 20、20A、20B、20C・・・コアシェル触媒、
 22・・・担体、
 23、23a、23b、23c・・・触媒粒子、
 24・・・コア部、
 24s・・・コア部露出面、
 25・・・第1シェル部、
 25s・・・第1シェル部露出面、
 26、26a、26b、26c・・・シェル部、
 27・・・第2シェル部、
 30・・・燃料電池スタック、

 
1 ... cathode,
1A, 1B, 1C ... Gas diffusion electrode (GDE)
1c: catalyst layer (CL),
1 m ... water repellent layer (MPL),
1 gd: gas diffusion layer (GDL),
2 ... anode,
2c ... catalyst layer (CL),
2 m ... water repellent layer (MPL),
2 gd ... gas diffusion layer (GDL),
3 ... Polymer electrolyte membrane (PEM),
4, 5 ... Separator 10, 11 ... Membrane / electrode assembly (MEA),
12, 13 ... Membrane / catalyst layer assembly (CCM)
20, 20A, 20B, 20C ... core-shell catalyst,
22 ... carrier,
23, 23a, 23b, 23c ... catalyst particles,
24 ... Core part,
24 s ... exposed surface of the core part,
25 ... 1st shell part,
25s ... exposed surface of the first shell,
26, 26a, 26b, 26c ... shell part,
27 ... second shell part,
30 ... Fuel cell stack,

Claims (10)

  1.  固体高分子形燃料電池に備えられるガス拡散電極の触媒層であって、
     導電性炭素材料からなる第1担体と前記第1担体上に担持されるコアシェル構造を有する触媒粒子とを含むコアシェル触媒と、
     高分子電解質と、
     前記触媒粒子が担持されていない導電性炭素材料からなる第2担体と、
    を含んでおり、
     前記第1担体の導電性炭素材料と前記第2担体の導電性炭素材料が同一である、
    触媒層。
    A catalyst layer of a gas diffusion electrode provided in a polymer electrolyte fuel cell,
    A core-shell catalyst comprising: a first support made of a conductive carbon material; and catalyst particles having a core-shell structure supported on the first support;
    A polymer electrolyte;
    A second support made of a conductive carbon material on which the catalyst particles are not supported;
    Contains
    The conductive carbon material of the first carrier and the conductive carbon material of the second carrier are the same;
    Catalyst layer.
  2.  前記コアシェル触媒の粉末X線回折(XRD)により測定される結晶子サイズの平均値が3~16.0nmである、
    請求項1に記載の触媒層。
    The average crystallite size measured by powder X-ray diffraction (XRD) of the core-shell catalyst is 3 to 16.0 nm.
    The catalyst layer according to claim 1.
  3.  前記コアシェル触媒の前記触媒粒子が、前記担体上に形成されるコア部と、前記コア部の表面の少なくとも一部を覆うように形成されるシェル部と、を有しており、
     前記コア部にはPdが含まれており、前記シェル部にはPtが含まれており、
     前記コアシェル触媒のPt担持率が0.6~33.0wt%であり、
     前記コアシェル触媒のPd担持率が4.7~47.0wt%であり、
     前記コアシェル触媒のPtとPdとを合わせた貴金属の担持率が5.6~66.5wt%である、
    請求項1又は2に記載の触媒層。
    The catalyst particles of the core-shell catalyst have a core part formed on the carrier and a shell part formed so as to cover at least a part of the surface of the core part;
    The core portion includes Pd, the shell portion includes Pt,
