WO2018123345A1 - Antenna device - Google Patents

Antenna device Download PDF

Info

Publication number
WO2018123345A1
WO2018123345A1 PCT/JP2017/041650 JP2017041650W WO2018123345A1 WO 2018123345 A1 WO2018123345 A1 WO 2018123345A1 JP 2017041650 W JP2017041650 W JP 2017041650W WO 2018123345 A1 WO2018123345 A1 WO 2018123345A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antenna device
loop
ground conductor
loop portion
Prior art date
Application number
PCT/JP2017/041650
Other languages
French (fr)
Japanese (ja)
Inventor
正裕 伊澤
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201780080840.5A priority Critical patent/CN110121815B/en
Priority to JP2018558901A priority patent/JP6673503B2/en
Publication of WO2018123345A1 publication Critical patent/WO2018123345A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present invention relates to an antenna device including a plurality of antennas.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2006-42111 discloses an antenna device including two antennas.
  • Isolation is an amount indicating the degree of signal leakage from one antenna element to the other antenna element between antenna elements. Isolation is expressed as the ratio (dB) between the power of the input signal to one antenna element and the power of the leakage signal from one antenna element to the other antenna element.
  • the current excited from one antenna to the other is reduced by a resonance phenomenon that occurs in the loop path formed by the parasitic element and the ground plane. As a result, isolation between antennas is ensured.
  • the resonance frequency of the loop path needs to be adjusted based on the frequency of the signal received by the antenna.
  • the length of the parasitic element affects the inductance component of the parasitic element. If the length of the parasitic element is changed, the resonance frequency of the loop path changes. For this reason, if the length of the parasitic element is changed, the loop portion hardly resonates with the signal received by the antenna. There is a possibility that the amount of signal transmitted from the antenna to the other antenna increases and the isolation between the antennas decreases.
  • the parasitic element can be an obstacle to downsizing the antenna device while ensuring isolation between the antennas.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to downsize the antenna device while ensuring isolation between the antennas.
  • An antenna device includes a ground conductor, a first antenna and a second antenna, and a first loop portion.
  • the first antenna and the second antenna are electrically connected to the ground conductor.
  • the first loop unit includes a first parasitic element and a first reactance element. In the first parasitic element, one end of the first parasitic element is electrically connected to the ground conductor. In the first parasitic element, the other end of the first parasitic element is connected to the ground conductor via the first reactance element.
  • a circuit element is "electrically connected" to another circuit element when both are directly connected or indirectly connected via a different circuit element. Means.
  • the antenna device when the signal received by the first antenna or the second antenna is transmitted to the first loop unit, the energy of the signal is consumed in the first loop unit. The power of the signal transmitted from one antenna to the other antenna is reduced. As a result, isolation between antennas can be ensured.
  • the other end of the first parasitic element is connected to the ground conductor via the first reactance element.
  • the resonance frequency of the first loop portion can be adjusted by the length of the first parasitic element (inductance component) and the reactance of the first reactance element when designing the antenna device. Even when the first parasitic element is shortened, the antenna device can be designed so that the first loop unit resonates with the signal received by the first antenna by adjusting the reactance of the first reactance element. As a result, the antenna device can be reduced in size.
  • the antenna device according to the present invention can reduce the size of the antenna device while ensuring isolation between the antennas.
  • FIG. 3 is a diagram illustrating an example of an equivalent circuit diagram of the antenna device according to Embodiment 1.
  • FIG. It is a figure which shows an example of the external appearance of the antenna apparatus shown by FIG.
  • FIG. 6 is a diagram showing an example of an equivalent circuit diagram of an antenna device according to a modification of the first embodiment.
  • FIG. 6 is a diagram illustrating an example of an equivalent circuit diagram of an antenna device according to Embodiment 2.
  • FIG. It is a figure which shows an example of the external appearance of the antenna apparatus shown by FIG. It is a figure which shows the isolation characteristic of the antenna apparatus shown by FIG. 5, and the isolation characteristic of the antenna apparatus shown by FIG.
  • FIG. 10 is a diagram illustrating an example of an equivalent circuit diagram of the antenna device according to the third embodiment. It is a figure which shows an example of the external appearance of the antenna apparatus shown by FIG. It is a figure which shows together the isolation characteristic of the antenna apparatus shown by FIG. 8, and the isolation characteristic of the antenna apparatus shown by FIG.
  • FIG. 10 is a diagram illustrating an example of an equivalent circuit diagram of an antenna device according to a fourth embodiment. It is a figure which shows an example of the external appearance of the antenna apparatus shown by FIG.
  • FIG. 10 is a diagram illustrating an example of an equivalent circuit diagram of an antenna device according to Modification 1 of Embodiment 4.
  • FIG. 10 is a diagram showing an example of an equivalent circuit diagram of an antenna device according to Modification 2 of Embodiment 4.
  • FIG. 10 is a diagram illustrating an example of an equivalent circuit diagram of an antenna device according to Modification 3 of Embodiment 4.
  • FIG. 1 is a diagram illustrating an example of an equivalent circuit diagram of the antenna device 1 according to the first embodiment.
  • the antenna device 1 can perform communication according to a plurality of communication methods.
  • the antenna device 1 can perform communication in accordance with WiFi (registered trademark) (Wireless Fidelity) and Bluetooth (registered trademark) in, for example, 2400 to 2484 MHz (2.4 GHz band).
  • WiFi registered trademark
  • Bluetooth registered trademark
  • the antenna device 1 includes a ground conductor GND1, antennas ANT1 and ANT2, and a loop portion LP11.
  • the ground conductor GND ⁇ b> 1 is drawn as a straight line connecting the feeding points FP ⁇ b> 1 and FP ⁇ b> 2 in order to make it easy to understand the connection relationship between each component. The same applies to FIG. 4, FIG. 5, FIG. 8, FIG. 11, and FIG.
  • the antenna ANT1 is connected to the ground conductor GND1 through the feeding point FP1.
  • the antenna ANT2 is connected to the ground conductor GND1 through the feeding point FP2.
  • the resonance frequency of the antenna ANT1 is close to the resonance frequency of the antenna ANT2.
  • the loop portion LP11 includes a parasitic element PE11 and a reactance element RT11.
  • the end T9 of the parasitic element PE11 is connected to the ground conductor GND1 via the reactance element RT11.
  • the end T10 of the parasitic element PE11 is connected to the ground conductor GND1.
  • the reactance element RT11 is connected to the ground conductor GND1 at the connection point N11.
  • the reactance element RT11 includes an inductor L11.
  • the reactance element RT11 may include a capacitor.
  • a loop path is formed by the parasitic element PE11, the reactance element RT11, and the portion of the ground conductor GND1 from the connection point N11 to the end T12 of the parasitic element PE11.
  • the capacitive coupling between the loop part LP11 and the antenna ANT1 is stronger than the capacitive coupling between the loop part LP11 and the antenna ANT2.
  • the magnitude relationship is expressed by the fact that the parasitic element PE11 and the antenna ANT1 are connected via the capacitor C1, while the parasitic element PE11 and the antenna ANT2 are not connected via the capacitor. ing.
  • the antenna device 1 including the antennas ANT1 and ANT2, it is necessary to ensure isolation between the antennas ANT1 and ANT2.
  • the signal received by the antenna ANT1 or ANT2 is transmitted to the loop part LP11, whereby the power of the signal is consumed in the loop part LP11.
  • the power of the signal transmitted from one antenna to the other antenna is reduced.
  • the isolation between the antenna ANT1 and the antenna ANT2 can be ensured by the loop portion LP11.
  • the resonance frequency f1 of the loop portion LP11 needs to be adjusted based on the frequency of the signal received by the antenna ANT1 or ANT2.
  • the length of the parasitic element PE11 included in the loop portion LP11 affects the inductance component of the parasitic element PE11.
  • the resonance frequency f1 of the loop portion LP11 is changed.
  • the resonance frequency f1 of the loop portion LP11 is set to the parasitic element PE11. It is necessary to adjust by a method other than the change of the length.
  • the resonance frequency f1 of the loop portion LP11 is adjusted by changing the reactance of the reactance element RT11.
  • the resonance frequency f1 of the loop portion LP11 can be adjusted by the length (inductance component) of the parasitic element PE11 and the reactance of the reactance element RT11 when the antenna device 1 is designed. Even when the parasitic element PE11 is shortened, the antenna device 1 can be designed so that the loop portion LP11 resonates with a signal received by the antenna ANT1 or ANT2 by adjusting the reactance of the reactance element RT11. As a result, the antenna device can be reduced in size.
  • FIG. 2 is a diagram showing an example of the appearance of the antenna device 1 shown in FIG. In FIG. 2, the X-axis direction and the Y-axis direction are orthogonal to each other. The same applies to FIG. 6, FIG. 9, and FIG.
  • the ground conductor GND1 extends in the X-axis direction.
  • the antenna ANT1, the parasitic element PE11 included in the loop part LP11, and the reactance element RT11 are arranged on the dielectric substrate 10.
  • the antenna ANT2 is disposed on the dielectric substrate 20.
  • the antenna ANT1 is an inverted F-type monopole antenna that extends from the feed point FP1 in the Y-axis direction and bends from the Y-axis direction to the X-axis direction.
  • the antenna ANT1 includes a main body ML1, a short-circuit line SL1, and a feed line FL1.
  • the main body ML1 extends in the X-axis direction from the bent portion BP1 of the antenna ANT1.
  • the feed line FL1 extends in the Y-axis direction from the feed point FP1 to the bent portion BP1.
  • the short-circuit line SL1 connects the main body ML1 and the ground conductor GND1. Since the short circuit line SL1 has an inductance component, the resonance frequency of the antenna ANT1 can be adjusted to a desired value by forming the short circuit line SL1.
  • the mounting space can be effectively utilized by making the antenna ANT1 an inverted-F monopole antenna. As a result, the dead space is reduced and the antenna device 1 can be downsized. Further, since the main body ML1 can be arranged away from the ground conductor GND1, the capacitive coupling between the main body ML1 and the ground conductor GND1 can be weakened. As a result, the signal radiation capability of the main body ML1 can be increased.
  • the distance between the loop part LP11 and the antenna ANT1 is smaller than the distance between the loop part LP11 and the antenna ANT2. Therefore, capacitive coupling between the loop part LP11 and the antenna ANT1 is stronger than capacitive coupling between the loop part LP11 and the antenna ANT2.
  • the loop portion LP11 since the loop portion LP11 is close to the antenna ANT1, it is not necessary to form a dielectric substrate between the loop portion LP11 and the antenna ANT2. Therefore, for example, a notch (notch) of the dielectric substrate can be formed between the loop portion LP11 and the antenna ANT2, and the degree of freedom in designing the dielectric substrate can be increased.
  • the parasitic element PE11 extends in the Y-axis direction from the reactance element RT11, and is bent in the bent portion BP2 from the Y-axis direction to the X-axis direction.
  • the parasitic element PE11 extends from the bent portion BP2 in the X-axis direction, and is bent from the X-axis direction to the Y-axis direction at the bent portion BP3.
  • the parasitic element PE11 extends from the bent portion BP3 in the Y-axis direction, and is bent in the bent portion BP4 from the Y-axis direction to the X-axis direction.
