WO2018123250A1 - Δς modulator, transmitter, semiconductor integrated circuit, processing method, and computer program - Google Patents

Δς modulator, transmitter, semiconductor integrated circuit, processing method, and computer program Download PDF

Info

Publication number
WO2018123250A1
WO2018123250A1 PCT/JP2017/039412 JP2017039412W WO2018123250A1 WO 2018123250 A1 WO2018123250 A1 WO 2018123250A1 JP 2017039412 W JP2017039412 W JP 2017039412W WO 2018123250 A1 WO2018123250 A1 WO 2018123250A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
output
input signals
loop filter
noise
Prior art date
Application number
PCT/JP2017/039412
Other languages
French (fr)
Japanese (ja)
Inventor
前畠 貴
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2018558855A priority Critical patent/JP6996517B2/en
Publication of WO2018123250A1 publication Critical patent/WO2018123250A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/02Delta modulation, i.e. one-bit differential modulation

Definitions

  • the present invention relates to a ⁇ modulator, a transmitter, a semiconductor integrated circuit, a processing method, and a computer program.
  • Patent Document 1 describes a ⁇ modulator that can output an output signal including a plurality of signals having different frequencies.
  • the ⁇ modulator adds a plurality of input ports to which a plurality of input signals having different frequencies are provided, a plurality of loop filters provided corresponding to the plurality of input ports, and outputs of the plurality of loop filters. And an adder.
  • the ⁇ modulator includes a first adder that adds a plurality of input signals having different frequencies, a loop filter that is provided with an output of the first adder, and a quantum that quantizes the output of the loop filter.
  • the loop filter receives the output of the quantizer as a feedback signal, and blocks noise in the vicinity of the frequency of each of the plurality of input signals.
  • a transmitter includes the above-described ⁇ modulator and a transmission unit to which an output of the quantizer is given.
  • a semiconductor integrated circuit is a semiconductor integrated circuit used in a ⁇ modulator that performs ⁇ modulation on a plurality of input signals having different frequencies, and adds a plurality of input signals having different frequencies.
  • the processing method is a processing method for performing ⁇ modulation on a plurality of input signals having different frequencies, and a first addition step of adding the plurality of input signals having different frequencies, A filter step for performing a loop filter process on the output of the first addition step, and a quantization step for quantizing the output of the filter step, wherein the filter step outputs the output of the quantization step as a feedback signal
  • the loop filter processing is performed by a loop filter that blocks noise in the vicinity of the frequency of each of the plurality of input signals.
  • a computer program is a computer program for causing a computer to execute processing for performing ⁇ modulation on data representing a plurality of input signals having different frequencies, and the computer program includes a plurality of computers having different frequencies.
  • a first addition step for outputting data obtained by adding the input signals, a filter step for performing a loop filter process on the output of the first addition step, and a quantization step for quantizing the output of the filter step;
  • the filter step receives the output of the quantization step as feedback data, and performs the loop filter processing by a loop filter that blocks noise in the vicinity of each frequency of the plurality of input signals.
  • FIG. 1 is a block diagram showing the configuration of the ⁇ modulator according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of the power spectrum of the output signal obtained by the simulation and obtained from the ⁇ modulator of the first embodiment.
  • FIG. 3 is a diagram showing another example of the power spectrum of the output signal obtained by the simulation by the ⁇ modulator of the first embodiment.
  • FIG. 4 is a block diagram showing a configuration of the ⁇ modulator according to the second embodiment.
  • FIG. 5 is a diagram illustrating an example of the power spectrum of the output signal obtained by the simulation by the ⁇ modulator of the second embodiment.
  • FIG. 6 is a block diagram showing a configuration of the ⁇ modulator according to the third embodiment.
  • FIG. 7 is a block diagram illustrating an example of a wireless communication device using a ⁇ modulator.
  • the ⁇ modulator described in Patent Document 1 includes a plurality of loop filters corresponding to a plurality of input ports. For this reason, for example, when an input signal is not applied to one of the input ports, the function of the loop filter corresponding to the input port to which the input signal is not applied may not be exhibited, resulting in a useless configuration. Yes, I was unable to respond appropriately.
  • the present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide a ⁇ modulator that can appropriately cope with a case where any one of a plurality of input signals is not given.
  • a ⁇ modulator includes a first adder that adds a plurality of input signals having different frequencies, a loop filter to which an output of the first adder is given, and an output of the loop filter that is quantized.
  • the loop filter receives the output of the quantizer as a feedback signal and blocks noise in the vicinity of the frequency of each of the plurality of input signals.
  • the loop filter has a characteristic of blocking noise near the frequency of each of the plurality of input signals, and the output of the first adder obtained by adding the plurality of input signals is the loop filter. Therefore, even if any one of the plurality of input signals is not given, the other given input signals can be given to the loop filter. As a result, even if any one of the plurality of input signals is not given, it can be appropriately handled by changing the setting of the loop filter.
  • the loop filter includes an internal filter circuit to which a difference between an output of the adder and the feedback signal is given, and the internal filter circuit includes a plurality of filters connected in series. It is preferable that it is comprised. In this case, the order of the transfer functions of the plurality of filters can be lowered with respect to the order of the transfer function as the entire internal filter circuit.
  • the loop filter includes an internal filter circuit to which a difference between the output of the adder and the feedback signal is given, and the internal filter circuit includes a plurality of parallel filter circuits connected in parallel. It is preferable that it is comprised by the filter of this. Also in this case, the order of the transfer functions of the plurality of filters can be lowered with respect to the order of the transfer function as the entire internal filter circuit. Furthermore, since the plurality of filters are connected in parallel, it is possible to prevent the influence of errors generated in each of the plurality of filters from reaching each other among the plurality of filters.
  • the internal filter circuit has a pass band in the vicinity of the frequency of each of the plurality of input signals.
  • the characteristic of the internal filter circuit that has a pass band near the frequency of each of the plurality of input signals can be realized by the plurality of filters.
  • the loop filter includes a second adder that outputs a result of adding the output of the first adder and the output of the internal filter circuit as the output of the loop filter. It is preferable that
  • the loop filter may reduce a noise level in a band between adjacent noise blocking bands among noise blocking bands that block noise in the vicinity of frequencies of the plurality of input signals. It is preferable to suppress the noise level so that it is lower than the noise level in a band other than the band between the adjacent noise stop bands. In this case, it is easy or unnecessary to remove noise in a band between adjacent noise stop bands.
  • the transmitter which is one Embodiment is provided with the delta-sigma modulator as described in said (1), and the transmission part to which the output of the said quantizer is given.
  • a semiconductor integrated circuit is a semiconductor integrated circuit used in a ⁇ modulator that performs ⁇ modulation on a plurality of input signals having different frequencies, and a plurality of input signals having different frequencies are A first adder for adding, a loop filter to which an output of the first adder is provided, and a quantizer for quantizing the output of the loop filter, wherein the loop filter outputs an output of the quantizer Is received as a feedback signal, and noise near the frequency of each of the plurality of input signals is blocked.
  • a processing method is a processing method for performing ⁇ modulation on a plurality of input signals having different frequencies, and the first addition for adding the plurality of input signals having different frequencies.
  • a computer program is a computer program for causing a computer to execute processing for performing ⁇ modulation on data representing a plurality of input signals having different frequencies.
  • a first addition step for outputting data obtained by adding a plurality of input signals having different values, a filter step for performing a loop filter process on the output of the first addition step, and a quantization for quantizing the output of the filter step
  • the filter step accepts the output of the quantization step as feedback data, and the loop filter prevents the noise in the vicinity of the frequency of each of the plurality of input signals. Filtering Do.
  • FIG. 1 is a block diagram showing the configuration of the ⁇ modulator according to the first embodiment.
  • the ⁇ modulator 1 includes input ports 2a and 2b to which two input signals U 1 and U 2 having different frequencies are input.
  • the ⁇ modulator 1 outputs a single output signal V (quantized signal: ⁇ modulation signal) including the received two input signals U 1 and U 2 from the output port 4.
  • V quantized signal: ⁇ modulation signal
  • the ⁇ modulator 1 includes a first adder 5 that adds input signals U 1 and U 2 , a loop filter 6, and a quantizer 7 that outputs an output signal V.
  • the first adder 5 adds the input signals U 1 and U 2 received by the input ports 2 a and 2 b and gives the added output to the loop filter 6.
  • the loop filter 6 is supplied with the output of the first adder 5 and the output signal V output from the quantizer 7 as a feedback signal.
  • the output signal V fed back to the loop filter 6 is fed back via a path 8 connecting the output terminal of the quantizer 7 and the loop filter 6.
  • the output signal V fed back to the loop filter 6 via the path 8 is also referred to as a feedback signal.
  • the loop filter 6 includes a differentiator 9 and a filter circuit 10.
  • the differencer 9 is given the output of the first adder 5 and a feedback signal.
  • the difference unit 9 obtains a difference between the output of the first adder 5 and the feedback signal.
  • the difference that is the output of the differentiator 9 is given to the filter circuit 10.
  • the output of the filter circuit 10 is given to the second adder 11 provided at the subsequent stage of the filter circuit 10.
  • the filter circuit 10 includes a first filter 15, a second filter 16, and a third adder 18.
  • the first filter 15 and the second filter 16 are connected in parallel to the differentiator 9. Therefore, the output of the differentiator 9 is given to each of the first filter 15 and the second filter 16.
  • the third adder 18 adds the output of the first filter 15 and the output of the second filter 16.
  • the output of the third adder 18 is given to the second adder 11 as the output of the filter circuit 10.
  • the second adder 11 adds the output of the first adder 5 and the output of the filter circuit 10 and outputs the addition result as the output of the loop filter 6.
  • the output of the second adder 11 is given to the quantizer 7.
  • the quantizer 7 is a two-level quantizer and outputs a 1-bit pulse train as an output signal V. As described above, the output signal V of the quantizer 7 is given to the loop filter 6 via the path 8 as a feedback signal. The output signal V from the quantizer 7 is output from the output port 4.
  • V (z) U 1 (z) + U 2 (z) + NTF (z) E (z) (1)
  • V (z) is an output signal
  • U 1 (z) and U 2 (z) are input signals
  • NTF (z) is a noise transfer function of the filter circuit 10
  • E (z) is ⁇ modulation. This is the quantization noise of the device 1.
  • the output of the differentiator 9 is expressed as the following equation (2).
  • the output of the differentiator 9 is the inverse characteristic of the noise component contained in the output signal V (z).
  • the filter circuit 10 of the present embodiment has a first pass band including the frequency band of the input signal U 1 and a second pass band including the frequency band of the input signal U 2 , and the first pass band and the second pass band are included. In a band other than the band, the filter characteristic (noise transfer function NTF (z)) for blocking the passage of signals is set. Therefore, the filter circuit 10 outputs a signal having the inverse characteristic of the noise component in the second pass band including a first passband, and the frequency band of the input signal U 2 comprises a frequency band of the input signal U 1, second This is given to the adder 11.
  • the signal having the inverse characteristic is added to the output of the first adder 5 by the second adder 11.
  • the output of the first adder 5 to which the signal having the inverse characteristic is added is quantized by the quantizer 7, and the output signal V is fed back to the filter circuit 10.
  • the loop filter 6 of the present embodiment repeatedly adds a signal having the inverse characteristic of the noise component in the first passband and the second passband to the output of the first adder 5, thereby generating an output signal.
  • Noise in the first passband and the second passband in V is suppressed. Therefore, the loop filter 6 of the present embodiment has a filter characteristic having a band that blocks noise at two locations of the first passband and the second passband. That is, the loop filter 6 of the present embodiment has a characteristic of blocking noise near the frequencies of the input signals U 1 and U 2 .
  • the ⁇ modulator 1 includes a control unit 19 for controlling the first filter 15 and the second filter 16.
  • the control unit 19 can store a plurality of setting parameters that determine the filter characteristics of the first filter 15 and the second filter 16.
  • the control unit 19 has a function of controlling the filter characteristics of the first filter 15 and the second filter 16 by selectively giving a plurality of stored setting parameters to the first filter 15 and the second filter 16. ing.
  • the ⁇ modulator 1 of this embodiment can also be configured by a computer including a CPU, a storage unit, and the like.
  • the computer can realize each functional unit included in the ⁇ modulator 1 by reading and executing a computer program or the like stored in the storage unit.
  • the ⁇ modulator 1 processes data representing each signal (input signal, output signal, etc.).
  • the ⁇ modulator 1 of the present embodiment can be configured by a semiconductor integrated circuit such as an FPGA (Field Programmable Gate Array).
  • the functional units such as the filter circuit 10 and the quantizer 7 included in the ⁇ modulator 1 are configured using various semiconductor elements included in the semiconductor integrated circuit. Is done.
  • the ⁇ modulator 1 includes an FPGA which is a programmable integrated circuit, and a computer having a function of giving circuit configuration information related to the circuit configuration of the FPGA to the FPGA and causing the FPGA to configure the circuit according to the circuit configuration information. It can also be configured by other systems.
  • the storage unit of the computer stores a program for causing the computer to execute processing for providing the circuit configuration information to the FPGA, and one or a plurality of circuit configuration information.
  • the computer provides circuit configuration information stored in the storage unit to the FPGA.
  • the FPGA to which the circuit configuration information is given constitutes a circuit according to the given circuit configuration information.
  • the storage unit of the computer stores circuit configuration information indicating a circuit configuration for configuring the ⁇ modulator 1 in the FPGA.
  • the computer can cause the FPGA to configure the digital signal processing unit 2 by providing the FPGA with circuit configuration information for configuring the ⁇ modulator 1.
  • the filter circuit 10 included in the ⁇ modulator 1 of the present embodiment includes the first pass band including the frequency band of the input signal U 1 and the second pass band including the frequency band of the input signal U 2. It is set to have a filter characteristic (noise transfer function NTF (z)). Further, the noise transfer function NTF (z) of the filter circuit 10 is set with respect to at least the first pass band, the second pass band, and the band between the two pass bands in the output signal V.
  • the filter circuit 10 of the present embodiment is a fourth-order IIR (Infinite Impulse Response) filter.
  • the transfer function L 2 of the transfer functions L 1, and the second filter 16 of the first filter 15 is set based on the noise transfer function NTF of the filter circuit 10 having the fourth-order filter (z).
  • the first filter 15 and the second filter 16 are set as secondary IIR filters.
  • Equation (4) is an example of a general equation of the noise transfer function NTF (z) of the filter circuit 10.
  • Equation (4) represents a noise transfer function when the filter circuit 10 is configured as an n-th order IIR filter.
  • a 0 , A 1 ,... A n , B 1 ,... B n are parameters of each term constituting the denominator and the numerator, and are setting parameters that determine filter characteristics.
  • the denominator and numerator in the above formula (4) are polynomials of z, they can be expressed by, for example, a product of lower order polynomials. Therefore, the above equation (4) can be decomposed into partial fractions having lower order polynomials as denominators and numerators. That is, the expression (4) can be expressed as a sum of a plurality of lower-order polynomials.
  • the following formula (5) shows an example when the noise transfer function NTF (z) shown in the above formula (4) is decomposed into a plurality of polynomials.
  • Equation (5) shows a case where the noise transfer function NTF (z) of the nth-order filter circuit 10 is decomposed into partial fractions representing the transfer function of the second-order filter and expressed as the sum of these.
  • i is an integer from 1 to I, for example, where the number of decomposed partial fractions is I.
  • Ki is a coefficient of each decomposed partial fraction, A 1, i ,..., A n, i , B 1, i ,... B n, i are the terms constituting the denominator and numerator in the partial fraction.
  • the noise transfer function NTF (z) of the filter circuit 10 is designed as a high-order filter, it can be decomposed into a plurality of second-order filter transfer functions.
  • a filter characteristic having a first pass band including the frequency band of the input signal U 1 and a second pass band including the frequency band of the input signal U 2 is realized by the fourth-order IIR filter.
  • the setting parameter is obtained according to the above equation (4).
  • the noise transfer function NTF (z) based on the obtained setting parameter is decomposed into two partial fractions.
  • the decomposed two partial fractions show a transfer function representing a second-order IIR filter.
  • setting parameters for each partial fraction obtained by decomposing the noise transfer function NTF (z) are obtained.
  • a setting parameter when the noise transfer function NTF (z) is expressed by being divided into partial fractions is given to the first filter 15 and the second filter 16 for each partial fraction.
  • the first filter 15 and the second filter 16 given the setting parameters are set to transfer functions represented by partial fractions obtained by decomposing the noise transfer function NTF (z) into partial fractions.
  • the setting parameter when the noise transfer function NTF (z) is decomposed into partial fractions and expressed is stored in the control unit 19.
  • the first filter 15 and the second filter 16 are set to the transfer function when a setting parameter is given from the control unit 19.
  • the noise transfer function NTF (z) of the filter circuit 10 that is a fourth-order IIR filter is decomposed into two transfer functions representing the second-order IIR filter, and the two transfer signals that have been decomposed. function is set as a transfer function L 2 of the transfer functions L 1, and the second filter 16 of the first filter 15.
  • the third adder 18 that adds the output of the first filter 15 and the output of the second filter 16 includes the first pass band including the frequency band of the input signal U 1 and the frequency band of the input signal U 2.
  • An output of the filter circuit 10 serving as a fourth-order IIR filter having a noise transfer function NTF (z) having a second passband is supplied to the second adder 11.
  • the transfer function L 1 of the first filter 15 constituting the filter circuit 10, and the transfer function L 2 of the second filter 16, the noise transfer function NTF of the filter circuit 10 (z) in the partial fraction It is the transfer function obtained by decomposing. Therefore, the transfer functions of the first filter 15 and the second filter 16 are not individually set as in the case of the conventional example, and even if they are set to have the same passband as the conventional example, both The individual transfer functions of the filters 15 and 16 are not necessarily the same as in the conventional example. That is, the first filter 15 and the second filter 16 of the present embodiment are connected in parallel to each other to form a filter (filter circuit 10) having a desired characteristic.
  • the filter circuit 10 of the present embodiment is configured using a plurality of filters (the first filter 15 and the second filter 16), the characteristics of the filter circuit 10 having a plurality of pass bands are represented by the first filter 15. And the second filter 16. Therefore, the order of the transfer functions of the first filter 15 and the second filter 16 can be lowered with respect to the order of the noise transfer function NTF (z) as the entire filter circuit 10. Thereby, even if a high-order filter is configured, the processing load of the filter circuit 10 can be suppressed.
  • the filter circuit 10 of the present embodiment has the first filter 15 and the second filter 16 connected in parallel, for example, compared with the case where the first filter 15 and the second filter 16 are connected in series, both It is possible to prevent the influence of errors generated in the filters 15 and 16 from reaching each other between the filters 15 and 16.
  • FIG. 2 is a diagram illustrating an example of the power spectrum of the output signal obtained by the simulation and obtained from the ⁇ modulator of the first embodiment.
  • (A) in FIG. 2 is a diagram illustrating an example of the power spectrum of the output signal V from the ⁇ modulator 1 of the first embodiment
  • (b) in FIG. 2 is a diagram of (a) in FIG. It is a principal part enlarged view.
  • the frequency of the input signal U 1 is 940 MHz
  • the frequency of the input signal U 2 is 1025 MHz
  • the first passband in the filter circuit 10 is around 940 MHz.
  • two passbands are set in the vicinity of 1025 MHz.
  • the order of the filter as the filter circuit 10 is fourth order
  • the order of the filter for forming both passbands as filter characteristics is set to second order.
  • the power spectrum of the output signal V includes an input signal U 1 having a frequency of 940 MHz and an input signal U 2 having a frequency of 1025 MHz. Appears.
  • bands where noise is blocked are formed at two positions near 940 MHz and 1025 MHz. Within these quantization noise stop bands, the quantization noise is sufficiently suppressed compared to other bands.
  • the ⁇ modulator 1 of the present embodiment receives a plurality of input signals U 1 and U 2 having different frequencies and includes the input signals U 1 and U 2 in a single output signal V without causing interference with each other. Can be output.
  • the noise level in the band between two adjacent quantization noise blocking bands is a noise corresponding to the input signal U 1. appearing below the noise level of the higher frequency side than the noise rejection band corresponding to the noise level and the input signal U 2 of the lower frequency side than the stop band.
  • the loop filter 6 has two quantization noise stop bands and the noise level of the band between these two quantization noise stop bands is different from the band between the two quantization noise stop bands. This is because the noise level is suppressed to be lower than the noise level of the band.
  • the filter circuit 10 is set to a noise transfer function NTF (z) that can realize the above-described filter characteristics in the loop filter 6.
  • the noise transfer function NTF (z) of the filter circuit 10 that determines the quantization noise stop band is configured to set the first pass band and the second pass band.
  • the characteristics of at least the band between the first pass band and the second pass band can be set. That is, when setting the noise transfer function NTF (z) of the filter circuit 10, it is possible to adjust the characteristics of the band between the two quantization noise stop bands in addition to the two quantization noise stop bands. Yes.
  • the characteristics of the band between the two quantization noise stop bands are also determined by the setting parameters described above.
  • the filter characteristics of the internal filter included in each loop filter are set to the corresponding input ports. It is individually set so as to have a pass band only in the vicinity of the frequency of the given input signal. Therefore, it is difficult to adjust the noise level in the band between the quantization noise stop bands corresponding to the two input signals.
  • the noise transfer function NTF (z) of the filter circuit 10 is set for at least the first passband, the second passband, and the band between the two passbands. Is possible. Therefore, the loop filter 6 having a filter characteristic for suppressing the noise level in the band between the two quantization noise stop bands so as to be lower than the noise level in the other band can be obtained.
  • the loop filter 6 of the present embodiment has a filter characteristic that suppresses the noise level in the band between the two quantization noise blocking bands so as to be lower than the noise level in the other band.
  • the removal of noise in the band between the quantization noise stop bands adjacent to each other becomes easy or unnecessary.
  • the noise level of the band between the two quantization noise stop bands is the other band (the band on the frequency side lower than the noise stop band corresponding to the input signal U 1 and the noise corresponding to the input signal U 2. It is preferably 10 dB lower than the band on the frequency side higher than the stop band. When the noise level is 10 dB lower, it is possible to easily remove noise included in the band between the two quantization noise stop bands in the subsequent processing.
  • the noise level in the band between the two quantization noise stop bands is preferably 48 dB lower than the signal levels of the input signals U 1 and U 2 . This is because the noise level in the band between the two quantization noise stop bands can be set to a level that does not need to be removed with respect to the signal levels of the input signals U 1 and U 2 .
  • the loop filter 6 has the property of inhibiting a plurality of input signals U 1, U 2 noise of each frequency near, a plurality of input signals U 1, U 2 since providing an output of the first adder 5 adds to the loop filter 6, the input signal U 1, U as one of the input signals of the two is not given, for the other of the input signal given loop filter 6 can be given.
  • the setting parameters of the filters 15 and 16 constituting the loop filter 6 are changed to the setting parameters corresponding to the given input signal. And can respond appropriately.
  • FIG. 3 is a diagram showing another example of the power spectrum of the output signal obtained by the simulation by the ⁇ modulator of the first embodiment.
  • 3A is a diagram showing another example of the power spectrum of the output signal V obtained by the ⁇ modulator 1 of the first embodiment obtained by simulation
  • FIG. 3 is an enlarged view of the main part of (a) in FIG. 3A and 3B show a case where only the input signal U 1 having a frequency of 975 MHz is supplied to the ⁇ modulator 1.
  • the pass band in the filter circuit 10 is set in the vicinity of 975 MHz corresponding to the input signal U 1, and the order of the filter for forming this pass band as a filter characteristic is set to the 4th order. ing.
  • setting parameters given to both filters 15 and 16 for setting the pass band in the filter circuit 10 to around 975 MHz are stored in the control unit 19.
  • the first filter 15 and the second filter 16 are set so that the passband in the filter circuit 10 has a characteristic corresponding to the input signal U 1 when a setting parameter is given from the control unit 19.
  • an input signal U 1 having a frequency of 975 MHz appears in the power spectrum of the output signal V.
  • a quantization noise stop band is formed only in the vicinity of 975 MHz.
  • the ⁇ modulator 1 can include the input signal U 1 in the output signal V and output it.
  • the order of the filter when the pass band of the filter circuit 10 is formed as the filter characteristic is set to the fourth order, for example, the quantization noise in the loop filter 6 is compared with the case where the order of the filter is set to the second order.
  • the bandwidth of the stop band can be made wider, and the cutoff characteristic of the quantization noise can be made steeper.
  • both filters 15 that are targeted for the plurality of input signals U 1 and U 2 even when the input signal U 2 is not given.
  • the output of the first adder 5 is given to the loop filter 6, so the setting parameters of the filters 15 and 16 are set. To a setting parameter corresponding to the input signal U 1 .
  • ⁇ modulator 1 shows the case of setting the characteristics corresponding to the input filter characteristic signal U 1 of the loop filter 6 (the filter circuit 10) but, for example, if the loop filter characteristics of the filter 6 is a characteristic corresponding to the input signal U 1, U 2, which gives one of the input signals U 1, U 2 only ⁇ modulator 1, the loop filter 6 The filter characteristics may be used as they are. Even in this case, the ⁇ modulator 1 can include the input signal U 1 in the output signal V and output it when only the input signal U 1 is given.
  • the control unit 19 When the control unit 19 stores both setting parameters corresponding to both the input signals U 1 and U 2 and setting parameters corresponding only to the input signal U 1 , the control unit 19 is set in advance.
  • a setting parameter to be given to both filters 15 and 16 may be selected based on a command, or information such as the number of input signals and frequency is acquired, and a setting parameter to be given to both filters 15 and 16 based on the acquired information. May be selected.
  • the control unit 19 selects a setting parameter to be given to both the filters 15 and 16 based on the information of the input signal, the control unit 19 can change the setting parameter according to the input signal, and the filter circuit 10 has.