    The Pt loading of the core-shell catalyst is 0.6-33.0 wt%,
    The core shell catalyst has a Pd loading of 4.7 to 47.0 wt%;
    The precious metal supporting ratio of Pt and Pd of the core-shell catalyst is 5.6 to 66.5 wt%.
    The catalyst layer according to claim 1 or 2.
  4.  前記コアシェル触媒の前記コア部がPdからなる、請求項1~3のうちのいずれか1項に記載の触媒層。 The catalyst layer according to any one of claims 1 to 3, wherein the core portion of the core-shell catalyst is made of Pd.
  5.  前記コアシェル触媒の前記シェル部がPtからなる、請求項1~4のうちのいずれか1項に記載の触媒層。 The catalyst layer according to any one of claims 1 to 4, wherein the shell portion of the core-shell catalyst is made of Pt.
  6.  固体高分子形燃料電池に備えられるガス拡散電極であって、
     ガス拡散層と、
     前記ガス拡散層上に配置される触媒層と、
    を有しており、
     前記触媒層が請求項1~5のうちのいずれか1項に記載の触媒層である、
    ガス拡散電極。
    A gas diffusion electrode provided in a polymer electrolyte fuel cell,
    A gas diffusion layer;
    A catalyst layer disposed on the gas diffusion layer;
    Have
    The catalyst layer is the catalyst layer according to any one of claims 1 to 5,
    Gas diffusion electrode.
  7.  固体高分子形燃料電池に備えられる膜・触媒層接合体(CCM)であって、
     固体高分子電解質膜と、
     前記固体高分子電解質膜の少なくとも一方の面上に配置される触媒層と、
    を有しており、
     前記触媒層が請求項1~5のうちのいずれか1項に記載の触媒層である、
    膜・触媒層接合体(CCM)。
    A membrane-catalyst layer assembly (CCM) provided in a polymer electrolyte fuel cell,
    A solid polymer electrolyte membrane;
    A catalyst layer disposed on at least one surface of the solid polymer electrolyte membrane;
    Have
    The catalyst layer is the catalyst layer according to any one of claims 1 to 5,
    Membrane / catalyst layer assembly (CCM).
  8.  固体高分子形燃料電池に備えられる膜・電極接合体(MEA)であって、
     固体高分子電解質膜と、
     前記固体高分子電解質膜の少なくとも一方の面上に配置されるガス拡散電極と、
    を有しており、
     前記ガス拡散電極が請求項6に記載のガス拡散電極である、
    膜・電極接合体(MEA)。
    A membrane-electrode assembly (MEA) provided in a polymer electrolyte fuel cell,
    A solid polymer electrolyte membrane;
    A gas diffusion electrode disposed on at least one surface of the solid polymer electrolyte membrane;
    Have
    The gas diffusion electrode is the gas diffusion electrode according to claim 6,
    Membrane / electrode assembly (MEA).
  9.  請求項8記載の膜・電極接合体(MEA)が含まれている、燃料電池スタック。 A fuel cell stack including the membrane-electrode assembly (MEA) according to claim 8.
  10.  固体高分子形燃料電池に備えられるガス拡散電極の触媒層を形成するための触媒層形成用組成物であって、
     導電性炭素材料からなる第1担体と前記第1担体上に担持されるコアシェル構造を有する触媒粒子とを含むコアシェル触媒と、
     高分子電解質と、
     前記触媒粒子が担持されていない導電性炭素材料からなる第2担体と、
    を含んでおり、
     前記第1担体の導電性炭素材料と前記第2担体の導電性炭素材料が同一である、
    触媒層形成用組成物。