  • the parasitic element PE11 extends from the ground conductor GND1 in the Y-axis direction, and is bent from the Y-axis direction to the X-axis direction at the bent portion BP5.
  • the parasitic element PE11 extends from the bent part BP4 to BP5.
  • the parasitic element PE11 includes a part PT1 and a part PT2.
  • the part PT1 is a part from the bent parts BP2 to BP3.
  • the part PT2 is a part from the bent parts BP4 to BP5.
  • the part PT1 is disposed between the main body ML1 of the antenna ANT1 and the ground conductor GND1.
  • the distance between the portion PT2 and the ground conductor GND1 is larger than the distance between the portion PT1 and the ground conductor GND1.
  • the parasitic element PE11 has a plurality of bent portions BP2 to BP5, the parasitic element PE11 can be arranged to be as long as possible in a limited mounting space. Further, since the mounting space can be used effectively, the dead space is reduced and the antenna device 1 can be downsized. Furthermore, by adjusting the distance between the portion PT1 and the main body ML1, the capacitive coupling between the parasitic element PE11 and the antenna ANT1 can be adjusted to a desired strength.
  • FIG. 3 is a diagram showing the isolation characteristic IS1 of the antenna device 1 shown in FIG.
  • the vertical axis attenuation (dB) is shown as a negative value.
  • FIGS. 7 and 10. As shown in FIG. 3, the attenuation is minimized at the resonance frequency f1 of the loop portion LP11, and an attenuation of about ⁇ 20 dB is realized.
  • the loop portion LP11 is disposed between the antennas ANT1 and ANT2.
  • the loop portion LP11 may be disposed not on the antenna ANT1 and ANT2, but on the side opposite to the antenna ANT2, as seen from the antenna ANT1, as in the antenna device 1A shown in FIG.
  • the antenna device can be downsized while ensuring the isolation between the antennas.
  • FIG. 5 is a diagram illustrating an example of an equivalent circuit diagram of the antenna device 2 according to the second embodiment.
  • the loop portion LP11 of the antenna device 1 shown in FIG. 1 is replaced with a loop portion LP12. Since the configuration other than the loop portion LP12 is the same as that of the antenna device 1, the description of the configuration will not be repeated.
  • the loop portion LP12 includes a parasitic element PE12 and reactance elements RT11 and RT12.
  • the end T11 of the parasitic element PE12 is connected to the ground conductor GND1 via the reactance element RT11.
  • the end T12 of the parasitic element PE12 is connected to the ground conductor GND1 via the reactance element RT12.
  • the reactance element RT12 is connected to the ground conductor at the connection point N12.
  • the reactance element RT12 includes an inductor L12.
  • the reactance element RT12 may include a capacitor.
  • a loop path is formed by the parasitic element PE12, the reactance element RT11, the portion of the ground conductor GND1 from the connection points N11 to N12, and the reactance element RT12.
  • the resonance frequency of the loop portion LP12 is the resonance frequency f1 as in the first embodiment.
  • FIG. 6 is a diagram showing an example of the appearance of the antenna device 2 shown in FIG. As shown in FIG. 6, the parasitic element PE12 and the reactance elements RT11 and RT12 included in the loop portion LP12 are arranged on the dielectric substrate 10.
  • FIG. 7 is a diagram showing the isolation characteristic IS2 of the antenna device 2 shown in FIG. 5 and the isolation characteristic IS1 of the antenna device 1 shown in FIG.
  • the isolation characteristic IS1 shown in FIG. 7 is the same as the isolation characteristic IS1 shown in FIG.
  • the absolute value of the attenuation amount of the isolation characteristic IS2 exceeds the absolute value of the attenuation amount of the isolation characteristic IS1 by about 15 dB.
  • the absolute value of the attenuation amount of the isolation characteristic IS2 exceeds the absolute value of the attenuation amount of the isolation characteristic IS1 because both ends of the parasitic element PE12 are connected to the ground conductor via the reactance elements RT11 and RT12, respectively. This is because the bias of the current distribution in the parasitic element PE12 is suppressed more than in the first embodiment.
  • the isolation between the antennas ANT1 and ANT2 can be further increased.
  • both ends of the parasitic element of the loop portion are connected to the ground conductor via the reactance elements, respectively, thereby suppressing the bias of the current distribution in the parasitic element. Can do. As a result, the isolation between the antennas can be further increased.
  • the antenna device includes one loop unit.
  • the antenna device according to the present invention may include a plurality of loop portions.
  • the antenna device includes two loop units, and the loop unit is arranged for each antenna.
  • FIG. 8 is a diagram illustrating an example of an equivalent circuit diagram of the antenna device 3 according to the third embodiment.
  • a loop portion LP22 is added to the configuration of the antenna device 2 shown in FIG. Since the configuration other than the loop portion LP22 is the same as that of the antenna device 2, the description of the configuration will not be repeated.
  • the loop portion LP22 includes a parasitic element PE22 and reactance elements RT21 and RT22.
  • the end T21 of the parasitic element PE22 is connected to the ground conductor GND1 via the reactance element RT21.
  • the end T22 of the parasitic element PE22 is connected to the ground conductor GND1 via the reactance element RT22.
  • the reactance element RT21 is connected to the ground conductor GND1 at the connection point N21.
  • the reactance element RT21 includes an inductor L21.
  • the reactance element RT21 may include a capacitor.
  • the reactance element RT22 is connected to the ground conductor GND1 at the connection point N22.
  • the reactance element RT22 includes an inductor L22.
  • the reactance element RT22 may include a capacitor.
  • a loop path is formed by the parasitic element PE22, the reactance element RT21, the portion of the ground conductor GND1 from the connection points N21 to N22, and the reactance element RT22.
  • the resonance frequency of the loop portion LP22 is the resonance frequency f2.
  • the capacitive coupling between the loop part LP22 and the antenna ANT2 is stronger than the capacitive coupling between the loop part LP22 and the antenna ANT1.
  • the magnitude relationship is expressed by the fact that the parasitic element PE22 and the antenna ANT2 are connected via the capacitor C2, while the parasitic element PE22 and the antenna ANT1 are not connected via the capacitor. ing.
  • FIG. 9 is a diagram showing an example of the appearance of the antenna device 3 shown in FIG. As shown in FIG. 9, the parasitic element PE21 and the reactance elements RT21 and RT22 included in the loop portion LP22 are arranged on the dielectric substrate 20.
  • the distance between the loop part LP22 and the antenna ANT2 is smaller than the distance between the loop part LP22 and the antenna ANT1. Therefore, capacitive coupling between the loop part LP22 and the antenna ANT2 is stronger than capacitive coupling between the loop part LP22 and the antenna ANT1.
  • the loop part LP22 since the loop part LP22 is close to the antenna ANT2, it is not necessary to form a dielectric substrate between the loop part LP22 and the antenna ANT1. Therefore, for example, a notch of the dielectric substrate can be formed between the loop portion LP22 and the antenna ANT1, and the degree of freedom in designing the dielectric substrate can be increased.
  • FIG. 10 is a diagram showing the isolation characteristic IS3 of the antenna device 3 shown in FIG. 8 and the isolation characteristic IS2 of the antenna device 2 shown in FIG.
  • the isolation characteristic IS2 shown in FIG. 10 is the same as the isolation characteristic IS2 shown in FIG. In the frequency band of 2000 to 3000 MHz shown in FIG. 10, the isolation characteristic IS3 has a larger absolute value of attenuation than the isolation characteristic IS2.
  • the isolation characteristic IS3 has the largest absolute value of attenuation at the resonance frequency f2 of the loop portion LP22.
  • the antenna device 3 since the antenna device 3 includes two loop portions LP12 and LP22, when the signal received by the antenna ANT1 or ANT2 is transmitted to the loop portion LP12, the energy of the signal is consumed in the loop portion LP12. Even when the signal is transmitted to the loop part LP22, the energy of the signal is consumed in the loop part LP22. As a result, the isolation characteristic IS3 has a greater attenuation value than the isolation characteristic IS2, and the isolation between the antennas ANT1 and ANT2 can be further increased.
  • the isolation between the antennas can be further increased by the plurality of loop portions.
  • the case where the antenna device includes two antennas has been described.
  • the antenna device according to the present invention may include three or more antennas.
  • the case where the antenna device includes three antennas will be described.
  • FIG. 11 is a diagram illustrating an example of an equivalent circuit diagram of the antenna device 4 according to the fourth embodiment.
  • an antenna ANT3, a loop portion LP32, and a feed point FP3 are added to the configuration of the antenna device 3 shown in FIG. Since the configuration other than these is the same as that of the antenna device 3, the description of the configuration will not be repeated.
  • Loop portion LP32 includes a parasitic element PE32 and reactance elements RT31 and RT32.
  • the end T31 of the parasitic element PE32 is connected to the ground conductor GND1 via the reactance element RT31.
  • the end T32 of the parasitic element PE32 is connected to the ground conductor GND1 via the reactance element RT32.
  • the reactance element RT31 is connected to the ground conductor GND1 at the connection point N31.
  • the reactance element RT31 includes an inductor L31.
  • the reactance element RT31 may include a capacitor.
  • the reactance element RT32 is connected to the ground conductor GND1 at the connection point N32.
  • the reactance element RT32 includes an inductor L32.
  • the reactance element RT32 may include a capacitor.
  • a loop path is formed by the parasitic element PE32, the reactance element RT31, the portion of the ground conductor GND1 from the connection points N31 to N32, and the reactance element RT32.
  • the capacitive coupling between the loop part LP32 and the antenna ANT3 is stronger than the capacitive coupling between the loop part LP32 and the antenna ANT1, and is stronger than the capacitive coupling between the loop part LP32 and the antenna ANT2.
  • the magnitude relationship is that the parasitic element PE32 and the antenna ANT3 are connected via the capacitor C3, while the parasitic element PE32 and the antennas ANT1 and ANT2 are not connected via the capacitor. It is expressed.
  • FIG. 12 is a diagram showing an example of the appearance of the antenna device 4 shown in FIG. As shown in FIG. 12, the antenna ANT3, the parasitic element PE32 included in the loop part LP32, and the reactance elements RT31 and RT32 are arranged on the dielectric substrate 30.
  • the distance between the loop part LP32 and the antenna ANT3 is smaller than the distance between the loop part LP32 and the antenna ANT1, and smaller than the distance between the loop part LP32 and the antenna ANT2. Therefore, capacitive coupling between the loop part LP32 and the antenna ANT3 is stronger than capacitive coupling between the loop part LP32 and the antenna ANT1, and stronger than capacitive coupling between the loop part LP32 and the antenna ANT2.
  • Embodiment 4 the case where a loop part is arranged for every three antennas has been described. There is no need for a loop portion to be arranged for every three antennas, and if there is one loop portion in which at least one end of a parasitic element is connected to a ground conductor via a reactance element, any configuration is possible. There may be.
  • antenna device 4A according to Modification 1 of Embodiment 4 shown in FIG. 13 when there is no loop portion corresponding to antenna ANT2
  • antenna device 4B according to Modification 2 of Embodiment 4 shown in FIG.
  • the configuration may be such that there is no loop portion corresponding to one of the three antennas, as in the case where there is no loop portion corresponding to the antenna ANT3.
  • two antennas out of the three antennas are used as in the antenna device 4C according to the third modification of the fourth embodiment shown in FIG. 15 (when there is no loop portion corresponding to the antenna ANT2 and the antenna ANT3).
  • a configuration without a corresponding loop portion may be used.
  • the antenna devices according to the fourth and fourth modification examples 1 to 3 of the fourth embodiment can secure the isolation between the antennas and reduce the size of the antenna device.

Abstract

The purpose of the present invention is to reduce the size of an antenna device while ensuring isolation between antennas. An antenna device (1) according to one embodiment of the present invention comprises: a ground conductor (GND1); a first antenna (ANT1); a second antenna (ANT2); and a loop part (LP11). The first antenna (ANT1) and the second antenna (ANT2) are electrically connected to the ground conductor. The loop part (LP11) includes a parasitic element (PE11) and a reactance element (RT11). For the parasitic element (PE11), an end part (T10) is electrically connected to the ground conductor (GND1). For the parasitic element (PE11) an end part (T9) is connected to the ground conductor (GND1) via the reactance element (RT11).

Description

アンテナ装置Antenna device
 本発明は、複数のアンテナを備えるアンテナ装置に関する。 The present invention relates to an antenna device including a plurality of antennas.
 複数のアンテナを備えるアンテナ装置が知られている。たとえば、特開2006-42111号公報(特許文献1)には、2つのアンテナを備えるアンテナ装置が開示されている。 An antenna device having a plurality of antennas is known. For example, Japanese Unexamined Patent Application Publication No. 2006-42111 (Patent Document 1) discloses an antenna device including two antennas.
特開2006-42111号公報JP 2006-42111 A
 複数のアンテナを備えるアンテナ装置においては、アンテナ間のアイソレーションを確保する必要がある。アイソレーションとは、アンテナ素子間において一方のアンテナ素子から他方のアンテナ素子への信号の漏れの程度を示す量である。アイソレーションは、一方のアンテナ素子への入力信号の電力と、一方のアンテナ素子から他方のアンテナ素子への漏洩信号の電力との比(dB)として表される。 In an antenna apparatus having a plurality of antennas, it is necessary to ensure isolation between the antennas. Isolation is an amount indicating the degree of signal leakage from one antenna element to the other antenna element between antenna elements. Isolation is expressed as the ratio (dB) between the power of the input signal to one antenna element and the power of the leakage signal from one antenna element to the other antenna element.
 特許文献1に開示されているアンテナ装置においては、無給電素子および地板によって形成されたループ経路において生じる共振現象により、一方のアンテナから他方のアンテナへ励振される電流が低減される。その結果、アンテナ間のアイソレーションが確保される。 In the antenna device disclosed in Patent Document 1, the current excited from one antenna to the other is reduced by a resonance phenomenon that occurs in the loop path formed by the parasitic element and the ground plane. As a result, isolation between antennas is ensured.
 特許文献1に開示されているようなアンテナ装置において、ループ経路の共振周波数は、アンテナが受信する信号の周波数に基づいて調整される必要がある。無給電素子の長さは、無給電素子のインダクタンス成分に影響を与える。無給電素子の長さを変更すると、ループ経路の共振周波数が変わってしまう。そのため、無給電素子の長さを変更するとアンテナによって受信された信号にループ部が共振し難くなる。当該アンテナから他方のアンテナに伝達される信号量が増加しアンテナ間のアイソレーションが低下する可能性がある。特許文献1に開示されているようなアンテナ装置においては、無給電素子が、アンテナ間のアイソレーションを確保しながらアンテナ装置を小型化することの障害になり得る。 In the antenna device as disclosed in Patent Document 1, the resonance frequency of the loop path needs to be adjusted based on the frequency of the signal received by the antenna. The length of the parasitic element affects the inductance component of the parasitic element. If the length of the parasitic element is changed, the resonance frequency of the loop path changes. For this reason, if the length of the parasitic element is changed, the loop portion hardly resonates with the signal received by the antenna. There is a possibility that the amount of signal transmitted from the antenna to the other antenna increases and the isolation between the antennas decreases. In the antenna device disclosed in Patent Document 1, the parasitic element can be an obstacle to downsizing the antenna device while ensuring isolation between the antennas.
 本発明は上記のような課題を解決するためになされたものであり、その目的はアンテナ間のアイソレーションを確保しながら、アンテナ装置を小型化することである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to downsize the antenna device while ensuring isolation between the antennas.
 本発明の一実施形態に係るアンテナ装置は、グランド導体と、第1アンテナおよび第2アンテナと、第1ループ部とを備える。第1アンテナおよび第2アンテナは、グランド導体に電気的に接続されている。第1ループ部は、第1無給電素子と第1リアクタンス素子とを含む。第1無給電素子は、第1無給電素子の一方端がグランド導体に電気的に接続されている。第1無給電素子は、第1無給電素子の他方端が第1リアクタンス素子を介してグランド導体に接続されている。 An antenna device according to an embodiment of the present invention includes a ground conductor, a first antenna and a second antenna, and a first loop portion. The first antenna and the second antenna are electrically connected to the ground conductor. The first loop unit includes a first parasitic element and a first reactance element. In the first parasitic element, one end of the first parasitic element is electrically connected to the ground conductor. In the first parasitic element, the other end of the first parasitic element is connected to the ground conductor via the first reactance element.
 或る回路素子が他の回路素子に「電気的に接続されている」とは、両者が直接に接続されていること、あるいは両者とは別の回路素子を介して間接に接続されていることを意味する。 A circuit element is "electrically connected" to another circuit element when both are directly connected or indirectly connected via a different circuit element. Means.
 本発明に係るアンテナ装置においては、第1アンテナあるいは第2アンテナによって受信された信号が第1ループ部に伝達されることにより、当該信号のエネルギーが第1ループ部において消費される。一方のアンテナから他方のアンテナへ伝達される信号の電力が低減される。その結果、アンテナ間のアイソレーションを確保することができる。 In the antenna device according to the present invention, when the signal received by the first antenna or the second antenna is transmitted to the first loop unit, the energy of the signal is consumed in the first loop unit. The power of the signal transmitted from one antenna to the other antenna is reduced. As a result, isolation between antennas can be ensured.
 また、本発明に係るアンテナ装置においては、第1無給電素子の他方端が第1リアクタンス素子を介してグランド導体に接続されている。第1ループ部の共振周波数は、アンテナ装置の設計時において、第1無給電素子の長さ(インダクタンス成分)および第1リアクタンス素子のリアクタンスによって調整可能である。第1無給電素子を短くする場合でも、第1リアクタンス素子のリアクタンスを調整することにより、第1ループ部が第1アンテナによって受信された信号に共振するようにアンテナ装置を設計することができる。その結果、アンテナ装置を小型化することができる。 In the antenna device according to the present invention, the other end of the first parasitic element is connected to the ground conductor via the first reactance element. The resonance frequency of the first loop portion can be adjusted by the length of the first parasitic element (inductance component) and the reactance of the first reactance element when designing the antenna device. Even when the first parasitic element is shortened, the antenna device can be designed so that the first loop unit resonates with the signal received by the first antenna by adjusting the reactance of the first reactance element. As a result, the antenna device can be reduced in size.
 本発明に係るアンテナ装置によれば、アンテナ間のアイソレーションを確保しながら、アンテナ装置を小型化することができる。 The antenna device according to the present invention can reduce the size of the antenna device while ensuring isolation between the antennas.
実施の形態1に係るアンテナ装置の等価回路図の一例を示す図である。3 is a diagram illustrating an example of an equivalent circuit diagram of the antenna device according to Embodiment 1. FIG. 図1に示されるアンテナ装置の外観の一例を示す図である。It is a figure which shows an example of the external appearance of the antenna apparatus shown by FIG. 図1に示されるアンテナ装置のアイソレーション特性を示す図である。It is a figure which shows the isolation characteristic of the antenna apparatus shown by FIG. 実施の形態1の変形例に係るアンテナ装置の等価回路図の一例を示す図である。6 is a diagram showing an example of an equivalent circuit diagram of an antenna device according to a modification of the first embodiment. FIG. 実施の形態2に係るアンテナ装置の等価回路図の一例を示す図である。6 is a diagram illustrating an example of an equivalent circuit diagram of an antenna device according to Embodiment 2. FIG. 図5に示されるアンテナ装置の外観の一例を示す図である。It is a figure which shows an example of the external appearance of the antenna apparatus shown by FIG. 図5に示されるアンテナ装置のアイソレーション特性、および図1に示されるアンテナ装置のアイソレーション特性を併せて示す図である。It is a figure which shows the isolation characteristic of the antenna apparatus shown by FIG. 5, and the isolation characteristic of the antenna apparatus shown by FIG. 実施の形態3に係るアンテナ装置の等価回路図の一例を示す図である。FIG. 10 is a diagram illustrating an example of an equivalent circuit diagram of the antenna device according to the third embodiment. 図8に示されるアンテナ装置の外観の一例を示す図である。It is a figure which shows an example of the external appearance of the antenna apparatus shown by FIG. 図8に示されるアンテナ装置のアイソレーション特性、および図5に示されるアンテナ装置のアイソレーション特性を併せて示す図である。It is a figure which shows together the isolation characteristic of the antenna apparatus shown by FIG. 8, and the isolation characteristic of the antenna apparatus shown by FIG. 実施の形態4に係るアンテナ装置の等価回路図の一例を示す図である。FIG. 10 is a diagram illustrating an example of an equivalent circuit diagram of an antenna device according to a fourth embodiment. 図11に示されるアンテナ装置の外観の一例を示す図である。It is a figure which shows an example of the external appearance of the antenna apparatus shown by FIG. 実施の形態4の変形例1に係るアンテナ装置の等価回路図の一例を示す図である。FIG. 10 is a diagram illustrating an example of an equivalent circuit diagram of an antenna device according to Modification 1 of Embodiment 4. 実施の形態4の変形例2に係るアンテナ装置の等価回路図の一例を示す図である。FIG. 10 is a diagram showing an example of an equivalent circuit diagram of an antenna device according to Modification 2 of Embodiment 4. 実施の形態4の変形例3に係るアンテナ装置の等価回路図の一例を示す図である。FIG. 10 is a diagram illustrating an example of an equivalent circuit diagram of an antenna device according to Modification 3 of Embodiment 4.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated in principle.
 [実施の形態1]
 図1は、実施の形態1に係るアンテナ装置1の等価回路図の一例を示す図である。アンテナ装置1は、複数の通信方式に準拠して通信を行なうことができる。アンテナ装置1は、たとえば2400~2484MHz(2.4GHz帯)においてWiFi(登録商標)(Wireless Fidelity)およびBluetooth(登録商標)に準拠して通信を行なうことができる。
[Embodiment 1]
FIG. 1 is a diagram illustrating an example of an equivalent circuit diagram of the antenna device 1 according to the first embodiment. The antenna device 1 can perform communication according to a plurality of communication methods. The antenna device 1 can perform communication in accordance with WiFi (registered trademark) (Wireless Fidelity) and Bluetooth (registered trademark) in, for example, 2400 to 2484 MHz (2.4 GHz band).
 図1に示されるように、アンテナ装置1は、グランド導体GND1と、アンテナANT1,ANT2と、ループ部LP11とを備える。図1においては、各構成要素間の接続関係をわかり易くするため、グランド導体GND1は、給電点FP1とFP2とを接続する直線として描かれている。図4、図5、図8、図11、および図13~図15においても同様である。 As shown in FIG. 1, the antenna device 1 includes a ground conductor GND1, antennas ANT1 and ANT2, and a loop portion LP11. In FIG. 1, the ground conductor GND <b> 1 is drawn as a straight line connecting the feeding points FP <b> 1 and FP <b> 2 in order to make it easy to understand the connection relationship between each component. The same applies to FIG. 4, FIG. 5, FIG. 8, FIG. 11, and FIG.
 アンテナANT1は、給電点FP1を介してグランド導体GND1に接続されている。アンテナANT2は、給電点FP2を介してグランド導体GND1に接続されている。アンテナANT1の共振周波数とアンテナANT2の共振周波数とは近接している。 The antenna ANT1 is connected to the ground conductor GND1 through the feeding point FP1. The antenna ANT2 is connected to the ground conductor GND1 through the feeding point FP2. The resonance frequency of the antenna ANT1 is close to the resonance frequency of the antenna ANT2.
