WO2018123462A1 - Pattern manufacturing method, color filter manufacturing method, method of manufacturing sold state imaging element, and method of manufacturing image display device - Google Patents

Pattern manufacturing method, color filter manufacturing method, method of manufacturing sold state imaging element, and method of manufacturing image display device Download PDF

Info

Publication number
WO2018123462A1
WO2018123462A1 PCT/JP2017/043592 JP2017043592W WO2018123462A1 WO 2018123462 A1 WO2018123462 A1 WO 2018123462A1 JP 2017043592 W JP2017043592 W JP 2017043592W WO 2018123462 A1 WO2018123462 A1 WO 2018123462A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive composition
pattern
manufacturing
negative photosensitive
exposure
Prior art date
Application number
PCT/JP2017/043592
Other languages
French (fr)
Japanese (ja)
Inventor
光司 吉林
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018558955A priority Critical patent/JP6774505B2/en
Publication of WO2018123462A1 publication Critical patent/WO2018123462A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to a pattern manufacturing method. More specifically, the present invention relates to a method for producing a pattern by a photolithography method using a negative photosensitive composition. The present invention also relates to a color filter manufacturing method, a solid-state imaging device manufacturing method, and an image display device manufacturing method.
  • a photosensitive composition layer is formed on a support by applying a photosensitive composition layer, and a photosensitive composition layer is passed through a mask having a pattern. And a step of developing the photosensitive composition layer after exposure.
  • the pattern formation method differs depending on whether a positive photosensitive composition or a negative photosensitive composition is used as the photosensitive composition. That is, in the positive photosensitive composition, when the exposure energy exceeds the threshold value, the solubility in the developer increases rapidly. For this reason, when a positive photosensitive composition is used as the photosensitive composition, the photosensitive composition layer is exposed to light through a mask, and the photosensitive composition layer in the exposed portion is dissolved in the developer. After enhancing the properties, the photosensitive composition layer in the exposed area is removed using a developer to form a pattern (see, for example, Patent Documents 1 to 4).
  • the reaction gradually proceeds according to the exposure energy, and the solubility in the developer is lowered.
  • the photosensitive composition layer is exposed to light through a mask, and the photosensitive composition layer in the exposed area is dissolved in the developer. Then, the photosensitive composition layer in the unexposed area is removed using a developer to form a pattern (see, for example, Patent Document 5).
  • the negative photosensitive composition layer is exposed through a mask having a pattern. At this time, even in the portion covered with the mask, the mask is transmitted through the mask. The reaction may proceed due to the small amount of light. For this reason, when exposure is performed with the exposure energy higher than the optimum exposure energy, the reaction proceeds even in the portion covered with the mask, the solubility in the developer is lowered, and the line width of the resulting pattern is a desired value. In some cases, the residue was thicker or a residue was formed between the patterns.
  • the optimum exposure energy is a condition of exposure energy that can form a pattern according to the design dimension of the mask.
  • an object of the present invention is to provide a process window, particularly a pattern manufacturing method, a color filter manufacturing method, a solid-state imaging device manufacturing method, and an image having a wide allowable range (margin) of exposure energy and a wide allowable range of focus depth (margin).
  • the object is to provide a method for manufacturing a display device.
  • ⁇ 1> forming a negative photosensitive composition layer by applying a negative photosensitive composition on a support; Exposing the negative photosensitive composition layer through a mask having a pattern; Removing the negative photosensitive composition layer in the unexposed area and developing;
  • a method for producing a pattern including: The mask is a pattern manufacturing method in which an optical density with respect to light having a wavelength used for exposure is 3.6 or more.
  • the mask includes at least one selected from chromium and a chromium compound.
  • ⁇ 4> The method for producing a pattern according to any one of ⁇ 1> to ⁇ 3>, wherein the negative photosensitive composition contains a photopolymerization initiator and a radical polymerizable compound.
  • ⁇ 5> The method for producing a pattern according to any one of ⁇ 1> to ⁇ 4>, wherein the negative photosensitive composition contains a colorant.
  • ⁇ 6> The method for producing a pattern according to any one of ⁇ 1> to ⁇ 5>, wherein the negative photosensitive composition contains transparent particles.
  • ⁇ 7> The method for producing a pattern according to any one of ⁇ 1> to ⁇ 6>, wherein the negative photosensitive composition is a negative photosensitive composition for forming a pixel of a color filter.
  • ⁇ 8> The method for producing a pattern according to any one of ⁇ 1> to ⁇ 7>, wherein the exposure illuminance is 5000 to 50000 W / m 2 in the exposure.
  • ⁇ 9> The method for producing a pattern according to any one of ⁇ 1> to ⁇ 8>, wherein the oxygen concentration in exposure is 21% or more.
  • ⁇ 10> The method for producing a pattern according to any one of ⁇ 1> to ⁇ 9>, wherein, in the development, a developer is spray-coated on the negative photosensitive composition layer.
  • a method for producing a color filter comprising the method for producing a pattern according to any one of ⁇ 1> to ⁇ 10>.
  • ⁇ 12> A method of manufacturing a color filter having a plurality of color pixels, wherein the pattern manufacturing method according to any one of ⁇ 1> to ⁇ 10> A method for producing a color filter using the method.
  • ⁇ 13> A method for manufacturing a solid-state imaging device, including the method for manufacturing a pattern according to any one of ⁇ 1> to ⁇ 10>.
  • ⁇ 14> A method for manufacturing an image display device, including the method for manufacturing a pattern according to any one of ⁇ 1> to ⁇ 10>.
  • a method for manufacturing a pattern having a wide process window such as an allowable range (margin) of exposure energy and an allowable range (margin) of focal depth. It is also possible to provide a color filter manufacturing method, a solid-state imaging device manufacturing method, and an image display device manufacturing method.
  • the notation which does not describe substitution and unsubstituted includes the group which has a substituent with the group which does not have a substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • “exposure” means not only exposure using light unless otherwise specified, but also exposure using particle beam such as electron beam and ion beam is included in exposure.
  • the light used for the exposure generally includes an active ray or radiation such as an emission line spectrum of a mercury lamp, far ultraviolet rays typified by an excimer laser, extreme ultraviolet rays (EUV light), X-rays or electron beams.
  • an active ray or radiation such as an emission line spectrum of a mercury lamp, far ultraviolet rays typified by an excimer laser, extreme ultraviolet rays (EUV light), X-rays or electron beams.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the total solid content refers to the total amount of components excluding the solvent from all the components of the composition.
  • “(meth) acrylate” represents both and / or acrylate and methacrylate
  • “(meth) acryl” represents both and / or acrylic and “(meth) acrylic”.
  • Allyl represents both and / or allyl and methallyl
  • (meth) acryloyl represents both and / or acryloyl and methacryloyl.
  • the term “process” not only means an independent process, but also if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes, include.
  • a weight average molecular weight (Mw) and a number average molecular weight (Mn) are defined as polystyrene conversion values measured by gel permeation chromatography (GPC).
  • the pattern production method of the present invention comprises: Applying a negative photosensitive composition on a support to form a negative photosensitive composition layer (hereinafter also referred to as a negative photosensitive composition layer forming step); A step of exposing the negative photosensitive composition layer through a mask having a pattern (hereinafter also referred to as an exposure step); Removing the negative photosensitive composition layer in the unexposed area and developing (hereinafter also referred to as a developing process); A method for producing a pattern including: The mask is characterized by having an optical density of 3.6 or more with respect to light having a wavelength used for exposure.
  • a mask having an optical density of 3.6 or more with respect to light having a wavelength used for exposure is used. Therefore, in the portion (unexposed portion) covered with the mask in the negative photosensitive composition layer.
  • the light shielding property is high, and curing in the unexposed area can be effectively suppressed even when exposure is performed with an increased exposure energy. That is, the optical contrast in the part (unexposed part) covered with the mask in the negative photosensitive composition layer and the part (exposed part) exposed from the mask can be improved. For this reason, according to the present invention, the allowable range (margin) of exposure energy can be expanded.
  • the optical density with respect to light having a wavelength used for exposure is 3.6 or more, preferably 3.7 or more, more preferably 4 or more, and further more preferably 5 or more. preferable.
  • the upper limit is not particularly limited and is preferably 8.0 or less, more preferably 7.5 or less, and even more preferably 7 or less. For example, if the optical density of the mask is 7 or less, the effect of reducing the process load during blanking (easier mask fabrication) can be expected.
  • the optical density (OD: Optical Density) is a value that is expressed by the following formula, and is a value that represents the degree of absorption in logarithm.
  • OD ( ⁇ ) Log 10 [T ( ⁇ ) / I ( ⁇ )] ⁇ represents a wavelength
  • T ( ⁇ ) represents a transmitted light amount at the wavelength ⁇
  • I ( ⁇ ) represents an incident light amount at the wavelength ⁇
  • OD ( ⁇ ) represents an optical density at the wavelength ⁇ .
  • the value of the optical density of the mask is preferably a value for light having a wavelength of 365 nm.
  • the mask preferably has an optical density of 3.6 or more with respect to light having a wavelength of 365 nm.
  • the material of the mask used in the present invention there is no particular limitation on the material of the mask used in the present invention.
  • examples thereof include chromium, chromium compounds, tantalum, tantalum compounds (TaN, TaO, etc.), and chromium and / or chromium compounds are preferred.
  • the chromium compound include chromium oxide, chromium nitride, and an alloy containing chromium, and chromium oxide is preferable.
  • An example of a mask is a laminated film of a chromium film and a chromium oxide film.
  • the optical density can be adjusted by adjusting the film thickness of the chromium film.
  • the optical density can be increased by increasing the thickness of the chromium film, and the optical density can be decreased by decreasing the thickness of the chromium film.
  • the mask manufacturing method is not particularly limited, and a conventionally known method can be used.
  • a mask material layer is formed on the support by sputtering, vapor deposition (vacuum vapor deposition, chemical vapor deposition, physical vapor deposition, etc.), plating, etc., and this layer is etched to form a pattern. Can be manufactured.
  • the negative photosensitive composition used in the pattern production method of the present invention is preferably a negative photosensitive composition for forming a pixel of a color filter. That is, the pattern manufactured by the pattern manufacturing method of the present invention is preferably a pixel of a color filter.
  • a method of improving the optical contrast between the unexposed portion and the exposed portion a method of performing exposure using a projection lens technique such as annular illumination or a method of using a halftone photomask is known.
  • a projection lens technique such as annular illumination or a method of using a halftone photomask
  • the negative photosensitive composition for forming a pixel of a color filter may contain a colorant, transparent particles, or the like, there is a limit to improving contrast depending on illumination conditions during exposure. This is because the irradiated light is scattered in the film by components such as a colorant.
  • an allowable range (margin) of exposure energy can be expanded.
  • the color filter pixels are required to be precise in terms of pattern dimensions.
  • the allowable range (margin) of exposure energy can be widened. Even if variations occur, a pattern as designed can be formed. For this reason, the pattern manufacturing method of the present invention is particularly effective when forming the color filter pixels using the negative photosensitive composition for forming the color filter pixels.
  • the negative photosensitive composition layer is formed by applying the negative photosensitive composition on the support.
  • a support body which applies a negative photosensitive composition there is no limitation in particular as a support body which applies a negative photosensitive composition, According to a use, it can select suitably.
  • a glass substrate, a silicon substrate, etc. are mentioned.
  • a substrate for a solid-state imaging device in which a solid-state imaging device (light receiving device) such as a CCD (charge coupled device) or a CMOS (complementary metal oxide semiconductor) is provided on a substrate (for example, a silicon substrate) can also be used. .
  • the pattern may be formed on the imaging element forming surface side (front surface) of the solid-state imaging element substrate, or may be formed on the imaging element non-forming surface side (back surface).
  • a light-shielding film may be provided between the image sensors on the solid-state image sensor substrate or on the back surface of the solid-state image sensor substrate.
  • an undercoat layer may be provided on the support for improving adhesion with the upper layer, preventing diffusion of substances, or flattening the substrate surface.
  • the support may be provided with a partition wall.
  • the partition is preferably formed of a material having a refractive index smaller than that of a pattern obtained from the negative photosensitive composition.
  • the partition wall can suppress leakage of light from the pattern to the adjacent pattern.
  • the material of the partition wall various inorganic materials and organic materials can be used.
  • the organic material include acrylic resin, polystyrene resin, polyimide resin, organic SOG (Spin On Glass) resin, siloxane resin, and fluorine resin.
  • the inorganic material include porous silica, polycrystalline silicon, colloidal silica particles, silicon oxide, silicon nitride, and metal materials such as tungsten and aluminum.
  • the film thickness of the negative photosensitive composition layer is preferably from 0.1 to 10 ⁇ m, more preferably from 0.2 to 5 ⁇ m, still more preferably from 0.2 to 3 ⁇ m.
  • the negative photosensitive composition layer formed on the support may be dried (prebaked).
  • pre-baking may not be performed.
  • the prebaking temperature is preferably 120 ° C. or lower, more preferably 110 ° C. or lower, and further preferably 105 ° C. or lower.
  • the lower limit may be 50 ° C. or higher, and may be 80 ° C. or higher.
  • the prebake time is preferably 10 seconds to 300 seconds, more preferably 40 to 250 seconds, and even more preferably 80 to 220 seconds.
  • Pre-baking can be performed with a hot plate, an oven, or the like.
  • the negative photosensitive composition layer is exposed through a mask having a pattern.
  • a mask having an optical density of 3.6 or more with respect to light having a wavelength used for exposure is used.
  • the negative photosensitive composition layer can be exposed in a pattern by exposing it through a mask having a predetermined pattern using an exposure apparatus such as a stepper. Thereby, an exposure part can be hardened. Moreover, in the part (unexposed part) covered with the mask in a negative photosensitive composition layer, hardening of a negative photosensitive composition layer can be suppressed effectively.
  • UV rays such as g-line and i-line are preferable (particularly preferably i-line).
  • Irradiation dose exposure energy
  • g-line and i-line are preferable (particularly preferably i-line).
  • the oxygen concentration at the time of exposure can be appropriately selected.
  • the oxygen concentration may be performed in an atmosphere having a lower oxygen concentration than the atmosphere, and the oxygen concentration is higher than that in the atmosphere. It may be performed in an atmosphere.
  • the oxygen concentration at the time of exposure is preferably 15% by volume or more, and more preferably 21% by volume or more.
  • the upper limit is preferably 50% by volume or less.
  • the exposure intensity is can be set appropriately, preferably 1000 ⁇ 100000W / m 2, more preferably 5000 ⁇ 50000W / m 2. If the exposure illuminance is in the above range, a good pattern resolution is easily obtained.
  • the exposure may be performed by dividing the exposure into a plurality of times. By dividing the exposure, the exposure amount per one divided exposure (for example, each of the first exposure, the second exposure, and the third exposure) decreases.
  • the exposure amount per divided exposure is reduced by dividing the exposure. It is considered that the lateral diffusion of radicals and the like in the type photosensitive composition layer can be suppressed. Further, by performing additional exposure (second exposure, third exposure, etc.) at the same coordinate with a time interval, radicals in the vicinity of the center in the negative photosensitive composition layer in the exposure area were retained by the exposure residual heat.
  • FIG. 1 is an explanatory view schematically showing an embodiment of an exposure apparatus used in the present invention.
  • a projection lens projection lens
  • a condenser lens 1 a condenser lens 1 and a reticle 5.
  • a mask with a predetermined pattern may be installed before or after the condenser lens 1 so that the light with the predetermined pattern reaches the projection lens 2.
  • the numerical aperture on the condenser lens side is NA 1
  • the numerical aperture on the projection lens side is NA 2 .
  • the light transmitted through the projection lens (projection lens) 2 is irradiated onto the work 4.
  • the numerical aperture of the emission side of the projection lens with NA 3. just when expressed as NA means the NA 3.
  • the coherence factor ⁇ which is the ratio of the numerical apertures NA 1 and NA 2 (NA 1 / NA 2 ), is preferably 0.9 or less, more preferably 0.6 or less, and 0.5 or less. It is particularly preferred. There is no particular lower limit, and it is practical that it is 0.38 or more.
  • the coherent factor ( ⁇ ) is small, the contrast of the image to be formed is improved. This improvement in contrast is thought to contribute to an improvement in DOF.
  • the batch exposure apparatus has been described. However, the scanning stepper that performs scanning exposure in synchronism with the reticle and the stage, and the exposure apparatus that performs image transfer 1: 1 with the mask pattern (proximity exposure, batch exposure). It can also be applied to a projection exposure apparatus).
  • the negative photosensitive composition layer in the unexposed area is removed and developed.
  • the removal of the unexposed portion of the negative photosensitive composition layer can be performed using a developer.
  • a developer an organic alkali developer that does not damage the underlying solid-state imaging device or circuit is desirable.
  • the temperature of the developer is preferably 20 to 30 ° C., for example.
  • the development time is preferably 20 to 180 seconds.
  • the process of shaking off the developer every 60 seconds and supplying a new developer may be repeated several times.
  • an alkaline aqueous solution obtained by diluting an alkaline agent with pure water is preferably used.
  • the alkaline agent include ammonia water, ethylamine, diethylamine, dimethylethanolamine, diglycolamine, diethanolamine, hydroxyamine, ethylenediamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxy.
  • Organic alkaline compounds such as water, benzyltrimethylammonium hydroxide, dimethylbis (2-hydroxyethyl) ammonium hydroxide, choline, pyrrole, piperidine, 1,8-diazabicyclo [5.4.0] -7-undecene, water Inorganic acids such as sodium oxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, sodium silicate, sodium metasilicate Potassium compounds may be mentioned.
  • the concentration of the alkaline agent in the alkaline aqueous solution is preferably 0.001 to 10% by mass, and more preferably 0.01 to 1% by mass.
  • the developer may further contain a surfactant.
  • the surfactant examples include surfactants described in the section of the negative photosensitive composition described later, and nonionic surfactants are preferable.
  • the developing solution which consists of such alkaline aqueous solution it is preferable to wash
  • the developer may be once produced as a concentrated solution and diluted to a necessary concentration at the time of use from the viewpoint of transportation and storage.
  • the dilution factor is not particularly limited, and can be set, for example, in the range of 1.5 to 100 times.
  • the developing method a known method can be used. Examples include immersion development, paddle development, shower development, spray development, ultrasonic development, dip development, and the like. Among them, spray development is preferable because it has a high effect of removing a weakly polymerized portion, suppresses residues between patterns, and easily obtains a pattern with good rectangularity. In addition, spray development can further widen a process window such as an exposure energy margin and a focal depth margin.
  • the spray development is a method in which development is performed by discharging a developer applied with a gas such as N 2 or air from a nozzle and spraying the developer onto a target. In spray development, spray-like developer discharged from a nozzle is deposited on the target, and the target is developed by spray pressure.
  • the flow rate of the developer in spray development, the flow rate ratio between the developer and gas, the spray pressure, etc. can be adjusted as appropriate.
  • the flow rate of the developer is preferably 100 to 500 mL / min, more preferably 150 to 400 mL / min, and further preferably 200 to 350 mL / min.
  • the spray pressure is preferably 3 to 15 Mpa, more preferably 5 to 12 Mpa, and even more preferably 7 to 9 Mpa.
  • Post-baking is a heat treatment after development for complete film (pixel) curing.
  • the post-baking temperature is preferably 240 ° C. or lower, more preferably 230 ° C. or lower, still more preferably 220 ° C. or lower, even more preferably 200 ° C. or lower, and particularly preferably 190 ° C. or lower.
  • the Young's modulus of the film after post-baking is preferably 0.5 to 20 GPa, more preferably 2.5 to 15 GPa.
  • Post-baking can be carried out continuously or batchwise using a heating means such as a hot plate, a convection oven (hot air circulation dryer), a high-frequency heater, etc., so that the film after development is in the above-mentioned condition. .
  • a heating means such as a hot plate, a convection oven (hot air circulation dryer), a high-frequency heater, etc.
  • Post bake may be performed in a low oxygen concentration atmosphere.
  • the oxygen concentration is preferably 19% by volume or less, more preferably 15% by volume or less, still more preferably 10% by volume or less, and even more preferably 7% by volume or less. 3% by volume or less is particularly preferable. There is no particular lower limit, and for example, it can be 10 ppm by volume or more.
  • exposure also referred to as post-exposure
  • exposure is performed with light having a wavelength of more than 350 nm and not more than 380 nm (preferably, light having a wavelength of 355 to 370 nm, particularly preferably i-line).
  • the exposure is preferably performed with light having a wavelength of 254 nm.
  • the exposure amount in the post-exposure (exposure energy) preferably 30 ⁇ 4000mJ / cm 2, more preferably 50 ⁇ 3500mJ / cm 2.
  • an ozone-less mercury lamp is preferable as the exposure light source.
  • post-baking may be performed after post-exposure.
  • the negative photosensitive composition used in the pattern production method of the present invention is not particularly limited, and a known negative photosensitive composition can be used. Further, it can also be applied to a photoresist that is polymerized by light to form an image, a polyimide resin composition, a solder resist, and the like. Specific examples of the negative photosensitive composition containing a polyimide resin include the compositions described in JP-A-2014-201695.
  • the negative photosensitive composition used in the pattern production method of the present invention is preferably a composition containing a radical polymerizable compound and a photopolymerization initiator. Hereinafter, each component used for a negative photosensitive composition is demonstrated.
  • the negative photosensitive composition in the present invention preferably contains a radical polymerizable compound.
  • the radical polymerizable compound may be any of chemical forms such as a monomer, a prepolymer, and an oligomer, but is preferably a monomer.
  • the molecular weight of the radical polymerizable compound is preferably 100 to 3000.
  • the upper limit is more preferably 2000 or less, and even more preferably 1500 or less.
  • the lower limit is more preferably 150 or more, and further preferably 250 or more.
  • the radically polymerizable compound is preferably a 3 to 15 functional (meth) acrylate compound, and more preferably a 3 to 6 functional (meth) acrylate compound.
  • Specific examples of these compounds include those described in paragraph Nos. 0095 to 0108 in JP-A-2009-288705, paragraph 0227 in JP-A-2013-29760, and paragraph numbers 0254 to 0257 in JP-A-2008-292970. Compounds, the contents of which are incorporated herein.
  • the radical polymerizable compounds are dipentaerythritol triacrylate (KAYARAD D-330 as a commercial product; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (KAYARAD D-320 as a commercial product; Nippon Kayaku Co., Ltd.) ), Dipentaerythritol penta (meth) acrylate (KAYARAD D-310 as a commercial product; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol hexa (meth) acrylate (KAYARAD DPHA as a commercial product; Nippon Kayaku) Co., Ltd., NK ester A-DPH-12E; Shin-Nakamura Chemical Co., Ltd.), and a structure in which these (meth) acryloyl groups are bonded via ethylene glycol and / or propylene glycol residues (for example, SR commercially available from Sartomer 454, SR
  • oligomer types can also be used.
  • KAYARAD RP-1040 and DPCA-20 can also be used as the radical polymerizable compound.
  • a radical polymerizable compound trimethylolpropane tri (meth) acrylate, trimethylolpropane propyleneoxy modified tri (meth) acrylate, trimethylolpropane ethyleneoxy modified tri (meth) acrylate, isocyanuric acid ethyleneoxy modified tri (meth) It is also preferable to use a trifunctional (meth) acrylate compound such as acrylate or pentaerythritol tri (meth) acrylate.
  • trifunctional (meth) acrylate compounds include Aronix M-309, M-310, M-321, M-350, M-360, M-313, M-315, M-306, M-305. , M-303, M-452, M-450 (manufactured by Toagosei Co., Ltd.), NK ester A9300, A-GLY-9E, A-GLY-20E, A-TMM-3, A-TMM-3L, A -TMM-3LM-N, A-TMPT, TMPT (manufactured by Shin-Nakamura Chemical Co., Ltd.), KAYARAD GPO-303, TMPTA, THE-330, TPA-330, PET-30 (manufactured by Nippon Kayaku Co., Ltd.) Etc.
  • a compound having an acid group can also be used.
  • the radically polymerizable compound in the unexposed area is easily removed during development, and the generation of development residues can be more effectively suppressed.
  • the acid group include a carboxyl group, a sulfo group, and a phosphate group, and a carboxyl group is preferable.
  • Commercially available products of radically polymerizable compounds having acid groups include Aronix M-510, M-520, TO-2349 (above, manufactured by Toagosei Co., Ltd.) and the like.
  • the acid value of the radically polymerizable compound having an acid group is preferably 0.1 to 40 mgKOH / g, more preferably 5 to 30 mgKOH / g. If the acid value of the radically polymerizable compound is 0.1 mgKOH / g or more, the solubility in the developer is good, and if it is 40 mgKOH / g or less, it is advantageous in production and handling.
  • the radical polymerizable compound is also preferably a compound having a caprolactone structure.
  • Radical polymerizable compounds having a caprolactone structure are commercially available from Nippon Kayaku Co., Ltd. as the KAYARAD DPCA series, and examples thereof include DPCA-20, DPCA-30, DPCA-60, DPCA-120 and the like.
  • a radical polymerizable compound having an alkyleneoxy group can also be used.
  • the radical polymerizable compound having an alkyleneoxy group is preferably a radical polymerizable compound having an ethyleneoxy group and / or a propyleneoxy group, more preferably a radical polymerizable compound having an ethyleneoxy group.
  • a tri- to hexa-functional (meth) acrylate compound having 4 to 20 groups is more preferable.
  • Examples of commercially available radical polymerizable compounds having an alkyleneoxy group include SR-494, a tetrafunctional (meth) acrylate having four ethyleneoxy groups manufactured by Sartomer, and a trifunctional (meta) having three isobutyleneoxy groups. ) KAYARAD TPA-330 which is an acrylate.
  • radical polymerizable compound examples include urethane acrylates described in JP-B-48-41708, JP-A-51-37193, JP-B-2-32293, JP-B-2-16765, and the like.
  • Urethane compounds having an ethylene oxide skeleton described in JP-B-58-49860, JP-B-56-17654, JP-B-62-39417, and JP-B-62-39418 are also suitable. It is also preferable to use radically polymerizable compounds having an amino structure or a sulfide structure in the molecule described in JP-A-63-277653, JP-A-63-260909, and JP-A-1-105238. .
  • urethane oligomer UAS-10 UAB-140 (manufactured by Sanyo Kokusaku Pulp Co., Ltd.), UA-7200 (manufactured by Shin-Nakamura Chemical Co., Ltd.), DPHA-40H (manufactured by Nippon Kayaku Co., Ltd.), UA -306H, UA-306T, UA-306I, AH-600, T-600, AI-600 (Kyoeisha Chemical Co., Ltd.) and the like.
  • the content of the radical polymerizable compound is preferably 0.1 to 50% by mass with respect to the total solid content of the negative photosensitive composition.
  • the lower limit is more preferably 0.5% by mass or more, further preferably 1% by mass or more, and particularly preferably 5% by mass or more.
  • the upper limit is more preferably 45% by mass or less, and still more preferably 40% by mass or less.
  • One radically polymerizable compound may be used alone, or two or more kinds thereof may be used in combination. When using 2 or more types together, it is preferable that a sum total becomes the said range.
  • the negative photosensitive composition in the present invention preferably contains a photopolymerization initiator.
  • the photopolymerization initiator is not particularly limited as long as it has the ability to initiate polymerization of a radical polymerizable compound, and can be appropriately selected from known photopolymerization initiators.
  • a compound having photosensitivity to light in the ultraviolet region to the visible region is preferable.
  • generates an active radical may be sufficient.
  • the photopolymerization initiator examples include halogenated hydrocarbon derivatives (for example, compounds having a triazine skeleton and compounds having an oxadiazole skeleton), acylphosphine compounds such as acylphosphine oxide, hexaarylbiimidazoles, oxime derivatives, and the like. Oxime compounds, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, ketoxime ethers, aminoacetophenone compounds, hydroxyacetophenone compounds, and the like.
  • halogenated hydrocarbon derivatives for example, compounds having a triazine skeleton and compounds having an oxadiazole skeleton
  • acylphosphine compounds such as acylphosphine oxide, hexaarylbiimidazoles, oxime derivatives, and the like.
  • photopolymerization initiators from the viewpoint of exposure sensitivity, trihalomethyltriazine compounds, benzyldimethylketal compounds, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, triaryls.
  • Imidazole dimer onium compound, benzothiazole compound, benzophenone compound, acetophenone compound, cyclopentadiene-benzene-iron complex, halomethyloxadiazole compound, and 3-aryl substituted coumarin compound are preferred, oxime compound, ⁇ -hydroxyketone compound , ⁇ -aminoketone compounds and acylphosphine compounds are more preferred, and oxime compounds are even more preferred.
  • the photopolymerization initiator descriptions in paragraphs 0065 to 0111 of JP-A-2014-130173 can be referred to, and the contents thereof are incorporated in the present specification.
  • Examples of commercially available ⁇ -aminoketone compounds include IRGACURE-907, IRGACURE-369, and IRGACURE-379 (trade names: all manufactured by BASF).
  • Examples of commercially available ⁇ -hydroxyketone compounds include IRGACURE-184, DAROCUR-1173, IRGACURE-500, IRGACURE-2959, IRGACURE-127 (above, manufactured by BASF).
  • Examples of commercially available acylphosphine compounds include IRGACURE-819 and IRGACURE-TPO (above, manufactured by BASF).
  • Examples of the oxime compound include compounds described in JP-A No. 2001-233842, compounds described in JP-A No. 2000-80068, compounds described in JP-A No. 2006-342166, and JP-A No. 2016-21012. These compounds can be used.
  • oxime compound examples include, for example, 3-benzoyloxyiminobutan-2-one, 3-acetoxyiminobutan-2-one, 3-propionyloxyiminobutan-2-one, 2-acetoxyiminopentane-3- ON, 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3- (4-toluenesulfonyloxy) iminobutan-2-one, and 2-ethoxy And carbonyloxyimino-1-phenylpropan-1-one.
  • J.H. C. S. Perkin II (1979) pp. 1653-1660
  • TRONLY TR-PBG-304, TRONLY TR-PBG-309, TRONLY TR-PBG-305 (manufactured by CHANGZHOU TRONLY NEW ELECTRONIC MATERIALS CO., LTD), Adeka Arcs NCI-30 Adekaoptomer N-1919 (photopolymerization initiator 2 of JP2012-14052A) (manufactured by ADEKA Co., Ltd.) can be used.
  • an oxime compound having a fluorene ring can also be used as a photopolymerization initiator.
  • Specific examples of the oxime compound having a fluorene ring include compounds described in JP-A-2014-137466. This content is incorporated herein.
  • an oxime compound having a benzofuran skeleton can also be used as a photopolymerization initiator.
  • Specific examples include compounds OE-01 to OE-75 described in International Publication No. 2015/036910.
  • an oxime compound having a fluorine atom can also be used as a photopolymerization initiator.
  • oxime compound having a fluorine atom examples include compounds described in JP 2010-262028 A, compounds 24 and 36 to 40 described in JP-A-2014-500852, and JP-A 2013-164471. Compound (C-3). This content is incorporated herein.
  • an oxime compound having a nitro group can be used as a photopolymerization initiator.
  • the oxime compound having a nitro group is also preferably a dimer.
  • Specific examples of the oxime compound having a nitro group include compounds described in paragraphs 0031 to 0047 of JP2013-114249A, paragraphs 0008 to 0012 and 0070 to 0079 of JP2014-137466A, Examples include compounds described in paragraph Nos. 0007 to 0025 of No. 4223071, ADEKA ARKLES NCI-831 (manufactured by ADEKA Corporation), and the like.
  • oxime compounds that are preferably used in the present invention are shown below, but the present invention is not limited thereto.
  • the oxime compound is preferably a compound having a maximum absorption wavelength in a wavelength region of 350 nm to 500 nm, and more preferably a compound having a maximum absorption wavelength in a wavelength region of 360 nm to 480 nm.
  • the oxime compound is preferably a compound having high absorbance at 365 nm and 405 nm.
  • the molar extinction coefficient at 365 nm or 405 nm of the oxime compound is preferably 1,000 to 300,000, more preferably 2,000 to 300,000, and more preferably 5,000 to 200,000 from the viewpoint of sensitivity. 000 is particularly preferred.
  • the molar extinction coefficient of the compound can be measured using a known method. For example, it is preferable to measure with an ultraviolet-visible spectrophotometer (Cary-5 spectrophotometer manufactured by Varian) using an ethyl acetate solvent at a concentration of 0.01 g / L. You may use a photoinitiator in combination of 2 or more type as needed.
  • the content of the photopolymerization initiator is preferably 0.1 to 50% by mass, more preferably 0.5 to 30% by mass, and still more preferably 1 to 20% by mass with respect to the total solid content of the negative photosensitive composition. .
  • the negative photosensitive composition may contain only one type of photopolymerization initiator, or may contain two or more types. When two or more photopolymerization initiators are included, the total amount is preferably within the above range.
  • the negative photosensitive composition in the present invention can contain a colorant.
  • a negative photosensitive composition containing a colorant can be preferably used for forming colored pixels of a color filter.
  • the colorant may be either a dye or a pigment, or a combination of both.
  • the pigment include conventionally known various inorganic pigments or organic pigments.
  • the average particle diameter of the pigment is preferably from 0.01 to 0.1 ⁇ m, more preferably from 0.01 to 0.05 ⁇ m.
  • a pigment is preferable, and an organic pigment is more preferable.
  • inorganic pigments include black pigments such as carbon black and titanium black; metal oxides such as iron, cobalt, aluminum, cadmium, lead, copper, titanium, magnesium, chromium, zinc, and antimony, and metal complex salts.
  • Examples of the organic pigment include the following. Color Index (CI) Pigment Yellow 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 24, 31, 32, 34, 35, 35: 1, 36, 36: 1, 37, 37: 1, 40, 42, 43, 53, 55, 60, 61, 62, 63, 65, 73, 74, 77, 81, 83, 86, 93, 94, 95, 97, 98, 100, 101, 104, 106, 108, 109, 110, 113, 114, 115, 116, 117, 118, 119, 120, 123, 125, 126, 127, 128, 129, 137, 138, 139, 147, 148, 150, 151, 152, 153, 154, 155, 156, 161, 162, 164, 166, 167, 168, 169, 170, 171, 72,173,174,175,176,177,179,180,181,182,185,187,188,193,
  • I. Pigment Green 7, 10, 36, 37, 58, 59 above, green pigment
  • C. I. Pigment Violet 1,19,23,27,32,37,42,58,59 above, purple pigment
  • C. I. Pigment Blue 1, 2, 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, 16, 22, 60, 64, 66, 79, 80 above, blue pigment
  • a green pigment a halogenated zinc phthalocyanine pigment having an average number of halogen atoms in the molecule of 10 to 14, a bromine atom number of 8 to 12 and an average number of chlorine atoms of 2 to 5 is used. It is also possible to use it. Specific examples include the compounds described in International Publication No. 2015/118720.
  • the aluminum phthalocyanine compound which has a phosphorus atom can also be used as a blue pigment.
  • Specific examples include compounds described in paragraph numbers 0022 to 0030 of JP2012-247491A and paragraph number 0047 of JP2011-157478A. These organic pigments may be used alone or in various combinations.
  • Examples of the dye include, for example, JP-A 64-90403, JP-A 64-91102, JP-A-1-94301, JP-A-6-11614, US Pat. No. 4,808,501, US Pat. Examples thereof include dyes disclosed in Japanese Patent No. 5667920, JP-A-5-333207, JP-A-6-35183, JP-A-6-51115, JP-A-6-194828, and the like.
  • pyrazole azo compounds When classified as a chemical structure, pyrazole azo compounds, pyromethene compounds, anilinoazo compounds, triarylmethane compounds, anthraquinone compounds, benzylidene compounds, oxonol compounds, pyrazolotriazole azo compounds, pyridone azo compounds, cyanine compounds, phenothiazine compounds, pyrrolopyrazole azomethine compounds, etc. Is mentioned.
  • a dye multimer may be used as a colorant.
  • the dye multimer is preferably a dye used by being dissolved in a solvent, but may form particles.
  • the dye multimer is a particle, the dye multimer is dispersed in a solvent or the like.
  • the dye multimer in the particle state can be obtained, for example, by emulsion polymerization. Examples of the dye multimer in the particle state include compounds described in JP-A-2015-214682. Further, as the dye multimer, compounds described in JP2011-213925A, JP2013-041097A, JP2015-028144A, JP2015-030742A, and the like can also be used. .
  • quinophthalone compounds described in paragraph numbers 0011 to 0034 of JP2013-54339A quinophthalone compounds described in paragraph numbers 0013 to 0058 of JP2014-26228A, and the like can also be used. .
  • a metal azo pigment containing the compound represented by (II) can also be used.
  • R 1 and R 2 are each independently OH or NR 5 R 6
  • R 3 and R 4 are each independently ⁇ O or ⁇ NR 7
  • R 5 to R 7 are each Independently, it is a hydrogen atom or an alkyl group.
  • R 11 to R 13 each independently represents a hydrogen atom or an alkyl group.
  • the metal azo pigment preferably contains 95 to 100 mol% of Zn 2+ and Cu 2+ in total, more preferably 98 to 100 mol%, based on 1 mol of all metal ions of the metal azo pigment.
  • the content is preferably 99.9 to 100 mol%, more preferably 100 mol%.
  • the metal azo pigment may further contain a divalent or trivalent metal ion (hereinafter also referred to as other metal ions) other than Zn 2+ and Cu 2+ .
  • Other metal ions include Ni 2+ , Al 3+ , Fe 2+ , Fe 3+ , Co 2+ , Co 3+ , La 3+ , Ce 3+ , Pr 3+ , Nd 2+ , Nd 3+ , Sm 2+ , Sm 3+ , Eu 2+ , Eu 3+, Gd 3+, Tb 3+, Dy 3+, Ho 3+, Yb 2+, Yb 3+, Er 3+, Tm 3+, Mg 2+, Ca 2+, Sr 2+, Mn 2+, Y 3+, Sc 3+, Ti 2+, Ti 3+, Nb ⁇ 3+> , Mo ⁇ 2+> , Mo ⁇ 3+> , V ⁇ 2+> , V ⁇ 3+> , Zr ⁇ 2+>
  • the amount of these other metal ions is preferably 5 mol% or less, more preferably 2 mol% or less, and more preferably 0.1 mol%, based on 1 mol of all metal ions of the metal azo pigment. More preferably, it is as follows.
  • an adduct is preferably formed of a metal azo compound composed of the anion and metal ion and a compound represented by the formula (II).
  • An adduct is understood to mean a molecular assembly. The bond between these molecules may be, for example, due to intermolecular interaction, may be due to Lewis acid-base interaction, or may be due to coordination bond or chain bond.
  • the adduct may have a structure such as an inclusion compound (clathrate) in which a guest molecule is incorporated in a lattice constituting a host molecule.
  • the adduct may have a structure such as a composite interlayer crystal (including an interstitial compound).
  • a composite interlayer crystal is a chemical non-stoichiometric crystalline compound composed of at least two elements.
  • the adduct may be a mixed substitution crystal in which two substances form a joint crystal, and atoms of the second component are located at regular lattice positions of the first component.
  • the metal azo pigment may be a physical mixture or a chemical composite compound. Preferably, it is a physical mixture.
  • the physical mixture include the following 1) and 2).
  • the content of the colorant is preferably 10% by mass or more, more preferably 15% by mass or more, and still more preferably 20% by mass or more based on the total solid content of the negative photosensitive composition.
  • the negative photosensitive composition in the present invention can contain transparent particles.
  • a negative photosensitive composition containing transparent particles can be preferably used for forming white (colorless) pixels of a color filter.
  • the transparent particles are at least one selected from Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, Nb, In, P and S.
  • oxide particles containing at least one element selected from Ti, Zr, Sn, Al, and Si are preferable.
  • titanium dioxide, zirconium dioxide, silicon dioxide, zinc oxide, aluminum oxide, tungsten oxide (including composite oxides containing tungsten such as cesium tungsten oxide), niobium oxide, copper oxide, germanium oxide, indium oxide examples thereof include particles of tin oxide and magnesium oxide.
  • particles of titanium dioxide, tin oxide, indium oxide and zirconium dioxide are preferable, and particles of titanium dioxide and zirconium dioxide are more preferable.
  • the titanium oxide include rutile type titanium oxide, anatase type titanium oxide, and amorphous type titanium oxide, and rutile type titanium oxide is preferable.
  • the oxide is preferably surface-treated with a surface treatment agent.
  • the surface treatment agent include inorganic compounds and organic compounds. An inorganic compound and an organic compound may be used in combination.
  • the surface treatment agent include polyol, aluminum oxide, aluminum hydroxide, amorphous silica, hydrous silica, alkanolamine, stearic acid, organosiloxane, zirconium oxide, hydrogen dimethicone, silane coupling agent, titanate coupling agent. Etc.
  • the shape of the transparent particles is not particularly limited.
  • isotropic shapes for example, spherical shape, polyhedral shape, etc.
  • anisotropic shapes for example, needle shape, rod shape, plate shape, etc.
  • irregular shapes and the like can be mentioned.
  • the weight average diameter of the primary particles of the transparent particles is preferably 150 nm or less, more preferably 100 nm or less, and still more preferably 80 nm or less. There is no particular lower limit, and it is preferably 1 nm or more.
  • the measuring method of the weight average diameter of the transparent particles is in accordance with JIS K 0062: 1992.
  • the refractive index of the transparent particles at a wavelength of 500 nm is preferably 1.64 or more, more preferably 1.8 to 3.0, and still more preferably 1.8 to 2.8.
  • the method for measuring the refractive index of the transparent particles is in accordance with JIS K 0062: 1992.
  • Transparent particles may be commercially available.
  • titanium dioxide includes TTO series (TTO-51 (A), TTO-51 (C), TTO-55 (C), etc.), TTO-S, V series (TTO-S-1, TTO-S-). 2, TTO-V-3, etc. (above, trade name, manufactured by Ishihara Sangyo Co., Ltd.), MT series (MT-01, MT-05, etc.) (trade name, manufactured by Teika Co., Ltd.), and the like.
  • Examples of commercially available products of zirconium oxide, silicon dioxide, zinc oxide, aluminum oxide, cesium tungsten oxide, niobium oxide, tin oxide, magnesium oxide, and indium oxide include products described in Examples described later.
  • the content of the transparent particles is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more with respect to the total solid content of the negative photosensitive composition.
  • the upper limit is preferably 80% by mass or less, more preferably 70% by mass or less, and further preferably 60% by mass or less.
  • the negative photosensitive composition preferably contains a resin.
  • the resin is blended, for example, for the purpose of dispersing particles such as pigments in the composition and the use of a binder.
  • a resin that is mainly used for dispersing particles such as pigment is also referred to as a dispersant.
  • a dispersant such use of the resin is an example, and the resin can be used for purposes other than such use.
  • the resin content is preferably 1 to 95% by mass with respect to the total solid content of the negative photosensitive composition.
  • the lower limit is more preferably 5% by mass or more, and further preferably 10% by mass or more.
  • the upper limit is more preferably 90% by mass or less, and still more preferably 85% by mass or less.
  • the negative photosensitive composition in the present invention preferably contains a dispersant as a resin.
  • a dispersant is preferably included.
  • the dispersant include an acidic dispersant (acidic resin) and a basic dispersant (basic resin).
  • the acidic dispersant represents a resin in which the amount of acid groups is larger than the amount of basic groups.
  • the acidic dispersant (acidic resin) is preferably a resin in which the amount of acid groups occupies 70 mol% or more when the total amount of acid groups and basic groups is 100 mol%. A resin consisting only of acid groups is more preferred.
  • the acid group possessed by the acidic dispersant (acidic resin) is preferably a carboxyl group.
  • the acid value of the acidic dispersant (acidic resin) is preferably 5 to 105 mgKOH / g.
  • the basic dispersant (basic resin) represents a resin in which the amount of basic groups is larger than the amount of acid groups.
  • the basic dispersant (basic resin) is preferably a resin in which the amount of basic groups exceeds 50 mol% when the total amount of acid groups and basic groups is 100 mol%.
  • the basic group possessed by the basic dispersant is preferably an amine.
  • the dispersant examples include a polymer dispersant [for example, polyamidoamine and its salt, polycarboxylic acid and its salt, high molecular weight unsaturated acid ester, modified polyurethane, modified polyester, modified poly (meth) acrylate, (meth). Acrylic copolymer, naphthalenesulfonic acid formalin condensate], polyoxyethylene alkyl phosphate ester, polyoxyethylene alkylamine, alkanolamine and the like.
  • a polymer dispersant for example, polyamidoamine and its salt, polycarboxylic acid and its salt, high molecular weight unsaturated acid ester, modified polyurethane, modified polyester, modified poly (meth) acrylate, (meth).
  • Acrylic copolymer, naphthalenesulfonic acid formalin condensate] polyoxyethylene alkyl phosphate ester, polyoxyethylene alkylamine, alkanolamine and the like.
  • Polymer dispersants can be further classified into linear polymers, terminal-modified polymers, graft polymers, and block polymers based on their structures.
  • the polymer dispersant acts to adsorb on the surface of the pigment and prevent reaggregation. Therefore, a terminal-modified polymer, a graft polymer, and a block polymer having an anchor site to the pigment surface can be cited as preferred structures.
  • a dispersant described in paragraph numbers 0028 to 0124 of JP2011-070156A and a dispersant described in JP2007-277514A are also preferably used. These contents are incorporated herein.
  • a graft copolymer may be used as the resin (dispersant). Details of the graft copolymer can be referred to the descriptions in paragraphs 0025 to 0094 of JP2012-255128A, the contents of which are incorporated herein. Specific examples of the graft copolymer include the following resins and resins described in paragraph numbers 0072 to 0094 of JP 2012-255128 A, the contents of which are incorporated herein.
  • an oligoimine dispersant containing a nitrogen atom in at least one of the main chain and the side chain can be used.
  • the oligoimine-based dispersant has a repeating unit having a partial structure X having a functional group of pKa14 or less and a side chain containing a side chain Y having 40 to 10,000 atoms, and has a main chain and a side chain.
  • a resin having at least one basic nitrogen atom is preferred.
  • the basic nitrogen atom is not particularly limited as long as it is a basic nitrogen atom.
  • oligoimine-based dispersant the description in paragraphs 0102 to 0174 of JP 2012-255128 A can be referred to, and the above contents are incorporated in this specification.
  • Specific examples of the oligoimine dispersant include resins described in paragraph numbers 0168 to 0174 of JP 2012-255128 A, for example.
  • a commercially available product can also be used as the dispersant.
  • the product described in paragraph No. 0129 of JP2012-137564A can be used as a dispersant.
  • the resin described in the column of the dispersant can be used for purposes other than the dispersant. For example, it can be used as a binder.
  • the content of the dispersing agent is preferably 1 to 200 parts by mass with respect to 100 parts by mass of the pigment.
  • the lower limit is preferably 5 parts by mass or more, and more preferably 10 parts by mass or more.
  • the upper limit is preferably 150 parts by mass or less, and more preferably 100 parts by mass or less.
  • the negative photosensitive composition in this invention can contain alkali-soluble resin as resin. By containing an alkali-soluble resin, developability and pattern formability are improved.
  • the alkali-soluble resin can also be used as a dispersant or a binder.
  • the alkali-soluble resin can be appropriately selected from resins having a group that promotes alkali dissolution.
  • the group that promotes alkali dissolution include a carboxyl group, a phosphate group, a sulfo group, and a phenolic hydroxyl group, and a carboxyl group is preferable. Only one type of acid group may be included in the alkali-soluble resin, or two or more types may be used.
  • the weight average molecular weight (Mw) of the alkali-soluble resin is preferably 5,000 to 100,000.
  • the number average molecular weight (Mn) of the alkali-soluble resin is preferably 1,000 to 20,000.
  • the alkali-soluble resin is preferably a polyhydroxystyrene resin, a polysiloxane resin, an acrylic resin, an acrylamide resin, or an acrylic / acrylamide copolymer resin from the viewpoint of heat resistance. Further, from the viewpoint of developing property control, an acrylic resin, an acrylamide resin, and an acrylic / acrylamide copolymer resin are preferable.
  • the alkali-soluble resin is preferably a polymer having a carboxyl group in the side chain.
  • a copolymer having a repeating unit derived from a monomer such as methacrylic acid, acrylic acid, itaconic acid, crotonic acid, maleic acid, 2-carboxyethyl (meth) acrylic acid, vinyl benzoic acid, partially esterified maleic acid examples thereof include alkali-soluble phenol resins such as novolac resins, acidic cellulose derivatives having a carboxyl group in the side chain, and polymers obtained by adding an acid anhydride to a polymer having a hydroxyl group.
  • a copolymer of (meth) acrylic acid and another monomer copolymerizable with (meth) acrylic acid is suitable as the alkali-soluble resin.
  • examples of other monomers copolymerizable with (meth) acrylic acid include alkyl (meth) acrylates, aryl (meth) acrylates, and vinyl compounds.
  • alkyl (meth) acrylate and aryl (meth) acrylate methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, pentyl (meth) acrylate, Hexyl (meth) acrylate, octyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, tolyl (meth) acrylate, naphthyl (meth) acrylate, cyclohexyl (meth) acrylate, glycidyl methacrylate, tetrahydrofurfuryl methacrylate, etc.
  • Examples of the vinyl compound include styrene, ⁇ -methylstyrene, vinyl toluene, acrylonitrile, vinyl acetate, N-vinyl pyrrolidone, polystyrene macromonomer, polymethyl methacrylate macromonomer, and the like.
  • Examples of other monomers include N-substituted maleimide monomers described in JP-A-10-300922, such as N-phenylmaleimide and N-cyclohexylmaleimide. Only one kind of these other monomers copolymerizable with (meth) acrylic acid may be used, or two or more kinds may be used.
  • alkali-soluble resin examples include benzyl (meth) acrylate / (meth) acrylic acid copolymer, benzyl (meth) acrylate / (meth) acrylic acid / 2-hydroxyethyl (meth) acrylate copolymer, and benzyl (meth) acrylate.
  • a multi-component copolymer composed of / (meth) acrylic acid / other monomers can be preferably used.
  • An alkali-soluble resin having a polymerizable group can also be used as the alkali-soluble resin.
  • the polymerizable group include a (meth) allyl group and a (meth) acryloyl group.
  • the alkali-soluble resin having a polymerizable group an alkali-soluble resin having a polymerizable group in the side chain is useful.
  • Commercially available alkali-soluble resins having a polymerizable group include Dianal NR series (manufactured by Mitsubishi Rayon Co., Ltd.), Photomer 6173 (carboxyl group-containing polyurethane acrylate oligomer, manufactured by Diamond Shamrock Co., Ltd.), Biscort R-264.
  • KS resist 106 both manufactured by Osaka Organic Chemical Industry Co., Ltd.
  • Cyclomer P series for example, ACA230AA
  • Plaxel CF200 series both manufactured by Daicel Corporation
  • Ebecryl 3800 manufactured by Daicel UCB Corporation
  • ACRYCURE RD-F8 manufactured by Nippon Shokubai Co., Ltd.
  • DP-1305 manufactured by Fuji Fine Chemicals Co., Ltd.
  • the alkali-soluble resin includes at least one compound selected from the compound represented by the following formula (ED1) and the compound represented by the formula (1) in JP 2010-168539 A (hereinafter referred to as “ether dimer”). It is also preferable to include a polymer obtained by polymerizing a monomer component including “.
  • R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 25 carbon atoms which may have a substituent.
  • ether dimer for example, paragraph number 0317 of JP2013-29760A can be referred to, and the contents thereof are incorporated in the present specification. Only one type of ether dimer may be used, or two or more types may be used.
  • Examples of the polymer obtained by polymerizing a monomer component containing an ether dimer include polymers having the following structure.
  • the alkali-soluble resin may contain a repeating unit derived from a compound represented by the following formula (X).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkylene group having 2 to 10 carbon atoms
  • R 3 has 1 to 20 carbon atoms which may contain a hydrogen atom or a benzene ring.
  • n represents an integer of 1 to 15.
  • the alkylene group of R 2 preferably has 2 to 3 carbon atoms.
  • the carbon number of the alkyl group of R 3 is preferably 1-10.
  • the alkyl group of R 3 may include a benzene ring.
  • Examples of the alkyl group containing a benzene ring represented by R 3 include a benzyl group and a 2-phenyl (iso) propyl group.
  • the acid value of the alkali-soluble resin is preferably 30 to 500 mgKOH / g.
  • the lower limit is more preferably 50 mgKOH / g or more, and still more preferably 70 mgKOH / g or more.
  • the upper limit is more preferably 400 mgKOH / g or less, still more preferably 200 mgKOH / g or less, still more preferably 150 mgKOH / g or less, and particularly preferably 120 mgKOH / g or less.
  • the content of the alkali-soluble resin is preferably 1 to 95% by mass with respect to the total solid content of the negative photosensitive composition.
  • the lower limit is more preferably 2% by mass or more, and further preferably 3% by mass or more.
  • the upper limit is more preferably 93% by mass or less, and still more preferably 90% by mass or less.
  • the negative photosensitive composition of the present invention may contain only one kind of alkali-soluble resin, or may contain two or more kinds. When two or more types are included, the total is preferably within the above range.
  • the negative photosensitive composition in the present invention may contain a resin (also referred to as other resin) other than the resin described above in the column of the dispersant and the alkali-soluble resin.
  • a resin also referred to as other resin
  • other resins include (meth) acrylic resin, (meth) acrylamide resin, ene / thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyphenylene resin, and polyarylene ether.
  • Examples thereof include phosphine oxide resins, polyimide resins, polyamideimide resins, polyolefin resins, cyclic olefin resins, polyester resins, styrene resins, and siloxane resins.
  • Examples of the polyimide resin include resins described in JP-A-2014-201695, and the contents thereof are incorporated herein. As for other resins, one kind of these resins may be used alone, or two or more kinds may be mixed and used.
  • the negative photosensitive composition can also contain a compound having an epoxy group (hereinafter also referred to as an epoxy compound).
  • the epoxy compound is preferably a compound having 1 to 100 epoxy groups in one molecule.
  • the lower limit is more preferably 2 or more.
  • the upper limit may be 10 or less, and may be 5 or less.
  • the epoxy compound may be a low molecular compound (for example, a molecular weight of less than 1000) or a high molecular compound (for example, a molecular weight of 1000 or more, and in the case of a polymer, the weight average molecular weight is 1000 or more).
  • the weight average molecular weight of the epoxy compound is preferably 200 to 100,000, and more preferably 500 to 50,000.
  • the upper limit of the weight average molecular weight is more preferably 10,000 or less, still more preferably 5000 or less, and even more preferably 3000 or less.
  • the epoxy compounds are described in paragraph numbers 0034 to 0036 of JP2013-011869A, paragraph numbers 0147 to 0156 of JP2014043556A, and paragraphs 0085 to 0092 of JP2014089408A. Compounds can also be used. These contents are incorporated herein.
  • Examples of the bisphenol F type epoxy resin include jER806, jER807, jER4004, jER4005, jER4007, jER4010 (above, manufactured by Mitsubishi Chemical Corporation), EPICLON830, EPICLON835 (above, made by DIC Corporation), LCE-21, RE-602S. (Nippon Kayaku Co., Ltd.) and the like.
  • phenol novolac type epoxy resins jER152, jER154, jER157S70, jER157S65 (Mitsubishi Chemical Co., Ltd.), EPICLON N-740, EPICLON N-770, EPICLON N-775 (above, DIC Corporation), etc. Is mentioned.
  • Cresol novolac type epoxy resins include EPICLON N-660, EPICLON N-665, EPICLON N-670, EPICLON N-673, EPICLON N-680, EPICLON N-690, EPICLON N-695 (above, manufactured by DIC Corporation) ), EOCN-1020 (manufactured by Nippon Kayaku Co., Ltd.), and the like.
  • Aliphatic epoxy resins include ADEKA RESIN EP-4080S, EP-4085S, EP-4088S (manufactured by ADEKA), Celoxide 2021P, Celoxide 2081, Celoxide 2083, Celoxide 2085, EHPE3150, EPOLEAD PB 3600, PB 4700 (above, manufactured by Daicel Corporation), Denacol EX-212L, EX-214L, EX-216L, EX-321L, EX-850L (above, manufactured by Nagase ChemteX Corporation), and the like.
  • ADEKA RESIN EP-4000S, EP-4003S, EP-4010S, EP-4010S, EP-4011S (above, manufactured by ADEKA Corporation), NC-2000, NC-3000, NC-7300, XD-1000, EPPN-501, EPPN-502 (above, manufactured by ADEKA Corporation), jER1031S (manufactured by Mitsubishi Chemical Corporation), and the like.
  • the content of the epoxy compound is preferably 0.1 to 40% by mass relative to the total solid content of the negative photosensitive composition.
  • the lower limit is more preferably 0.5% by mass or more, and further preferably 1% by mass or more.
  • the upper limit is more preferably 30% by mass or less, and still more preferably 20% by mass or less.
  • One epoxy compound may be used alone, or two or more epoxy compounds may be used in combination. When using 2 or more types together, it is preferable that a sum total becomes the said range.
  • the negative photosensitive composition preferably contains a solvent.
  • the solvent is preferably an organic solvent.
  • a solvent will not be restrict
  • organic solvents include the following organic solvents.
  • esters include ethyl acetate, n-butyl acetate, isobutyl acetate, cyclohexyl acetate, amyl formate, isoamyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, alkyloxyalkyl acetate (Eg, methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate (eg, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate)), alkyl 3-alkyloxypropionate Esters (eg, methyl 3-alkyloxypropionate, ethyl 3-alkyloxypropionate,
  • ethers include diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol Examples thereof include monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate and the like.
  • ketones examples include methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, and 3-heptanone.
  • aromatic hydrocarbons include toluene and xylene.
  • aromatic hydrocarbons (benzene, toluene, xylene, ethylbenzene, etc.) as a solvent may be better reduced for environmental reasons (for example, 50 mass ppm or less with respect to the total amount of organic solvent, 10 Or less than 1 ppm by mass).
  • Organic solvents may be used alone or in combination of two or more.
  • two or more organic solvents are used in combination, the above-mentioned methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl cellosolve acetate, ethyl lactate, diethylene glycol dimethyl ether, butyl acetate, methyl 3-methoxypropionate , 2-heptanone, cyclohexanone, ethyl carbitol acetate, butyl carbitol acetate, propylene glycol methyl ether and propylene glycol methyl ether acetate.
  • the organic solvent preferably has a peroxide content of 0.8 mmol / L or less, and more preferably contains substantially no peroxide. Further, it is preferable to use an organic solvent having a low metal content.
  • the metal content of the organic solvent is preferably 10 mass ppb (parts per billion) or less. If necessary, an organic solvent having a metal content of mass ppt (parts per trill) level may be used.
  • Such a high-purity solvent is provided, for example, by Toyo Gosei Co., Ltd. (Chemical Industry Daily, 2015) November 13).
  • the content of the solvent is preferably such that the total solid content of the negative photosensitive composition is 5 to 80% by mass.
  • the lower limit is preferably 10% by mass or more, more preferably 15% by mass or more, and still more preferably 20% by mass or more.
  • the upper limit is preferably 60% by mass or less, more preferably 50% by mass or less, and still more preferably 40% by mass or less.
  • the negative photosensitive composition may contain a curing accelerator for the purpose of improving the hardness of the pattern and lowering the curing temperature.
  • the curing accelerator include thiol compounds.
  • the thiol compound examples include polyfunctional thiol compounds having two or more mercapto groups in the molecule.
  • the polyfunctional thiol compound may be added for the purpose of improving stability, odor, resolution, developability, adhesion and the like.
  • the polyfunctional thiol compound is preferably a secondary alkanethiol, and more preferably a compound having a structure represented by the following formula (T1).
  • T1 (In the formula (T1), n represents an integer of 2 to 4, and L represents a divalent to tetravalent linking group.)
  • L is preferably an aliphatic group having 2 to 12 carbon atoms.
  • n is 2 and L is an alkylene group having 2 to 12 carbon atoms.
  • Specific examples of the polyfunctional thiol compound include compounds represented by the following structural formulas (T2) to (T4), and a compound represented by the formula (T2) is preferable.
  • One thiol compound may be used, or two or more thiol compounds may be used in combination.
  • Curing accelerators include methylol compounds (for example, compounds exemplified as a crosslinking agent in paragraph No. 0246 of JP-A-2015-34963), amines, phosphonium salts, amidine salts, amide compounds (for example, JP-A-2013-41165, curing agent described in paragraph No. 0186), base generator (for example, ionic compound described in JP-A-2014-55114), isocyanate compound (for example, JP-A-2012-150180) A compound described in paragraph No.
  • an alkoxysilane compound for example, an alkoxysilane compound having an epoxy group described in JP2011-255304A
  • an onium salt compound for example, JP2015-34963A
  • an acid generator Illustrated as an acid generator in paragraph 0216 Compounds, compounds described in JP-A-2009-180949) or the like can be used.
  • the content of the curing accelerator is preferably 0.3 to 8.9% by mass relative to the total solid content of the negative photosensitive composition. It is more preferably 8 to 6.4% by mass.
  • the negative photosensitive composition in the present invention contains a pigment
  • the negative photosensitive composition preferably further contains a pigment derivative.
  • the pigment derivative include a compound having a structure in which a part of the chromophore is substituted with an acidic group, a basic group, or a phthalimidomethyl group.
  • the chromophores constituting the pigment derivative include quinoline skeleton, benzimidazolone skeleton, diketopyrrolopyrrole skeleton, azo skeleton, phthalocyanine skeleton, anthraquinone skeleton, quinacridone skeleton, dioxazine skeleton, and perinone skeleton.
  • a sulfo group and a carboxyl group are preferable, and a sulfo group is more preferable.
  • a basic group which a pigment derivative has an amino group is preferable and a tertiary amino group is more preferable.
  • Specific examples of the pigment derivative include compounds described in Examples described later. Further, compounds described in paragraph numbers 0162 to 0183 of JP2011-252065A can also be mentioned, the contents of which are incorporated herein.
  • the content of the pigment derivative is preferably 1 to 30 parts by mass, more preferably 3 to 20 parts by mass with respect to 100 parts by mass of the pigment. Only one pigment derivative may be used, or two or more pigment derivatives may be used in combination.
  • the negative photosensitive composition can contain a surfactant.
  • Various surfactants such as fluorosurfactants, nonionic surfactants, cationic surfactants, anionic surfactants, and silicone surfactants can be used as surfactants, further improving coatability.
  • a fluorosurfactant is preferable because it can be used.
  • the fluorine content in the fluorosurfactant is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, and still more preferably 7 to 25% by mass.
  • a fluorine-based surfactant having a fluorine content within the above range is effective in terms of uniformity of coating film thickness and liquid-saving properties.
  • fluorosurfactant examples include Megafac F171, F172, F173, F176, F177, F141, F142, F143, F144, R30, F437, F475, F479, F482, F554, F780 (and above, DIC Corporation).
  • fluorine-based surfactant compounds described in paragraph numbers 0015 to 0158 of JP-A No. 2015-117327 and compounds described in paragraph numbers of 0117 to 0132 of JP-A No. 2011-132503 can also be used.
  • a block polymer can also be used as the fluorosurfactant, and specific examples thereof include compounds described in JP-A-2011-89090.
  • the fluorine-based surfactant has a molecular structure having a functional group containing a fluorine atom, and an acrylic compound in which the fluorine atom is volatilized by cleavage of the functional group containing the fluorine atom when heat is applied can be suitably used.
  • a fluorosurfactant include Megafac DS series manufactured by DIC Corporation (Chemical Industry Daily, February 22, 2016) (Nikkei Sangyo Shimbun, February 23, 2016). -21, and these may be used.
  • the fluorine-based surfactant has a repeating unit derived from a (meth) acrylate compound having a fluorine atom and 2 or more (preferably 5 or more) alkyleneoxy groups (preferably ethyleneoxy group or propyleneoxy group) (meta).
  • a fluorine-containing polymer compound containing a repeating unit derived from an acrylate compound can also be preferably used, and the following compounds are also exemplified as the fluorine-based surfactant used in the present invention.
  • % indicating the ratio of repeating units is mol%.
  • the weight average molecular weight of the above compound is preferably 3,000 to 50,000, for example, 14,000.
  • a fluorine-containing polymer having a group having an ethylenically unsaturated bond in the side chain can also be used. Specific examples thereof include the compounds described in paragraph numbers 0050 to 0090 and paragraph numbers 0289 to 0295 of JP2010-164965A. Examples of commercially available products include Megafac RS-101, RS-102, RS-718-K, and RS-72-K manufactured by DIC Corporation.
  • Nonionic surfactants include glycerol, trimethylolpropane, trimethylolethane and their ethoxylates and propoxylates (for example, glycerol propoxylate, glycerol ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, Polyoxyethylene oleyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester, Pluronic L10, L31, L61, L62, 10R5, 17R2, 25R2 (BASF ), Tetronic 304, 701, 704, 901, 904, 150R1 (BA F), Solsperse 20000 (Nippon Lubrizol Corporation), NCW-101, NCW-1001, NCW-1002 (Wako Pure Chemical Industries, Ltd.), Pionein D-6112, D-
  • cationic surfactants examples include organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), (meth) acrylic acid (co) polymer polyflow No. 75, no. 90, no. 95 (manufactured by Kyoeisha Chemical Co., Ltd.), W001 (manufactured by Yusho Co., Ltd.) and the like.
  • anionic surfactant examples include W004, W005, W017 (manufactured by Yusho Co., Ltd.), Sandet BL (manufactured by Sanyo Chemical Co., Ltd.), and the like.
  • silicone-based surfactants include Torre Silicone DC3PA, Torre Silicone SH7PA, Torre Silicone DC11PA, Torresilicone SH21PA, Torree Silicone SH28PA, Torree Silicone SH29PA, Torree Silicone SH30PA, Torree Silicone SH8400 (above, Toray Dow Corning Co., Ltd.) )), TSF-4440, TSF-4300, TSF-4445, TSF-4460, TSF-4442 (above, manufactured by Momentive Performance Materials), KP341, KF6001, KF6002 (above, manufactured by Shin-Etsu Silicone Co., Ltd.) , BYK307, BYK323, BYK330 (above, manufactured by BYK Chemie) and the like.
  • the content of the surfactant is preferably from 0.001 to 0.2% by mass, more preferably from 0.0015 to 0.1% by mass, based on the total solid content of the negative photosensitive composition. More preferred is 0.05% by mass. Only one type of surfactant may be used, or two or more types may be combined. When two or more types are included, the total amount is preferably within the above range.
  • the negative photosensitive composition can contain a silane coupling agent.
  • the silane coupling agent means a silane compound having a hydrolyzable group and other functional groups.
  • the hydrolyzable group refers to a substituent that is directly bonded to a silicon atom and can form a siloxane bond by a hydrolysis reaction and / or a condensation reaction. Examples of the hydrolyzable group include a halogen atom, an alkoxy group, and an acyloxy group.
  • the silane coupling agent is composed of at least one group selected from a vinyl group, an epoxy group, a styrene group, a methacryl group, an amino group, an isocyanurate group, a ureido group, a mercapto group, a sulfide group, and an isocyanate group, and an alkoxy group.
  • a silane compound having Specific examples of the silane coupling agent include, for example, N- ⁇ -aminoethyl- ⁇ -aminopropylmethyldimethoxysilane (KBM-602, manufactured by Shin-Etsu Chemical Co., Ltd.), N- ⁇ -aminoethyl- ⁇ -aminopropyltri Methoxysilane (Shin-Etsu Chemical Co., KBM-603), N- ⁇ -aminoethyl- ⁇ -aminopropyltriethoxysilane (Shin-Etsu Chemical Co., KBE-602), ⁇ -aminopropyltrimethoxysilane (Shin-Etsu Chemical) Industrial company KBM-903), ⁇ -aminopropyltriethoxysilane (Shin-Etsu Chemical Co., KBE-903), 3-methacryloxypropyltrimethoxysilane (Shin-Etsu Chemical Co., KBM-503)
  • the content of the silane coupling agent is preferably 0.001 to 20% by mass with respect to the total solid content of the negative photosensitive composition. 0.01 to 10% by mass is more preferable, and 0.1 to 5% by mass is particularly preferable.
  • the negative photosensitive composition may contain only one kind of silane coupling agent, or may contain two or more kinds. When two or more silane coupling agents are included, the total amount is preferably within the above range.
  • the negative photosensitive composition can contain a polymerization inhibitor.
  • Polymerization inhibitors include hydroquinone, p-methoxyphenol, di-t-butyl-p-cresol, pyrogallol, t-butylcatechol, benzoquinone, 4,4′-thiobis (3-methyl-6-t-butylphenol), 2,2′-methylenebis (4-methyl-6-t-butylphenol), N-nitrosophenylhydroxyamine salt (ammonium salt, primary cerium salt, etc.) and the like.
  • the content of the polymerization inhibitor is preferably 0.01 to 5% by mass with respect to the total solid content of the negative photosensitive composition.
  • the negative photosensitive composition may contain only one type of polymerization inhibitor, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • the negative photosensitive composition may contain an ultraviolet absorber.
  • the ultraviolet absorber is preferably a conjugated diene compound.
  • Examples of commercially available ultraviolet absorbers include UV-503 (manufactured by Daito Chemical Co., Ltd.).
  • an aminodiene compound, a salicylate compound, a benzophenone compound, a benzotriazole compound, an acrylonitrile compound, a triazine compound, or the like can be used. Specific examples thereof include compounds described in JP2013-68814A.
  • a benzotriazole compound you may use the MYUA series (Chemical Industry Daily, February 1, 2016) made from Miyoshi oil and fat.
  • the content of the ultraviolet absorber is preferably 0.1 to 10% by mass, based on the total solid content of the negative photosensitive composition, Is more preferably from 5 to 5% by weight, particularly preferably from 0.1 to 3% by weight. Moreover, only 1 type may be used for an ultraviolet absorber and 2 or more types may be used for it. When using 2 or more types, it is preferable that a total amount becomes the said range.
  • additives for example, fillers, adhesion promoters, antioxidants, anti-aggregation agents, and the like can be blended with the negative photosensitive composition as necessary.
  • additives include additives described in JP-A-2004-295116, paragraphs 0155 to 0156, the contents of which are incorporated herein.
  • antioxidant for example, phenol compounds, phosphorus compounds (for example, compounds described in paragraph No. 0042 of JP2011-90147A), thioether compounds, and the like can be used.
  • the negative photosensitive composition can contain a sensitizer and a light stabilizer described in paragraph No. 0078 of JP-A No. 2004-295116 and a thermal polymerization inhibitor described in paragraph No. 0081 of the publication.
  • the negative photosensitive composition may contain a metal element, but from the viewpoint of suppressing the occurrence of defects, the inclusion of a Group 2 element (calcium, magnesium, etc.) in the negative photosensitive composition
  • the amount is preferably 50 ppm by mass or less, more preferably 0.01 to 10 ppm by mass.
  • the total amount of the inorganic metal salt in the negative photosensitive composition is preferably 100 ppm by mass or less, more preferably 0.5 to 50 ppm by mass.
  • a negative photosensitive composition can be prepared by mixing each component mentioned above.
  • the components constituting the negative photosensitive composition may be blended together, or the components may be blended sequentially after being dissolved or dispersed in an organic solvent.
  • a negative photosensitive composition contains a pigment, it is preferable to include the process of dispersing a pigment.
  • the mechanical force used for dispersing the pigment includes compression, squeezing, impact, shearing, cavitation and the like.
  • any filter can be used without particular limitation as long as it is a filter that has been conventionally used for filtration.
  • fluororesin such as polytetrafluoroethylene (PTFE), polyamide resin such as nylon (eg nylon-6, nylon-6,6), polyolefin resin such as polyethylene and polypropylene (PP) (high density, ultra high molecular weight)
  • PP polypropylene
  • a filter using a material such as polyolefin resin.
  • polypropylene including high density and ultra high molecular weight high density polypropylene
  • nylon are preferable.
  • the pore size of the filter is suitably about 0.01 to 7.0 ⁇ m, preferably about 0.01 to 3.0 ⁇ m, more preferably about 0.05 to 0.5 ⁇ m.
  • a filter using a fiber-like filter medium as the filter.
  • the fiber-shaped filter medium include polypropylene fiber, nylon fiber, and glass fiber.
  • filters using fiber-shaped filter media include filter cartridges of SBP type series (SBP008, etc.), TPR type series (TPR002, TPR005, etc.), and SHPX type series (SHPX003, etc.) manufactured by Loki Techno. .
  • filtration with each filter may be performed only once or may be performed twice or more.
  • the pore diameter here can refer to the nominal value of the filter manufacturer.
  • a commercially available filter for example, select from various filters provided by Nippon Pole Co., Ltd. (DFA4201NXEY, etc.), Advantech Toyo Co., Ltd., Japan Integris Co., Ltd. (formerly Nihon Microlith Co., Ltd.) or KITZ Micro Filter Co., Ltd. can do.
  • filtration with a 1st filter may be performed only with a dispersion liquid, and may filter with a 2nd filter, after mixing another component.
  • a filter formed of the same material as the first filter can be used.
  • the water content of the negative photosensitive composition is usually 3% by mass or less, preferably 0.01 to 1.5% by mass, and more preferably 0.1 to 1.0% by mass.
  • the water content can be measured by the Karl Fischer method.
  • the color filter manufacturing method of the present invention includes the above-described pattern manufacturing method of the present invention.
  • the type of pixel in the color filter varies depending on the application, and examples thereof include colored pixels such as red, green, blue, magenta, yellow, and cyan, white (colorless) pixels, and black pixels.
  • the color filter may further include an infrared cut filter and a red transmission filter.
  • the color filter may be a color filter composed of single color pixels, but is preferably a color filter having a plurality of color pixels. In a color filter having a plurality of color pixels, it is preferable that pixels of different colors are adjacent to each other.
  • the pattern manufacturing method of the present invention the allowable range (margin) of exposure energy can be widened, so that a pattern as designed can be easily formed even if the exposure energy varies during exposure. For this reason, the pattern manufacturing method of the present invention is particularly effective when manufacturing a color filter having a plurality of color pixels.
  • the color filter manufacturing method of the present invention is more effective when manufacturing a color filter having a small pixel size.
  • the width of the pixel is not particularly limited, and is preferably, for example, 5 ⁇ m or less, more preferably 3 ⁇ m or less, further preferably 2 ⁇ m or less, still more preferably 1 ⁇ m or less, and 0.8 ⁇ m. It is particularly preferred that There is no lower limit in particular, and it is practical that it is 100 nm or more.
  • Speaking of the pixels of the Bayer pattern it is preferably 5 ⁇ m square or less, more preferably 3 ⁇ m square or less, further preferably 2 ⁇ m square or less, and even more preferably 1 ⁇ m square or less in plan view.
  • it is particularly preferably 0.8 ⁇ m or less.
  • it is 100 nm square or more.
  • the thickness of the pixel is preferably, for example, 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, and particularly preferably 0.75 ⁇ m or more.
  • the upper limit is preferably 2 ⁇ m or less, more preferably 1.5 ⁇ m or less, and particularly preferably 1 ⁇ m or less.
  • a solid-state imaging device, an image display device, and the like can be manufactured using the pattern manufacturing method of the present invention.
  • the configuration of the solid-state imaging device is not particularly limited as long as the configuration functions as a solid-state imaging device, and examples thereof include the following configurations.
  • CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • a configuration having a light condensing means (for example, a microlens, etc., the same applies hereinafter) on the device protective film and below the color filter (on the side close to the support), a structure having the light condensing means on the color filter, etc. It may be.
  • the color filter may have a structure in which a film forming each pixel is embedded in a space partitioned by a partition, for example, in a lattice shape.
  • the partition in this case preferably has a low refractive index for each pixel.
  • Examples of the solid-state imaging device having such a structure include apparatuses described in JP 2012-227478 A and JP 2014-179577 A.
  • examples of the CMOS image sensor include a back-illuminated image sensor that can be inverted after being formed with a light receiving portion and bonded to a wiring layer.
  • Examples of the image display device include a liquid crystal display device and an organic electroluminescence display device.
  • a liquid crystal display device for example, “Electronic Display Device (Akio Sasaki, Kogyo Kenkyukai, 1990)”, “Display Device (Junaki Ibuki, Industrial Book ( Stock), issued in 1989) ”.
  • the liquid crystal display device is described in, for example, “Next-generation liquid crystal display technology (edited by Tatsuo Uchida, Industrial Research Co., Ltd., published in 1994)”.
  • Photosensitive compositions 1 and 2 were produced by mixing the raw materials so that the composition ratio (parts by mass) shown in the following table was obtained.
  • Green pigment dispersion C. I. Pigment green 58 in an amount of 7.55 parts by mass; I. 1.89 parts by weight of Pigment Yellow 185, 0.94 parts by weight of Pigment Derivative A, 3.7 parts by weight of Dispersant D-1, and 65.7 parts by weight of propylene glycol monomethyl ether acetate (PGMEA)
  • PMEA propylene glycol monomethyl ether acetate
  • Pigment derivative A compound having the structure shown below
  • M-1 NK ester A-TMMT (manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • M-2 Aronix TO-2349 (manufactured by Toagosei Co., Ltd.)
  • M-3 NK ester A-DPH-12E (manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • Test Example 1 Pattern Manufacturing Method A 200 mm (8 inch) silicon wafer was heat-treated at 200 ° C. for 1 minute on a hot plate. Next, CT-4000L (manufactured by FUJIFILM Electronics Materials Co., Ltd.) was applied on the silicon wafer so as to have a film thickness of 0.1 ⁇ m after post-baking. Furthermore, it heated for 5 minutes with a 220 degreeC hotplate (post-baking), the undercoat layer was formed, and the silicon wafer substrate with an undercoat layer was obtained. Each photosensitive composition 1 and 2 was apply
  • this photosensitive composition layer was heat-processed (prebaked) for 120 second using a 100 degreeC hotplate.
  • an i-line stepper exposure apparatus FPA5510iZs manufactured by Canon Inc.
  • exposure was performed under the following exposure conditions through a mask having a pattern.
  • the exposed photosensitive composition layer was spray-developed under the following development conditions, and then subjected to heat treatment (post-bake) for 300 seconds using a 220 ° C. hot plate to produce a pattern.
  • Exposure wavelength 365 nm (i-line)
  • Exposure illuminance 10,000 W / m 2
  • Exposure atmosphere Air (O 2 concentration 21% by volume)
  • Lighting conditions: NA / ⁇ 0.57 / 0.40
  • Focus Best focus (focus offset 0.0 ⁇ m). Note that, from the depth of focus (DOF) characteristic, the best focus setting value of CD (Critical Dimension) and pattern shape was set as the best focus.
  • DOE depth of focus
  • Mask consisting of the following masks 1 to 7 (target line width 1.0 ⁇ m Bayer pattern, mask bias 0.0 ⁇ m)
  • Exposure energy from 50 mJ / cm 2 by increasing the exposure energy to 5 mJ / cm 2 intervals were examined optimum exposure energy (Eopt).
  • the optimal exposure energy is a condition of exposure energy that can form a pattern according to the design dimension of the mask.
  • Mask 6 Laminated
  • the optical density (OD value) of the mask was measured under the following conditions.
  • Apparatus V-7200 (manufactured by JASCO Corporation) Reference: Glass substrate on which Cr and CrO 2 are not deposited Measurement mode: Wavelength scan Measurement wavelength region: 230 nm to 700 nm
  • the rotating device After performing a series of these treatments twice in total, the rotating device is operated to rotate the silicon wafer at a rotational speed of 2000 rpm, and the pure water is supplied in a shower form from the straight nozzle above the rotation center to perform the rinsing treatment. (30 seconds) and then spin dried for 20 seconds.
  • ⁇ Test Example 2> In the pattern production method of Test Example 1, a pattern was produced in the same manner as in Test Example 1 except that the photosensitive composition 1 was used, and the development conditions were changed as follows to perform paddle development.
  • Paddle Development A silicon wafer having a photosensitive composition layer after exposure was placed on a horizontal rotary table of a spin shower developing machine (DW-30 type, manufactured by Chemtronics Co., Ltd.). While rotating the silicon wafer by operating the rotating device, the developer (CD-1040, manufactured by Fuji Film Electronics Materials) at 23 ° C. is applied from the straight nozzle to the photosensitive composition layer from above the rotation center. It was discharged and applied for 2 seconds. Next, the rotating device was stopped and left for 60 seconds for development (paddle development).
  • the rotating device After performing a series of these treatments twice in total, the rotating device is operated to rotate the silicon wafer at a rotational speed of 2000 rpm, and the pure water is supplied in a shower form from the straight nozzle above the rotation center to perform the rinsing treatment. (30 seconds) and then spin dried for 20 seconds.
  • the pattern edge vicinity was defined as the line width of the pattern, but there were many residues and it was not at a practical level.
  • spray development was used as the development method, the exposure energy margin, DOF margin, and pattern shape were better than when paddle development was used.
  • the exposure energy (mJ / cm 2 ) when the line width of the pattern expresses a value of the mask design dimension ⁇ 105% ( 1.05 ⁇ m).
  • test example using a mask having an optical density (OD value) of 3.6 or more was excellent with a wide exposure energy margin and a DOF margin. Moreover, there was little residue between patterns and the pattern shape was also excellent. Further, in Test Example 1 group using spray development as a developing method, generation of residue could be suppressed more easily than in Test Example 2 group using paddle development, and a pattern having excellent rectangularity was easily obtained.
  • ⁇ Test Example 3> In the pattern manufacturing method of Test Example 1, the same procedure as in Test Example 1 was conducted except that the photosensitive composition 1 was used and the exposure illuminance at the time of exposure and the oxygen concentration at the time of exposure were changed to the conditions described in the following table, respectively. Patterns were manufactured and the resolution was evaluated. The resolution was evaluated by obtaining the exposure energy (optimum exposure energy (Eopt)) that can form a pattern according to the design dimensions of the mask and the ⁇ exposure energy obtained from the following equation. The design dimension of the mask was 1.0 ⁇ m.
  • Eopt optimum exposure energy
  • ⁇ exposure energy
  • C ⁇ exposure energy is 50 mJ / cm 2 or more and less than 100 mJ / cm 2 and Eopt is in the range of 50 to 500 mJ / cm 2 .
  • D delta exposure energy is less than 50 mJ / cm 2
  • Eopt is in the range of 50 ⁇ 500mJ / cm 2.
  • E Eopt is less than 50 mJ / cm 2 or more than 500 mJ / cm 2 .
  • F The target dimension cannot be formed.
  • ⁇ Test Example 4> Green, blue and red pixels are formed between the light-shielding films on the image sensor substrate on which a light-shielding film (tungsten light-shielding film) having a width of 0.1 ⁇ m and a height of 0.4 ⁇ m is formed, thereby improving processing accuracy. confirmed.
  • the rule of the pixel was 1.0 ⁇ m square, and the dimension of the inter-pixel light shielding film was 0.1 ⁇ m.
  • a composition for forming pixels of each color was applied on the substrate on which the light-shielding film was formed so as to have a film thickness of 0.6 ⁇ m after post-baking to form a photosensitive composition layer.
  • this photosensitive composition layer was heat-processed (prebaked) for 120 second using a 100 degreeC hotplate.
  • exposure was performed under the following conditions.
  • the position of the base material was detected using an alignment wavelength of 900 nm.
  • a tungsten mark placed on the lower layer of the pixel or a silicon uneven mark stamped on the base material was used.
  • spray development was performed under the same conditions as in Test Example 1, and then heat treatment (post-baking) was performed for 300 seconds using a 220 ° C. hot plate to produce a pattern.
  • a sealed hot plate having a low oxygen concentration (oxygen concentration: 100 ppm) was used.
  • a color filter in which pixels of each color were embedded between the light shielding films could be manufactured.
  • composition for pixel formation Composition for green pixel formation: photosensitive composition 1 described above Composition for forming blue pixel: photosensitive composition 2 described above Composition for forming red pixel: SR2000S (manufactured by FUJIFILM Electronics Materials)
  • Exposure wavelength 365 nm (i-line)
  • Exposure illuminance 250,000 W / m 2
  • Exposure atmosphere Air (O 2 concentration 35% by volume)
  • Lighting conditions: NA / ⁇ 0.57 / 0.50
  • Focus: Best focus Mask: Mask composed of the above-described mask 5 (target line width 1.0 ⁇ m Bayer pattern, mask bias 0.0 ⁇ m, mask optical density (OD value) at 365 nm) 5 .0)
  • Exposure energy 250 mJ / cm 2 in the case of a composition for a green pixel forming, 320 mJ / cm 2 in the case of a composition for a blue pixel forming, 350 mJ / cm 2 in the case of a composition for the red pixel formed
  • Photosensitive photoresist GKR-5113 (trade name; manufactured by FUJIFILM Electronics Materials) Formed film thickness: 0.7 ⁇ m Pattern size: 1.0 ⁇ m square, positive remaining portion 0.8 ⁇ m, space portion 0.2 ⁇ m.
  • Exposure energy 46 mJ / m 2 (NA / ⁇ : 0.63 / 0.65)
  • Pre-bake / post-exposure heating / post-bake 120 ° C. ⁇ 90 seconds / 110 ° C. ⁇ 90 seconds / 155 ° C. ⁇ 60 seconds
  • microlens pattern has an array in which there is no gap between lenses in either the pitch direction or the diagonal direction.
  • the image forming property of the color filter is improved, and the occurrence of flare, color mixing, etc. is suppressed. Therefore, the image quality of the imaging device can be improved.
  • the present invention is not only a color filter composed of red, green, and blue, but also a white pixel that is transparent to visible light and controls condensing by controlling the refractive index, and blocks visible light so that it can transmit near-infrared light.
  • the present invention can also be suitably applied to an imaging apparatus having infrared transmission filter pixels to be controlled.
  • Titanium Black (A-1) 100 g of titanium oxide MT-150A (trade name: manufactured by Teika Co., Ltd.) having an average particle size of 15 nm, 25 g of silica particles AROPERL (registered trademark) 300/30 (manufactured by Evonik) having a BET surface area of 300 m 2 / g, and dispersion 100 g of the agent Disperbyk190 (trade name: manufactured by Big Chemie), add 71 g of ion-exchange water, and use MURASTAR KK-400W manufactured by KURABO for 20 minutes at a revolution speed of 1360 rpm and a rotation speed of 1047 rpm.
  • Gave a homogeneous aqueous mixture.
  • This aqueous solution was filled in a quartz container and heated to 920 ° C. in an oxygen atmosphere using a small rotary kiln (manufactured by Motoyama Co., Ltd.). Thereafter, the atmosphere was replaced with nitrogen, and nitriding reduction treatment was performed by flowing ammonia gas at 100 mL / min for 5 hours at the same temperature. After the completion, the collected powder was pulverized in a mortar to obtain titanium black A-1 [dispersed material containing titanium black particles and Si atoms] containing Si atoms and having a powdery specific surface area of 73 m 2 / g.
  • composition 1 Titanium black (A-1): 25 parts by mass 30% by mass solution of propylene glycol monomethyl ether acetate in specific resin 1: 25 parts by mass Propylene glycol monomethyl ether acetate (PGMEA): 50 parts by mass
  • the obtained dispersion a is subjected to a dispersion treatment using the Ultra Apex Mill UAM015 manufactured by Kotobuki Industries Co., Ltd. under the following conditions to obtain a titanium black dispersion (hereinafter referred to as TB dispersion 1). Obtained.
  • a black photosensitive composition was obtained by mixing the following composition. When a film having a thickness of 1.5 ⁇ m was formed using this black photosensitive composition, the resulting film had an optical density of 2.7 at a wavelength of 365 nm. The optical density was measured by the same method as the optical density of the mask.
  • -TB dispersion 1 ... 58.93 parts by mass-Alkali-soluble resin (Acryl RD-F8, manufactured by Nippon Shokubai Co., Ltd., solid content 40%, solvent: propylene glycol monomethyl ether) ...
  • Photopolymerization initiator (compound with the following structure): 1.38 parts by mass Polymerizable compound (KAYARAD DPHA, manufactured by Nippon Kayaku Co., Ltd., hexafunctional polymerizable compound (amount of ethylenically unsaturated group: 10.4 mmol / g), and pentafunctional polymerizable compound (ethylenically unsaturated group) Of 9.5 mmol / g)) ... 6.82 parts by mass Surfactant (Megafac F-780, manufactured by DIC Corporation) ... 0.02 parts by massPropylene glycol monomethyl ether Acetate ... 5.48 parts by massCyclohexanone ... 16.76 parts by mass
  • Substrate type Black photosensitive composition layer was applied on a glass wafer with an antireflection film of 8 inches (20.32 cm) so that the film thickness was 1.5 ⁇ m after post-baking. Formed. And this black photosensitive composition layer was heat-processed (prebaked) for 120 second using a 90 degreeC hotplate. Next, using an i-line stepper exposure apparatus FPA5510iZs (manufactured by Canon Inc.), exposure was performed under the following exposure conditions through a mask having a pattern. Subsequently, spray development was performed on the photosensitive composition layer after the exposure under the same conditions as in Test Example 1. Thereafter, heat treatment (post-baking) was performed for 10 minutes using a 150 ° C. hot plate to produce a pattern. At this time, in order to suppress thermal shrinkage, a sealed hot plate having a low oxygen concentration (oxygen concentration: 100 ppm) was used.
  • oxygen concentration oxygen concentration: 100 ppm
  • Exposure wavelength 365nm
  • Exposure illuminance 30000 W / m 2
  • Exposure atmosphere air (O 2 concentration 21 volume%) atmosphere or atmosphere with O 2 concentration 40 volume%
  • Mask Masks 1 to 5 described above (target line width 10 ⁇ m line pattern, mask bias 0.0 ⁇ m)
  • Exposure energy 500 mJ / cm 2
  • the obtained pattern was subjected to cross-sectional observation (observation magnification 20,000 times), and the undercut width was measured.
  • a scanning microscope (S4800, manufactured by Hitachi High-Technologies Corporation) was used as a measuring device.
  • the undercut width was measured by measuring the width of a region (width of an arrow line in FIG. 2) that is separated from the substrate at the bottom of the pattern from the top of the pattern eaves in the cross-sectional observation of the pattern.
  • the undercut width is preferably 0.5 ⁇ m or less, and more preferably 0.3 ⁇ m or less.
  • the use of a mask having an optical density of 3.6 or more can effectively suppress the occurrence of undercut. Moreover, the undercut could be more effectively suppressed by increasing the oxygen concentration during exposure.
  • Photosensitive compositions 102 to 105 were produced in the same manner as the photosensitive composition 101 except that the same amount of the green pigment dispersions 102 to 105 was used instead of the green pigment dispersion 101.
  • Photosensitive compositions 202 to 205 were produced in the same manner as the photosensitive composition 201 except that the same amount of the green pigment dispersions 202 to 205 was used instead of the green pigment dispersion 201.
  • Photosensitive compositions 302 to 305 were produced in the same manner as the photosensitive composition 301 except that the same amount of the yellow pigment dispersion liquids 102 to 105 was used instead of the yellow pigment dispersion liquid 101.
  • Photosensitive compositions 402 to 405 were produced in the same manner as the photosensitive composition 401 except that the same amount of the yellow pigment dispersions 102 to 105 was used instead of the yellow pigment dispersion 101.
  • Photosensitive compositions 502 to 505 were produced in the same manner as the photosensitive composition 501, except that the same amount of the yellow pigment dispersions 102 to 105 was used instead of the yellow pigment dispersion 101.
  • Photosensitive compositions 602 to 605 were produced in the same manner as the photosensitive composition 601, except that the same amount of the yellow pigment dispersion liquids 102 to 105 was used instead of the yellow pigment dispersion liquid 101.
  • the raw materials used for each photosensitive composition are as follows.
  • Green pigment dispersion 101 C. I. CI Pigment Green 58, 8.5 parts by mass; I. Pigment Yellow 150 (4.6 parts by mass), Pigment Derivative A (1.3 parts by mass), Dispersant D-1 (5.1 parts by mass), and Propylene glycol monomethyl ether acetate (PGMEA) (80. parts by mass). 4 parts by mass is mixed, and mixed and dispersed for 3 hours using a bead mill (high pressure disperser with pressure reducing mechanism NANO-3000-10 (manufactured by Nippon BEE Co., Ltd.)) to prepare Green pigment dispersion 101 did.
  • a bead mill high pressure disperser with pressure reducing mechanism NANO-3000-10 (manufactured by Nippon BEE Co., Ltd.)
  • Green pigment dispersion 102 C.
  • Green pigment dispersion liquid 102 was prepared in the same manner as Green pigment dispersion liquid 101, except that the pigment of Sample 3 of JP-A No. 2017-171914 was used instead of Pigment Yellow 150.
  • Green pigment dispersion 103 C. I. Green pigment dispersion 103 was prepared in the same manner as Green pigment dispersion 101 except that the pigment of Sample 10 of JP-A No. 2017-171914 was used instead of Pigment Yellow 150.
  • Green pigment dispersion 104 C. I. Green pigment dispersion 104 was prepared in the same manner as Green pigment dispersion 101 except that the pigment of Sample 15 of JP-A No. 2017-171914 was used instead of Pigment Yellow 150.
  • Green pigment dispersion 105 C. I. Green pigment dispersion 105 was prepared in the same manner as Green pigment dispersion 101 except that the pigment of Sample 29 of JP-A No. 2017-171914 was used instead of Pigment Yellow 150.
  • Green pigment dispersion 201 C. I. CI pigment green 36 is 8.5 parts by mass; I. Pigment Yellow 150 (4.6 parts by mass), Pigment Derivative A (1.3 parts by mass), Dispersant D-1 (5.1 parts by mass), and Propylene glycol monomethyl ether acetate (PGMEA) (80. parts by mass). 4 parts by mass is mixed, and mixed and dispersed for 3 hours using a bead mill (high pressure disperser with pressure reducing mechanism NANO-3000-10 (manufactured by Nippon BEE Co., Ltd.)) to prepare Green pigment dispersion 201 did.
  • a bead mill high pressure disperser with pressure reducing mechanism NANO-3000-10 (manufactured by Nippon BEE Co., Ltd.)
  • Green pigment dispersion 202 C. I. Green pigment dispersion 202 was prepared in the same manner as Green pigment dispersion 201 except that the pigment of Sample 3 of JP-A-2017-171914 was used instead of Pigment Yellow 150.
  • Green pigment dispersion 203 C.
  • Green pigment dispersion 203 was prepared in the same manner as Green pigment dispersion 201 except that the pigment of Sample 10 of JP-A-2017-171914 was used instead of Pigment Yellow 150.
  • Green pigment dispersion 204 C. I. Green pigment dispersion 204 was prepared in the same manner as Green pigment dispersion 201 except that the pigment of Sample 15 of JP-A No. 2017-171914 was used instead of Pigment Yellow 150.
  • Green pigment dispersion 205 C. I. Green pigment dispersion 205 was prepared in the same manner as Green pigment dispersion 201 except that the pigment of Sample 29 of JP-A-2017-171914 was used instead of Pigment Yellow 150.
  • Yellow pigment dispersion 102 (Yellow pigment dispersion 102) C.
  • a Yellow pigment dispersion liquid 102 was prepared in the same manner as the Yellow pigment dispersion liquid 101, except that the pigment of Sample 3 of JP-A No. 2017-171914 was used instead of Pigment Yellow 150.
  • Yellow pigment dispersion 103 (Yellow pigment dispersion 103) C.
  • a Yellow pigment dispersion 103 was prepared in the same manner as the Yellow pigment dispersion 101 except that the pigment of Sample 10 of JP-A No. 2017-171914 was used instead of Pigment Yellow 150.
  • Yellow pigment dispersion 104 (Yellow pigment dispersion 104) C. I. A Yellow pigment dispersion 104 was prepared in the same manner as the Yellow pigment dispersion 101 except that the pigment of Sample 15 of JP-A No. 2017-171914 was used instead of Pigment Yellow 150.
  • Yellow pigment dispersion 105 (Yellow pigment dispersion 105) C.
  • a Yellow pigment dispersion 105 was prepared in the same manner as the Yellow pigment dispersion 101 except that the pigment of Sample 29 of JP-A No. 2017-171914 was used instead of Pigment Yellow 150.
  • Red pigment dispersion 101 C. I. 11.6 parts by weight of Pigment Red 254, 1.4 parts by weight of the pigment derivative A described above, 4.5 parts by weight of the dispersant D-3 shown below, and 82 parts of propylene glycol monomethyl ether acetate (PGMEA) And mixing and dispersing for 3 hours using a bead mill (high pressure disperser NANO-3000-10 with a pressure reducing mechanism (manufactured by BB Co., Ltd. Japan)) to prepare a Red pigment dispersion 101.
  • Red pigment dispersion 201 C. I. Pigment Red 264, 11.6 parts by mass, Pigment derivative A, 1.4 parts by mass, Dispersant D-3, 4.5 parts by mass, and Propylene glycol monomethyl ether acetate (PGMEA), 82. 5 parts by mass is mixed, and mixed and dispersed for 3 hours using a bead mill (high pressure disperser with pressure reducing mechanism NANO-3000-10 (manufactured by Nippon BEE Co., Ltd.)) to prepare Red pigment dispersion 201. did.
  • PGMEA Propylene glycol monomethyl ether acetate
  • Red pigment dispersion 301 C. I. 11.6 parts by weight of Pigment Red 177, 1.4 parts by weight of the pigment derivative A described above, 4.5 parts by weight of the dispersant D-3 described above, and 82 .mu.m of propylene glycol monomethyl ether acetate (PGMEA). 5 parts by mass is mixed and mixed and dispersed for 3 hours using a bead mill (high-pressure disperser NANO-3000-10 with a decompression mechanism manufactured by Nippon BEE Co., Ltd.) to prepare a Red pigment dispersion 301. did.
  • PGMEA propylene glycol monomethyl ether acetate
  • S-2 The above-described surfactant S-2 S-3: KF6001 (manufactured by Shin-Etsu Chemical Co., Ltd., siloxane surfactant)
  • UV absorber U-1 UV-503 (Daito Chemical Co., Ltd.)
  • Polymerization inhibitor p-methoxyphenol Epoxy compound: EHPE3150 (manufactured by Daicel Corporation)
  • PGMEA Propylene glycol monomethyl ether acetate

Abstract

Provided are a pattern manufacturing method having a wide process window, a color filter manufacturing method, a method of manufacturing a solid-state imaging element, and a method of manufacturing an image display device. The pattern manufacturing method includes the steps of: utilizing a negative photosensitive composition and forming a negative photosensitive composition layer on a support medium; exposing the negative photosensitive composition layer via a mask having a pattern; and developing the negative photosensitive composition layer after removing an unexposed portion thereof. The optical density of the mask to light of a wavelength used for exposure is 3.6 or greater.

Description

パターンの製造方法、カラーフィルタの製造方法、固体撮像素子の製造方法および画像表示装置の製造方法Pattern manufacturing method, color filter manufacturing method, solid-state imaging device manufacturing method, and image display device manufacturing method
 本発明は、パターンの製造方法に関する。より詳しくは、ネガ型感光性組成物を用いたフォトリソグラフィ法でのパターンの製造方法に関する。また、カラーフィルタの製造方法、固体撮像素子の製造方法および画像表示装置の製造方法に関する。 The present invention relates to a pattern manufacturing method. More specifically, the present invention relates to a method for producing a pattern by a photolithography method using a negative photosensitive composition. The present invention also relates to a color filter manufacturing method, a solid-state imaging device manufacturing method, and an image display device manufacturing method.
 フォトリソグラフィ法を用いたパターンの製造方法においては、支持体上に感光性組成物を適用して感光性組成物層を形成する工程と、感光性組成物層に対してパターンを有するマスクを介して露光する工程と、露光後の感光性組成物層を現像する工程とを含んでいる。 In a pattern manufacturing method using a photolithography method, a photosensitive composition layer is formed on a support by applying a photosensitive composition layer, and a photosensitive composition layer is passed through a mask having a pattern. And a step of developing the photosensitive composition layer after exposure.
 フォトリソグラフィ法を用いたパターンの製造方法においては、感光性組成物として、ポジ型感光性組成物を用いるか、または、ネガ型感光性組成物を用いるかによってパターン形成の方式が異なる。すなわち、ポジ型感光性組成物は、露光エネルギーが閾値を超えると現像液に対する溶解性が急激に増加するものである。このため、感光性組成物としてポジ型感光性組成物を用いた場合においては、感光性組成物層に対してマスクを介して露光して、露光部における感光性組成物層の現像液に対する溶解性を高めたのち、露光部の感光性組成物層を現像液を用いて除去してパターンを形成している(例えば、特許文献1~4参照)。 In the method for producing a pattern using a photolithography method, the pattern formation method differs depending on whether a positive photosensitive composition or a negative photosensitive composition is used as the photosensitive composition. That is, in the positive photosensitive composition, when the exposure energy exceeds the threshold value, the solubility in the developer increases rapidly. For this reason, when a positive photosensitive composition is used as the photosensitive composition, the photosensitive composition layer is exposed to light through a mask, and the photosensitive composition layer in the exposed portion is dissolved in the developer. After enhancing the properties, the photosensitive composition layer in the exposed area is removed using a developer to form a pattern (see, for example, Patent Documents 1 to 4).
 一方、ネガ型感光性組成物は露光エネルギーに応じて反応が徐々に進行し、現像液に対する溶解性が低下する。このため、感光性組成物としてネガ型感光性組成物を用いた場合においては、感光性組成物層に対してマスクを介して露光して、露光部における感光性組成物層の現像液に対する溶解性を低下させたのち、未露光部の感光性組成物層を現像液を用いて除去してパターンを形成している(例えば、特許文献5参照)。 On the other hand, in the negative photosensitive composition, the reaction gradually proceeds according to the exposure energy, and the solubility in the developer is lowered. For this reason, when a negative photosensitive composition is used as the photosensitive composition, the photosensitive composition layer is exposed to light through a mask, and the photosensitive composition layer in the exposed area is dissolved in the developer. Then, the photosensitive composition layer in the unexposed area is removed using a developer to form a pattern (see, for example, Patent Document 5).
特開2012-003152号公報JP 2012-003152 A 特開2014-206729号公報JP 2014-206729 A 特開2010-237426号公報JP 2010-237426 A 特開2002-313696号公報JP 2002-313696 A 特開2015-52753号公報JP2015-52753A
 ネガ型感光性組成物を用いてパターンを製造する場合、ネガ型感光性組成物層に対してパターンを有するマスクを介して露光するが、この時マスクで覆われた部分においても、マスクを透過した微量の光によって反応が進行することがあった。このため、露光エネルギーを最適露光エネルギーよりも高めて露光を行うと、マスクで覆われた部分においても反応が進行して現像液に対する溶解性が低下し、得られるパターンの線幅が所望の値よりも太くなったり、パターン間に残渣が生じることがあった。ここで、最適露光エネルギーとは、マスクの設計寸法どおりのパターンを形成できる露光エネルギーの条件のことである。 In the case of producing a pattern using a negative photosensitive composition, the negative photosensitive composition layer is exposed through a mask having a pattern. At this time, even in the portion covered with the mask, the mask is transmitted through the mask. The reaction may proceed due to the small amount of light. For this reason, when exposure is performed with the exposure energy higher than the optimum exposure energy, the reaction proceeds even in the portion covered with the mask, the solubility in the developer is lowered, and the line width of the resulting pattern is a desired value. In some cases, the residue was thicker or a residue was formed between the patterns. Here, the optimum exposure energy is a condition of exposure energy that can form a pattern according to the design dimension of the mask.
 よって、本発明の目的は、プロセスウインドウ、特に露光エネルギーの許容範囲(マージン)や焦点深度の許容範囲(マージン)が広いパターンの製造方法、カラーフィルタの製造方法、固体撮像素子の製造方法および画像表示装置の製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a process window, particularly a pattern manufacturing method, a color filter manufacturing method, a solid-state imaging device manufacturing method, and an image having a wide allowable range (margin) of exposure energy and a wide allowable range of focus depth (margin). The object is to provide a method for manufacturing a display device.
 ネガ型感光性組成物を用いたパターン形成におけるプロセスウインドウを改善する試みは、従来は、組成物の処方の検討や、現像条件の検討について主に行われていたが、マスクの光学濃度に関する検討はこれまで行われていなかった。本発明者は種々検討の結果、露光に用いる波長の光に対する光学濃度が3.6以上のマスクを用いて露光を行うことで上記の目的を達成できることを見出し、本発明を完成するに至った。本発明は以下を提供する。
 <1> 支持体上にネガ型感光性組成物を適用してネガ型感光性組成物層を形成する工程と、
 ネガ型感光性組成物層に対してパターンを有するマスクを介して露光する工程と、
 未露光部のネガ型感光性組成物層を除去して現像する工程と、
 を含むパターンの製造方法であって、
 マスクは、露光に用いる波長の光に対する光学濃度が3.6以上である、パターンの製造方法。
 <2> マスクは、波長365nmの光に対する光学濃度が3.6以上である、<1>に記載のパターンの製造方法。
 <3> マスクは、クロムおよびクロム化合物から選ばれる少なくとも1種を含む、<1>または<2>に記載のパターンの製造方法。
 <4> ネガ型感光性組成物は、光重合開始剤およびラジカル重合性化合物を含む、<1>~<3>のいずれか1つに記載のパターンの製造方法。
 <5> ネガ型感光性組成物は、着色剤を含む、<1>~<4>のいずれか1つに記載のパターンの製造方法。
 <6> ネガ型感光性組成物は、透明粒子を含む、<1>~<5>のいずれか1つに記載のパターンの製造方法。 
 <7> ネガ型感光性組成物は、カラーフィルタの画素形成用のネガ型感光性組成物である、<1>~<6>のいずれか1つに記載のパターンの製造方法。
 <8> 露光において、露光照度が5000~50000W/mである、<1>~<7>のいずれか1つに記載のパターンの製造方法。
 <9> 露光において、酸素濃度が21%以上である、<1>~<8>のいずれか1つに記載のパターンの製造方法。
 <10> 現像において、ネガ型感光性組成物層に対して現像液をスプレー塗布する、<1>~<9>のいずれか1つに記載のパターンの製造方法。
 <11> <1>~<10>のいずれか1つに記載のパターンの製造方法を含むカラーフィルタの製造方法。
 <12> 複数色の画素を有するカラーフィルタの製造方法であって、複数色の画素のうち少なくとも1色の画素を<1>~<10>のいずれか1つに記載のパターンの製造方法を用いて形成する、カラーフィルタの製造方法。
 <13> <1>~<10>のいずれか1つに記載のパターンの製造方法を含む固体撮像素子の製造方法。
 <14> <1>~<10>のいずれか1つに記載のパターンの製造方法を含む画像表示装置の製造方法。
Attempts to improve the process window in pattern formation using a negative photosensitive composition have been mainly focused on the composition formulation and development conditions. Has never been done before. As a result of various studies, the present inventor has found that the above object can be achieved by performing exposure using a mask having an optical density of 3.6 or more with respect to light having a wavelength used for exposure, and has completed the present invention. . The present invention provides the following.
<1> forming a negative photosensitive composition layer by applying a negative photosensitive composition on a support;
Exposing the negative photosensitive composition layer through a mask having a pattern;
Removing the negative photosensitive composition layer in the unexposed area and developing;
A method for producing a pattern including:
The mask is a pattern manufacturing method in which an optical density with respect to light having a wavelength used for exposure is 3.6 or more.
<2> The method for producing a pattern according to <1>, wherein the mask has an optical density of 3.6 or more with respect to light having a wavelength of 365 nm.
<3> The pattern production method according to <1> or <2>, wherein the mask includes at least one selected from chromium and a chromium compound.
<4> The method for producing a pattern according to any one of <1> to <3>, wherein the negative photosensitive composition contains a photopolymerization initiator and a radical polymerizable compound.
<5> The method for producing a pattern according to any one of <1> to <4>, wherein the negative photosensitive composition contains a colorant.
<6> The method for producing a pattern according to any one of <1> to <5>, wherein the negative photosensitive composition contains transparent particles.
<7> The method for producing a pattern according to any one of <1> to <6>, wherein the negative photosensitive composition is a negative photosensitive composition for forming a pixel of a color filter.
<8> The method for producing a pattern according to any one of <1> to <7>, wherein the exposure illuminance is 5000 to 50000 W / m 2 in the exposure.
<9> The method for producing a pattern according to any one of <1> to <8>, wherein the oxygen concentration in exposure is 21% or more.
<10> The method for producing a pattern according to any one of <1> to <9>, wherein, in the development, a developer is spray-coated on the negative photosensitive composition layer.
<11> A method for producing a color filter, comprising the method for producing a pattern according to any one of <1> to <10>.
<12> A method of manufacturing a color filter having a plurality of color pixels, wherein the pattern manufacturing method according to any one of <1> to <10> A method for producing a color filter using the method.
<13> A method for manufacturing a solid-state imaging device, including the method for manufacturing a pattern according to any one of <1> to <10>.
<14> A method for manufacturing an image display device, including the method for manufacturing a pattern according to any one of <1> to <10>.
 本発明によれば、露光エネルギーの許容範囲(マージン)や、焦点深度の許容範囲(マージン)などのプロセスウインドウの広いパターンの製造方法を提供することが可能になった。また、カラーフィルタの製造方法、固体撮像素子の製造方法および画像表示装置の製造方法を提供することが可能になった。 According to the present invention, it is possible to provide a method for manufacturing a pattern having a wide process window such as an allowable range (margin) of exposure energy and an allowable range (margin) of focal depth. It is also possible to provide a color filter manufacturing method, a solid-state imaging device manufacturing method, and an image display device manufacturing method.
露光装置の一実施形態を模式的に示す説明図である。It is explanatory drawing which shows typically one Embodiment of exposure apparatus. 試験例5におけるアンダーカット幅を示す説明図である。It is explanatory drawing which shows the undercut width in Test Example 5.
 以下において、本発明の内容について詳細に説明する。
 本明細書における基(原子団)の表記において、置換および無置換を記していない表記は、置換基を有さない基と共に置換基を有する基を包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
 本明細書において「露光」とは、特に断らない限り、光を用いた露光を意味するのみならず、電子線、イオンビーム等の粒子線を用いた描画も露光に含まれる。また、露光に用いられる光としては、一般的に、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等の活性光線または放射線が挙げられる。
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、全固形分とは、組成物の全成分から溶剤を除いた成分の合計量をいう。
 本明細書において、「(メタ)アクリレート」は、アクリレートおよびメタクリレートの双方、または、いずれかを表し、「(メタ)アクリル」は、アクリルおよびメタクリルの双方、または、いずれかを表し、「(メタ)アリル」は、アリルおよびメタリルの双方、または、いずれかを表し、「(メタ)アクリロイル」は、アクリロイルおよびメタクリロイルの双方、または、いずれかを表す。
 本明細書において「工程」との語は、独立した工程を意味するだけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
 本明細書において、重量平均分子量(Mw)および数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィ(GPC)により測定したポリスチレン換算値として定義される。
Hereinafter, the contents of the present invention will be described in detail.
In the notation of a group (atomic group) in this specification, the notation which does not describe substitution and unsubstituted includes the group which has a substituent with the group which does not have a substituent. For example, the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
In the present specification, “exposure” means not only exposure using light unless otherwise specified, but also exposure using particle beam such as electron beam and ion beam is included in exposure. The light used for the exposure generally includes an active ray or radiation such as an emission line spectrum of a mercury lamp, far ultraviolet rays typified by an excimer laser, extreme ultraviolet rays (EUV light), X-rays or electron beams.
In this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In this specification, the total solid content refers to the total amount of components excluding the solvent from all the components of the composition.
In this specification, “(meth) acrylate” represents both and / or acrylate and methacrylate, and “(meth) acryl” represents both and / or acrylic and “(meth) acrylic”. ") Allyl" represents both and / or allyl and methallyl, and "(meth) acryloyl" represents both and / or acryloyl and methacryloyl.
In this specification, the term “process” not only means an independent process, but also if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes, include.
In this specification, a weight average molecular weight (Mw) and a number average molecular weight (Mn) are defined as polystyrene conversion values measured by gel permeation chromatography (GPC).
<パターンの製造方法>
 本発明のパターンの製造方法は、
 支持体上にネガ型感光性組成物を適用してネガ型感光性組成物層を形成する工程(以下、ネガ型感光性組成物層形成工程ともいう)と、
 ネガ型感光性組成物層に対してパターンを有するマスクを介して露光する工程(以下、露光工程ともいう)と、
 未露光部のネガ型感光性組成物層を除去して現像する工程(以下、現像工程ともいう)と、
 を含むパターンの製造方法であって、
 マスクは、露光に用いる波長の光に対する光学濃度が3.6以上であることを特徴とする。
<Pattern manufacturing method>
The pattern production method of the present invention comprises:
Applying a negative photosensitive composition on a support to form a negative photosensitive composition layer (hereinafter also referred to as a negative photosensitive composition layer forming step);
A step of exposing the negative photosensitive composition layer through a mask having a pattern (hereinafter also referred to as an exposure step);
Removing the negative photosensitive composition layer in the unexposed area and developing (hereinafter also referred to as a developing process);
A method for producing a pattern including:
The mask is characterized by having an optical density of 3.6 or more with respect to light having a wavelength used for exposure.
 本発明によれば、露光工程において、露光に用いる波長の光に対する光学濃度が3.6以上のマスクを用いるので、ネガ型感光性組成物層におけるマスクで覆われた部分(未露光部)における遮光性が高く、露光エネルギーを高めて露光を行っても未露光部における硬化を効果的に抑制できる。すなわち、ネガ型感光性組成物層におけるマスクで覆われた部分(未露光部)と、マスクから露出した部分(露光部)における光コントラストを向上させることができる。このため、本発明によれば、露光エネルギーの許容範囲(マージン)を広げることができる。また、未露光部の硬化を効果的に抑制できるため、パターン間における残渣の発生を効果的に抑制することもできる。更には、露光時において、焦点がずれた場合であってもパターンの線幅の太りなどを抑制でき、焦点深度(DOF)の許容範囲(マージン)を広げることもできる。これは、マスクの遮光部からの光の透過量が極めて少ないので、フォーカスがずれた時の光が結像に悪影響を与えないためであると推測される。また、上記のマスクを用いることにより、マスク周縁部における未露光部のネガ型感光性組成物層の硬化も効果的に抑制でき、矩形性に優れたパターンが得られやすい。 According to the present invention, in the exposure process, a mask having an optical density of 3.6 or more with respect to light having a wavelength used for exposure is used. Therefore, in the portion (unexposed portion) covered with the mask in the negative photosensitive composition layer. The light shielding property is high, and curing in the unexposed area can be effectively suppressed even when exposure is performed with an increased exposure energy. That is, the optical contrast in the part (unexposed part) covered with the mask in the negative photosensitive composition layer and the part (exposed part) exposed from the mask can be improved. For this reason, according to the present invention, the allowable range (margin) of exposure energy can be expanded. Moreover, since hardening of an unexposed part can be suppressed effectively, generation | occurrence | production of the residue between patterns can also be suppressed effectively. Further, even when the focus is deviated during exposure, it is possible to suppress an increase in the line width of the pattern and to increase the allowable range (margin) of the depth of focus (DOF). This is presumed to be because the amount of light transmitted from the light shielding portion of the mask is extremely small, so that the light when the focus is shifted does not adversely affect the image formation. Moreover, by using said mask, hardening of the negative photosensitive composition layer of the unexposed part in a mask peripheral part can also be suppressed effectively, and the pattern excellent in the rectangularity is easy to be obtained.
 本発明において用いるマスクは、露光に用いる波長の光に対する光学濃度が3.6以上であり、3.7以上であることが好ましく、4以上であることがより好ましく、5以上であることが更に好ましい。上限は、特に限定はなく、8.0以下であることが好ましく、7.5以下であることがより好ましく、7以下であることが更に好ましい。例えば、マスクの光学濃度が7以下であればブランクス加工時のプロセス負荷軽減(マスク作製しやすい)という効果が期待できる。 In the mask used in the present invention, the optical density with respect to light having a wavelength used for exposure is 3.6 or more, preferably 3.7 or more, more preferably 4 or more, and further more preferably 5 or more. preferable. The upper limit is not particularly limited and is preferably 8.0 or less, more preferably 7.5 or less, and even more preferably 7 or less. For example, if the optical density of the mask is 7 or less, the effect of reducing the process load during blanking (easier mask fabrication) can be expected.
 なお、光学濃度(OD:Optical Density)とは、吸収度合を対数で表示した値であって、以下の式で定義される値である。
 OD(λ)=Log10[T(λ)/I(λ)]
 λは、波長を表し、T(λ)は、波長λにおける透過光量を表し、I(λ)は波長λにおける入射光量を表し、OD(λ)は、波長λにおける光学濃度を表す。
The optical density (OD: Optical Density) is a value that is expressed by the following formula, and is a value that represents the degree of absorption in logarithm.
OD (λ) = Log 10 [T (λ) / I (λ)]
λ represents a wavelength, T (λ) represents a transmitted light amount at the wavelength λ, I (λ) represents an incident light amount at the wavelength λ, and OD (λ) represents an optical density at the wavelength λ.
 本発明において、マスクの光学濃度の値は、波長365nmの光における値であることが好ましい。つまり、マスクは、波長365nmの光に対する光学濃度が3.6以上であることが好ましい。 In the present invention, the value of the optical density of the mask is preferably a value for light having a wavelength of 365 nm. In other words, the mask preferably has an optical density of 3.6 or more with respect to light having a wavelength of 365 nm.
 本発明において用いられるマスクの材質としては、特に限定は無い。例えば、クロム、クロム化合物、タンタル、タンタル化合物(TaN、TaO等)などが挙げられ、クロムおよび/またはクロム化合物が好ましい。クロム化合物としては、酸化クロム、窒化クロム、クロムを含む合金が挙げられ、酸化クロムが好ましい。 There is no particular limitation on the material of the mask used in the present invention. Examples thereof include chromium, chromium compounds, tantalum, tantalum compounds (TaN, TaO, etc.), and chromium and / or chromium compounds are preferred. Examples of the chromium compound include chromium oxide, chromium nitride, and an alloy containing chromium, and chromium oxide is preferable.
 マスクの一例として、クロム膜と酸化クロム膜との積層膜が挙げられる。例えば、この積層膜においては、クロム膜の膜厚を調整することで、光学濃度を調整することができる。例えば、クロム膜の膜厚を厚くすることで光学濃度を高めることができ、クロム膜の膜厚を薄くすることで光学濃度を低下させることができる。 An example of a mask is a laminated film of a chromium film and a chromium oxide film. For example, in this laminated film, the optical density can be adjusted by adjusting the film thickness of the chromium film. For example, the optical density can be increased by increasing the thickness of the chromium film, and the optical density can be decreased by decreasing the thickness of the chromium film.
 マスクの製造方法としては特に限定は無く、従来公知の方法を用いることができる。例えば、スパッタリング法、蒸着法(真空蒸着、化学気相蒸着、物理蒸着など)、めっき等の方法で支持体上にマスク材料の層を形成し、この層に対してエッチングを行ってパターンを形成して製造することができる。 The mask manufacturing method is not particularly limited, and a conventionally known method can be used. For example, a mask material layer is formed on the support by sputtering, vapor deposition (vacuum vapor deposition, chemical vapor deposition, physical vapor deposition, etc.), plating, etc., and this layer is etched to form a pattern. Can be manufactured.
 本発明のパターンの製造方法において用いるネガ型感光性組成物は、カラーフィルタの画素形成用のネガ型感光性組成物であることが好ましい。すなわち、本発明のパターンの製造方法によって製造されるパターンは、カラーフィルタの画素であることが好ましい。ここで、未露光部と露光部の光コントラストを向上させる方法として、輪帯照明など投影レンズの技術を用いて露光を行う方法や、ハーフトーンのフォトマスクを用いる方法が知られている。しかし、カラーフィルタの画素形成用のネガ型感光性組成物においては、これらの技術を適用した場合、光の透過部が重合に寄与し、逆にプロセスウインドウを狭めるため、逆効果である。カラーフィルタの画素形成用のネガ型感光性組成物は、着色剤や、透明粒子などを含んでいる場合もあるため、露光時の照明条件によるコントラスト向上には限界がある。なぜなら、着色剤などの成分によって、照射された光が膜中で散乱するためであると考えられる。本発明においては、カラーフィルタの画素形成用のネガ型感光性組成物を用いた場合であっても、露光エネルギーの許容範囲(マージン)などを広げることができる。また、カラーフィルタの画素はパターン寸法に関し、精密であることが求められている。本発明においては、カラーフィルタの画素形成用のネガ型感光性組成物を用いた場合であっても、露光エネルギーの許容範囲(マージン)を広げることができるので、露光時における露光エネルギーの大きさにばらつきが生じても、設計通りのパターンを形成することができる。このため、本発明のパターンの製造方法は、カラーフィルタの画素形成用のネガ型感光性組成物を用いてカラーフィルタの画素を形成する際において特に効果的である。 The negative photosensitive composition used in the pattern production method of the present invention is preferably a negative photosensitive composition for forming a pixel of a color filter. That is, the pattern manufactured by the pattern manufacturing method of the present invention is preferably a pixel of a color filter. Here, as a method of improving the optical contrast between the unexposed portion and the exposed portion, a method of performing exposure using a projection lens technique such as annular illumination or a method of using a halftone photomask is known. However, in the negative photosensitive composition for forming the pixel of the color filter, when these techniques are applied, the light transmission part contributes to the polymerization, and conversely, the process window is narrowed, which is an adverse effect. Since the negative photosensitive composition for forming a pixel of a color filter may contain a colorant, transparent particles, or the like, there is a limit to improving contrast depending on illumination conditions during exposure. This is because the irradiated light is scattered in the film by components such as a colorant. In the present invention, even when a negative photosensitive composition for forming a pixel of a color filter is used, an allowable range (margin) of exposure energy can be expanded. Further, the color filter pixels are required to be precise in terms of pattern dimensions. In the present invention, even when a negative photosensitive composition for forming a pixel of a color filter is used, the allowable range (margin) of exposure energy can be widened. Even if variations occur, a pattern as designed can be formed. For this reason, the pattern manufacturing method of the present invention is particularly effective when forming the color filter pixels using the negative photosensitive composition for forming the color filter pixels.
 以下、本発明のパターンの製造方法の各工程について詳細に説明する。 Hereinafter, each step of the pattern manufacturing method of the present invention will be described in detail.
 ネガ型感光性組成物層形成工程では、支持体上にネガ型感光性組成物を適用してネガ型感光性組成物層を形成する。ネガ型感光性組成物を適用する支持体としては、特に限定は無く、用途に応じて適宜選択できる。例えば、ガラス基板、シリコン基板などが挙げられる。また基板(例えば、シリコン基板)上に、CCD(電荷結合素子)やCMOS(相補型金属酸化膜半導体)等の固体撮像素子(受光素子)が設けられた固体撮像素子用基板を用いることもできる。パターンは、固体撮像素子用基板の撮像素子形成面側(おもて面)に形成してもよく、撮像素子非形成面側(裏面)に形成してもよい。固体撮像素子用基板における各撮像素子間や、固体撮像素子用基板の裏面には、遮光膜が設けられていてもよい。また、支持体上には、必要により、上部の層との密着改良、物質の拡散防止或いは基板表面の平坦化のために下塗り層を設けてもよい。また、支持体には隔壁が設けられていてもよい。隔壁としては、ネガ型感光性組成物から得られるパターンよりも屈折率の小さい材料で形成されていることが好ましい。隔壁によってパターンから、隣のパターンへの光の漏れ出しを抑制することができる。隔壁の材質の具体例としては、種々の無機材料や有機材料を用いることができる。例えば、有機材料としては、アクリル系樹脂、ポリスチレン系樹脂、ポリイミド系樹脂、有機SOG(Spin On Glass)系樹脂、シロキサン樹脂、フッ素樹脂などが挙げられる。無機材料としては、多孔質シリカ、多結晶シリコン、コロイダルシリカ粒子、酸化シリコン、窒化シリコン、タングステンやアルミニウムなどの金属材料などが挙げられる。 In the negative photosensitive composition layer forming step, the negative photosensitive composition layer is formed by applying the negative photosensitive composition on the support. There is no limitation in particular as a support body which applies a negative photosensitive composition, According to a use, it can select suitably. For example, a glass substrate, a silicon substrate, etc. are mentioned. A substrate for a solid-state imaging device in which a solid-state imaging device (light receiving device) such as a CCD (charge coupled device) or a CMOS (complementary metal oxide semiconductor) is provided on a substrate (for example, a silicon substrate) can also be used. . The pattern may be formed on the imaging element forming surface side (front surface) of the solid-state imaging element substrate, or may be formed on the imaging element non-forming surface side (back surface). A light-shielding film may be provided between the image sensors on the solid-state image sensor substrate or on the back surface of the solid-state image sensor substrate. Further, if necessary, an undercoat layer may be provided on the support for improving adhesion with the upper layer, preventing diffusion of substances, or flattening the substrate surface. The support may be provided with a partition wall. The partition is preferably formed of a material having a refractive index smaller than that of a pattern obtained from the negative photosensitive composition. The partition wall can suppress leakage of light from the pattern to the adjacent pattern. As specific examples of the material of the partition wall, various inorganic materials and organic materials can be used. For example, examples of the organic material include acrylic resin, polystyrene resin, polyimide resin, organic SOG (Spin On Glass) resin, siloxane resin, and fluorine resin. Examples of the inorganic material include porous silica, polycrystalline silicon, colloidal silica particles, silicon oxide, silicon nitride, and metal materials such as tungsten and aluminum.
 支持体上へのネガ型感光性組成物の適用方法としては、スリット塗布、インクジェット法、回転塗布、流延塗布、ロール塗布、スクリーン印刷法等の各種の方法を用いることができる。ネガ型感光性組成物層の膜厚としては、0.1~10μmが好ましく、0.2~5μmがより好ましく、0.2~3μmがさらに好ましい。 As a method for applying the negative photosensitive composition on the support, various methods such as slit coating, ink jet method, spin coating, cast coating, roll coating, and screen printing can be used. The film thickness of the negative photosensitive composition layer is preferably from 0.1 to 10 μm, more preferably from 0.2 to 5 μm, still more preferably from 0.2 to 3 μm.
 支持体上に形成したネガ型感光性組成物層は、乾燥(プリベーク)してもよい。低温プロセスによりパターンを形成する場合は、プリベークを行わなくてもよい。プリベークを行う場合、プリベーク温度は、120℃以下が好ましく、110℃以下がより好ましく、105℃以下が更に好ましい。下限は、例えば、50℃以上とすることができ、80℃以上とすることもできる。プリベーク時間は、10秒~300秒が好ましく、40~250秒がより好ましく、80~220秒がさらに好ましい。プリベークは、ホットプレート、オーブン等で行うことができる。 The negative photosensitive composition layer formed on the support may be dried (prebaked). When a pattern is formed by a low temperature process, pre-baking may not be performed. When prebaking is performed, the prebaking temperature is preferably 120 ° C. or lower, more preferably 110 ° C. or lower, and further preferably 105 ° C. or lower. For example, the lower limit may be 50 ° C. or higher, and may be 80 ° C. or higher. The prebake time is preferably 10 seconds to 300 seconds, more preferably 40 to 250 seconds, and even more preferably 80 to 220 seconds. Pre-baking can be performed with a hot plate, an oven, or the like.
 露光工程では、ネガ型感光性組成物層に対してパターンを有するマスクを介して露光する。本発明においては、露光に用いる波長の光に対する光学濃度が3.6以上のマスクを用いる。例えば、ネガ型感光性組成物層に対し、ステッパー等の露光装置を用いて、所定のパターンを有するマスクを介して露光することで、パターン状に露光することができる。これにより、露光部を硬化することができる。また、ネガ型感光性組成物層におけるマスクで覆われた部分(未露光部)においては、ネガ型感光性組成物層の硬化を効果的に抑制できる。 In the exposure step, the negative photosensitive composition layer is exposed through a mask having a pattern. In the present invention, a mask having an optical density of 3.6 or more with respect to light having a wavelength used for exposure is used. For example, the negative photosensitive composition layer can be exposed in a pattern by exposing it through a mask having a predetermined pattern using an exposure apparatus such as a stepper. Thereby, an exposure part can be hardened. Moreover, in the part (unexposed part) covered with the mask in a negative photosensitive composition layer, hardening of a negative photosensitive composition layer can be suppressed effectively.
 露光に際して用いることができる放射線(光)としては、g線、i線等の紫外線が好ましく(特に好ましくはi線)用いられる。照射量(露光エネルギー)は、例えば、0.03~2.5J/cmが好ましく、0.05~1.0J/cmがより好ましい。 As radiation (light) that can be used for exposure, ultraviolet rays such as g-line and i-line are preferable (particularly preferably i-line). Irradiation dose (exposure energy), for example, preferably 0.03 ~ 2.5J / cm 2, more preferably 0.05 ~ 1.0J / cm 2.
 露光時における酸素濃度については適宜選択することができ、大気下(酸素濃度20体積%)で行う他に、大気よりも酸素濃度が低い雰囲気下で行ってもよく、大気よりも酸素濃度が高い雰囲気下で行ってもよい。露光時における酸素濃度としては、15体積%以上であることが好ましく、21体積%以上であることがより好ましい。上限は、50体積%以下であることが好ましい。また、露光照度は適宜設定することが可能であり、1000~100000W/mが好ましく、5000~50000W/mがより好ましい。露光照度が上記範囲であれば、良好なパターンの解像度が得られやすい。 The oxygen concentration at the time of exposure can be appropriately selected. In addition to being performed in the atmosphere (oxygen concentration 20% by volume), the oxygen concentration may be performed in an atmosphere having a lower oxygen concentration than the atmosphere, and the oxygen concentration is higher than that in the atmosphere. It may be performed in an atmosphere. The oxygen concentration at the time of exposure is preferably 15% by volume or more, and more preferably 21% by volume or more. The upper limit is preferably 50% by volume or less. The exposure intensity is can be set appropriately, preferably 1000 ~ 100000W / m 2, more preferably 5000 ~ 50000W / m 2. If the exposure illuminance is in the above range, a good pattern resolution is easily obtained.
 また、露光工程において、露光は、連続して複数回に分割して行ってもよい。露光を分割することで分割された1回の露光当り(例えば、第1露光、第2露光、第3露光のそれぞれ)の露光量が減少する。光重合開始剤とラジカル重合性化合物とを含むネガ型感光性組成物を用いた場合を例に挙げて説明すると、露光を分割することで分割された露光当りの露光量が減少するため、ネガ型感光性組成物層中のラジカルなどの横方向への拡散を抑制することができると考えられる。また、同一座標で時間間隔を置いて更に追加露光(第2露光、第3露光等)することにより、露光エリアのネガ型感光性組成物層中の中心近傍のラジカルが露光余熱により保持された状態もしくは酸素による失活が進行しない状態で更に露光される(ラジカル発生を促進する)。そのため、支持体方向へのラジカル拡散が促進され、支持体への密着性が向上すると考えられる。また、露光エリア周辺近傍では第1露光で発生したラジカルは、ネガ型感光性組成物層中及びその層表面の酸素により失活しており、横方向の拡散が抑制されるものと考えられる。第2の露光においても同様の現象が発生するものと考えられる。このため、パターンの線幅の太り(露光量が多いときの線幅の太りや、焦点がずれたときの線幅の太りなど)などをより効果的に抑制することができる。 In the exposure process, the exposure may be performed by dividing the exposure into a plurality of times. By dividing the exposure, the exposure amount per one divided exposure (for example, each of the first exposure, the second exposure, and the third exposure) decreases. When a negative photosensitive composition containing a photopolymerization initiator and a radical polymerizable compound is used as an example, the exposure amount per divided exposure is reduced by dividing the exposure. It is considered that the lateral diffusion of radicals and the like in the type photosensitive composition layer can be suppressed. Further, by performing additional exposure (second exposure, third exposure, etc.) at the same coordinate with a time interval, radicals in the vicinity of the center in the negative photosensitive composition layer in the exposure area were retained by the exposure residual heat. Further exposure is performed in a state where oxygen is not deactivated (promoting radical generation). For this reason, it is considered that radical diffusion toward the support is promoted and adhesion to the support is improved. Moreover, it is considered that radicals generated by the first exposure near the exposure area are deactivated by oxygen in the negative photosensitive composition layer and the surface of the layer, and lateral diffusion is suppressed. It is considered that the same phenomenon occurs in the second exposure. For this reason, it is possible to more effectively suppress an increase in the line width of the pattern (such as an increase in the line width when the amount of exposure is large or an increase in the line width when the focus is shifted).