     
    A composition for forming a catalyst layer for forming a catalyst layer of a gas diffusion electrode provided in a polymer electrolyte fuel cell,
    A core-shell catalyst comprising: a first support made of a conductive carbon material; and catalyst particles having a core-shell structure supported on the first support;
    A polymer electrolyte;
    A second support made of a conductive carbon material on which the catalyst particles are not supported;
    Contains
    The conductive carbon material of the first carrier and the conductive carbon material of the second carrier are the same;
    A composition for forming a catalyst layer.

PCT/JP2017/045864 2016-12-26 2017-12-21 Catalyst layer, gas diffusion electrode, membrane-catalyst layer assembly, membrane-electrode assembly, fuel cell stack, and composition for forming catalyst layer WO2018123790A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-250485 2016-12-26
JP2016250485 2016-12-26

Publications (1)

Publication Number Publication Date
WO2018123790A1 true WO2018123790A1 (en) 2018-07-05

Family

ID=62711107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045864 WO2018123790A1 (en) 2016-12-26 2017-12-21 Catalyst layer, gas diffusion electrode, membrane-catalyst layer assembly, membrane-electrode assembly, fuel cell stack, and composition for forming catalyst layer

Country Status (1)

Country Link
WO (1) WO2018123790A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004916A (en) * 2004-05-17 2006-01-05 Nissan Motor Co Ltd Mea for fuel cell and fuel cell using the same
JP2007273145A (en) * 2006-03-30 2007-10-18 Nippon Steel Corp Fuel cell and gas diffusion electrode thereof
WO2010047415A1 (en) * 2008-10-22 2010-04-29 新日本製鐵株式会社 Catalyst for solid polymer furl cell, electrode for solid polymer furl cell, and fuel cell
JP2010113949A (en) * 2008-11-06 2010-05-20 Toppan Printing Co Ltd Membrane electrode assembly, and solid polymer fuel cell
JP2014078356A (en) * 2012-10-09 2014-05-01 Toyota Motor Corp Film electrode assembly for fuel battery use, and fuel battery
WO2015122207A1 (en) * 2014-02-14 2015-08-20 トヨタ自動車株式会社 Carbon support catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004916A (en) * 2004-05-17 2006-01-05 Nissan Motor Co Ltd Mea for fuel cell and fuel cell using the same
JP2007273145A (en) * 2006-03-30 2007-10-18 Nippon Steel Corp Fuel cell and gas diffusion electrode thereof
WO2010047415A1 (en) * 2008-10-22 2010-04-29 新日本製鐵株式会社 Catalyst for solid polymer furl cell, electrode for solid polymer furl cell, and fuel cell
JP2010113949A (en) * 2008-11-06 2010-05-20 Toppan Printing Co Ltd Membrane electrode assembly, and solid polymer fuel cell
JP2014078356A (en) * 2012-10-09 2014-05-01 Toyota Motor Corp Film electrode assembly for fuel battery use, and fuel battery
WO2015122207A1 (en) * 2014-02-14 2015-08-20 トヨタ自動車株式会社 Carbon support catalyst

Similar Documents

Publication Publication Date Title
JP6946557B2 (en) Electrode catalyst, gas diffusion electrode forming composition, gas diffusion electrode, membrane / electrode assembly, and fuel cell stack
WO2014175106A1 (en) Electrode and fuel cell electrode catalyst layer containing same
JP2013109856A (en) Electrode catalyst layer for fuel cell
EP2824741B1 (en) Electrolyte membrane electrode assembly
KR20060117474A (en) Electrode substrate for fuel cell, method for preparating the same, and membrane-electrode assembly
CA2951714A1 (en) Bilayer cathode design for electrochemical fuel cells
WO2016067881A1 (en) Electrode catalyst for fuel cell, production method thereof, fuel cell electrode catalyst layer containing said catalyst, fuel cell membrane-electrode assembly using said catalyst or catalyst layer, and fuel cell
WO2018064623A1 (en) Cathode electrode design for electrochemical fuel cells
WO2016067879A1 (en) Electrode catalyst layer for fuel cell, and fuel cell membrane electrode assembly and fuel cell using said catalyst layer
WO2017042919A1 (en) Electrode catalyst layer for fuel cell, method for manufacturing same, membrane electrode assembly in which said catalyst layer is used, fuel cell, and vehicle
JP2021150249A (en) Electrode catalyst, gas diffusion electrode formation composition, gas diffusion electrode, membrane-electrode assembly, and fuel cell stack
JP6668582B2 (en) Method for producing gas diffusion electrode, method for producing membrane-electrode assembly (MEA)
JP2020057516A (en) Electrode layer, membrane electrode assembly including the electrode layer, and fuel cell
WO2021193257A1 (en) Electrode catalyst, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack
JP6672622B2 (en) Electrode catalyst layer for fuel cell, method for producing the same, and membrane electrode assembly using the catalyst layer, fuel cell, and vehicle
JP2017021991A (en) Method of manufacturing gas diffusion electrode and method of manufacturing membrane-electrode assembly (mea)
WO2018123790A1 (en) Catalyst layer, gas diffusion electrode, membrane-catalyst layer assembly, membrane-electrode assembly, fuel cell stack, and composition for forming catalyst layer
JP2021163699A (en) Catalyst layer for polymer electrolyte fuel cell, membrane electrode assembly, and polymer electrolyte fuel cell
WO2016170774A1 (en) Catalyst layer, gas diffusion electrode, membrane-catalyst layer assembly, membrane electrode assembly, and fuel cell stack
WO2018069979A1 (en) Catalyst layer production method, catalyst layer, catalyst precursor, and catalyst precursor production method
JP2006079840A (en) Electrode catalyst for fuel cell, and mea for fuel cell using this
WO2021193256A1 (en) Catalyst for electrode, composition for forming gas diffusion electrode, gas diffusion electrode, membrane-electrode junction, and fuel cell stack
JP2007250214A (en) Electrode catalyst and its manufacturing method
WO2018180675A1 (en) Catalyst for electrode, composition for forming gas diffusion electrode, gas diffusion electrode, film–electrode assembly, and fuel cell stack
JP2011070925A (en) Electrolyte membrane-electrode assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP