WO2018123262A1 - Particulate substance combustion device - Google Patents

Particulate substance combustion device Download PDF

Info

Publication number
WO2018123262A1
WO2018123262A1 PCT/JP2017/039643 JP2017039643W WO2018123262A1 WO 2018123262 A1 WO2018123262 A1 WO 2018123262A1 JP 2017039643 W JP2017039643 W JP 2017039643W WO 2018123262 A1 WO2018123262 A1 WO 2018123262A1
Authority
WO
WIPO (PCT)
Prior art keywords
particulate matter
unit
combustion
collection
collected
Prior art date
Application number
PCT/JP2017/039643
Other languages
French (fr)
Japanese (ja)
Inventor
山城 啓輔
高野 哲美
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Publication of WO2018123262A1 publication Critical patent/WO2018123262A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/51Catch- space electrodes, e.g. slotted-box form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/88Cleaning-out collected particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/01Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust by means of electric or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means

Definitions

  • the present invention relates to a particulate matter combustion apparatus.
  • the particulate matter combustion apparatus may include a charging unit, a collection unit, and a combustion unit.
  • the charging unit may charge the particulate matter in the particulate matter-containing gas.
  • the collection unit may be provided apart from the charging unit.
  • the collection unit may collect the particulate matter charged by the charging unit.
  • the collection part may be a collection box.
  • the collection box may have an opening through which particulate matter passes.
  • the collection box may have a metal housing.
  • the combustion unit may be provided inside the collection unit.
  • the combustion unit may burn the particulate matter collected in the collection unit.
  • the combustion section may include a ceramic heater.
  • the ceramic heater may supply radiant heat to the particulate matter.
  • the particulate matter collected in the collection unit may be burned by controlling the operation timing of the combustion unit according to the operation state of the particulate matter combustion apparatus.
  • the charging unit may be located outside the collection box.
  • the particulate matter may be burned according to the weight of the particulate matter collected in the collecting part.
  • the weight of the particulate matter collected in the collection part is , if it becomes 10 -6 ⁇ Vc [kg] or 10 -5 ⁇ Vc [kg] or less, was collected in the collecting portion the particulate matter may be burned.
  • the particulate matter combustion apparatus may include a charging unit, a collection unit, and a combustion unit.
  • the charging unit may charge the particulate matter in the particulate matter-containing gas.
  • the collection unit may be provided apart from the charging unit.
  • the collection unit may collect the particulate matter charged by the charging unit.
  • the combustion unit may be provided inside the collection unit.
  • the combustion unit may burn the particulate matter collected in the collection unit.
  • the particulate matter collected in the collection unit may be burned by controlling the operation timing of the combustion unit according to the operation state of the particulate matter combustion apparatus.
  • the combustion unit may include a heating element.
  • the heating element may supply heat to the particulate matter collected in the collection unit.
  • the charging unit may have a discharge electrode.
  • the combustion part may further include a conductive part having the same polarity as the discharge electrode.
  • the particulate matter combustion apparatus may be provided with a plurality of unit structures.
  • the plurality of unit structures may be arranged in series in the flow direction.
  • the flow direction may be a direction from upstream to downstream of the particulate matter-containing gas.
  • the plurality of unit structures may each include a charging unit, a collection unit, and a combustion unit.
  • the voltage supplied to the charging unit in each of the plurality of unit structures may be controlled according to the wind speed of the particulate matter-containing gas.
  • the particulate matter combustion apparatus may include a charging unit, a collection unit, and a combustion unit.
  • the charging unit may charge the particulate matter in the particulate matter-containing gas.
  • the collection unit may be provided apart from the charging unit.
  • the collection unit may collect the particulate matter charged by the charging unit.
  • the combustion unit may be provided inside the collection unit.
  • the combustion unit may burn the particulate matter collected in the collection unit.
  • the particulate matter collected in the collection unit may be burned by controlling the operation timing of the combustion unit according to the operation state of the particulate matter combustion apparatus.
  • the particulate matter combustion apparatus may include a plurality of unit structures. The plurality of unit structures may be arranged in series in the flow direction.
  • the flow direction may be a direction from upstream to downstream of the particulate matter-containing gas.
  • the plurality of unit structures may each include a charging unit, a collection unit, and a combustion unit.
  • the power supplied to the combustion section in each of the plurality of unit structures may be controlled according to the wind speed of the particulate matter-containing gas.
  • the electric power supplied to the combustion section may be controlled according to the temperature of the particulate matter-containing gas.
  • the electric power supplied to the combustion unit may be controlled according to the weight of the particulate matter collected in the collection unit.
  • the charging unit may have a discharge electrode.
  • the discharge electrode may include a plurality of barbs.
  • the plurality of barbs may be provided at different positions in the flow direction.
  • the flow direction may be a direction from upstream to downstream of the particulate matter-containing gas.
  • the collection part may have an opening.
  • the opening may be provided on a surface facing the discharge electrode. Depending on the position of the plurality of barbs, the opening and the radiating part of the ceramic heater in the combustion part may be arranged.
  • FIG. 1st Embodiment is a top view of the charging unit 10 and the collection box 20.
  • FIG. 4B is a top view of the combustion unit 30.
  • FIG. 2 is a partially enlarged view of a top view of a combustion unit 30.
  • FIG. It is a 1st modification regarding arrangement
  • FIG. It is a 2nd modification regarding arrangement
  • FIG. (A) is a top view of the combustion part 30 in 2nd Embodiment.
  • (B) is sectional drawing of the collection box 20 and the combustion part 30 in 2nd Embodiment. It is sectional drawing of PM combustion apparatus 100 in 3rd Embodiment.
  • FIG. 1 is a top view of the charging unit 10 and the collection box 20.
  • FIG. 4B is a top view of the combustion unit 30.
  • FIG. It is a 1st modification regarding arrangement
  • FIG. It is a 2nd modification regarding arrangement
  • FIG. It is sectional drawing of PM combustion apparatus 100 in 4th Embodiment. It is sectional drawing of PM combustion apparatus 100 in 5th Embodiment. It is sectional drawing of PM combustion apparatus 100 in 6th Embodiment. It is sectional drawing of PM combustion apparatus 100 in 7th Embodiment.
  • FIG. 1 is a cross-sectional view of the PM combustion apparatus 100 according to the first embodiment.
  • the PM combustion device may be read as a particulate matter combustion device.
  • the PM combustion apparatus 100 may collect PM contained in the PM-containing gas 74 and burn the collected PM.
  • the PM-containing gas 74 may pass through the gas passage region 70 in the PM combustion apparatus 100.
  • the gas passage region 70 is a region between the discharge electrode 12 of the charging unit 10 and the collection box 20 provided away from the charging unit 10 in the Z-axis direction.
  • the collection box 20 of this example has a metal housing.
  • the collection box 20 is an example of a collection unit.
  • the PM-containing gas 74 in this example passes through the gas passage region 70 from the Y-axis negative direction toward the positive direction.
  • the negative Y-axis direction is upstream of the PM-containing gas 74
  • the positive Y-axis direction is downstream of the PM-containing gas 74.
  • the direction from upstream to downstream is also referred to as the flow direction of the PM-containing gas 74.
  • the X axis and the Y axis are orthogonal to each other, and the Z axis is perpendicular to the XY axis plane.
  • the X, Y, and Z axes form a so-called right-handed system.
  • the X, Y and Z axes only specify the relative positions of the components and do not limit the specific direction.
  • the Z-axis direction is not necessarily parallel to the gravity direction.
  • the terms “upper”, “lower”, “upper” and “lower” in this specification are also not limited to the vertical direction in the direction of gravity. These terms only refer to the direction relative to the Z axis.
  • the PM combustion apparatus 100 of this example has two unit structures 60 provided symmetrically with respect to a plane parallel to the XY plane.
  • One unit structure 60 may include the charging unit 10, the collection box 20, and the combustion unit 30.
  • the unit structure 60 of the present example shares one collection box 20 and one combustion unit 30, but the unit structure 60-1 has an upper half of one collection box 20 and an upper half of one combustion unit 30.
  • the unit structure 60-2 may be regarded as having a lower half of one collection box 20 and a lower half of one combustion section 30.
  • the unit structure 60-1 and the unit structure 60-2 may be regarded as one unit structure 60.
  • the charging unit 10 may include a discharge electrode 12 and a DC power source 24.
  • the charging unit 10-1 in this example includes discharge electrodes 12-1 and 12-2 and a DC power supply 24-1, and the charging unit 10-2 in this example includes discharge electrodes 12-3 and 12-4. And a DC power supply 24-2.
  • one DC power supply 24 is provided for one charging unit 10, but in another example, one DC power supply 24 is provided in the unit structures 60-1 and 60-2 adjacent in the Z-axis direction. May be provided.
  • the charging unit 10 of this example includes a pair of discharge electrodes 12.
  • the discharge electrode 12 of this example has a flat plate shape parallel to the XY plane.
  • the pair of discharge electrodes 12 may be arranged in line symmetry with respect to a straight line parallel to the Y axis. Further, the pair of discharge electrodes 12 may be provided apart from each other in the X-axis direction.
  • the discharge electrode 12 may have a plurality of barbs 14 protruding in the X-axis direction on one side of the end.
  • a plurality of thorn portions 14 may be provided along the Y-axis direction of the discharge electrode 12. That is, the plurality of barbs 14 may be provided at different positions in the flow direction of the PM-containing gas 74.
  • the plurality of barbs 14 may be provided on the sides of the pair of discharge electrodes 12 facing each other.
  • the thorn portion 14 in this example is a vertex portion that protrudes in the X-axis direction among the vertices of one triangle.
  • a negative voltage may be applied from the DC power supply 24 to the discharge electrode 12.
  • the magnitude of the negative voltage may be minus several kV.
  • k is an SI prefix meaning 10 to the third power, and V means volts.
  • the charging unit 10 causes the gas in the gas passage region 70 to break down by providing a potential difference of several kV to the gas between the metal discharge electrode 12 and the metal collection box 20 having the ground potential. Can do. Thereby, the charging unit 10 can generate discharge plasma (that is, charged particles) between the thorn unit 14 and the collection box 20.
  • PM-containing gas 74 has a lower oxygen concentration than air and a higher carbon dioxide concentration than air.
  • the PM-containing gas 74 is hotter than room temperature.
  • the PM-containing gas 74 is exhaust gas from an engine, for example, and has a temperature of about 270 ° C.
  • the operating region capable of stably generating corona discharge is a negative voltage rather than a positive voltage. It ’s wider. In this example, by applying a negative voltage to the discharge electrode 12, corona discharge can be generated more stably than when a positive voltage is applied.
  • the charged particles may be negative ions such as electrons or positive ions.
  • the discharge plasma may be corona discharge or glow discharge.
  • the PM in the PM-containing gas 74 may be charged by the collision between the generated charged particles and the PM in the PM-containing gas 74.
  • the charging unit 10 generates corona discharge, and PM is negatively charged.
  • the charged PM may be drawn to a collection box 20 having a ground potential. Further, the charged PM may ride on an ion wind formed by corona discharge and be drawn to the collection box 20. A certain percentage of the PM in the PM-containing gas 74 may be charged and collected in the collection box 20. PM that is charged but not collected in the collection box 20 may be collected in the collection box 20 located downstream. Further, the uncharged PM may be charged in the downstream charging unit 10.
  • the collection box 20 may have a plurality of openings 22 on the surface facing the discharge electrode 12.
  • the collection box 20 of this example faces the discharge electrode 12 in the positive and negative directions in the Z-axis direction.
  • the collection box 20 of this example has a plurality of openings 22 on two surfaces (upper surface 21 and lower surface 23) in the positive and negative directions in the Z-axis direction.
  • the collection box 20 of this example has a rectangular parallelepiped shape, and the four surfaces surrounding the two surfaces do not have the opening 22.
  • the collection box 20 of this example has a ground potential.
  • the charged PM may be collected in the collection box 20 through the opening 22.
  • the charged PM may be collected on the surface of the collection box 20.
  • the collection box 20 can provide a space having a wind speed lower than that of the PM-containing gas 74 inside.
  • the wind speed inside the collection box 20 can be 1 m / s.
  • m means meters and s means seconds.
  • the charging unit 10 may include the upper surface 21 or the lower surface 23 of the collection box 20.
  • the charging unit 10-1 includes an upper surface 21 and the charging unit 10-2 includes a lower surface 23.
  • the upper surface 21 of the collection box 20 is a plane portion parallel to the XY plane including the opening 22, and the lower surface 23 of the collection box 20 is a plane parallel to the XY plane including the opening 22. Part.
  • the combustion unit 30 may be provided inside the collection box 20.
  • the combustion unit 30 may burn the PM collected in the collection box 20.
  • the combustion unit 30 may include a heating element that supplies heat to the PM.
  • the PM is sufficiently low from several V to 100 V compared to dielectric barrier discharge in which PM is burned by discharge using a high voltage of several kV to several tens of kV. Can be burned. Thereby, PM can be burned with a smaller electric power compared to the dielectric barrier discharge.
  • the combusting part 30 of this example uses a sufficiently low voltage as compared with the dielectric barrier discharge, it can be handled more safely.
  • the heating element in the combustion section 30 of this example is a ceramic heater 32 that supplies radiant heat to the PM.
  • a state in which electromagnetic waves and the like are radiated from the ceramic heater 32 to the PM is indicated by broken lines and hatching.
  • the radiant heat may spread radially from the radiant part of the ceramic heater 32.
  • the ceramic heater 32 can directly heat PM by radiant heat. Therefore, in this example, energy efficiency can be increased as compared with the case where PM is heated using a metal plate in which a heating wire is incorporated.
  • the combustion unit 30 of this example includes a plurality of ceramic heaters 32, a pair of insulating plates 34, and a plurality of pairs of bolts 36 and nuts 38.
  • the plurality of ceramic heaters 32 may have a rectangular parallelepiped shape having a longitudinal portion in the Y-axis direction.
  • the plurality of ceramic heaters 32 may be provided apart from each other at different positions in the X-axis direction.
  • the head 37 is a part of the bolt 36 and may be used when the bolt 36 and the nut 38 are tightened.
  • the insulating plate 34 may be a high-temperature compatible insulating plate that can ensure electrical insulation of several hundred volts at a high temperature of about 400 ° C. at which PM burns.
  • the insulating plate 34 may be a mica ceramic plate.
  • the insulating plate 34 of this example is a Mycalex (registered trademark) plate.
  • the pair of insulating plates 34 may be provided so as to overlap in the Z-axis direction with a plurality of ceramic heaters 32 interposed therebetween. Further, the plurality of pairs of bolts 36 and nuts 38 may fix the pair of insulating plates 34. In this example, two pairs of bolts 36 and nuts 38 are provided so as to sandwich one ceramic heater 32 therebetween in the X-axis direction.
  • the position of the ceramic heater 32 may be fixed by being sandwiched between the insulating plates 34.
  • the ceramic heater 32 may have a radiation part exposed to the inside of the collection box 20 at a portion not sandwiched between the insulating plates 34.
  • the ceramic heater 32 of this example has a radiation portion on the surface in the positive and negative directions of the Z axis. Thereby, the ceramic heater 32 of this example can supply radiant heat in the positive and negative directions of the Z axis.
  • the combustion unit 30 may be fixed at the approximate center of the collection box 20 in the Z-axis direction. Thereby, in the two adjacent unit structures 60, the distance from the XY plane in which the ceramic heater 32 is provided to the upper surface 21 and the lower surface 23 in which the opening 22 of the collection box 20 is provided can be equalized. Thus, since the ceramic heater 32 of this example has a vertically symmetrical structure, the unit structure 60-1 having the upper half of the combustion part 30 and the function 60-2 having the lower half of the combustion part 30 function similarly. You can do it.
  • the collected PM and the ceramic heater 32 are preferably separated by a predetermined distance.
  • the distance from the ceramic heater 32 to the upper surface 21 and the lower surface 23 of the collection box 20 is equalized, one of the adjacent unit structures 60 (that is, one of the unit structures 60-1 and 60-2). , It is possible to prevent the ceramic heater 32 and the collected PM from being extremely close to each other.
  • a dust recovery mechanism such as a blower is generally larger than the collection box 20.
  • the dust collection mechanism such as a blower has a volume about twice that of the collection box 20.
  • it has the combustion part 30 which burns the collected PM instead of dust collection mechanisms, such as a blower.
  • the size of the whole apparatus can be made small compared with the case where the collected PM is not burned.
  • dust collection mechanisms such as a blower
  • recovered PM since PM is burned and released to the outside as a gas, it is also advantageous in that maintenance itself is unnecessary.
  • the PM combustion apparatus 100 of this example further includes a control unit 90.
  • the control unit 90 may include a processor, a CPU or MPU, a memory, and the like, and may control the overall operation of the PM combustion apparatus 100.
  • the control unit 90 may control energization of the heating element of the combustion unit 30.
  • the control unit 90 supplies the radiant heat from the ceramic heater 32 by supplying a current to the ceramic heater 32 (that is, turning on the ceramic heater 32) or not supplying a current (that is, turning off the ceramic heater 32). The presence or absence may be controlled.
  • the control unit 90 may control the amount of radiant heat supplied from the ceramic heater 32 by controlling at least one of a current supplied to the ceramic heater 32 and a voltage applied to the ceramic heater 32.
  • control unit 90 is illustrated so as to control one ceramic heater 32.
  • control unit 90 of this example may control all the ceramic heaters 32 in the combustion unit 30.
  • the control unit 90 may burn the PM collected in the collection box 20 by controlling the operation timing of the combustion unit 30 according to the operation state of the PM combustion apparatus 100.
  • the operation state of the PM combustion apparatus 100 may be a current operation state or a past operation state (that is, an operation history).
  • the operating state of the PM combustion device 100 may be reflected in the weight of the PM collected in the collection box 20. Therefore, the control unit 90 may burn PM according to the weight of the PM collected in the collection box 20.
  • the operation timing may be a timing at which the heating element emits radiant heat or a timing at which energization of the heating element is started.
  • the collected PM may grow into a lump having a certain size.
  • Agglomerated PM begins to burn at a temperature equal to or higher than a predetermined temperature (for example, 400 ° C.). For example, combustion starts in a region of the PM lump that is closest to the radiating portion of the ceramic heater 32. When combustion starts in the region, the entire mass of PM can be combusted by gradually expanding the combustion.
  • the combustion unit 30 when PM having a constant weight is collected in the collection box 20, the combustion unit 30 is operated to burn the PM. Thereby, compared with the case where the combustion part 30 is always operated, PM can be burned efficiently with lower electric power.
  • the regular maintenance described above was performed for the purpose of stably generating corona discharge. Since PM deposited on the surface of the collection box 20 has the same potential as the collection box 20, the gap length between the thorn portion 14 and the upper surface 21 or the lower surface 23 is substantially shortened. Thereby, the corona discharge generated in the charging unit 10 may become unstable and spark may occur. In particular, when the PM-containing gas 74 is at a high temperature exceeding 100 ° C., sparks are likely to occur when the gap length is shortened. As described above, the timing of burning the above-described PM may be a timing in consideration of generating stable corona discharge.
  • the length (that is, the thickness) of the collection box 20 in the Z-axis direction and the hole diameter of the opening 22 of the collection box 20 may be related to the collection of PM.
  • the hole diameter of the opening 22 has a size of 1/10 to 1 of the thickness of the collection box 20.
  • the thickness of the PM deposited in the collection box 20 is about half of the hole diameter of the opening 22 in order to prevent the PM from being collected once in the collection box 20 but scattered and flowing downstream. It is desirable to do. That is, in the example where the thickness of the collection box 20 is 2 [cm], it is desirable to burn the PM when the thickness of the PM becomes 1 [mm] or more and 10 [mm] or less.
  • the thickness of the PM to be deposited is not less than (1/20) and not more than (1/2) of the thickness of the collection box 20.
  • the change in PM thickness is proportional to the volume of the collected PM.
  • the density of PM is constant, the change in PM thickness is proportional to the weight of the collected PM. Therefore, the upper limit and the lower limit of the weight of the collected PM, which is an index of timing for burning PM, may be the following values.