 図1は、本発明において用いられる露光装置の一実施形態を模式的に示す説明図である。図1に示したように、この露光装置においては、特定の光源(図示せず)から発せられた光がコンデンサーレンズ1及びレチクル5を介して、プロジェクションレンズ(投影レンズ)2に入射する。図示しないが、コンデンサーレンズ1の前または後に、所定のパターンを付したマスクが設置され、所定のパターンとされた光がプロジェクションレンズ2に到達するようにされていてもよい。ここで、コンデンサーレンズ側の開口数がNAとされ、プロジェクションレンズ側の開口数がNAとされている。プロジェクションレンズ(投影レンズ)2を透過した光は、ワーク4へと照射される。なお、プロジェクションレンズの出射側の開口数をNAとする。なお、単にNAと表記するときには、このNAを意味する。 FIG. 1 is an explanatory view schematically showing an embodiment of an exposure apparatus used in the present invention. As shown in FIG. 1, in this exposure apparatus, light emitted from a specific light source (not shown) is incident on a projection lens (projection lens) 2 via a condenser lens 1 and a reticle 5. Although not shown, a mask with a predetermined pattern may be installed before or after the condenser lens 1 so that the light with the predetermined pattern reaches the projection lens 2. Here, the numerical aperture on the condenser lens side is NA 1, and the numerical aperture on the projection lens side is NA 2 . The light transmitted through the projection lens (projection lens) 2 is irradiated onto the work 4. Incidentally, the numerical aperture of the emission side of the projection lens with NA 3. Incidentally, just when expressed as NA means the NA 3.
 開口数NAは0.5以上であることが好ましく、0.55以上であることがより好ましく、0.6以上であることが特に好ましい。上限は特になく、一括露光方法でのステッパーではNA:0.65以下であることが実際的である。一般的に解像力は、k×λ/NA(k:光学常数、λ:波長)という関係に立つと解される。したがって、NAが大きくなるに従い限界解像力が向上する。一方で、焦点深度(DOF)は、DOF=k・λ/NAという関係になる。NAが大きくなるほどDOFは小さくなる。kは露光装置の照明条件により変動する値であり、固定的なものではない。 The numerical aperture NA 3 is preferably 0.5 or more, more preferably 0.55 or more, and particularly preferably 0.6 or more. There is no particular upper limit, and it is practical that NA is 0.65 or less in the stepper in the batch exposure method. In general, it is understood that the resolving power is in a relationship of k × λ / NA (k: optical constant, λ: wavelength). Therefore, the limit resolution improves as the NA increases. On the other hand, the depth of focus (DOF) has a relationship of DOF = k · λ / NA. The DOF decreases as the NA increases. k is a value that varies depending on the illumination conditions of the exposure apparatus, and is not fixed.
 開口数NAとNAとの比率(NA/NA)であるコヒーレンスファクターσは、0.9以下であることが好ましく、0.6以下であることがより好ましく、0.5以下であることが特に好ましい。下限は特になく、0.38以上であることが実際的である。コヒーレントファクタ(σ)が小さいと、結像する像のコントラストが向上する。このコントラスト向上はDOFの向上に寄与すると考えられる。
 なお、本説明では、一括露光機の説明をおこなったが、レチクルとステージが同期してスキャン露光する、スキャニングステッパーや、マスクパターンと1:1で像転写する露光機(プロキシミテイー露光、一括投影露光装置)などにも適用することができる。
The coherence factor σ, which is the ratio of the numerical apertures NA 1 and NA 2 (NA 1 / NA 2 ), is preferably 0.9 or less, more preferably 0.6 or less, and 0.5 or less. It is particularly preferred. There is no particular lower limit, and it is practical that it is 0.38 or more. When the coherent factor (σ) is small, the contrast of the image to be formed is improved. This improvement in contrast is thought to contribute to an improvement in DOF.
In this description, the batch exposure apparatus has been described. However, the scanning stepper that performs scanning exposure in synchronism with the reticle and the stage, and the exposure apparatus that performs image transfer 1: 1 with the mask pattern (proximity exposure, batch exposure). It can also be applied to a projection exposure apparatus).
 現像工程では、未露光部のネガ型感光性組成物層を除去して現像する。未露光部のネガ型感光性組成物層の除去は、現像液を用いて行うことができる。現像液としては、下地の固体撮像素子や回路などにダメージを起さない、有機アルカリ現像液が望ましい。現像液の温度は、例えば、20~30℃が好ましい。現像時間は、20~180秒が好ましい。また、残渣除去性を向上させるため、現像液を60秒ごとに振り切り、さらに新たに現像液を供給する工程を数回繰り返してもよい。 In the developing process, the negative photosensitive composition layer in the unexposed area is removed and developed. The removal of the unexposed portion of the negative photosensitive composition layer can be performed using a developer. As the developer, an organic alkali developer that does not damage the underlying solid-state imaging device or circuit is desirable. The temperature of the developer is preferably 20 to 30 ° C., for example. The development time is preferably 20 to 180 seconds. Moreover, in order to improve residue removability, the process of shaking off the developer every 60 seconds and supplying a new developer may be repeated several times.
 現像液としては、アルカリ剤を純水で希釈したアルカリ性水溶液が好ましく使用される。アルカリ剤としては、例えば、アンモニア水、エチルアミン、ジエチルアミン、ジメチルエタノールアミン、ジグリコールアミン、ジエタノールアミン、ヒドロキシアミン、エチレンジアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ジメチルビス(2-ヒドロキシエチル)アンモニウムヒドロキシド、コリン、ピロール、ピペリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンなどの有機アルカリ性化合物や、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウムなどの無機アルカリ性化合物が挙げられる。アルカリ性水溶液のアルカリ剤の濃度は、0.001~10質量%が好ましく、0.01~1質量%がより好ましい。また、現像液には、界面活性剤をさらに含んでいてもよい。界面活性剤の例としては、後述のネガ型感光性組成物の欄で説明する界面活性剤が挙げられ、ノニオン系界面活性剤が好ましい。なお、このようなアルカリ性水溶液からなる現像液を使用した場合には、現像後、純水で洗浄(リンス)することが好ましい。また、現像液は、移送や保管の便宜などの観点より、一旦濃縮液として製造し、使用時に必要な濃度に希釈してもよい。希釈倍率は特に限定されず、例えば1.5~100倍の範囲に設定することができる。 As the developer, an alkaline aqueous solution obtained by diluting an alkaline agent with pure water is preferably used. Examples of the alkaline agent include ammonia water, ethylamine, diethylamine, dimethylethanolamine, diglycolamine, diethanolamine, hydroxyamine, ethylenediamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxy. Organic alkaline compounds such as water, benzyltrimethylammonium hydroxide, dimethylbis (2-hydroxyethyl) ammonium hydroxide, choline, pyrrole, piperidine, 1,8-diazabicyclo [5.4.0] -7-undecene, water Inorganic acids such as sodium oxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, sodium silicate, sodium metasilicate Potassium compounds may be mentioned. The concentration of the alkaline agent in the alkaline aqueous solution is preferably 0.001 to 10% by mass, and more preferably 0.01 to 1% by mass. Further, the developer may further contain a surfactant. Examples of the surfactant include surfactants described in the section of the negative photosensitive composition described later, and nonionic surfactants are preferable. In addition, when the developing solution which consists of such alkaline aqueous solution is used, it is preferable to wash | clean (rinse) with a pure water after image development. Further, the developer may be once produced as a concentrated solution and diluted to a necessary concentration at the time of use from the viewpoint of transportation and storage. The dilution factor is not particularly limited, and can be set, for example, in the range of 1.5 to 100 times.
 現像方法としては、公知の方法を利用できる。例えば、浸漬現像、パドル現像、シャワー現像、スプレー現像、超音波現像、ディップ現像等が挙げられる。なかでも、重合が弱い部分を除去する効果が高く、パターン間の残渣を抑制したり、矩形性の良いパターンが得られやすいという理由からスプレー現像が好ましい。また、スプレー現像は、露光エネルギーのマージンや、焦点深度のマージンなどのプロセスウインドウをより広げることもできる。ここで、スプレー現像とは、N、空気などの気体などにより圧力を加えた現像液をノズルから吐出して、ターゲット上に現像液をスプレー塗布して現像を行う方法である。スプレー現像では、ノズルから吐出されたスプレー状の現像液がターゲット上に液盛りされるとともに、スプレー圧によってターゲットが現像される。 As the developing method, a known method can be used. Examples include immersion development, paddle development, shower development, spray development, ultrasonic development, dip development, and the like. Among them, spray development is preferable because it has a high effect of removing a weakly polymerized portion, suppresses residues between patterns, and easily obtains a pattern with good rectangularity. In addition, spray development can further widen a process window such as an exposure energy margin and a focal depth margin. Here, the spray development is a method in which development is performed by discharging a developer applied with a gas such as N 2 or air from a nozzle and spraying the developer onto a target. In spray development, spray-like developer discharged from a nozzle is deposited on the target, and the target is developed by spray pressure.
 スプレー現像における現像液の流量、現像液と気体との流量比、スプレー圧などは適宜調整できる。例えば、現像液の流量としては、100~500mL/minであることが好ましく、150~400mL/minであることがより好ましく、200~350mL/minであることが更に好ましい。また、現像液と気体との流量比としては、例えば、現像液:気体=1:1.5~1:10であることが好ましく、1:2~1:5であることがより好ましく、1:2.5~1:4であることが更に好ましい。また、スプレー圧としては、3~15Mpaが好ましく、5~12Mpaがより好ましく、7~9Mpaが更に好ましい。 The flow rate of the developer in spray development, the flow rate ratio between the developer and gas, the spray pressure, etc. can be adjusted as appropriate. For example, the flow rate of the developer is preferably 100 to 500 mL / min, more preferably 150 to 400 mL / min, and further preferably 200 to 350 mL / min. The flow rate ratio between the developer and gas is, for example, preferably developer: gas = 1: 1.5 to 1:10, more preferably 1: 2 to 1: 5. : 2.5 to 1: 4 is more preferable. The spray pressure is preferably 3 to 15 Mpa, more preferably 5 to 12 Mpa, and even more preferably 7 to 9 Mpa.
 現像後、乾燥を施した後に加熱処理(ポストベーク)を行うこともできる。ポストベークは、膜(画素)の硬化を完全なものとするための現像後の加熱処理である。ポストベークを行う場合、ポストベーク温度は、240℃以下が好ましく、230℃以下がより好ましく、220℃以下が更に好ましく、200℃以下がより一層好ましく、190℃以下が特に好ましい。下限は特になく、効率的かつ効果的な処理を考慮すると、50℃以上が好ましく、100℃以上がより好ましい。ポストベーク後の膜のヤング率は0.5~20GPaが好ましく、2.5~15GPaがより好ましい。ポストベークは、現像後の膜を、上記条件になるようにホットプレートやコンベクションオーブン(熱風循環式乾燥機)、高周波加熱機等の加熱手段を用いて、連続式あるいはバッチ式で行うことができる。 Developed, dried and then heat-treated (post-baked). Post-baking is a heat treatment after development for complete film (pixel) curing. When performing post-baking, the post-baking temperature is preferably 240 ° C. or lower, more preferably 230 ° C. or lower, still more preferably 220 ° C. or lower, even more preferably 200 ° C. or lower, and particularly preferably 190 ° C. or lower. There is no particular lower limit, and considering an efficient and effective treatment, 50 ° C. or higher is preferable, and 100 ° C. or higher is more preferable. The Young's modulus of the film after post-baking is preferably 0.5 to 20 GPa, more preferably 2.5 to 15 GPa. Post-baking can be carried out continuously or batchwise using a heating means such as a hot plate, a convection oven (hot air circulation dryer), a high-frequency heater, etc., so that the film after development is in the above-mentioned condition. .
 ポストベークは、低酸素濃度の雰囲気下で行ってもよい。例えば、酸素濃度としては、19体積%以下であることが好ましく、15体積%以下であることがより好ましく、10体積%以下であることが更に好ましく、7体積%以下であることがより一層好ましく、3体積%以下であることが特に好ましい。下限は特になく、例えば10体積ppm以上とすることができる。 Post bake may be performed in a low oxygen concentration atmosphere. For example, the oxygen concentration is preferably 19% by volume or less, more preferably 15% by volume or less, still more preferably 10% by volume or less, and even more preferably 7% by volume or less. 3% by volume or less is particularly preferable. There is no particular lower limit, and for example, it can be 10 ppm by volume or more.
 本発明においては、現像後、乾燥を施した後に露光(後露光ともいう)を行い、膜を硬化してもよい。この場合、最初の露光工程では、波長350nmを超え380nm以下の光(好ましくは、波長355~370nmの光、特に好ましくはi線)で露光を行い、後露光は、波長254~350nmの光(好ましくは波長254nmの光)で露光することが好ましい。後露光における露光量(露光エネルギー)としては、30~4000mJ/cmが好ましく、50~3500mJ/cmがより好ましい。露光光源としては、例えばオゾンレス水銀ランプが好ましい。また、後露光を行った後、更に、ポストベークを行ってもよい。 In the present invention, after development, after drying, exposure (also referred to as post-exposure) may be performed to cure the film. In this case, in the first exposure step, exposure is performed with light having a wavelength of more than 350 nm and not more than 380 nm (preferably, light having a wavelength of 355 to 370 nm, particularly preferably i-line). The exposure is preferably performed with light having a wavelength of 254 nm. The exposure amount in the post-exposure (exposure energy), preferably 30 ~ 4000mJ / cm 2, more preferably 50 ~ 3500mJ / cm 2. For example, an ozone-less mercury lamp is preferable as the exposure light source. Further, post-baking may be performed after post-exposure.
<ネガ型感光性組成物>
 次に、本発明のパターンの製造方法において用いられるネガ型感光性組成物について説明する。本発明のパターンの製造方法において用いられるネガ型感光性組成物は、特に限定はなく、公知のネガ型感光性組成物を用いることができる。また、光により重合し像形成するフォトレジスト、ポリイミド樹脂組成物、ソルダーレジストなどにも適用することができる。ポリイミド樹脂を含むネガ型感光性組成物の具体例としては、特開2014-201695号公報に記載の組成物などが挙げられる。本発明のパターンの製造方法において用いられるネガ型感光性組成物は、ラジカル重合性化合物と光重合開始剤とを含む組成物であることが好ましい。以下、ネガ型感光性組成物に用いられる各成分について説明する。
<Negative photosensitive composition>
Next, the negative photosensitive composition used in the pattern manufacturing method of the present invention will be described. The negative photosensitive composition used in the pattern production method of the present invention is not particularly limited, and a known negative photosensitive composition can be used. Further, it can also be applied to a photoresist that is polymerized by light to form an image, a polyimide resin composition, a solder resist, and the like. Specific examples of the negative photosensitive composition containing a polyimide resin include the compositions described in JP-A-2014-201695. The negative photosensitive composition used in the pattern production method of the present invention is preferably a composition containing a radical polymerizable compound and a photopolymerization initiator. Hereinafter, each component used for a negative photosensitive composition is demonstrated.
 <<ラジカル重合性化合物>>
 本発明におけるネガ型感光性組成物は、ラジカル重合性化合物を含むことが好ましい。ラジカル重合性化合物としては、モノマー、プレポリマー、オリゴマーなどの化学的形態のいずれであってもよいが、モノマーが好ましい。ラジカル重合性化合物の分子量は、100~3000が好ましい。上限は、2000以下がより好ましく、1500以下が更に好ましい。下限は、150以上がより好ましく、250以上が更に好ましい。
<< Radically polymerizable compound >>
The negative photosensitive composition in the present invention preferably contains a radical polymerizable compound. The radical polymerizable compound may be any of chemical forms such as a monomer, a prepolymer, and an oligomer, but is preferably a monomer. The molecular weight of the radical polymerizable compound is preferably 100 to 3000. The upper limit is more preferably 2000 or less, and even more preferably 1500 or less. The lower limit is more preferably 150 or more, and further preferably 250 or more.
 ラジカル重合性化合物は、3~15官能の(メタ)アクリレート化合物であることが好ましく、3~6官能の(メタ)アクリレート化合物であることがより好ましい。これらの具体的な化合物としては、特開2009-288705号公報の段落番号0095~0108、特開2013-29760号公報の段落0227、特開2008-292970号公報の段落番号0254~0257に記載の化合物が挙げられ、これらの内容は本明細書に組み込まれる。 The radically polymerizable compound is preferably a 3 to 15 functional (meth) acrylate compound, and more preferably a 3 to 6 functional (meth) acrylate compound. Specific examples of these compounds include those described in paragraph Nos. 0095 to 0108 in JP-A-2009-288705, paragraph 0227 in JP-A-2013-29760, and paragraph numbers 0254 to 0257 in JP-A-2008-292970. Compounds, the contents of which are incorporated herein.
 ラジカル重合性化合物は、ジペンタエリスリトールトリアクリレート(市販品としてはKAYARAD D-330;日本化薬(株)製)、ジペンタエリスリトールテトラアクリレート(市販品としてはKAYARAD D-320;日本化薬(株)製)、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としてはKAYARAD D-310;日本化薬(株)製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としてはKAYARAD DPHA;日本化薬(株)製、NKエステルA-DPH-12E;新中村化学工業(株)製)、およびこれらの(メタ)アクリロイル基がエチレングリコールおよび/またはプロピレングリコール残基を介して結合している構造(例えば、サートマー社から市販されている、SR454、SR499)が好ましい。これらのオリゴマータイプも使用できる。また、ラジカル重合性化合物として、KAYARAD RP-1040、DPCA-20(日本化薬(株)製)を使用することもできる。
 また、ラジカル重合性化合物として、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキシ変性トリ(メタ)アクリレート、トリメチロールプロパンエチレンオキシ変性トリ(メタ)アクリレート、イソシアヌル酸エチレンオキシ変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートなどの3官能の(メタ)アクリレート化合物を用いることも好ましい。3官能の(メタ)アクリレート化合物の市販品としては、アロニックスM-309、M-310、M-321、M-350、M-360、M-313、M-315、M-306、M-305、M-303、M-452、M-450(東亞合成(株)製)、NKエステル A9300、A-GLY-9E、A-GLY-20E、A-TMM-3、A-TMM-3L、A-TMM-3LM-N、A-TMPT、TMPT(新中村化学工業(株)製)、KAYARAD GPO-303、TMPTA、THE-330、TPA-330、PET-30(日本化薬(株)製)などが挙げられる。
The radical polymerizable compounds are dipentaerythritol triacrylate (KAYARAD D-330 as a commercial product; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (KAYARAD D-320 as a commercial product; Nippon Kayaku Co., Ltd.) ), Dipentaerythritol penta (meth) acrylate (KAYARAD D-310 as a commercial product; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol hexa (meth) acrylate (KAYARAD DPHA as a commercial product; Nippon Kayaku) Co., Ltd., NK ester A-DPH-12E; Shin-Nakamura Chemical Co., Ltd.), and a structure in which these (meth) acryloyl groups are bonded via ethylene glycol and / or propylene glycol residues ( For example, SR commercially available from Sartomer 454, SR499). These oligomer types can also be used. Further, KAYARAD RP-1040 and DPCA-20 (manufactured by Nippon Kayaku Co., Ltd.) can also be used as the radical polymerizable compound.
In addition, as a radical polymerizable compound, trimethylolpropane tri (meth) acrylate, trimethylolpropane propyleneoxy modified tri (meth) acrylate, trimethylolpropane ethyleneoxy modified tri (meth) acrylate, isocyanuric acid ethyleneoxy modified tri (meth) It is also preferable to use a trifunctional (meth) acrylate compound such as acrylate or pentaerythritol tri (meth) acrylate. Commercially available products of trifunctional (meth) acrylate compounds include Aronix M-309, M-310, M-321, M-350, M-360, M-313, M-315, M-306, M-305. , M-303, M-452, M-450 (manufactured by Toagosei Co., Ltd.), NK ester A9300, A-GLY-9E, A-GLY-20E, A-TMM-3, A-TMM-3L, A -TMM-3LM-N, A-TMPT, TMPT (manufactured by Shin-Nakamura Chemical Co., Ltd.), KAYARAD GPO-303, TMPTA, THE-330, TPA-330, PET-30 (manufactured by Nippon Kayaku Co., Ltd.) Etc.
 ラジカル重合性化合物としては、酸基を有する化合物を用いることもできる。このようなラジカル重合性化合物を用いることで、現像時に未露光部のラジカル重合性化合物が除去されやすく、現像残渣の発生をより効果的に抑制できる。酸基としては、カルボキシル基、スルホ基、リン酸基等が挙げられ、カルボキシル基が好ましい。酸基を有するラジカル重合性化合物の市販品としては、アロニックスM-510、M-520、TO-2349(以上、東亞合成(株)製)等が挙げられる。 As the radically polymerizable compound, a compound having an acid group can also be used. By using such a radically polymerizable compound, the radically polymerizable compound in the unexposed area is easily removed during development, and the generation of development residues can be more effectively suppressed. Examples of the acid group include a carboxyl group, a sulfo group, and a phosphate group, and a carboxyl group is preferable. Commercially available products of radically polymerizable compounds having acid groups include Aronix M-510, M-520, TO-2349 (above, manufactured by Toagosei Co., Ltd.) and the like.
 酸基を有するラジカル重合性化合物の好ましい酸価としては、0.1~40mgKOH/gであり、より好ましくは5~30mgKOH/gである。ラジカル重合性化合物の酸価が0.1mgKOH/g以上であれば、現像液に対する溶解性が良好であり、40mgKOH/g以下であれば、製造や取扱い上、有利である。 The acid value of the radically polymerizable compound having an acid group is preferably 0.1 to 40 mgKOH / g, more preferably 5 to 30 mgKOH / g. If the acid value of the radically polymerizable compound is 0.1 mgKOH / g or more, the solubility in the developer is good, and if it is 40 mgKOH / g or less, it is advantageous in production and handling.
 ラジカル重合性化合物は、カプロラクトン構造を有する化合物も好ましい態様である。カプロラクトン構造を有するラジカル重合性化合物は、例えば、日本化薬(株)からKAYARAD DPCAシリーズとして市販されており、DPCA-20、DPCA-30、DPCA-60、DPCA-120等が挙げられる。 The radical polymerizable compound is also preferably a compound having a caprolactone structure. Radical polymerizable compounds having a caprolactone structure are commercially available from Nippon Kayaku Co., Ltd. as the KAYARAD DPCA series, and examples thereof include DPCA-20, DPCA-30, DPCA-60, DPCA-120 and the like.
 ラジカル重合性化合物としては、アルキレンオキシ基を有するラジカル重合性化合物を用いることもできる。アルキレンオキシ基を有するラジカル重合性化合物は、エチレンオキシ基および/またはプロピレンオキシ基を有するラジカル重合性化合物であることが好ましく、エチレンオキシ基を有するラジカル重合性化合物であることがより好ましく、エチレンオキシ基を4~20個有する3~6官能(メタ)アクリレート化合物であることがさらに好ましい。アルキレンオキシ基を有するラジカル重合性化合物の市販品としては、例えばサートマー社製のエチレンオキシ基を4個有する4官能(メタ)アクリレートであるSR-494、イソブチレンオキシ基を3個有する3官能(メタ)アクリレートであるKAYARAD TPA-330などが挙げられる。 As the radical polymerizable compound, a radical polymerizable compound having an alkyleneoxy group can also be used. The radical polymerizable compound having an alkyleneoxy group is preferably a radical polymerizable compound having an ethyleneoxy group and / or a propyleneoxy group, more preferably a radical polymerizable compound having an ethyleneoxy group. A tri- to hexa-functional (meth) acrylate compound having 4 to 20 groups is more preferable. Examples of commercially available radical polymerizable compounds having an alkyleneoxy group include SR-494, a tetrafunctional (meth) acrylate having four ethyleneoxy groups manufactured by Sartomer, and a trifunctional (meta) having three isobutyleneoxy groups. ) KAYARAD TPA-330 which is an acrylate.
 ラジカル重合性化合物としては、特公昭48-41708号公報、特開昭51-37193号公報、特公平2-32293号公報、特公平2-16765号公報に記載されているようなウレタンアクリレート類や、特公昭58-49860号公報、特公昭56-17654号公報、特公昭62-39417号公報、特公昭62-39418号公報に記載されたエチレンオキサイド系骨格を有するウレタン化合物も好適である。また、特開昭63-277653号公報、特開昭63-260909号公報、特開平1-105238号公報に記載された分子内にアミノ構造やスルフィド構造を有するラジカル重合性化合物を用いることも好ましい。市販品としては、ウレタンオリゴマーUAS-10、UAB-140(山陽国策パルプ社製)、UA-7200(新中村化学工業(株)製)、DPHA-40H(日本化薬(株)製)、UA-306H、UA-306T、UA-306I、AH-600、T-600、AI-600(共栄社化学(株))製などが挙げられる。 Examples of the radical polymerizable compound include urethane acrylates described in JP-B-48-41708, JP-A-51-37193, JP-B-2-32293, JP-B-2-16765, and the like. Urethane compounds having an ethylene oxide skeleton described in JP-B-58-49860, JP-B-56-17654, JP-B-62-39417, and JP-B-62-39418 are also suitable. It is also preferable to use radically polymerizable compounds having an amino structure or a sulfide structure in the molecule described in JP-A-63-277653, JP-A-63-260909, and JP-A-1-105238. . Commercially available products include urethane oligomer UAS-10, UAB-140 (manufactured by Sanyo Kokusaku Pulp Co., Ltd.), UA-7200 (manufactured by Shin-Nakamura Chemical Co., Ltd.), DPHA-40H (manufactured by Nippon Kayaku Co., Ltd.), UA -306H, UA-306T, UA-306I, AH-600, T-600, AI-600 (Kyoeisha Chemical Co., Ltd.) and the like.
 ラジカル重合性化合物の含有量は、ネガ型感光性組成物の全固形分に対し、0.1~50質量%が好ましい。下限は、0.5質量%以上がより好ましく、1質量%以上が更に好ましく、5質量%以上が特に好ましい。上限は、45質量%以下がより好ましく、40質量%以下が更に好ましい。ラジカル重合性化合物は、1種単独であってもよいし、2種以上を併用してもよい。2種以上を併用する場合は、合計が上記範囲となることが好ましい。 The content of the radical polymerizable compound is preferably 0.1 to 50% by mass with respect to the total solid content of the negative photosensitive composition. The lower limit is more preferably 0.5% by mass or more, further preferably 1% by mass or more, and particularly preferably 5% by mass or more. The upper limit is more preferably 45% by mass or less, and still more preferably 40% by mass or less. One radically polymerizable compound may be used alone, or two or more kinds thereof may be used in combination. When using 2 or more types together, it is preferable that a sum total becomes the said range.
<<光重合開始剤>>
 本発明におけるネガ型感光性組成物は、光重合開始剤を含有することが好ましい。光重合開始剤としては、ラジカル重合性化合物の重合を開始させる能力を有する限り、特に制限はなく、公知の光重合開始剤の中から適宜選択することができる。例えば、紫外線領域から可視領域の光線に対して感光性を有する化合物が好ましい。また、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する化合物であってもよい。
<< photopolymerization initiator >>
The negative photosensitive composition in the present invention preferably contains a photopolymerization initiator. The photopolymerization initiator is not particularly limited as long as it has the ability to initiate polymerization of a radical polymerizable compound, and can be appropriately selected from known photopolymerization initiators. For example, a compound having photosensitivity to light in the ultraviolet region to the visible region is preferable. Moreover, the compound which produces | generates a certain action with the photosensitized sensitizer and produces | generates an active radical may be sufficient.
 光重合開始剤としては、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有する化合物、オキサジアゾール骨格を有する化合物など)、アシルホスフィンオキサイド等のアシルホスフィン化合物、ヘキサアリールビイミダゾール、オキシム誘導体等のオキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテル、アミノアセトフェノン化合物、ヒドロキシアセトフェノン化合物などが挙げられる。光重合開始剤としては、露光感度の観点から、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリールイミダゾールダイマー、オニウム化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、アセトフェノン化合物、シクロペンタジエン-ベンゼン-鉄錯体、ハロメチルオキサジアゾール化合物、および、3-アリール置換クマリン化合物が好ましく、オキシム化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、および、アシルホスフィン化合物から選ばれる化合物がより好ましく、オキシム化合物が更に好ましい。光重合開始剤としては、特開2014-130173号公報の段落0065~0111の記載を参酌でき、この内容は本明細書に組み込まれる。 Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, compounds having a triazine skeleton and compounds having an oxadiazole skeleton), acylphosphine compounds such as acylphosphine oxide, hexaarylbiimidazoles, oxime derivatives, and the like. Oxime compounds, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, ketoxime ethers, aminoacetophenone compounds, hydroxyacetophenone compounds, and the like. As photopolymerization initiators, from the viewpoint of exposure sensitivity, trihalomethyltriazine compounds, benzyldimethylketal compounds, α-hydroxyketone compounds, α-aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, triaryls. Imidazole dimer, onium compound, benzothiazole compound, benzophenone compound, acetophenone compound, cyclopentadiene-benzene-iron complex, halomethyloxadiazole compound, and 3-aryl substituted coumarin compound are preferred, oxime compound, α-hydroxyketone compound , Α-aminoketone compounds and acylphosphine compounds are more preferred, and oxime compounds are even more preferred. As the photopolymerization initiator, descriptions in paragraphs 0065 to 0111 of JP-A-2014-130173 can be referred to, and the contents thereof are incorporated in the present specification.
 α-アミノケトン化合物の市販品としては、IRGACURE-907、IRGACURE-369、及び、IRGACURE-379(商品名:いずれもBASF社製)などが挙げられる。α-ヒドロキシケトン化合物の市販品としては、IRGACURE-184、DAROCUR-1173、IRGACURE-500、IRGACURE-2959、IRGACURE-127(以上、BASF社製)などが挙げられる。アシルホスフィン化合物の市販品としては、IRGACURE-819、IRGACURE-TPO(以上、BASF社製)などが挙げられる。 Examples of commercially available α-aminoketone compounds include IRGACURE-907, IRGACURE-369, and IRGACURE-379 (trade names: all manufactured by BASF). Examples of commercially available α-hydroxyketone compounds include IRGACURE-184, DAROCUR-1173, IRGACURE-500, IRGACURE-2959, IRGACURE-127 (above, manufactured by BASF). Examples of commercially available acylphosphine compounds include IRGACURE-819 and IRGACURE-TPO (above, manufactured by BASF).
 オキシム化合物としては、特開2001-233842号公報に記載の化合物、特開2000-80068号公報に記載の化合物、特開2006-342166号公報に記載の化合物、特開2016-21012号公報に記載の化合物を用いることができる。オキシム化合物の具体例としては、例えば、3-ベンゾイルオキシイミノブタン-2-オン、3-アセトキシイミノブタン-2-オン、3-プロピオニルオキシイミノブタン-2-オン、2-アセトキシイミノペンタン-3-オン、2-アセトキシイミノ-1-フェニルプロパン-1-オン、2-ベンゾイルオキシイミノ-1-フェニルプロパン-1-オン、3-(4-トルエンスルホニルオキシ)イミノブタン-2-オン、および2-エトキシカルボニルオキシイミノ-1-フェニルプロパン-1-オンなどが挙げられる。また、J.C.S.Perkin II(1979年)pp.1653-1660、J.C.S.Perkin II(1979年)pp.156-162、Journal of Photopolymer Science and Technology(1995年)pp.202-232に記載の化合物、特開2000-66385号公報、特開2000-80068号公報、特表2004-534797号公報、特開2006-342166号公報の各公報に記載の化合物等を用いることもできる。市販品ではIRGACURE-OXE01、IRGACURE-OXE02、IRGACURE-OXE03、IRGACURE-OXE04(以上、BASF社製)も好適に用いられる。また、TRONLY TR-PBG-304、TRONLY TR-PBG-309、TRONLY TR-PBG-305(常州強力電子新材料有限公司(CHANGZHOU TRONLY NEW ELECTRONIC MATERIALS CO.,LTD)製)、アデカアークルズNCI-930、アデカオプトマーN-1919(特開2012-14052号公報の光重合開始剤2)(以上、(株)ADEKA製)を用いることができる。 Examples of the oxime compound include compounds described in JP-A No. 2001-233842, compounds described in JP-A No. 2000-80068, compounds described in JP-A No. 2006-342166, and JP-A No. 2016-21012. These compounds can be used. Specific examples of the oxime compound include, for example, 3-benzoyloxyiminobutan-2-one, 3-acetoxyiminobutan-2-one, 3-propionyloxyiminobutan-2-one, 2-acetoxyiminopentane-3- ON, 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3- (4-toluenesulfonyloxy) iminobutan-2-one, and 2-ethoxy And carbonyloxyimino-1-phenylpropan-1-one. In addition, J.H. C. S. Perkin II (1979) pp. 1653-1660, J.A. C. S. Perkin II (1979) pp. 156-162, Journal of Photopolymer Science and Technology (1995) pp. Use the compounds described in 202-232, the compounds described in JP-A 2000-66385, JP-A 2000-80068, JP-T 2004-534797, JP-A 2006-342166, etc. You can also. As commercially available products, IRGACURE-OXE01, IRGACURE-OXE02, IRGACURE-OXE03, IRGACURE-OXE04 (manufactured by BASF) are also preferably used. Also, TRONLY TR-PBG-304, TRONLY TR-PBG-309, TRONLY TR-PBG-305 (manufactured by CHANGZHOU TRONLY NEW ELECTRONIC MATERIALS CO., LTD), Adeka Arcs NCI-30 Adekaoptomer N-1919 (photopolymerization initiator 2 of JP2012-14052A) (manufactured by ADEKA Co., Ltd.) can be used.
 また上記以外のオキシム化合物として、カルバゾール環のN位にオキシムが連結した特表2009-519904号公報に記載の化合物、ベンゾフェノン部位にヘテロ置換基が導入された米国特許第7626957号公報に記載の化合物、色素部位にニトロ基が導入された特開2010-15025号公報および米国特許公開2009-292039号に記載の化合物、国際公開2009/131189号公報に記載のケトオキシム化合物、トリアジン骨格とオキシム骨格を同一分子内に含有する米国特許第7556910号公報に記載の化合物、405nmに吸収極大を有し、g線光源に対して良好な感度を有する特開2009-221114号公報に記載の化合物などを用いてもよい。好ましくは、例えば、特開2013-29760号公報の段落番号0274~0306を参酌することができ、この内容は本明細書に組み込まれる。 Further, as oxime compounds other than the above, compounds described in JP-A-2009-519904 in which an oxime is linked to the N-position of the carbazole ring, and compounds described in US Pat. A compound described in JP 2010-15025 A and US Patent Publication No. 2009-292039 in which a nitro group is introduced into the dye moiety; Using the compound described in US Pat. No. 7,556,910 contained in the molecule, the compound described in JP-A-2009-221114 having an absorption maximum at 405 nm and good sensitivity to a g-ray light source Also good. Preferably, for example, paragraph numbers 0274 to 0306 in JP 2013-29760 A can be referred to, the contents of which are incorporated herein.
 本発明は、光重合開始剤としてフルオレン環を有するオキシム化合物を用いることもできる。フルオレン環を有するオキシム化合物の具体例としては、特開2014-137466号公報に記載の化合物が挙げられる。この内容は本明細書に組み込まれる。本発明は、光重合開始剤として、ベンゾフラン骨格を有するオキシム化合物を用いることもできる。具体例としては、国際公開2015/036910号公報に記載の化合物OE-01~OE-75が挙げられる。本発明は、光重合開始剤として、フッ素原子を有するオキシム化合物を用いることもできる。フッ素原子を有するオキシム化合物の具体例としては、特開2010-262028号公報に記載の化合物、特表2014-500852号公報に記載の化合物24、36~40、特開2013-164471号公報に記載の化合物(C-3)などが挙げられる。この内容は本明細書に組み込まれる。本発明は、光重合開始剤として、ニトロ基を有するオキシム化合物を用いることができる。ニトロ基を有するオキシム化合物は、二量体とすることも好ましい。ニトロ基を有するオキシム化合物の具体例としては、特開2013-114249号公報の段落番号0031~0047、特開2014-137466号公報の段落番号0008~0012、0070~0079に記載の化合物、特許第4223071号公報の段落番号0007~0025に記載の化合物、アデカアークルズNCI-831((株)ADEKA製)などが挙げられる。 In the present invention, an oxime compound having a fluorene ring can also be used as a photopolymerization initiator. Specific examples of the oxime compound having a fluorene ring include compounds described in JP-A-2014-137466. This content is incorporated herein. In the present invention, an oxime compound having a benzofuran skeleton can also be used as a photopolymerization initiator. Specific examples include compounds OE-01 to OE-75 described in International Publication No. 2015/036910. In the present invention, an oxime compound having a fluorine atom can also be used as a photopolymerization initiator. Specific examples of the oxime compound having a fluorine atom include compounds described in JP 2010-262028 A, compounds 24 and 36 to 40 described in JP-A-2014-500852, and JP-A 2013-164471. Compound (C-3). This content is incorporated herein. In the present invention, an oxime compound having a nitro group can be used as a photopolymerization initiator. The oxime compound having a nitro group is also preferably a dimer. Specific examples of the oxime compound having a nitro group include compounds described in paragraphs 0031 to 0047 of JP2013-114249A, paragraphs 0008 to 0012 and 0070 to 0079 of JP2014-137466A, Examples include compounds described in paragraph Nos. 0007 to 0025 of No. 4223071, ADEKA ARKLES NCI-831 (manufactured by ADEKA Corporation), and the like.
 本発明において好ましく使用されるオキシム化合物の具体例を以下に示すが、本発明はこれらに限定されない。 Specific examples of oxime compounds that are preferably used in the present invention are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001

Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 オキシム化合物は、350nm~500nmの波長領域に極大吸収波長を有する化合物が好ましく、360nm~480nmの波長領域に極大吸収波長を有する化合物がより好ましい。また、オキシム化合物は、365nmおよび405nmの吸光度が高い化合物が好ましい。 The oxime compound is preferably a compound having a maximum absorption wavelength in a wavelength region of 350 nm to 500 nm, and more preferably a compound having a maximum absorption wavelength in a wavelength region of 360 nm to 480 nm. The oxime compound is preferably a compound having high absorbance at 365 nm and 405 nm.
 オキシム化合物の365nmまたは405nmにおけるモル吸光係数は、感度の観点から、1,000~300,000であることが好ましく、2,000~300,000であることがより好ましく、5,000~200,000であることが特に好ましい。化合物のモル吸光係数は、公知の方法を用いて測定することができる。例えば、紫外可視分光光度計(Varian社製Cary-5 spectrophotometer)にて、酢酸エチル溶媒を用い、0.01g/Lの濃度で測定することが好ましい。
 光重合開始剤は、必要に応じて2種以上を組み合わせて使用しても良い。
The molar extinction coefficient at 365 nm or 405 nm of the oxime compound is preferably 1,000 to 300,000, more preferably 2,000 to 300,000, and more preferably 5,000 to 200,000 from the viewpoint of sensitivity. 000 is particularly preferred. The molar extinction coefficient of the compound can be measured using a known method. For example, it is preferable to measure with an ultraviolet-visible spectrophotometer (Cary-5 spectrophotometer manufactured by Varian) using an ethyl acetate solvent at a concentration of 0.01 g / L.
You may use a photoinitiator in combination of 2 or more type as needed.
 光重合開始剤の含有量は、ネガ型感光性組成物の全固形分に対し0.1~50質量%が好ましく、0.5~30質量%がより好ましく、1~20質量%が更に好ましい。光重合開始剤の含有量が上記範囲であれば、良好な感度と良好なパターン形成性が得られる。ネガ型感光性組成物は、光重合開始剤を、1種のみ含んでいてもよいし、2種以上含んでいてもよい。光重合開始剤を2種以上含む場合は、その合計量が上記範囲となることが好ましい。 The content of the photopolymerization initiator is preferably 0.1 to 50% by mass, more preferably 0.5 to 30% by mass, and still more preferably 1 to 20% by mass with respect to the total solid content of the negative photosensitive composition. . When the content of the photopolymerization initiator is within the above range, good sensitivity and good pattern formability can be obtained. The negative photosensitive composition may contain only one type of photopolymerization initiator, or may contain two or more types. When two or more photopolymerization initiators are included, the total amount is preferably within the above range.
<<着色剤>>
 本発明におけるネガ型感光性組成物は、着色剤を含むことができる。着色剤を含むネガ型感光性組成物は、カラーフィルタの着色画素などの形成に好ましく用いることができる。
<< Colorant >>
The negative photosensitive composition in the present invention can contain a colorant. A negative photosensitive composition containing a colorant can be preferably used for forming colored pixels of a color filter.
 着色剤は、染料および顔料のいずれでもよく、両者を併用してもよい。顔料としては、従来公知の種々の無機顔料または有機顔料を挙げることができる。顔料の平均粒子径は、0.01~0.1μmが好ましく、0.01~0.05μmがより好ましい。着色剤としては、顔料が好ましく、有機顔料がより好ましい。 The colorant may be either a dye or a pigment, or a combination of both. Examples of the pigment include conventionally known various inorganic pigments or organic pigments. The average particle diameter of the pigment is preferably from 0.01 to 0.1 μm, more preferably from 0.01 to 0.05 μm. As the colorant, a pigment is preferable, and an organic pigment is more preferable.
 無機顔料としては、カーボンブラックおよびチタンブラック等の黒色顔料;鉄、コバルト、アルミニウム、カドミウム、鉛、銅、チタン、マグネシウム、クロム、亜鉛、アンチモン等の金属の酸化物、金属錯塩等が挙げられる。 Examples of inorganic pigments include black pigments such as carbon black and titanium black; metal oxides such as iron, cobalt, aluminum, cadmium, lead, copper, titanium, magnesium, chromium, zinc, and antimony, and metal complex salts.
 有機顔料として、以下を挙げることができる。
 カラーインデックス(C.I.)ピグメントイエロー1,2,3,4,5,6,10,11,12,13,14,15,16,17,18,20,24,31,32,34,35,35:1,36,36:1,37,37:1,40,42,43,53,55,60,61,62,63,65,73,74,77,81,83,86,93,94,95,97,98,100,101,104,106,108,109,110,113,114,115,116,117,118,119,120,123,125,126,127,128,129,137,138,139,147,148,150,151,152,153,154,155,156,161,162,164,166,167,168,169,170,171,172,173,174,175,176,177,179,180,181,182,185,187,188,193,194,199,213,214(以上、黄色顔料);
 C.I.ピグメントオレンジ 2,5,13,16,17:1,31,34,36,38,43,46,48,49,51,52,55,59,60,61,62,64,71,73(以上、オレンジ色顔料);
 C.I.ピグメントレッド 1,2,3,4,5,6,7,9,10,14,17,22,23,31,38,41,48:1,48:2,48:3,48:4,49,49:1,49:2,52:1,52:2,53:1,57:1,60:1,63:1,66,67,81:1,81:2,81:3,83,88,90,105,112,119,122,123,144,146,149,150,155,166,168,169,170,171,172,175,176,177,178,179,184,185,187,188,190,200,202,206,207,208,209,210,216,220,224,226,242,246,254,255,264,270,272,279(以上、赤色顔料);
 C.I.ピグメントグリーン 7,10,36,37,58,59(以上、緑色顔料);
 C.I.ピグメントバイオレット 1,19,23,27,32,37,42,58,59(以上、紫色顔料);
 C.I.ピグメントブルー 1,2,15,15:1,15:2,15:3,15:4,15:6,16,22,60,64,66,79,80(以上、青色顔料)。
 また、緑色顔料として、分子中のハロゲン原子数が平均10~14個であり、臭素原子数が平均8~12個であり、塩素原子数が平均2~5個であるハロゲン化亜鉛フタロシアニン顔料を用いることも可能である。具体例としては、国際公開2015/118720号公報に記載の化合物が挙げられる。
 また、青色顔料として、リン原子を有するアルミニウムフタロシアニン化合物を用いることもできる。具体例としては、特開2012-247591号公報の段落番号0022~0030、特開2011-157478号公報の段落番号0047に記載の化合物などが挙げられる。
 これら有機顔料は、単独で用いてもよく、種々組合せて用いてもよい。
Examples of the organic pigment include the following.
Color Index (CI) Pigment Yellow 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 24, 31, 32, 34, 35, 35: 1, 36, 36: 1, 37, 37: 1, 40, 42, 43, 53, 55, 60, 61, 62, 63, 65, 73, 74, 77, 81, 83, 86, 93, 94, 95, 97, 98, 100, 101, 104, 106, 108, 109, 110, 113, 114, 115, 116, 117, 118, 119, 120, 123, 125, 126, 127, 128, 129, 137, 138, 139, 147, 148, 150, 151, 152, 153, 154, 155, 156, 161, 162, 164, 166, 167, 168, 169, 170, 171, 72,173,174,175,176,177,179,180,181,182,185,187,188,193,194,199,213,214 (or more, and yellow pigments);
C. I. Pigment Orange 2, 5, 13, 16, 17: 1, 31, 34, 36, 38, 43, 46, 48, 49, 51, 52, 55, 59, 60, 61, 62, 64, 71, 73 ( Above, orange pigment);
C. I. Pigment Red 1, 2, 3, 4, 5, 6, 7, 9, 10, 14, 17, 22, 23, 31, 38, 41, 48: 1, 48: 2, 48: 3, 48: 4 49, 49: 1, 49: 2, 52: 1, 52: 2, 53: 1, 57: 1, 60: 1, 63: 1, 66, 67, 81: 1, 81: 2, 81: 3 83, 88, 90, 105, 112, 119, 122, 123, 144, 146, 149, 150, 155, 166, 168, 169, 170, 171, 172, 175, 176, 177, 178, 179, 184 185, 187, 188, 190, 200, 202, 206, 207, 208, 209, 210, 216, 220, 224, 226, 242, 246, 254, 255, 264, 270, 272, 279 (above, red pigment) );
C. I. Pigment Green 7, 10, 36, 37, 58, 59 (above, green pigment);
C. I. Pigment Violet 1,19,23,27,32,37,42,58,59 (above, purple pigment);
C. I. Pigment Blue 1, 2, 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, 16, 22, 60, 64, 66, 79, 80 (above, blue pigment).
Further, as a green pigment, a halogenated zinc phthalocyanine pigment having an average number of halogen atoms in the molecule of 10 to 14, a bromine atom number of 8 to 12 and an average number of chlorine atoms of 2 to 5 is used. It is also possible to use it. Specific examples include the compounds described in International Publication No. 2015/118720.
Moreover, the aluminum phthalocyanine compound which has a phosphorus atom can also be used as a blue pigment. Specific examples include compounds described in paragraph numbers 0022 to 0030 of JP2012-247491A and paragraph number 0047 of JP2011-157478A.
These organic pigments may be used alone or in various combinations.
 染料としては、例えば、特開昭64-90403号公報、特開昭64-91102号公報、特開平1-94301号公報、特開平6-11614号公報、米国特許第4808501号明細書、米国特許第5667920号明細書、特開平5-333207号公報、特開平6-35183号公報、特開平6-51115号公報、特開平6-194828号公報等に開示されている染料が挙げられる。化学構造として区分すると、ピラゾールアゾ化合物、ピロメテン化合物、アニリノアゾ化合物、トリアリールメタン化合物、アントラキノン化合物、ベンジリデン化合物、オキソノール化合物、ピラゾロトリアゾールアゾ化合物、ピリドンアゾ化合物、シアニン化合物、フェノチアジン化合物、ピロロピラゾールアゾメチン化合物等が挙げられる。 Examples of the dye include, for example, JP-A 64-90403, JP-A 64-91102, JP-A-1-94301, JP-A-6-11614, US Pat. No. 4,808,501, US Pat. Examples thereof include dyes disclosed in Japanese Patent No. 5667920, JP-A-5-333207, JP-A-6-35183, JP-A-6-51115, JP-A-6-194828, and the like. When classified as a chemical structure, pyrazole azo compounds, pyromethene compounds, anilinoazo compounds, triarylmethane compounds, anthraquinone compounds, benzylidene compounds, oxonol compounds, pyrazolotriazole azo compounds, pyridone azo compounds, cyanine compounds, phenothiazine compounds, pyrrolopyrazole azomethine compounds, etc. Is mentioned.
 また、着色剤として色素多量体を用いてもよい。色素多量体は、溶剤に溶解して用いられる染料であることが好ましいが、粒子を形成していてもよい。色素多量体が粒子である場合は、色素多量体を溶剤などに分散して用いられる。粒子状態の色素多量体は、例えば乳化重合によって得ることができる。粒子状態の色素多量体としては、例えば、特開2015-214682号公報に記載されている化合物が挙げられる。また、色素多量体として、特開2011-213925号公報、特開2013-041097号公報、特開2015-028144号公報、特開2015-030742号公報等に記載されている化合物を用いることもできる。 In addition, a dye multimer may be used as a colorant. The dye multimer is preferably a dye used by being dissolved in a solvent, but may form particles. When the dye multimer is a particle, the dye multimer is dispersed in a solvent or the like. The dye multimer in the particle state can be obtained, for example, by emulsion polymerization. Examples of the dye multimer in the particle state include compounds described in JP-A-2015-214682. Further, as the dye multimer, compounds described in JP2011-213925A, JP2013-041097A, JP2015-028144A, JP2015-030742A, and the like can also be used. .
 また、黄色着色剤として、特開2013-54339号公報の段落番号0011~0034に記載のキノフタロン化合物、特開2014-26228号公報の段落番号0013~0058に記載のキノフタロン化合物などを用いることもできる。 Further, as yellow colorants, quinophthalone compounds described in paragraph numbers 0011 to 0034 of JP2013-54339A, quinophthalone compounds described in paragraph numbers 0013 to 0058 of JP2014-26228A, and the like can also be used. .
 また、着色剤として、下記式(I)で表されるアゾ化合物およびその互変異性構造のアゾ化合物から選ばれる少なくとも1種のアニオンと、Zn2+およびCu2+を少なくとも含む金属イオンと、下記式(II)で表される化合物とを含む金属アゾ顔料を用いることもできる。
Figure JPOXMLDOC01-appb-C000003

 式中、RおよびRはそれぞれ独立して、OHまたはNRであり、RおよびRはそれぞれ独立して、=Oまたは=NRであり、R~Rはそれぞれ独立して、水素原子またはアルキル基である。
Figure JPOXMLDOC01-appb-C000004

 式中R11~R13は、それぞれ独立して水素原子またはアルキル基である。
Further, as the colorant, at least one anion selected from an azo compound represented by the following formula (I) and an azo compound having a tautomer structure thereof, a metal ion containing at least Zn 2+ and Cu 2+ , A metal azo pigment containing the compound represented by (II) can also be used.
Figure JPOXMLDOC01-appb-C000003

Wherein R 1 and R 2 are each independently OH or NR 5 R 6 , R 3 and R 4 are each independently ═O or ═NR 7 , and R 5 to R 7 are each Independently, it is a hydrogen atom or an alkyl group.
Figure JPOXMLDOC01-appb-C000004

In the formula, R 11 to R 13 each independently represents a hydrogen atom or an alkyl group.
 上記の金属アゾ顔料は、金属アゾ顔料の全金属イオンの1モルを基準として、Zn2+およびCu2+を合計で95~100モル%含有することが好ましく、98~100モル%含有することがより好ましく、99.9~100モル%含有することが更に好ましく、100モル%であることが特に好ましい。また、上記の金属アゾ顔料中のZn2+とCu2+とのモル比は、Zn2+:Cu2+=199:1~1:15であることが好ましく、19:1~1:1であることがより好ましく、9:1~2:1であることが更に好ましい。 The metal azo pigment preferably contains 95 to 100 mol% of Zn 2+ and Cu 2+ in total, more preferably 98 to 100 mol%, based on 1 mol of all metal ions of the metal azo pigment. The content is preferably 99.9 to 100 mol%, more preferably 100 mol%. The molar ratio of Zn 2+ to Cu 2+ in the metal azo pigment is preferably Zn 2+ : Cu 2+ = 199: 1 to 1:15, and preferably 19: 1 to 1: 1. More preferably, it is 9: 1 to 2: 1.
 上記の金属アゾ顔料は、更にZn2+およびCu2+以外の二価もしくは三価の金属イオン(以下、他の金属イオンともいう)を含んでいてもよい。他の金属イオンとしては、Ni2+、Al3+、Fe2+、Fe3+、Co2+、Co3+、La3+、Ce3+、Pr3+、Nd2+、Nd3+、Sm2+、Sm3+、Eu2+、Eu3+、Gd3+、Tb3+、Dy3+、Ho3+、Yb2+、Yb3+、Er3+、Tm3+、Mg2+、Ca2+、Sr2+、Mn2+、Y3+、Sc3+、Ti2+、Ti3+、Nb3+、Mo2+、Mo3+、V2+、V3+、Zr2+、Zr3+、Cd2+、Cr3+、Pb2+、Ba2+が挙げられる。これらの他の金属イオンの量は、金属アゾ顔料の全金属イオンの1モルを基準として、5モル%以下であることが好ましく、2モル%以下であることがより好ましく、0.1モル%以下であることが更に好ましい。 The metal azo pigment may further contain a divalent or trivalent metal ion (hereinafter also referred to as other metal ions) other than Zn 2+ and Cu 2+ . Other metal ions include Ni 2+ , Al 3+ , Fe 2+ , Fe 3+ , Co 2+ , Co 3+ , La 3+ , Ce 3+ , Pr 3+ , Nd 2+ , Nd 3+ , Sm 2+ , Sm 3+ , Eu 2+ , Eu 3+, Gd 3+, Tb 3+, Dy 3+, Ho 3+, Yb 2+, Yb 3+, Er 3+, Tm 3+, Mg 2+, Ca 2+, Sr 2+, Mn 2+, Y 3+, Sc 3+, Ti 2+, Ti 3+, Nb <3+> , Mo <2+> , Mo <3+> , V <2+> , V <3+> , Zr <2+> , Zr <3+> , Cd <2+> , Cr <3+> , Pb <2+> , Ba <2+> is mentioned. The amount of these other metal ions is preferably 5 mol% or less, more preferably 2 mol% or less, and more preferably 0.1 mol%, based on 1 mol of all metal ions of the metal azo pigment. More preferably, it is as follows.
 上記の金属アゾ顔料は、上記アニオンと金属イオンとで構成される金属アゾ化合物と、上記式(II)で表される化合物とで付加体が形成されていることが好ましい。付加体とは、分子集合体を意味すると理解される。これらの分子間の結合は、例えば、分子間相互作用によるものであってもよく、ルイス酸-塩基相互作用によるものであってもよく、配位結合または鎖結合によるものであってもよい。また、付加体は、ゲスト分子がホスト分子を構成する格子に組み込まれている包接化合物(クラスレート)のような構造であっても良い。また、付加体は、複合層間結晶(格子間化合物を含む)のような構造であってもよい。複合層間結晶とは、少なくとも2つの要素からなる化学的な非化学量論的結晶化合物のことである。また、付加体は、2つの物質が共同結晶を形成し、第一の成分の規則的な格子の位置に第二の成分の原子が位置しているような混合置換結晶であってもよい。 In the metal azo pigment, an adduct is preferably formed of a metal azo compound composed of the anion and metal ion and a compound represented by the formula (II). An adduct is understood to mean a molecular assembly. The bond between these molecules may be, for example, due to intermolecular interaction, may be due to Lewis acid-base interaction, or may be due to coordination bond or chain bond. Further, the adduct may have a structure such as an inclusion compound (clathrate) in which a guest molecule is incorporated in a lattice constituting a host molecule. Further, the adduct may have a structure such as a composite interlayer crystal (including an interstitial compound). A composite interlayer crystal is a chemical non-stoichiometric crystalline compound composed of at least two elements. Further, the adduct may be a mixed substitution crystal in which two substances form a joint crystal, and atoms of the second component are located at regular lattice positions of the first component.
 上記の金属アゾ顔料は、物理的混合物であってもよく、化学的複合化合物であってもよい。好ましくは、物理的混合物である。物理的混合物の好ましい例としては、以下の1)、2)が挙げられる。
 1)上記アニオンとZn2+とで構成される金属アゾ化合物と、式(II)で表される化合物との付加体1と、上記アニオンとCu2+とで構成される金属アゾ化合物と、式(II)で表される化合物との付加体2の物理的混合物。
 2) 1)の物理的混合物において、更に、上記アニオンと、Zn2+およびCu2+以外の二価もしくは三価の金属イオンとで構成される金属アゾ化合物と、式(II)で表される化合物との付加体3を含む物理的混合物。
The metal azo pigment may be a physical mixture or a chemical composite compound. Preferably, it is a physical mixture. Preferable examples of the physical mixture include the following 1) and 2).
1) Adduct 1 of a metal azo compound composed of the anion and Zn 2+ and a compound represented by the formula (II), a metal azo compound composed of the anion and Cu 2+ , A physical mixture of adduct 2 with the compound represented by II).
2) In the physical mixture of 1), a metal azo compound composed of the above anion and a divalent or trivalent metal ion other than Zn 2+ and Cu 2+ , and a compound represented by the formula (II) A physical mixture comprising adduct 3 with
 上記の金属アゾ顔料については、特開2017-171914号公報の段落番号0011~0062、0139~0190の記載を参酌でき、この内容は本明細書に組み込まれる。 Regarding the above-mentioned metal azo pigments, the descriptions in paragraph numbers 0011 to 0062 and 0139 to 0190 of JP-A-2017-171914 can be referred to, and the contents thereof are incorporated in the present specification.
 着色剤の含有量は、ネガ型感光性組成物の全固形分に対して、10質量%以上であることが好ましく、15質量%以上がより好ましく、20質量%以上が更に好ましい。上限については特に制限はなく、45質量%以下であることが好ましく、40質量%以下であることがより好ましい。 The content of the colorant is preferably 10% by mass or more, more preferably 15% by mass or more, and still more preferably 20% by mass or more based on the total solid content of the negative photosensitive composition. There is no restriction | limiting in particular about an upper limit, It is preferable that it is 45 mass% or less, and it is more preferable that it is 40 mass% or less.
 <<透明粒子>>
 本発明におけるネガ型感光性組成物は、透明粒子を含むことができる。透明粒子を含むネガ型感光性組成物は、カラーフィルタの白色(無色)画素などの形成に好ましく用いることができる。
<< Transparent particles >>
The negative photosensitive composition in the present invention can contain transparent particles. A negative photosensitive composition containing transparent particles can be preferably used for forming white (colorless) pixels of a color filter.
 透明粒子としては、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、Nb、In、PおよびSから選択される少なくとも一種の元素を含む酸化物の粒子が挙げられ、Ti、Zr、Sn、AlおよびSiから選択される少なくとも一種の元素を含む酸化物の粒子であることが好ましい。具体的には、二酸化チタン、二酸化ジルコニウム、二酸化ケイ素、酸化亜鉛、酸化アルミニウム、酸化タングステン(セシウム酸化タングステンなどのタングステンを含む複合酸化物を含む)、酸化ニオブ、酸化銅、酸化ゲルマニウム、酸化インジウム、酸化錫、酸化マグネシウムの粒子が挙げられる。中でも、二酸化チタン、酸化錫、酸化インジウムおよび二酸化ジルコニウムの粒子が好ましく、二酸化チタンおよび二酸化ジルコニウムの粒子がより好ましい。また、酸化チタンとしては、ルチル型酸化チタン、アナターゼ型酸化チタン、アモルファス型酸化チタンが挙げられ、ルチル型酸化チタンが好ましい。また、上記の酸化物は、表面処理剤で表面処理されていることも好ましい。表面処理剤としては、無機化合物、有機化合物が挙げられる。無機化合物と有機化合物とを併用してもよい。表面処理剤の具体例としては、ポリオール、酸化アルミニウム、水酸化アルミニウム、非晶質シリカ、含水シリカ、アルカノールアミン、ステアリン酸、オルガノシロキサン、酸化ジルコニウム、ハイドロゲンジメチコン、シランカップリング剤、チタネートカップリング剤などが挙げられる。 The transparent particles are at least one selected from Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, Nb, In, P and S. And oxide particles containing at least one element selected from Ti, Zr, Sn, Al, and Si are preferable. Specifically, titanium dioxide, zirconium dioxide, silicon dioxide, zinc oxide, aluminum oxide, tungsten oxide (including composite oxides containing tungsten such as cesium tungsten oxide), niobium oxide, copper oxide, germanium oxide, indium oxide, Examples thereof include particles of tin oxide and magnesium oxide. Among these, particles of titanium dioxide, tin oxide, indium oxide and zirconium dioxide are preferable, and particles of titanium dioxide and zirconium dioxide are more preferable. Examples of the titanium oxide include rutile type titanium oxide, anatase type titanium oxide, and amorphous type titanium oxide, and rutile type titanium oxide is preferable. In addition, the oxide is preferably surface-treated with a surface treatment agent. Examples of the surface treatment agent include inorganic compounds and organic compounds. An inorganic compound and an organic compound may be used in combination. Specific examples of the surface treatment agent include polyol, aluminum oxide, aluminum hydroxide, amorphous silica, hydrous silica, alkanolamine, stearic acid, organosiloxane, zirconium oxide, hydrogen dimethicone, silane coupling agent, titanate coupling agent. Etc.
 透明粒子の形状は特に制限はない。例えば、等方性形状(例えば、球状、多面体状等)、異方性形状(例えば、針状、棒状、板状等)、不定形状等の形状が挙げられる。 The shape of the transparent particles is not particularly limited. For example, isotropic shapes (for example, spherical shape, polyhedral shape, etc.), anisotropic shapes (for example, needle shape, rod shape, plate shape, etc.), irregular shapes, and the like can be mentioned.
 透明粒子の1次粒子の重量平均径は、150nm以下であることが好ましく、100nm以下であることがより好ましく、80nm以下であることが更に好ましい。下限値は特になく、1nm以上であることが好ましい。透明粒子の重量平均径の測定方法は、JIS K 0062:1992に準ずる。
 透明粒子の波長500nmにおける屈折率は、1.64以上であることが好ましく、1.8~3.0であることがより好ましく、1.8~2.8であることが更に好ましい。透明粒子の屈折率の測定方法は、JIS K 0062:1992に準ずる。
The weight average diameter of the primary particles of the transparent particles is preferably 150 nm or less, more preferably 100 nm or less, and still more preferably 80 nm or less. There is no particular lower limit, and it is preferably 1 nm or more. The measuring method of the weight average diameter of the transparent particles is in accordance with JIS K 0062: 1992.
The refractive index of the transparent particles at a wavelength of 500 nm is preferably 1.64 or more, more preferably 1.8 to 3.0, and still more preferably 1.8 to 2.8. The method for measuring the refractive index of the transparent particles is in accordance with JIS K 0062: 1992.
 透明粒子は市販品を用いてもよい。例えば、二酸化チタンとしては、TTOシリーズ(TTO-51(A)、TTO-51(C)、TTO-55(C)など)、TTO-S、Vシリーズ(TTO-S-1、TTO-S-2、TTO-V-3など)(以上、商品名、石原産業(株)製)、MTシリーズ(MT-01、MT-05など)(テイカ(株)製、商品名)などが挙げられる。酸化ジルコニウム、二酸化ケイ素、酸化亜鉛、酸化アルミニウム、セシウム酸化タングステン、酸化ニオブ、酸化錫、酸化マグネシウム、酸化インジウムの市販品としては、後述する実施例に記載の製品などが挙げられる。 Transparent particles may be commercially available. For example, titanium dioxide includes TTO series (TTO-51 (A), TTO-51 (C), TTO-55 (C), etc.), TTO-S, V series (TTO-S-1, TTO-S-). 2, TTO-V-3, etc. (above, trade name, manufactured by Ishihara Sangyo Co., Ltd.), MT series (MT-01, MT-05, etc.) (trade name, manufactured by Teika Co., Ltd.), and the like. Examples of commercially available products of zirconium oxide, silicon dioxide, zinc oxide, aluminum oxide, cesium tungsten oxide, niobium oxide, tin oxide, magnesium oxide, and indium oxide include products described in Examples described later.
 透明粒子の含有量は、ネガ型感光性組成物の全固形分に対して、10質量%以上であることが好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましい。上限は、80質量%以下であることが好ましく、70質量%以下であることがより好ましく、60質量%以下であることが更に好ましい。 The content of the transparent particles is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more with respect to the total solid content of the negative photosensitive composition. The upper limit is preferably 80% by mass or less, more preferably 70% by mass or less, and further preferably 60% by mass or less.
 <<樹脂>>
 ネガ型感光性組成物は、樹脂を含むことが好ましい。樹脂は、例えば、顔料などの粒子を組成物中で分散させる用途、バインダーの用途で配合される。なお、主に顔料などの粒子を分散させるために用いられる樹脂を分散剤ともいう。ただし、樹脂のこのような用途は一例であって、このような用途以外の目的で樹脂を使用することもできる。
<< Resin >>
The negative photosensitive composition preferably contains a resin. The resin is blended, for example, for the purpose of dispersing particles such as pigments in the composition and the use of a binder. In addition, a resin that is mainly used for dispersing particles such as pigment is also referred to as a dispersant. However, such use of the resin is an example, and the resin can be used for purposes other than such use.
 ネガ型感光性組成物において、樹脂の含有量は、ネガ型感光性組成物の全固形分に対し、1~95質量%であることが好ましい。下限は、5質量%以上であることがより好ましく、10質量%以上がさらに好ましい。上限は、90質量%以下であることがより好ましく、85質量%以下がさらに好ましい。 In the negative photosensitive composition, the resin content is preferably 1 to 95% by mass with respect to the total solid content of the negative photosensitive composition. The lower limit is more preferably 5% by mass or more, and further preferably 10% by mass or more. The upper limit is more preferably 90% by mass or less, and still more preferably 85% by mass or less.
(分散剤)
 本発明におけるネガ型感光性組成物は、樹脂として分散剤を含むことが好ましい。特に、顔料などの粒子を含む場合においては、分散剤を含むことが好ましい。分散剤は、酸性分散剤(酸性樹脂)、塩基性分散剤(塩基性樹脂)が挙げられる。
(Dispersant)
The negative photosensitive composition in the present invention preferably contains a dispersant as a resin. In particular, when a particle such as a pigment is included, a dispersant is preferably included. Examples of the dispersant include an acidic dispersant (acidic resin) and a basic dispersant (basic resin).
 ここで、酸性分散剤(酸性樹脂)とは、酸基の量が塩基性基の量よりも多い樹脂を表す。酸性分散剤(酸性樹脂)としては、酸基の量と塩基性基の量の合計量を100モル%としたときに、酸基の量が70モル%以上を占める樹脂が好ましく、実質的に酸基のみからなる樹脂がより好ましい。酸性分散剤(酸性樹脂)が有する酸基は、カルボキシル基が好ましい。酸性分散剤(酸性樹脂)の酸価は、5~105mgKOH/gが好ましい。
 また、塩基性分散剤(塩基性樹脂)とは、塩基性基の量が酸基の量よりも多い樹脂を表す。塩基性分散剤(塩基性樹脂)としては、酸基の量と塩基性基の量の合計量を100モル%としたときに、塩基性基の量が50モル%を超える樹脂が好ましい。塩基性分散剤が有する塩基性基は、アミンが好ましい。
Here, the acidic dispersant (acidic resin) represents a resin in which the amount of acid groups is larger than the amount of basic groups. The acidic dispersant (acidic resin) is preferably a resin in which the amount of acid groups occupies 70 mol% or more when the total amount of acid groups and basic groups is 100 mol%. A resin consisting only of acid groups is more preferred. The acid group possessed by the acidic dispersant (acidic resin) is preferably a carboxyl group. The acid value of the acidic dispersant (acidic resin) is preferably 5 to 105 mgKOH / g.
The basic dispersant (basic resin) represents a resin in which the amount of basic groups is larger than the amount of acid groups. The basic dispersant (basic resin) is preferably a resin in which the amount of basic groups exceeds 50 mol% when the total amount of acid groups and basic groups is 100 mol%. The basic group possessed by the basic dispersant is preferably an amine.
 分散剤としては、例えば、高分子分散剤〔例えば、ポリアミドアミンとその塩、ポリカルボン酸とその塩、高分子量不飽和酸エステル、変性ポリウレタン、変性ポリエステル、変性ポリ(メタ)アクリレート、(メタ)アクリル系共重合体、ナフタレンスルホン酸ホルマリン縮合物〕、ポリオキシエチレンアルキルリン酸エステル、ポリオキシエチレンアルキルアミン、アルカノールアミン等が挙げられる。 Examples of the dispersant include a polymer dispersant [for example, polyamidoamine and its salt, polycarboxylic acid and its salt, high molecular weight unsaturated acid ester, modified polyurethane, modified polyester, modified poly (meth) acrylate, (meth). Acrylic copolymer, naphthalenesulfonic acid formalin condensate], polyoxyethylene alkyl phosphate ester, polyoxyethylene alkylamine, alkanolamine and the like.
 高分子分散剤は、その構造から更に直鎖状高分子、末端変性型高分子、グラフト型高分子、ブロック型高分子に分類することができる。高分子分散剤は、顔料の表面に吸着し、再凝集を防止するように作用する。そのため、顔料表面へのアンカー部位を有する末端変性型高分子、グラフト型高分子、ブロック型高分子を好ましい構造として挙げることができる。また、特開2011-070156号公報の段落番号0028~0124に記載の分散剤や特開2007-277514号公報に記載の分散剤も好ましく用いられる。これらの内容は本明細書に組み込まれる。 Polymer dispersants can be further classified into linear polymers, terminal-modified polymers, graft polymers, and block polymers based on their structures. The polymer dispersant acts to adsorb on the surface of the pigment and prevent reaggregation. Therefore, a terminal-modified polymer, a graft polymer, and a block polymer having an anchor site to the pigment surface can be cited as preferred structures. In addition, a dispersant described in paragraph numbers 0028 to 0124 of JP2011-070156A and a dispersant described in JP2007-277514A are also preferably used. These contents are incorporated herein.
 樹脂(分散剤)は、グラフト共重合体を用いることもできる。グラフト共重合体の詳細は、特開2012-255128号公報の段落番号0025~0094の記載を参酌でき、この内容は本明細書に組み込まれる。グラフト共重合体の具体例としては、下記の樹脂や、特開2012-255128号公報の段落番号0072~0094に記載の樹脂が挙げられ、この内容は本明細書に組み込まれる。
Figure JPOXMLDOC01-appb-C000005
As the resin (dispersant), a graft copolymer may be used. Details of the graft copolymer can be referred to the descriptions in paragraphs 0025 to 0094 of JP2012-255128A, the contents of which are incorporated herein. Specific examples of the graft copolymer include the following resins and resins described in paragraph numbers 0072 to 0094 of JP 2012-255128 A, the contents of which are incorporated herein.
Figure JPOXMLDOC01-appb-C000005
 また、樹脂(分散剤)として、主鎖および側鎖の少なくとも一方に窒素原子を含むオリゴイミン系分散剤を用いることもできる。オリゴイミン系分散剤としては、pKa14以下の官能基を有する部分構造Xを有する繰り返し単位と、原子数40~10,000の側鎖Yを含む側鎖とを有し、かつ主鎖および側鎖の少なくとも一方に塩基性窒素原子を有する樹脂が好ましい。塩基性窒素原子とは、塩基性を呈する窒素原子であれば特に制限はない。 Also, as the resin (dispersant), an oligoimine dispersant containing a nitrogen atom in at least one of the main chain and the side chain can be used. The oligoimine-based dispersant has a repeating unit having a partial structure X having a functional group of pKa14 or less and a side chain containing a side chain Y having 40 to 10,000 atoms, and has a main chain and a side chain. A resin having at least one basic nitrogen atom is preferred. The basic nitrogen atom is not particularly limited as long as it is a basic nitrogen atom.
 オリゴイミン系分散剤については、特開2012-255128号公報の段落番号0102~0174の記載を参酌でき、本明細書には上記内容が組み込まれる。オリゴイミン系分散剤の具体例としては、例えば、特開2012-255128号公報の段落番号0168~0174に記載の樹脂を挙げることができる。 Regarding the oligoimine-based dispersant, the description in paragraphs 0102 to 0174 of JP 2012-255128 A can be referred to, and the above contents are incorporated in this specification. Specific examples of the oligoimine dispersant include resins described in paragraph numbers 0168 to 0174 of JP 2012-255128 A, for example.
 分散剤は市販品を用いることもできる。例えば、特開2012-137564号公報の段落番号0129に記載された製品を分散剤として用いることもできる。なお、上記分散剤の欄で説明した樹脂は、分散剤以外の用途で使用することもできる。例えば、バインダーとして用いることもできる。 A commercially available product can also be used as the dispersant. For example, the product described in paragraph No. 0129 of JP2012-137564A can be used as a dispersant. The resin described in the column of the dispersant can be used for purposes other than the dispersant. For example, it can be used as a binder.
 分散剤の含有量は、顔料100質量部に対して1~200質量部が好ましい。下限は、5質量部以上が好ましく、10質量部以上がより好ましい。上限は、150質量部以下が好ましく、100質量部以下がより好ましい。 The content of the dispersing agent is preferably 1 to 200 parts by mass with respect to 100 parts by mass of the pigment. The lower limit is preferably 5 parts by mass or more, and more preferably 10 parts by mass or more. The upper limit is preferably 150 parts by mass or less, and more preferably 100 parts by mass or less.
(アルカリ可溶性樹脂)
 本発明におけるネガ型感光性組成物は、樹脂としてアルカリ可溶性樹脂を含有することができる。アルカリ可溶性樹脂を含有することにより、現像性やパターン形成性が向上する。なお、アルカリ可溶性樹脂は、分散剤やバインダーとして用いることもできる。
(Alkali-soluble resin)
The negative photosensitive composition in this invention can contain alkali-soluble resin as resin. By containing an alkali-soluble resin, developability and pattern formability are improved. The alkali-soluble resin can also be used as a dispersant or a binder.
 アルカリ可溶性樹脂は、アルカリ溶解を促進する基を有する樹脂の中から適宜選択することができる。アルカリ溶解を促進する基(以下、酸基ともいう)としては、例えば、カルボキシル基、リン酸基、スルホ基、フェノール性ヒドロキシル基などが挙げられ、カルボキシル基が好ましい。アルカリ可溶性樹脂が有する酸基の種類は、1種のみであってもよいし、2種以上であってもよい。 The alkali-soluble resin can be appropriately selected from resins having a group that promotes alkali dissolution. Examples of the group that promotes alkali dissolution (hereinafter also referred to as an acid group) include a carboxyl group, a phosphate group, a sulfo group, and a phenolic hydroxyl group, and a carboxyl group is preferable. Only one type of acid group may be included in the alkali-soluble resin, or two or more types may be used.
 アルカリ可溶性樹脂の重量平均分子量(Mw)は、5,000~100,000が好ましい。また、アルカリ可溶性樹脂の数平均分子量(Mn)は、1,000~20,000が好ましい。 The weight average molecular weight (Mw) of the alkali-soluble resin is preferably 5,000 to 100,000. The number average molecular weight (Mn) of the alkali-soluble resin is preferably 1,000 to 20,000.
 アルカリ可溶性樹脂としては、耐熱性の観点からは、ポリヒドロキシスチレン系樹脂、ポリシロキサン系樹脂、アクリル系樹脂、アクリルアミド系樹脂、アクリル/アクリルアミド共重合樹脂が好ましい。また、現像性制御の観点からは、アクリル系樹脂、アクリルアミド系樹脂、アクリル/アクリルアミド共重合樹脂が好ましい。 The alkali-soluble resin is preferably a polyhydroxystyrene resin, a polysiloxane resin, an acrylic resin, an acrylamide resin, or an acrylic / acrylamide copolymer resin from the viewpoint of heat resistance. Further, from the viewpoint of developing property control, an acrylic resin, an acrylamide resin, and an acrylic / acrylamide copolymer resin are preferable.
 アルカリ可溶性樹脂は、側鎖にカルボキシル基を有するポリマーが好ましい。例えば、メタクリル酸、アクリル酸、イタコン酸、クロトン酸、マレイン酸、2-カルボキシエチル(メタ)アクリル酸、ビニル安息香酸、部分エステル化マレイン酸等のモノマーに由来する繰り返し単位を有する共重合体、ノボラック型樹脂などのアルカリ可溶性フェノール樹脂、側鎖にカルボキシル基を有する酸性セルロース誘導体、ヒドロキシル基を有するポリマーに酸無水物を付加させたポリマーが挙げられる。特に、(メタ)アクリル酸と、(メタ)アクリル酸と共重合可能な他のモノマーとの共重合体が、アルカリ可溶性樹脂として好適である。(メタ)アクリル酸と共重合可能な他のモノマーとしては、アルキル(メタ)アクリレート、アリール(メタ)アクリレート、ビニル化合物などが挙げられる。アルキル(メタ)アクリレートおよびアリール(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、トリル(メタ)アクリレート、ナフチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、グリシジルメタクリレート、テトラヒドロフルフリルメタクリレートなどが挙げられる。ビニル化合物としては、スチレン、α-メチルスチレン、ビニルトルエン、アクリロニトリル、ビニルアセテート、N-ビニルピロリドン、ポリスチレンマクロモノマー、ポリメチルメタクリレートマクロモノマー等が挙げられる。また、他のモノマーとして、N-フェニルマレイミド、N-シクロヘキシルマレイミド等の特開平10-300922号公報に記載のN位置換マレイミドモノマーが挙げられる。これらの(メタ)アクリル酸と共重合可能な他のモノマーは、1種のみであってもよいし、2種以上であってもよい。 The alkali-soluble resin is preferably a polymer having a carboxyl group in the side chain. For example, a copolymer having a repeating unit derived from a monomer such as methacrylic acid, acrylic acid, itaconic acid, crotonic acid, maleic acid, 2-carboxyethyl (meth) acrylic acid, vinyl benzoic acid, partially esterified maleic acid, Examples thereof include alkali-soluble phenol resins such as novolac resins, acidic cellulose derivatives having a carboxyl group in the side chain, and polymers obtained by adding an acid anhydride to a polymer having a hydroxyl group. In particular, a copolymer of (meth) acrylic acid and another monomer copolymerizable with (meth) acrylic acid is suitable as the alkali-soluble resin. Examples of other monomers copolymerizable with (meth) acrylic acid include alkyl (meth) acrylates, aryl (meth) acrylates, and vinyl compounds. As alkyl (meth) acrylate and aryl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, pentyl (meth) acrylate, Hexyl (meth) acrylate, octyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, tolyl (meth) acrylate, naphthyl (meth) acrylate, cyclohexyl (meth) acrylate, glycidyl methacrylate, tetrahydrofurfuryl methacrylate, etc. Is mentioned. Examples of the vinyl compound include styrene, α-methylstyrene, vinyl toluene, acrylonitrile, vinyl acetate, N-vinyl pyrrolidone, polystyrene macromonomer, polymethyl methacrylate macromonomer, and the like. Examples of other monomers include N-substituted maleimide monomers described in JP-A-10-300922, such as N-phenylmaleimide and N-cyclohexylmaleimide. Only one kind of these other monomers copolymerizable with (meth) acrylic acid may be used, or two or more kinds may be used.
 アルカリ可溶性樹脂としては、ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体、ベンジル(メタ)アクリレート/(メタ)アクリル酸/2-ヒドロキシエチル(メタ)アクリレート共重合体、ベンジル(メタ)アクリレート/(メタ)アクリル酸/他のモノマーからなる多元共重合体を好ましく用いることができる。また、2-ヒドロキシエチル(メタ)アクリレートと他のモノマーとを共重合した共重合体、特開平7-140654号公報に記載の、2-ヒドロキシプロピル(メタ)アクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシ-3-フェノキシプロピルアクリレート/ポリメチルメタクリレートマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/メチルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体なども好ましく用いることができる。また、市販品としては、例えばFF-426(藤倉化成社製)などを用いることもできる。 Examples of the alkali-soluble resin include benzyl (meth) acrylate / (meth) acrylic acid copolymer, benzyl (meth) acrylate / (meth) acrylic acid / 2-hydroxyethyl (meth) acrylate copolymer, and benzyl (meth) acrylate. A multi-component copolymer composed of / (meth) acrylic acid / other monomers can be preferably used. Further, a copolymer obtained by copolymerizing 2-hydroxyethyl (meth) acrylate and another monomer, described in JP-A-7-140654, 2-hydroxypropyl (meth) acrylate / polystyrene macromonomer / benzyl methacrylate / Methacrylic acid copolymer, 2-hydroxy-3-phenoxypropyl acrylate / polymethyl methacrylate macromonomer / benzyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / methyl methacrylate / methacrylic acid copolymer, 2-Hydroxyethyl methacrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer can also be preferably used. Further, as a commercially available product, for example, FF-426 (manufactured by Fujikura Kasei Co., Ltd.) can be used.
 アルカリ可溶性樹脂としては、重合性基を有するアルカリ可溶性樹脂を用いることもできる。重合性基としては、(メタ)アリル基、(メタ)アクリロイル基等が挙げられる。重合性基を有するアルカリ可溶性樹脂は、重合性基を側鎖に有するアルカリ可溶性樹脂等が有用である。重合性基を有するアルカリ可溶性樹脂の市販品としては、ダイヤナールNRシリーズ(三菱レイヨン(株)製)、Photomer6173(カルボキシル基含有ポリウレタンアクリレートオリゴマー、Diamond Shamrock Co.,Ltd.製)、ビスコートR-264、KSレジスト106(いずれも大阪有機化学工業(株)製)、サイクロマーPシリーズ(例えば、ACA230AA)、プラクセル CF200シリーズ(いずれも(株)ダイセル製)、Ebecryl3800(ダイセルユーシービー株式会社製)、アクリキュアーRD-F8((株)日本触媒製)、DP-1305(富士ファインケミカルズ(株)製)などが挙げられる。 An alkali-soluble resin having a polymerizable group can also be used as the alkali-soluble resin. Examples of the polymerizable group include a (meth) allyl group and a (meth) acryloyl group. As the alkali-soluble resin having a polymerizable group, an alkali-soluble resin having a polymerizable group in the side chain is useful. Commercially available alkali-soluble resins having a polymerizable group include Dianal NR series (manufactured by Mitsubishi Rayon Co., Ltd.), Photomer 6173 (carboxyl group-containing polyurethane acrylate oligomer, manufactured by Diamond Shamrock Co., Ltd.), Biscort R-264. KS resist 106 (both manufactured by Osaka Organic Chemical Industry Co., Ltd.), Cyclomer P series (for example, ACA230AA), Plaxel CF200 series (both manufactured by Daicel Corporation), Ebecryl 3800 (manufactured by Daicel UCB Corporation), Examples include ACRYCURE RD-F8 (manufactured by Nippon Shokubai Co., Ltd.) and DP-1305 (manufactured by Fuji Fine Chemicals Co., Ltd.).
 アルカリ可溶性樹脂は、下記式(ED1)で示される化合物および特開2010-168539号公報の式(1)で表される化合物から選ばれる少なくとも1種の化合物(以下、これらの化合物を「エーテルダイマー」と称することもある。)を含むモノマー成分を重合してなるポリマーを含むことも好ましい。 The alkali-soluble resin includes at least one compound selected from the compound represented by the following formula (ED1) and the compound represented by the formula (1) in JP 2010-168539 A (hereinafter referred to as “ether dimer”). It is also preferable to include a polymer obtained by polymerizing a monomer component including “.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(ED1)中、RおよびRは、それぞれ独立して、水素原子または置換基を有していてもよい炭素数1~25の炭化水素基を表す。 In formula (ED1), R 1 and R 2 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 25 carbon atoms which may have a substituent.
 エーテルダイマーの具体例としては、例えば、特開2013-29760号公報の段落番号0317を参酌することができ、この内容は本明細書に組み込まれる。エーテルダイマーは、1種のみであってもよいし、2種以上であってもよい。 As a specific example of the ether dimer, for example, paragraph number 0317 of JP2013-29760A can be referred to, and the contents thereof are incorporated in the present specification. Only one type of ether dimer may be used, or two or more types may be used.
 エーテルダイマーを含むモノマー成分を重合してなるポリマーとしては、例えば下記構造のポリマーが挙げられる。
Figure JPOXMLDOC01-appb-C000007
Examples of the polymer obtained by polymerizing a monomer component containing an ether dimer include polymers having the following structure.
Figure JPOXMLDOC01-appb-C000007
 アルカリ可溶性樹脂は、下記式(X)で示される化合物に由来する繰り返し単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000008

 式(X)において、Rは、水素原子またはメチル基を表し、Rは炭素数2~10のアルキレン基を表し、Rは、水素原子またはベンゼン環を含んでもよい炭素数1~20のアルキル基を表す。nは1~15の整数を表す。
The alkali-soluble resin may contain a repeating unit derived from a compound represented by the following formula (X).
Figure JPOXMLDOC01-appb-C000008