 ループ部LP11は、無給電素子PE11と、リアクタンス素子RT11とを含む。無給電素子PE11の端部T9は、リアクタンス素子RT11を介してグランド導体GND1に接続されている。無給電素子PE11の端部T10は、グランド導体GND1に接続されている。リアクタンス素子RT11は、接続点N11においてグランド導体GND1に接続されている。リアクタンス素子RT11は、インダクタL11を含む。リアクタンス素子RT11は、キャパシタを含んでいてもよい。 The loop portion LP11 includes a parasitic element PE11 and a reactance element RT11. The end T9 of the parasitic element PE11 is connected to the ground conductor GND1 via the reactance element RT11. The end T10 of the parasitic element PE11 is connected to the ground conductor GND1. The reactance element RT11 is connected to the ground conductor GND1 at the connection point N11. The reactance element RT11 includes an inductor L11. The reactance element RT11 may include a capacitor.
 ループ部LP11において、無給電素子PE11、リアクタンス素子RT11、および接続点N11から無給電素子PE11の端部T12までのグランド導体GND1の部分により、ループ経路が形成されている。 In the loop portion LP11, a loop path is formed by the parasitic element PE11, the reactance element RT11, and the portion of the ground conductor GND1 from the connection point N11 to the end T12 of the parasitic element PE11.
 ループ部LP11とアンテナANT1との容量結合は、ループ部LP11とアンテナANT2との容量結合よりも強い。図1において当該大小関係は、無給電素子PE11とアンテナANT1とがキャパシタC1を介して接続されている一方で、無給電素子PE11とアンテナANT2とはキャパシタを介して接続されていないことによって表現されている。 The capacitive coupling between the loop part LP11 and the antenna ANT1 is stronger than the capacitive coupling between the loop part LP11 and the antenna ANT2. In FIG. 1, the magnitude relationship is expressed by the fact that the parasitic element PE11 and the antenna ANT1 are connected via the capacitor C1, while the parasitic element PE11 and the antenna ANT2 are not connected via the capacitor. ing.
 アンテナANT1,ANT2を備えるアンテナ装置1においては、アンテナANT1とANT2との間のアイソレーションを確保する必要がある。アンテナ装置1においては、アンテナANT1あるいはANT2によって受信された信号がループ部LP11に伝達されることにより、当該信号の電力がループ部LP11において消費される。一方のアンテナから他方のアンテナへ伝達される信号の電力が低減される。アンテナ装置1においては、ループ部LP11によりアンテナANT1およびアンテナANT2の間のアイソレーションを確保することができる。 In the antenna device 1 including the antennas ANT1 and ANT2, it is necessary to ensure isolation between the antennas ANT1 and ANT2. In the antenna device 1, the signal received by the antenna ANT1 or ANT2 is transmitted to the loop part LP11, whereby the power of the signal is consumed in the loop part LP11. The power of the signal transmitted from one antenna to the other antenna is reduced. In the antenna device 1, the isolation between the antenna ANT1 and the antenna ANT2 can be ensured by the loop portion LP11.
 アンテナ装置1において、ループ部LP11の共振周波数f1は、アンテナANT1あるいはANT2が受信する信号の周波数に基づいて調整される必要がある。ループ部LP11に含まれる無給電素子PE11の長さは、無給電素子PE11のインダクタンス成分に影響を与える。無給電素子PE11の長さを変更すると、ループ部LP11の共振周波数f1が変わってしまう。アンテナANT1およびアンテナANT2の間のアイソレーションを確保しながら、無給電素子PE11の長さを短くすることによりアンテナ装置1を小型化するためには、ループ部LP11の共振周波数f1を無給電素子PE11の長さの変更以外の方法で調整する必要がある。 In the antenna device 1, the resonance frequency f1 of the loop portion LP11 needs to be adjusted based on the frequency of the signal received by the antenna ANT1 or ANT2. The length of the parasitic element PE11 included in the loop portion LP11 affects the inductance component of the parasitic element PE11. When the length of the parasitic element PE11 is changed, the resonance frequency f1 of the loop portion LP11 is changed. In order to reduce the size of the antenna device 1 by shortening the length of the parasitic element PE11 while ensuring isolation between the antenna ANT1 and the antenna ANT2, the resonance frequency f1 of the loop portion LP11 is set to the parasitic element PE11. It is necessary to adjust by a method other than the change of the length.
 そこでアンテナ装置1においては、リアクタンス素子RT11のリアクタンスを変更することによってループ部LP11の共振周波数f1を調整する。ループ部LP11の共振周波数f1は、アンテナ装置1の設計時において、無給電素子PE11の長さ(インダクタンス成分)およびリアクタンス素子RT11のリアクタンスによって調整可能である。無給電素子PE11を短くする場合でも、リアクタンス素子RT11のリアクタンスを調整することにより、ループ部LP11がアンテナANT1あるいはANT2によって受信される信号に共振するようにアンテナ装置1を設計することができる。その結果、アンテナ装置を小型化することができる。 Therefore, in the antenna device 1, the resonance frequency f1 of the loop portion LP11 is adjusted by changing the reactance of the reactance element RT11. The resonance frequency f1 of the loop portion LP11 can be adjusted by the length (inductance component) of the parasitic element PE11 and the reactance of the reactance element RT11 when the antenna device 1 is designed. Even when the parasitic element PE11 is shortened, the antenna device 1 can be designed so that the loop portion LP11 resonates with a signal received by the antenna ANT1 or ANT2 by adjusting the reactance of the reactance element RT11. As a result, the antenna device can be reduced in size.
 図2は、図1に示されるアンテナ装置1の外観の一例を示す図である。図2において、X軸方向とY軸方向は互いに直交している。図6、図9、および図12においても同様である。 FIG. 2 is a diagram showing an example of the appearance of the antenna device 1 shown in FIG. In FIG. 2, the X-axis direction and the Y-axis direction are orthogonal to each other. The same applies to FIG. 6, FIG. 9, and FIG.
 図2に示されるように、グランド導体GND1は、X軸方向に伸びている。アンテナANT1、ならびにループ部LP11に含まれる無給電素子PE11、およびリアクタンス素子RT11は、誘電体基板10に配置されている。アンテナANT2は、誘電体基板20に配置されている。 As shown in FIG. 2, the ground conductor GND1 extends in the X-axis direction. The antenna ANT1, the parasitic element PE11 included in the loop part LP11, and the reactance element RT11 are arranged on the dielectric substrate 10. The antenna ANT2 is disposed on the dielectric substrate 20.
 アンテナANT1は、給電点FP1からY軸方向に伸び、Y軸方向からX軸方向に屈曲する逆F型のモノポールアンテナである。アンテナANT1は、本体部ML1と、短絡線SL1と、給電線FL1とを含む。本体部ML1は、アンテナANT1の屈曲部BP1からX軸方向に伸びている。給電線FL1は、給電点FP1から屈曲部BP1までY軸方向に伸びている。短絡線SL1は、本体部ML1とグランド導体GND1とを接続している。短絡線SL1にはインダクタンス成分があるため、短絡線SL1を形成することにより、アンテナANT1の共振周波数を所望の値に調整することができる。 The antenna ANT1 is an inverted F-type monopole antenna that extends from the feed point FP1 in the Y-axis direction and bends from the Y-axis direction to the X-axis direction. The antenna ANT1 includes a main body ML1, a short-circuit line SL1, and a feed line FL1. The main body ML1 extends in the X-axis direction from the bent portion BP1 of the antenna ANT1. The feed line FL1 extends in the Y-axis direction from the feed point FP1 to the bent portion BP1. The short-circuit line SL1 connects the main body ML1 and the ground conductor GND1. Since the short circuit line SL1 has an inductance component, the resonance frequency of the antenna ANT1 can be adjusted to a desired value by forming the short circuit line SL1.
 アンテナANT1を逆F型のモノポールアンテナとすることにより、実装スペースを有効に活用することができる。その結果、デッドスペースが減少し、アンテナ装置1を小型化することができる。また、本体部ML1をグランド導体GND1から離して配置することができるため、本体部ML1とグランド導体GND1との容量結合を弱めることができる。その結果、本体部ML1の信号の放射能力を高めることができる。 The mounting space can be effectively utilized by making the antenna ANT1 an inverted-F monopole antenna. As a result, the dead space is reduced and the antenna device 1 can be downsized. Further, since the main body ML1 can be arranged away from the ground conductor GND1, the capacitive coupling between the main body ML1 and the ground conductor GND1 can be weakened. As a result, the signal radiation capability of the main body ML1 can be increased.
 ループ部LP11とアンテナANT1との距離は、ループ部LP11とアンテナANT2との距離よりも小さい。そのため、ループ部LP11とアンテナANT1との容量結合は、ループ部LP11とアンテナANT2との容量結合よりも強い。実施の形態1においては、ループ部LP11をアンテナANT1に近接させているため、ループ部LP11とアンテナANT2との間に誘電体基板を形成する必要がない。そのため、たとえばループ部LP11とアンテナANT2との間に誘電体基板の切り欠き(ノッチ)を形成することができるなど、誘電体基板の設計の自由度を高くすることができる。 The distance between the loop part LP11 and the antenna ANT1 is smaller than the distance between the loop part LP11 and the antenna ANT2. Therefore, capacitive coupling between the loop part LP11 and the antenna ANT1 is stronger than capacitive coupling between the loop part LP11 and the antenna ANT2. In the first embodiment, since the loop portion LP11 is close to the antenna ANT1, it is not necessary to form a dielectric substrate between the loop portion LP11 and the antenna ANT2. Therefore, for example, a notch (notch) of the dielectric substrate can be formed between the loop portion LP11 and the antenna ANT2, and the degree of freedom in designing the dielectric substrate can be increased.
 無給電素子PE11は、リアクタンス素子RT11からY軸方向に伸び、屈曲部BP2においてY軸方向からX軸方向に屈曲している。無給電素子PE11は、屈曲部BP2からX軸方向に伸び、屈曲部BP3においてX軸方向からY軸方向に屈曲している。無給電素子PE11は、屈曲部BP3からY軸方向に伸び、屈曲部BP4においてY軸方向からX軸方向に屈曲している。無給電素子PE11は、グランド導体GND1からY軸方向に伸び、屈曲部BP5においてY軸方向からX軸方向に屈曲している。無給電素子PE11は、屈曲部BP4からBP5まで伸びている。 The parasitic element PE11 extends in the Y-axis direction from the reactance element RT11, and is bent in the bent portion BP2 from the Y-axis direction to the X-axis direction. The parasitic element PE11 extends from the bent portion BP2 in the X-axis direction, and is bent from the X-axis direction to the Y-axis direction at the bent portion BP3. The parasitic element PE11 extends from the bent portion BP3 in the Y-axis direction, and is bent in the bent portion BP4 from the Y-axis direction to the X-axis direction. The parasitic element PE11 extends from the ground conductor GND1 in the Y-axis direction, and is bent from the Y-axis direction to the X-axis direction at the bent portion BP5. The parasitic element PE11 extends from the bent part BP4 to BP5.
 無給電素子PE11は、部分PT1および部分PT2を含む。部分PT1は、屈曲部BP2からBP3までの部分である。部分PT2は、屈曲部BP4からBP5までの部分である。部分PT1は、アンテナANT1の本体部ML1とグランド導体GND1との間に配置されている。部分PT2とグランド導体GND1との距離は、部分PT1とグランド導体GND1との距離より大きい。 The parasitic element PE11 includes a part PT1 and a part PT2. The part PT1 is a part from the bent parts BP2 to BP3. The part PT2 is a part from the bent parts BP4 to BP5. The part PT1 is disposed between the main body ML1 of the antenna ANT1 and the ground conductor GND1. The distance between the portion PT2 and the ground conductor GND1 is larger than the distance between the portion PT1 and the ground conductor GND1.
 無給電素子PE11が複数の屈曲部BP2~BP5を有することにより、限られた実装スペースの中で、できるだけ長くなるように無給電素子PE11を配置することができる。また、実装スペースを有効に活用することができるため、デッドスペースが減少し、アンテナ装置1を小型化することができる。さらに、部分PT1と本体部ML1との距離を調整することにより、無給電素子PE11とアンテナANT1との容量結合を所望の強さに調整することができる。 Since the parasitic element PE11 has a plurality of bent portions BP2 to BP5, the parasitic element PE11 can be arranged to be as long as possible in a limited mounting space. Further, since the mounting space can be used effectively, the dead space is reduced and the antenna device 1 can be downsized. Furthermore, by adjusting the distance between the portion PT1 and the main body ML1, the capacitive coupling between the parasitic element PE11 and the antenna ANT1 can be adjusted to a desired strength.
 図3は、図1に示されるアンテナ装置1のアイソレーション特性IS1を示す図である。図3において縦軸の減衰量(dB)はマイナスの値として示されている。減衰量の絶対値が大きい程、一方のアンテナによって受信された信号が他方に伝わっていないことを意味するため、アンテナ間のアイソレーションは大きい。図7,図10においても同様である。図3に示されるように、減衰量は、ループ部LP11の共振周波数f1において極小となり、-20dB程度の減衰量が実現されている。 FIG. 3 is a diagram showing the isolation characteristic IS1 of the antenna device 1 shown in FIG. In FIG. 3, the vertical axis attenuation (dB) is shown as a negative value. The larger the absolute value of the attenuation, the greater the isolation between the antennas because it means that the signal received by one antenna is not transmitted to the other. The same applies to FIGS. 7 and 10. As shown in FIG. 3, the attenuation is minimized at the resonance frequency f1 of the loop portion LP11, and an attenuation of about −20 dB is realized.
 アンテナ装置1においては、ループ部LP11がアンテナANT1とANT2との間に配置されている。ループ部LP11は、たとえば図4に示されるアンテナ装置1Aのように、アンテナANT1とANT2との間ではなく、アンテナANT1から見て、アンテナANT2とは反対側に配置されていてもよい。 In the antenna device 1, the loop portion LP11 is disposed between the antennas ANT1 and ANT2. The loop portion LP11 may be disposed not on the antenna ANT1 and ANT2, but on the side opposite to the antenna ANT2, as seen from the antenna ANT1, as in the antenna device 1A shown in FIG.
 以上、実施の形態1および実施の形態1の変形例に係るアンテナ装置によれば、アンテナ間のアイソレーションを確保しながら、アンテナ装置を小型化することができる。 As described above, according to the antenna device according to the first embodiment and the modification of the first embodiment, the antenna device can be downsized while ensuring the isolation between the antennas.
 [実施の形態2]
 実施の形態1においては、ループ部に含まれる無給電素子の一方端のみがリアクタンス素子を介してグランド導体に接続されている場合について説明した。実施の形態2においては、無給電素子の両端がそれぞれリアクタンス素子を介してグランド導体に接続されることにより、アンテナ間のアイソレーションをさらに大きくする場合について説明する。
[Embodiment 2]
In the first embodiment, the case where only one end of the parasitic element included in the loop portion is connected to the ground conductor via the reactance element has been described. In the second embodiment, a case will be described in which both ends of the parasitic element are connected to the ground conductor via the reactance element, thereby further increasing the isolation between the antennas.
 図5は、実施の形態2に係るアンテナ装置2の等価回路図の一例を示す図である。図5に示されるアンテナ装置2においては、図1に示されるアンテナ装置1のループ部LP11がループ部LP12に置き換えられている。ループ部LP12以外の構成についてはアンテナ装置1と同様であるため、当該構成の説明を繰り返さない。 FIG. 5 is a diagram illustrating an example of an equivalent circuit diagram of the antenna device 2 according to the second embodiment. In the antenna device 2 shown in FIG. 5, the loop portion LP11 of the antenna device 1 shown in FIG. 1 is replaced with a loop portion LP12. Since the configuration other than the loop portion LP12 is the same as that of the antenna device 1, the description of the configuration will not be repeated.
 ループ部LP12は、無給電素子PE12と、リアクタンス素子RT11,RT12とを含む。無給電素子PE12の端部T11は、リアクタンス素子RT11を介してグランド導体GND1に接続されている。無給電素子PE12の端部T12は、リアクタンス素子RT12を介してグランド導体GND1に接続されている。 The loop portion LP12 includes a parasitic element PE12 and reactance elements RT11 and RT12. The end T11 of the parasitic element PE12 is connected to the ground conductor GND1 via the reactance element RT11. The end T12 of the parasitic element PE12 is connected to the ground conductor GND1 via the reactance element RT12.
 リアクタンス素子RT12は、接続点N12においてグランド導体と接続している。リアクタンス素子RT12は、インダクタL12を含む。リアクタンス素子RT12は、キャパシタを含んでいてもよい。 The reactance element RT12 is connected to the ground conductor at the connection point N12. The reactance element RT12 includes an inductor L12. The reactance element RT12 may include a capacitor.
 ループ部LP12において、無給電素子PE12、リアクタンス素子RT11、接続点N11からN12までのグランド導体GND1の部分、およびリアクタンス素子RT12により、ループ経路が形成されている。ループ部LP12の共振周波数は、実施の形態1と同様に共振周波数f1である。 In the loop portion LP12, a loop path is formed by the parasitic element PE12, the reactance element RT11, the portion of the ground conductor GND1 from the connection points N11 to N12, and the reactance element RT12. The resonance frequency of the loop portion LP12 is the resonance frequency f1 as in the first embodiment.
 図6は、図5に示されるアンテナ装置2の外観の一例を示す図である。図6に示されるように、ループ部LP12に含まれる無給電素子PE12、およびリアクタンス素子RT11,RT12は、誘電体基板10に配置されている。 FIG. 6 is a diagram showing an example of the appearance of the antenna device 2 shown in FIG. As shown in FIG. 6, the parasitic element PE12 and the reactance elements RT11 and RT12 included in the loop portion LP12 are arranged on the dielectric substrate 10.
 図7は、図5に示されるアンテナ装置2のアイソレーション特性IS2、および図1に示されるアンテナ装置1のアイソレーション特性IS1を併せて示す図である。図7に示されるアイソレーション特性IS1は、図3に示されるアイソレーション特性IS1と同様である。 FIG. 7 is a diagram showing the isolation characteristic IS2 of the antenna device 2 shown in FIG. 5 and the isolation characteristic IS1 of the antenna device 1 shown in FIG. The isolation characteristic IS1 shown in FIG. 7 is the same as the isolation characteristic IS1 shown in FIG.
 図7に示されるように、ループ部LP12の共振周波数f1において、アイソレーション特性IS2の減衰量の絶対値は、アイソレーション特性IS1の減衰量の絶対値を15dB程度上回っている。このようにアイソレーション特性IS2の減衰量の絶対値がアイソレーション特性IS1の減衰量の絶対値を上回るのは、無給電素子PE12の両端がそれぞれリアクタンス素子RT11,RT12を介してグランド導体に接続されていることにより、実施の形態1よりも無給電素子PE12における電流分布の偏りが抑制されるためである。アンテナ装置2によれば、アンテナANT1とANT2との間のアイソレーションをさらに大きくすることができる。 As shown in FIG. 7, at the resonance frequency f1 of the loop portion LP12, the absolute value of the attenuation amount of the isolation characteristic IS2 exceeds the absolute value of the attenuation amount of the isolation characteristic IS1 by about 15 dB. As described above, the absolute value of the attenuation amount of the isolation characteristic IS2 exceeds the absolute value of the attenuation amount of the isolation characteristic IS1 because both ends of the parasitic element PE12 are connected to the ground conductor via the reactance elements RT11 and RT12, respectively. This is because the bias of the current distribution in the parasitic element PE12 is suppressed more than in the first embodiment. According to the antenna device 2, the isolation between the antennas ANT1 and ANT2 can be further increased.
 以上、実施の形態2に係るアンテナ装置によっても、アンテナ間のアイソレーションを確保するとともに、アンテナ装置を小型化することができる。 As described above, also with the antenna device according to Embodiment 2, it is possible to ensure isolation between the antennas and downsize the antenna device.
 さらに実施の形態2に係るアンテナ装置によれば、ループ部の無給電素子の両端がそれぞれリアクタンス素子を介してグランド導体に接続されていることにより、無給電素子における電流分布の偏りを抑制することができる。その結果、アンテナ間のアイソレーションをさらに大きくすることができる。 Furthermore, according to the antenna device according to the second embodiment, both ends of the parasitic element of the loop portion are connected to the ground conductor via the reactance elements, respectively, thereby suppressing the bias of the current distribution in the parasitic element. Can do. As a result, the isolation between the antennas can be further increased.
 [実施の形態3]
 実施の形態1および実施の形態2においては、アンテナ装置が1つのループ部を備える場合について説明した。本発明に係るアンテナ装置は、複数のループ部を備えていてもよい。実施の形態3においては、アンテナ装置が2つのループ部を備え、アンテナ毎にループ部が配置される場合について説明する。
[Embodiment 3]
In the first embodiment and the second embodiment, the case where the antenna device includes one loop unit has been described. The antenna device according to the present invention may include a plurality of loop portions. In the third embodiment, a case will be described in which the antenna device includes two loop units, and the loop unit is arranged for each antenna.
 図8は、実施の形態3に係るアンテナ装置3の等価回路図の一例を示す図である。図8に示されるアンテナ装置3においては、図5に示されるアンテナ装置2の構成にループ部LP22が追加されている。ループ部LP22以外の構成についてはアンテナ装置2と同様であるため、当該構成の説明を繰り返さない。 FIG. 8 is a diagram illustrating an example of an equivalent circuit diagram of the antenna device 3 according to the third embodiment. In the antenna device 3 shown in FIG. 8, a loop portion LP22 is added to the configuration of the antenna device 2 shown in FIG. Since the configuration other than the loop portion LP22 is the same as that of the antenna device 2, the description of the configuration will not be repeated.
 ループ部LP22は、無給電素子PE22と、リアクタンス素子RT21,RT22とを含む。無給電素子PE22の端部T21は、リアクタンス素子RT21を介してグランド導体GND1に接続されている。無給電素子PE22の端部T22は、リアクタンス素子RT22を介してグランド導体GND1に接続されている。 The loop portion LP22 includes a parasitic element PE22 and reactance elements RT21 and RT22. The end T21 of the parasitic element PE22 is connected to the ground conductor GND1 via the reactance element RT21. The end T22 of the parasitic element PE22 is connected to the ground conductor GND1 via the reactance element RT22.
 リアクタンス素子RT21は、接続点N21においてグランド導体GND1に接続されている。リアクタンス素子RT21は、インダクタL21を含む。リアクタンス素子RT21は、キャパシタを含んでいてもよい。 The reactance element RT21 is connected to the ground conductor GND1 at the connection point N21. The reactance element RT21 includes an inductor L21. The reactance element RT21 may include a capacitor.
 リアクタンス素子RT22は、接続点N22においてグランド導体GND1に接続されている。リアクタンス素子RT22は、インダクタL22を含む。リアクタンス素子RT22は、キャパシタを含んでいてもよい。 The reactance element RT22 is connected to the ground conductor GND1 at the connection point N22. The reactance element RT22 includes an inductor L22. The reactance element RT22 may include a capacitor.
 ループ部LP22において、無給電素子PE22、リアクタンス素子RT21、接続点N21からN22までのグランド導体GND1の部分、およびリアクタンス素子RT22により、ループ経路が形成されている。ループ部LP22の共振周波数は、共振周波数f2である。 In the loop portion LP22, a loop path is formed by the parasitic element PE22, the reactance element RT21, the portion of the ground conductor GND1 from the connection points N21 to N22, and the reactance element RT22. The resonance frequency of the loop portion LP22 is the resonance frequency f2.
 ループ部LP22とアンテナANT2と容量結合は、ループ部LP22とアンテナANT1との容量結合よりも強い。図8において当該大小関係は、無給電素子PE22とアンテナANT2とがキャパシタC2を介して接続されている一方で、無給電素子PE22とアンテナANT1とはキャパシタを介して接続されていないことによって表現されている。 The capacitive coupling between the loop part LP22 and the antenna ANT2 is stronger than the capacitive coupling between the loop part LP22 and the antenna ANT1. In FIG. 8, the magnitude relationship is expressed by the fact that the parasitic element PE22 and the antenna ANT2 are connected via the capacitor C2, while the parasitic element PE22 and the antenna ANT1 are not connected via the capacitor. ing.
 図9は、図8に示されるアンテナ装置3の外観の一例を示す図である。図9に示されるようにループ部LP22に含まれる無給電素子PE21、リアクタンス素子RT21,RT22は、誘電体基板20に配置されている。 FIG. 9 is a diagram showing an example of the appearance of the antenna device 3 shown in FIG. As shown in FIG. 9, the parasitic element PE21 and the reactance elements RT21 and RT22 included in the loop portion LP22 are arranged on the dielectric substrate 20.
 ループ部LP22とアンテナANT2との距離は、ループ部LP22とアンテナANT1との距離よりも小さい。そのため、ループ部LP22とアンテナANT2との容量結合が、ループ部LP22とアンテナANT1との容量結合よりも強い。実施の形態2においては、ループ部LP22をアンテナANT2に近接させているため、ループ部LP22とアンテナANT1との間に誘電体基板を形成する必要がない。そのため、たとえばループ部LP22とアンテナANT1との間に誘電体基板の切り欠き(ノッチ)を形成することができるなど、誘電体基板の設計の自由度を高くすることができる。 The distance between the loop part LP22 and the antenna ANT2 is smaller than the distance between the loop part LP22 and the antenna ANT1. Therefore, capacitive coupling between the loop part LP22 and the antenna ANT2 is stronger than capacitive coupling between the loop part LP22 and the antenna ANT1. In the second embodiment, since the loop part LP22 is close to the antenna ANT2, it is not necessary to form a dielectric substrate between the loop part LP22 and the antenna ANT1. Therefore, for example, a notch of the dielectric substrate can be formed between the loop portion LP22 and the antenna ANT1, and the degree of freedom in designing the dielectric substrate can be increased.
 図10は、図8に示されるアンテナ装置3のアイソレーション特性IS3、および図5に示されるアンテナ装置2のアイソレーション特性IS2を併せて示す図である。図10に示されるアイソレーション特性IS2は、図7に示されるアイソレーション特性IS2と同様である。図10に示される2000~3000MHzの周波数帯においては、アイソレーション特性IS3の方がアイソレーション特性IS2よりも減衰量の絶対値が大きい。アイソレーション特性IS3は、ループ部LP22の共振周波数f2において減衰量の絶対値が最も大きくなっている。 FIG. 10 is a diagram showing the isolation characteristic IS3 of the antenna device 3 shown in FIG. 8 and the isolation characteristic IS2 of the antenna device 2 shown in FIG. The isolation characteristic IS2 shown in FIG. 10 is the same as the isolation characteristic IS2 shown in FIG. In the frequency band of 2000 to 3000 MHz shown in FIG. 10, the isolation characteristic IS3 has a larger absolute value of attenuation than the isolation characteristic IS2. The isolation characteristic IS3 has the largest absolute value of attenuation at the resonance frequency f2 of the loop portion LP22.
 アンテナ装置3は2つのループ部LP12,LP22を備えているため、アンテナANT1あるいはANT2で受信された信号は、ループ部LP12に伝達されたときに当該信号のエネルギーがループ部LP12において消費されるとともに、ループ部LP22に伝達されたときにもループ部LP22において当該信号のエネルギーが消費される。その結果、アイソレーション特性IS3の方がアイソレーション特性IS2よりも減衰量の絶対値が大きくなり、アンテナANT1とANT2との間のアイソレーションをさらに大きくすることができる。 Since the antenna device 3 includes two loop portions LP12 and LP22, when the signal received by the antenna ANT1 or ANT2 is transmitted to the loop portion LP12, the energy of the signal is consumed in the loop portion LP12. Even when the signal is transmitted to the loop part LP22, the energy of the signal is consumed in the loop part LP22. As a result, the isolation characteristic IS3 has a greater attenuation value than the isolation characteristic IS2, and the isolation between the antennas ANT1 and ANT2 can be further increased.
 以上、実施の形態3に係るアンテナ装置によっても、アンテナ間のアイソレーションを確保するとともに、アンテナ装置を小型化することができる。 As described above, also with the antenna device according to Embodiment 3, it is possible to secure isolation between the antennas and downsize the antenna device.
 さらに実施の形態3に係るアンテナ装置によれば、複数のループ部により、アンテナ間のアイソレーションをさらに大きくすることができる。 Furthermore, according to the antenna device according to the third embodiment, the isolation between the antennas can be further increased by the plurality of loop portions.
 [実施の形態4]
 実施の形態1~実施の形態3においては、アンテナ装置が2本のアンテナを備える場合について説明した。本発明に係るアンテナ装置は、3本以上のアンテナを備えていてもよい。実施の形態4においては、アンテナ装置が3本のアンテナを備える場合について説明する。
[Embodiment 4]
In the first to third embodiments, the case where the antenna device includes two antennas has been described. The antenna device according to the present invention may include three or more antennas. In Embodiment 4, the case where the antenna device includes three antennas will be described.
 図11は、実施の形態4に係るアンテナ装置4の等価回路図の一例を示す図である。図11に示されるアンテナ装置4においては、図8に示されるアンテナ装置3の構成にアンテナANT3、ループ部LP32、および給電点FP3が追加されている。これら以外の構成についてはアンテナ装置3と同様であるため、当該構成の説明を繰り返さない。 FIG. 11 is a diagram illustrating an example of an equivalent circuit diagram of the antenna device 4 according to the fourth embodiment. In the antenna device 4 shown in FIG. 11, an antenna ANT3, a loop portion LP32, and a feed point FP3 are added to the configuration of the antenna device 3 shown in FIG. Since the configuration other than these is the same as that of the antenna device 3, the description of the configuration will not be repeated.
 アンテナANT3は、給電点FP3を介してグランド導体GND1に接続されている。ループ部LP32は、無給電素子PE32と、リアクタンス素子RT31,RT32とを含む。無給電素子PE32の端部T31は、リアクタンス素子RT31を介してグランド導体GND1に接続されている。無給電素子PE32の端部T32は、リアクタンス素子RT32を介してグランド導体GND1に接続されている。 The antenna ANT3 is connected to the ground conductor GND1 via the feeding point FP3. Loop portion LP32 includes a parasitic element PE32 and reactance elements RT31 and RT32. The end T31 of the parasitic element PE32 is connected to the ground conductor GND1 via the reactance element RT31. The end T32 of the parasitic element PE32 is connected to the ground conductor GND1 via the reactance element RT32.
 リアクタンス素子RT31は、接続点N31においてグランド導体GND1に接続されている。リアクタンス素子RT31は、インダクタL31を含む。リアクタンス素子RT31は、キャパシタを含んでいてもよい。 The reactance element RT31 is connected to the ground conductor GND1 at the connection point N31. The reactance element RT31 includes an inductor L31. The reactance element RT31 may include a capacitor.
 リアクタンス素子RT32は、接続点N32においてグランド導体GND1に接続されている。リアクタンス素子RT32は、インダクタL32を含む。リアクタンス素子RT32は、キャパシタを含んでいてもよい。 The reactance element RT32 is connected to the ground conductor GND1 at the connection point N32. The reactance element RT32 includes an inductor L32. The reactance element RT32 may include a capacitor.
 ループ部LP32において、無給電素子PE32、リアクタンス素子RT31、接続点N31からN32までのグランド導体GND1の部分、およびリアクタンス素子RT32により、ループ経路が形成されている。 In the loop portion LP32, a loop path is formed by the parasitic element PE32, the reactance element RT31, the portion of the ground conductor GND1 from the connection points N31 to N32, and the reactance element RT32.
 ループ部LP32とアンテナANT3と容量結合は、ループ部LP32とアンテナANT1との容量結合よりも強く、ループ部LP32とアンテナANT2との容量結合よりも強い。図11において当該大小関係は、無給電素子PE32とアンテナANT3とがキャパシタC3を介して接続されている一方で、無給電素子PE32とアンテナANT1,ANT2とはキャパシタを介して接続されていないことによって表現されている。 The capacitive coupling between the loop part LP32 and the antenna ANT3 is stronger than the capacitive coupling between the loop part LP32 and the antenna ANT1, and is stronger than the capacitive coupling between the loop part LP32 and the antenna ANT2. In FIG. 11, the magnitude relationship is that the parasitic element PE32 and the antenna ANT3 are connected via the capacitor C3, while the parasitic element PE32 and the antennas ANT1 and ANT2 are not connected via the capacitor. It is expressed.
 図12は、図11に示されるアンテナ装置4の外観の一例を示す図である。図12に示されるように、アンテナANT3、ならびにループ部LP32に含まれる無給電素子PE32、およびリアクタンス素子RT31,RT32は、誘電体基板30に配置されている。 FIG. 12 is a diagram showing an example of the appearance of the antenna device 4 shown in FIG. As shown in FIG. 12, the antenna ANT3, the parasitic element PE32 included in the loop part LP32, and the reactance elements RT31 and RT32 are arranged on the dielectric substrate 30.
 ループ部LP32とアンテナANT3との距離は、ループ部LP32とアンテナANT1との距離よりも小さく、ループ部LP32とアンテナANT2との距離よりも小さい。そのため、ループ部LP32とアンテナANT3との容量結合が、ループ部LP32とアンテナANT1との容量結合よりも強く、ループ部LP32とアンテナANT2との容量結合よりも強い。実施の形態4においては、ループ部LP32をアンテナANT3に近接させることにより、ループ部LP32とアンテナANT1との間およびループ部LP32とアンテナANT2との間に誘電体基板を形成する必要がない。そのため、たとえばループ部LP32とアンテナANT1との間およびループ部LP32とアンテナANT2との間に誘電体基板の切り欠きを形成するなど、誘電体基板の設計の自由度を高くすることができる。 The distance between the loop part LP32 and the antenna ANT3 is smaller than the distance between the loop part LP32 and the antenna ANT1, and smaller than the distance between the loop part LP32 and the antenna ANT2. Therefore, capacitive coupling between the loop part LP32 and the antenna ANT3 is stronger than capacitive coupling between the loop part LP32 and the antenna ANT1, and stronger than capacitive coupling between the loop part LP32 and the antenna ANT2. In the fourth embodiment, it is not necessary to form a dielectric substrate between the loop part LP32 and the antenna ANT1 and between the loop part LP32 and the antenna ANT2 by bringing the loop part LP32 close to the antenna ANT3. Therefore, the degree of freedom in designing the dielectric substrate can be increased, for example, by forming a notch in the dielectric substrate between the loop portion LP32 and the antenna ANT1 and between the loop portion LP32 and the antenna ANT2.
 実施の形態4においては、3つのアンテナ毎にループ部が配置されている場合について説明した。3本のアンテナ毎にループ部が配置されている必要はなく、無給電素子の少なくとも一方端がリアクタンス素子を介してグランド導体に接続されているループ部が1つあれば、どのような構成であってもよい。たとえば図13に示される実施の形態4の変形例1に係るアンテナ装置4A(アンテナANT2に対応するループ部がない場合)および図14に示される実施の形態4の変形例2に係るアンテナ装置4B(アンテナANT3に対応するループ部がない場合)のように、3本のアンテナのうち1本のアンテナに対応するループ部がない構成であってもよい。あるいは、図15に示される実施の形態4の変形例3に係るアンテナ装置4C(アンテナANT2およびアンテナANT3に対応するループ部がない場合)のように、3本のアンテナのうち2本のアンテナに対応するループ部がない構成であってもよい。 In Embodiment 4, the case where a loop part is arranged for every three antennas has been described. There is no need for a loop portion to be arranged for every three antennas, and if there is one loop portion in which at least one end of a parasitic element is connected to a ground conductor via a reactance element, any configuration is possible. There may be. For example, antenna device 4A according to Modification 1 of Embodiment 4 shown in FIG. 13 (when there is no loop portion corresponding to antenna ANT2) and antenna device 4B according to Modification 2 of Embodiment 4 shown in FIG. The configuration may be such that there is no loop portion corresponding to one of the three antennas, as in the case where there is no loop portion corresponding to the antenna ANT3. Alternatively, two antennas out of the three antennas are used as in the antenna device 4C according to the third modification of the fourth embodiment shown in FIG. 15 (when there is no loop portion corresponding to the antenna ANT2 and the antenna ANT3). A configuration without a corresponding loop portion may be used.
 以上、実施の形態4および実施の形態4の変形例1~変形例3に係るアンテナ装置によっても、アンテナ間のアイソレーションを確保するとともに、アンテナ装置を小型化することができる。 As described above, the antenna devices according to the fourth and fourth modification examples 1 to 3 of the fourth embodiment can secure the isolation between the antennas and reduce the size of the antenna device.
 今回開示された各実施の形態は、矛盾しない範囲で適宜組み合わせて実施することも予定されている。今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time are also scheduled to be implemented in appropriate combinations within a consistent range. The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1~4,1A,4A~4C アンテナ装置、10,20,30 誘電体基板、ANT1~ANT3 アンテナ、BP1~BP5 屈曲部、C1~C3 キャパシタ、FL1 給電線、FP1~FP3 給電点、GND1 グランド導体、L11,L12,L21,L22,L31,L32 インダクタ、LP11,LP12,LP22,LP32 ループ部、ML1 本体部、PE1,PE11,PE12,PE21,PE22,PE32 無給電素子、PT1,PT2 部分、RT11,RT12,RT21,RT22,RT31,RT32 リアクタンス素子、SL1 短絡線。 1 to 4, 1A, 4A to 4C antenna device 10, 20, 30 dielectric substrate, ANT1 to ANT3 antenna, BP1 to BP5 bent part, C1 to C3 capacitor, FL1 feeder, FP1 to FP3 feeder, GND1 ground conductor , L11, L12, L21, L22, L31, L32 inductor, LP11, LP12, LP22, LP32 loop part, ML1 body part, PE1, PE11, PE12, PE21, PE22, PE32 parasitic element, PT1, PT2 part, RT11, RT12, RT21, RT22, RT31, RT32 reactance element, SL1 short circuit wire.