  • the capabilities of both filters 15 and 16 can be appropriately allocated to the input signal.
  • the output including the input signals U 1 and U 2 using both the filters 15 and 16 is used.
  • a signal can be output.
  • the filter characteristic of the filter circuit 10 by appropriately adjusting, more broadband by increasing the order of the filter For example, the ability of both filters 15 and 16 intended for a plurality of input signals U 1 and U 2 can be used only for the input signal U 1 .
  • both the input signals U 1, U 2 when both the input signals U 1, U 2 is used provided may be used so as to output an output signal containing the input signal U 1, U 2, the input signal U 1, U 2
  • the bandwidth for outputting the other input signal can be used to widen the bandwidth.
  • both the input signals U 1 and U 2 when both the input signals U 1 and U 2 are provided and used, and when one of the input signals U 1 and U 2 is not provided. In either case, the capabilities of both filters 15 and 16 can be utilized without waste.
  • FIG. 4 is a block diagram showing a configuration of the ⁇ modulator according to the second embodiment.
  • the ⁇ modulator 1 of the present embodiment receives three input signals U 1 , U 2 , U 3 having different frequencies, and a single output signal V including the received three input signals U 1 , U 2 , U 3. Is different from the first embodiment.
  • the delta-sigma modulator 1 of this embodiment is provided with three input ports 2a, 2b, 2c to which input signals U 1 , U 2 , U 3 are input.
  • the first adder 5 adds the input signals U 1 , U 2 , U 3 received by the input ports 2 a, 2 b, 2 c and gives the added output to the loop filter 6.
  • the filter circuit 10 of the present embodiment includes a first filter 15, a second filter 16, and a third filter 17, and is constituted by three filters. Each filter 15, 16, 17 is connected in parallel to the differentiator 9.
  • the third adder 18 adds the output of the first filter 15, the output of the second filter 16, and the output of the third filter 17. The output of the third adder 18 is given to the second adder 11 as the output of the filter circuit 10.
  • the filter circuit 10 of the present embodiment the first pass band including a frequency band of the input signal U 1, second passband including a frequency band of the input signal U 2, and the third passage containing the frequency band of the input signal U 3
  • the noise transfer function NTF (z) having a band is set. Further, the noise transfer function NTF (z) of the filter circuit 10 is set for the output signal V for at least the first passband, the second passband, the third passband, and the band between the passbands. ing.
  • the filter circuit 10 of this embodiment is a sixth-order IIR filter.
  • the noise transfer function NTF (z) of the filter circuit 10 that is a sixth-order IIR filter is decomposed into three transfer functions representing a second-order IIR filter, and the three transferred transfer functions are the first transfer function L 1 of 1 filter 15 is set as a transfer function L 3 of the transfer function L 2, and the third filter 17 of the second filter 16.
  • the setting parameters given to both filters 15 and 16 for setting three passbands of the first passband, the second passband, and the third passband with respect to the characteristics of the filter circuit 10 are: Is remembered.
  • the first filter 15 and the second filter 16 are set so that the filter characteristic of the filter circuit 10 includes three passbands when a setting parameter is given from the control unit 19.
  • FIG. 5 is a diagram illustrating an example of the power spectrum of the output signal obtained by the simulation by the ⁇ modulator of the second embodiment.
  • (A) in FIG. 5 is a diagram showing an example of the power spectrum of the output signal V obtained by the simulation by the ⁇ modulator 1 of the second embodiment, and (b) in FIG. 5 is in FIG. It is a principal part enlarged view of (a).
  • the frequency of the input signal U 1 is 940 MHz
  • the frequency of the input signal U 2 is 980 MHz
  • the frequency of the input signal U 3 is 1025 MHz.
  • the first pass band is set near 940 MHz
  • the second pass band is set near 980 MHz
  • the third pass band is set near 1025 MHz.
  • the order of the filter as the filter circuit 10 is sixth
  • the order of the filter for forming each pass band as a filter characteristic is set to second order.
  • the power spectrum of the output signal V includes an input signal U 1 having a frequency of 940 MHz, an input signal U 2 having a frequency of 980 MHz, and The input signal U 3 with a frequency of 1025 MHz appears.
  • the band in which the quantization noise is suppressed appears as a relatively wide band including the input signals U 1 , U 2 , and U 3 .
  • the ⁇ modulator 1 of the present embodiment receives a plurality of input signals U 1 , U 2 , U 3 having different frequencies, and inputs the input signals U 1 , U 2 , U 3 as a single unit without causing interference with each other.
  • the output signal V can be included and output. Further, even if one or two of the input signals U 1 , U 2 , U 3 are not given, the output of the first adder 5 is given to the loop filter 6. Therefore, for example, the setting parameters of the filters 15 and 16 constituting the loop filter 6 can be appropriately handled by changing the setting parameters to the setting parameters corresponding to the given input signal.
  • the loop filter 6 of the present embodiment forms quantization noise stop bands at three locations corresponding to the input signals U 1 , U 2 , and U 3 , and between the two quantization noise stop bands.
  • the filter characteristic is to suppress the noise level of the band so as to be lower than the noise level of the other band. Therefore, the quantization noise stop bands appear to be connected to each other, and as shown in (a) in FIG. 5 and (b) in FIG. 5, the band in which the quantization noise is suppressed is the input signal. It appears as a relatively wide band including U 1 , U 2 , and U 3 .
  • FIG. 6 is a block diagram showing a configuration of the ⁇ modulator according to the third embodiment.
  • the ⁇ modulator 1 of the present embodiment is different from the first embodiment in that the first filter 15 and the second filter 16 constituting the filter circuit 10 are connected in series.
  • the NTF has a second pass band including a first passband, and the frequency band of the input signal U 2 comprises a frequency band of the input signal U 1 NTF (Z) is set.
  • the noise transfer function NTF (z) of the filter circuit 10 is a polynomial whose denominator and numerator are z, and can be expressed by a product of lower order polynomials.
  • the above equation (4) can be expressed as a product of a plurality of lower-order polynomials.
  • the following formula (6) shows an example when the noise transfer function NTF (z) shown in the above formula (4) is expressed as a product of a plurality of polynomials.
  • Equation (6) shows a case where the noise transfer function NTF (z) of the nth-order filter circuit 10 is decomposed into partial fractions representing the transfer function of the second-order filter and expressed as a product of these.
  • C 1 , C 2 ,... D 1 , D 2 ,... are coefficients of terms that constitute the denominator and numerator in each polynomial.
  • the noise transfer function NTF (z) of the filter circuit 10 can be expressed as a product of transfer functions of a plurality of second-order filters after being designed as a high-order filter.
  • the filter circuit 10 of this embodiment is a fourth-order IIR filter.
  • the noise transfer function NTF (z) of the filter circuit 10 that is a fourth-order IIR filter is a product of two transfer functions representing the second-order IIR filter, and these two transfer functions are the first transfer function. It is set as a transfer function L 2 of the transfer functions L 1, and the second filter 16 of the filter 15.
  • the second filter 16 to which the output of the first filter 15 is given has noise having a first pass band including the frequency band of the input signal U 1 and a second pass band including the frequency band of the input signal U 2.
  • An output as a fourth-order IIR filter having a transfer function NTF (z) is supplied to the second adder 11.
  • the delta-sigma modulator 1 of this embodiment similarly to the first embodiment, a plurality of input signals U 1 and U 2 having different frequencies are received, and the input signals U 1 and U 2 are output as a single output without interfering with each other.
  • the signal V can be included and output. Even if one input signal is not given, the output of the first adder 5 is given to the loop filter 6. Therefore, for example, the setting parameters of the filters 15 and 16 constituting the loop filter 6 can be appropriately handled by changing the setting parameters to the setting parameters corresponding to the given input signal.
  • the filter circuit 10 of the present embodiment is also configured by using a plurality of filters (the first filter 15 and the second filter 16), the characteristic of the filter circuit 10 having a plurality of pass bands is expressed by the first filter. 15 and the second filter 16. Therefore, the order of the transfer functions of the first filter 15 and the second filter 16 can be lowered with respect to the order of the noise transfer function NTF (z) as the entire filter circuit 10. Thereby, even if a high-order filter is configured, the processing load of the filter circuit 10 can be suppressed.
  • FIG. 7 is a block diagram illustrating an example of a wireless communication device using a ⁇ modulator.
  • (A) in FIG. 7 is a block diagram illustrating an example of a wireless communication device using the above-described ⁇ modulator 1.
  • the wireless communication device 20 includes a plurality of quadrature modulation units (primary modulators) 21 and 22, a ⁇ modulator (secondary modulator) 1, a first bandpass filter 25, And a second band pass filter 26.
  • the plurality of quadrature modulation units 21 and 22 perform quadrature modulation as primary modulation on the baseband signals I 1 , Q 1 , I 2 , and Q 2 , respectively.
  • the plurality of orthogonal modulation units 21 and 22 output radio signals (RF signals) U 1 and U 2 having different frequencies because the frequencies w 1 and w 2 of the local transmitters 21a and 22a are different from each other.
  • the plurality of radio signals U 1 and U 2 are input signals to the ⁇ modulator 1.
  • the ⁇ modulator 1 performs ⁇ modulation as a secondary modulation on the plurality of radio signals (input signals) U 1 and U 2 and outputs a pulse signal including the plurality of radio signals U 1 and U 2 .
  • the output signal of the ⁇ modulator 1 is given to both the bandpass filters 25 and 26 via the transmission line 24.
  • the band pass filters 25 and 26 are provided corresponding to both the radio signals U 1 and U 2 .
  • the first band pass filter 25 has a pass band that allows the radio signal U 1 to pass therethrough.
  • the second band pass filter 26 has a pass band that allows the radio signal U 2 to pass therethrough.
  • the first band pass filter 25 removes noise outside the band of the radio signal U 1 . Further, noise outside the band of the radio signal U 2 is removed by the second band pass filter 26.
  • the radio signal U 1 output from the first band pass filter 25 is amplified by the power amplifier 31 and output from the antenna 32.
  • the radio signal U 2 output from the second band pass filter 26 is amplified by the power amplifier 33 and output from the antenna 34.
  • the wireless communication device 20 can operate in a dual band mode (multiband mode) that simultaneously outputs a plurality of wireless signals having different frequencies. Further, since the output of the ⁇ modulator 1 is a digital signal, it is possible to transmit a radio signal as a digital signal to a long distance through a high-speed transmission path 24 such as an optical fiber. In addition, since a plurality of radio signals can be included in one digital data stream, a plurality of radio signals can be transmitted through one transmission path 24.
  • FIG. 7B is a block diagram illustrating another example of a wireless communication device using the ⁇ modulator 1.
  • the first band-pass filter 25 is provided at the subsequent stage of the ⁇ modulator 1, but the second band-pass filter 26 is not provided, and the example of FIG. It is different.
  • the first band-pass filter 25 in the wireless communication device 20 in FIG. 7B has a pass band that allows a plurality of wireless signals U 1 and U 2 to pass through.
  • the first band pass filter 25 removes noise outside the band of the plurality of radio signals U 1 and U 2 .
  • the first band-pass filter 25 can be configured to remove noise outside the bands of the plurality of radio signals U 1 and U 2 . This is because the noise level existing between the plurality of radio signals U 1 and U 2 need not be removed sufficiently low.
  • the loop filter 6 included in the ⁇ modulator 1 of the present embodiment is a filter that suppresses the noise level in the band between the two quantization noise stop bands so as to be lower than the noise level in the other band. Therefore, when it is necessary to remove noise in the band between the quantization noise blocking bands including the radio signals U 1 and U 2 adjacent to each other, a process for removing the noise is performed. It can be simplified.
  • the ⁇ modulator 1 used in the wireless communication device 20 shown in (a) in FIG. 7 and (b) in FIG. 7 is one of the ⁇ modulators 1 in the first to third embodiments described above. May be used.
  • the ⁇ modulator 1 of the second embodiment can accept three input signals, but can accept two radio signals U 1 and U 2 .
  • the setting parameters of the filters 15, 16, and 17 constituting the loop filter 6 are changed to the setting parameters corresponding to the radio signals U 1 and U 2 , even when the radio signal U 3 is not given,
  • the capabilities of the filters 15, 16, and 17 can be used for the radio signals U 1 and U 2, and the capabilities of the filters 15, 16, and 17 can be used without waste.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Transmitters (AREA)

Abstract

This ΔΣ modulator comprises: a first adder that adds a plurality of input signals that have different frequencies; a loop filter to which output from the first adder is applied; and a quantizer that quantizes output from the loop filter. The loop filter receives output from the quantizer as a feedback signal and prevents noise near the respective frequencies of the plurality of input signals.

Description

ΔΣ変調器、送信機、半導体集積回路、処理方法、及びコンピュータプログラムΔΣ modulator, transmitter, semiconductor integrated circuit, processing method, and computer program
 本発明は、ΔΣ変調器、送信機、半導体集積回路、処理方法、及びコンピュータプログラムに関するものである。
 本出願は、2016年12月28日出願の日本出願第2016-255766号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present invention relates to a ΔΣ modulator, a transmitter, a semiconductor integrated circuit, a processing method, and a computer program.