  • Lower limit: 2.0 ⁇ Vc ⁇ 10 ⁇ 5 [kg] ⁇ (1/20) Vc ⁇ 10 ⁇ 6 [kg]
  • Upper limit: 2.0 ⁇ Vc ⁇ 10 ⁇ 5 [kg] ⁇ (1/2) Vc ⁇ 10 ⁇ 5 [kg]
  • the PM combustion apparatus 100 may have a weight sensor 80 that measures the weight of the collection box 20.
  • the weight sensor 80 may detect the weight of the collection box 20 and inform the control unit 90 of the detected weight.
  • the control unit 90 detects the weight of the increased PM by subtracting the weight of the collection box 20 in a state where no PM is collected from the weight of the collection box 20 in a state where PM is collected. It's okay.
  • the timing for notifying the controller 90 of the increased weight detected by the weight sensor may be every minute or every second.
  • the volume of PM may be estimated by optical means. As described above, since the density of PM is known, the weight of PM collected by volume measurement may be estimated.
  • the control unit 90 may control the power supplied to the combustion unit 30 according to the weight of the PM collected in the collection box 20.
  • the control unit 90 of this example performs energization of the ceramic heater 32 when the weight of the collected PM is in the range of 10 ⁇ 6 ⁇ Vc [kg] to 10 ⁇ 5 ⁇ Vc [kg].
  • the presence / absence or the current (or voltage applied to the ceramic heater 32) flowing through the ceramic heater 32 is controlled. Thereby, since PM can be combusted when PM is collected only by a fixed weight, extra power consumption in the combustion unit 30 can be reduced.
  • control unit 90 may increase the power supplied to the combustion unit 30 when the weight of the PM exceeds a predetermined value.
  • the control unit 90 may include a table of a plurality of numerical ranges obtained by subdividing the above-described range of 10 ⁇ 6 ⁇ Vc [kg] to 10 ⁇ 5 ⁇ Vc [kg].
  • the control unit 90 supplies power to the combustion unit 30
  • the power supplied to the combustion unit 30 may be higher as the collected PM is in a heavier range.
  • the time required for PM to burn can be controlled according to the weight of PM. For example, when the PM is relatively large, the collected PM can be burned quickly by applying a higher power than that provided when the PM is relatively small.
  • FIG. 2 is a top view of the charging unit 10 and the collection box 20.
  • the discharge electrode 12 of this example has a plurality of barbs 14 along the flow direction of the PM-containing gas 74.
  • the opening 22 of the collection box 20 may be arranged according to the position of the thorn portion 14. In this example, one opening 22 is disposed below one thorn portion 14.
  • FIG. 2 is a top view of the combustion part 30.
  • FIG. However, the state excluding the discharge electrode 12 and the upper surface 21 of the collection box 20 is shown.
  • One end of the ceramic heater 32 is fixed by an insulating plate 34 and a bolt 36.
  • a radiation portion 33 is provided at the other end of the ceramic heater 32.
  • the radiating portion 33 of the ceramic heater 32 may have an area of 4 mm ⁇ 4 mm in the XY plane.
  • the PM is burned at a burning rate of 40 [mg / min] or more and 50 [mg / min] per ceramic heater 32. be able to.
  • 40 ceramic heaters 32 may be provided in one collection box 20.
  • the above time is a time when the ceramic heater 32 supplies heat in a normal temperature atmosphere.
  • the temperature of the PM-containing gas 74 exhausted from the engine or the like is as high as 100 ° C. to 300 ° C. (typically 200 ° C.), so that it is collected even if the ceramic heater 32 supplies heat intermittently.
  • the PM collected in the box 20 can be burned.
  • the lump of PM once ignited can be spread. Therefore, in order to burn 2 kg of PM, it is collected by supplying heat from the ceramic heater 32 for a half time of 200 [min] or more and 250 [min] or less, that is, approximately one and a half hours to two hours.
  • the burned PM can be burned.
  • the control unit 90 may control the power supplied to the combustion unit 30 according to the temperature of the PM-containing gas 74. As described above, the temperature of the PM-containing gas 74 is relatively high, and when the PM collected in the collection box reaches about 400 ° C., it starts to burn. Therefore, the control unit 90 increases the power supplied to the combustion unit 30 when the temperature of the PM-containing gas 74 is relatively low, and supplies the power to the combustion unit 30 when the temperature of the PM-containing gas 74 is relatively high. Electric power may be reduced.
  • control unit 90 may control the power supplied to the combustion unit 30 in consideration of the time until the PM reaches about 400 [° C.].
  • the radiation part 33 may also be arranged according to the position of the thorn part 14.
  • one thorn part 14, one opening part 22, and one radiation part 33 may overlap in the Z-axis direction.
  • one thorn portion 14, one opening portion 22, and one radiation portion 33 may overlap at least partially in the Z-axis direction.
  • PM tends to be collected in the unit structure 60-1 near the thorn portion 14 and in the unit structure 60-2 near the thorn portion 14. Therefore, by arranging the opening 22 and the radiating portion 33 according to the position of the thorn portion 14, the PM can be burned more efficiently than when radiant heat is supplied to a region where PM is difficult to collect. .
  • FIG. 3 is a partially enlarged view of the top view of the combustion unit 30.
  • the insulating plate 34 and the head 37 of the bolt 36 are indicated by broken lines.
  • the ceramic heater 32 has a positive electrode wiring and a negative electrode wiring. In this example, the positive and negative wirings are made as short as possible. Then, the positive wiring of each ceramic heater 32 is connected to the positive heat-resistant coated wiring 44 by the crimp terminal 42. Similarly, the negative electrode wiring of each ceramic heater 32 is connected to the negative electrode heat-resistant coated wiring 45 by the crimp terminal 43. Thereby, the thermal deterioration of the ceramic heater 32 can be reduced, and the operation reliability of the ceramic heater 32 can be ensured.
  • FIG. 4A is a first modification example regarding the arrangement of the ceramic heater 32.
  • the opening 22 of the collection box 20 is omitted, and one side of the discharge electrode 12 where the barbs 14 are provided in the discharge electrode 12 is indicated by a broken line.
  • the plurality of ceramic heaters 32 are provided apart from each other at different positions in the Y-axis direction.
  • the plurality of ceramic heaters 32 immediately below the discharge electrode 12-1 and the plurality of ceramic heaters 32 directly below the discharge electrode 12-2 are line symmetric with respect to a straight line parallel to the Y axis. Provided.
  • the opening 22 and the radiation portion 33 are arranged according to the position of the thorn portion 14. That is, one thorn part 14, one opening part 22, and one radiation part 33 overlap at least partially in the Z-axis direction. Thereby, compared with the case where radiant heat is supplied to the area
  • FIG. 4B is a second modification example regarding the arrangement of the ceramic heater 32.
  • the opening 22 is omitted, and one side of the discharge electrode 12 provided with the barbs 14 is indicated by a broken line.
  • the ceramic heater 32 of this example is provided by extending from one surface facing the Y-axis direction to the other surface in the collection box 20.
  • the ceramic heater 32 of this example is fixed by insulating plates 34 at both ends in the Y-axis direction.
  • the ceramic heater 32 of this example has a radiating portion 33 in a region not covered with the insulating plate 34.
  • the radiation part 33 of this example is also provided on the upper and lower surfaces of the ceramic heater 32. However, the radiation part 33 of this example is provided to extend between the two insulating plates 34 opposed in the Y-axis direction.
  • the radiation part 33 may extend at least from directly below the thorn part 14 located at the most upstream to directly below the thorn part 14 located at the most downstream.
  • the plurality of ceramic heaters 32 are provided apart from each other at different positions in the X-axis direction.
  • the opening 22 and the radiation portion 33 are arranged according to the position of the thorn portion 14. That is, one thorn part 14, one opening part 22, and one radiation part 33 overlap at least partially in the Z-axis direction. Thereby, compared with the case where radiant heat is supplied to the area
  • FIG. 5 is a top view of the combustion part 30 in 2nd Embodiment.
  • FIG. 5B is a cross-sectional view of the collection box 20 and the combustion unit 30 in the second embodiment.
  • the combustion part 30 of this example further includes a conductive part 35 having the same polarity as that of the discharge electrode 12. This is the main difference from the first embodiment.
  • the conductive portion 35 may be provided between two ceramic heaters 32 adjacent in the X-axis direction. As with the ceramic heater 32, one end of the conductive portion 35 may be fixed on the insulating plate 34, and the other end may protrude in the Y-axis direction and be exposed from the insulating plate 34.
  • the conductive portion 35 may be a metal conductor.
  • the entire conductive portion 35 may be formed of metal, and a metal foil may be provided only on the surface of the conductive portion 35.
  • a voltage having the same polarity as that of the discharge electrode 12 of the charging unit 10 may be applied to the conductive unit 35 of this example.
  • a negative voltage of several tens of volts is applied to the conductive portion 35.
  • the negatively charged PM can repel the conductive portion 35 to which a negative voltage is applied. Therefore, the PM easily adheres to the surface (content surface and outer surface) of the collection box 20 as compared to the XY plane on which the ceramic heater 32 and the conductive portion 35 are provided. Thereby, PM can be collected at a position separated from the ceramic heater 32.
  • FIG. 6 is a cross-sectional view of the PM combustion apparatus 100 according to the third embodiment.
  • the combustion unit 30 of this example includes a heating wire 52 instead of the ceramic heater 32. This is the main difference from the first embodiment.
  • the heating wire 52 may be a continuous nichrome wire. However, in FIG. 6, the several cross section of the heating wire 52 is shown spaced apart.
  • the control unit 90 may burn PM by controlling the operation timing of the combustion unit 30 according to the operation state of the PM combustion device 100.
  • control unit 90 causes the heating wire 52 to flow current (turn on the heating wire 52) or not flow current (turn off the heating wire 52) to the heating wire 52.
  • the presence or absence of the supply of heat from may be controlled.
  • the control unit 90 may control the amount of heat supplied from the heating wire 52 by controlling at least one of the current supplied to the heating wire 52 and the voltage applied to the heating wire 52.
  • FIG. 7 is a top view of the charging unit 10 and the collection box 20.
  • the opening 22 in this example may also be arranged according to the position of the thorn portion 14.
  • FIG. 7B is a top view of the combustion unit 30. However, the state excluding the discharge electrode 12 and the upper surface 21 of the collection box 20 is shown.
  • the heating wire 52 of this example is provided in a meandering shape from one end of the collection box 20 in the X-axis direction to the other end. That is, the heating wire 52 of the present example has a structure in which a U shape and an upside down U shape in the X axis direction are alternately connected in the X axis direction.
  • One longitudinal portion of the U shape may be arranged according to the position of the thorn portion 14.
  • the plurality of barbs 14, the plurality of openings 22, and one U-shaped long portion of the heating wire 52 may overlap in the Z-axis direction.
  • FIG. 8A is a first modification example regarding the arrangement of the heating wires 52.
  • the heating wire 52 of this example has a shape corresponding to the shape of one side of the discharge electrode 12 provided with the thorn portion 14.
  • one side where the thorn portion 14 is provided has a triangular wave shape extending in the Y-axis direction.
  • the triangular wave shape has irregularities in the X-axis direction.
  • the heating wire 52 has a sinusoidal shape 56 extending in the Y-axis direction.
  • the sine wave shape 56 has irregularities in the X-axis direction. Therefore, the side where the thorn portion 14 is provided and the sine wave shape 56 of the heating wire 52 can substantially overlap in the Z-axis direction.
  • the heating wire 52 of this example has two sinusoidal shapes 56 and three linear shapes 54.
  • the linear shape 54-1 extends in the X-axis direction.
  • one end of the sine wave shape 56-1 in the positive direction of the Y axis is connected to the linear shape 54-1.
  • one end of the sine wave shape 56-1 in the negative Y-axis direction is connected to the linear shape 54-2.
  • one end of the sine wave shape 56-2 in the positive Y-axis direction is connected to the linear shape 54-3, and one end of the sine wave shape 56-2 in the negative Y-axis direction is connected to the linear shape 54-2.
  • FIG. 8B is a second modification example regarding the arrangement of the heating wires 52.
  • the combustion part 30 of this example has the heating wire 52-1 and the heating wire 52-2 which were mutually separated.
  • the sine wave shape 56-1 of the heating wire 52-1 and the sine wave shape 56-2 of the heating wire 52-2 are separated from each other.
  • a linear shape 54-1 and a linear shape 54-2 are provided at both ends of the sine wave shape 56-1 in the Y-axis direction
  • a linear shape 54-3 is provided at both ends of the sine wave shape 56-2 in the Y-axis direction.
  • a linear shape 54-4 is provided. This point is different from the third embodiment and the first modification thereof.
  • FIG. 9 is a cross-sectional view of the PM combustion apparatus 100 in the fourth embodiment.
  • the viewpoint is changed not to the direction parallel to the Y-axis direction as shown in FIG. 1 but to the direction parallel to the X-axis direction.
  • the charging unit 10 is provided on the upstream side of the PM-containing gas 74, and the collection box 20 and the combustion unit 30 are provided on the downstream side of the PM-containing gas 74.
  • the charging unit 10, the collection box 20, and the combustion unit 30 do not overlap in the Z-axis direction.
  • This example is different from the first embodiment in that respect, but is the same as the first embodiment in other points.
  • this example is described based on the first embodiment, it is needless to say that it may be combined with the modification of the first embodiment, the second embodiment, and the third embodiment and its modification. is there.
  • FIG. 10 is a cross-sectional view of the PM combustion apparatus 100 in the fifth embodiment.
  • the PM combustion apparatus 100 of this example has 2n unit structures 60 provided so as to overlap in the Z-axis direction (n is a natural number of 2 or more).
  • the arrangement of the unit structures 60 in this example may be expressed as a plurality of unit structures 60 arranged in parallel. By arranging a plurality of unit structures 60 in parallel, more PM-containing gas can be processed per unit time than when one unit structure 60 is provided.
  • this example is described on the basis of the first embodiment, it may be combined with the modification of the first embodiment, the second embodiment, the third embodiment and its modification, and the fourth embodiment. Of course.
  • FIG. 11 is a cross-sectional view of the PM combustion apparatus 100 in the sixth embodiment.
  • the PM combustion apparatus 100 of this example includes a plurality of unit structures 60 arranged in series in the flow direction from the upstream to the downstream of the PM-containing gas 74.
  • two unit structures 60-1 and 60-2 arranged in parallel are arranged in series in the flow direction (where m is a natural number of 2 or more).
  • one DC power supply 24-1 applies a negative voltage to m charging units 10 located in the Z-axis positive direction and arranged in series
  • another DC power supply 24- 2 applies a negative voltage to m charging units 10 positioned in the Z-axis negative direction and arranged in series.
  • one DC power supply 24 may be applied to 2 m charging units 10 arranged in series in the positive Z-axis direction and the negative Z-axis direction.
  • the 2m charging units 10 may include different DC power sources 24, and each of the two unit structures 60 at the same position in the flow direction (Y-axis direction) may share one DC power source 24.
  • this example is described on the basis of 1st Embodiment, the modification of 1st Embodiment, 2nd Embodiment, 3rd Embodiment, its modification, 4th Embodiment, and 5th Of course, it may be combined with the embodiment.
  • the PM combustion apparatus 100 when combining this example and the fifth embodiment, includes m unit structures 60 arranged in series in the flow direction (Y-axis direction), and in the Z-axis direction. It has n unit structures 60 arranged in parallel. That is, in this case, the PM combustion apparatus 100 has m ⁇ n unit structures 60.
  • control unit 90 may control the power supplied to the combustion unit 30 in each of the plurality of unit structures 60.
  • the control unit 90 of the present example supplies lower power to the upstream combustion unit 30 in which the collected PM has a relatively small weight, and the downstream combustion unit 30 in which the collected PM has a relatively large weight. Supply large power. As a result, excess power consumption can be suppressed in the upstream where the weight of the collected PM is relatively small, and PM is sufficiently burned in the downstream where the weight of the collected PM is relatively large. be able to.
  • the electric power supplied to the combustion unit 30 may be controlled according to the wind speed of the PM-containing gas 74.
  • the control unit 90 may increase the power supplied to the combustion unit 30 as the wind speed of the PM-containing gas 74 increases, and decrease the power supplied to the combustion unit 30 as the wind speed of the PM-containing gas 74 decreases. Thereby, suppression of excess power consumption and sufficient combustion of PM can be further ensured.
  • FIG. 12 is a cross-sectional view of the PM combustion apparatus 100 in the seventh embodiment. Similar to the sixth embodiment, the PM combustion apparatus 100 of the present example also includes a plurality of unit structures 60 arranged in series in the flow direction from the upstream to the downstream of the PM-containing gas 74. However, in this example, each unit structure 60 has one variable DC power supply 26. The controller 90 may control the output voltage of each variable DC power supply 26. A control signal from the control unit 90 to the variable DC power supply 26 is indicated by a broken line.
  • the PM-containing gas 74 sequentially passes from the upstream gas passage region 70 to the downstream gas passage region 70. If the same voltage is applied to the charging parts 10 of all the unit structures 60, the amount of PM collected in the most upstream collection box 20-1 is relatively small, and the collection boxes go downstream. There is a possibility that PM collected by 20 increases. For example, the weight of the collected PM may have a maximum value in the middle collection box 20. Therefore, the control unit 90 may control the voltage supplied to the charging unit 10 in each of the plurality of unit structures 60. Thereby, regardless of the wind speed of the PM-containing gas 74 and the position of the unit structure 60 in the flow direction of the PM-containing gas 74, the weight of the PM collected in each collection box 20 can be leveled.
  • control unit 90 may supply the same power to each combustion unit 30.
  • one variable DC power supply 26 is shared by two unit structures 60 stacked in the Z-axis direction, and the control unit 90 controls the voltage of the one shared variable DC power supply 26. May be.
  • the power supplied to the combustion unit 30 may be controlled according to the wind speed of the PM-containing gas 74.
  • the control unit 90 may increase the power supplied to the combustion unit 30 as the wind speed of the PM-containing gas 74 increases, and decrease the power supplied to the combustion unit 30 as the wind speed of the PM-containing gas 74 decreases. Thereby, suppression of excess power consumption and sufficient combustion of PM can be further ensured.
  • this example is described on the basis of 1st Embodiment, the modification of 1st Embodiment, 2nd Embodiment, 3rd Embodiment, its modification, 4th Embodiment, and 5th Of course, it may be combined with the embodiment.
  • a particulate matter combustion apparatus A charging unit for charging the particulate matter in the particulate matter-containing gas; A collecting unit that is provided apart from the charging unit and collects the particulate matter charged by the charging unit; A combustion unit that is provided inside the collection unit and burns the particulate matter collected in the collection unit; With Combusting the particulate matter collected in the collection unit by controlling the operation timing of the combustion unit according to the operation state of the particulate matter combustion device, Particulate matter combustion equipment.
  • the particulate matter combustion apparatus according to Item 1.
  • the particulate matter combustion apparatus according to Item 4.
  • the charging unit has a discharge electrode, The combustion part further includes a conductive part having a potential of the same polarity as the discharge electrode.
  • Item 4. The particulate matter combustion apparatus according to Item 4 or 5.
  • a plurality of unit structures each having the charging unit, the collection unit, and the combustion unit, arranged in series in the flow direction from the upstream to the downstream of the particulate matter-containing gas, According to the wind speed of the particulate matter-containing gas, the voltage supplied to the charging unit in each of the plurality of unit structures is controlled.
  • the particulate matter combustion apparatus according to any one of items 1 to 6.
  • a plurality of unit structures each having the charging unit, the collection unit, and the combustion unit, arranged in series in the flow direction from the upstream to the downstream of the particulate matter-containing gas, Controlling the power supplied to the combustion section in each of the plurality of unit structures according to the wind speed of the particulate matter-containing gas, The particulate matter combustion apparatus according to any one of items 1 to 6.
  • the particulate matter combustion apparatus according to any one of items 1 to 6.
  • the power supplied to the combustion unit is controlled.
  • the particulate matter combustion apparatus according to any one of items 1 to 8.
  • the power supplied to the combustion unit is controlled. Item 10.
  • the particulate matter combustion apparatus according to any one of Items 1 to 9.
  • the charging unit has a discharge electrode,
  • the discharge electrode includes a plurality of barbs provided at different positions in the flow direction from the upstream to the downstream of the particulate matter-containing gas,
  • the collection part has an opening on the surface facing the discharge electrode, Depending on the position of the plurality of barbs, the opening and the radiating part of the ceramic heater in the combustion part are arranged.
  • the particulate matter combustion apparatus according to any one of items 1 to 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrostatic Separation (AREA)

Abstract

The present invention provides a particulate substance combustion device provided with: a charging unit which electrically charges a particulate substance in a particulate substance-containing gas; a collecting unit, which is a collecting box that is spaced apart from the charging unit, collects the particulate substance electrically charged by the charging unit, has an opening for the particulate substance to pass therethrough, and has a metallic case; and a combustion unit which is disposed in the collecting unit, and includes a ceramic heater for combusting the particulate substance collected in the collecting unit to supply radiant heat to the particulate substance. By controlling the timing of the operation of the combustion unit according to the operation state of the particulate substance combustion device, the particulate substance collected in the collecting unit is combusted. The charging unit is disposed outside the collecting box.

Description

粒子状物質燃焼装置Particulate matter combustion equipment
 本発明は、粒子状物質燃焼装置に関する。 The present invention relates to a particulate matter combustion apparatus.
 従来、コロナ放電を利用して、排気ガス中の粒子状物質(Particulate Matter、以下PMと略記)を捕集していた(例えば、特許文献1および2参照)。また、ニクロム線に通電させることによりPMを燃焼させることが知られている(例えば、特許文献3参照)。さらに、コロナ電極の付いた汚染物質を取り除くためにコロナ電極を連続的または周期的に加熱することが知られている(例えば、特許文献4参照)。
[先行技術文献]
[特許文献]
 [特許文献1] 特許第4931602号公報
 [特許文献2] 特許第4823027号公報
 [特許文献3] 特許第6028348号公報
 [特許文献4] 特許第4714155号公報
Conventionally, particulate matter (Particulate Matter, hereinafter abbreviated as PM) in exhaust gas has been collected using corona discharge (see, for example, Patent Documents 1 and 2). Further, it is known that PM is burned by energizing a nichrome wire (for example, see Patent Document 3). Furthermore, it is known to heat the corona electrode continuously or periodically in order to remove contaminants with the corona electrode (see, for example, Patent Document 4).
[Prior art documents]
[Patent Literature]
[Patent Document 1] Japanese Patent No. 4931602 [Patent Document 2] Japanese Patent No. 4823027 [Patent Document 3] Japanese Patent No. 6028348 [Patent Document 4] Japanese Patent No. 4714155
解決しようとする課題Challenges to be solved
 粒子状物質を燃焼させる燃焼部を常時稼働させる場合、余分に電力を消費するのでエネルギー効率の観点で望ましくない。 ∙ When the combustion section that burns particulate matter is always operated, it consumes extra power, which is not desirable from the viewpoint of energy efficiency.
一般的開示General disclosure
 本発明の第1の態様においては、粒子状物質燃焼装置を提供する。粒子状物質燃焼装置は、帯電部と、捕集部と、燃焼部とを備えてよい。帯電部は、粒子状物質含有ガス中の粒子状物質を帯電させてよい。捕集部は、帯電部から離間して設けられてよい。捕集部は、帯電部により帯電された粒子状物質を捕集してよい。捕集部は、捕集箱であってよい。捕集箱は、粒子状物質が通過するための開口を有してよい。捕集箱は、金属製の筐体を有してよい。燃焼部は、捕集部の内部に設けられてよい。燃焼部は、捕集部において捕集された粒子状物質を燃焼させてよい。燃焼部は、セラミックヒーターを含んでよい。セラミックヒーターは、粒子状物質に対して輻射熱を供給してよい。粒子状物質燃焼装置の動作状態に応じて燃焼部の動作タイミングを制御することにより、捕集部において捕集された粒子状物質を燃焼させてよい。帯電部は、捕集箱の外に位置してよい。 In a first aspect of the present invention, a particulate matter combustion apparatus is provided. The particulate matter combustion apparatus may include a charging unit, a collection unit, and a combustion unit. The charging unit may charge the particulate matter in the particulate matter-containing gas. The collection unit may be provided apart from the charging unit. The collection unit may collect the particulate matter charged by the charging unit. The collection part may be a collection box. The collection box may have an opening through which particulate matter passes. The collection box may have a metal housing. The combustion unit may be provided inside the collection unit. The combustion unit may burn the particulate matter collected in the collection unit. The combustion section may include a ceramic heater. The ceramic heater may supply radiant heat to the particulate matter. The particulate matter collected in the collection unit may be burned by controlling the operation timing of the combustion unit according to the operation state of the particulate matter combustion apparatus. The charging unit may be located outside the collection box.
 また、捕集部に捕集された粒子状物質の重量に応じて、粒子状物質を燃焼させてよい。 Further, the particulate matter may be burned according to the weight of the particulate matter collected in the collecting part.
 捕集部の内部の体積をVc[cm]とし、粒子状物質の密度を10-4[kg/cm]とする場合に、捕集部に捕集された前記粒子状物質の重量が、10-6×Vc[kg]以上10-5×Vc[kg]以下になった場合に、捕集部に捕集された粒子状物質を燃焼させてよい。 When the volume inside the collection part is Vc [cm 3 ] and the density of the particulate matter is 10 −4 [kg / cm 3 ], the weight of the particulate matter collected in the collection part is , if it becomes 10 -6 × Vc [kg] or 10 -5 × Vc [kg] or less, was collected in the collecting portion the particulate matter may be burned.
 粒子状物質燃焼装置は、帯電部と、捕集部と、燃焼部とを備えてよい。帯電部は、粒子状物質含有ガス中の粒子状物質を帯電させてよい。捕集部は、帯電部から離間して設けられてよい。捕集部は、帯電部により帯電された粒子状物質を捕集してよい。燃焼部は、捕集部の内部に設けられてよい。燃焼部は、捕集部において捕集された粒子状物質を燃焼させてよい。粒子状物質燃焼装置の動作状態に応じて燃焼部の動作タイミングを制御することにより、捕集部において捕集された粒子状物質を燃焼させてよい。燃焼部は、発熱体を含んでよい。発熱体は、捕集部において捕集された粒子状物質に対して熱を供給してよい。帯電部は放電用電極を有してよい。燃焼部は、放電用電極と同じ極性の電位を有する導電部をさらに有してよい。 The particulate matter combustion apparatus may include a charging unit, a collection unit, and a combustion unit. The charging unit may charge the particulate matter in the particulate matter-containing gas. The collection unit may be provided apart from the charging unit. The collection unit may collect the particulate matter charged by the charging unit. The combustion unit may be provided inside the collection unit. The combustion unit may burn the particulate matter collected in the collection unit. The particulate matter collected in the collection unit may be burned by controlling the operation timing of the combustion unit according to the operation state of the particulate matter combustion apparatus. The combustion unit may include a heating element. The heating element may supply heat to the particulate matter collected in the collection unit. The charging unit may have a discharge electrode. The combustion part may further include a conductive part having the same polarity as the discharge electrode.
 粒子状物質燃焼装置は、複数の単位構造を備えてよい。複数の単位構造は、流れ方向において直列に配置されてよい。流れ方向は、粒子状物質含有ガスの上流から下流に向かう方向であってよい。複数の単位構造は、帯電部と捕集部と燃焼部とを各々有してよい。粒子状物質含有ガスの風速に応じて、複数の単位構造の各々における帯電部へ供給する電圧を制御してよい。 The particulate matter combustion apparatus may be provided with a plurality of unit structures. The plurality of unit structures may be arranged in series in the flow direction. The flow direction may be a direction from upstream to downstream of the particulate matter-containing gas. The plurality of unit structures may each include a charging unit, a collection unit, and a combustion unit. The voltage supplied to the charging unit in each of the plurality of unit structures may be controlled according to the wind speed of the particulate matter-containing gas.
 粒子状物質燃焼装置は、帯電部と、捕集部と、燃焼部とを備えてよい。帯電部は、粒子状物質含有ガス中の粒子状物質を帯電させてよい。捕集部は、帯電部から離間して設けられてよい。捕集部は、帯電部により帯電された粒子状物質を捕集してよい。燃焼部は、捕集部の内部に設けられてよい。燃焼部は、捕集部において捕集された粒子状物質を燃焼させてよい。粒子状物質燃焼装置の動作状態に応じて燃焼部の動作タイミングを制御することにより、捕集部において捕集された粒子状物質を燃焼させてよい。粒子状物質燃焼装置は、複数の単位構造を備えてよい。複数の単位構造は、流れ方向において直列に配置されてよい。流れ方向は、粒子状物質含有ガスの上流から下流に向かう方向であってよい。複数の単位構造は、帯電部と捕集部と燃焼部とを各々有してよい。粒子状物質含有ガスの風速に応じて、複数の単位構造の各々における燃焼部へ供給する電力を制御してよい。 The particulate matter combustion apparatus may include a charging unit, a collection unit, and a combustion unit. The charging unit may charge the particulate matter in the particulate matter-containing gas. The collection unit may be provided apart from the charging unit. The collection unit may collect the particulate matter charged by the charging unit. The combustion unit may be provided inside the collection unit. The combustion unit may burn the particulate matter collected in the collection unit. The particulate matter collected in the collection unit may be burned by controlling the operation timing of the combustion unit according to the operation state of the particulate matter combustion apparatus. The particulate matter combustion apparatus may include a plurality of unit structures. The plurality of unit structures may be arranged in series in the flow direction. The flow direction may be a direction from upstream to downstream of the particulate matter-containing gas. The plurality of unit structures may each include a charging unit, a collection unit, and a combustion unit. The power supplied to the combustion section in each of the plurality of unit structures may be controlled according to the wind speed of the particulate matter-containing gas.
 粒子状物質含有ガスの温度に応じて、燃焼部へ供給する電力を制御してよい。捕集部に捕集された粒子状物質の重量に応じて、燃焼部へ供給する電力を制御してよい。 The electric power supplied to the combustion section may be controlled according to the temperature of the particulate matter-containing gas. The electric power supplied to the combustion unit may be controlled according to the weight of the particulate matter collected in the collection unit.
 帯電部は放電用電極を有してよい。放電用電極は、複数のトゲ部を含んでよい。複数のトゲ部は、流れ方向において各々異なる位置に設けられてよい。流れ方向は、粒子状物質含有ガスの上流から下流に向かう方向であってよい。捕集部は、開口部を有してよい。開口部は、放電用電極と対向する面に設けられてよい。複数のトゲ部の位置に応じて、開口部と燃焼部におけるセラミックヒーターの輻射部とが配置されてよい。 The charging unit may have a discharge electrode. The discharge electrode may include a plurality of barbs. The plurality of barbs may be provided at different positions in the flow direction. The flow direction may be a direction from upstream to downstream of the particulate matter-containing gas. The collection part may have an opening. The opening may be provided on a surface facing the discharge electrode. Depending on the position of the plurality of barbs, the opening and the radiating part of the ceramic heater in the combustion part may be arranged.
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not enumerate all the necessary features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.
第1実施形態におけるPM燃焼装置100の断面図である。It is sectional drawing of PM combustion apparatus 100 in 1st Embodiment. (a)は、帯電部10および捕集箱20の上面図である。(b)は、燃焼部30の上面図である。(A) is a top view of the charging unit 10 and the collection box 20. FIG. 4B is a top view of the combustion unit 30. FIG. 燃焼部30の上面図の部分拡大図である。2 is a partially enlarged view of a top view of a combustion unit 30. FIG. セラミックヒーター32の配置に関する第1変形例である。It is a 1st modification regarding arrangement | positioning of the ceramic heater 32. FIG. セラミックヒーター32の配置に関する第2変形例である。It is a 2nd modification regarding arrangement | positioning of the ceramic heater 32. FIG. (a)は、第2実施形態における燃焼部30の上面図である。(b)は、第2実施形態における捕集箱20および燃焼部30の断面図である。(A) is a top view of the combustion part 30 in 2nd Embodiment. (B) is sectional drawing of the collection box 20 and the combustion part 30 in 2nd Embodiment. 第3実施形態におけるPM燃焼装置100の断面図である。It is sectional drawing of PM combustion apparatus 100 in 3rd Embodiment. (a)は、帯電部10および捕集箱20の上面図である。(b)は、燃焼部30の上面図である。(A) is a top view of the charging unit 10 and the collection box 20. FIG. 4B is a top view of the combustion unit 30. FIG. 電熱線52の配置に関する第1変形例である。It is a 1st modification regarding arrangement | positioning of the heating wire 52. FIG. 電熱線52の配置に関する第2変形例である。It is a 2nd modification regarding arrangement | positioning of the heating wire 52. FIG. 第4実施形態におけるPM燃焼装置100の断面図である。It is sectional drawing of PM combustion apparatus 100 in 4th Embodiment. 第5実施形態におけるPM燃焼装置100の断面図である。It is sectional drawing of PM combustion apparatus 100 in 5th Embodiment. 第6実施形態におけるPM燃焼装置100の断面図である。It is sectional drawing of PM combustion apparatus 100 in 6th Embodiment. 第7実施形態におけるPM燃焼装置100の断面図である。It is sectional drawing of PM combustion apparatus 100 in 7th Embodiment.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
 図1は、第1実施形態におけるPM燃焼装置100の断面図である。なお、PM燃焼装置は粒子状物質燃焼装置と読み替えてよい。PM燃焼装置100は、PM含有ガス74に含まれるPMを捕集し、当該捕集したPMを燃焼させてよい。PM含有ガス74は、PM燃焼装置100におけるガス通過領域70を通過してよい。本例において、ガス通過領域70は、帯電部10の放電用電極12と、当該帯電部10からZ軸方向に離間して設けられた捕集箱20との間の領域である。なお、本例の捕集箱20は、金属製の筐体を有する。捕集箱20は、捕集部の一例である。 FIG. 1 is a cross-sectional view of the PM combustion apparatus 100 according to the first embodiment. The PM combustion device may be read as a particulate matter combustion device. The PM combustion apparatus 100 may collect PM contained in the PM-containing gas 74 and burn the collected PM. The PM-containing gas 74 may pass through the gas passage region 70 in the PM combustion apparatus 100. In this example, the gas passage region 70 is a region between the discharge electrode 12 of the charging unit 10 and the collection box 20 provided away from the charging unit 10 in the Z-axis direction. In addition, the collection box 20 of this example has a metal housing. The collection box 20 is an example of a collection unit.
 本例のPM含有ガス74は、ガス通過領域70をY軸負方向から正方向に向かって通過する。Y軸負方向はPM含有ガス74の上流であり、Y軸正方向はPM含有ガス74の下流である。本明細書においては、当該上流から下流に向かう方向をPM含有ガス74の流れ方向とも称する。 The PM-containing gas 74 in this example passes through the gas passage region 70 from the Y-axis negative direction toward the positive direction. The negative Y-axis direction is upstream of the PM-containing gas 74, and the positive Y-axis direction is downstream of the PM-containing gas 74. In this specification, the direction from upstream to downstream is also referred to as the flow direction of the PM-containing gas 74.
 図1において、X軸とY軸とは互いに直交し、Z軸はX‐Y軸平面に垂直である。X、YおよびZ軸は、いわゆる右手系を成す。X、YおよびZ軸は、構成要素の相対位置を特定するに過ぎず、特定の方向を限定するものではない。Z軸方向は、必ずしも重力方向と平行でなくてよい。本明細書における「上」、「下」、「上方」および「下方」の用語もまた、重力方向における上下方向に限定されない。これらの用語は、Z軸に対する相対的な方向を指すに過ぎない。 In FIG. 1, the X axis and the Y axis are orthogonal to each other, and the Z axis is perpendicular to the XY axis plane. The X, Y, and Z axes form a so-called right-handed system. The X, Y and Z axes only specify the relative positions of the components and do not limit the specific direction. The Z-axis direction is not necessarily parallel to the gravity direction. The terms “upper”, “lower”, “upper” and “lower” in this specification are also not limited to the vertical direction in the direction of gravity. These terms only refer to the direction relative to the Z axis.
 本例のPM燃焼装置100は、X‐Y平面と平行な面に対して対称に設けられた2つの単位構造60を有する。1つの単位構造60は、帯電部10、捕集箱20と、燃焼部30とを含んでよい。本例の単位構造60は、1つの捕集箱20と1つの燃焼部30とを共有するが、単位構造60‐1が1つの捕集箱20の上半分と1つの燃焼部30の上半分とを有し、単位構造60‐2が1つの捕集箱20の下半分と1つの燃焼部30の下半分とを有するとみなしてよい。なお、他の例においては、単位構造60‐1と単位構造60‐2とを合わせて、1つの単位構造60とみなしてもよい。 The PM combustion apparatus 100 of this example has two unit structures 60 provided symmetrically with respect to a plane parallel to the XY plane. One unit structure 60 may include the charging unit 10, the collection box 20, and the combustion unit 30. The unit structure 60 of the present example shares one collection box 20 and one combustion unit 30, but the unit structure 60-1 has an upper half of one collection box 20 and an upper half of one combustion unit 30. And the unit structure 60-2 may be regarded as having a lower half of one collection box 20 and a lower half of one combustion section 30. In another example, the unit structure 60-1 and the unit structure 60-2 may be regarded as one unit structure 60.
 帯電部10は、放電用電極12と、直流電源24とを含んでよい。本例の帯電部10‐1は、放電用電極12‐1および12‐2と直流電源24‐1とを含み、本例の帯電部10‐2は、放電用電極12‐3および12‐4と直流電源24‐2とを含む。なお、本例においては1つの帯電部10に対して1つの直流電源24が設けられるが、他の例においてはZ軸方向に隣接する単位構造60‐1および60‐2において1つの直流電源24が設けられてもよい。 The charging unit 10 may include a discharge electrode 12 and a DC power source 24. The charging unit 10-1 in this example includes discharge electrodes 12-1 and 12-2 and a DC power supply 24-1, and the charging unit 10-2 in this example includes discharge electrodes 12-3 and 12-4. And a DC power supply 24-2. In this example, one DC power supply 24 is provided for one charging unit 10, but in another example, one DC power supply 24 is provided in the unit structures 60-1 and 60-2 adjacent in the Z-axis direction. May be provided.
 本例の帯電部10は、一対の放電用電極12を含む。本例の放電用電極12は、X‐Y平面と平行な平板形状である。一対の放電用電極12は、Y軸と平行な直線に対して線対称に配置されてよい。また、一対の放電用電極12は、X軸方向において互いに離間して設けられてよい。 The charging unit 10 of this example includes a pair of discharge electrodes 12. The discharge electrode 12 of this example has a flat plate shape parallel to the XY plane. The pair of discharge electrodes 12 may be arranged in line symmetry with respect to a straight line parallel to the Y axis. Further, the pair of discharge electrodes 12 may be provided apart from each other in the X-axis direction.
 放電用電極12は、端部の一辺においてX軸方向に突出する複数のトゲ部14を有してよい。トゲ部14は、放電用電極12のY軸方向に沿って複数設けられてよい。つまり、複数のトゲ部14は、PM含有ガス74の流れ方向において各々異なる位置に設けられてよい。複数のトゲ部14は、一対の放電用電極12の互いに向かい合う辺においてそれぞれ設けられてよい。本例のトゲ部14は、1つの三角形の頂点のうちX軸方向に突出する頂点部分である。 The discharge electrode 12 may have a plurality of barbs 14 protruding in the X-axis direction on one side of the end. A plurality of thorn portions 14 may be provided along the Y-axis direction of the discharge electrode 12. That is, the plurality of barbs 14 may be provided at different positions in the flow direction of the PM-containing gas 74. The plurality of barbs 14 may be provided on the sides of the pair of discharge electrodes 12 facing each other. The thorn portion 14 in this example is a vertex portion that protrudes in the X-axis direction among the vertices of one triangle.
 放電用電極12には、直流電源24から負電圧が印加されてよい。負電圧の大きさは、マイナス数kVであってよい。なお、kは10の3乗を意味するSI接頭辞であり、Vはボルトを意味する。帯電部10は、金属製の放電用電極12と接地電位を有する金属製の捕集箱20との間の気体に数kVの電位差を設けることにより、ガス通過領域70の気体を絶縁破壊させることができる。これにより、帯電部10はトゲ部14と捕集箱20との間に放電プラズマ(つまり、荷電粒子)を生成することができる。 A negative voltage may be applied from the DC power supply 24 to the discharge electrode 12. The magnitude of the negative voltage may be minus several kV. Note that k is an SI prefix meaning 10 to the third power, and V means volts. The charging unit 10 causes the gas in the gas passage region 70 to break down by providing a potential difference of several kV to the gas between the metal discharge electrode 12 and the metal collection box 20 having the ground potential. Can do. Thereby, the charging unit 10 can generate discharge plasma (that is, charged particles) between the thorn unit 14 and the collection box 20.
 PM含有ガス74は、空気よりも低い酸素濃度および空気よりも高い二酸化炭素濃度を有する。PM含有ガス74は、常温よりも高温である。PM含有ガス74は、例えばエンジンからの排気ガスであり、270℃程度の温度を有する。このような低酸素濃度、高二酸化炭素濃度および高温のPM含有ガス74に対して、コロナ放電を安定して生成することができる稼働領域(電流電圧特性領域)は、正電圧よりも負電圧の方が広い。本例では、放電用電極12に負電圧を印加することにより、正電圧を印加する場合に比べて安定してコロナ放電を生成することができる。 PM-containing gas 74 has a lower oxygen concentration than air and a higher carbon dioxide concentration than air. The PM-containing gas 74 is hotter than room temperature. The PM-containing gas 74 is exhaust gas from an engine, for example, and has a temperature of about 270 ° C. For such low oxygen concentration, high carbon dioxide concentration and high temperature PM-containing gas 74, the operating region (current-voltage characteristic region) capable of stably generating corona discharge is a negative voltage rather than a positive voltage. It ’s wider. In this example, by applying a negative voltage to the discharge electrode 12, corona discharge can be generated more stably than when a positive voltage is applied.
 荷電粒子は、電子等の負イオンであってよく、正イオンであってもよい。また、放電プラズマは、コロナ放電であってよく、グロー放電であってもよい。生成された荷電粒子とPM含有ガス74中のPMとが衝突することにより、PM含有ガス74中のPMは帯電してよい。本例においては、帯電部10はコロナ放電を生成し、PMは負に帯電する。 The charged particles may be negative ions such as electrons or positive ions. The discharge plasma may be corona discharge or glow discharge. The PM in the PM-containing gas 74 may be charged by the collision between the generated charged particles and the PM in the PM-containing gas 74. In this example, the charging unit 10 generates corona discharge, and PM is negatively charged.
 帯電したPMは、接地電位を有する捕集箱20に引き寄せられてよい。また、帯電したPMは、コロナ放電により形成されるイオン風に乗り、捕集箱20へ引き寄せられてよい。PM含有ガス74中のPMのうち一定の割合のPMは、帯電して捕集箱20に捕集されてよい。帯電したが捕集箱20の捕集されなかったPMは、下流に位置する捕集箱20に捕集されてよい。また、帯電しなかったPMは、下流の帯電部10において帯電されてよい。 The charged PM may be drawn to a collection box 20 having a ground potential. Further, the charged PM may ride on an ion wind formed by corona discharge and be drawn to the collection box 20. A certain percentage of the PM in the PM-containing gas 74 may be charged and collected in the collection box 20. PM that is charged but not collected in the collection box 20 may be collected in the collection box 20 located downstream. Further, the uncharged PM may be charged in the downstream charging unit 10.
 捕集箱20は、放電用電極12と対向する面に複数の開口部22を有してよい。本例の捕集箱20は、Z軸方向の正および負方向において放電用電極12と対向する。本例の捕集箱20は、Z軸方向の正および負方向の二面(上面21および下面23)に複数の開口部22を有する。本例の捕集箱20は直方体形状であり、当該二面を囲む四面は開口部22を有しない。本例の捕集箱20は、接地電位を有する。 The collection box 20 may have a plurality of openings 22 on the surface facing the discharge electrode 12. The collection box 20 of this example faces the discharge electrode 12 in the positive and negative directions in the Z-axis direction. The collection box 20 of this example has a plurality of openings 22 on two surfaces (upper surface 21 and lower surface 23) in the positive and negative directions in the Z-axis direction. The collection box 20 of this example has a rectangular parallelepiped shape, and the four surfaces surrounding the two surfaces do not have the opening 22. The collection box 20 of this example has a ground potential.
 帯電したPMは、開口部22を通って捕集箱20の内部に捕集されてよい。帯電したPMは、捕集箱20の表面に捕集されてもよい。捕集箱20は、内部においてPM含有ガス74の風速よりも低速な風速を有する空間を提供することができる。例えば、PM含有ガス74の風速が20m/sである場合に、捕集箱20の内部の風速は1m/sとすることができる。なお、mはメートルを意味し、sは秒を意味する。捕集箱20を設けることによって、捕集箱20の内部に捕集したPMがPM含有ガス74の流れに乗って飛散することを低減することができる。これにより、安定的にPMを捕集することができる。 The charged PM may be collected in the collection box 20 through the opening 22. The charged PM may be collected on the surface of the collection box 20. The collection box 20 can provide a space having a wind speed lower than that of the PM-containing gas 74 inside. For example, when the wind speed of the PM-containing gas 74 is 20 m / s, the wind speed inside the collection box 20 can be 1 m / s. Note that m means meters and s means seconds. By providing the collection box 20, it is possible to reduce the PM collected in the collection box 20 from being scattered on the flow of the PM-containing gas 74. Thereby, PM can be collected stably.
 なお、帯電部10は、捕集箱20の上面21または下面23を含んでもよい。一例において、帯電部10‐1は上面21を含み、帯電部10‐2は下面23を含む。本例において、捕集箱20の上面21は開口部22を含むX‐Y平面に平行な平面部分であり、捕集箱20の下面23は開口部22を含むX‐Y平面に平行な平面部分である。 Note that the charging unit 10 may include the upper surface 21 or the lower surface 23 of the collection box 20. In one example, the charging unit 10-1 includes an upper surface 21 and the charging unit 10-2 includes a lower surface 23. In this example, the upper surface 21 of the collection box 20 is a plane portion parallel to the XY plane including the opening 22, and the lower surface 23 of the collection box 20 is a plane parallel to the XY plane including the opening 22. Part.
 燃焼部30は、捕集箱20の内部に設けられてよい。燃焼部30は、捕集箱20において捕集されたPMを燃焼させてよい。燃焼部30は、PMに対して熱を供給する発熱体を含んでよい。発熱体からの熱でPMを燃焼させることにより、数kVから数十kVの高電圧を使用して放電によりPM燃焼させる誘電体バリア放電に比べて、十分に低い数Vから100Vの電圧でPMを燃焼させることができる。これにより、誘電体バリア放電に比べて、より小さい電力でPMを燃焼させることができる。また、本例の燃焼部30は、誘電体バリア放電に比べて十分に低い電圧を使用するので、より安全に取り扱うことができる。 The combustion unit 30 may be provided inside the collection box 20. The combustion unit 30 may burn the PM collected in the collection box 20. The combustion unit 30 may include a heating element that supplies heat to the PM. By burning PM with the heat from the heating element, the PM is sufficiently low from several V to 100 V compared to dielectric barrier discharge in which PM is burned by discharge using a high voltage of several kV to several tens of kV. Can be burned. Thereby, PM can be burned with a smaller electric power compared to the dielectric barrier discharge. Moreover, since the combusting part 30 of this example uses a sufficiently low voltage as compared with the dielectric barrier discharge, it can be handled more safely.
 本例の燃焼部30における発熱体は、PMに対して輻射熱を供給するセラミックヒーター32である。図1においては、セラミックヒーター32からPMへ電磁波等が輻射される様子を破線およびハッチングにて示す。輻射熱は、セラミックヒーター32の輻射部から放射状に広がってよい。セラミックヒーター32は、輻射熱により、PMを直接加熱することができる。それゆえ、本例においては、電熱線が組み込まれた金属製の板を使用してPMを加熱する場合に比べて、エネルギー効率を高くすることができる。 The heating element in the combustion section 30 of this example is a ceramic heater 32 that supplies radiant heat to the PM. In FIG. 1, a state in which electromagnetic waves and the like are radiated from the ceramic heater 32 to the PM is indicated by broken lines and hatching. The radiant heat may spread radially from the radiant part of the ceramic heater 32. The ceramic heater 32 can directly heat PM by radiant heat. Therefore, in this example, energy efficiency can be increased as compared with the case where PM is heated using a metal plate in which a heating wire is incorporated.
 本例の燃焼部30は、複数のセラミックヒーター32と、一対の絶縁板34と、複数対のボルト36およびナット38とを有する。複数のセラミックヒーター32は、Y軸方向に長手部を有する直方体形状であってよい。複数のセラミックヒーター32は、X軸方向の異なる位置において互いに離間して設けられてよい。なお、ヘッド37は、ボルト36の一部であり、ボルト36およびナット38の締め付け時に利用されてよい。 The combustion unit 30 of this example includes a plurality of ceramic heaters 32, a pair of insulating plates 34, and a plurality of pairs of bolts 36 and nuts 38. The plurality of ceramic heaters 32 may have a rectangular parallelepiped shape having a longitudinal portion in the Y-axis direction. The plurality of ceramic heaters 32 may be provided apart from each other at different positions in the X-axis direction. The head 37 is a part of the bolt 36 and may be used when the bolt 36 and the nut 38 are tightened.
 絶縁板34は、PMが燃焼する400℃程度の高温において数百Vの電気的絶縁性を確保することができる高温対応絶縁板であってよい。絶縁板34は、マイカ系セラミックの板であってよい。本例の絶縁板34は、マイカレックス(登録商標)の板である。 The insulating plate 34 may be a high-temperature compatible insulating plate that can ensure electrical insulation of several hundred volts at a high temperature of about 400 ° C. at which PM burns. The insulating plate 34 may be a mica ceramic plate. The insulating plate 34 of this example is a Mycalex (registered trademark) plate.
 一対の絶縁板34は、複数のセラミックヒーター32を間に挟んでZ軸方向に重ねて設けられてよい。また、複数対のボルト36およびナット38は、当該一対の絶縁板34を固定してよい。本例において、二対のボルト36およびナット38は、X軸方向において一つのセラミックヒーター32を間に挟むように設けられる。 The pair of insulating plates 34 may be provided so as to overlap in the Z-axis direction with a plurality of ceramic heaters 32 interposed therebetween. Further, the plurality of pairs of bolts 36 and nuts 38 may fix the pair of insulating plates 34. In this example, two pairs of bolts 36 and nuts 38 are provided so as to sandwich one ceramic heater 32 therebetween in the X-axis direction.
 セラミックヒーター32は、絶縁板34に挟まれることにより位置が固定されてよい。セラミックヒーター32は、絶縁板34に挟まれていない部分において捕集箱20の内部に露出する輻射部を有してよい。本例のセラミックヒーター32は、Z軸の正および負方向の表面に輻射部を有する。これにより、本例のセラミックヒーター32は、Z軸の正および負方向に輻射熱を供給することができる。 The position of the ceramic heater 32 may be fixed by being sandwiched between the insulating plates 34. The ceramic heater 32 may have a radiation part exposed to the inside of the collection box 20 at a portion not sandwiched between the insulating plates 34. The ceramic heater 32 of this example has a radiation portion on the surface in the positive and negative directions of the Z axis. Thereby, the ceramic heater 32 of this example can supply radiant heat in the positive and negative directions of the Z axis.
 燃焼部30は、捕集箱20のZ軸方向の略中央に固定されてよい。これにより、隣接する2つの単位構造60において、セラミックヒーター32が設けられるX‐Y平面から捕集箱20の開口部22が設けられる上面21および下面23までの距離を均等にすることができる。このように、本例のセラミックヒーター32は上下対称な構造を有するので、燃焼部30の上半分を有する単位構造60‐1と燃焼部30の下半分を有する60‐2とは、同様に機能してよい。 The combustion unit 30 may be fixed at the approximate center of the collection box 20 in the Z-axis direction. Thereby, in the two adjacent unit structures 60, the distance from the XY plane in which the ceramic heater 32 is provided to the upper surface 21 and the lower surface 23 in which the opening 22 of the collection box 20 is provided can be equalized. Thus, since the ceramic heater 32 of this example has a vertically symmetrical structure, the unit structure 60-1 having the upper half of the combustion part 30 and the function 60-2 having the lower half of the combustion part 30 function similarly. You can do it.
 セラミックヒーター32を用いる本例において、捕集されたPMとセラミックヒーター32とは所定距離だけ離間させることが望ましい。本例では、セラミックヒーター32から捕集箱20の上面21および下面23までの距離を均等にするので、隣接する単位構造60の一方(つまり、単位構造60‐1および60‐2のいずれか)において、セラミックヒーター32と捕集されたPMとが極端に近接することを防ぐことができる。 In this example using the ceramic heater 32, the collected PM and the ceramic heater 32 are preferably separated by a predetermined distance. In this example, since the distance from the ceramic heater 32 to the upper surface 21 and the lower surface 23 of the collection box 20 is equalized, one of the adjacent unit structures 60 (that is, one of the unit structures 60-1 and 60-2). , It is possible to prevent the ceramic heater 32 and the collected PM from being extremely close to each other.
 ところで、捕集したPMを燃焼させずに定期的に回収する場合には、ブロア等のダスト回収機構を設ける必要がある。ただし、ブロア等のダスト回収機構は、一般的に捕集箱20に比べて大きい。一例において、ブロア等のダスト回収機構は、捕集箱20の2倍程度の体積を有する。本例においては、ブロア等のダスト回収機構ではなく、捕集したPMを燃焼させる燃焼部30を有する。これにより、捕集したPMを燃焼させない場合に比べて装置全体のサイズを小さくすることができる。なお、ブロア等のダスト回収機構を用いる場合は、回収したPMを取り出すべく定期的にメンテナンスする必要がある。しかしながら、本例においてはPMを燃焼させてガスとして外部に放出するので、メンテナンスそのものが不要である点も有利である。 By the way, when collecting the collected PM periodically without burning, it is necessary to provide a dust collecting mechanism such as a blower. However, a dust recovery mechanism such as a blower is generally larger than the collection box 20. In one example, the dust collection mechanism such as a blower has a volume about twice that of the collection box 20. In this example, it has the combustion part 30 which burns the collected PM instead of dust collection mechanisms, such as a blower. Thereby, the size of the whole apparatus can be made small compared with the case where the collected PM is not burned. In addition, when using dust collection mechanisms, such as a blower, it is necessary to maintain regularly in order to take out collect | recovered PM. However, in this example, since PM is burned and released to the outside as a gas, it is also advantageous in that maintenance itself is unnecessary.
 本例のPM燃焼装置100は、制御部90をさらに有する。制御部90はプロセッサ、CPUまたはMPUとメモリ等とを含んでよく、PM燃焼装置100全体の動作を制御してよい。制御部90は、燃焼部30の発熱体の通電を制御してよい。制御部90は、セラミックヒーター32に電流を流す(つまり、セラミックヒーター32をオンする)、または、電流を流さない(つまり、セラミックヒーター32をオフする)ことにより、セラミックヒーター32からの輻射熱の供給の有無を制御してよい。また、制御部90は、セラミックヒーター32へ供給する電流およびセラミックヒーター32に印加する電圧の少なくともいずれかを制御することにより、セラミックヒーター32からの輻射熱の供給量を制御してもよい。 The PM combustion apparatus 100 of this example further includes a control unit 90. The control unit 90 may include a processor, a CPU or MPU, a memory, and the like, and may control the overall operation of the PM combustion apparatus 100. The control unit 90 may control energization of the heating element of the combustion unit 30. The control unit 90 supplies the radiant heat from the ceramic heater 32 by supplying a current to the ceramic heater 32 (that is, turning on the ceramic heater 32) or not supplying a current (that is, turning off the ceramic heater 32). The presence or absence may be controlled. The control unit 90 may control the amount of radiant heat supplied from the ceramic heater 32 by controlling at least one of a current supplied to the ceramic heater 32 and a voltage applied to the ceramic heater 32.
 なお、図面の見易さを考慮して、図1においては、制御部90が1つのセラミックヒーター32を制御するように図示する。しかしながら、本例の制御部90は、燃焼部30における全てのセラミックヒーター32を制御してよい。 In addition, in consideration of the legibility of the drawing, in FIG. 1, the control unit 90 is illustrated so as to control one ceramic heater 32. However, the control unit 90 of this example may control all the ceramic heaters 32 in the combustion unit 30.
 制御部90は、PM燃焼装置100の動作状態に応じて燃焼部30の動作タイミングを制御することにより、捕集箱20において捕集されたPMを燃焼させてよい。PM燃焼装置100の動作状態とは、現在の動作状態であってよく、過去の動作状態(即ち、動作履歴)であってもよい。PM燃焼装置100の動作状態は、捕集箱20に捕集されたPMの重量に反映されてよい。それゆえ、制御部90は、捕集箱20に捕集されたPMの重量に応じて、PMを燃焼させてよい。なお、動作タイミングとは、発熱体が輻射熱を放出するタイミングであってよく、発熱体に通電が開始されるタイミングであってもよい。 The control unit 90 may burn the PM collected in the collection box 20 by controlling the operation timing of the combustion unit 30 according to the operation state of the PM combustion apparatus 100. The operation state of the PM combustion apparatus 100 may be a current operation state or a past operation state (that is, an operation history). The operating state of the PM combustion device 100 may be reflected in the weight of the PM collected in the collection box 20. Therefore, the control unit 90 may burn PM according to the weight of the PM collected in the collection box 20. The operation timing may be a timing at which the heating element emits radiant heat or a timing at which energization of the heating element is started.
 捕集されたPMは一定の大きさを有する塊に成長してよい。塊となったPMは、所定温度(例えば、400℃)以上の温度で燃焼し始める。例えば、PMの塊のうち、セラミックヒーター32の輻射部に最も近接する領域において燃焼が開始する。当該領域において燃焼が開始すると、徐々に燃焼が拡大することでPMの塊全体が燃焼し得る。 The collected PM may grow into a lump having a certain size. Agglomerated PM begins to burn at a temperature equal to or higher than a predetermined temperature (for example, 400 ° C.). For example, combustion starts in a region of the PM lump that is closest to the radiating portion of the ceramic heater 32. When combustion starts in the region, the entire mass of PM can be combusted by gradually expanding the combustion.
 このように、本例においては、一定の重量のPMが捕集箱20に捕集された場合に、燃焼部30を動作させてPMを燃焼させる。これにより、燃焼部30を常時動作させる場合に比べて、より低い電力で効率よくPMを燃焼させることができる。 Thus, in this example, when PM having a constant weight is collected in the collection box 20, the combustion unit 30 is operated to burn the PM. Thereby, compared with the case where the combustion part 30 is always operated, PM can be burned efficiently with lower electric power.
 次に、PMをどれくらい捕集した場合に、燃焼部30を動作させるべきかを検討する。捕集箱20の内部の体積がVc[cm]であり、PMの密度が10-4[kg/cm]である場合において、捕集箱20の内部にPMが充満したとするとPMの重量は、10-4×Vc[kg]となる。例えば、Vcが100[cm]×100[cm]×2[cm]である場合に、Vc=2×10[cm]であるので、10-4×Vc=2[kg]となる。なお、「×」は、積を意味する。 Next, it is examined how much PM should be operated when PM is collected. When the internal volume of the collection box 20 is Vc [cm 3 ] and the density of PM is 10 −4 [kg / cm 3 ], if the PM is filled in the collection box 20, The weight is 10 −4 × Vc [kg]. For example, when Vc is 100 [cm] × 100 [cm] × 2 [cm], Vc = 2 × 10 4 [cm 3 ], so 10 −4 × Vc = 2 [kg]. Note that “x” means a product.
 本例と同じ帯電部10および捕集箱20と、ブロア等のダスト回収機構とを用いた場合、1日あたり2[kg](2[kg]/day)のPMが捕集箱20の捕集された実績がある。この場合、PMは、2[kg]の5分の1の重量が捕集された時点で定期メンテナンスが必要であった。そこで、本例においても、(10-4×Vc)/5=2.0×Vc×10-5[kg]だけPMが捕集された時点でPMを燃焼させてよい。 When the same charging unit 10 and collection box 20 as in this example and a dust collection mechanism such as a blower are used, 2 [kg] (2 [kg] / day) of PM per day is collected in the collection box 20. There are collected results. In this case, the PM needed periodic maintenance when 1/5 of the weight of 2 [kg] was collected. Therefore, in this example as well, PM may be burned when PM is collected by (10 −4 × Vc) /5=2.0×Vc×10 −5 [kg].
 なお、上述の定期メンテナンスは、コロナ放電を安定に発生させることを目的として行った。捕集箱20の表面に堆積したPMは捕集箱20と同電位であるので、トゲ部14と上面21または下面23とのギャップ長が実質的に短くなる。これにより、帯電部10において発生するコロナ放電が不安定となり、スパークが発生する場合がある。特に、PM含有ガス74は100℃を超える高温である場合に、ギャップ長が短くなるとスパークが発生しやすくなる。このように、上述のPMを燃焼させるタイミングは、安定的なコロナ放電を発生させることを考慮したタイミングであってよい。 The regular maintenance described above was performed for the purpose of stably generating corona discharge. Since PM deposited on the surface of the collection box 20 has the same potential as the collection box 20, the gap length between the thorn portion 14 and the upper surface 21 or the lower surface 23 is substantially shortened. Thereby, the corona discharge generated in the charging unit 10 may become unstable and spark may occur. In particular, when the PM-containing gas 74 is at a high temperature exceeding 100 ° C., sparks are likely to occur when the gap length is shortened. As described above, the timing of burning the above-described PM may be a timing in consideration of generating stable corona discharge.
 たとえば、PM燃焼装置100において捕集箱20がZ軸方向に5個重ねて設けられる場合、5つの捕集箱20の内部にそれぞれPMが充満したとすると、PMの重量の合計は、2[kg]×5=10[kg]となる。つまり、PMを捕集していない状態に比べて、PM燃焼装置100の重量は10[kg]増加する。なお、実際のPM燃焼装置100においては、PMは完全に均一に捕集箱20に充填しないので、10[kg]の1/10、即ち、1[kg]だけ重量が増加すると捕集箱20からPMがはみ出す場合がある。 For example, in the PM combustion apparatus 100, when five collection boxes 20 are provided in the Z-axis direction, if the PM is filled inside the five collection boxes 20, the total PM weight is 2 [ kg] × 5 = 10 [kg]. That is, the weight of the PM combustion apparatus 100 increases by 10 [kg] compared to a state where PM is not collected. In the actual PM combustion apparatus 100, PM does not fill the collection box 20 completely uniformly. Therefore, if the weight increases by 1/10 of 10 [kg], that is, 1 [kg], the collection box 20 PM may protrude from the top.
 捕集箱20のZ軸方向の長さ(即ち、厚み)と、捕集箱20の開口部22の穴径とは、PMの捕集に関係し得る。通常、開口部22の穴径は、捕集箱20の厚みの1/10以上1以下の大きさを有する。例えば、捕集箱20の厚みが2[cm]の場合、開口部22の穴径は2[mm]以上20[mm]以下となる。これに対して、捕集箱20に堆積するPMの厚みは、捕集箱20に一度捕集されたけれども飛散して下流に流れることを抑制するべく、開口部22の穴径の半分程度にすることが望ましい。つまり、捕集箱20の厚みが2[cm]の例では、PMの厚みが1[mm]以上10[mm]以下になった時点でPMを燃焼させることが望ましい。 The length (that is, the thickness) of the collection box 20 in the Z-axis direction and the hole diameter of the opening 22 of the collection box 20 may be related to the collection of PM. Usually, the hole diameter of the opening 22 has a size of 1/10 to 1 of the thickness of the collection box 20. For example, when the thickness of the collection box 20 is 2 [cm], the hole diameter of the opening 22 is 2 [mm] or more and 20 [mm] or less. On the other hand, the thickness of the PM deposited in the collection box 20 is about half of the hole diameter of the opening 22 in order to prevent the PM from being collected once in the collection box 20 but scattered and flowing downstream. It is desirable to do. That is, in the example where the thickness of the collection box 20 is 2 [cm], it is desirable to burn the PM when the thickness of the PM becomes 1 [mm] or more and 10 [mm] or less.
 以上を考慮すると、堆積させるPMの厚みは、捕集箱20の厚みの(1/20)以上(1/2)以下とすることが望ましい。PMの厚みの変化は捕集されたPMの体積に比例する。また、PMの密度が一定であることを仮定すれば、PMの厚みの変化は捕集されたPMの重量に比例する。それゆえ、PMを燃焼させるタイミングの指標となる捕集されたPMの重量の上限および下限は、次の値であってよい。
 下限:2.0×Vc×10-5[kg]×(1/20)=Vc×10-6[kg]
 上限:2.0×Vc×10-5[kg]×(1/2)=Vc×10-5[kg]
Considering the above, it is desirable that the thickness of the PM to be deposited is not less than (1/20) and not more than (1/2) of the thickness of the collection box 20. The change in PM thickness is proportional to the volume of the collected PM. Also, assuming that the density of PM is constant, the change in PM thickness is proportional to the weight of the collected PM. Therefore, the upper limit and the lower limit of the weight of the collected PM, which is an index of timing for burning PM, may be the following values.
Lower limit: 2.0 × Vc × 10 −5 [kg] × (1/20) = Vc × 10 −6 [kg]
Upper limit: 2.0 × Vc × 10 −5 [kg] × (1/2) = Vc × 10 −5 [kg]
 このように、捕集箱20に捕集されたPMの重量が、10-6×Vc[kg]以上10-5×Vc[kg]以下になった場合に、捕集箱20に捕集されたPMを燃焼させてよい。これにより、捕集されたPMが下流に流れることを抑制しつつ、PMが捕集箱20にある程度充填されたことを契機として、PMを燃焼させることができる。 In this way, when the weight of PM collected in the collection box 20 becomes 10 −6 × Vc [kg] or more and 10 −5 × Vc [kg] or less, it is collected in the collection box 20. PM may be burned. Thereby, PM can be combusted with the PM filled in the collection box 20 to some extent while suppressing the collected PM from flowing downstream.
 PM燃焼装置100は、捕集箱20の重量を測定する重量センサ80を有してもよい。重量センサ80は、捕集箱20の重量を検出して、検出した重量を制御部90に知らせてよい。制御部90は、PMが捕集された状態における捕集箱20の重量から、PMが全く捕集されていない状態の捕集箱20の重量を差し引くことにより、増加したPMの重量を検出してよい。重量センサが検出した増加重量を制御部90に知らせるタイミングは、1分毎であってよく、1秒毎であってもよい。なお、重量センサ80に代えて、光学的手段によりPMの体積を推定してもよい。上述のように、PMの密度は既知であるので、体積測定によって捕集されたPMの重量を推定してもよい。 The PM combustion apparatus 100 may have a weight sensor 80 that measures the weight of the collection box 20. The weight sensor 80 may detect the weight of the collection box 20 and inform the control unit 90 of the detected weight. The control unit 90 detects the weight of the increased PM by subtracting the weight of the collection box 20 in a state where no PM is collected from the weight of the collection box 20 in a state where PM is collected. It's okay. The timing for notifying the controller 90 of the increased weight detected by the weight sensor may be every minute or every second. Instead of the weight sensor 80, the volume of PM may be estimated by optical means. As described above, since the density of PM is known, the weight of PM collected by volume measurement may be estimated.
 制御部90は、捕集箱20に捕集されたPMの重量に応じて、燃焼部30へ供給する電力を制御してよい。本例の制御部90は、捕集されたPMの重量が、上述した10-6×Vc[kg]以上10-5×Vc[kg]以下の範囲である場合に、セラミックヒーター32の通電の有無、または、セラミックヒーター32に流す電流(もしくは、セラミックヒーター32へ印加する電圧)を制御する。これにより、PMが一定重量だけ捕集されたことを契機としてPMを燃焼させることができるので、燃焼部30における余分な電力消費を低減することができる。 The control unit 90 may control the power supplied to the combustion unit 30 according to the weight of the PM collected in the collection box 20. The control unit 90 of this example performs energization of the ceramic heater 32 when the weight of the collected PM is in the range of 10 −6 × Vc [kg] to 10 −5 × Vc [kg]. The presence / absence or the current (or voltage applied to the ceramic heater 32) flowing through the ceramic heater 32 is controlled. Thereby, since PM can be combusted when PM is collected only by a fixed weight, extra power consumption in the combustion unit 30 can be reduced.
 また、制御部90は、PMの重量が所定値を超えた場合には、燃焼部30へ供給する電力を高くしてもよい。制御部90は、上述した10-6×Vc[kg]以上10-5×Vc[kg]以下の範囲を細分化した複数の数値範囲のテーブルを有してもよい。制御部90が燃焼部30へ電力を供給するときに、捕集したPMの重量がより重い範囲にあるほど燃焼部30へ供給する電力をより高くしてよい。これにより、PMの重量に応じて、PMが燃焼するのに要する時間を制御することができる。例えば、PMが比較的多い場合に、PMが比較的少ない場合に与える電力よりも高い電力を与えることにより、捕集されたPMを早急に燃焼させることができる。 Further, the control unit 90 may increase the power supplied to the combustion unit 30 when the weight of the PM exceeds a predetermined value. The control unit 90 may include a table of a plurality of numerical ranges obtained by subdividing the above-described range of 10 −6 × Vc [kg] to 10 −5 × Vc [kg]. When the control unit 90 supplies power to the combustion unit 30, the power supplied to the combustion unit 30 may be higher as the collected PM is in a heavier range. Thereby, the time required for PM to burn can be controlled according to the weight of PM. For example, when the PM is relatively large, the collected PM can be burned quickly by applying a higher power than that provided when the PM is relatively small.
 図2の(a)は、帯電部10および捕集箱20の上面図である。図2の(a)に示す様に、本例の放電用電極12は、PM含有ガス74の流れ方向に沿って複数のトゲ部14を有する。捕集箱20の開口部22は、トゲ部14の位置に応じて配置されてよい。本例においては、1つのトゲ部14の下には、1つの開口部22が配置される。 (A) of FIG. 2 is a top view of the charging unit 10 and the collection box 20. As shown in FIG. 2A, the discharge electrode 12 of this example has a plurality of barbs 14 along the flow direction of the PM-containing gas 74. The opening 22 of the collection box 20 may be arranged according to the position of the thorn portion 14. In this example, one opening 22 is disposed below one thorn portion 14.
 図2の(b)は、燃焼部30の上面図である。ただし、放電用電極12と捕集箱20の上面21とは除いた状態を示す。セラミックヒーター32の一端は、絶縁板34およびボルト36により固定される。また、セラミックヒーター32の他の一端には、輻射部33が設けられる。 (B) of FIG. 2 is a top view of the combustion part 30. FIG. However, the state excluding the discharge electrode 12 and the upper surface 21 of the collection box 20 is shown. One end of the ceramic heater 32 is fixed by an insulating plate 34 and a bolt 36. In addition, a radiation portion 33 is provided at the other end of the ceramic heater 32.
 一例において、セラミックヒーター32の輻射部33は、X‐Y平面において4mm×4mmの面積を有してよい。例えば、捕集されたPMと輻射部33とが5mm以上10mm以下離れている場合に、1つのセラミックヒーター32当たり40[mg/min]以上50[mg/min]の燃焼速度でPMを燃焼させることができる。 In one example, the radiating portion 33 of the ceramic heater 32 may have an area of 4 mm × 4 mm in the XY plane. For example, when the collected PM and the radiation part 33 are separated from each other by 5 mm or more and 10 mm or less, the PM is burned at a burning rate of 40 [mg / min] or more and 50 [mg / min] per ceramic heater 32. be able to.
 一例において、1つの捕集箱20内に40個のセラミックヒーター32が設けられてよい。PM燃焼装置100が捕集箱20をZ軸方向に重ねて5つ有する場合、PM燃焼装置100は、40[mg/min]以上50[mg/min]×200=8000[mg/min]以上10000[mg/min]の燃焼速度でPMを燃焼させることができる。 In one example, 40 ceramic heaters 32 may be provided in one collection box 20. When the PM combustion apparatus 100 has five collection boxes 20 stacked in the Z-axis direction, the PM combustion apparatus 100 is 40 [mg / min] or more and 50 [mg / min] × 200 = 8000 [mg / min] or more. PM can be burned at a burning rate of 10,000 [mg / min].
 例えば、2kgのPMを燃焼するには、2000[g]/10[g/min]=200min以上、2000[g]/8[g/min]=250[min]以下を要する。つまり、およそ3時間から4時間を要する。ただし上記時間は、常温雰囲気でセラミックヒーター32が熱を供給する場合の時間である。 For example, burning 2 kg of PM requires 2000 [g] / 10 [g / min] = 200 min or more and 2000 [g] / 8 [g / min] = 250 [min] or less. That is, it takes about 3 to 4 hours. However, the above time is a time when the ceramic heater 32 supplies heat in a normal temperature atmosphere.
 通常、エンジン等から排出されるPM含有ガス74の温度は、100℃から300℃(典型的には200℃)と高温であるので、セラミックヒーター32が断続的に熱を供給しても捕集箱20に捕集されたPMを燃焼させることができる。また、一旦発火したPMの塊は延焼し得る。それゆえ、2kgのPMを燃焼するには、200[min]以上250[min]以下の半分の時間、つまり、およそ1時間半から2時間だけセラミックヒーター32から熱を供給することにより、捕集されたPMを燃焼させることができる。 Normally, the temperature of the PM-containing gas 74 exhausted from the engine or the like is as high as 100 ° C. to 300 ° C. (typically 200 ° C.), so that it is collected even if the ceramic heater 32 supplies heat intermittently. The PM collected in the box 20 can be burned. Moreover, the lump of PM once ignited can be spread. Therefore, in order to burn 2 kg of PM, it is collected by supplying heat from the ceramic heater 32 for a half time of 200 [min] or more and 250 [min] or less, that is, approximately one and a half hours to two hours. The burned PM can be burned.
 そこで、制御部90は、PM含有ガス74の温度に応じて、燃焼部30へ供給する電力を制御してもよい。上述のように、PM含有ガス74の温度は比較的高温であり、捕集箱に捕集されたPMは400℃程度になると燃焼し始める。そこで、制御部90は、PM含有ガス74の温度が相対的に低い場合は燃焼部30へ供給する電力を高くし、PM含有ガス74の温度が相対的に高い場合は燃焼部30へ供給する電力を小さくしてよい。 Therefore, the control unit 90 may control the power supplied to the combustion unit 30 according to the temperature of the PM-containing gas 74. As described above, the temperature of the PM-containing gas 74 is relatively high, and when the PM collected in the collection box reaches about 400 ° C., it starts to burn. Therefore, the control unit 90 increases the power supplied to the combustion unit 30 when the temperature of the PM-containing gas 74 is relatively low, and supplies the power to the combustion unit 30 when the temperature of the PM-containing gas 74 is relatively high. Electric power may be reduced.
 これにより、PM含有ガス74の温度が相対的に低い場合に、いつまでもPMが燃焼しないという事態を防ぐことができる。また、PM含有ガス74の温度が相対的に高い場合に、PMを加熱しすぎることにより、燃焼部30において余分に電力を消費することを抑制することができる。なお、制御部90は、PMが400[℃]程度に到達するまでの時間を考慮して、燃焼部30へ供給する電力を制御してもよい。 Thereby, when the temperature of the PM-containing gas 74 is relatively low, it is possible to prevent a situation where PM does not burn indefinitely. Further, when the temperature of the PM-containing gas 74 is relatively high, excessive consumption of power in the combustion unit 30 can be suppressed by heating the PM too much. Note that the control unit 90 may control the power supplied to the combustion unit 30 in consideration of the time until the PM reaches about 400 [° C.].
 輻射部33もまた、トゲ部14の位置に応じて配置されてよい。本例においては、1つのトゲ部14と、1つの開口部22と、1つの輻射部33とがZ軸方向において重なってよい。なお、1つのトゲ部14と、1つの開口部22と、1つの輻射部33とは、少なくとも部分的にZ軸方向に重なってよい。単位構造60‐1においてはトゲ部14の直下近傍において、単位構造60‐2においてはトゲ部14の直上近傍において、それぞれPMは捕集されやすい傾向がある。それゆえ、トゲ部14の位置に応じて開口部22および輻射部33を配置することで、PMが捕集されにくい領域に輻射熱を供給する場合に比べて、効率よくPMを燃焼させることができる。 The radiation part 33 may also be arranged according to the position of the thorn part 14. In this example, one thorn part 14, one opening part 22, and one radiation part 33 may overlap in the Z-axis direction. Note that one thorn portion 14, one opening portion 22, and one radiation portion 33 may overlap at least partially in the Z-axis direction. PM tends to be collected in the unit structure 60-1 near the thorn portion 14 and in the unit structure 60-2 near the thorn portion 14. Therefore, by arranging the opening 22 and the radiating portion 33 according to the position of the thorn portion 14, the PM can be burned more efficiently than when radiant heat is supplied to a region where PM is difficult to collect. .
 図3は、燃焼部30の上面図の部分拡大図である。理解を容易にするために、絶縁板34およびボルト36のヘッド37を破線にて示す。セラミックヒーター32は、正極配線および負極配線を有する。本例においては、正極配線および負極配線を可能な限り短くする。そして、各セラミックヒーター32の正極配線を圧着端子42にて正極の耐熱被覆配線44に接続する。同様に、各セラミックヒーター32の負極配線を圧着端子43にて負極の耐熱被覆配線45に接続する。これにより、セラミックヒーター32の熱劣化を低減することができ、セラミックヒーター32の動作信頼性を確保することができる。 FIG. 3 is a partially enlarged view of the top view of the combustion unit 30. In order to facilitate understanding, the insulating plate 34 and the head 37 of the bolt 36 are indicated by broken lines. The ceramic heater 32 has a positive electrode wiring and a negative electrode wiring. In this example, the positive and negative wirings are made as short as possible. Then, the positive wiring of each ceramic heater 32 is connected to the positive heat-resistant coated wiring 44 by the crimp terminal 42. Similarly, the negative electrode wiring of each ceramic heater 32 is connected to the negative electrode heat-resistant coated wiring 45 by the crimp terminal 43. Thereby, the thermal deterioration of the ceramic heater 32 can be reduced, and the operation reliability of the ceramic heater 32 can be ensured.
 図4Aは、セラミックヒーター32の配置に関する第1変形例である。理解を容易にするために、捕集箱20の開口部22を省略し、放電用電極12においてトゲ部14が設けられる放電用電極12の一辺を破線で示す。本例において、複数のセラミックヒーター32は、Y軸方向の異なる位置において互いに離間して設けられる。また、本例において、放電用電極12‐1の直下の複数のセラミックヒーター32と、放電用電極12‐2の直下の複数のセラミックヒーター32とは、Y軸に平行な直線に対して線対称に設けられる。 FIG. 4A is a first modification example regarding the arrangement of the ceramic heater 32. In order to facilitate understanding, the opening 22 of the collection box 20 is omitted, and one side of the discharge electrode 12 where the barbs 14 are provided in the discharge electrode 12 is indicated by a broken line. In this example, the plurality of ceramic heaters 32 are provided apart from each other at different positions in the Y-axis direction. In this example, the plurality of ceramic heaters 32 immediately below the discharge electrode 12-1 and the plurality of ceramic heaters 32 directly below the discharge electrode 12-2 are line symmetric with respect to a straight line parallel to the Y axis. Provided.
 本例においても、トゲ部14の位置に応じて、開口部22と輻射部33とが配置される。つまり、1つのトゲ部14と、1つの開口部22と、1つの輻射部33とが、少なくとも部分的にZ軸方向に重なる。これにより、PMが捕集されにくい領域に輻射熱を供給する場合に比べて、より効率よくPMを燃焼させることができる。 Also in this example, the opening 22 and the radiation portion 33 are arranged according to the position of the thorn portion 14. That is, one thorn part 14, one opening part 22, and one radiation part 33 overlap at least partially in the Z-axis direction. Thereby, compared with the case where radiant heat is supplied to the area | region where PM is hard to collect, PM can be burned more efficiently.
 図4Bは、セラミックヒーター32の配置に関する第2変形例である。理解を容易にするために、開口部22を省略し、トゲ部14が設けられる放電用電極12の一辺を破線で示す。本例のセラミックヒーター32は、捕集箱20においてY軸方向に対向する一面から他の面まで延伸して設けられる。本例のセラミックヒーター32はY軸方向の両端部が絶縁板34により固定される。 FIG. 4B is a second modification example regarding the arrangement of the ceramic heater 32. In order to facilitate understanding, the opening 22 is omitted, and one side of the discharge electrode 12 provided with the barbs 14 is indicated by a broken line. The ceramic heater 32 of this example is provided by extending from one surface facing the Y-axis direction to the other surface in the collection box 20. The ceramic heater 32 of this example is fixed by insulating plates 34 at both ends in the Y-axis direction.
 本例のセラミックヒーター32は、絶縁板34により被覆されていない領域に輻射部33を有する。本例の輻射部33も、セラミックヒーター32の上面および下面に設けられる。ただし、本例の輻射部33は、Y軸方向に対向する2つの絶縁板34の間において延在して設けられる。輻射部33は、最も上流に位置するトゲ部14の直下から、最も下流に位置するトゲ部14の直下まで少なくとも延在してよい。本例において、複数のセラミックヒーター32は、X軸方向の異なる位置において互いに離間して設けられる。 The ceramic heater 32 of this example has a radiating portion 33 in a region not covered with the insulating plate 34. The radiation part 33 of this example is also provided on the upper and lower surfaces of the ceramic heater 32. However, the radiation part 33 of this example is provided to extend between the two insulating plates 34 opposed in the Y-axis direction. The radiation part 33 may extend at least from directly below the thorn part 14 located at the most upstream to directly below the thorn part 14 located at the most downstream. In this example, the plurality of ceramic heaters 32 are provided apart from each other at different positions in the X-axis direction.
 本例においても、トゲ部14の位置に応じて、開口部22と輻射部33とが配置される。つまり、1つのトゲ部14と、1つの開口部22と、1つの輻射部33とが、少なくとも部分的にZ軸方向に重なる。これにより、PMが捕集されにくい領域に輻射熱を供給する場合に比べて、効率よくPMを燃焼させることができる。 Also in this example, the opening 22 and the radiation portion 33 are arranged according to the position of the thorn portion 14. That is, one thorn part 14, one opening part 22, and one radiation part 33 overlap at least partially in the Z-axis direction. Thereby, compared with the case where radiant heat is supplied to the area | region where PM is hard to collect, PM can be burned efficiently.
 図5の(a)は、第2実施形態における燃焼部30の上面図である。図5の(b)は、第2実施形態における捕集箱20および燃焼部30の断面図である。本例の燃焼部30は、放電用電極12と同じ極性の電位を有する導電部35をさらに有する。係る点が第1実施形態との主な相違点である。導電部35は、X軸方向において隣接する2つのセラミックヒーター32の間に設けられてよい。導電部35は、セラミックヒーター32と同様に一端が絶縁板34において固定され、他端がY軸方向に突出して絶縁板34から露出してよい。 (A) of FIG. 5 is a top view of the combustion part 30 in 2nd Embodiment. FIG. 5B is a cross-sectional view of the collection box 20 and the combustion unit 30 in the second embodiment. The combustion part 30 of this example further includes a conductive part 35 having the same polarity as that of the discharge electrode 12. This is the main difference from the first embodiment. The conductive portion 35 may be provided between two ceramic heaters 32 adjacent in the X-axis direction. As with the ceramic heater 32, one end of the conductive portion 35 may be fixed on the insulating plate 34, and the other end may protrude in the Y-axis direction and be exposed from the insulating plate 34.
 導電部35は金属製の導電体であってよい。導電部35全体が金属で形成されていてよく、導電部35の表面のみに金属箔が設けられていてもよい。本例の導電部35には、帯電部10の放電用電極12と同極性の電圧が印加されてよい。例えば、数十Vの負電圧が、導電部35に印加される。負に帯電したPMは、負電圧が印加された導電部35に対して反発し得る。それゆえ、PMは、セラミックヒーター32および導電部35が設けられるX‐Y平面に比べて、捕集箱20の表面(内容面および外表面)に付着しやすくなる。これにより、セラミックヒーター32から離間した位置にPMを捕集することができる。 The conductive portion 35 may be a metal conductor. The entire conductive portion 35 may be formed of metal, and a metal foil may be provided only on the surface of the conductive portion 35. A voltage having the same polarity as that of the discharge electrode 12 of the charging unit 10 may be applied to the conductive unit 35 of this example. For example, a negative voltage of several tens of volts is applied to the conductive portion 35. The negatively charged PM can repel the conductive portion 35 to which a negative voltage is applied. Therefore, the PM easily adheres to the surface (content surface and outer surface) of the collection box 20 as compared to the XY plane on which the ceramic heater 32 and the conductive portion 35 are provided. Thereby, PM can be collected at a position separated from the ceramic heater 32.
 図6は、第3実施形態におけるPM燃焼装置100の断面図である。本例の燃焼部30は、セラミックヒーター32に代えて電熱線52を有する。かかる点が、第1実施形態との主要な相違点である。電熱線52を用いることにより、セラミックヒーター32に比べて燃焼部30の製造コストを下げることができる。電熱線52は、一続きのニクロム線であってよい。ただし、図6においては、電熱線52の複数の断面が離間して示されている。第1実施形態と同様に、本例においても、制御部90がPM燃焼装置100の動作状態に応じて燃焼部30の動作タイミングを制御することにより、PMを燃焼させてよい。 FIG. 6 is a cross-sectional view of the PM combustion apparatus 100 according to the third embodiment. The combustion unit 30 of this example includes a heating wire 52 instead of the ceramic heater 32. This is the main difference from the first embodiment. By using the heating wire 52, the manufacturing cost of the combustion unit 30 can be reduced compared to the ceramic heater 32. The heating wire 52 may be a continuous nichrome wire. However, in FIG. 6, the several cross section of the heating wire 52 is shown spaced apart. Similarly to the first embodiment, also in this example, the control unit 90 may burn PM by controlling the operation timing of the combustion unit 30 according to the operation state of the PM combustion device 100.
 本例においても、制御部90は、電熱線52に電流を流す(電熱線52をオンする)、または、電熱線52に電流を流さない(電熱線52をオフする)ことにより、電熱線52からの熱の供給の有無を制御してよい。また、制御部90は、電熱線52へ供給する電流および電熱線52に印加する電圧の少なくともいずれかを制御することにより、電熱線52からの熱の供給量を制御してよい。 Also in this example, the control unit 90 causes the heating wire 52 to flow current (turn on the heating wire 52) or not flow current (turn off the heating wire 52) to the heating wire 52. The presence or absence of the supply of heat from may be controlled. The control unit 90 may control the amount of heat supplied from the heating wire 52 by controlling at least one of the current supplied to the heating wire 52 and the voltage applied to the heating wire 52.
 図7の(a)は、帯電部10および捕集箱20の上面図である。本例の開口部22も、トゲ部14の位置に応じて配置されてよい。図7の(b)は、燃焼部30の上面図である。ただし、放電用電極12と捕集箱20の上面21とは除いた状態を示す。本例の電熱線52は、捕集箱20のX軸方向の一端から他端に向かって、蛇行形状で設けられる。つまり、本例の電熱線52は、X軸方向においてU字形状と上下逆さまにしたU字形状とを交互にX軸方向につなげた構造を有する。 (A) of FIG. 7 is a top view of the charging unit 10 and the collection box 20. The opening 22 in this example may also be arranged according to the position of the thorn portion 14. FIG. 7B is a top view of the combustion unit 30. However, the state excluding the discharge electrode 12 and the upper surface 21 of the collection box 20 is shown. The heating wire 52 of this example is provided in a meandering shape from one end of the collection box 20 in the X-axis direction to the other end. That is, the heating wire 52 of the present example has a structure in which a U shape and an upside down U shape in the X axis direction are alternately connected in the X axis direction.
 U字形状の1つの長手部分は、トゲ部14の位置に応じて配置されてよい。本例においては、複数のトゲ部14と、複数の開口部22と、電熱線52におけるU字形状の1つの長手部分とがZ軸方向において重なってよい。これにより、U字形状の1つの長手部分が、複数のトゲ部14および複数の開口部22と重ならない場合に比べて、効率よくPMを燃焼させることができる。 One longitudinal portion of the U shape may be arranged according to the position of the thorn portion 14. In the present example, the plurality of barbs 14, the plurality of openings 22, and one U-shaped long portion of the heating wire 52 may overlap in the Z-axis direction. Thereby, compared with the case where one longitudinal part of U shape does not overlap with a plurality of thorn parts 14 and a plurality of openings 22, PM can be burned efficiently.
 図8Aは、電熱線52の配置に関する第1変形例である。理解を容易にするために、捕集箱20の開口部22を省略し、放電用電極12においてトゲ部14が設けられる一辺を破線で示す。本例の電熱線52は、トゲ部14が設けられる放電用電極12の一辺の形状に応じた形状を有する。本例において、トゲ部14が設けられる一辺は、Y軸方向に延伸する三角波形状である。当該三角波形状は、X軸方向に凹凸を有する。これに対して、電熱線52は、Y軸方向に延伸する正弦波形状56である。当該正弦波形状56は、X軸方向に凹凸を有する。それゆえ、トゲ部14が設けられる一辺と電熱線52の正弦波形状56とは、Z軸方向において略重なり得る。 FIG. 8A is a first modification example regarding the arrangement of the heating wires 52. In order to facilitate understanding, the opening 22 of the collection box 20 is omitted, and one side of the discharge electrode 12 where the barbs 14 are provided is indicated by a broken line. The heating wire 52 of this example has a shape corresponding to the shape of one side of the discharge electrode 12 provided with the thorn portion 14. In this example, one side where the thorn portion 14 is provided has a triangular wave shape extending in the Y-axis direction. The triangular wave shape has irregularities in the X-axis direction. On the other hand, the heating wire 52 has a sinusoidal shape 56 extending in the Y-axis direction. The sine wave shape 56 has irregularities in the X-axis direction. Therefore, the side where the thorn portion 14 is provided and the sine wave shape 56 of the heating wire 52 can substantially overlap in the Z-axis direction.
 本例の電熱線52は、2つの正弦波形状56と、3つの直線形状54とを有する。直線形状54‐1は、X軸方向に延伸する。本例において、正弦波形状56‐1のY軸正方向の一端は直線形状54‐1と接続する。また、正弦波形状56‐1のY軸負方向の一端は直線形状54‐2と接続する。同様に、正弦波形状56‐2のY軸正方向の一端は直線形状54‐3と接続し、正弦波形状56‐2のY軸負方向の一端は直線形状54‐2と接続する。 The heating wire 52 of this example has two sinusoidal shapes 56 and three linear shapes 54. The linear shape 54-1 extends in the X-axis direction. In this example, one end of the sine wave shape 56-1 in the positive direction of the Y axis is connected to the linear shape 54-1. Also, one end of the sine wave shape 56-1 in the negative Y-axis direction is connected to the linear shape 54-2. Similarly, one end of the sine wave shape 56-2 in the positive Y-axis direction is connected to the linear shape 54-3, and one end of the sine wave shape 56-2 in the negative Y-axis direction is connected to the linear shape 54-2.
 図8Bは、電熱線52の配置に関する第2変形例である。本例の燃焼部30は、互いに分離された電熱線52‐1と電熱線52‐2とを有する。本例において、電熱線52‐1の正弦波形状56‐1と電熱線52‐2の正弦波形状56‐2とは、互いに分離されている。また、正弦波形状56‐1のY軸方向の両端には直線形状54‐1および直線形状54‐2が設けられ、正弦波形状56‐2のY軸方向の両端には直線形状54‐3および直線形状54‐4が設けられる。係る点が、第3実施形態およびその第1変形例と異なる。 FIG. 8B is a second modification example regarding the arrangement of the heating wires 52. The combustion part 30 of this example has the heating wire 52-1 and the heating wire 52-2 which were mutually separated. In this example, the sine wave shape 56-1 of the heating wire 52-1 and the sine wave shape 56-2 of the heating wire 52-2 are separated from each other. Further, a linear shape 54-1 and a linear shape 54-2 are provided at both ends of the sine wave shape 56-1 in the Y-axis direction, and a linear shape 54-3 is provided at both ends of the sine wave shape 56-2 in the Y-axis direction. And a linear shape 54-4 is provided. This point is different from the third embodiment and the first modification thereof.
 図9は、第4実施形態におけるPM燃焼装置100の断面図である。図9以降においては、図1のようにY軸方向と平行な向きではなく、X軸方向と平行な向きに視点が変更されていることに留意されたい。本例では、PM含有ガス74の上流側に帯電部10を設けて、PM含有ガス74の下流側に捕集箱20および燃焼部30を設ける。本例において、帯電部10と、捕集箱20および燃焼部30とはZ軸方向において重ならない。本例は係る点において第1実施形態と異なるが、他の点においては第1実施形態と同じである。また、本例は、第1実施形態を基礎として記載しているが、第1実施形態の変形例、第2実施形態、ならびに、第3実施形態およびその変形例と組み合わせてよいのは勿論である。 FIG. 9 is a cross-sectional view of the PM combustion apparatus 100 in the fourth embodiment. In FIG. 9 and subsequent figures, it should be noted that the viewpoint is changed not to the direction parallel to the Y-axis direction as shown in FIG. 1 but to the direction parallel to the X-axis direction. In this example, the charging unit 10 is provided on the upstream side of the PM-containing gas 74, and the collection box 20 and the combustion unit 30 are provided on the downstream side of the PM-containing gas 74. In this example, the charging unit 10, the collection box 20, and the combustion unit 30 do not overlap in the Z-axis direction. This example is different from the first embodiment in that respect, but is the same as the first embodiment in other points. Moreover, although this example is described based on the first embodiment, it is needless to say that it may be combined with the modification of the first embodiment, the second embodiment, and the third embodiment and its modification. is there.
 図10は、第5実施形態におけるPM燃焼装置100の断面図である。本例のPM燃焼装置100は、Z軸方向において重ねて設けられた2n個の単位構造60を有する(nは2以上の自然数である)。本例における単位構造60の配置を、複数の単位構造60が並列に配置されると表現してよい。複数の単位構造60を並列に配置することにより、1つの単位構造60を設ける場合に比べて、単位時間あたりより多くのPM含有ガスを処理することができる。本例は、第1実施形態を基礎として記載しているが、第1実施形態の変形例、第2実施形態、第3実施形態およびその変形例、ならびに、第4実施形態と組み合わせてよいのは勿論である。 FIG. 10 is a cross-sectional view of the PM combustion apparatus 100 in the fifth embodiment. The PM combustion apparatus 100 of this example has 2n unit structures 60 provided so as to overlap in the Z-axis direction (n is a natural number of 2 or more). The arrangement of the unit structures 60 in this example may be expressed as a plurality of unit structures 60 arranged in parallel. By arranging a plurality of unit structures 60 in parallel, more PM-containing gas can be processed per unit time than when one unit structure 60 is provided. Although this example is described on the basis of the first embodiment, it may be combined with the modification of the first embodiment, the second embodiment, the third embodiment and its modification, and the fourth embodiment. Of course.
 図11は、第6実施形態におけるPM燃焼装置100の断面図である。本例のPM燃焼装置100は、PM含有ガス74の上流から下流に向かう流れ方向において直列に配置された複数の単位構造60を有する。本例においては、並列に配置された2つの単位構造60‐1および60‐2が、流れ方向において直列にm個配置される(なお、mは2以上の自然数である)。なお、本例においては、1つの直流電源24‐1がZ軸正方向に位置し直列に配置されたm個の帯電部10に負電圧を印加し、かつ、他の1つの直流電源24‐2がZ軸負方向に位置し直列に配置されたm個の帯電部10に負電圧を印加する。 FIG. 11 is a cross-sectional view of the PM combustion apparatus 100 in the sixth embodiment. The PM combustion apparatus 100 of this example includes a plurality of unit structures 60 arranged in series in the flow direction from the upstream to the downstream of the PM-containing gas 74. In this example, two unit structures 60-1 and 60-2 arranged in parallel are arranged in series in the flow direction (where m is a natural number of 2 or more). In this example, one DC power supply 24-1 applies a negative voltage to m charging units 10 located in the Z-axis positive direction and arranged in series, and another DC power supply 24- 2 applies a negative voltage to m charging units 10 positioned in the Z-axis negative direction and arranged in series.
 ただし、他の例においては、1つの直流電源24がZ軸正方向およびZ軸負方向に位置し直列に配置された2m個の帯電部10に負電圧を印加してもよい。また、当該2m個の帯電部10は各々異なる直流電源24を含んでもよく、流れ方向(Y軸方向)において同じ位置にある各2つの単位構造60が1つの直流電源24を共有してもよい。なお、本例は、第1実施形態を基礎として記載しているが、第1実施形態の変形例、第2実施形態、第3実施形態およびその変形例、第4実施形態、ならびに、第5実施形態と組み合わせてよいのは勿論である。例えば、本例と第5実施形態とを組み合わせる場合に、PM燃焼装置100は、流れ方向(Y軸方向)において直列に配置されたm個の単位構造60を有し、且つ、Z軸方向において並列に配置されたn個の単位構造60を有する。即ち、この場合、PM燃焼装置100は、m個×n個の単位構造60を有する。 However, in another example, one DC power supply 24 may be applied to 2 m charging units 10 arranged in series in the positive Z-axis direction and the negative Z-axis direction. The 2m charging units 10 may include different DC power sources 24, and each of the two unit structures 60 at the same position in the flow direction (Y-axis direction) may share one DC power source 24. . In addition, although this example is described on the basis of 1st Embodiment, the modification of 1st Embodiment, 2nd Embodiment, 3rd Embodiment, its modification, 4th Embodiment, and 5th Of course, it may be combined with the embodiment. For example, when combining this example and the fifth embodiment, the PM combustion apparatus 100 includes m unit structures 60 arranged in series in the flow direction (Y-axis direction), and in the Z-axis direction. It has n unit structures 60 arranged in parallel. That is, in this case, the PM combustion apparatus 100 has m × n unit structures 60.
 本例では、各帯電部10の電圧が同じであるので、最も上流に位置する捕集箱20‐1に捕集されるPMが相対的に少なく、下流に行くに従い捕集箱20に捕集されるPMが増加する可能性がある。そこで、制御部90は、複数の単位構造60の各々における燃焼部30へ供給する電力を制御してよい。 In this example, since the voltage of each charging unit 10 is the same, the PM collected in the collection box 20-1 located at the most upstream is relatively small, and the collection is performed in the collection box 20 as going downstream. PM may increase. Therefore, the control unit 90 may control the power supplied to the combustion unit 30 in each of the plurality of unit structures 60.
 本例の制御部90は、捕集されたPMの重量が相対的に小さい上流の燃焼部30ほど小さい電力を供給し、捕集されたPMの重量が相対的に大きい下流の燃焼部30ほど大きい電力を供給する。これにより、捕集されるPMの重量が相対的に小さい上流においては余分な電力消費を抑制することができ、捕集されるPMの重量が相対的に大きい下流においてはPMを十分に燃焼させることができる。 The control unit 90 of the present example supplies lower power to the upstream combustion unit 30 in which the collected PM has a relatively small weight, and the downstream combustion unit 30 in which the collected PM has a relatively large weight. Supply large power. As a result, excess power consumption can be suppressed in the upstream where the weight of the collected PM is relatively small, and PM is sufficiently burned in the downstream where the weight of the collected PM is relatively large. be able to.
 また、PM含有ガス74の風速に応じて、燃焼部30へ供給する電力を制御してよい。例えば、風速が大きいほど捕集箱20の捕集されたPMは下流に飛散しやすくなるので、捕集される重量が減る傾向にある。そこで、制御部90は、PM含有ガス74の風速が大きいほど燃焼部30へ供給する電力を大きくし、PM含有ガス74の風速が小さいほど燃焼部30へ供給する電力を小さくしてよい。これにより、余分な電力消費の抑制と、PMの十分な燃焼をさらに確実にすることができる。 Further, the electric power supplied to the combustion unit 30 may be controlled according to the wind speed of the PM-containing gas 74. For example, since the PM collected in the collection box 20 is more likely to be scattered downstream as the wind speed increases, the collected weight tends to decrease. Therefore, the control unit 90 may increase the power supplied to the combustion unit 30 as the wind speed of the PM-containing gas 74 increases, and decrease the power supplied to the combustion unit 30 as the wind speed of the PM-containing gas 74 decreases. Thereby, suppression of excess power consumption and sufficient combustion of PM can be further ensured.
 図12は、第7実施形態におけるPM燃焼装置100の断面図である。第6実施形態と同様に、本例のPM燃焼装置100も、PM含有ガス74の上流から下流に向かう流れ方向において直列に配置された複数の単位構造60を有する。ただし、本例においては、各単位構造60が1つの可変直流電源26を有する。制御部90は、各可変直流電源26の出力電圧を制御してよい。制御部90から可変直流電源26への制御信号を破線で示す。 FIG. 12 is a cross-sectional view of the PM combustion apparatus 100 in the seventh embodiment. Similar to the sixth embodiment, the PM combustion apparatus 100 of the present example also includes a plurality of unit structures 60 arranged in series in the flow direction from the upstream to the downstream of the PM-containing gas 74. However, in this example, each unit structure 60 has one variable DC power supply 26. The controller 90 may control the output voltage of each variable DC power supply 26. A control signal from the control unit 90 to the variable DC power supply 26 is indicated by a broken line.
 PM含有ガス74は、上流のガス通過領域70から下流のガス通過領域70へ順に通過する。仮に、全ての単位構造60の帯電部10に同じ電圧を同じにする場合、最も上流に位置する捕集箱20‐1に捕集されるPMが相対的に少なく、下流に行くに従い捕集箱20に捕集されるPMが増加する可能性がある。例えば、捕集されるPMの重量は、中流の捕集箱20にて極大値を持つこともあり得る。そこで、制御部90は、複数の単位構造60の各々における帯電部10へ供給する電圧を制御してよい。これにより、PM含有ガス74の風速、および、PM含有ガス74の流れ方向における単位構造60の位置に関わらず、各捕集箱20に捕集されるPMの重量を均しくすることができる。この場合に、制御部90は、各燃焼部30に同じ電力を供給してよい。なお、他の例においては、Z軸方向に重ねられた2つの単位構造60で1つの可変直流電源26が共有され、制御部90が当該共有されている1つの可変直流電源26の電圧を制御してもよい。 The PM-containing gas 74 sequentially passes from the upstream gas passage region 70 to the downstream gas passage region 70. If the same voltage is applied to the charging parts 10 of all the unit structures 60, the amount of PM collected in the most upstream collection box 20-1 is relatively small, and the collection boxes go downstream. There is a possibility that PM collected by 20 increases. For example, the weight of the collected PM may have a maximum value in the middle collection box 20. Therefore, the control unit 90 may control the voltage supplied to the charging unit 10 in each of the plurality of unit structures 60. Thereby, regardless of the wind speed of the PM-containing gas 74 and the position of the unit structure 60 in the flow direction of the PM-containing gas 74, the weight of the PM collected in each collection box 20 can be leveled. In this case, the control unit 90 may supply the same power to each combustion unit 30. In another example, one variable DC power supply 26 is shared by two unit structures 60 stacked in the Z-axis direction, and the control unit 90 controls the voltage of the one shared variable DC power supply 26. May be.
 なお、第6実施形態と同様に、PM含有ガス74の風速に応じて、燃焼部30へ供給する電力を制御してもよい。例えば、制御部90は、PM含有ガス74の風速が大きいほど燃焼部30へ供給する電力を大きくし、PM含有ガス74の風速が小さいほど燃焼部30へ供給する電力を小さくしてよい。これにより、余分な電力消費の抑制と、PMの十分な燃焼をさらに確実にすることができる。なお、本例は、第1実施形態を基礎として記載しているが、第1実施形態の変形例、第2実施形態、第3実施形態およびその変形例、第4実施形態、ならびに、第5実施形態と組み合わせてよいのは勿論である。 Note that, similarly to the sixth embodiment, the power supplied to the combustion unit 30 may be controlled according to the wind speed of the PM-containing gas 74. For example, the control unit 90 may increase the power supplied to the combustion unit 30 as the wind speed of the PM-containing gas 74 increases, and decrease the power supplied to the combustion unit 30 as the wind speed of the PM-containing gas 74 decreases. Thereby, suppression of excess power consumption and sufficient combustion of PM can be further ensured. In addition, although this example is described on the basis of 1st Embodiment, the modification of 1st Embodiment, 2nd Embodiment, 3rd Embodiment, its modification, 4th Embodiment, and 5th Of course, it may be combined with the embodiment.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順序で実施することが必須であることを意味するものではない。
 なお、本願明細書に記載の実施形態によれば、以下の構成もまた開示される。
 [項目1]
 粒子状物質燃焼装置であって、
 粒子状物質含有ガス中の粒子状物質を帯電させる帯電部と、
 前記帯電部から離間して設けられ、前記帯電部により帯電された前記粒子状物質を捕集する捕集部と、
 前記捕集部の内部に設けられ、前記捕集部において捕集された前記粒子状物質を燃焼させる燃焼部と、
 を備え、
 前記粒子状物質燃焼装置の動作状態に応じて前記燃焼部の動作タイミングを制御することにより、前記捕集部において捕集された前記粒子状物質を燃焼させる、
 粒子状物質燃焼装置。
 [項目2]
 前記捕集部に捕集された前記粒子状物質の重量に応じて、前記粒子状物質を燃焼させる、
 項目1に記載の粒子状物質燃焼装置。
 [項目3]
 前記捕集部の内部の体積をVc[cm]とし、前記粒子状物質の密度を10-4[kg/cm]とする場合に、
 前記捕集部に捕集された前記粒子状物質の重量が、10-6×Vc[kg]以上10-5×Vc[kg]以下になった場合に、前記捕集部に捕集された前記粒子状物質を燃焼させる、
 項目2に記載の粒子状物質燃焼装置。
 [項目4]
 前記燃焼部は、前記捕集部において捕集された前記粒子状物質に対して熱を供給する発熱体を含む、
 項目1から3のいずれか一項に記載の粒子状物質燃焼装置。
 [項目5]
 前記発熱体は、前記粒子状物質に対して輻射熱を供給するセラミックヒーターである、
 項目4に記載の粒子状物質燃焼装置。
 [項目6]
 前記帯電部は放電用電極を有し、
 前記燃焼部は、前記放電用電極と同じ極性の電位を有する導電部をさらに有する、
 項目4または5に記載の粒子状物質燃焼装置。
 [項目7]
 前記粒子状物質含有ガスの上流から下流に向かう流れ方向において直列に配置された、前記帯電部と前記捕集部と前記燃焼部とを各々有する複数の単位構造を備え、
 前記粒子状物質含有ガスの風速に応じて、前記複数の単位構造の各々における前記帯電部へ供給する電圧を制御する、
 項目1から6のいずれか一項に記載の粒子状物質燃焼装置。
 [項目8]
 前記粒子状物質含有ガスの上流から下流に向かう流れ方向において直列に配置された、前記帯電部と前記捕集部と前記燃焼部とを各々有する複数の単位構造を備え、
 前記粒子状物質含有ガスの風速に応じて、前記複数の単位構造の各々における前記燃焼部へ供給する電力を制御する、
 項目1から6のいずれか一項に記載の粒子状物質燃焼装置。
 [項目9]
 前記粒子状物質含有ガスの温度に応じて、前記燃焼部へ供給する電力を制御する、
 項目1から8のいずれか一項に記載の粒子状物質燃焼装置。
 [項目10]
 前記捕集部に捕集された前記粒子状物質の重量に応じて、前記燃焼部へ供給する電力を制御する、
 項目1から9のいずれか一項に記載の粒子状物質燃焼装置。
 [項目11]
 前記帯電部は放電用電極を有し、
 前記放電用電極は、前記粒子状物質含有ガスの上流から下流に向かう流れ方向において各々異なる位置に設けられた複数のトゲ部を含み、
 前記捕集部は、前記放電用電極と対向する面に開口部を有し、
 前記複数のトゲ部の位置に応じて、前記開口部と前記燃焼部におけるセラミックヒーターの輻射部とが配置される、
 項目1から10のいずれか一項に記載の粒子状物質燃焼装置。
The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, this means that it is essential to carry out in this order. is not.
In addition, according to embodiment described in this-application specification, the following structures are also disclosed.
[Item 1]
A particulate matter combustion apparatus,
A charging unit for charging the particulate matter in the particulate matter-containing gas;
A collecting unit that is provided apart from the charging unit and collects the particulate matter charged by the charging unit;
A combustion unit that is provided inside the collection unit and burns the particulate matter collected in the collection unit;
With
Combusting the particulate matter collected in the collection unit by controlling the operation timing of the combustion unit according to the operation state of the particulate matter combustion device,
Particulate matter combustion equipment.
[Item 2]
Combusting the particulate matter according to the weight of the particulate matter collected in the collection part,
Item 1. The particulate matter combustion apparatus according to Item 1.
[Item 3]
When the internal volume of the collection part is Vc [cm 3 ] and the density of the particulate matter is 10 −4 [kg / cm 3 ],
When the weight of the particulate matter collected in the collection unit was 10 −6 × Vc [kg] or more and 10 −5 × Vc [kg] or less, it was collected in the collection unit. Burning the particulate matter;
Item 3. The particulate matter combustion apparatus according to Item 2.
[Item 4]
The combustion section includes a heating element that supplies heat to the particulate matter collected in the collection section.
Item 4. The particulate matter combustion apparatus according to any one of Items 1 to 3.
[Item 5]
The heating element is a ceramic heater that supplies radiant heat to the particulate matter.
Item 4. The particulate matter combustion apparatus according to Item 4.
[Item 6]
The charging unit has a discharge electrode,
The combustion part further includes a conductive part having a potential of the same polarity as the discharge electrode.
Item 4. The particulate matter combustion apparatus according to Item 4 or 5.
[Item 7]
A plurality of unit structures each having the charging unit, the collection unit, and the combustion unit, arranged in series in the flow direction from the upstream to the downstream of the particulate matter-containing gas,
According to the wind speed of the particulate matter-containing gas, the voltage supplied to the charging unit in each of the plurality of unit structures is controlled.
The particulate matter combustion apparatus according to any one of items 1 to 6.
[Item 8]
A plurality of unit structures each having the charging unit, the collection unit, and the combustion unit, arranged in series in the flow direction from the upstream to the downstream of the particulate matter-containing gas,
Controlling the power supplied to the combustion section in each of the plurality of unit structures according to the wind speed of the particulate matter-containing gas,
The particulate matter combustion apparatus according to any one of items 1 to 6.
[Item 9]
According to the temperature of the particulate matter-containing gas, the power supplied to the combustion unit is controlled.
The particulate matter combustion apparatus according to any one of items 1 to 8.
[Item 10]
According to the weight of the particulate matter collected in the collection unit, the power supplied to the combustion unit is controlled.
Item 10. The particulate matter combustion apparatus according to any one of Items 1 to 9.
[Item 11]
The charging unit has a discharge electrode,
The discharge electrode includes a plurality of barbs provided at different positions in the flow direction from the upstream to the downstream of the particulate matter-containing gas,
The collection part has an opening on the surface facing the discharge electrode,
Depending on the position of the plurality of barbs, the opening and the radiating part of the ceramic heater in the combustion part are arranged.
The particulate matter combustion apparatus according to any one of items 1 to 10.
 10・・帯電部、12・・放電用電極、14・・トゲ部、20・・捕集箱、21・・上面、22・・開口部、23・・下面、24・・直流電源、26・・可変直流電源、30・・燃焼部、32・・セラミックヒーター、33・・輻射部、34・・絶縁板、35・・導電部、36・・ボルト、37・・ヘッド、38・・ナット、42、43・・圧着端子、44、45・・耐熱被覆配線、52・・電熱線、54・・直線形状、56・・正弦波形状、60・・単位構造、70・・ガス通過領域、74・・PM含有ガス、80・・重量センサ、90・・制御部、100・・PM燃焼装置 10 .... Charging part, 12 .... Discharge electrode, 14 .... Thorn part, 20 .... Collecting box, 21..Top face, 22..Opening part, 23..Bottom face, 24..DC power supply, 26 ..・ Variable DC power supply, 30 ・ ・ Burning part, 32 ・ ・ Ceramic heater, 33 ・ ・ Radiation part, 34 ・ ・ Insulating plate, 35 ・ ・ Conducting part, 36 ・ ・ Bolt, 37 ・ ・ Head, 38 ・ ・ Nut, 42, 43 ... Crimp terminal, 44, 45 ... Heat-resistant coated wiring, 52 ... Heating wire, 54 ... Linear shape, 56 ... Sinusoidal shape, 60 ... Unit structure, 70 ... Gas passage area, 74 ..PM containing gas, 80..weight sensor, 90..control unit, 100..PM combustion apparatus