Claims (14)

  1.  グランド導体と、
     前記グランド導体に電気的に接続された第1アンテナおよび第2アンテナと、
     第1無給電素子と第1リアクタンス素子とを含む第1ループ部とを備え、
     前記第1無給電素子は、前記第1無給電素子の一方端が前記グランド導体に電気的に接続されているとともに、前記第1無給電素子の他方端が前記第1リアクタンス素子を介して前記グランド導体に接続されている、アンテナ装置。
    A ground conductor;
    A first antenna and a second antenna electrically connected to the ground conductor;
    A first loop portion including a first parasitic element and a first reactance element;
    In the first parasitic element, one end of the first parasitic element is electrically connected to the ground conductor, and the other end of the first parasitic element is connected to the ground via the first reactance element. An antenna device connected to a ground conductor.
  2.  前記第1ループ部と前記第1アンテナとの距離は、前記第1ループ部と前記第2アンテナとの距離よりも小さい、請求項1に記載のアンテナ装置。 The antenna device according to claim 1, wherein a distance between the first loop portion and the first antenna is smaller than a distance between the first loop portion and the second antenna.
  3.  前記第1ループ部は、前記第1アンテナに近接している、請求項2に記載のアンテナ装置。 The antenna device according to claim 2, wherein the first loop portion is close to the first antenna.
  4.  前記第1リアクタンス素子は、インダクタを有する、請求項1~請求項3のいずれか1項に記載のアンテナ装置。 The antenna device according to any one of claims 1 to 3, wherein the first reactance element includes an inductor.
  5.  前記グランド導体は、第1方向に伸び、
     前記第1無給電素子は、前記第1方向と直交する第2方向に伸び、前記第2方向から前記第1方向に屈曲している屈曲部を有する、請求項1~請求項4のいずれか1項に記載のアンテナ装置。
    The ground conductor extends in a first direction;
    The first parasitic element has a bent portion that extends in a second direction orthogonal to the first direction and is bent in the first direction from the second direction. The antenna device according to item 1.
  6.  前記第1アンテナは、前記第2方向から前記第1方向に屈曲するモノポールアンテナである、請求項5に記載のアンテナ装置。 The antenna device according to claim 5, wherein the first antenna is a monopole antenna bent from the second direction to the first direction.
  7.  前記第1無給電素子は、前記第1方向に沿う第1部分および第2部分を含み、
     前記第1部分は、前記第1アンテナの前記第1方向に沿う特定部分と前記グランド導体との間に配置され、
     前記第2部分と前記グランド導体との距離は、前記第1部分と前記グランド導体との距離より大きい、請求項6に記載のアンテナ装置。
    The first parasitic element includes a first portion and a second portion along the first direction,
    The first portion is disposed between a specific portion along the first direction of the first antenna and the ground conductor,
    The antenna apparatus according to claim 6, wherein a distance between the second portion and the ground conductor is greater than a distance between the first portion and the ground conductor.
  8.  前記特定部分を前記グランド導体に接続する短絡導体をさらに備える、請求項7に記載のアンテナ装置。 The antenna device according to claim 7, further comprising a short-circuit conductor that connects the specific portion to the ground conductor.
  9.  前記第1ループ部は、第2リアクタンス素子をさらに含み、
     前記第1無給電素子の前記一方端は、前記第2リアクタンス素子を介して前記グランド導体に接続されている、請求項1~請求項8のいずれか1項に記載のアンテナ装置。
    The first loop part further includes a second reactance element,
    The antenna device according to any one of claims 1 to 8, wherein the one end of the first parasitic element is connected to the ground conductor via the second reactance element.
  10.  第2ループ部をさらに備え、
     前記第2ループ部と前記第2アンテナとの距離は、前記第2ループ部と前記第1アンテナとの距離よりも小さい、請求項1~請求項9のいずれか1項に記載のアンテナ装置。
    A second loop portion;
    The antenna device according to any one of claims 1 to 9, wherein a distance between the second loop portion and the second antenna is smaller than a distance between the second loop portion and the first antenna.
  11.  前記第2ループ部は、前記第2アンテナに近接している、請求項10に記載のアンテナ装置。 The antenna device according to claim 10, wherein the second loop unit is close to the second antenna.
  12.  前記グランド導体に電気的に接続された第3アンテナをさらに備え、
     前記第1ループ部と前記第1アンテナとの距離は、前記第1ループ部と前記第3アンテナとの距離よりも小さく、
     前記第2ループ部と前記第2アンテナとの距離は、前記第2ループ部と前記第3アンテナとの距離よりも小さい、請求項10または請求項11に記載のアンテナ装置。
    A third antenna electrically connected to the ground conductor;
    The distance between the first loop portion and the first antenna is smaller than the distance between the first loop portion and the third antenna,
    The antenna device according to claim 10 or 11, wherein a distance between the second loop portion and the second antenna is smaller than a distance between the second loop portion and the third antenna.
  13.  第3ループ部をさらに備え、
     前記第3ループ部と前記第3アンテナとの距離は、前記第3ループ部と前記第1アンテナとの距離よりも小さく、前記第3ループ部と前記第2アンテナとの距離よりも小さい、請求項12に記載のアンテナ装置。
    A third loop portion;
    The distance between the third loop portion and the third antenna is smaller than the distance between the third loop portion and the first antenna, and smaller than the distance between the third loop portion and the second antenna. Item 13. The antenna device according to Item 12.
  14.  前記第3ループ部は、前記第3アンテナに近接している、請求項13に記載のアンテナ装置。 The antenna device according to claim 13, wherein the third loop portion is close to the third antenna.
PCT/JP2017/041650 2016-12-27 2017-11-20 Antenna device WO2018123345A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780080840.5A CN110121815B (en) 2016-12-27 2017-11-20 Antenna device
JP2018558901A JP6673503B2 (en) 2016-12-27 2017-11-20 Antenna device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-253809 2016-12-27
JP2016253809 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018123345A1 true WO2018123345A1 (en) 2018-07-05