This application claims priority based on Japanese Patent Application No. 2016-255766 filed on December 28, 2016, and incorporates all the description content described in the above Japanese application.
 特許文献1には、周波数の異なる複数の信号を含む出力信号を出力することができるΔΣ変調器が記載されている。
 このΔΣ変調器は、周波数の異なる複数の入力信号が与えられる複数の入力ポートと、前記複数の入力ポートそれぞれに対応して設けられた複数のループフィルタと、複数の前記ループフィルタの出力を加算する加算器とを備えている。
Patent Document 1 describes a ΔΣ modulator that can output an output signal including a plurality of signals having different frequencies.
The ΔΣ modulator adds a plurality of input ports to which a plurality of input signals having different frequencies are provided, a plurality of loop filters provided corresponding to the plurality of input ports, and outputs of the plurality of loop filters. And an adder.
特開2014-165846号公報JP 2014-165846 A
 一実施形態であるΔΣ変調器は、周波数の異なる複数の入力信号を加算する第1加算器と、前記第1加算器の出力が与えられるループフィルタと、前記ループフィルタの出力を量子化する量子化器と、を備え、前記ループフィルタは、前記量子化器の出力をフィードバック信号として受け付け、前記複数の入力信号それぞれの周波数近傍の雑音を阻止する。 The ΔΣ modulator according to an embodiment includes a first adder that adds a plurality of input signals having different frequencies, a loop filter that is provided with an output of the first adder, and a quantum that quantizes the output of the loop filter. The loop filter receives the output of the quantizer as a feedback signal, and blocks noise in the vicinity of the frequency of each of the plurality of input signals.
 また、一実施形態である送信機は、上述のΔΣ変調器と、前記量子化器の出力が与えられる送信部と、を備えている。 Further, a transmitter according to an embodiment includes the above-described ΔΣ modulator and a transmission unit to which an output of the quantizer is given.
 また、一実施形態である半導体集積回路は、周波数の異なる複数の入力信号に対してΔΣ変調を行うΔΣ変調器に用いられる半導体集積回路であって、周波数の異なる複数の入力信号を加算する第1加算器と、前記第1加算器の出力が与えられるループフィルタと、前記ループフィルタの出力を量子化する量子化器と、を備え、前記ループフィルタは、前記量子化器の出力をフィードバック信号として受け付け、前記複数の入力信号それぞれの周波数近傍の雑音を阻止する。 A semiconductor integrated circuit according to an embodiment is a semiconductor integrated circuit used in a ΔΣ modulator that performs ΔΣ modulation on a plurality of input signals having different frequencies, and adds a plurality of input signals having different frequencies. 1 adder, a loop filter to which the output of the first adder is given, and a quantizer for quantizing the output of the loop filter, wherein the loop filter outputs the output of the quantizer as a feedback signal And the noise near the frequency of each of the plurality of input signals is blocked.
 また、一実施形態である処理方法は、周波数の異なる複数の入力信号に対してΔΣ変調を行うための処理方法であって、前記周波数の異なる複数の入力信号を加算する第1加算ステップと、前記第1加算ステップによる出力に対してループフィルタ処理を行うフィルタステップと、前記フィルタステップによる出力を量子化する量子化ステップと、を含み、前記フィルタステップは、前記量子化ステップによる出力をフィードバック信号として受け付け、前記複数の入力信号それぞれの周波数近傍の雑音を阻止するループフィルタによって前記ループフィルタ処理を行う。 Further, the processing method according to an embodiment is a processing method for performing ΔΣ modulation on a plurality of input signals having different frequencies, and a first addition step of adding the plurality of input signals having different frequencies, A filter step for performing a loop filter process on the output of the first addition step, and a quantization step for quantizing the output of the filter step, wherein the filter step outputs the output of the quantization step as a feedback signal And the loop filter processing is performed by a loop filter that blocks noise in the vicinity of the frequency of each of the plurality of input signals.
 また、一実施形態であるコンピュータプログラムは、周波数の異なる複数の入力信号を表すデータに対してΔΣ変調を行うための処理をコンピュータに実行させるためのコンピュータプログラムであって、コンピュータに周波数の異なる複数の前記入力信号を加算したデータを出力する第1加算ステップと、前記第1加算ステップによる出力に対してループフィルタ処理を行うフィルタステップと、前記フィルタステップによる出力を量子化する量子化ステップと、を含む処理を実行させるコンピュータプログラムであり、前記フィルタステップは、前記量子化ステップによる出力をフィードバックデータとして受け付け、前記複数の入力信号それぞれの周波数近傍の雑音を阻止するループフィルタによって前記ループフィルタ処理を行う。 A computer program according to an embodiment is a computer program for causing a computer to execute processing for performing ΔΣ modulation on data representing a plurality of input signals having different frequencies, and the computer program includes a plurality of computers having different frequencies. A first addition step for outputting data obtained by adding the input signals, a filter step for performing a loop filter process on the output of the first addition step, and a quantization step for quantizing the output of the filter step; The filter step receives the output of the quantization step as feedback data, and performs the loop filter processing by a loop filter that blocks noise in the vicinity of each frequency of the plurality of input signals. Do.
図1は、第1実施形態に係るΔΣ変調器の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of the ΔΣ modulator according to the first embodiment. 図2は、シミュレーションによって得た、第1実施形態のΔΣ変調器による出力信号のパワースペクトラムの一例を示す図である。FIG. 2 is a diagram illustrating an example of the power spectrum of the output signal obtained by the simulation and obtained from the ΔΣ modulator of the first embodiment. 図3は、シミュレーションによって得た、第1実施形態のΔΣ変調器による出力信号のパワースペクトラムの他の例を示す図である。FIG. 3 is a diagram showing another example of the power spectrum of the output signal obtained by the simulation by the ΔΣ modulator of the first embodiment. 図4は、第2実施形態に係るΔΣ変調器の構成を示すブロック図である。FIG. 4 is a block diagram showing a configuration of the ΔΣ modulator according to the second embodiment. 図5は、シミュレーションによって得た、第2実施形態のΔΣ変調器による出力信号のパワースペクトラムの一例を示す図である。FIG. 5 is a diagram illustrating an example of the power spectrum of the output signal obtained by the simulation by the ΔΣ modulator of the second embodiment. 図6は、第3実施形態に係るΔΣ変調器の構成を示すブロック図である。FIG. 6 is a block diagram showing a configuration of the ΔΣ modulator according to the third embodiment. 図7は、ΔΣ変調器を用いた無線通信機の例を示すブロック図である。FIG. 7 is a block diagram illustrating an example of a wireless communication device using a ΔΣ modulator.
[本開示が解決しようとする課題]
 特許文献1に記載のΔΣ変調器は、複数の入力ポートそれぞれに対応して複数のループフィルタを備えている。このため、例えば、いずれか一方の入力ポートに入力信号が与えられない場合、入力信号が与えられなかった入力ポートに対応するループフィルタの機能が発揮されず、無駄な構成となってしまうことがあり、適切に対応することができなかった。
[Problems to be solved by the present disclosure]
The ΔΣ modulator described in Patent Document 1 includes a plurality of loop filters corresponding to a plurality of input ports. For this reason, for example, when an input signal is not applied to one of the input ports, the function of the loop filter corresponding to the input port to which the input signal is not applied may not be exhibited, resulting in a useless configuration. Yes, I was unable to respond appropriately.
 本開示はこのような事情に鑑みてなされたものであり、複数の入力信号の内のいずれかの入力信号が与えられないとしても適切に対応することができるΔΣ変調器を提供することを目的とする。 The present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide a ΔΣ modulator that can appropriately cope with a case where any one of a plurality of input signals is not given. And
[本開示の効果]
 本開示によれば、複数の入力信号の内のいずれかの入力信号が与えられないとしても適切に対応することができる。
 最初に実施形態を列記して説明する。
[Effects of the present disclosure]
According to the present disclosure, even if any one of the plurality of input signals is not given, it is possible to appropriately cope with it.
First, embodiments will be listed and described.
[実施形態の概要]
(1)一実施形態であるΔΣ変調器は、周波数の異なる複数の入力信号を加算する第1加算器と、前記第1加算器の出力が与えられるループフィルタと、前記ループフィルタの出力を量子化する量子化器と、を備え、前記ループフィルタは、前記量子化器の出力をフィードバック信号として受け付け、前記複数の入力信号それぞれの周波数近傍の雑音を阻止する。
[Outline of Embodiment]
(1) A ΔΣ modulator according to an embodiment includes a first adder that adds a plurality of input signals having different frequencies, a loop filter to which an output of the first adder is given, and an output of the loop filter that is quantized. The loop filter receives the output of the quantizer as a feedback signal and blocks noise in the vicinity of the frequency of each of the plurality of input signals.
 上記構成のΔΣ変調器によれば、ループフィルタが、複数の入力信号それぞれの周波数近傍の雑音を阻止する特性を有しており、複数の入力信号を加算した第1加算器の出力をループフィルタに与えるので、複数の入力信号の内のいずれかの入力信号が与えられないとしても、その他の与えられた入力信号についてはループフィルタに与えることができる。この結果、複数の入力信号の内のいずれかの入力信号が与えられないとしても、ループフィルタの設定の変更等によって適切に対応することができる。 According to the delta-sigma modulator configured as described above, the loop filter has a characteristic of blocking noise near the frequency of each of the plurality of input signals, and the output of the first adder obtained by adding the plurality of input signals is the loop filter. Therefore, even if any one of the plurality of input signals is not given, the other given input signals can be given to the loop filter. As a result, even if any one of the plurality of input signals is not given, it can be appropriately handled by changing the setting of the loop filter.
(2)上記ΔΣ変調器において、前記ループフィルタは、前記加算器の出力と、前記フィードバック信号との差分が与えられる内部フィルタ回路を含み、前記内部フィルタ回路は、直列に接続された複数のフィルタによって構成されていることが好ましい。
 この場合、内部フィルタ回路全体としての伝達関数の次数に対して、複数のフィルタの伝達関数の次数を下げることできる。
(2) In the ΔΣ modulator, the loop filter includes an internal filter circuit to which a difference between an output of the adder and the feedback signal is given, and the internal filter circuit includes a plurality of filters connected in series. It is preferable that it is comprised.
In this case, the order of the transfer functions of the plurality of filters can be lowered with respect to the order of the transfer function as the entire internal filter circuit.
(3)また、上記ΔΣ変調器において、前記ループフィルタは、前記加算器の出力と、前記フィードバック信号との差分が与えられる内部フィルタ回路を含み、前記内部フィルタ回路は、並列に接続された複数のフィルタによって構成されていることが好ましい。
 この場合も、内部フィルタ回路全体としての伝達関数の次数に対して、複数のフィルタの伝達関数の次数を下げることできる。
 さらに、複数のフィルタは並列に接続されているので、複数のフィルタそれぞれで生じる誤差の影響が当該複数のフィルタの間で相互に及ぶのを防止することができる。
(3) In the ΔΣ modulator, the loop filter includes an internal filter circuit to which a difference between the output of the adder and the feedback signal is given, and the internal filter circuit includes a plurality of parallel filter circuits connected in parallel. It is preferable that it is comprised by the filter of this.
Also in this case, the order of the transfer functions of the plurality of filters can be lowered with respect to the order of the transfer function as the entire internal filter circuit.
Furthermore, since the plurality of filters are connected in parallel, it is possible to prevent the influence of errors generated in each of the plurality of filters from reaching each other among the plurality of filters.
(4)また、上記ΔΣ変調器において、前記内部フィルタ回路は、前記複数の入力信号それぞれの周波数近傍に通過帯域を有していることが好ましい。
 この場合、複数の入力信号それぞれの周波数近傍に通過帯域を有するという内部フィルタ回路の特性を、複数のフィルタによって実現することができる。
(4) In the ΔΣ modulator, it is preferable that the internal filter circuit has a pass band in the vicinity of the frequency of each of the plurality of input signals.
In this case, the characteristic of the internal filter circuit that has a pass band near the frequency of each of the plurality of input signals can be realized by the plurality of filters.
(5)また、上記ΔΣ変調器において、前記ループフィルタは、前記第1加算器の出力と、前記内部フィルタ回路の出力との加算結果を前記ループフィルタの出力として出力する第2加算器を備えている事が好ましい。 (5) In the ΔΣ modulator, the loop filter includes a second adder that outputs a result of adding the output of the first adder and the output of the internal filter circuit as the output of the loop filter. It is preferable that
(6)上記ΔΣ変調器において、前記ループフィルタは、前記複数の入力信号それぞれの周波数近傍の雑音を阻止する雑音阻止帯域の内、互いに隣り合う雑音阻止帯域同士の間の帯域の雑音レベルを、互いに隣り合う前記雑音阻止帯域同士の間の帯域以外の帯域の雑音レベルよりも低くなるように抑圧することが好ましい。
 この場合、互いに隣り合う雑音阻止帯域同士の間の帯域の雑音の除去が容易又は不要になる。
(6) In the ΔΣ modulator, the loop filter may reduce a noise level in a band between adjacent noise blocking bands among noise blocking bands that block noise in the vicinity of frequencies of the plurality of input signals. It is preferable to suppress the noise level so that it is lower than the noise level in a band other than the band between the adjacent noise stop bands.
In this case, it is easy or unnecessary to remove noise in a band between adjacent noise stop bands.
(7)また、一実施形態である送信機は、上記(1)に記載のΔΣ変調器と、前記量子化器の出力が与えられる送信部と、を備えている。 (7) Moreover, the transmitter which is one Embodiment is provided with the delta-sigma modulator as described in said (1), and the transmission part to which the output of the said quantizer is given.
(8)また、一実施形態である半導体集積回路は、周波数の異なる複数の入力信号に対してΔΣ変調を行うΔΣ変調器に用いられる半導体集積回路であって、周波数の異なる複数の入力信号を加算する第1加算器と、前記第1加算器の出力が与えられるループフィルタと、前記ループフィルタの出力を量子化する量子化器と、を備え、前記ループフィルタは、前記量子化器の出力をフィードバック信号として受け付け、前記複数の入力信号それぞれの周波数近傍の雑音を阻止する。 (8) A semiconductor integrated circuit according to an embodiment is a semiconductor integrated circuit used in a ΔΣ modulator that performs ΔΣ modulation on a plurality of input signals having different frequencies, and a plurality of input signals having different frequencies are A first adder for adding, a loop filter to which an output of the first adder is provided, and a quantizer for quantizing the output of the loop filter, wherein the loop filter outputs an output of the quantizer Is received as a feedback signal, and noise near the frequency of each of the plurality of input signals is blocked.
(9)また、一実施形態である処理方法は、周波数の異なる複数の入力信号に対してΔΣ変調を行うための処理方法であって、前記周波数の異なる複数の入力信号を加算する第1加算ステップと、前記第1加算ステップによる出力に対してループフィルタ処理を行うフィルタステップと、前記フィルタステップによる出力を量子化する量子化ステップと、を含み、前記フィルタステップは、前記量子化ステップによる出力をフィードバック信号として受け付け、前記複数の入力信号それぞれの周波数近傍の雑音を阻止するループフィルタによって前記ループフィルタ処理を行う。 (9) A processing method according to an embodiment is a processing method for performing ΔΣ modulation on a plurality of input signals having different frequencies, and the first addition for adding the plurality of input signals having different frequencies. A step of performing a loop filter process on the output of the first addition step, and a quantization step of quantizing the output of the filter step, wherein the filter step is an output of the quantization step Is received as a feedback signal, and the loop filter processing is performed by a loop filter that blocks noise in the vicinity of frequencies of the plurality of input signals.
(10)また、一実施形態であるコンピュータプログラムは、周波数の異なる複数の入力信号を表すデータに対してΔΣ変調を行うための処理をコンピュータに実行させるためのコンピュータプログラムであって、コンピュータに周波数の異なる複数の前記入力信号を加算したデータを出力する第1加算ステップと、前記第1加算ステップによる出力に対してループフィルタ処理を行うフィルタステップと、前記フィルタステップによる出力を量子化する量子化ステップと、を含む処理を実行させるコンピュータプログラムであり、前記フィルタステップは、前記量子化ステップによる出力をフィードバックデータとして受け付け、前記複数の入力信号それぞれの周波数近傍の雑音を阻止するループフィルタによって前記ループフィルタ処理を行う。 (10) A computer program according to an embodiment is a computer program for causing a computer to execute processing for performing ΔΣ modulation on data representing a plurality of input signals having different frequencies. A first addition step for outputting data obtained by adding a plurality of input signals having different values, a filter step for performing a loop filter process on the output of the first addition step, and a quantization for quantizing the output of the filter step And the filter step accepts the output of the quantization step as feedback data, and the loop filter prevents the noise in the vicinity of the frequency of each of the plurality of input signals. Filtering Do.
[実施形態の詳細]
 以下、好ましい実施形態について図面を参照しつつ説明する。
 なお、以下に記載する各実施形態の少なくとも一部を任意に組み合わせてもよい。
〔第1実施形態について〕
 図1は、第1実施形態に係るΔΣ変調器の構成を示すブロック図である。図1に示すように、ΔΣ変調器1は、周波数の異なる2つの入力信号U,Uが入力される入力ポート2a,2bを備えている。ΔΣ変調器1は、受け付けた2つの入力信号U,Uを含む単一の出力信号V(量子化信号:ΔΣ変調信号)を出力ポート4から出力する。
[Details of the embodiment]
Hereinafter, preferred embodiments will be described with reference to the drawings.
Note that at least a part of each embodiment described below may be arbitrarily combined.
[About the first embodiment]
FIG. 1 is a block diagram showing the configuration of the ΔΣ modulator according to the first embodiment. As shown in FIG. 1, the ΔΣ modulator 1 includes input ports 2a and 2b to which two input signals U 1 and U 2 having different frequencies are input. The ΔΣ modulator 1 outputs a single output signal V (quantized signal: ΔΣ modulation signal) including the received two input signals U 1 and U 2 from the output port 4.
 ΔΣ変調器1は、入力信号U,Uを加算する第1加算器5と、ループフィルタ6と、出力信号Vを出力する量子化器7とを備えている。
 第1加算器5は、入力ポート2a,2bによって受け付けられた入力信号U,Uを加算し、加算した出力をループフィルタ6に与える。
The ΔΣ modulator 1 includes a first adder 5 that adds input signals U 1 and U 2 , a loop filter 6, and a quantizer 7 that outputs an output signal V.
The first adder 5 adds the input signals U 1 and U 2 received by the input ports 2 a and 2 b and gives the added output to the loop filter 6.
 ループフィルタ6には、第1加算器5の出力が与えられるとともに、量子化器7から出力される出力信号Vがフィードバック信号として与えられる。ループフィルタ6にフィードバックされる出力信号Vは、量子化器7の出力端とループフィルタ6とを接続する経路8を介してフィードバックされる。以下、経路8を介してループフィルタ6にフィードバックされる出力信号Vをフィードバック信号ともいう。 The loop filter 6 is supplied with the output of the first adder 5 and the output signal V output from the quantizer 7 as a feedback signal. The output signal V fed back to the loop filter 6 is fed back via a path 8 connecting the output terminal of the quantizer 7 and the loop filter 6. Hereinafter, the output signal V fed back to the loop filter 6 via the path 8 is also referred to as a feedback signal.
 ループフィルタ6は、差分器9と、フィルタ回路10とを備えている。
 差分器9は、第1加算器5の出力と、フィードバック信号とが与えられる。差分器9は、これら第1加算器5の出力と、フィードバック信号との差分を求める。
 差分器9の出力である前記差分は、フィルタ回路10に与えられる。
 フィルタ回路10の出力は、当該フィルタ回路10の後段に設けられた第2加算器11に与えられる。
The loop filter 6 includes a differentiator 9 and a filter circuit 10.
The differencer 9 is given the output of the first adder 5 and a feedback signal. The difference unit 9 obtains a difference between the output of the first adder 5 and the feedback signal.
The difference that is the output of the differentiator 9 is given to the filter circuit 10.
The output of the filter circuit 10 is given to the second adder 11 provided at the subsequent stage of the filter circuit 10.
 フィルタ回路10は、第1フィルタ15と、第2フィルタ16と、第3加算器18とを備えている。
 第1フィルタ15と、第2フィルタ16とは、差分器9に対して並列に接続されている。よって、差分器9の出力は、第1フィルタ15及び第2フィルタ16それぞれに与えられる。
 第3加算器18は、第1フィルタ15の出力と第2フィルタ16の出力とを加算する。第3加算器18の出力は、フィルタ回路10の出力として第2加算器11に与えられる。
The filter circuit 10 includes a first filter 15, a second filter 16, and a third adder 18.
The first filter 15 and the second filter 16 are connected in parallel to the differentiator 9. Therefore, the output of the differentiator 9 is given to each of the first filter 15 and the second filter 16.
The third adder 18 adds the output of the first filter 15 and the output of the second filter 16. The output of the third adder 18 is given to the second adder 11 as the output of the filter circuit 10.
 第2加算器11は、第1加算器5の出力と、フィルタ回路10の出力とを加算し、その加算結果をループフィルタ6の出力として出力する。
 第2加算器11の出力は、量子化器7に与えられる。量子化器7は2レベル量子化器であり、1bitのパルス列を出力信号Vとして出力する。なお、上述したように、量子化器7の出力信号Vは、フィードバック信号として経路8を介してループフィルタ6に与えられる。
 量子化器7による出力信号Vは、出力ポート4から出力される。
The second adder 11 adds the output of the first adder 5 and the output of the filter circuit 10 and outputs the addition result as the output of the loop filter 6.
The output of the second adder 11 is given to the quantizer 7. The quantizer 7 is a two-level quantizer and outputs a 1-bit pulse train as an output signal V. As described above, the output signal V of the quantizer 7 is given to the loop filter 6 via the path 8 as a feedback signal.
The output signal V from the quantizer 7 is output from the output port 4.
 ここで、出力信号Vは、下記式(1)のようにz領域における関数で表される。
 V(z)=
   U(z)+U(z)+NTF(z)E(z)   ・・・(1)
Here, the output signal V is expressed by a function in the z region as in the following formula (1).
V (z) =
U 1 (z) + U 2 (z) + NTF (z) E (z) (1)
 上記式(1)中、V(z)は出力信号、U(z)及びU(z)は入力信号、NTF(z)はフィルタ回路10の雑音伝達関数、E(z)はΔΣ変調器1の量子化雑音である。
 上記式(1)より、差分器9の出力は、下記式(2)のように表される。
 U(z)+U(z)-V(z)=
  U(z)+U(z)
       -(U(z)+U(z)+NTF(z)E(z))
            =-NTF(z)E(z)   ・・・(2)
In the above formula (1), V (z) is an output signal, U 1 (z) and U 2 (z) are input signals, NTF (z) is a noise transfer function of the filter circuit 10, and E (z) is ΔΣ modulation. This is the quantization noise of the device 1.
From the above equation (1), the output of the differentiator 9 is expressed as the following equation (2).
U 1 (z) + U 2 (z) −V (z) =
U 1 (z) + U 2 (z)
− (U 1 (z) + U 2 (z) + NTF (z) E (z))
= -NTF (z) E (z) (2)
 式(2)より、差分器9の出力は、出力信号V(z)に含まれる雑音成分の逆特性となる。
 本実施形態のフィルタ回路10は、入力信号Uの周波数帯域を含む第1通過帯域と、入力信号Uの周波数帯域を含む第2通過帯域とを有し、第1通過帯域及び第2通過帯域以外の帯域においては信号の通過を阻止するフィルタ特性(雑音伝達関数NTF(z))となるように設定されている。
 よって、フィルタ回路10は、入力信号Uの周波数帯域を含む第1通過帯域、及び入力信号Uの周波数帯域を含む第2通過帯域における雑音成分の逆特性を有する信号を出力し、第2加算器11に与える。前記逆特性を有する信号は、第2加算器11によって第1加算器5の出力に加算される。前記逆特性を有する信号が加算された第1加算器5の出力は量子化器7によって量子化され、その出力信号Vはフィルタ回路10にフィードバックされる。
From equation (2), the output of the differentiator 9 is the inverse characteristic of the noise component contained in the output signal V (z).
The filter circuit 10 of the present embodiment has a first pass band including the frequency band of the input signal U 1 and a second pass band including the frequency band of the input signal U 2 , and the first pass band and the second pass band are included. In a band other than the band, the filter characteristic (noise transfer function NTF (z)) for blocking the passage of signals is set.
Therefore, the filter circuit 10 outputs a signal having the inverse characteristic of the noise component in the second pass band including a first passband, and the frequency band of the input signal U 2 comprises a frequency band of the input signal U 1, second This is given to the adder 11. The signal having the inverse characteristic is added to the output of the first adder 5 by the second adder 11. The output of the first adder 5 to which the signal having the inverse characteristic is added is quantized by the quantizer 7, and the output signal V is fed back to the filter circuit 10.
 このように、本実施形態のループフィルタ6は、第1通過帯域及び第2通過帯域における雑音成分の逆特性を有する信号を第1加算器5の出力に対して繰り返し加算することで、出力信号Vにおける第1通過帯域及び第2通過帯域の雑音を抑圧する。
 よって、本実施形態のループフィルタ6は、第1通過帯域及び第2通過帯域の2箇所に雑音を阻止する帯域を有するフィルタ特性とされている。
 つまり、本実施形態のループフィルタ6は、入力信号U,Uそれぞれの周波数近傍の雑音を阻止する特性を有している。
As described above, the loop filter 6 of the present embodiment repeatedly adds a signal having the inverse characteristic of the noise component in the first passband and the second passband to the output of the first adder 5, thereby generating an output signal. Noise in the first passband and the second passband in V is suppressed.