Claims (9)

  1.  粒子状物質燃焼装置であって、
     粒子状物質含有ガス中の粒子状物質を帯電させる帯電部と、
     前記帯電部から離間して設けられ、前記帯電部により帯電された前記粒子状物質を捕集し、前記粒子状物質が通過するための開口を有し金属製の筐体を有する捕集箱である、捕集部と、
     前記捕集部の内部に設けられ、前記捕集部において捕集された前記粒子状物質を燃焼させ、前記粒子状物質に対して輻射熱を供給するセラミックヒーターを含む燃焼部と
    を備え、
     前記粒子状物質燃焼装置の動作状態に応じて前記燃焼部の動作タイミングを制御することにより、前記捕集部において捕集された前記粒子状物質を燃焼させ、
     前記帯電部は、前記捕集箱の外に位置する
     粒子状物質燃焼装置。
    A particulate matter combustion apparatus,
    A charging unit for charging the particulate matter in the particulate matter-containing gas;
    A collection box provided apart from the charging unit, collecting the particulate matter charged by the charging unit, and having an opening for allowing the particulate matter to pass therethrough and having a metal casing. There is a collection part,
    A combustion unit that is provided inside the collection unit, includes a ceramic heater that burns the particulate matter collected in the collection unit and supplies radiant heat to the particulate matter;
    By controlling the operation timing of the combustion unit according to the operating state of the particulate matter combustion device, the particulate matter collected in the collection unit is burned,
    The charging unit is a particulate matter combustion apparatus located outside the collection box.
  2.  前記捕集部に捕集された前記粒子状物質の重量に応じて、前記粒子状物質を燃焼させる
    請求項1に記載の粒子状物質燃焼装置。
    The particulate matter combustion apparatus according to claim 1, wherein the particulate matter is combusted according to the weight of the particulate matter collected by the collection unit.
  3.  前記捕集部の内部の体積をVc[cm]とし、前記粒子状物質の密度を10-4[kg/cm]とする場合に、
     前記捕集部に捕集された前記粒子状物質の重量が、10-6×Vc[kg]以上10-5×Vc[kg]以下になった場合に、前記捕集部に捕集された前記粒子状物質を燃焼させる
    請求項2に記載の粒子状物質燃焼装置。
    When the internal volume of the collection part is Vc [cm 3 ] and the density of the particulate matter is 10 −4 [kg / cm 3 ],
    When the weight of the particulate matter collected in the collection unit was 10 −6 × Vc [kg] or more and 10 −5 × Vc [kg] or less, it was collected in the collection unit. The particulate matter combustion apparatus according to claim 2, wherein the particulate matter is combusted.
  4.  粒子状物質燃焼装置であって、
     粒子状物質含有ガス中の粒子状物質を帯電させる帯電部と、
     前記帯電部から離間して設けられ、前記帯電部により帯電された前記粒子状物質を捕集する捕集部と、
     前記捕集部の内部に設けられ、前記捕集部において捕集された前記粒子状物質を燃焼させる燃焼部と
    を備え、
     前記粒子状物質燃焼装置の動作状態に応じて前記燃焼部の動作タイミングを制御することにより、前記捕集部において捕集された前記粒子状物質を燃焼させ、
     前記燃焼部は、前記捕集部において捕集された前記粒子状物質に対して熱を供給する発熱体を含み、
     前記帯電部は放電用電極を有し、
     前記燃焼部は、前記放電用電極と同じ極性の電位を有する導電部をさらに有する
    粒子状物質燃焼装置。
    A particulate matter combustion apparatus,
    A charging unit for charging the particulate matter in the particulate matter-containing gas;
    A collecting unit that is provided apart from the charging unit and collects the particulate matter charged by the charging unit;
    A combustion section provided inside the collection section and combusting the particulate matter collected in the collection section;
    By controlling the operation timing of the combustion unit according to the operating state of the particulate matter combustion device, the particulate matter collected in the collection unit is burned,
    The combustion section includes a heating element that supplies heat to the particulate matter collected in the collection section,
    The charging unit has a discharge electrode,
    The particulate matter combustion apparatus, wherein the combustion part further includes a conductive part having a potential of the same polarity as the discharge electrode.
  5.  前記粒子状物質含有ガスの上流から下流に向かう流れ方向において直列に配置された、前記帯電部と前記捕集部と前記燃焼部とを各々有する複数の単位構造を備え、
     前記粒子状物質含有ガスの風速に応じて、前記複数の単位構造の各々における前記帯電部へ供給する電圧を制御する
    請求項1から4のいずれか一項に記載の粒子状物質燃焼装置。
    A plurality of unit structures each having the charging unit, the collection unit, and the combustion unit, arranged in series in the flow direction from the upstream to the downstream of the particulate matter-containing gas,
    The particulate matter combustion apparatus according to any one of claims 1 to 4, wherein a voltage supplied to the charging unit in each of the plurality of unit structures is controlled according to a wind speed of the particulate matter-containing gas.
  6.  粒子状物質燃焼装置であって、
     粒子状物質含有ガス中の粒子状物質を帯電させる帯電部と、
     前記帯電部から離間して設けられ、前記帯電部により帯電された前記粒子状物質を捕集する捕集部と、
     前記捕集部の内部に設けられ、前記捕集部において捕集された前記粒子状物質を燃焼させる燃焼部と
    を備え、
     前記粒子状物質燃焼装置の動作状態に応じて前記燃焼部の動作タイミングを制御することにより、前記捕集部において捕集された前記粒子状物質を燃焼させ、
     前記粒子状物質含有ガスの上流から下流に向かう流れ方向において直列に配置された、前記帯電部と前記捕集部と前記燃焼部とを各々有する複数の単位構造を備え、
     前記粒子状物質含有ガスの風速に応じて、前記複数の単位構造の各々における前記燃焼部へ供給する電力を制御する
    粒子状物質燃焼装置。
    A particulate matter combustion apparatus,
    A charging unit for charging the particulate matter in the particulate matter-containing gas;
    A collecting unit that is provided apart from the charging unit and collects the particulate matter charged by the charging unit;
    A combustion section provided inside the collection section and combusting the particulate matter collected in the collection section;
    By controlling the operation timing of the combustion unit according to the operating state of the particulate matter combustion device, the particulate matter collected in the collection unit is burned,
    A plurality of unit structures each having the charging unit, the collection unit, and the combustion unit, arranged in series in the flow direction from the upstream to the downstream of the particulate matter-containing gas,
    The particulate matter combustion apparatus which controls the electric power supplied to the combustion part in each of the plurality of unit structures according to the wind speed of the particulate matter-containing gas.
  7.  前記粒子状物質含有ガスの温度に応じて、前記燃焼部へ供給する電力を制御する
    請求項1から6のいずれか一項に記載の粒子状物質燃焼装置。
    The particulate matter combustion apparatus according to any one of claims 1 to 6, wherein electric power supplied to the combustion unit is controlled according to a temperature of the particulate matter-containing gas.
  8.  前記捕集部に捕集された前記粒子状物質の重量に応じて、前記燃焼部へ供給する電力を制御する
    請求項1から7のいずれか一項に記載の粒子状物質燃焼装置。
    The particulate matter combustion apparatus according to any one of claims 1 to 7, wherein electric power supplied to the combustion unit is controlled according to a weight of the particulate matter collected by the collection unit.
  9.  前記帯電部は放電用電極を有し、
     前記放電用電極は、前記粒子状物質含有ガスの上流から下流に向かう流れ方向において各々異なる位置に設けられた複数のトゲ部を含み、
     前記捕集部は、前記放電用電極と対向する面に開口部を有し、
     前記複数のトゲ部の位置に応じて、前記開口部と前記燃焼部におけるセラミックヒーターの輻射部とが配置される
    請求項1から8のいずれか一項に記載の粒子状物質燃焼装置。
    The charging unit has a discharge electrode,
    The discharge electrode includes a plurality of barbs provided at different positions in the flow direction from the upstream to the downstream of the particulate matter-containing gas,
    The collection part has an opening on the surface facing the discharge electrode,
    The particulate matter combustion apparatus according to any one of claims 1 to 8, wherein the opening and a radiating portion of a ceramic heater in the combustion portion are arranged according to the positions of the plurality of thorn portions.
PCT/JP2017/039643 2016-12-28 2017-11-01 Particulate substance combustion device WO2018123262A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-257109 2016-12-28
JP2016257109A JP6150001B1 (en) 2016-12-28 2016-12-28 Particulate matter combustion equipment