In the formula (X), R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkylene group having 2 to 10 carbon atoms, and R 3 has 1 to 20 carbon atoms which may contain a hydrogen atom or a benzene ring. Represents an alkyl group. n represents an integer of 1 to 15.
 上記式(X)において、Rのアルキレン基の炭素数は、2~3が好ましい。また、Rのアルキル基の炭素数は1~10が好ましい。Rのアルキル基はベンゼン環を含んでもよい。Rで表されるベンゼン環を含むアルキル基としては、ベンジル基、2-フェニル(イソ)プロピル基等を挙げることができる。 In the above formula (X), the alkylene group of R 2 preferably has 2 to 3 carbon atoms. The carbon number of the alkyl group of R 3 is preferably 1-10. The alkyl group of R 3 may include a benzene ring. Examples of the alkyl group containing a benzene ring represented by R 3 include a benzyl group and a 2-phenyl (iso) propyl group.
 アルカリ可溶性樹脂は、特開2012-208494号公報の段落番号0558~0571(対応する米国特許出願公開第2012/0235099号明細書の段落番号0685~0700)の記載を参酌でき、この内容は本明細書に組み込まれる。また、特開2012-32767号公報の段落番号0029~0063に記載の共重合体(B)および実施例で用いられているアルカリ可溶性樹脂、特開2012-208474号公報の段落番号0088~0098に記載のバインダー樹脂および実施例で用いられているバインダー樹脂、特開2012-137531号公報の段落番号0022~0032に記載のバインダー樹脂および実施例で用いられているバインダー樹脂、特開2013-024934号公報の段落番号0132~0143に記載のバインダー樹脂および実施例で用いられているバインダー樹脂、特開2011-242752号公報の段落番号0092~0098および実施例で用いられているバインダー樹脂、特開2012-032770号公報の段落番号0030~0072に記載のバインダー樹脂を用いることもできる。これらの内容は本明細書に組み込まれる。 The description of paragraphs 0558 to 0571 in JP 2012-208494 A (paragraph numbers 0685 to 0700 in the corresponding US Patent Application Publication No. 2012/0235099) can be referred to for the alkali-soluble resin. Embedded in the book. Further, the copolymer (B) described in paragraphs 0029 to 0063 of JP2012-32767A and the alkali-soluble resin used in the examples, paragraphs 0088 to 0098 of JP2012-208474A, The binder resin described in the description and the binder resin used in the examples, the binder resin described in paragraphs 0022 to 0032 of JP2012-137531A and the binder resin used in the examples, JP2013-024934A Binder resin described in paragraph Nos. 0132 to 0143 of the gazette and the binder resin used in the examples, paragraph numbers 0092 to 0098 of the gazette of JP2011-242752 and the binder resin used in the examples, and JP2012 -032770, paragraph number 0030 0072 can also be used a binder resin according to. These contents are incorporated herein.
 アルカリ可溶性樹脂の酸価は、30~500mgKOH/gが好ましい。下限は、50mgKOH/g以上がより好ましく、70mgKOH/g以上が更に好ましい。上限は、400mgKOH/g以下がより好ましく、200mgKOH/g以下が更に好ましく、150mgKOH/g以下が一層好ましく、120mgKOH/g以下が特に好ましい。 The acid value of the alkali-soluble resin is preferably 30 to 500 mgKOH / g. The lower limit is more preferably 50 mgKOH / g or more, and still more preferably 70 mgKOH / g or more. The upper limit is more preferably 400 mgKOH / g or less, still more preferably 200 mgKOH / g or less, still more preferably 150 mgKOH / g or less, and particularly preferably 120 mgKOH / g or less.
 アルカリ可溶性樹脂の含有量は、ネガ型感光性組成物の全固形分に対して、1~95質量%が好ましい。下限は、2質量%以上がより好ましく、3質量%以上がさらに好ましい。上限は、93質量%以下がより好ましく、90質量%以下がさらに好ましい。本発明のネガ型感光性組成物は、アルカリ可溶性樹脂を、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合は、その合計が上記範囲となることが好ましい。 The content of the alkali-soluble resin is preferably 1 to 95% by mass with respect to the total solid content of the negative photosensitive composition. The lower limit is more preferably 2% by mass or more, and further preferably 3% by mass or more. The upper limit is more preferably 93% by mass or less, and still more preferably 90% by mass or less. The negative photosensitive composition of the present invention may contain only one kind of alkali-soluble resin, or may contain two or more kinds. When two or more types are included, the total is preferably within the above range.
(その他の樹脂)
 本発明におけるネガ型感光性組成物は、樹脂として上述した分散剤やアルカリ可溶性樹脂の欄で説明した樹脂以外の樹脂(その他の樹脂ともいう)を含有することができる。その他の樹脂としては、例えば、(メタ)アクリル樹脂、(メタ)アクリルアミド樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレン樹脂、ポリアリーレンエーテルホスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、ポリエステル樹脂、スチレン樹脂、シロキサン樹脂などが挙げられる。ポリイミド樹脂としては、特開2014-201695号公報に記載された樹脂などが挙げられ、この内容は本明細書に組み込まれる。その他の樹脂は、これらの樹脂から1種を単独で使用してもよく、2種以上を混合して使用してもよい。
(Other resins)
The negative photosensitive composition in the present invention may contain a resin (also referred to as other resin) other than the resin described above in the column of the dispersant and the alkali-soluble resin. Examples of other resins include (meth) acrylic resin, (meth) acrylamide resin, ene / thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyphenylene resin, and polyarylene ether. Examples thereof include phosphine oxide resins, polyimide resins, polyamideimide resins, polyolefin resins, cyclic olefin resins, polyester resins, styrene resins, and siloxane resins. Examples of the polyimide resin include resins described in JP-A-2014-201695, and the contents thereof are incorporated herein. As for other resins, one kind of these resins may be used alone, or two or more kinds may be mixed and used.
 <<エポキシ基を有する化合物>>
 ネガ型感光性組成物はエポキシ基を有する化合物(以下、エポキシ化合物ともいう)を含有することもできる。エポキシ化合物としては、エポキシ基を1分子内に1~100個有する化合物であることが好ましい。下限は、2個以上がより好ましい。上限は、例えば、10個以下とすることもでき、5個以下とすることもできる。
<< Compound having epoxy group >>
The negative photosensitive composition can also contain a compound having an epoxy group (hereinafter also referred to as an epoxy compound). The epoxy compound is preferably a compound having 1 to 100 epoxy groups in one molecule. The lower limit is more preferably 2 or more. For example, the upper limit may be 10 or less, and may be 5 or less.
 エポキシ化合物は、エポキシ当量(=エポキシ化合物の分子量/エポキシ基の数)が500g/当量以下であることが好ましく、100~400g/当量であることがより好ましく、100~300g/当量であることが更に好ましい。 The epoxy compound preferably has an epoxy equivalent (= molecular weight of epoxy compound / number of epoxy groups) of 500 g / equivalent or less, more preferably 100 to 400 g / equivalent, and 100 to 300 g / equivalent. Further preferred.
 エポキシ化合物は、低分子化合物(例えば、分子量1000未満)でもよいし、高分子化合物(macromolecule)(例えば、分子量1000以上、ポリマーの場合は、重量平均分子量が1000以上)でもよい。エポキシ化合物の重量平均分子量は、200~100000が好ましく、500~50000がより好ましい。重量平均分子量の上限は、10000以下がさらに好ましく、5000以下が一層好ましく、3000以下がより一層好ましい。 The epoxy compound may be a low molecular compound (for example, a molecular weight of less than 1000) or a high molecular compound (for example, a molecular weight of 1000 or more, and in the case of a polymer, the weight average molecular weight is 1000 or more). The weight average molecular weight of the epoxy compound is preferably 200 to 100,000, and more preferably 500 to 50,000. The upper limit of the weight average molecular weight is more preferably 10,000 or less, still more preferably 5000 or less, and even more preferably 3000 or less.
 エポキシ化合物としては、特開2013-011869号公報の段落番号0034~0036、特開2014-043556号公報の段落番号0147~0156、特開2014-089408号公報の段落番号0085~0092に記載された化合物を用いることもできる。これらの内容は、本明細書に組み込まれる。市販品としては、例えば、ビスフェノールA型エポキシ樹脂としては、jER825、jER827、jER828、jER834、jER1001、jER1002、jER1003、jER1055、jER1007、jER1009、jER1010(以上、三菱化学(株)製)、EPICLON860、EPICLON1050、EPICLON1051、EPICLON1055(以上、DIC(株)製)等が挙げられる。ビスフェノールF型エポキシ樹脂としては、jER806、jER807、jER4004、jER4005、jER4007、jER4010(以上、三菱化学(株)製)、EPICLON830、EPICLON835(以上、DIC(株)製)、LCE-21、RE-602S(以上、日本化薬(株)製)等が挙げられる。フェノールノボラック型エポキシ樹脂としては、jER152、jER154、jER157S70、jER157S65(以上、三菱化学(株)製)、EPICLON N-740、EPICLON N-770、EPICLON N-775(以上、DIC(株)製)等が挙げられる。クレゾールノボラック型エポキシ樹脂としては、EPICLON N-660、EPICLON N-665、EPICLON N-670、EPICLON N-673、EPICLON N-680、EPICLON N-690、EPICLON N-695(以上、DIC(株)製)、EOCN-1020(日本化薬(株)製)等が挙げられる。脂肪族エポキシ樹脂としては、ADEKA RESIN EP-4080S、同EP-4085S、同EP-4088S(以上、(株)ADEKA製)、セロキサイド2021P、セロキサイド2081、セロキサイド2083、セロキサイド2085、EHPE3150、EPOLEAD PB 3600、同PB 4700(以上、(株)ダイセル製)、デナコール EX-212L、EX-214L、EX-216L、EX-321L、EX-850L(以上、ナガセケムテックス(株)製)等が挙げられる。その他にも、ADEKA RESIN EP-4000S、同EP-4003S、同EP-4010S、同EP-4011S(以上、(株)ADEKA製)、NC-2000、NC-3000、NC-7300、XD-1000、EPPN-501、EPPN-502(以上、(株)ADEKA製)、jER1031S(三菱化学(株)製)等が挙げられる。 The epoxy compounds are described in paragraph numbers 0034 to 0036 of JP2013-011869A, paragraph numbers 0147 to 0156 of JP2014043556A, and paragraphs 0085 to 0092 of JP2014089408A. Compounds can also be used. These contents are incorporated herein. As commercially available products, for example, as bisphenol A type epoxy resins, jER825, jER827, jER828, jER834, jER1001, jER1002, jER1003, jER1055, jER1007, jER1009, jER1010 (above, manufactured by Mitsubishi Chemical Corporation), EPICLON860, EPICLON1050 , EPICLON 1051, EPICLON 1055 (above, manufactured by DIC Corporation) and the like. Examples of the bisphenol F type epoxy resin include jER806, jER807, jER4004, jER4005, jER4007, jER4010 (above, manufactured by Mitsubishi Chemical Corporation), EPICLON830, EPICLON835 (above, made by DIC Corporation), LCE-21, RE-602S. (Nippon Kayaku Co., Ltd.) and the like. As phenol novolac type epoxy resins, jER152, jER154, jER157S70, jER157S65 (Mitsubishi Chemical Co., Ltd.), EPICLON N-740, EPICLON N-770, EPICLON N-775 (above, DIC Corporation), etc. Is mentioned. Cresol novolac type epoxy resins include EPICLON N-660, EPICLON N-665, EPICLON N-670, EPICLON N-673, EPICLON N-680, EPICLON N-690, EPICLON N-695 (above, manufactured by DIC Corporation) ), EOCN-1020 (manufactured by Nippon Kayaku Co., Ltd.), and the like. Aliphatic epoxy resins include ADEKA RESIN EP-4080S, EP-4085S, EP-4088S (manufactured by ADEKA), Celoxide 2021P, Celoxide 2081, Celoxide 2083, Celoxide 2085, EHPE3150, EPOLEAD PB 3600, PB 4700 (above, manufactured by Daicel Corporation), Denacol EX-212L, EX-214L, EX-216L, EX-321L, EX-850L (above, manufactured by Nagase ChemteX Corporation), and the like. In addition, ADEKA RESIN EP-4000S, EP-4003S, EP-4010S, EP-4010S, EP-4011S (above, manufactured by ADEKA Corporation), NC-2000, NC-3000, NC-7300, XD-1000, EPPN-501, EPPN-502 (above, manufactured by ADEKA Corporation), jER1031S (manufactured by Mitsubishi Chemical Corporation), and the like.
 ネガ型感光性組成物がエポキシ化合物を含有する場合、エポキシ化合物の含有量は、ネガ型感光性組成物の全固形分に対し、0.1~40質量%が好ましい。下限は、例えば0.5質量%以上がより好ましく、1質量%以上が更に好ましい。上限は、例えば、30質量%以下がより好ましく、20質量%以下が更に好ましい。エポキシ化合物は、1種単独であってもよいし、2種以上を併用してもよい。2種以上を併用する場合は、合計が上記範囲となることが好ましい。 When the negative photosensitive composition contains an epoxy compound, the content of the epoxy compound is preferably 0.1 to 40% by mass relative to the total solid content of the negative photosensitive composition. For example, the lower limit is more preferably 0.5% by mass or more, and further preferably 1% by mass or more. For example, the upper limit is more preferably 30% by mass or less, and still more preferably 20% by mass or less. One epoxy compound may be used alone, or two or more epoxy compounds may be used in combination. When using 2 or more types together, it is preferable that a sum total becomes the said range.
<<溶剤>>
 ネガ型感光性組成物は、溶剤を含有することが好ましい。溶剤は有機溶剤が好ましい。溶剤は、各成分の溶解性やネガ型感光性組成物の塗布性を満足すれば特に制限はない。
<< Solvent >>
The negative photosensitive composition preferably contains a solvent. The solvent is preferably an organic solvent. A solvent will not be restrict | limited especially if the solubility of each component and the applicability | paintability of a negative photosensitive composition are satisfied.
 有機溶剤の例としては、例えば、以下の有機溶剤が挙げられる。エステル類として、例えば、酢酸エチル、酢酸-n-ブチル、酢酸イソブチル、酢酸シクロヘキシル、ギ酸アミル、酢酸イソアミル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、乳酸メチル、乳酸エチル、アルキルオキシ酢酸アルキル(例えば、アルキルオキシ酢酸メチル、アルキルオキシ酢酸エチル、アルキルオキシ酢酸ブチル(例えば、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル等))、3-アルキルオキシプロピオン酸アルキルエステル類(例えば、3-アルキルオキシプロピオン酸メチル、3-アルキルオキシプロピオン酸エチル等(例えば、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等))、2-アルキルオキシプロピオン酸アルキルエステル類(例えば、2-アルキルオキシプロピオン酸メチル、2-アルキルオキシプロピオン酸エチル、2-アルキルオキシプロピオン酸プロピル等(例えば、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル))、2-アルキルオキシ-2-メチルプロピオン酸メチル及び2-アルキルオキシ-2-メチルプロピオン酸エチル(例えば、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル等)、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル等が挙げられる。エーテル類として、例えば、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート等が挙げられる。ケトン類として、例えば、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、3-ヘプタノン等が挙げられる。芳香族炭化水素類として、例えば、トルエン、キシレン等が好適に挙げられる。ただし溶剤としての芳香族炭化水素類(ベンゼン、トルエン、キシレン、エチルベンゼン等)は、環境面等の理由により低減したほうがよい場合がある(例えば、有機溶剤全量に対して、50質量ppm以下、10質量ppm以下、あるいは1質量ppm以下とすることができる)。 Examples of organic solvents include the following organic solvents. Examples of esters include ethyl acetate, n-butyl acetate, isobutyl acetate, cyclohexyl acetate, amyl formate, isoamyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, alkyloxyalkyl acetate (Eg, methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate (eg, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate)), alkyl 3-alkyloxypropionate Esters (eg, methyl 3-alkyloxypropionate, ethyl 3-alkyloxypropionate, etc. (eg, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid) Til, ethyl 3-ethoxypropionate, etc.), 2-alkyloxypropionic acid alkyl esters (eg, methyl 2-alkyloxypropionate, ethyl 2-alkyloxypropionate, propyl 2-alkyloxypropionate, etc.) Methyl 2-methoxypropionate, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate)), methyl 2-alkyloxy-2-methylpropionate and Ethyl 2-alkyloxy-2-methylpropionate (eg, methyl 2-methoxy-2-methylpropionate, ethyl 2-ethoxy-2-methylpropionate, etc.), methyl pyruvate, ethyl pyruvate, propyl pyruvate, Acetoacetate Le, ethyl acetoacetate, methyl 2-oxobutanoate, ethyl 2-oxobutanoate, and the like. Examples of ethers include diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol Examples thereof include monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate and the like. Examples of ketones include methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, and 3-heptanone. Preferable examples of aromatic hydrocarbons include toluene and xylene. However, aromatic hydrocarbons (benzene, toluene, xylene, ethylbenzene, etc.) as a solvent may be better reduced for environmental reasons (for example, 50 mass ppm or less with respect to the total amount of organic solvent, 10 Or less than 1 ppm by mass).
 有機溶剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。有機溶剤を2種以上組み合わせて用いる場合、特に好ましくは、上記の3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、シクロヘキサノン、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールメチルエーテル、プロピレングリコールメチルエーテルアセテートから選択される2種以上で構成される混合溶液である。 Organic solvents may be used alone or in combination of two or more. When two or more organic solvents are used in combination, the above-mentioned methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl cellosolve acetate, ethyl lactate, diethylene glycol dimethyl ether, butyl acetate, methyl 3-methoxypropionate , 2-heptanone, cyclohexanone, ethyl carbitol acetate, butyl carbitol acetate, propylene glycol methyl ether and propylene glycol methyl ether acetate.
 本発明において、有機溶剤は、過酸化物の含有率が0.8mmol/L以下であることが好ましく、過酸化物を実質的に含まないことがより好ましい。また、金属含有量の少ない有機溶剤を用いることが好ましく、例えば有機溶剤の金属含有量は、10質量ppb(parts per billion)以下であることが好ましい。必要に応じて有機溶剤の金属含有量が質量ppt(parts per trillion)レベルのものを用いてもよく、そのような高純度溶剤は例えば東洋合成社が提供している(化学工業日報、2015年11月13日)。 In the present invention, the organic solvent preferably has a peroxide content of 0.8 mmol / L or less, and more preferably contains substantially no peroxide. Further, it is preferable to use an organic solvent having a low metal content. For example, the metal content of the organic solvent is preferably 10 mass ppb (parts per billion) or less. If necessary, an organic solvent having a metal content of mass ppt (parts per trill) level may be used. Such a high-purity solvent is provided, for example, by Toyo Gosei Co., Ltd. (Chemical Industry Daily, 2015) November 13).
 溶剤の含有量は、ネガ型感光性組成物の全固形分が5~80質量%となる量が好ましい。下限は10質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上が更に好ましい。上限は、60質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下が更に好ましい。 The content of the solvent is preferably such that the total solid content of the negative photosensitive composition is 5 to 80% by mass. The lower limit is preferably 10% by mass or more, more preferably 15% by mass or more, and still more preferably 20% by mass or more. The upper limit is preferably 60% by mass or less, more preferably 50% by mass or less, and still more preferably 40% by mass or less.
<<硬化促進剤>>
 ネガ型感光性組成物は、パターンの硬度を向上させる目的や、硬化温度を下げる目的で、硬化促進剤を含んでもよい。硬化促進剤としては、チオール化合物などが挙げられる。
<< Curing accelerator >>
The negative photosensitive composition may contain a curing accelerator for the purpose of improving the hardness of the pattern and lowering the curing temperature. Examples of the curing accelerator include thiol compounds.
 チオール化合物としては、分子内に2個以上のメルカプト基を有する多官能チオール化合物などが挙げられる。多官能チオール化合物は、安定性、臭気、解像性、現像性、密着性等の改良を目的として添加してもよい。多官能チオール化合物は、2級のアルカンチオール類であることが好ましく、下記式(T1)で表される構造を有する化合物であることがより好ましい。
 式(T1)
Figure JPOXMLDOC01-appb-C000009

(式(T1)中、nは2~4の整数を表し、Lは2~4価の連結基を表す。)
Examples of the thiol compound include polyfunctional thiol compounds having two or more mercapto groups in the molecule. The polyfunctional thiol compound may be added for the purpose of improving stability, odor, resolution, developability, adhesion and the like. The polyfunctional thiol compound is preferably a secondary alkanethiol, and more preferably a compound having a structure represented by the following formula (T1).
Formula (T1)
Figure JPOXMLDOC01-appb-C000009

(In the formula (T1), n represents an integer of 2 to 4, and L represents a divalent to tetravalent linking group.)
 上記式(T1)において、Lは炭素数2~12の脂肪族基であることが好ましい。上記式(T1)において、nが2であり、Lが炭素数2~12のアルキレン基であることがより好ましい。多官能チオール化合物の具体例としては、下記の構造式(T2)~(T4)で表される化合物が挙げられ、式(T2)で表される化合物が好ましい。チオール化合物は1種を用いてもよく、2種以上を組み合わせて用いてもよい。 In the above formula (T1), L is preferably an aliphatic group having 2 to 12 carbon atoms. In the above formula (T1), it is more preferable that n is 2 and L is an alkylene group having 2 to 12 carbon atoms. Specific examples of the polyfunctional thiol compound include compounds represented by the following structural formulas (T2) to (T4), and a compound represented by the formula (T2) is preferable. One thiol compound may be used, or two or more thiol compounds may be used in combination.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 また、硬化促進剤は、メチロール系化合物(例えば特開2015-34963号公報の段落番号0246において、架橋剤として例示されている化合物)、アミン類、ホスホニウム塩、アミジン塩、アミド化合物(以上、例えば特開2013-41165号公報の段落番号0186に記載の硬化剤)、塩基発生剤(例えば、特開2014-55114号公報に記載のイオン性化合物)、イソシアネート化合物(例えば、特開2012-150180号公報の段落番号0071に記載の化合物)、アルコキシシラン化合物(例えば、特開2011-253054号公報に記載のエポキシ基を有するアルコキシシラン化合物)、オニウム塩化合物(例えば、特開2015-34963号公報の段落番号0216に酸発生剤として例示されている化合物、特開2009-180949号公報に記載の化合物)などを用いることもできる。 Curing accelerators include methylol compounds (for example, compounds exemplified as a crosslinking agent in paragraph No. 0246 of JP-A-2015-34963), amines, phosphonium salts, amidine salts, amide compounds (for example, JP-A-2013-41165, curing agent described in paragraph No. 0186), base generator (for example, ionic compound described in JP-A-2014-55114), isocyanate compound (for example, JP-A-2012-150180) A compound described in paragraph No. 0071 of the publication), an alkoxysilane compound (for example, an alkoxysilane compound having an epoxy group described in JP2011-255304A), an onium salt compound (for example, JP2015-34963A). Illustrated as an acid generator in paragraph 0216 Compounds, compounds described in JP-A-2009-180949) or the like can be used.
 ネガ型感光性組成物が硬化促進剤を含有する場合、硬化促進剤の含有量は、ネガ型感光性組成物の全固形分に対して0.3~8.9質量%が好ましく、0.8~6.4質量%がより好ましい。 When the negative photosensitive composition contains a curing accelerator, the content of the curing accelerator is preferably 0.3 to 8.9% by mass relative to the total solid content of the negative photosensitive composition. It is more preferably 8 to 6.4% by mass.
<<顔料誘導体>>
 本発明におけるネガ型感光性組成物が顔料を含む場合においては、ネガ型感光性組成物は更に顔料誘導体を含有することが好ましい。顔料誘導体としては、発色団の一部分を、酸性基、塩基性基またはフタルイミドメチル基で置換した構造を有する化合物が挙げられる。顔料誘導体を構成する発色団としては、キノリン系骨格、ベンゾイミダゾロン系骨格、ジケトピロロピロール系骨格、アゾ系骨格、フタロシアニン系骨格、アントラキノン系骨格、キナクリドン系骨格、ジオキサジン系骨格、ペリノン系骨格、ペリレン系骨格、チオインジゴ系骨格、イソインドリン系骨格、イソインドリノン系骨格、キノフタロン系骨格、スレン系骨格、金属錯体系骨格等が挙げられ、キノリン系骨格、ベンゾイミダゾロン系骨格、ジケトピロロピロール系骨格、アゾ系骨格、キノフタロン系骨格、イソインドリン系骨格およびフタロシアニン系骨格が好ましく、アゾ系骨格およびベンゾイミダゾロン系骨格がより好ましい。顔料誘導体が有する酸性基としては、スルホ基、カルボキシル基が好ましく、スルホ基がより好ましい。顔料誘導体が有する塩基性基としては、アミノ基が好ましく、三級アミノ基がより好ましい。顔料誘導体の具体例としては、後述の実施例に記載の化合物が挙げられる。また、特開2011-252065号公報の段落番号0162~0183に記載の化合物も挙げられ、この内容は本明細書に組み込まれる。
<< Pigment derivative >>
When the negative photosensitive composition in the present invention contains a pigment, the negative photosensitive composition preferably further contains a pigment derivative. Examples of the pigment derivative include a compound having a structure in which a part of the chromophore is substituted with an acidic group, a basic group, or a phthalimidomethyl group. The chromophores constituting the pigment derivative include quinoline skeleton, benzimidazolone skeleton, diketopyrrolopyrrole skeleton, azo skeleton, phthalocyanine skeleton, anthraquinone skeleton, quinacridone skeleton, dioxazine skeleton, and perinone skeleton. Perylene skeleton, thioindigo skeleton, isoindoline skeleton, isoindolinone skeleton, quinophthalone skeleton, selenium skeleton, metal complex skeleton, etc., quinoline skeleton, benzimidazolone skeleton, diketopyrrolo A pyrrole skeleton, an azo skeleton, a quinophthalone skeleton, an isoindoline skeleton, and a phthalocyanine skeleton are preferable, and an azo skeleton and a benzimidazolone skeleton are more preferable. As an acidic group which a pigment derivative has, a sulfo group and a carboxyl group are preferable, and a sulfo group is more preferable. As a basic group which a pigment derivative has, an amino group is preferable and a tertiary amino group is more preferable. Specific examples of the pigment derivative include compounds described in Examples described later. Further, compounds described in paragraph numbers 0162 to 0183 of JP2011-252065A can also be mentioned, the contents of which are incorporated herein.
 ネガ型感光性組成物が顔料誘導体を含有する場合、顔料誘導体の含有量は、顔料100質量部に対し、1~30質量部が好ましく、3~20質量部がさらに好ましい。顔料誘導体は、1種のみを用いてもよいし、2種以上を併用してもよい。 In the case where the negative photosensitive composition contains a pigment derivative, the content of the pigment derivative is preferably 1 to 30 parts by mass, more preferably 3 to 20 parts by mass with respect to 100 parts by mass of the pigment. Only one pigment derivative may be used, or two or more pigment derivatives may be used in combination.
<<界面活性剤>>
 ネガ型感光性組成物は、界面活性剤を含有することができる。界面活性剤としては、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を使用でき、塗布性をより向上できるという理由からフッ素系界面活性剤が好ましい。フッ素系界面活性剤中のフッ素含有率は、3~40質量%が好ましく、より好ましくは5~30質量%であり、更に好ましくは7~25質量%である。フッ素含有率が上記範囲内であるフッ素系界面活性剤は、塗布膜の厚さの均一性や省液性の点で効果的である。
<< Surfactant >>
The negative photosensitive composition can contain a surfactant. Various surfactants such as fluorosurfactants, nonionic surfactants, cationic surfactants, anionic surfactants, and silicone surfactants can be used as surfactants, further improving coatability. A fluorosurfactant is preferable because it can be used. The fluorine content in the fluorosurfactant is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, and still more preferably 7 to 25% by mass. A fluorine-based surfactant having a fluorine content within the above range is effective in terms of uniformity of coating film thickness and liquid-saving properties.
 フッ素系界面活性剤としては、例えば、メガファックF171、F172、F173、F176、F177、F141、F142、F143、F144、R30、F437、F475、F479、F482、F554、F780(以上、DIC(株)製)、フロラードFC430、FC431、FC171(以上、住友スリーエム(株)製)、サーフロンS-382、SC-101、SC-103、SC-104、SC-105、SC-1068、SC-381、SC-383、S-393、KH-40(以上、旭硝子(株)製)、PF636、PF656、PF6320、PF6520、PF7002(以上、OMNOVA社製)等が挙げられる。フッ素系界面活性剤は、特開2015-117327号公報の段落番号0015~0158に記載の化合物、特開2011-132503号公報の段落番号0117~0132に記載の化合物を用いることもできる。フッ素系界面活性剤としてブロックポリマーを用いることもでき、具体例としては、例えば特開2011-89090号公報に記載された化合物が挙げられる。 Examples of the fluorosurfactant include Megafac F171, F172, F173, F176, F177, F141, F142, F143, F144, R30, F437, F475, F479, F482, F554, F780 (and above, DIC Corporation). ), Florard FC430, FC431, FC171 (Sumitomo 3M Co., Ltd.), Surflon S-382, SC-101, SC-103, SC-104, SC-105, SC-1068, SC-381, SC -383, S-393, KH-40 (manufactured by Asahi Glass Co., Ltd.), PF636, PF656, PF6320, PF6520, PF7002 (manufactured by OMNOVA). As the fluorine-based surfactant, compounds described in paragraph numbers 0015 to 0158 of JP-A No. 2015-117327 and compounds described in paragraph numbers of 0117 to 0132 of JP-A No. 2011-132503 can also be used. A block polymer can also be used as the fluorosurfactant, and specific examples thereof include compounds described in JP-A-2011-89090.
 フッ素系界面活性剤は、フッ素原子を含有する官能基を持つ分子構造で、熱を加えるとフッ素原子を含有する官能基の部分が切断されてフッ素原子が揮発するアクリル系化合物も好適に使用できる。このようなフッ素系界面活性剤としては、DIC(株)製のメガファックDSシリーズ(化学工業日報、2016年2月22日)(日経産業新聞、2016年2月23日)、例えばメガファックDS-21が挙げられ、これらを用いてもよい。 The fluorine-based surfactant has a molecular structure having a functional group containing a fluorine atom, and an acrylic compound in which the fluorine atom is volatilized by cleavage of the functional group containing the fluorine atom when heat is applied can be suitably used. . Examples of such a fluorosurfactant include Megafac DS series manufactured by DIC Corporation (Chemical Industry Daily, February 22, 2016) (Nikkei Sangyo Shimbun, February 23, 2016). -21, and these may be used.
 フッ素系界面活性剤としては、フッ素原子を有する(メタ)アクリレート化合物に由来する繰り返し単位と、アルキレンオキシ基(好ましくはエチレンオキシ基、プロピレンオキシ基)を2以上(好ましくは5以上)有する(メタ)アクリレート化合物に由来する繰り返し単位とを含む含フッ素高分子化合物も好ましく用いることができ、下記化合物も本発明で用いられるフッ素系界面活性剤として例示される。下記の式中、繰り返し単位の割合を示す%はモル%である。
Figure JPOXMLDOC01-appb-C000011

 上記の化合物の重量平均分子量は、好ましくは3,000~50,000であり、例えば、14,000である。
The fluorine-based surfactant has a repeating unit derived from a (meth) acrylate compound having a fluorine atom and 2 or more (preferably 5 or more) alkyleneoxy groups (preferably ethyleneoxy group or propyleneoxy group) (meta). ) A fluorine-containing polymer compound containing a repeating unit derived from an acrylate compound can also be preferably used, and the following compounds are also exemplified as the fluorine-based surfactant used in the present invention. In the following formula,% indicating the ratio of repeating units is mol%.
Figure JPOXMLDOC01-appb-C000011