Therefore, the loop filter 6 of the present embodiment has a filter characteristic having a band that blocks noise at two locations of the first passband and the second passband.
That is, the loop filter 6 of the present embodiment has a characteristic of blocking noise near the frequencies of the input signals U 1 and U 2 .
 また、ΔΣ変調器1は、第1フィルタ15及び第2フィルタ16を制御するための制御部19を備えている。制御部19は、第1フィルタ15及び第2フィルタ16それぞれのフィルタ特性を定める設定パラメータを複数記憶することができる。制御部19は、記憶している複数の設定パラメータを選択的に第1フィルタ15及び第2フィルタ16に与えることで、第1フィルタ15及び第2フィルタ16のフィルタ特性を制御する機能を有している。 Further, the ΔΣ modulator 1 includes a control unit 19 for controlling the first filter 15 and the second filter 16. The control unit 19 can store a plurality of setting parameters that determine the filter characteristics of the first filter 15 and the second filter 16. The control unit 19 has a function of controlling the filter characteristics of the first filter 15 and the second filter 16 by selectively giving a plurality of stored setting parameters to the first filter 15 and the second filter 16. ing.
 本実施形態のΔΣ変調器1は、CPUや記憶部等を含んだコンピュータによって構成することもできる。この場合、コンピュータは、前記記憶部に記憶されたコンピュータプログラム等を読み出して実行することによってΔΣ変調器1が有する各機能部を実現することができる。ΔΣ変調器1をコンピュータによって構成した場合、ΔΣ変調器1は、各信号(入力信号や出力信号等)を表すデータの処理を行う。 The ΔΣ modulator 1 of this embodiment can also be configured by a computer including a CPU, a storage unit, and the like. In this case, the computer can realize each functional unit included in the ΔΣ modulator 1 by reading and executing a computer program or the like stored in the storage unit. When the ΔΣ modulator 1 is configured by a computer, the ΔΣ modulator 1 processes data representing each signal (input signal, output signal, etc.).
 また、本実施形態のΔΣ変調器1は、例えば、FPGA(Field Programmable Gate Array)等の半導体集積回路によって構成することができる。ΔΣ変調器1を半導体集積回路で構成した場合、ΔΣ変調器1が有するフィルタ回路10や、量子化器7等の各機能部は、半導体集積回路に含まれている各種半導体素子を用いて構成される。 Further, the ΔΣ modulator 1 of the present embodiment can be configured by a semiconductor integrated circuit such as an FPGA (Field Programmable Gate Array). When the ΔΣ modulator 1 is configured by a semiconductor integrated circuit, the functional units such as the filter circuit 10 and the quantizer 7 included in the ΔΣ modulator 1 are configured using various semiconductor elements included in the semiconductor integrated circuit. Is done.
 さらに、ΔΣ変調器1は、プログラム可能な集積回路であるFPGAと、このFPGAの回路構成に関する回路構成情報をFPGAに与え、前記回路構成情報に従ってFPGAに回路を構成させる機能を有するコンピュータとを備えたシステムによって構成することもできる。
 この場合、コンピュータの記憶部には、回路構成情報をFPGAに与えるための処理を前記コンピュータに実行させるためのプログラムや、1又は複数の回路構成情報が記憶されている。
 前記コンピュータは、前記記憶部に記憶された回路構成情報をFPGAに与える。回路構成情報が与えられたFPGAは、与えられた回路構成情報に従った回路を構成する。
 前記コンピュータの記憶部には、ΔΣ変調器1をFPGAに構成させるための回路構成を示す回路構成情報が記憶されている。
 前記コンピュータは、ΔΣ変調器1を構成するための回路構成情報をFPGAに与えることで、FPGAにデジタル信号処理部2を構成させることができる。
Further, the ΔΣ modulator 1 includes an FPGA which is a programmable integrated circuit, and a computer having a function of giving circuit configuration information related to the circuit configuration of the FPGA to the FPGA and causing the FPGA to configure the circuit according to the circuit configuration information. It can also be configured by other systems.
In this case, the storage unit of the computer stores a program for causing the computer to execute processing for providing the circuit configuration information to the FPGA, and one or a plurality of circuit configuration information.
The computer provides circuit configuration information stored in the storage unit to the FPGA. The FPGA to which the circuit configuration information is given constitutes a circuit according to the given circuit configuration information.
The storage unit of the computer stores circuit configuration information indicating a circuit configuration for configuring the ΔΣ modulator 1 in the FPGA.
The computer can cause the FPGA to configure the digital signal processing unit 2 by providing the FPGA with circuit configuration information for configuring the ΔΣ modulator 1.
 本実施形態のΔΣ変調器1が有するフィルタ回路10は、上述のように、入力信号Uの周波数帯域を含む第1通過帯域と、入力信号Uの周波数帯域を含む第2通過帯域とを有するフィルタ特性(雑音伝達関数NTF(z))となるように設定されている。
 また、フィルタ回路10の雑音伝達関数NTF(z)は、出力信号Vにおいて少なくとも第1通過帯域及び第2通過帯域、並びに両通過帯域同士の間の帯域を対象として設定されている。
As described above, the filter circuit 10 included in the ΔΣ modulator 1 of the present embodiment includes the first pass band including the frequency band of the input signal U 1 and the second pass band including the frequency band of the input signal U 2. It is set to have a filter characteristic (noise transfer function NTF (z)).
Further, the noise transfer function NTF (z) of the filter circuit 10 is set with respect to at least the first pass band, the second pass band, and the band between the two pass bands in the output signal V.
 フィルタ回路10を構成する第1フィルタ15の伝達関数をL(z)、第2フィルタ16の伝達関数をL(z)とすると、フィルタ回路10の雑音伝達関数NTF(z)
は、下記式(3)のように表される。
 NTF(z)=L(z)+L(z)  ・・・(3)
When the transfer function of the first filter 15 constituting the filter circuit 10 is L 1 (z) and the transfer function of the second filter 16 is L 2 (z), the noise transfer function NTF (z) of the filter circuit 10 is used.
Is represented by the following formula (3).
NTF (z) = L 1 (z) + L 2 (z) (3)
 本実施形態のフィルタ回路10は、4次のIIR(Infinite Impulse Response)フィルタとされている。
 第1フィルタ15の伝達関数L、及び第2フィルタ16の伝達関数Lは、4次のフィルタとされたフィルタ回路10の雑音伝達関数NTF(z)に基づいて設定される。
 ここで、第1フィルタ15及び第2フィルタ16は、2次のIIRフィルタとして設定される。
The filter circuit 10 of the present embodiment is a fourth-order IIR (Infinite Impulse Response) filter.
The transfer function L 2 of the transfer functions L 1, and the second filter 16 of the first filter 15 is set based on the noise transfer function NTF of the filter circuit 10 having the fourth-order filter (z).
Here, the first filter 15 and the second filter 16 are set as secondary IIR filters.
 第1フィルタ15の伝達関数L、及び第2フィルタ16の伝達関数Lは、上記式(3)に示すように、互いに加算されることで、フィルタ回路10の雑音伝達関数NTF(z)となるように設定されている。 The transfer function L 2 of the transfer functions L 1, and the second filter 16 of the first filter 15, as shown in the equation (3), that are added together, the noise transfer function NTF of the filter circuit 10 (z) It is set to become.
 下記式(4)は、フィルタ回路10の雑音伝達関数NTF(z)の一般式の一例である。 The following equation (4) is an example of a general equation of the noise transfer function NTF (z) of the filter circuit 10.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記式(4)は、フィルタ回路10をn次のIIRフィルタとして構成した場合の雑音伝達関数を示している。式(4)中、A,A,・・A,B,・・Bは、分母及び分子を構成している各項のパラメータであり、フィルタ特性を定める設定パラメータである。 The above equation (4) represents a noise transfer function when the filter circuit 10 is configured as an n-th order IIR filter. In equation (4), A 0 , A 1 ,... A n , B 1 ,... B n are parameters of each term constituting the denominator and the numerator, and are setting parameters that determine filter characteristics.
 上記式(4)における分母及び分子はzの多項式となっているので、例えば、より低次の多項式の積で表現することができる。よって、上記式(4)は、より低次とされた多項式を分母及び分子として有する部分分数に分解することができる。つまり、式(4)は、より低次とされた複数の多項式の和として表すことができる。 Since the denominator and numerator in the above formula (4) are polynomials of z, they can be expressed by, for example, a product of lower order polynomials. Therefore, the above equation (4) can be decomposed into partial fractions having lower order polynomials as denominators and numerators. That is, the expression (4) can be expressed as a sum of a plurality of lower-order polynomials.
 下記式(5)は、上記式(4)に示す雑音伝達関数NTF(z)を複数の多項式に分解したときの一例を示している。 The following formula (5) shows an example when the noise transfer function NTF (z) shown in the above formula (4) is decomposed into a plurality of polynomials.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(5)では、n次のフィルタ回路10の雑音伝達関数NTF(z)を、2次のフィルタの伝達関数を表す部分分数に分解しこれらの和として表した場合を示している。式(5)中、iは、例えば分解された部分分数の個数がIであるとすると、1からIまでの整数である。Kiは、分解された各部分分数の係数、A1,i,・・An,i,B1,i,・・Bn,iは、部分分数において分母及び分子を構成している各項のパラメータであり、雑音伝達関数NTF(z)を部分分数に分解して表した場合におけるフィルタ特性を定める設定パラメータである。 Equation (5) shows a case where the noise transfer function NTF (z) of the nth-order filter circuit 10 is decomposed into partial fractions representing the transfer function of the second-order filter and expressed as the sum of these. In formula (5), i is an integer from 1 to I, for example, where the number of decomposed partial fractions is I. Ki is a coefficient of each decomposed partial fraction, A 1, i ,..., A n, i , B 1, i ,... B n, i are the terms constituting the denominator and numerator in the partial fraction. And is a setting parameter that determines the filter characteristics when the noise transfer function NTF (z) is expressed as a partial fraction.
 このように、フィルタ回路10の雑音伝達関数NTF(z)は、高次のフィルタとして設計した後に、複数の2次のフィルタの伝達関数に分解することができる。 Thus, after the noise transfer function NTF (z) of the filter circuit 10 is designed as a high-order filter, it can be decomposed into a plurality of second-order filter transfer functions.
 本実施形態では、4次のIIRフィルタによって、入力信号Uの周波数帯域を含む第1通過帯域と、入力信号Uの周波数帯域を含む第2通過帯域とを有するフィルタ特性を実現させるための設定パラメータを、上記式(4)に従って求める。 In the present embodiment, a filter characteristic having a first pass band including the frequency band of the input signal U 1 and a second pass band including the frequency band of the input signal U 2 is realized by the fourth-order IIR filter. The setting parameter is obtained according to the above equation (4).
 なお、雑音伝達関数NTF(z)については、複数の零点及び極の最適化を図ることにより、上記式(4)における各設定パラメータを求め、上述の複数の通過帯域を有するフィルタ特性を実現させることができる。零点及び極の最適化については、例えば、「和保 孝雄、安田 明 監訳(原著者 Richard Schreier, Gabor C. Temes)ΔΣ型アナログ/デジタル変換器入門、丸善株式会社、2007 第88ページから第99ページ」に記載されている手法を用いることができる。 For the noise transfer function NTF (z), by optimizing a plurality of zeros and poles, each setting parameter in the above equation (4) is obtained, and the above-described filter characteristics having a plurality of pass bands are realized. be able to. For optimization of zeros and poles, see, for example, “Introduction to Takao Wabo, Akira Yasuda (original author Richard Schreier, Gabor C. Temes) ΔΣ analog / digital converter, Maruzen Co., Ltd., 2007, pages 88 to 99. The technique described in “Page” can be used.
 上記式(4)に基づく設定パラメータを求めた後、求めた設定パラメータによる雑音伝達関数NTF(z)を2つの部分分数に分解する。分解された2つの部分分数は、2次のIIRフィルタを表す伝達関数を示している。これにより、雑音伝達関数NTF(z)を分解した部分分数それぞれについての設定パラメータを求める。
 雑音伝達関数NTF(z)を部分分数に分解して表した際の設定パラメータは、部分分数ごとに第1フィルタ15及び第2フィルタ16に与えられる。
 設定パラメータが与えられた第1フィルタ15及び第2フィルタ16は、雑音伝達関数NTF(z)を部分分数に分解した部分分数によって表される伝達関数に設定される。
After obtaining the setting parameter based on the above equation (4), the noise transfer function NTF (z) based on the obtained setting parameter is decomposed into two partial fractions. The decomposed two partial fractions show a transfer function representing a second-order IIR filter. Thus, setting parameters for each partial fraction obtained by decomposing the noise transfer function NTF (z) are obtained.
A setting parameter when the noise transfer function NTF (z) is expressed by being divided into partial fractions is given to the first filter 15 and the second filter 16 for each partial fraction.