Publications (1)

Publication Number Publication Date
WO2018123262A1 true WO2018123262A1 (en) 2018-07-05

Family

ID=59081974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039643 WO2018123262A1 (en) 2016-12-28 2017-11-01 Particulate substance combustion device

Country Status (2)

Country Link
JP (1) JP6150001B1 (en)
WO (1) WO2018123262A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022035345A (en) * 2020-08-20 2022-03-04 富士電機株式会社 Electrostatic precipitator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048753A (en) * 2003-07-31 2005-02-24 Toyota Motor Corp Exhaust emission control device
JP2005232972A (en) * 2004-02-17 2005-09-02 Isuzu Motors Ltd Exhaust emission control device
JP2008064015A (en) * 2006-09-07 2008-03-21 Nissin Electric Co Ltd Particulate removing device
JP2011245429A (en) * 2010-05-27 2011-12-08 Fuji Electric Co Ltd Electrostatic precipitator
WO2014118819A1 (en) * 2013-01-30 2014-08-07 富士電機株式会社 System for treating exhaust gas from marine diesel engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544493Y2 (en) * 1988-03-15 1993-11-11
JP2005036712A (en) * 2003-07-14 2005-02-10 Toyota Motor Corp Exhaust emission control device and exhaust emission control method
KR101574550B1 (en) * 2012-07-31 2015-12-04 후지 덴키 가부시키가이샤 Electrostatic precipitator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048753A (en) * 2003-07-31 2005-02-24 Toyota Motor Corp Exhaust emission control device
JP2005232972A (en) * 2004-02-17 2005-09-02 Isuzu Motors Ltd Exhaust emission control device
JP2008064015A (en) * 2006-09-07 2008-03-21 Nissin Electric Co Ltd Particulate removing device
JP2011245429A (en) * 2010-05-27 2011-12-08 Fuji Electric Co Ltd Electrostatic precipitator
WO2014118819A1 (en) * 2013-01-30 2014-08-07 富士電機株式会社 System for treating exhaust gas from marine diesel engine

Also Published As

Publication number Publication date
JP2018109375A (en) 2018-07-12
JP6150001B1 (en) 2017-06-21

Similar Documents

Publication Publication Date Title
US9371994B2 (en) Method for Electrically-driven classification of combustion particles
US20150369476A1 (en) Combustion systems and methods for reducing combustion temperature
Yan et al. An experimental study on the effects of temperature and pressure on negative corona discharge in high-temperature ESPs
US7380756B1 (en) Single dielectric barrier aerodynamic plasma actuation
JP5527208B2 (en) Electric dust collector
Khaled et al. Experimental study of V–I characteristics of wire–plate electrostatic precipitators under clean air conditions
Al-Hamouz et al. Simulation and experimental studies of corona power loss in a dust loaded wire-duct electrostatic precipitator
JP6150001B1 (en) Particulate matter combustion equipment
Park et al. Flame spread over twin electrical wires with applied DC electric fields
Wang et al. Improving the removal of particles via electrostatic precipitator by optimizing the corona wire arrangement
Lee et al. Effects of relative humidity in the convective heat transfer over flat surface using ionic wind
WO2009059451A1 (en) An electrostatic precipitator
PT713562E (en) ELECTRONIC PURIFICATION OF EXHAUST GASES
Moon et al. Effective corona discharge and ozone generation from a wire-plate discharge system with a slit dielectric barrier
Gomez-Vega et al. Mitigating reverse emission in electroaerodynamic thrusters
JPH02115024A (en) Apparatus for decomposing nitrous oxide
JP7205135B2 (en) electric dust collector
El Dein et al. Experimental and simulation study of V–I characteristics of wire–plate electrostatic precipitators under clean air conditions
Zouaghi et al. Submicron particles trajectory and collection efficiency in a miniature planar DBD-ESP: Theoretical model and experimental validation
CN108472662A (en) Particle-like substance burner
Chang et al. Corona discharging and particle collection of bipolar transverse plate ESP
KR102583045B1 (en) Low voltage plasma ionizer
US20220040706A1 (en) Electrostatic precipitator
Laitinen et al. Performance of a sonic jet-type charger in high dust load
JP4015757B2 (en) Electrode dust collector electrode unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888855

Country of ref document: EP

Kind code of ref document: A1