The weight average molecular weight of the above compound is preferably 3,000 to 50,000, for example, 14,000.
 フッ素系界面活性剤として、エチレン性不飽和結合を有する基を側鎖に有する含フッ素重合体を用いることもできる。具体例としては、特開2010-164965号公報の段落番号0050~0090および段落番号0289~0295に記載された化合物が挙げられる。市販品としては、例えばDIC(株)製のメガファックRS-101、RS-102、RS-718-K、RS-72-K等が挙げられる。 As the fluorosurfactant, a fluorine-containing polymer having a group having an ethylenically unsaturated bond in the side chain can also be used. Specific examples thereof include the compounds described in paragraph numbers 0050 to 0090 and paragraph numbers 0289 to 0295 of JP2010-164965A. Examples of commercially available products include Megafac RS-101, RS-102, RS-718-K, and RS-72-K manufactured by DIC Corporation.
 ノニオン系界面活性剤としては、グリセロール、トリメチロールプロパン、トリメチロールエタン並びにそれらのエトキシレートおよびプロポキシレート(例えば、グリセロールプロポキシレート、グリセロールエトキシレート等)、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、ソルビタン脂肪酸エステル、プルロニックL10、L31、L61、L62、10R5、17R2、25R2(BASF社製)、テトロニック304、701、704、901、904、150R1(BASF社製)、ソルスパース20000(日本ルーブリゾール(株)製)、NCW-101、NCW-1001、NCW-1002(和光純薬工業(株)製)、パイオニンD-6112、D-6112-W、D-6315(竹本油脂(株)製)、オルフィンE1010、サーフィノール104、400、440(日信化学工業(株)製)などが挙げられる。 Nonionic surfactants include glycerol, trimethylolpropane, trimethylolethane and their ethoxylates and propoxylates (for example, glycerol propoxylate, glycerol ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, Polyoxyethylene oleyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester, Pluronic L10, L31, L61, L62, 10R5, 17R2, 25R2 (BASF ), Tetronic 304, 701, 704, 901, 904, 150R1 (BA F), Solsperse 20000 (Nippon Lubrizol Corporation), NCW-101, NCW-1001, NCW-1002 (Wako Pure Chemical Industries, Ltd.), Pionein D-6112, D-6112-W, D-6315 (manufactured by Takemoto Yushi Co., Ltd.), Olphine E1010, Surfynol 104, 400, 440 (manufactured by Nissin Chemical Industry Co., Ltd.) and the like.
 カチオン系界面活性剤としては、オルガノシロキサンポリマーKP341(信越化学工業(株)製)、(メタ)アクリル酸系(共)重合体ポリフローNo.75、No.90、No.95(共栄社化学(株)製)、W001(裕商(株)製)等が挙げられる。 Examples of cationic surfactants include organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), (meth) acrylic acid (co) polymer polyflow No. 75, no. 90, no. 95 (manufactured by Kyoeisha Chemical Co., Ltd.), W001 (manufactured by Yusho Co., Ltd.) and the like.
 アニオン系界面活性剤としては、W004、W005、W017(裕商(株)製)、サンデットBL(三洋化成(株)製)等が挙げられる。 Examples of the anionic surfactant include W004, W005, W017 (manufactured by Yusho Co., Ltd.), Sandet BL (manufactured by Sanyo Chemical Co., Ltd.), and the like.
 シリコーン系界面活性剤としては、例えば、トーレシリコーンDC3PA、トーレシリコーンSH7PA、トーレシリコーンDC11PA、トーレシリコーンSH21PA、トーレシリコーンSH28PA、トーレシリコーンSH29PA、トーレシリコーンSH30PA、トーレシリコーンSH8400(以上、東レ・ダウコーニング(株)製)、TSF-4440、TSF-4300、TSF-4445、TSF-4460、TSF-4452(以上、モメンティブ・パフォーマンス・マテリアルズ社製)、KP341、KF6001、KF6002(以上、信越シリコーン株式会社製)、BYK307、BYK323、BYK330(以上、ビックケミー社製)等が挙げられる。 Examples of silicone-based surfactants include Torre Silicone DC3PA, Torre Silicone SH7PA, Torre Silicone DC11PA, Torresilicone SH21PA, Torree Silicone SH28PA, Torree Silicone SH29PA, Torree Silicone SH30PA, Torree Silicone SH8400 (above, Toray Dow Corning Co., Ltd.) )), TSF-4440, TSF-4300, TSF-4445, TSF-4460, TSF-4442 (above, manufactured by Momentive Performance Materials), KP341, KF6001, KF6002 (above, manufactured by Shin-Etsu Silicone Co., Ltd.) , BYK307, BYK323, BYK330 (above, manufactured by BYK Chemie) and the like.
 界面活性剤の含有量は、ネガ型感光性組成物の全固形分に対して、0.001~0.2質量%が好ましく、0.0015~0.1質量%がより好ましく、0.002~0.05質量%が更に好ましい。界面活性剤は、1種のみを用いてもよいし、2種類以上を組み合わせてもよい。2種類以上含む場合は合計量が上記範囲であることが好ましい。 The content of the surfactant is preferably from 0.001 to 0.2% by mass, more preferably from 0.0015 to 0.1% by mass, based on the total solid content of the negative photosensitive composition. More preferred is 0.05% by mass. Only one type of surfactant may be used, or two or more types may be combined. When two or more types are included, the total amount is preferably within the above range.
<<シランカップリング剤>>
 ネガ型感光性組成物は、シランカップリング剤を含有することができる。本発明において、シランカップリング剤は、加水分解性基とそれ以外の官能基とを有するシラン化合物を意味する。また、加水分解性基とは、ケイ素原子に直結し、加水分解反応および/または縮合反応によってシロキサン結合を生じ得る置換基をいう。加水分解性基としては、例えば、ハロゲン原子、アルコキシ基、アシルオキシ基などが挙げられる。
<< Silane coupling agent >>
The negative photosensitive composition can contain a silane coupling agent. In the present invention, the silane coupling agent means a silane compound having a hydrolyzable group and other functional groups. The hydrolyzable group refers to a substituent that is directly bonded to a silicon atom and can form a siloxane bond by a hydrolysis reaction and / or a condensation reaction. Examples of the hydrolyzable group include a halogen atom, an alkoxy group, and an acyloxy group.
 シランカップリング剤は、ビニル基、エポキシ基、スチレン基、メタクリル基、アミノ基、イソシアヌレート基、ウレイド基、メルカプト基、スルフィド基、および、イソシアネート基から選ばれる少なくとも1種の基と、アルコキシ基とを有するシラン化合物が好ましい。シランカップリング剤の具体例としては、例えば、N-β-アミノエチル-γ-アミノプロピルメチルジメトキシシラン(信越化学工業社製、KBM-602)、N-β-アミノエチル-γ-アミノプロピルトリメトキシシラン(信越化学工業社製、KBM-603)、N-β-アミノエチル-γ-アミノプロピルトリエトキシシラン(信越化学工業社製、KBE-602)、γ-アミノプロピルトリメトキシシラン(信越化学工業社製、KBM-903)、γ-アミノプロピルトリエトキシシラン(信越化学工業社製、KBE-903)、3-メタクリロキシプロピルトリメトキシシラン(信越化学工業社製、KBM-503)、3-グリシドキシプロピルトリメトキシシラン(信越化学工業社製、KBM-403)等が挙げられる。シランカップリング剤の詳細については、特開2013-254047号公報の段落番号0155~0158の記載を参酌でき、この内容は本明細書に組み込まれる。 The silane coupling agent is composed of at least one group selected from a vinyl group, an epoxy group, a styrene group, a methacryl group, an amino group, an isocyanurate group, a ureido group, a mercapto group, a sulfide group, and an isocyanate group, and an alkoxy group. A silane compound having Specific examples of the silane coupling agent include, for example, N-β-aminoethyl-γ-aminopropylmethyldimethoxysilane (KBM-602, manufactured by Shin-Etsu Chemical Co., Ltd.), N-β-aminoethyl-γ-aminopropyltri Methoxysilane (Shin-Etsu Chemical Co., KBM-603), N-β-aminoethyl-γ-aminopropyltriethoxysilane (Shin-Etsu Chemical Co., KBE-602), γ-aminopropyltrimethoxysilane (Shin-Etsu Chemical) Industrial company KBM-903), γ-aminopropyltriethoxysilane (Shin-Etsu Chemical Co., KBE-903), 3-methacryloxypropyltrimethoxysilane (Shin-Etsu Chemical Co., KBM-503), 3- And glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403). For details of the silane coupling agent, the description of paragraph numbers 0155 to 0158 in JP2013-254047A can be referred to, the contents of which are incorporated herein.
 ネガ型感光性組成物がシランカップリング剤を含有する場合、シランカップリング剤の含有量は、ネガ型感光性組成物の全固形分に対して、0.001~20質量%が好ましく、0.01~10質量%がより好ましく、0.1~5質量%が特に好ましい。ネガ型感光性組成物は、シランカップリング剤を1種のみ含んでいてもよいし、2種以上含んでいてもよい。シランカップリング剤を2種以上含む場合は、その合計量が上記範囲となることが好ましい。 When the negative photosensitive composition contains a silane coupling agent, the content of the silane coupling agent is preferably 0.001 to 20% by mass with respect to the total solid content of the negative photosensitive composition. 0.01 to 10% by mass is more preferable, and 0.1 to 5% by mass is particularly preferable. The negative photosensitive composition may contain only one kind of silane coupling agent, or may contain two or more kinds. When two or more silane coupling agents are included, the total amount is preferably within the above range.
<<重合禁止剤>>
 ネガ型感光性組成物は、重合禁止剤を含有することができる。重合禁止剤としては、ハイドロキノン、p-メトキシフェノール、ジ-t-ブチル-p-クレゾール、ピロガロール、t-ブチルカテコール、ベンゾキノン、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、N-ニトロソフェニルヒドロキシアミン塩(アンモニウム塩、第一セリウム塩等)等が挙げられる。
 ネガ型感光性組成物が重合禁止剤を含有する場合、重合禁止剤の含有量は、ネガ型感光性組成物の全固形分に対して、0.01~5質量%が好ましい。ネガ型感光性組成物は、重合禁止剤を、1種類のみを含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、その合計量が上記範囲となることが好ましい。
<< Polymerization inhibitor >>
The negative photosensitive composition can contain a polymerization inhibitor. Polymerization inhibitors include hydroquinone, p-methoxyphenol, di-t-butyl-p-cresol, pyrogallol, t-butylcatechol, benzoquinone, 4,4′-thiobis (3-methyl-6-t-butylphenol), 2,2′-methylenebis (4-methyl-6-t-butylphenol), N-nitrosophenylhydroxyamine salt (ammonium salt, primary cerium salt, etc.) and the like.
When the negative photosensitive composition contains a polymerization inhibitor, the content of the polymerization inhibitor is preferably 0.01 to 5% by mass with respect to the total solid content of the negative photosensitive composition. The negative photosensitive composition may contain only one type of polymerization inhibitor, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
<<紫外線吸収剤>>
 ネガ型感光性組成物は、紫外線吸収剤を含有してもよい。紫外線吸収剤は、共役ジエン系化合物が好ましい。紫外線吸収剤の市販品としては、例えば、UV-503(大東化学(株)製)などが挙げられる。また、紫外線吸収剤として、アミノジエン化合物、サリシレート化合物、ベンゾフェノン化合物、ベンゾトリアゾール化合物、アクリロニトリル化合物、トリアジン化合物などを用いることができる。具体例としては特開2013-68814号公報に記載の化合物が挙げられる。また、ベンゾトリアゾール化合物としてはミヨシ油脂製のMYUAシリーズ(化学工業日報、2016年2月1日)を用いてもよい。
<< UV absorber >>
The negative photosensitive composition may contain an ultraviolet absorber. The ultraviolet absorber is preferably a conjugated diene compound. Examples of commercially available ultraviolet absorbers include UV-503 (manufactured by Daito Chemical Co., Ltd.). Further, as the ultraviolet absorber, an aminodiene compound, a salicylate compound, a benzophenone compound, a benzotriazole compound, an acrylonitrile compound, a triazine compound, or the like can be used. Specific examples thereof include compounds described in JP2013-68814A. Moreover, as a benzotriazole compound, you may use the MYUA series (Chemical Industry Daily, February 1, 2016) made from Miyoshi oil and fat.
 ネガ型感光性組成物が紫外線吸収剤を含有する場合、紫外線吸収剤の含有量は、ネガ型感光性組成物の全固形分に対して、0.1~10質量%が好ましく、0.1~5質量%がより好ましく、0.1~3質量%が特に好ましい。また、紫外線吸収剤は、1種のみを用いてもよく、2種以上を用いてもよい。2種以上を用いる場合は、合計量が上記範囲となることが好ましい。 When the negative photosensitive composition contains an ultraviolet absorber, the content of the ultraviolet absorber is preferably 0.1 to 10% by mass, based on the total solid content of the negative photosensitive composition, Is more preferably from 5 to 5% by weight, particularly preferably from 0.1 to 3% by weight. Moreover, only 1 type may be used for an ultraviolet absorber and 2 or more types may be used for it. When using 2 or more types, it is preferable that a total amount becomes the said range.
<<その他添加剤>>
 ネガ型感光性組成物には、必要に応じて、各種添加剤、例えば、充填剤、密着促進剤、酸化防止剤、凝集防止剤等を配合することができる。これらの添加剤としては、特開2004-295116号公報の段落番号0155~0156に記載の添加剤を挙げることができ、この内容は本明細書に組み込まれる。また、酸化防止剤としては、例えばフェノール化合物、リン系化合物(例えば特開2011-90147号公報の段落番号0042に記載の化合物)、チオエーテル化合物などを用いることができる。市販品としては、例えば(株)ADEKA製のアデカスタブシリーズ(AO-20、AO-30、AO-40、AO-50、AO-50F、AO-60、AO-60G、AO-80、AO-330など)が挙げられる。酸化防止剤は1種のみを用いてもよく、2種以上を用いてもよい。ネガ型感光性組成物は、特開2004-295116号公報の段落番号0078に記載の増感剤や光安定剤、同公報の段落番号0081に記載の熱重合防止剤を含有することができる。
<< Other additives >>
Various additives, for example, fillers, adhesion promoters, antioxidants, anti-aggregation agents, and the like can be blended with the negative photosensitive composition as necessary. Examples of these additives include additives described in JP-A-2004-295116, paragraphs 0155 to 0156, the contents of which are incorporated herein. As the antioxidant, for example, phenol compounds, phosphorus compounds (for example, compounds described in paragraph No. 0042 of JP2011-90147A), thioether compounds, and the like can be used. Examples of commercially available products include ADEKA Corporation's ADK STAB series (AO-20, AO-30, AO-40, AO-50, AO-50F, AO-60, AO-60G, AO-80, AO- 330). Only one type of antioxidant may be used, or two or more types may be used. The negative photosensitive composition can contain a sensitizer and a light stabilizer described in paragraph No. 0078 of JP-A No. 2004-295116 and a thermal polymerization inhibitor described in paragraph No. 0081 of the publication.
 用いる原料等によりネガ型感光性組成物中に金属元素が含まれることがあるが、欠陥発生抑制等の観点で、ネガ型感光性組成物中の第2族元素(カルシウム、マグネシウム等)の含有量は50質量ppm以下であることが好ましく、0.01~10質量ppmがより好ましい。また、ネガ型感光性組成物中の無機金属塩の総量は100質量ppm以下であることが好ましく、0.5~50質量ppmがより好ましい。 Depending on the raw material used, the negative photosensitive composition may contain a metal element, but from the viewpoint of suppressing the occurrence of defects, the inclusion of a Group 2 element (calcium, magnesium, etc.) in the negative photosensitive composition The amount is preferably 50 ppm by mass or less, more preferably 0.01 to 10 ppm by mass. Further, the total amount of the inorganic metal salt in the negative photosensitive composition is preferably 100 ppm by mass or less, more preferably 0.5 to 50 ppm by mass.
<ネガ型感光性組成物の調製方法>
 ネガ型感光性組成物は、上述した各成分を混合することによって調製することができる。ネガ型感光性組成物の調製に際しては、ネガ型感光性組成物を構成する各成分を一括配合してもよいし、各成分をそれぞれ有機溶剤に溶解または分散した後に逐次配合してもよい。また、配合する際の投入順序や作業条件は特に制約を受けない。また、ネガ型感光性組成物が顔料を含む場合においては、顔料を分散させるプロセスを含むことが好ましい。顔料を分散させるプロセスにおいて、顔料の分散に用いる機械力としては、圧縮、圧搾、衝撃、剪断、キャビテーションなどが挙げられる。これらプロセスの具体例としては、ビーズミル、サンドミル、ロールミル、高速インペラー、サンドグラインダー、フロージェットミキサー、高圧湿式微粒化、超音波分散などが挙げられる。また「分散技術大全、株式会社情報機構発行、2005年7月15日」や「サスペンション(固/液分散系)を中心とした分散技術と工業的応用の実際 総合資料集、経営開発センター出版部発行、1978年10月10日」に記載のプロセス及び分散機を好適に使用することが出来る。また、顔料を分散させるプロセスにおいては、ソルトミリング工程による顔料の微細化処理を行ってもよい。ソルトミリング工程に用いられる素材、機器、処理条件等は例えば特開2015-194521号公報、特開2012-046629号公報に記載のものを使用することができる。
<Method for preparing negative photosensitive composition>
A negative photosensitive composition can be prepared by mixing each component mentioned above. In preparing the negative photosensitive composition, the components constituting the negative photosensitive composition may be blended together, or the components may be blended sequentially after being dissolved or dispersed in an organic solvent. In addition, there are no particular restrictions on the charging order and working conditions when blending. Moreover, when a negative photosensitive composition contains a pigment, it is preferable to include the process of dispersing a pigment. In the process of dispersing the pigment, the mechanical force used for dispersing the pigment includes compression, squeezing, impact, shearing, cavitation and the like. Specific examples of these processes include a bead mill, a sand mill, a roll mill, a high speed impeller, a sand grinder, a flow jet mixer, high pressure wet atomization, and ultrasonic dispersion. Also, “Dispersion Technology Taizen, Issued by Information Technology Corporation, July 15, 2005” and “Dispersion Technology and Industrial Application Centered on Suspension (Solid / Liquid Dispersion System)” The process and the disperser described in “Issuance, October 10, 1978” can be preferably used. In the process of dispersing the pigment, the pigment may be refined by a salt milling process. As materials, equipment, processing conditions, etc. used in the salt milling process, for example, those described in JP-A-2015-194521 and JP-A-2012-046629 can be used.
 ネガ型感光性組成物の調製にあたり、異物の除去や欠陥の低減などの目的で、フィルタでろ過することが好ましい。フィルタとしては、従来からろ過用途等に用いられているフィルタであれば特に限定されることなく用いることができる。例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂、ナイロン(例えばナイロン-6、ナイロン-6,6)等のポリアミド系樹脂、ポリエチレン、ポリプロピレン(PP)等のポリオレフィン樹脂(高密度、超高分子量のポリオレフィン樹脂を含む)等の素材を用いたフィルタが挙げられる。これら素材の中でもポリプロピレン(高密度、超高分子量の高密度ポリプロピレンを含む)およびナイロンが好ましい。 In preparing the negative photosensitive composition, it is preferable to filter with a filter for the purpose of removing foreign substances or reducing defects. Any filter can be used without particular limitation as long as it is a filter that has been conventionally used for filtration. For example, fluororesin such as polytetrafluoroethylene (PTFE), polyamide resin such as nylon (eg nylon-6, nylon-6,6), polyolefin resin such as polyethylene and polypropylene (PP) (high density, ultra high molecular weight) And a filter using a material such as polyolefin resin). Among these materials, polypropylene (including high density and ultra high molecular weight high density polypropylene) and nylon are preferable.
 フィルタの孔径は、0.01~7.0μm程度が適しており、好ましくは0.01~3.0μm程度、より好ましくは0.05~0.5μm程度である。 The pore size of the filter is suitably about 0.01 to 7.0 μm, preferably about 0.01 to 3.0 μm, more preferably about 0.05 to 0.5 μm.
 また、フィルタとしては、ファイバ状のろ材を用いたフィルタを用いることも好ましい。ファイバ状のろ材としては、例えばポリプロピレンファイバ、ナイロンファイバ、グラスファイバ等が挙げられる。ファイバ状のろ材を用いたフィルタとしては、具体的にはロキテクノ社製のSBPタイプシリーズ(SBP008など)、TPRタイプシリーズ(TPR002、TPR005など)、SHPXタイプシリーズ(SHPX003など)のフィルタカートリッジが挙げられる。 Also, it is preferable to use a filter using a fiber-like filter medium as the filter. Examples of the fiber-shaped filter medium include polypropylene fiber, nylon fiber, and glass fiber. Specific examples of filters using fiber-shaped filter media include filter cartridges of SBP type series (SBP008, etc.), TPR type series (TPR002, TPR005, etc.), and SHPX type series (SHPX003, etc.) manufactured by Loki Techno. .
 フィルタを使用する際、異なるフィルタを組み合わせてもよい。その際、各フィルタでのろ過は、1回のみでもよいし、2回以上行ってもよい。
 例えば、上述した範囲内で異なる孔径のフィルタを組み合わせてもよい。ここでの孔径は、フィルタメーカーの公称値を参照することができる。市販のフィルタとしては、例えば、日本ポール株式会社(DFA4201NXEYなど)、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)または株式会社キッツマイクロフィルタ等が提供する各種フィルタの中から選択することができる。
 また、第1のフィルタでのろ過は、分散液のみで行い、他の成分を混合した後で、第2のフィルタでろ過を行ってもよい。第2のフィルタとしては、第1のフィルタと同様の材料等で形成されたものを使用することができる。
When using filters, different filters may be combined. In that case, filtration with each filter may be performed only once or may be performed twice or more.
For example, you may combine the filter of a different hole diameter within the range mentioned above. The pore diameter here can refer to the nominal value of the filter manufacturer. As a commercially available filter, for example, select from various filters provided by Nippon Pole Co., Ltd. (DFA4201NXEY, etc.), Advantech Toyo Co., Ltd., Japan Integris Co., Ltd. (formerly Nihon Microlith Co., Ltd.) or KITZ Micro Filter Co., Ltd. can do.
Moreover, filtration with a 1st filter may be performed only with a dispersion liquid, and may filter with a 2nd filter, after mixing another component. As the second filter, a filter formed of the same material as the first filter can be used.
 ネガ型感光性組成物の含水率は、通常3質量%以下であり、0.01~1.5質量%が好ましく、0.1~1.0質量%であることがより好ましい。含水率は、カールフィッシャー法にて測定することができる。 The water content of the negative photosensitive composition is usually 3% by mass or less, preferably 0.01 to 1.5% by mass, and more preferably 0.1 to 1.0% by mass. The water content can be measured by the Karl Fischer method.
<カラーフィルタの製造方法>
 本発明のカラーフィルタの製造方法は、上述した本発明のパターンの製造方法を含む。カラーフィルタにおける画素の種類としては、用途により異なるが、例えば、赤、緑、青、マゼンタ、黄、シアンなどの着色画素、白色(無色)画素、黒画素などが挙げられる。また、カラーフィルタは、赤外線カットフィルタや赤透過フィルタをさらに有していてもよい。カラーフィルタとしては、単色の画素からなるカラーフィルタであってもよいが、複数色の画素を有するカラーフィルタであることが好ましい。また、複数色の画素を有するカラーフィルタにおいて、異なる色の画素が隣接していることが好ましい。
<Color filter manufacturing method>
The color filter manufacturing method of the present invention includes the above-described pattern manufacturing method of the present invention. The type of pixel in the color filter varies depending on the application, and examples thereof include colored pixels such as red, green, blue, magenta, yellow, and cyan, white (colorless) pixels, and black pixels. The color filter may further include an infrared cut filter and a red transmission filter. The color filter may be a color filter composed of single color pixels, but is preferably a color filter having a plurality of color pixels. In a color filter having a plurality of color pixels, it is preferable that pixels of different colors are adjacent to each other.
 複数色の画素を有するカラーフィルタにおいては、各色の画素におけるパターン寸法に関し、精密であることが求められている。各画素のパターン寸法などにばらつきが生じると製品不良の原因となる。本発明のパターンの製造方法によれば、露光エネルギーの許容範囲(マージン)を広げることができるので、露光時における露光エネルギーにばらつきが生じても、設計通りのパターンを形成し易い。このため、本発明のパターンの製造方法は、複数色の画素を有するカラーフィルタを製造する際に特に効果的である。 In a color filter having pixels of a plurality of colors, it is required to be precise with respect to the pattern size in each color pixel. Variations in the pattern size of each pixel may cause product defects. According to the pattern manufacturing method of the present invention, the allowable range (margin) of exposure energy can be widened, so that a pattern as designed can be easily formed even if the exposure energy varies during exposure. For this reason, the pattern manufacturing method of the present invention is particularly effective when manufacturing a color filter having a plurality of color pixels.
 本発明のカラーフィルタの製造方法は画素サイズが小さいカラーフィルタを製造する場合において、より効果的である。画素の幅は特に制限されず、例えば、5μm以下であることが好ましく、3μm以下であることがより好ましく、2μm以下であることがさらに好ましく、1μm以下であることがより一層好ましく、0.8μm以下であること特に好ましい。下限値は特になく、100nm以上であることが実際的である。ベイヤーパターンの画素として言えば、平面視において、5μm四方以下であることが好ましく、3μm四方以下であることがより好ましく、2μm四方以下であることがさらに好ましく、1μm四方以下であることがより一層好ましく、0.8μm四方以下であることが特に好ましい。下限値は特になく、100nm四方以上であることが実際的である。また、本発明の効果がより一層際立つことから、各画素は隣接していることが好ましい。 The color filter manufacturing method of the present invention is more effective when manufacturing a color filter having a small pixel size. The width of the pixel is not particularly limited, and is preferably, for example, 5 μm or less, more preferably 3 μm or less, further preferably 2 μm or less, still more preferably 1 μm or less, and 0.8 μm. It is particularly preferred that There is no lower limit in particular, and it is practical that it is 100 nm or more. Speaking of the pixels of the Bayer pattern, it is preferably 5 μm square or less, more preferably 3 μm square or less, further preferably 2 μm square or less, and even more preferably 1 μm square or less in plan view. Preferably, it is particularly preferably 0.8 μm or less. There is no particular lower limit, and it is practical that it is 100 nm square or more. In addition, it is preferable that the pixels are adjacent to each other because the effects of the present invention are more conspicuous.
 画素の厚みは、例えば、0.3μm以上とすることが好ましく、0.5μm以上とすることがより好ましく、0.75μm以上とすることが特に好ましい。上限としては、2μm以下とすることが好ましく、1.5μm以下とすることがより好ましく、1μm以下とすることが特に好ましい。 The thickness of the pixel is preferably, for example, 0.3 μm or more, more preferably 0.5 μm or more, and particularly preferably 0.75 μm or more. The upper limit is preferably 2 μm or less, more preferably 1.5 μm or less, and particularly preferably 1 μm or less.
<固体撮像素子および画像表示装置の製造方法>
 本発明のパターンの製造方法を用いて、固体撮像素子、画像表示装置などを製造することもできる。
<Method for Manufacturing Solid-State Imaging Device and Image Display Device>
A solid-state imaging device, an image display device, and the like can be manufactured using the pattern manufacturing method of the present invention.
 固体撮像素子の構成としては、固体撮像素子として機能する構成であれば特に限定はなく、例えば、以下のような構成が挙げられる。 The configuration of the solid-state imaging device is not particularly limited as long as the configuration functions as a solid-state imaging device, and examples thereof include the following configurations.
 支持体上に、固体撮像素子(CCD(電荷結合素子)イメージセンサ、CMOS(相補型金属酸化膜半導体)イメージセンサ等)の受光エリアを構成する複数のフォトダイオードおよびポリシリコン等からなる転送電極と、フォトダイオードおよび転送電極上にフォトダイオードの受光部のみ開口した遮光膜と、遮光膜上に遮光膜全面およびフォトダイオード受光部を覆うように形成された窒化シリコン等からなるデバイス保護膜と、デバイス保護膜上に、カラーフィルタと、を有する構成である。更に、デバイス保護膜上であってカラーフィルタの下(支持体に近い側)に集光手段(例えば、マイクロレンズ等。以下同じ)を有する構成や、カラーフィルタ上に集光手段を有する構成等であってもよい。また、カラーフィルタは、隔壁により例えば格子状に仕切られた空間に、各画素を形成する膜が埋め込まれた構造を有していてもよい。この場合の隔壁は各画素に対して低屈折率であることが好ましい。このような構造を有する固体撮像素子の例としては、特開2012-227478号公報、特開2014-179577号公報に記載の装置が挙げられる。また、CMOSイメージセンサとしては、受光部を形成したのちに反転させて配線層と接合させてできる裏面照射型イメージセンサも挙げられる。 A transfer electrode made of a plurality of photodiodes and polysilicon constituting a light receiving area of a solid-state imaging device (CCD (charge coupled device) image sensor, CMOS (complementary metal oxide semiconductor) image sensor, etc.) on a support; A light-shielding film in which only the light-receiving part of the photodiode is opened on the photodiode and the transfer electrode, a device protection film made of silicon nitride or the like formed on the light-shielding film so as to cover the entire surface of the light-shielding film and the photodiode light-receiving part, and a device A color filter is provided on the protective film. Further, a configuration having a light condensing means (for example, a microlens, etc., the same applies hereinafter) on the device protective film and below the color filter (on the side close to the support), a structure having the light condensing means on the color filter, etc. It may be. In addition, the color filter may have a structure in which a film forming each pixel is embedded in a space partitioned by a partition, for example, in a lattice shape. The partition in this case preferably has a low refractive index for each pixel. Examples of the solid-state imaging device having such a structure include apparatuses described in JP 2012-227478 A and JP 2014-179577 A. Further, examples of the CMOS image sensor include a back-illuminated image sensor that can be inverted after being formed with a light receiving portion and bonded to a wiring layer.
 画像表示装置としては、液晶表示装置や有機エレクトロルミネッセンス表示装置などが挙げられる。画像表示装置の定義や各画像表示装置の詳細については、例えば「電子ディスプレイデバイス(佐々木昭夫著、(株)工業調査会、1990年発行)」、「ディスプレイデバイス(伊吹順章著、産業図書(株)、平成元年発行)」などに記載されている。また、液晶表示装置については、例えば「次世代液晶ディスプレイ技術(内田龍男編集、(株)工業調査会、1994年発行)」に記載されている。 Examples of the image display device include a liquid crystal display device and an organic electroluminescence display device. For the definition of the image display device and details of each image display device, for example, “Electronic Display Device (Akio Sasaki, Kogyo Kenkyukai, 1990)”, “Display Device (Junaki Ibuki, Industrial Book ( Stock), issued in 1989) ”. The liquid crystal display device is described in, for example, “Next-generation liquid crystal display technology (edited by Tatsuo Uchida, Industrial Research Co., Ltd., published in 1994)”.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されない。なお、特に断りのない限り、「部」、「%」は、質量基準である。 The present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below. Unless otherwise specified, “part” and “%” are based on mass.
<ネガ型感光性組成物の調製>
 下記表に記載の組成比(質量部)となるように各原料を混合して感光性組成物1、2を製造した。
Figure JPOXMLDOC01-appb-T000012
<Preparation of negative photosensitive composition>
Photosensitive compositions 1 and 2 were produced by mixing the raw materials so that the composition ratio (parts by mass) shown in the following table was obtained.
Figure JPOXMLDOC01-appb-T000012
 上記表に記載の原料は以下である。
 (Green顔料分散液)
 C.I.ピグメントグリーン58を7.55質量部と、C.I.ピグメントイエロー185を1.89質量部と、顔料誘導体Aを0.94質量部と、分散剤D-1を3.7質量部と、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を65.7質量部とを混合し、ビーズミル(減圧機構付き高圧分散機NANO-3000-10(日本ビーイーイー(株)製))を用いて、3時間、混合および分散して、Green顔料分散液を調製した。
 顔料誘導体A:以下に示す構造の化合物
Figure JPOXMLDOC01-appb-C000013

 分散剤D-1:下記構造の樹脂(主鎖に付記した数値はモル比である。側鎖に付記した数値は、繰り返し数を示す。酸価=50mgKOH/g、Mw=24000)
Figure JPOXMLDOC01-appb-C000014
The raw materials described in the above table are as follows.
(Green pigment dispersion)
C. I. Pigment green 58 in an amount of 7.55 parts by mass; I. 1.89 parts by weight of Pigment Yellow 185, 0.94 parts by weight of Pigment Derivative A, 3.7 parts by weight of Dispersant D-1, and 65.7 parts by weight of propylene glycol monomethyl ether acetate (PGMEA) Were mixed and dispersed for 3 hours using a bead mill (high pressure disperser NANO-3000-10 with a pressure reducing mechanism (manufactured by Nippon BEE Co., Ltd.)) to prepare a Green pigment dispersion.
Pigment derivative A: compound having the structure shown below
Figure JPOXMLDOC01-appb-C000013

Dispersant D-1: Resin having the following structure (The numerical value attached to the main chain is a molar ratio. The numerical value attached to the side chain indicates the number of repetitions. Acid value = 50 mgKOH / g, Mw = 24000)
Figure JPOXMLDOC01-appb-C000014
 (Blue顔料分散液)
 C.I.ピグメントブルー15:6を10.2質量部と、C.I.ピグメントバイオレット23を1.27質量部と、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を24.42質量部と、シクロヘキサノンを14.62質量部と、プロピレングリコールモノメチルエーテルを1.03質量部と、分散剤D-2を2.54質量部とを混合し、ビーズミル(減圧機構付き高圧分散機NANO-3000-10(日本ビーイーイー(株)製))で、3時間、混合および分散して、Blue顔料分散液を調製した。
 分散剤D-2:下記構造の樹脂(重量平均分子量=14000、主鎖に付記した数値はモル比である)
Figure JPOXMLDOC01-appb-C000015
(Blue pigment dispersion)
C. I. Pigment Blue 15: 6 and 10.2 parts by mass; I. 1.27 parts by mass of Pigment Violet 23, 24.42 parts by mass of propylene glycol monomethyl ether acetate (PGMEA), 14.62 parts by mass of cyclohexanone, 1.03 parts by mass of propylene glycol monomethyl ether, a dispersant D-2 was mixed with 2.54 parts by mass, and mixed and dispersed for 3 hours in a bead mill (high pressure disperser NANO-3000-10 with a pressure reducing mechanism manufactured by Nippon BEE Co., Ltd.) to disperse Blue pigment. A liquid was prepared.
Dispersant D-2: Resin having the following structure (weight average molecular weight = 14000, the numbers attached to the main chain are molar ratios)
Figure JPOXMLDOC01-appb-C000015
 (樹脂)
 P-1:ACA230AA((株)ダイセル製、Mw=14000、酸価=37mgKOH/g)
 P-2:アクリキュアーRD-F8((株)日本触媒製)
(resin)
P-1: ACA230AA (manufactured by Daicel Corporation, Mw = 14000, acid value = 37 mgKOH / g)
P-2: ACRYCURE RD-F8 (manufactured by Nippon Shokubai Co., Ltd.)
 (ラジカル重合性化合物)
 M-1:NKエステルA-TMMT(新中村化学工業(株)製)
 M-2:アロニックスTO-2349(東亞合成(株)製)
 M-3:NKエステルA-DPH-12E(新中村化学工業(株)製)
(Radically polymerizable compound)
M-1: NK ester A-TMMT (manufactured by Shin-Nakamura Chemical Co., Ltd.)
M-2: Aronix TO-2349 (manufactured by Toagosei Co., Ltd.)
M-3: NK ester A-DPH-12E (manufactured by Shin-Nakamura Chemical Co., Ltd.)
 (界面活性剤)
 S-1:パイオニンD-6315(竹本油脂社製、ノニオン系界面活性剤)
 S-2:下記混合物(Mw=14000、繰り返し単位の割合を示す%はモル%である。)
Figure JPOXMLDOC01-appb-C000016
(Surfactant)
S-1: Pionein D-6315 (manufactured by Takemoto Yushi Co., Ltd., nonionic surfactant)
S-2: The following mixture (Mw = 14000,% indicating the ratio of repeating units is mol%)
Figure JPOXMLDOC01-appb-C000016
 (光重合開始剤)
 I-1、I-2:下記構造の化合物
Figure JPOXMLDOC01-appb-C000017
(Photopolymerization initiator)
I-1, I-2: Compounds having the following structures
Figure JPOXMLDOC01-appb-C000017
 重合禁止剤:p-メトキシフェノール
 エポキシ化合物:EHPE3150((株)ダイセル製)
Polymerization inhibitor: p-methoxyphenol Epoxy compound: EHPE3150 (manufactured by Daicel Corporation)
 (溶剤)
 酢酸ブチル
 PGMEA:プロピレングリコールモノメチルエーテルアセテート
(solvent)
Butyl acetate PGMEA: Propylene glycol monomethyl ether acetate
 <試験例1> パターンの製造方法
 200mm(8inch)シリコンウエハをホットプレートにて、200℃で、1分間加熱処理した。次いで、このシリコンウエハ上に、CT-4000L(富士フイルムエレクトロニクスマテリアルズ(株)製)をポストベーク後に膜厚が0.1μmになるように塗布した。更に220℃のホットプレートで5分間加熱(ポストベーク)して下塗り層を形成し、下塗り層付シリコンウエハ基板を得た。各感光性組成物1、2を、ポストベーク後に膜厚が0.6μmになるように下塗り層付シリコンウエハの下塗り層上に塗布し、感光性組成物層を形成した。そして、この感光性組成物層を、100℃のホットプレートを用いて120秒間加熱処理(プリベーク)を行なった。
 次いで、i線ステッパー露光装置FPA5510iZs(Canon(株)製)を使用して、パターンを有するマスクを通して下記の露光条件で露光を行った。
 次いで、露光後の感光性組成物層に対し、以下の現像条件でスプレー現像を行った後、220℃のホットプレートを用いて300秒間加熱処理(ポストベーク)を行い、パターンを製造した。
Test Example 1 Pattern Manufacturing Method A 200 mm (8 inch) silicon wafer was heat-treated at 200 ° C. for 1 minute on a hot plate. Next, CT-4000L (manufactured by FUJIFILM Electronics Materials Co., Ltd.) was applied on the silicon wafer so as to have a film thickness of 0.1 μm after post-baking. Furthermore, it heated for 5 minutes with a 220 degreeC hotplate (post-baking), the undercoat layer was formed, and the silicon wafer substrate with an undercoat layer was obtained. Each photosensitive composition 1 and 2 was apply | coated on the undercoat layer of the silicon wafer with an undercoat layer so that a film thickness might be set to 0.6 micrometer after post-baking, and the photosensitive composition layer was formed. And this photosensitive composition layer was heat-processed (prebaked) for 120 second using a 100 degreeC hotplate.
Next, using an i-line stepper exposure apparatus FPA5510iZs (manufactured by Canon Inc.), exposure was performed under the following exposure conditions through a mask having a pattern.
Next, the exposed photosensitive composition layer was spray-developed under the following development conditions, and then subjected to heat treatment (post-bake) for 300 seconds using a 220 ° C. hot plate to produce a pattern.
 [露光条件]
 露光波長:365nm(i線)
 露光照度:10000W/m
 露光時の雰囲気:空気(O濃度21体積%)
 照明条件:NA/σ=0.57/0.40
 縮小投影倍率:1/4縮小
 フォーカス:ベストフォーカス(フォーカスオフセット0.0μm)。なお、焦点深度(DOF)特性から、CD(Critical Dimension)とパターン形状の最も良好なフォーカス設定値をベストフォーカスとした。
 マスク:下記のマスク1~7からなるマスク(ターゲット線幅1.0μmベイヤーパターン、マスクバイアス0.0μm)
 露光エネルギー:50mJ/cmから5mJ/cmおきに露光エネルギーを増やして、最適露光エネルギー(Eopt)を検査した。なお、最適露光エネルギーとは、マスクの設計寸法どおりのパターンを形成できる露光エネルギーの条件のことである。
 [マスクの種類]
 マスク1:CrとCrOの積層体(Cr/CrO=730Å/300Å、波長365nmにおける光学濃度(OD値)=2.7)
 マスク2:CrとCrOの積層体(Cr/CrO=1050Å/300Å、波長365nmにおける光学濃度(OD値)=3.5)
 マスク3:CrとCrOの積層体(Cr/CrO=1130Å/300Å、波長365nmにおける光学濃度(OD値)=3.7)
 マスク4:CrとCrOの積層体(Cr/CrO=1300Å/300Å、波長365nmにおける光学濃度(OD値)=4.0)
 マスク5:CrとCrOの積層体(Cr/CrO=1550Å/300Å、波長365nmにおける光学濃度(OD値)=5.0)
 マスク6:CrとCrOの積層体(Cr/CrO=1800Å/300Å、波長365nmにおける光学濃度(OD値)=6.0)
 マスク7:CrとCrOの積層体(Cr/CrO=2050Å/300Å、波長365nmにおける光学濃度(OD値)=7.0)
[Exposure conditions]
Exposure wavelength: 365 nm (i-line)
Exposure illuminance: 10,000 W / m 2
Exposure atmosphere: Air (O 2 concentration 21% by volume)
Lighting conditions: NA / σ = 0.57 / 0.40
Reduction projection magnification: 1/4 reduction Focus: Best focus (focus offset 0.0 μm). Note that, from the depth of focus (DOF) characteristic, the best focus setting value of CD (Critical Dimension) and pattern shape was set as the best focus.
Mask: Mask consisting of the following masks 1 to 7 (target line width 1.0 μm Bayer pattern, mask bias 0.0 μm)
Exposure energy: from 50 mJ / cm 2 by increasing the exposure energy to 5 mJ / cm 2 intervals were examined optimum exposure energy (Eopt). The optimal exposure energy is a condition of exposure energy that can form a pattern according to the design dimension of the mask.
[Mask type]
Mask 1: Laminated body of Cr and CrO 2 (Cr / CrO 2 = 730Å / 300Å, optical density (OD value) = 2.7 at a wavelength of 365 nm)
Mask 2: Laminated body of Cr and CrO 2 (Cr / CrO 2 = 1050Å / 300Å, optical density (OD value) at wavelength 365 nm = 3.5)
Mask 3: Laminated body of Cr and CrO 2 (Cr / CrO 2 = 1130Å / 300Å, optical density (OD value) at wavelength 365 nm = 3.7)
Mask 4: Laminated body of Cr and CrO 2 (Cr / CrO 2 = 1300Å / 300Å, optical density (OD value) = 4.0 at a wavelength of 365 nm)
Mask 5: Laminated body of Cr and CrO 2 (Cr / CrO 2 = 1550Å / 300Å, optical density (OD value) at a wavelength of 365 nm = 5.0)
Mask 6: Laminated body of Cr and CrO 2 (Cr / CrO 2 = 1800Å / 300Å, optical density (OD value) at wavelength 365 nm = 6.0)
Mask 7: Laminated body of Cr and CrO 2 (Cr / CrO 2 = 2050/300 mm, optical density (OD value) at wavelength 365 nm = 7.0)
 なお、マスクの光学濃度(OD値)は、以下の条件で測定した。
 装置:V-7200(日本分光株式会社製)
 リファレンス:Cr及びCrOを蒸着していないガラス基板
 測定モード:波長スキャン
 測定波長領域:230nm~700nm
 重水素(D2)ランプ:ON
 ハロゲン(WI)ランプ:ON
The optical density (OD value) of the mask was measured under the following conditions.
Apparatus: V-7200 (manufactured by JASCO Corporation)
Reference: Glass substrate on which Cr and CrO 2 are not deposited Measurement mode: Wavelength scan Measurement wavelength region: 230 nm to 700 nm
Deuterium (D2) lamp: ON
Halogen (WI) lamp: ON
 [現像条件] スプレー現像
 露光後の感光性組成物層を有するシリコンウエハを、現像機(ACT8 東京エレクトロン社製)の現像ユニットに搬送し、スピンチャック上に設置した。シリコンウエハを回転させながら、その回転中心の上方より感光性組成物層に対して23℃の現像液(CD-1040、富士フイルムエレクトロニクスマテリアルズ社製)をNとの2流体にて10秒間スプレー状に塗布した(N流量5~10L/分、現像液流量=150mL/分、ノズル高さ=シリコンウエハから20mm)。次いで、回転装置を停止させて60秒間静止して現像を行った。これらの一連の処理を合計2回行った後、回転装置を作動させてシリコンウエハを回転数2000rpmで回転させつつ、その回転中心の上方より純水をストレートノズルからシャワー状に供給してリンス処理(30秒)を行ない、次いで、20秒間スピン乾燥した。
[Development conditions] Spray development The silicon wafer having the photosensitive composition layer after exposure was transported to a development unit of a developing machine (ACT8, manufactured by Tokyo Electron Ltd.) and placed on a spin chuck. While rotating the silicon wafer, a developer (CD-1040, manufactured by Fuji Film Electronics Materials) at 23 ° C. is applied to the photosensitive composition layer from above the rotation center for 10 seconds with two fluids of N 2. It was applied in the form of a spray (N 2 flow rate 5 to 10 L / min, developer flow rate = 150 mL / min, nozzle height = 20 mm from the silicon wafer). Next, the rotating device was stopped and development was carried out by resting for 60 seconds. After performing a series of these treatments twice in total, the rotating device is operated to rotate the silicon wafer at a rotational speed of 2000 rpm, and the pure water is supplied in a shower form from the straight nozzle above the rotation center to perform the rinsing treatment. (30 seconds) and then spin dried for 20 seconds.
 <試験例2>
 試験例1のパターン製造方法において、感光性組成物1を用い、現像条件を以下に変更してパドル現像を行った以外は試験例1と同様にしてパターンを製造した。
 [現像条件] パドル現像
 露光後の感光性組成物層を有するシリコンウエハを、スピン・シャワー現像機(DW-30型、(株)ケミトロニクス製)の水平回転テーブル上に載置した。回転装置を作動させてシリコンウエハを回転させながら、その回転中心の上方より感光性組成物層に対して23℃の現像液(CD-1040、富士フイルムエレクトロニクスマテリアルズ社製)をストレートノズルから10秒間吐出して塗布した。次いで、回転装置を停止させて60秒間静置して現像(パドル現像)を行なった。これらの一連の処理を合計2回行った後、回転装置を作動させてシリコンウエハを回転数2000rpmで回転させつつ、その回転中心の上方より純水をストレートノズルからシャワー状に供給してリンス処理(30秒)を行ない、次いで、20秒間スピン乾燥した。
<Test Example 2>
In the pattern production method of Test Example 1, a pattern was produced in the same manner as in Test Example 1 except that the photosensitive composition 1 was used, and the development conditions were changed as follows to perform paddle development.
[Development Conditions] Paddle Development A silicon wafer having a photosensitive composition layer after exposure was placed on a horizontal rotary table of a spin shower developing machine (DW-30 type, manufactured by Chemtronics Co., Ltd.). While rotating the silicon wafer by operating the rotating device, the developer (CD-1040, manufactured by Fuji Film Electronics Materials) at 23 ° C. is applied from the straight nozzle to the photosensitive composition layer from above the rotation center. It was discharged and applied for 2 seconds. Next, the rotating device was stopped and left for 60 seconds for development (paddle development). After performing a series of these treatments twice in total, the rotating device is operated to rotate the silicon wafer at a rotational speed of 2000 rpm, and the pure water is supplied in a shower form from the straight nozzle above the rotation center to perform the rinsing treatment. (30 seconds) and then spin dried for 20 seconds.
 <焦点深度(DOF)マージンの評価>
 最適露光量(Eopt)において焦点深度(DOF)をベストフォーカスからずらして、得られるパターンの線幅変動がマスクの設計寸法±5%(=0.95~1.05μm)に収まる焦点深度の幅を求めた。
<Evaluation of depth of focus (DOF) margin>
Depth of focus (DOF) at best exposure (Eopt) is shifted from the best focus, and the range of focus depth within which the line width variation of the resulting pattern falls within the mask design dimension ± 5% (= 0.95 to 1.05 μm) Asked.
 <残渣およびパターン形状の評価>
 線幅測定用電子顕微鏡S9260A(日立ハイテクノロジーズ社製)を用いて20000倍に拡大して観察し、パターン間の残渣およびパターン形状をそれぞれ観察し、以下の基準で測定した。
(残渣の評価)
 A:パターン間に残渣が無い。
 B:パターン間に残渣が微量存在する。
 C:パターン間に残渣がやや多く存在する。
 D:パターン間の残渣が多い。
(パターン形状の評価)
 A:パターンのエッジのラフネスが良好である。
 B:パターンのエッジのラフネスが良好であるがAよりは劣る。
 C:パターンのエッジのラフネスが良好であるがBよりは劣る。
 D:パターンのエッジのラフネスが悪い。
Figure JPOXMLDOC01-appb-T000018
<Evaluation of residue and pattern shape>
The line width measurement electron microscope S9260A (manufactured by Hitachi High-Technologies Corporation) was used to observe the image with a magnification of 20000 times, and the residue and pattern shape between the patterns were observed and measured according to the following criteria.
(Evaluation of residue)
A: There is no residue between patterns.
B: A trace amount of residue exists between patterns.
C: A little residue exists between patterns.
D: There are many residues between patterns.
(Evaluation of pattern shape)
A: The roughness of the edge of the pattern is good.
B: The roughness of the edge of the pattern is good but inferior to A.
C: The roughness of the pattern edge is good but inferior to B.
D: The roughness of the edge of the pattern is bad.
Figure JPOXMLDOC01-appb-T000018
 OD値が2.7のマスクを使用した場合、パターンエッジ近傍をパターンの線幅と定義したが、残渣が多く、実用レベルではなかった。
 また、現像方法としてスプレー現像を用いた場合においては、パドル現像を用いた場合に比べて、露光エネルギーのマージン、DOFマージン、パターン形状が良好であった。
When a mask with an OD value of 2.7 was used, the pattern edge vicinity was defined as the line width of the pattern, but there were many residues and it was not at a practical level.
When spray development was used as the development method, the exposure energy margin, DOF margin, and pattern shape were better than when paddle development was used.
 上記の表において、露光エネルギー1とは、パターンの線幅がマスクの設計寸法×95%(=0.95μm)の値を発現するときの露光エネルギー(mJ/cm)であり、露光エネルギー2とは、パターンの線幅がマスクの設計寸法×105%(=1.05μm)の値を発現するときの露光エネルギー(mJ/cm)である。露光エネルギー1と露光エネルギー2との差が大きいほど露光エネルギーのマージンが広いことを意味する。 In the above table, exposure energy 1 is exposure energy (mJ / cm 2 ) when the line width of the pattern expresses a value of mask design dimension × 95% (= 0.95 μm), and exposure energy 2 The exposure energy (mJ / cm 2 ) when the line width of the pattern expresses a value of the mask design dimension × 105% (= 1.05 μm). The larger the difference between the exposure energy 1 and the exposure energy 2, the wider the exposure energy margin.
 上記表に示す通り、光学濃度(OD値)が3.6以上のマスクを用いた試験例は、露光エネルギーのマージンおよびDOFマージンが広く、優れていた。また、パターン間の残渣が少なく、更にはパターン形状も優れていた。
 また、現像方法としてスプレー現像を用いた試験例1群においては、パドル現像を用いた試験例2群よりも残渣の発生が抑制でき、更には矩形性に優れたパターンが得られやすかった。
As shown in the above table, the test example using a mask having an optical density (OD value) of 3.6 or more was excellent with a wide exposure energy margin and a DOF margin. Moreover, there was little residue between patterns and the pattern shape was also excellent.
Further, in Test Example 1 group using spray development as a developing method, generation of residue could be suppressed more easily than in Test Example 2 group using paddle development, and a pattern having excellent rectangularity was easily obtained.
 <試験例3>
 試験例1のパターン製造方法において、感光性組成物1を用い、露光時における露光照度および露光時の酸素濃度をそれぞれ下記の表に記載の条件に変化させた以外は試験例1と同様にしてパターンを製造し、解像性を評価した。マスクの設計寸法どおりのパターンを形成できる露光エネルギー(最適露光エネルギー(Eopt))と、以下の式から求めたΔ露光エネルギーとを求めて、解像性を評価した。なお、マスクの設計寸法は、1.0μmとした。
 Δ露光エネルギー=|パターンの線幅がマスクの設計寸法×105%(=1.05μm)の値を発現するときの露光エネルギー(mJ/cm)-パターンの線幅がマスクの設計寸法×95%(=0.95μm)の値を発現するときの露光エネルギー(mJ/cm)|
 A:Δ露光エネルギーが200mJ/cm以上であり、かつEoptが50~500mJ/cmの範囲である。
 B:Δ露光エネルギーが100mJ/cm以上200mJ/cm未満であり、かつEoptが50~500mJ/cmの範囲である。
 C:Δ露光エネルギーが50mJ/cm以上100mJ/cm未満であり、かつEoptが50~500mJ/cmの範囲である。
 D:Δ露光エネルギーが50mJ/cm未満であり、かつEoptが50~500mJ/cmの範囲である。
 E:Eoptが50mJ/cm未満であるか、または、500mJ/cmを超える。
 F:目標の寸法を形成できない。
Figure JPOXMLDOC01-appb-T000019

Figure JPOXMLDOC01-appb-T000020

Figure JPOXMLDOC01-appb-T000021

Figure JPOXMLDOC01-appb-T000022

Figure JPOXMLDOC01-appb-T000023

Figure JPOXMLDOC01-appb-T000024
<Test Example 3>
In the pattern manufacturing method of Test Example 1, the same procedure as in Test Example 1 was conducted except that the photosensitive composition 1 was used and the exposure illuminance at the time of exposure and the oxygen concentration at the time of exposure were changed to the conditions described in the following table, respectively. Patterns were manufactured and the resolution was evaluated. The resolution was evaluated by obtaining the exposure energy (optimum exposure energy (Eopt)) that can form a pattern according to the design dimensions of the mask and the Δ exposure energy obtained from the following equation. The design dimension of the mask was 1.0 μm.
Δexposure energy = | exposure energy (mJ / cm 2 ) when the line width of the pattern expresses a value of the mask design dimension × 105% (= 1.05 μm) −the line width of the pattern is the mask design dimension × 95 % (= 0.95 μm) exposure energy (mJ / cm 2 ) |
A: Δexposure energy is 200 mJ / cm 2 or more, and Eopt is in the range of 50 to 500 mJ / cm 2 .
B: Δexposure energy is 100 mJ / cm 2 or more and less than 200 mJ / cm 2 and Eopt is in the range of 50 to 500 mJ / cm 2 .
C: Δexposure energy is 50 mJ / cm 2 or more and less than 100 mJ / cm 2 and Eopt is in the range of 50 to 500 mJ / cm 2 .
D: delta exposure energy is less than 50 mJ / cm 2, and Eopt is in the range of 50 ~ 500mJ / cm 2.
E: Eopt is less than 50 mJ / cm 2 or more than 500 mJ / cm 2 .
F: The target dimension cannot be formed.
Figure JPOXMLDOC01-appb-T000019