The first filter 15 and the second filter 16 given the setting parameters are set to transfer functions represented by partial fractions obtained by decomposing the noise transfer function NTF (z) into partial fractions.
 なお、雑音伝達関数NTF(z)を部分分数に分解して表した際の設定パラメータは、制御部19に記憶される。第1フィルタ15及び第2フィルタ16は、制御部19から設定パラメータが与えられることで、上記伝達関数に設定される。 Note that the setting parameter when the noise transfer function NTF (z) is decomposed into partial fractions and expressed is stored in the control unit 19. The first filter 15 and the second filter 16 are set to the transfer function when a setting parameter is given from the control unit 19.
 このように、本実施形態では、4次のIIRフィルタであるフィルタ回路10の雑音伝達関数NTF(z)が、2次のIIRフィルタを表す2つの伝達関数に分解され、分解された2つの伝達関数が、第1フィルタ15の伝達関数L、及び第2フィルタ16の伝達関数Lとして設定されている。 As described above, in the present embodiment, the noise transfer function NTF (z) of the filter circuit 10 that is a fourth-order IIR filter is decomposed into two transfer functions representing the second-order IIR filter, and the two transfer signals that have been decomposed. function is set as a transfer function L 2 of the transfer functions L 1, and the second filter 16 of the first filter 15.
 よって、第1フィルタ15の出力と第2フィルタ16の出力とを加算する第3加算器18は、入力信号Uの周波数帯域を含む第1通過帯域と、入力信号Uの周波数帯域を含む第2通過帯域とを有する雑音伝達関数NTF(z)とされた4次のIIRフィルタとしてのフィルタ回路10の出力を第2加算器11に与える。 Therefore, the third adder 18 that adds the output of the first filter 15 and the output of the second filter 16 includes the first pass band including the frequency band of the input signal U 1 and the frequency band of the input signal U 2. An output of the filter circuit 10 serving as a fourth-order IIR filter having a noise transfer function NTF (z) having a second passband is supplied to the second adder 11.
 上記従来例のΔΣ変調器では、2つの入力ポートそれぞれに対応して2つのループフィルタが設けられており、各ループフィルタが有する内部フィルタの伝達関数は、対応する入力ポートに与えられる入力信号の周波数近傍のみに通過帯域を有するように個別に設定される。 In the above-described conventional delta-sigma modulator, two loop filters are provided corresponding to each of the two input ports, and the transfer function of the internal filter included in each loop filter is the input signal applied to the corresponding input port. It is individually set to have a pass band only in the vicinity of the frequency.
 一方、本実施形態では、フィルタ回路10を構成する第1フィルタ15の伝達関数L、及び第2フィルタ16の伝達関数Lが、フィルタ回路10の雑音伝達関数NTF(z)を部分分数に分解することで得た伝達関数とされている。よって、第1フィルタ15及び第2フィルタ16の伝達関数は、上記従来例の場合のように個別に設定されるわけではなく、上記従来例と同じ通過帯域を有するように設定したとしても、両フィルタ15,16の個々の伝達関数が上記従来例の場合と同じになるとは限らない。
 つまり、本実施形態の第1フィルタ15及び第2フィルタ16は、互いに並列に接続して用いることで、所望の特性を有するフィルタ(フィルタ回路10)を構成する。
On the other hand, in this embodiment, the transfer function L 1 of the first filter 15 constituting the filter circuit 10, and the transfer function L 2 of the second filter 16, the noise transfer function NTF of the filter circuit 10 (z) in the partial fraction It is the transfer function obtained by decomposing. Therefore, the transfer functions of the first filter 15 and the second filter 16 are not individually set as in the case of the conventional example, and even if they are set to have the same passband as the conventional example, both The individual transfer functions of the filters 15 and 16 are not necessarily the same as in the conventional example.
That is, the first filter 15 and the second filter 16 of the present embodiment are connected in parallel to each other to form a filter (filter circuit 10) having a desired characteristic.
 なお、本実施形態のフィルタ回路10は、複数のフィルタ(第1フィルタ15及び第2フィルタ16)を用いて構成したので、複数の通過帯域を有するというフィルタ回路10の特性を、第1フィルタ15及び第2フィルタ16によって実現することができる。
 よって、フィルタ回路10全体としての雑音伝達関数NTF(z)の次数に対して、第1フィルタ15及び第2フィルタ16の伝達関数の次数を下げることができる。これにより、高次のフィルタを構成したとしても、フィルタ回路10の処理負荷を抑制することができる。
In addition, since the filter circuit 10 of the present embodiment is configured using a plurality of filters (the first filter 15 and the second filter 16), the characteristics of the filter circuit 10 having a plurality of pass bands are represented by the first filter 15. And the second filter 16.
Therefore, the order of the transfer functions of the first filter 15 and the second filter 16 can be lowered with respect to the order of the noise transfer function NTF (z) as the entire filter circuit 10. Thereby, even if a high-order filter is configured, the processing load of the filter circuit 10 can be suppressed.
 さらに、本実施形態のフィルタ回路10は、第1フィルタ15及び第2フィルタ16を並列に接続したので、例えば、第1フィルタ15及び第2フィルタ16を直列に接続した場合と比較して、両フィルタ15,16それぞれで生じる誤差の影響が当該両フィルタ15,16の間で相互に及ぶのを防止することができる。 Furthermore, since the filter circuit 10 of the present embodiment has the first filter 15 and the second filter 16 connected in parallel, for example, compared with the case where the first filter 15 and the second filter 16 are connected in series, both It is possible to prevent the influence of errors generated in the filters 15 and 16 from reaching each other between the filters 15 and 16.
 図2は、シミュレーションによって得た、第1実施形態のΔΣ変調器による出力信号のパワースペクトラムの一例を示す図である。図2中の(a)は、第1実施形態のΔΣ変調器1による出力信号Vのパワースペクトラムの一例を示す図であり、図2中の(b)は、図2中の(a)の要部拡大図である。
 図2中の(a)及び図2中の(b)では、入力信号Uの周波数を940MHz、入力信号Uの周波数を1025MHzとし、フィルタ回路10における第1通過帯域を940MHz付近に、第2通過帯域を1025MHz付近にそれぞれ設定した場合を示している。
 なお、この場合、フィルタ回路10としてのフィルタの次数は4次であり、両通過帯域をフィルタ特性として形成するためのフィルタの次数を2次に設定している。
FIG. 2 is a diagram illustrating an example of the power spectrum of the output signal obtained by the simulation and obtained from the ΔΣ modulator of the first embodiment. (A) in FIG. 2 is a diagram illustrating an example of the power spectrum of the output signal V from the ΔΣ modulator 1 of the first embodiment, and (b) in FIG. 2 is a diagram of (a) in FIG. It is a principal part enlarged view.
In (a) in FIG. 2 and (b) in FIG. 2, the frequency of the input signal U 1 is 940 MHz, the frequency of the input signal U 2 is 1025 MHz, and the first passband in the filter circuit 10 is around 940 MHz. In this example, two passbands are set in the vicinity of 1025 MHz.
In this case, the order of the filter as the filter circuit 10 is fourth order, and the order of the filter for forming both passbands as filter characteristics is set to second order.
 図2中の(a)及び図2中の(b)に示すように、出力信号Vのパワースペクトラムには、周波数が940MHzである入力信号Uと、周波数が1025MHzである入力信号Uが現れている。また、940MHz付近及び1025MHz付近の2箇所に雑音が阻止された帯域(量子化雑音阻止帯域)が形成されている。これら量子化雑音阻止帯域内では、量子化雑音が他の帯域と比べて十分に抑圧されている。 As shown in (a) in FIG. 2 and (b) in FIG. 2, the power spectrum of the output signal V includes an input signal U 1 having a frequency of 940 MHz and an input signal U 2 having a frequency of 1025 MHz. Appears. In addition, bands where noise is blocked (quantization noise blocking bands) are formed at two positions near 940 MHz and 1025 MHz. Within these quantization noise stop bands, the quantization noise is sufficiently suppressed compared to other bands.
 このように、本実施形態のΔΣ変調器1は、周波数の異なる複数の入力信号U,Uを受け付け、互いに干渉させることなく入力信号U,Uを単一の出力信号Vに含めて出力することができる。 As described above, the ΔΣ modulator 1 of the present embodiment receives a plurality of input signals U 1 and U 2 having different frequencies and includes the input signals U 1 and U 2 in a single output signal V without causing interference with each other. Can be output.
 また、図2中の(a)及び図2中の(b)に示すように、互いに隣り合う2つの量子化雑音阻止帯域同士の間の帯域の雑音レベルが、入力信号Uに対応する雑音阻止帯域よりも低い周波数側の雑音レベル及び入力信号Uに対応する雑音阻止帯域よりも高い周波数側の雑音レベルよりも低く現れている。 Further, as shown in (a) in FIG. 2 and (b) in FIG. 2, the noise level in the band between two adjacent quantization noise blocking bands is a noise corresponding to the input signal U 1. appearing below the noise level of the higher frequency side than the noise rejection band corresponding to the noise level and the input signal U 2 of the lower frequency side than the stop band.
 これは、ループフィルタ6が、2つの量子化雑音阻止帯域を有するとともに、これら2つの量子化雑音阻止帯域同士の間の帯域の雑音レベルを、2つの量子化雑音阻止帯域同士の間の帯域以外の帯域の雑音レベルよりも低くなるように抑圧する特性を有するからである。 This is because the loop filter 6 has two quantization noise stop bands and the noise level of the band between these two quantization noise stop bands is different from the band between the two quantization noise stop bands. This is because the noise level is suppressed to be lower than the noise level of the band.
 また、フィルタ回路10は、ループフィルタ6における上述のフィルタ特性を実現し得る雑音伝達関数NTF(z)に設定されている。
 本実施形態のΔΣ変調器1において、量子化雑音阻止帯域を定めるフィルタ回路10の雑音伝達関数NTF(z)は、第1通過帯域及び第2通過帯域を設定するように構成されているため、少なくとも第1通過帯域と第2通過帯域との間の帯域についてもその特性の設定が可能となっている。
 つまり、フィルタ回路10の雑音伝達関数NTF(z)を設定する際に、2つの量子化雑音阻止帯域に加え、両量子化雑音阻止帯域同士の間の帯域の特性についても調整が可能となっている。
 なお、2つの量子化雑音阻止帯域同士の間の帯域の特性についても、上述の設定パラメータによって定められる。
The filter circuit 10 is set to a noise transfer function NTF (z) that can realize the above-described filter characteristics in the loop filter 6.
In the ΔΣ modulator 1 of the present embodiment, the noise transfer function NTF (z) of the filter circuit 10 that determines the quantization noise stop band is configured to set the first pass band and the second pass band. The characteristics of at least the band between the first pass band and the second pass band can be set.
That is, when setting the noise transfer function NTF (z) of the filter circuit 10, it is possible to adjust the characteristics of the band between the two quantization noise stop bands in addition to the two quantization noise stop bands. Yes.
Note that the characteristics of the band between the two quantization noise stop bands are also determined by the setting parameters described above.
 例えば、上記従来例のΔΣ変調器のように、2つの入力ポートそれぞれに対応して2つのループフィルタが設けられている場合、各ループフィルタが有する内部フィルタのフィルタ特性は、対応する入力ポートに与えられる入力信号の周波数近傍のみに通過帯域を有するように個別に設定される。よって、2つの入力信号に対応する量子化雑音阻止帯域同士の間の帯域における雑音レベルについては調整することが困難である。 For example, when two loop filters are provided corresponding to each of the two input ports as in the above-described conventional delta-sigma modulator, the filter characteristics of the internal filter included in each loop filter are set to the corresponding input ports. It is individually set so as to have a pass band only in the vicinity of the frequency of the given input signal. Therefore, it is difficult to adjust the noise level in the band between the quantization noise stop bands corresponding to the two input signals.
 これに対して、本実施形態では、上述のように、少なくとも第1通過帯域及び第2通過帯域並びに両通過帯域同士の間の帯域を対象としてフィルタ回路10の雑音伝達関数NTF(z)の設定が可能である。このため、2つの量子化雑音阻止帯域同士の間の帯域の雑音レベルを、他の帯域の雑音レベルよりも低くなるように抑圧するフィルタ特性を有するループフィルタ6とすることができる。 In contrast, in the present embodiment, as described above, the noise transfer function NTF (z) of the filter circuit 10 is set for at least the first passband, the second passband, and the band between the two passbands. Is possible. Therefore, the loop filter 6 having a filter characteristic for suppressing the noise level in the band between the two quantization noise stop bands so as to be lower than the noise level in the other band can be obtained.
 このように本実施形態のループフィルタ6は、2つの量子化雑音阻止帯域同士の間の帯域の雑音レベルを、他の帯域の雑音レベルよりも低くなるように抑圧するフィルタ特性とされているので、互いに隣り合う量子化雑音阻止帯域同士の間の帯域の雑音の除去が容易又は不要になる。 As described above, the loop filter 6 of the present embodiment has a filter characteristic that suppresses the noise level in the band between the two quantization noise blocking bands so as to be lower than the noise level in the other band. The removal of noise in the band between the quantization noise stop bands adjacent to each other becomes easy or unnecessary.