Family

ID=62707425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041650 WO2018123345A1 (en) 2016-12-27 2017-11-20 Antenna device

Country Status (3)

Country Link
JP (1) JP6673503B2 (en)
CN (1) CN110121815B (en)
WO (1) WO2018123345A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326632A (en) * 1996-06-03 1997-12-16 Mitsubishi Electric Corp Antenna system
JP2005198245A (en) * 2003-12-10 2005-07-21 Matsushita Electric Ind Co Ltd Antenna
JP2005252406A (en) * 2004-03-01 2005-09-15 Advanced Telecommunication Research Institute International Antenna structure and television receiver
JP2005295002A (en) * 2004-03-31 2005-10-20 Matsushita Electric Ind Co Ltd Antenna system and mobile communication terminal
WO2008105126A1 (en) * 2007-02-28 2008-09-04 Nec Corporation Array antenna, radio communication apparatus, and array antenna control method
JP2011049864A (en) * 2009-08-27 2011-03-10 Ntt Docomo Inc Polarization shared antenna

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1014383B (en) * 1987-07-30 1991-10-16 索尼公司 Microwave antenna
US8063844B1 (en) * 2007-01-29 2011-11-22 Kutta Technologies, Inc. Omnidirectional antenna system
US9692122B2 (en) * 2008-03-05 2017-06-27 Ethertronics, Inc. Multi leveled active antenna configuration for multiband MIMO LTE system
GB2500209B (en) * 2012-03-13 2016-05-18 Microsoft Technology Licensing Llc Antenna isolation using a tuned ground plane notch
CN103650242B (en) * 2012-06-28 2016-07-06 株式会社村田制作所 Antenna assembly, power supply component and communication terminal
BR102013014249A2 (en) * 2013-01-21 2017-07-11 Mediatek Inc. COMMUNICATION DEVICE AND ANTENNAS WITH HIGH INSULATION CHARACTERISTICS
CN204333220U (en) * 2014-11-19 2015-05-13 上海安费诺永亿通讯电子有限公司 Mobile phone mimo antenna structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326632A (en) * 1996-06-03 1997-12-16 Mitsubishi Electric Corp Antenna system
JP2005198245A (en) * 2003-12-10 2005-07-21 Matsushita Electric Ind Co Ltd Antenna
JP2005252406A (en) * 2004-03-01 2005-09-15 Advanced Telecommunication Research Institute International Antenna structure and television receiver
JP2005295002A (en) * 2004-03-31 2005-10-20 Matsushita Electric Ind Co Ltd Antenna system and mobile communication terminal
WO2008105126A1 (en) * 2007-02-28 2008-09-04 Nec Corporation Array antenna, radio communication apparatus, and array antenna control method
JP2011049864A (en) * 2009-08-27 2011-03-10 Ntt Docomo Inc Polarization shared antenna

Also Published As

Publication number Publication date
JP6673503B2 (en) 2020-03-25
CN110121815A (en) 2019-08-13
CN110121815B (en) 2021-04-16
JPWO2018123345A1 (en) 2019-07-11

Similar Documents

Publication Publication Date Title
US9077081B2 (en) Multi-antenna device and communication apparatus
TWI661613B (en) Antenna structure and wireless communication device having the same
US20180026337A1 (en) Antenna structure and wireless communication device using same
US9450302B2 (en) Antenna module
US10256525B2 (en) Antenna structure and wireless communication device using same
JP6504207B2 (en) Antenna device and electronic device
US10498031B2 (en) Antenna system and mobile terminal
WO2014125832A1 (en) Dual-band antenna device
CN111052500B (en) Antenna assembly and mobile terminal
JP2007067884A (en) Antenna
WO2016143724A1 (en) Antenna device and communication terminal apparatus
JP6432693B2 (en) Antenna device
WO2020054681A1 (en) Antenna and communication device
WO2016103859A1 (en) Wireless device
US9124001B2 (en) Communication device and antenna element therein
WO2018123345A1 (en) Antenna device
WO2018198349A1 (en) Antenna device and portable terminal
EP3349301A1 (en) Dual-band dipole antenna and electronic system
WO2016186091A1 (en) Antenna device and electronic apparatus
JP2012235402A (en) Impedance matching circuit, antenna device, and communication terminal apparatus
CN106785491B (en) Dipole dual-frequency antenna and electronic product
JP2003051705A (en) Surface mount antenna and communication equipment employing the same
US10826178B2 (en) Multi-band antenna
US10847891B2 (en) Antenna device and wireless communication apparatus
TWI725642B (en) Multi-band antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888696

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558901

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888696

Country of ref document: EP

Kind code of ref document: A1