Figure JPOXMLDOC01-appb-T000020

Figure JPOXMLDOC01-appb-T000021

Figure JPOXMLDOC01-appb-T000022

Figure JPOXMLDOC01-appb-T000023

Figure JPOXMLDOC01-appb-T000024
 上記表に示す通り、光学濃度(OD値)が3.6以上のマスクを用いた試験例においては、露光エネルギーのマージンが広かった。また、解像性に優れていた。一方、光学濃度(OD値)が2.7のマスクを用いた試験例においては、残渣が多く、実用レベルでないと判断したため、Fの評価とした。 As shown in the above table, in the test example using a mask having an optical density (OD value) of 3.6 or more, the exposure energy margin was wide. Also, the resolution was excellent. On the other hand, in the test example using the mask having an optical density (OD value) of 2.7, it was judged that the residue was so large that it was not at a practical level.
<試験例4>
(カラーフィルタの製造)
 幅0.1μm、高さ0.4μmの遮光膜(タングステン遮光膜)が形成されたイメージセンサ用基板上の遮光膜間に、緑、青および赤の各色の画素を形成して、加工精度を確認した。画素のルールは1.0μm四方とし、画素間遮光膜の寸法は0.1μmとした。
 上記の遮光膜が形成された基板上に、各色の画素形成用の組成物を、ポストベーク後に膜厚が0.6μmになるように塗布して、感光性組成物層を形成した。そして、この感光性組成物層を、100℃のホットプレートを用いて120秒間加熱処理(プリベーク)を行なった。
 次いで、以下の条件で露光を行った。なお、各色の画素形成用組成物の露光時には、900nmのアライメント波長を使用して基材の位置を検出した。検出対象は画素の下層に設置しているタングステンマーク、もしくは基材に刻印されているシリコンの凹凸マークを使用した。
 次いで、試験例1と同じ条件でスプレー現像を行った後、220℃のホットプレートを用いて300秒間加熱処理(ポストベーク)を行い、パターンを製造した。このとき、熱収縮を抑制するために、酸素濃度の低い(酸素濃度:100ppm)密閉型ホットプレートを使用した。
 遮光膜間に、各色の画素が埋め込まれたカラーフィルタを製造できた。
<Test Example 4>
(Manufacture of color filters)
Green, blue and red pixels are formed between the light-shielding films on the image sensor substrate on which a light-shielding film (tungsten light-shielding film) having a width of 0.1 μm and a height of 0.4 μm is formed, thereby improving processing accuracy. confirmed. The rule of the pixel was 1.0 μm square, and the dimension of the inter-pixel light shielding film was 0.1 μm.
A composition for forming pixels of each color was applied on the substrate on which the light-shielding film was formed so as to have a film thickness of 0.6 μm after post-baking to form a photosensitive composition layer. And this photosensitive composition layer was heat-processed (prebaked) for 120 second using a 100 degreeC hotplate.
Next, exposure was performed under the following conditions. In addition, at the time of exposure of the composition for pixel formation of each color, the position of the base material was detected using an alignment wavelength of 900 nm. As a detection target, a tungsten mark placed on the lower layer of the pixel or a silicon uneven mark stamped on the base material was used.
Next, spray development was performed under the same conditions as in Test Example 1, and then heat treatment (post-baking) was performed for 300 seconds using a 220 ° C. hot plate to produce a pattern. At this time, in order to suppress thermal shrinkage, a sealed hot plate having a low oxygen concentration (oxygen concentration: 100 ppm) was used.
A color filter in which pixels of each color were embedded between the light shielding films could be manufactured.
[使用した画素形成用の組成物]
 緑色画素形成用の組成物:上述した感光性組成物1
 青色画素形成用の組成物:上述した感光性組成物2
 赤色画素形成用の組成物:SR2000S(富士フイルムエレクトロニクスマテリアルズ社製)
[Used composition for pixel formation]
Composition for green pixel formation: photosensitive composition 1 described above
Composition for forming blue pixel: photosensitive composition 2 described above
Composition for forming red pixel: SR2000S (manufactured by FUJIFILM Electronics Materials)
 [露光条件]
 露光波長:365nm(i線)
 露光照度:250000W/m
 露光時の雰囲気:空気(O濃度35体積%)
 照明条件:NA/σ=0.57/0.50
 縮小投影倍率:1/4縮小
 フォーカス:ベストフォーカス
 マスク:上述したマスク5からなるマスク(ターゲット線幅1.0μmベイヤーパターン、マスクバイアス0.0μm、マスクの波長365nmにおける光学濃度(OD値)=5.0)
 露光エネルギー:緑色画素形成用の組成物の場合は250mJ/cm、青色画素形成用の組成物の場合は320mJ/cm、赤色画素形成用の組成物の場合は350mJ/cm
[Exposure conditions]
Exposure wavelength: 365 nm (i-line)
Exposure illuminance: 250,000 W / m 2
Exposure atmosphere: Air (O 2 concentration 35% by volume)
Lighting conditions: NA / σ = 0.57 / 0.50
Reduction projection magnification: 1/4 reduction Focus: Best focus Mask: Mask composed of the above-described mask 5 (target line width 1.0 μm Bayer pattern, mask bias 0.0 μm, mask optical density (OD value) at 365 nm) = 5 .0)
Exposure energy: 250 mJ / cm 2 in the case of a composition for a green pixel forming, 320 mJ / cm 2 in the case of a composition for a blue pixel forming, 350 mJ / cm 2 in the case of a composition for the red pixel formed
(マイクロレンズの形成)
 上記の方法で製造して得られたカラーフィルタ上に、特開2016-74797の試験101の組成物を用い、塗布および乾燥した後、熱焼結(220℃×5分)の処理を行ってレンズ材料層を形成した(膜厚1.0μm)。このレンズ材料層に対し、以下の条件にて、レンズ材料層上にマスクを形成した。
(Formation of microlenses)
On the color filter obtained by the above method, the composition of Test 101 of JP-A-2016-74797 was applied and dried, followed by heat sintering (220 ° C. × 5 minutes). A lens material layer was formed (film thickness 1.0 μm). For this lens material layer, a mask was formed on the lens material layer under the following conditions.
 [マスク形成条件]
 感光性フォトレジスト:GKR-5113(商品名;富士フイルムエレクトロニクスマテリアルズ社製)
 形成膜厚:0.7μm
 パターンサイズ:1.0μm四方、ポジ残し部0.8μm、スペース部0.2μmで形成。
 露光エネルギー:46mJ/m(NA/σ:0.63/0.65)
 プレベーク/露光後加熱/ポストベーク:120℃×90秒/110℃×90秒/155℃×60秒
[Mask formation conditions]
Photosensitive photoresist: GKR-5113 (trade name; manufactured by FUJIFILM Electronics Materials)
Formed film thickness: 0.7 μm
Pattern size: 1.0 μm square, positive remaining portion 0.8 μm, space portion 0.2 μm.
Exposure energy: 46 mJ / m 2 (NA / σ: 0.63 / 0.65)
Pre-bake / post-exposure heating / post-bake: 120 ° C. × 90 seconds / 110 ° C. × 90 seconds / 155 ° C. × 60 seconds
 次いで、以下の条件でエッチング処理を行いカラーフィルタ上にマイクロレンズを形成した。マイクロレンズのパターンは、ピッチ方向と対角方向とのいずれにもレンズ間のギャップが無いアレイが形成されていた。 Next, etching was performed under the following conditions to form a microlens on the color filter. The microlens pattern has an array in which there is no gap between lenses in either the pitch direction or the diagonal direction.
 [エッチング条件]
 ドライエッチング装置:U-621((株)日立ハイテクノロジーズ製)
 ガス流量:CF/C=350(mL/分)/50(mL/分)
 バイアス:高周波(RF)パワー:1000W
 アンテナバイアス:400W
 ウエハバイアス:400W
 電極高さ:68mm
 圧力:2.0Pa
 エッチング時間:500秒
 基板温度:20℃
[Etching conditions]
Dry etching equipment: U-621 (manufactured by Hitachi High-Technologies Corporation)
Gas flow rate: CF 4 / C 4 F 6 = 350 (mL / min) / 50 (mL / min)
Bias: High frequency (RF) power: 1000W
Antenna bias: 400W
Wafer bias: 400W
Electrode height: 68mm
Pressure: 2.0Pa
Etching time: 500 seconds Substrate temperature: 20 ° C
 本実施形態例では、カラーフィルタの像形成性が向上し、フレアや混色など発生が抑制される。したがって撮像装置の画質の向上が図られる。
 本発明は赤、緑、青で構成されるカラーフィルタのみではなく、可視光に透明であり屈折率制御で集光をコントロールするホワイト画素、可視光を遮光して近赤外領域の透過性をコントロールする赤外線透過フィルタの画素を有する撮像装置にも好適に適用できる。
In this embodiment, the image forming property of the color filter is improved, and the occurrence of flare, color mixing, etc. is suppressed. Therefore, the image quality of the imaging device can be improved.
The present invention is not only a color filter composed of red, green, and blue, but also a white pixel that is transparent to visible light and controls condensing by controlling the refractive index, and blocks visible light so that it can transmit near-infrared light. The present invention can also be suitably applied to an imaging apparatus having infrared transmission filter pixels to be controlled.
<試験例5>
[チタンブラック(A-1)の製造]
 平均粒径15nmの酸化チタンMT-150A(商品名:テイカ(株)製)を100g、BET表面積300m/gのシリカ粒子AEROPERL(登録商標)300/30(エボニック製)を25g、及び、分散剤Disperbyk190(商品名:ビックケミー社製)を100g秤量し、イオン電気交換水71gを加えてKURABO製MAZERSTAR KK-400Wを使用して、公転回転数1360rpm、自転回転数1047rpmにて20分間処理することにより均一な混合物水溶液を得た。この水溶液を石英容器に充填し、小型ロータリーキルン(株式会社モトヤマ製)を用いて酸素雰囲気中で920℃に加熱した。その後、窒素で雰囲気を置換し、同温度でアンモニアガスを100mL/minで5時間流すことにより窒化還元処理を実施した。終了後回収した粉末を乳鉢で粉砕し、Si原子を含み、粉末状の比表面積73m/gのチタンブラックA-1〔チタンブラック粒子及びSi原子を含む被分散体〕を得た。
<Test Example 5>
[Production of Titanium Black (A-1)]
100 g of titanium oxide MT-150A (trade name: manufactured by Teika Co., Ltd.) having an average particle size of 15 nm, 25 g of silica particles AROPERL (registered trademark) 300/30 (manufactured by Evonik) having a BET surface area of 300 m 2 / g, and dispersion 100 g of the agent Disperbyk190 (trade name: manufactured by Big Chemie), add 71 g of ion-exchange water, and use MURASTAR KK-400W manufactured by KURABO for 20 minutes at a revolution speed of 1360 rpm and a rotation speed of 1047 rpm. Gave a homogeneous aqueous mixture. This aqueous solution was filled in a quartz container and heated to 920 ° C. in an oxygen atmosphere using a small rotary kiln (manufactured by Motoyama Co., Ltd.). Thereafter, the atmosphere was replaced with nitrogen, and nitriding reduction treatment was performed by flowing ammonia gas at 100 mL / min for 5 hours at the same temperature. After the completion, the collected powder was pulverized in a mortar to obtain titanium black A-1 [dispersed material containing titanium black particles and Si atoms] containing Si atoms and having a powdery specific surface area of 73 m 2 / g.
[チタンブラック分散物(TB分散液1)の調製]
 下記組成1に示す成分を、攪拌機(IKA社製EUROSTAR)を使用して、15分間混合し、分散物aを得た。
[Preparation of Titanium Black Dispersion (TB Dispersion 1)]
The component shown in the following composition 1 was mixed for 15 minutes using a stirrer (EUROSTAR manufactured by IKA) to obtain dispersion a.
(組成1)
 上記チタンブラック(A-1)・・・25質量部
 特定樹脂1のプロピレングリコールモノメチルエーテルアセテート30質量%溶液・・・25質量部
・プロピレングリコールモノメチルエーテルアセテート(PGMEA)・・・50質量部
(Composition 1)
Titanium black (A-1): 25 parts by mass 30% by mass solution of propylene glycol monomethyl ether acetate in specific resin 1: 25 parts by mass Propylene glycol monomethyl ether acetate (PGMEA): 50 parts by mass
 特定樹脂1:下記構造の樹脂(主鎖に付記した数値は質量%であり、側鎖に付記した数値は繰り返し単位の数である。重量平均分子量=30000、酸価=60mgKOH/g、グラフト鎖の原子数(水素原子を除く)は117)。特定樹脂1は、特開2013-249417号公報の記載を参照して合成した。
Figure JPOXMLDOC01-appb-C000025
Specific resin 1: Resin having the following structure (The numerical value attached to the main chain is% by mass, and the numerical value attached to the side chain is the number of repeating units. Weight average molecular weight = 30000, acid value = 60 mgKOH / g, graft chain The number of atoms (excluding hydrogen atoms) is 117). The specific resin 1 was synthesized with reference to the description in JP2013-249417A.
Figure JPOXMLDOC01-appb-C000025
 得られた分散物aに対し、寿工業(株)製のウルトラアペックスミルUAM015を使用して下記条件にて分散処理を行い、チタンブラック分散物(以下、TB分散液1と表記する。)を得た。 The obtained dispersion a is subjected to a dispersion treatment using the Ultra Apex Mill UAM015 manufactured by Kotobuki Industries Co., Ltd. under the following conditions to obtain a titanium black dispersion (hereinafter referred to as TB dispersion 1). Obtained.
(分散条件)
・ビーズ径:直径0.05mm
・ビーズ充填率:75体積%
・ミル周速:8m/sec
・分散処理する混合液量:500g
・循環流量(ポンプ供給量):13kg/hour
・処理液温度:25~30℃
・冷却水:水道水
・ビーズミル環状通路内容積:0.15L
・パス回数:90パス
(Distribution condition)
・ Bead diameter: 0.05mm in diameter
・ Bead filling rate: 75% by volume
・ Mill peripheral speed: 8m / sec
・ Amount of liquid mixture to be dispersed: 500 g
・ Circulation flow rate (pump supply amount): 13 kg / hour
・ Processing liquid temperature: 25-30 ℃
・ Cooling water: Tap water ・ Bead mill annular passage volume: 0.15L
・ Number of passes: 90 passes
[黒色感光性組成物の調製]
 下記組成を混合することで、黒色感光性組成物を得た。この黒色感光性組成物を用いて1.5μmの膜を形成したところ、得られた膜の波長365nmの光学濃度は2.7であった。光学濃度はマスクの光学濃度と同様の方法で測定した。
 ・TB分散液1・・・58.93質量部
 ・アルカリ可溶性樹脂(アクリキュアーRD-F8、(株)日本触媒製、固形分40%、溶剤:プロピレングリコールモノメチルエーテル)・・・10.545質量部
 ・光重合開始剤(下記構造の化合物)・・・1.38質量部
Figure JPOXMLDOC01-appb-C000026

 ・重合性化合物(KAYARAD DPHA、日本化薬(株)製、6官能重合性化合物(エチレン性不飽和基の量:10.4mmol/g)、及び、5官能重合性化合物(エチレン性不飽和基の量:9.5mmol/g)の混合物)・・・6.82質量部
 ・界面活性剤(メガファックF-780、DIC(株)製)・・・0.02質量部
 ・プロピレングリコールモノメチルエーテルアセテート・・・5.48質量部
 ・シクロヘキサノン・・・16.76質量部
[Preparation of black photosensitive composition]
A black photosensitive composition was obtained by mixing the following composition. When a film having a thickness of 1.5 μm was formed using this black photosensitive composition, the resulting film had an optical density of 2.7 at a wavelength of 365 nm. The optical density was measured by the same method as the optical density of the mask.
-TB dispersion 1 ... 58.93 parts by mass-Alkali-soluble resin (Acryl RD-F8, manufactured by Nippon Shokubai Co., Ltd., solid content 40%, solvent: propylene glycol monomethyl ether) ... 10.545 mass Parts Photopolymerization initiator (compound with the following structure): 1.38 parts by mass
Figure JPOXMLDOC01-appb-C000026

Polymerizable compound (KAYARAD DPHA, manufactured by Nippon Kayaku Co., Ltd., hexafunctional polymerizable compound (amount of ethylenically unsaturated group: 10.4 mmol / g), and pentafunctional polymerizable compound (ethylenically unsaturated group) Of 9.5 mmol / g)) ... 6.82 parts by mass Surfactant (Megafac F-780, manufactured by DIC Corporation) ... 0.02 parts by massPropylene glycol monomethyl ether Acetate ... 5.48 parts by massCyclohexanone ... 16.76 parts by mass
(評価基板の作製)
 基板の種類:8インチ(20.32cm)の反射防止膜付きガラスウエハ上に、黒色感光性組成物を、ポストベーク後に膜厚が1.5μmとなるように塗布して黒色感光性組成物層を形成した。そして、この黒色感光性組成物層を、90℃のホットプレートを用いて120秒間加熱処理(プリベーク)を行なった。
 次いで、i線ステッパー露光装置FPA5510iZs(Canon(株)製)を使用して、パターンを有するマスクを通して下記の露光条件で露光を行った。
 次いで、露光後の感光性組成物層に対し、試験例1と同じ条件でスプレー現像を行った。その後、150℃のホットプレートを用いて10分間加熱処理(ポストベーク)を行い、パターンを製造した。このとき、熱収縮を抑制するために、酸素濃度の低い(酸素濃度:100ppm)密閉型ホットプレートを使用した。
(Production of evaluation board)
Substrate type: Black photosensitive composition layer was applied on a glass wafer with an antireflection film of 8 inches (20.32 cm) so that the film thickness was 1.5 μm after post-baking. Formed. And this black photosensitive composition layer was heat-processed (prebaked) for 120 second using a 90 degreeC hotplate.
Next, using an i-line stepper exposure apparatus FPA5510iZs (manufactured by Canon Inc.), exposure was performed under the following exposure conditions through a mask having a pattern.
Subsequently, spray development was performed on the photosensitive composition layer after the exposure under the same conditions as in Test Example 1. Thereafter, heat treatment (post-baking) was performed for 10 minutes using a 150 ° C. hot plate to produce a pattern. At this time, in order to suppress thermal shrinkage, a sealed hot plate having a low oxygen concentration (oxygen concentration: 100 ppm) was used.
[露光条件]
 露光波長:365nm
 露光照度:30000W/m
 露光時の雰囲気:空気(O濃度21体積%)雰囲気またはO濃度40体積%の雰囲気
 照明条件:NA/σ=0.57/0.40
 縮小投影倍率:1/4縮小
 フォーカス:-0.9μm~+0.9μm、0.3μmピッチでパターンを作製し、ベストフォーカスはフォカスオフセット+0.3μmであると判断し、断面観察は+0.3μmを評価した。
 マスク:上記のマスク1~5(ターゲット線幅10μmラインパターン、マスクバイアス0.0μm)
 露光エネルギー:500mJ/cm
[Exposure conditions]
Exposure wavelength: 365nm
Exposure illuminance: 30000 W / m 2
Exposure atmosphere: air (O 2 concentration 21 volume%) atmosphere or atmosphere with O 2 concentration 40 volume% Illumination conditions: NA / σ = 0.57 / 0.40
Reduced projection magnification: 1/4 reduction Focus: -0.9 μm to +0.9 μm, pattern was produced with a pitch of 0.3 μm, the best focus was determined to be a focus offset +0.3 μm, and cross-sectional observation was +0.3 μm evaluated.
Mask: Masks 1 to 5 described above (target line width 10 μm line pattern, mask bias 0.0 μm)
Exposure energy: 500 mJ / cm 2
(アンダーカット幅の測定)
 得られたパターンについて断面観察(観測倍率20,000倍)を行い、アンダーカット幅を測定した。測定装置として走査顕微鏡(S4800、(株)日立ハイテクノロジーズ製)を用いた。アンダーカット幅は、パターンの断面観察において、パターンのひさしの先端からパターンの底部の基板からはがれている領域の幅(図2の矢印線の幅)を測定した。アンダーカット幅は、0.5μm以下であることが好ましく、0.3μm以下であることがより好ましい。
(Measurement of undercut width)
The obtained pattern was subjected to cross-sectional observation (observation magnification 20,000 times), and the undercut width was measured. A scanning microscope (S4800, manufactured by Hitachi High-Technologies Corporation) was used as a measuring device. The undercut width was measured by measuring the width of a region (width of an arrow line in FIG. 2) that is separated from the substrate at the bottom of the pattern from the top of the pattern eaves in the cross-sectional observation of the pattern. The undercut width is preferably 0.5 μm or less, and more preferably 0.3 μm or less.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 上記表に示されるように、光学濃度が3.6以上のマスクを用いることでアンダーカットの発生を効果的に抑制できた。また、露光時の酸素濃度を高めることにより、アンダーカットをさらに効果的に抑制することができた。 As shown in the above table, the use of a mask having an optical density of 3.6 or more can effectively suppress the occurrence of undercut. Moreover, the undercut could be more effectively suppressed by increasing the oxygen concentration during exposure.
<試験例6>
 (感光性組成物101、感光性組成物201、感光性組成物301、感光性組成物401、感光性組成物501、感光性組成物601の製造)
 下記表に記載の組成比(質量部)となるように各原料を混合して各感光性組成物を製造した。
<Test Example 6>
(Production of photosensitive composition 101, photosensitive composition 201, photosensitive composition 301, photosensitive composition 401, photosensitive composition 501, and photosensitive composition 601)
Each photosensitive composition was manufactured by mixing each raw material so that the composition ratio (part by mass) described in the following table was obtained.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 (感光性組成物102~105の製造)
 Green顔料分散液101の代わりに同量のGreen顔料分散液102~105を用いた以外は感光性組成物101と同様の方法で感光性組成物102~105を製造した。
(Production of photosensitive compositions 102 to 105)
Photosensitive compositions 102 to 105 were produced in the same manner as the photosensitive composition 101 except that the same amount of the green pigment dispersions 102 to 105 was used instead of the green pigment dispersion 101.
 (感光性組成物202~205の製造)
 Green顔料分散液201の代わりに同量のGreen顔料分散液202~205を用いた以外は感光性組成物201と同様の方法で感光性組成物202~205を製造した。
(Production of photosensitive compositions 202 to 205)
Photosensitive compositions 202 to 205 were produced in the same manner as the photosensitive composition 201 except that the same amount of the green pigment dispersions 202 to 205 was used instead of the green pigment dispersion 201.
 (感光性組成物302~305の製造)
 Yellow顔料分散液101の代わりに同量のYellow顔料分散液102~105を用いた以外は感光性組成物301と同様の方法で感光性組成物302~305を製造した。
(Production of photosensitive compositions 302 to 305)
Photosensitive compositions 302 to 305 were produced in the same manner as the photosensitive composition 301 except that the same amount of the yellow pigment dispersion liquids 102 to 105 was used instead of the yellow pigment dispersion liquid 101.
 (感光性組成物402~405の製造)
 Yellow顔料分散液101の代わりに同量のYellow顔料分散液102~105を用いた以外は感光性組成物401と同様の方法で感光性組成物402~405を製造した。
(Production of photosensitive compositions 402 to 405)
Photosensitive compositions 402 to 405 were produced in the same manner as the photosensitive composition 401 except that the same amount of the yellow pigment dispersions 102 to 105 was used instead of the yellow pigment dispersion 101.
 (感光性組成物502~505の製造)
 Yellow顔料分散液101の代わりに同量のYellow顔料分散液102~105を用いた以外は感光性組成物501と同様の方法で感光性組成物502~505を製造した。
(Production of photosensitive compositions 502 to 505)
Photosensitive compositions 502 to 505 were produced in the same manner as the photosensitive composition 501, except that the same amount of the yellow pigment dispersions 102 to 105 was used instead of the yellow pigment dispersion 101.
 (感光性組成物602~605の製造)
 Yellow顔料分散液101の代わりに同量のYellow顔料分散液102~105を用いた以外は感光性組成物601と同様の方法で感光性組成物602~605を製造した。
(Production of photosensitive compositions 602 to 605)
Photosensitive compositions 602 to 605 were produced in the same manner as the photosensitive composition 601, except that the same amount of the yellow pigment dispersion liquids 102 to 105 was used instead of the yellow pigment dispersion liquid 101.
 得られた各感光性組成物について試験例1~3と同様の評価を行ったところ、いずれも良好な結果が得られた。 Each of the obtained photosensitive compositions was evaluated in the same manner as in Test Examples 1 to 3, and good results were obtained in all cases.
 各感光性組成物に用いた原料は以下の通りである。 The raw materials used for each photosensitive composition are as follows.
(Green顔料分散液101)
 C.I.ピグメントグリーン58を8.5質量部と、C.I.ピグメントイエロー150を4.6質量部と、上述した顔料誘導体Aを1.3質量部と、上述した分散剤D-1を5.1質量部と、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を80.4質量部とを混合し、ビーズミル(減圧機構付き高圧分散機NANO-3000-10(日本ビーイーイー(株)製))を用いて、3時間、混合および分散して、Green顔料分散液101を調製した。
(Green pigment dispersion 101)
C. I. CI Pigment Green 58, 8.5 parts by mass; I. Pigment Yellow 150 (4.6 parts by mass), Pigment Derivative A (1.3 parts by mass), Dispersant D-1 (5.1 parts by mass), and Propylene glycol monomethyl ether acetate (PGMEA) (80. parts by mass). 4 parts by mass is mixed, and mixed and dispersed for 3 hours using a bead mill (high pressure disperser with pressure reducing mechanism NANO-3000-10 (manufactured by Nippon BEE Co., Ltd.)) to prepare Green pigment dispersion 101 did.
(Green顔料分散液102)
 C.I.ピグメントイエロー150の代わりに、特開2017-171914号公報の試料3の顔料を用いた以外は、Green顔料分散液101と同様の方法でGreen顔料分散液102を調製した。
(Green pigment dispersion 102)
C. I. Green pigment dispersion liquid 102 was prepared in the same manner as Green pigment dispersion liquid 101, except that the pigment of Sample 3 of JP-A No. 2017-171914 was used instead of Pigment Yellow 150.
(Green顔料分散液103)
 C.I.ピグメントイエロー150の代わりに、特開2017-171914号公報の試料10の顔料を用いた以外は、Green顔料分散液101と同様の方法でGreen顔料分散液103を調製した。
(Green pigment dispersion 103)
C. I. Green pigment dispersion 103 was prepared in the same manner as Green pigment dispersion 101 except that the pigment of Sample 10 of JP-A No. 2017-171914 was used instead of Pigment Yellow 150.
(Green顔料分散液104)
 C.I.ピグメントイエロー150の代わりに、特開2017-171914号公報の試料15の顔料を用いた以外は、Green顔料分散液101と同様の方法でGreen顔料分散液104を調製した。
(Green pigment dispersion 104)
C. I. Green pigment dispersion 104 was prepared in the same manner as Green pigment dispersion 101 except that the pigment of Sample 15 of JP-A No. 2017-171914 was used instead of Pigment Yellow 150.
(Green顔料分散液105)
 C.I.ピグメントイエロー150の代わりに、特開2017-171914号公報の試料29の顔料を用いた以外は、Green顔料分散液101と同様の方法でGreen顔料分散液105を調製した。
(Green pigment dispersion 105)
C. I. Green pigment dispersion 105 was prepared in the same manner as Green pigment dispersion 101 except that the pigment of Sample 29 of JP-A No. 2017-171914 was used instead of Pigment Yellow 150.
(Green顔料分散液201)
C.I.ピグメントグリーン36を8.5質量部と、C.I.ピグメントイエロー150を4.6質量部と、上述した顔料誘導体Aを1.3質量部と、上述した分散剤D-1を5.1質量部と、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を80.4質量部とを混合し、ビーズミル(減圧機構付き高圧分散機NANO-3000-10(日本ビーイーイー(株)製))を用いて、3時間、混合および分散して、Green顔料分散液201を調製した。
(Green pigment dispersion 201)
C. I. CI pigment green 36 is 8.5 parts by mass; I. Pigment Yellow 150 (4.6 parts by mass), Pigment Derivative A (1.3 parts by mass), Dispersant D-1 (5.1 parts by mass), and Propylene glycol monomethyl ether acetate (PGMEA) (80. parts by mass). 4 parts by mass is mixed, and mixed and dispersed for 3 hours using a bead mill (high pressure disperser with pressure reducing mechanism NANO-3000-10 (manufactured by Nippon BEE Co., Ltd.)) to prepare Green pigment dispersion 201 did.
(Green顔料分散液202)
 C.I.ピグメントイエロー150の代わりに、特開2017-171914号公報の試料3の顔料を用いた以外は、Green顔料分散液201と同様の方法でGreen顔料分散液202を調製した。
(Green pigment dispersion 202)
C. I. Green pigment dispersion 202 was prepared in the same manner as Green pigment dispersion 201 except that the pigment of Sample 3 of JP-A-2017-171914 was used instead of Pigment Yellow 150.
(Green顔料分散液203)
 C.I.ピグメントイエロー150の代わりに、特開2017-171914号公報の試料10の顔料を用いた以外は、Green顔料分散液201と同様の方法でGreen顔料分散液203を調製した。
(Green pigment dispersion 203)
C. I. Green pigment dispersion 203 was prepared in the same manner as Green pigment dispersion 201 except that the pigment of Sample 10 of JP-A-2017-171914 was used instead of Pigment Yellow 150.
(Green顔料分散液204)
 C.I.ピグメントイエロー150の代わりに、特開2017-171914号公報の試料15の顔料を用いた以外は、Green顔料分散液201と同様の方法でGreen顔料分散液204を調製した。
(Green pigment dispersion 204)
C. I. Green pigment dispersion 204 was prepared in the same manner as Green pigment dispersion 201 except that the pigment of Sample 15 of JP-A No. 2017-171914 was used instead of Pigment Yellow 150.
(Green顔料分散液205)
 C.I.ピグメントイエロー150の代わりに、特開2017-171914号公報の試料29の顔料を用いた以外は、Green顔料分散液201と同様の方法でGreen顔料分散液205を調製した。
(Green pigment dispersion 205)
C. I. Green pigment dispersion 205 was prepared in the same manner as Green pigment dispersion 201 except that the pigment of Sample 29 of JP-A-2017-171914 was used instead of Pigment Yellow 150.
(Yellow顔料分散液101)
 C.I.ピグメントイエロー150を11.3質量部と、上述した顔料誘導体Aを1.6質量部と、上述した分散剤D-1を3.9質量部と、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を83.2質量部とを混合し、ビーズミル(減圧機構付き高圧分散機NANO-3000-10(日本ビーイーイー(株)製))を用いて、3時間、混合および分散して、Yellow顔料分散液101を調製した。
(Yellow pigment dispersion 101)
C. I. 11.3 parts by mass of Pigment Yellow 150, 1.6 parts by mass of the pigment derivative A described above, 3.9 parts by mass of the dispersant D-1 described above, and 83. parts of propylene glycol monomethyl ether acetate (PGMEA). 2 parts by mass is mixed, and mixed and dispersed for 3 hours using a bead mill (high-pressure disperser NANO-3000-10 with a pressure reducing mechanism (manufactured by Nippon BEE Co., Ltd.)) to prepare Yellow pigment dispersion 101. did.
(Yellow顔料分散液102)
 C.I.ピグメントイエロー150の代わりに、特開2017-171914号公報の試料3の顔料を用いた以外は、Yellow顔料分散液101と同様の方法でYellow顔料分散液102を調製した。
(Yellow pigment dispersion 102)
C. I. A Yellow pigment dispersion liquid 102 was prepared in the same manner as the Yellow pigment dispersion liquid 101, except that the pigment of Sample 3 of JP-A No. 2017-171914 was used instead of Pigment Yellow 150.
(Yellow顔料分散液103)
 C.I.ピグメントイエロー150の代わりに、特開2017-171914号公報の試料10の顔料を用いた以外は、Yellow顔料分散液101と同様の方法でYellow顔料分散液103を調製した。
(Yellow pigment dispersion 103)
C. I. A Yellow pigment dispersion 103 was prepared in the same manner as the Yellow pigment dispersion 101 except that the pigment of Sample 10 of JP-A No. 2017-171914 was used instead of Pigment Yellow 150.
(Yellow顔料分散液104)
 C.I.ピグメントイエロー150の代わりに、特開2017-171914号公報の試料15の顔料を用いた以外は、Yellow顔料分散液101と同様の方法でYellow顔料分散液104を調製した。
(Yellow pigment dispersion 104)
C. I. A Yellow pigment dispersion 104 was prepared in the same manner as the Yellow pigment dispersion 101 except that the pigment of Sample 15 of JP-A No. 2017-171914 was used instead of Pigment Yellow 150.
(Yellow顔料分散液105)
 C.I.ピグメントイエロー150の代わりに、特開2017-171914号公報の試料29の顔料を用いた以外は、Yellow顔料分散液101と同様の方法でYellow顔料分散液105を調製した。
(Yellow pigment dispersion 105)
C. I. A Yellow pigment dispersion 105 was prepared in the same manner as the Yellow pigment dispersion 101 except that the pigment of Sample 29 of JP-A No. 2017-171914 was used instead of Pigment Yellow 150.
(Red顔料分散液101)
 C.I.ピグメントレッド254を11.6質量部と、上述した顔料誘導体Aを1.4質量部と、以下に示す分散剤D-3を4.5質量部と、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を82.5質量部とを混合し、ビーズミル(減圧機構付き高圧分散機NANO-3000-10(日本ビーイーイー(株)製))を用いて、3時間、混合および分散して、Red顔料分散液101を調製した。
 分散剤D-3:下記構造の樹脂(主鎖に付記した数値はモル比である。側鎖に付記した数値は、繰り返し数を示す。Mw=24000)
Figure JPOXMLDOC01-appb-C000029
(Red pigment dispersion 101)
C. I. 11.6 parts by weight of Pigment Red 254, 1.4 parts by weight of the pigment derivative A described above, 4.5 parts by weight of the dispersant D-3 shown below, and 82 parts of propylene glycol monomethyl ether acetate (PGMEA) And mixing and dispersing for 3 hours using a bead mill (high pressure disperser NANO-3000-10 with a pressure reducing mechanism (manufactured by BB Co., Ltd. Japan)) to prepare a Red pigment dispersion 101. Prepared.
Dispersant D-3: Resin having the following structure (the numerical value attached to the main chain is a molar ratio. The numerical value attached to the side chain represents the number of repetitions. Mw = 24000)
Figure JPOXMLDOC01-appb-C000029
(Red顔料分散液201)
 C.I.ピグメントレッド264を11.6質量部と、上述した顔料誘導体Aを1.4質量部と、上述した分散剤D-3を4.5質量部と、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を82.5質量部とを混合し、ビーズミル(減圧機構付き高圧分散機NANO-3000-10(日本ビーイーイー(株)製))を用いて、3時間、混合および分散して、Red顔料分散液201を調製した。
(Red pigment dispersion 201)
C. I. Pigment Red 264, 11.6 parts by mass, Pigment derivative A, 1.4 parts by mass, Dispersant D-3, 4.5 parts by mass, and Propylene glycol monomethyl ether acetate (PGMEA), 82. 5 parts by mass is mixed, and mixed and dispersed for 3 hours using a bead mill (high pressure disperser with pressure reducing mechanism NANO-3000-10 (manufactured by Nippon BEE Co., Ltd.)) to prepare Red pigment dispersion 201. did.
(Red顔料分散液301)
 C.I.ピグメントレッド177を11.6質量部と、上述した顔料誘導体Aを1.4質量部と、上述した分散剤D-3を4.5質量部と、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を82.5質量部とを混合し、ビーズミル(減圧機構付き高圧分散機NANO-3000-10(日本ビーイーイー(株)製))を用いて、3時間、混合および分散して、Red顔料分散液301を調製した。
(Red pigment dispersion 301)
C. I. 11.6 parts by weight of Pigment Red 177, 1.4 parts by weight of the pigment derivative A described above, 4.5 parts by weight of the dispersant D-3 described above, and 82 .mu.m of propylene glycol monomethyl ether acetate (PGMEA). 5 parts by mass is mixed and mixed and dispersed for 3 hours using a bead mill (high-pressure disperser NANO-3000-10 with a decompression mechanism manufactured by Nippon BEE Co., Ltd.) to prepare a Red pigment dispersion 301. did.
(樹脂)
 P-2:上述した樹脂P-2
(resin)
P-2: The above-described resin P-2
(ラジカル重合性化合物)
 M-1,M-3:上述したラジカル重合性化合物M-1,M-3
 M-4:KAYARAD DPHA(日本化薬(株)製)
(Radically polymerizable compound)
M-1, M-3: The above-mentioned radical polymerizable compounds M-1, M-3
M-4: KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd.)
(界面活性剤)
 S-2:上述した界面活性剤S-2
 S-3:KF6001(信越化学工業(株)製、シロキサン系界面活性剤)
(Surfactant)
S-2: The above-described surfactant S-2
S-3: KF6001 (manufactured by Shin-Etsu Chemical Co., Ltd., siloxane surfactant)
(光重合開始剤)
 I-3:IRGACURE OXE02(BASF製、オキシム系開始剤)
(Photopolymerization initiator)
I-3: IRGACURE OXE02 (manufactured by BASF, oxime initiator)
(紫外線吸収剤)
 U-1:UV-503(大東化学(株)製)
(UV absorber)
U-1: UV-503 (Daito Chemical Co., Ltd.)
 重合禁止剤:p-メトキシフェノール
 エポキシ化合物:EHPE3150((株)ダイセル製)
 PGMEA:プロピレングリコールモノメチルエーテルアセテート
Polymerization inhibitor: p-methoxyphenol Epoxy compound: EHPE3150 (manufactured by Daicel Corporation)
PGMEA: Propylene glycol monomethyl ether acetate
1:コンデンサーレンズ
2:プロジェクションレンズ
4:ワーク
5:レチクル
1: Condenser lens 2: Projection lens 4: Work piece 5: Reticle

Claims (14)

  1.  支持体上にネガ型感光性組成物を適用してネガ型感光性組成物層を形成する工程と、
     前記ネガ型感光性組成物層に対してパターンを有するマスクを介して露光する工程と、
     未露光部のネガ型感光性組成物層を除去して現像する工程と、
     を含むパターンの製造方法であって、
     前記マスクは、前記露光に用いる波長の光に対する光学濃度が3.6以上である、パターンの製造方法。
    Applying a negative photosensitive composition on a support to form a negative photosensitive composition layer;
    Exposing the negative photosensitive composition layer through a mask having a pattern;
    Removing the negative photosensitive composition layer in the unexposed area and developing;
    A method for producing a pattern including:
    The said mask is a manufacturing method of the pattern whose optical density with respect to the light of the wavelength used for the said exposure is 3.6 or more.
  2.  前記マスクは、波長365nmの光に対する光学濃度が3.6以上である、請求項1に記載のパターンの製造方法。 2. The pattern manufacturing method according to claim 1, wherein the mask has an optical density of 3.6 or more with respect to light having a wavelength of 365 nm.
  3.  前記マスクは、クロムおよびクロム化合物から選ばれる少なくとも1種を含む、請求項1または2に記載のパターンの製造方法。 3. The pattern manufacturing method according to claim 1, wherein the mask includes at least one selected from chromium and a chromium compound.
  4.  前記ネガ型感光性組成物は、光重合開始剤およびラジカル重合性化合物を含む、請求項1~3のいずれか1項に記載のパターンの製造方法。 The method for producing a pattern according to any one of claims 1 to 3, wherein the negative photosensitive composition comprises a photopolymerization initiator and a radical polymerizable compound.
  5.  前記ネガ型感光性組成物は、着色剤を含む、請求項1~4のいずれか1項に記載のパターンの製造方法。 5. The method for producing a pattern according to claim 1, wherein the negative photosensitive composition contains a colorant.
  6.  前記ネガ型感光性組成物は、透明粒子を含む、請求項1~5のいずれか1項に記載のパターンの製造方法。  6. The method for producing a pattern according to claim 1, wherein the negative photosensitive composition contains transparent particles.
  7.  前記ネガ型感光性組成物は、カラーフィルタの画素形成用のネガ型感光性組成物である、請求項1~6のいずれか1項に記載のパターンの製造方法。 7. The method for producing a pattern according to claim 1, wherein the negative photosensitive composition is a negative photosensitive composition for forming a pixel of a color filter.
  8.  前記露光時において、露光照度が5000~50000W/mである、請求項1~7のいずれか1項に記載のパターンの製造方法。 The pattern manufacturing method according to any one of claims 1 to 7, wherein an exposure illuminance is 5000 to 50000 W / m 2 during the exposure.
  9.  前記露光時において、酸素濃度が21%以上である、請求項1~8のいずれか1項に記載のパターンの製造方法。 The pattern manufacturing method according to any one of claims 1 to 8, wherein an oxygen concentration is 21% or more during the exposure.
  10.  前記現像において、前記ネガ型感光性組成物層に対して現像液をスプレー塗布する、請求項1~9のいずれか1項に記載のパターンの製造方法。 10. The method for producing a pattern according to claim 1, wherein in the development, a developer is spray-coated on the negative photosensitive composition layer.
  11.  請求項1~10のいずれか1項に記載のパターンの製造方法を含むカラーフィルタの製造方法。 A method for producing a color filter, comprising the method for producing a pattern according to any one of claims 1 to 10.
  12.  複数色の画素を有するカラーフィルタの製造方法であって、前記複数色の画素のうち少なくとも1色の画素を請求項1~10のいずれか1項に記載のパターンの製造方法を用いて形成する、カラーフィルタの製造方法。 A method for manufacturing a color filter having a plurality of color pixels, wherein at least one of the plurality of color pixels is formed using the pattern manufacturing method according to any one of claims 1 to 10. The manufacturing method of a color filter.
  13.  請求項1~10のいずれか1項に記載のパターンの製造方法を含む固体撮像素子の製造方法。 A method for producing a solid-state imaging device, comprising the method for producing a pattern according to any one of claims 1 to 10.
  14.  請求項1~10のいずれか1項に記載のパターンの製造方法を含む画像表示装置の製造方法。 An image display device manufacturing method including the pattern manufacturing method according to any one of claims 1 to 10.
PCT/JP2017/043592 2016-12-28 2017-12-05 Pattern manufacturing method, color filter manufacturing method, method of manufacturing sold state imaging element, and method of manufacturing image display device WO2018123462A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018558955A JP6774505B2 (en) 2016-12-28 2017-12-05 Pattern manufacturing method, color filter manufacturing method, solid-state image sensor manufacturing method, and image display manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016254998 2016-12-28
JP2016-254998 2016-12-28
JP2017-198273 2017-10-12
JP2017198273 2017-10-12

Publications (1)

Publication Number Publication Date
WO2018123462A1 true WO2018123462A1 (en) 2018-07-05

Family

ID=62710987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043592 WO2018123462A1 (en) 2016-12-28 2017-12-05 Pattern manufacturing method, color filter manufacturing method, method of manufacturing sold state imaging element, and method of manufacturing image display device

Country Status (3)

Country Link
JP (1) JP6774505B2 (en)
TW (1) TW201823859A (en)
WO (1) WO2018123462A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020160390A (en) * 2019-03-28 2020-10-01 凸版印刷株式会社 Black matrix, color filter, display device and method for manufacturing black matrix
WO2021166857A1 (en) * 2020-02-20 2021-08-26 富士フイルム株式会社 Coloring composition, film, color filter, solid-state imaging element and image display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09325494A (en) * 1996-06-07 1997-12-16 Nippon Steel Chem Co Ltd Alkali development unsaturated resin component and highly sensitive negative type pattern formation material using the same
JP2003248323A (en) * 2002-02-26 2003-09-05 Fuji Photo Film Co Ltd Image forming method
JP2005070252A (en) * 2003-08-22 2005-03-17 Toppan Printing Co Ltd Photomask for color filter, and color filter for liquid crystal display
JP2013250478A (en) * 2012-06-01 2013-12-12 Hoya Corp Photomask, method for manufacturing photomask, and method for transferring pattern
JP2015052753A (en) * 2013-09-09 2015-03-19 富士フイルム株式会社 Manufacturing method of resin cured product, solid state imaging element using the same, and manufacturing method of liquid crystal display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09325494A (en) * 1996-06-07 1997-12-16 Nippon Steel Chem Co Ltd Alkali development unsaturated resin component and highly sensitive negative type pattern formation material using the same
JP2003248323A (en) * 2002-02-26 2003-09-05 Fuji Photo Film Co Ltd Image forming method
JP2005070252A (en) * 2003-08-22 2005-03-17 Toppan Printing Co Ltd Photomask for color filter, and color filter for liquid crystal display
JP2013250478A (en) * 2012-06-01 2013-12-12 Hoya Corp Photomask, method for manufacturing photomask, and method for transferring pattern
JP2015052753A (en) * 2013-09-09 2015-03-19 富士フイルム株式会社 Manufacturing method of resin cured product, solid state imaging element using the same, and manufacturing method of liquid crystal display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020160390A (en) * 2019-03-28 2020-10-01 凸版印刷株式会社 Black matrix, color filter, display device and method for manufacturing black matrix
JP7326812B2 (en) 2019-03-28 2023-08-16 凸版印刷株式会社 Black matrix, color filter, display device, and method for manufacturing black matrix
WO2021166857A1 (en) * 2020-02-20 2021-08-26 富士フイルム株式会社 Coloring composition, film, color filter, solid-state imaging element and image display device
JPWO2021166857A1 (en) * 2020-02-20 2021-08-26
JP7429283B2 (en) 2020-02-20 2024-02-07 富士フイルム株式会社 Colored compositions, films, color filters, solid-state imaging devices, and image display devices

Also Published As

Publication number Publication date
JPWO2018123462A1 (en) 2019-11-07
JP6774505B2 (en) 2020-10-28
TW201823859A (en) 2018-07-01

Similar Documents

Publication Publication Date Title
JP6731475B2 (en) Photosensitive composition, color filter, pattern forming method, solid-state imaging device and image display device
JP6617201B2 (en) Coloring composition, color filter, pattern forming method, solid-state imaging device, and image display device
KR102354075B1 (en) Structure, method for manufacturing structure, composition for forming absorption layer, solid-state image sensor and image display device
JP6764479B2 (en) Coloring composition, color filter, pattern forming method, solid-state image sensor, and image display device
JP6824195B2 (en) Coloring composition, manufacturing method of coloring composition, color filter, pattern forming method, solid-state image sensor, and image display device
JP6892927B2 (en) Coloring composition, cured film, pattern forming method, color filter, solid-state image sensor and image display device
WO2018155104A1 (en) Photosensitive composition, cured film, color filter, solid-state imaging element and image display device
JP2022000700A (en) Photosensitive coloring composition, cured film, color filter, solid-state imaging element, and image display device
JPWO2018147021A1 (en) Coloring composition, cured film, structure, color filter, solid-state imaging device, and image display device
WO2020040043A1 (en) Coloring composition, cured film, pattern formation method, color filter, solid-state imaging element, and image display device
WO2018016232A1 (en) Composition, film, laminate, infrared light transmitting filter, solid-state imaging element and infrared sensor
JP6774505B2 (en) Pattern manufacturing method, color filter manufacturing method, solid-state image sensor manufacturing method, and image display manufacturing method
WO2018034082A1 (en) Composition, cured film, infrared transmitting filter, solid-state imaging element, and infrared sensor
WO2017170339A1 (en) Composition, film, optical filter, laminate, solid-state imaging element, image display device and infrared sensor
JP6604928B2 (en) Coloring composition, film and method for producing film
WO2020022248A1 (en) Curable composition, film, color filter, method for producing color filter, solid state imaging device and image display device
JP2017125953A (en) Radiation-sensitive composition, film, color filter, light blocking film and solid state image senor
WO2019049635A1 (en) Near infrared ray-absorbable organic pigment, resin composition, method for producing near infrared ray-absorbable organic pigment, method for adjusting spectrum of near infrared ray-absorbable organic pigment, film, laminate, near infrared ray cut filter, near infrared ray transmission filter, solid-state imaging element, image display device, and infrared ray sensor
WO2018173524A1 (en) Coloring composition, pigment dispersion, method for manufacturing pigment dispersion, cured film, color filter, solid-state imaging element, and image display device
JP6824263B2 (en) Method for producing coloring composition and film
JP6587697B2 (en) Coloring composition, color filter, pattern forming method, solid-state imaging device, and image display device
WO2020075568A1 (en) Coloring composition, film, method for producing color filter, color filter, solid state imaging device and image display device
JPWO2019077912A1 (en) Coloring composition, film manufacturing method, color filter manufacturing method, solid-state image sensor manufacturing method, and image display device manufacturing method
JPWO2019077913A1 (en) Coloring compositions, films, color filters, solid-state image sensors and image display devices
JP7162397B2 (en) Coloring composition, cured film, pattern forming method, color filter, solid-state imaging device, and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888016

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558955

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888016

Country of ref document: EP

Kind code of ref document: A1