 ここで、2つの量子化雑音阻止帯域同士の間の帯域の雑音レベルは、他の帯域(入力信号Uに対応する雑音阻止帯域よりも低い周波数側の帯域及び入力信号Uに対応する雑音阻止帯域よりも高い周波数側の帯域)よりも10dB低いことが好ましい。雑音レベルが10dB低いことにより、後の処理で2つの量子化雑音阻止帯域同士の間の帯域に含まれる雑音を除去する際に容易に除去することができる。 Here, the noise level of the band between the two quantization noise stop bands is the other band (the band on the frequency side lower than the noise stop band corresponding to the input signal U 1 and the noise corresponding to the input signal U 2. It is preferably 10 dB lower than the band on the frequency side higher than the stop band. When the noise level is 10 dB lower, it is possible to easily remove noise included in the band between the two quantization noise stop bands in the subsequent processing.
 さらに、2つの量子化雑音阻止帯域同士の間の帯域の雑音レベルは、入力信号U,Uの信号レベルよりも48dB低いことが好ましい。
 この場合、入力信号U,Uの信号レベルに対して、2つの量子化雑音阻止帯域同士の間の帯域の雑音レベルを除去する必要のないレベルとすることができるからである。
Furthermore, the noise level in the band between the two quantization noise stop bands is preferably 48 dB lower than the signal levels of the input signals U 1 and U 2 .
This is because the noise level in the band between the two quantization noise stop bands can be set to a level that does not need to be removed with respect to the signal levels of the input signals U 1 and U 2 .
 本実施形態のΔΣ変調器1では、ループフィルタ6が、複数の入力信号U,Uそれぞれの周波数近傍の雑音を阻止する特性を有しており、複数の入力信号U,Uを加算した第1加算器5の出力をループフィルタ6に与えるので、入力信号U,Uの内のいずれかの入力信号が与えられないとしても、その他の与えられた入力信号についてはループフィルタ6に与えることができる。この結果、入力信号の内のいずれかの入力信号が与えられないとしても、例えば、ループフィルタ6を構成する各フィルタ15,16の設定パラメータを、与えられた入力信号に対応した設定パラメータに変更することができ、適切に対応することができる。 The ΔΣ modulator 1 of the present embodiment, the loop filter 6 has the property of inhibiting a plurality of input signals U 1, U 2 noise of each frequency near, a plurality of input signals U 1, U 2 since providing an output of the first adder 5 adds to the loop filter 6, the input signal U 1, U as one of the input signals of the two is not given, for the other of the input signal given loop filter 6 can be given. As a result, even if any one of the input signals is not given, for example, the setting parameters of the filters 15 and 16 constituting the loop filter 6 are changed to the setting parameters corresponding to the given input signal. And can respond appropriately.
 図3は、シミュレーションによって得た、第1実施形態のΔΣ変調器による出力信号のパワースペクトラムの他の例を示す図である。図3中の(a)は、シミュレーションによって得た、第1実施形態のΔΣ変調器1による出力信号Vのパワースペクトラムの他の例を示す図であり、図3中の(b)は、図3中の(a)の要部拡大図である。
 図3中の(a)及び図3中の(b)では、周波数が975MHzである入力信号UのみをΔΣ変調器1に与えた場合を示している。
 また、この場合、フィルタ回路10における通過帯域を入力信号Uに対応して975MHz付近に設定するとともに、この通過帯域をフィルタ特性として形成するためのフィルタの次数を4次に設定した場合を示している。
FIG. 3 is a diagram showing another example of the power spectrum of the output signal obtained by the simulation by the ΔΣ modulator of the first embodiment. 3A is a diagram showing another example of the power spectrum of the output signal V obtained by the ΔΣ modulator 1 of the first embodiment obtained by simulation, and FIG. 3 is an enlarged view of the main part of (a) in FIG.
3A and 3B show a case where only the input signal U 1 having a frequency of 975 MHz is supplied to the ΔΣ modulator 1.
In this case, the pass band in the filter circuit 10 is set in the vicinity of 975 MHz corresponding to the input signal U 1, and the order of the filter for forming this pass band as a filter characteristic is set to the 4th order. ing.
 なお、フィルタ回路10における通過帯域を975MHz付近に設定するために両フィルタ15,16に与えられる設定パラメータは、制御部19に記憶される。
 第1フィルタ15及び第2フィルタ16は、制御部19から設定パラメータが与えられることで、フィルタ回路10における通過帯域が入力信号Uに対応した特性となるように設定される。
Note that setting parameters given to both filters 15 and 16 for setting the pass band in the filter circuit 10 to around 975 MHz are stored in the control unit 19.
The first filter 15 and the second filter 16 are set so that the passband in the filter circuit 10 has a characteristic corresponding to the input signal U 1 when a setting parameter is given from the control unit 19.
 図3中の(a)及び図3中の(b)に示すように、出力信号Vのパワースペクトラムには、周波数が975MHzである入力信号Uが現れている。また、975MHz付近のみに量子化雑音阻止帯域が形成されている。
 このように、ΔΣ変調器1は、入力信号Uのみが与えられたとしても、入力信号Uを出力信号Vに含めて出力することができる。
As shown in (a) in FIG. 3 and (b) in FIG. 3, an input signal U 1 having a frequency of 975 MHz appears in the power spectrum of the output signal V. A quantization noise stop band is formed only in the vicinity of 975 MHz.
Thus, even when only the input signal U 1 is given, the ΔΣ modulator 1 can include the input signal U 1 in the output signal V and output it.
 また、フィルタ回路10の通過帯域をフィルタ特性として形成する際のフィルタの次数を4次に設定したので、例えば、フィルタの次数を2次に設定した場合と比較してループフィルタ6における量子化雑音阻止帯域の帯域幅をより広帯域にできるとともに、量子化雑音の遮断特性をより急峻にすることができる。 Further, since the order of the filter when the pass band of the filter circuit 10 is formed as the filter characteristic is set to the fourth order, for example, the quantization noise in the loop filter 6 is compared with the case where the order of the filter is set to the second order. The bandwidth of the stop band can be made wider, and the cutoff characteristic of the quantization noise can be made steeper.
 つまり、本例のように、フィルタ回路10のフィルタ特性を適切に調整すれば、入力信号Uが与えられなかった場合にも、複数の入力信号U,Uを対象としていた両フィルタ15,16の能力を入力信号Uのみに用いることができ、両フィルタ15,16の能力を無駄なく利用することができる。 That is, if the filter characteristic of the filter circuit 10 is appropriately adjusted as in this example, both filters 15 that are targeted for the plurality of input signals U 1 and U 2 even when the input signal U 2 is not given. , can be used 16 capability only on the input signal U 1, the capacity of both filters 15 and 16 can be efficiently used.
 本実施形態では、入力信号U,Uの内、入力信号Uが与えられないとしても、第1加算器5の出力がループフィルタ6に与えられるので、各フィルタ15,16の設定パラメータを、入力信号Uに対応した設定パラメータに変更するといったように、適切に対応することができる。 In the present embodiment, even if the input signal U 2 is not given among the input signals U 1 and U 2 , the output of the first adder 5 is given to the loop filter 6, so the setting parameters of the filters 15 and 16 are set. To a setting parameter corresponding to the input signal U 1 .
 上記では、周波数が975MHzである入力信号UのみをΔΣ変調器1に与える際に、ループフィルタ6(フィルタ回路10)のフィルタ特性を入力信号Uに応じた特性に設定した場合を示したが、例えば、ループフィルタ6のフィルタ特性を入力信号U,Uに応じた特性とし、入力信号U,Uのいずれか一方のみをΔΣ変調器1に与える場合に、ループフィルタ6のフィルタ特性をそのまま維持して用いてもよい。
 この場合においても、ΔΣ変調器1は、入力信号Uのみが与えられたときに、入力信号Uを出力信号Vに含めて出力することができるからである。
In the above, in providing only the input signal U 1 frequency is 975MHz to ΔΣ modulator 1 shows the case of setting the characteristics corresponding to the input filter characteristic signal U 1 of the loop filter 6 (the filter circuit 10) but, for example, if the loop filter characteristics of the filter 6 is a characteristic corresponding to the input signal U 1, U 2, which gives one of the input signals U 1, U 2 only ΔΣ modulator 1, the loop filter 6 The filter characteristics may be used as they are.
Even in this case, the ΔΣ modulator 1 can include the input signal U 1 in the output signal V and output it when only the input signal U 1 is given.
 なお、入力信号U,Uの両方に対応する設定パラメータ、及び入力信号Uのみに対応する設定パラメータの両方を制御部19が記憶している場合、制御部19は、予め設定された命令に基づいて両フィルタ15,16に与える設定パラメータを選択してもよいし、入力信号の数や、周波数等の情報を取得し、取得した情報に基づいて両フィルタ15,16に与える設定パラメータを選択してもよい。
 制御部19が入力信号の情報に基づいて両フィルタ15,16に与える設定パラメータを選択する場合、制御部19は、入力信号に応じて、設定パラメータを変更することができ、フィルタ回路10が有する両フィルタ15,16の能力を入力信号に対して適切に割り振ることができる。
When the control unit 19 stores both setting parameters corresponding to both the input signals U 1 and U 2 and setting parameters corresponding only to the input signal U 1 , the control unit 19 is set in advance. A setting parameter to be given to both filters 15 and 16 may be selected based on a command, or information such as the number of input signals and frequency is acquired, and a setting parameter to be given to both filters 15 and 16 based on the acquired information. May be selected.
When the control unit 19 selects a setting parameter to be given to both the filters 15 and 16 based on the information of the input signal, the control unit 19 can change the setting parameter according to the input signal, and the filter circuit 10 has. The capabilities of both filters 15 and 16 can be appropriately allocated to the input signal.
 以上のように、本実施形態によれば、入力信号U,Uの両方が与えられて使用される場合には、両フィルタ15,16を用いて入力信号U,Uを含む出力信号を出力することができる。
 また、入力信号U,Uの内の入力信号Uが与えられない場合であっても、フィルタ回路10のフィルタ特性を適切に調整することで、フィルタの次数を上げてより広帯域化を図るといったように、複数の入力信号U,Uを対象としていた両フィルタ15,16の能力を入力信号Uのみに用いることができる。
 つまり、入力信号U,Uの両方が与えられて使用される場合には、入力信号U,Uを含む出力信号を出力させるように用いることができ、入力信号U,Uの内の一方の入力信号が与えられない場合には、他方の入力信号を出力するための帯域幅を広帯域化するように用いることができる。
As described above, according to the present embodiment, when both the input signals U 1 and U 2 are given and used, the output including the input signals U 1 and U 2 using both the filters 15 and 16 is used. A signal can be output.
Further, even when the input signal U 2 of the input signals U 1, U 2 not given, the filter characteristic of the filter circuit 10 by appropriately adjusting, more broadband by increasing the order of the filter For example, the ability of both filters 15 and 16 intended for a plurality of input signals U 1 and U 2 can be used only for the input signal U 1 .
That is, when both the input signals U 1, U 2 is used provided may be used so as to output an output signal containing the input signal U 1, U 2, the input signal U 1, U 2 When one of the input signals is not given, the bandwidth for outputting the other input signal can be used to widen the bandwidth.
 このように、本実施形態によれば、入力信号U,Uの両方が与えられて使用される場合、及び、入力信号U,Uの内の一方の入力信号が与えられない場合のいずれの場合においても、両フィルタ15,16の能力を無駄なく利用することができる。 Thus, according to the present embodiment, when both the input signals U 1 and U 2 are provided and used, and when one of the input signals U 1 and U 2 is not provided. In either case, the capabilities of both filters 15 and 16 can be utilized without waste.
〔第2実施形態について〕
 図4は、第2実施形態に係るΔΣ変調器の構成を示すブロック図である。
 本実施形態のΔΣ変調器1は、周波数の異なる3つの入力信号U,U,Uを受け付け、受け付けた3つの入力信号U,U,Uを含む単一の出力信号Vを出力する点で上記第1実施形態と相違している。
[About the second embodiment]
FIG. 4 is a block diagram showing a configuration of the ΔΣ modulator according to the second embodiment.
The ΔΣ modulator 1 of the present embodiment receives three input signals U 1 , U 2 , U 3 having different frequencies, and a single output signal V including the received three input signals U 1 , U 2 , U 3. Is different from the first embodiment.
 本実施形態のΔΣ変調器1は、入力信号U,U,Uが入力される3つの入力ポート2a,2b,2cを備えている。第1加算器5は、入力ポート2a,2b,2cによって受け付けられた入力信号U,U,Uを加算し、加算した出力をループフィルタ6に与える。 The delta-sigma modulator 1 of this embodiment is provided with three input ports 2a, 2b, 2c to which input signals U 1 , U 2 , U 3 are input. The first adder 5 adds the input signals U 1 , U 2 , U 3 received by the input ports 2 a, 2 b, 2 c and gives the added output to the loop filter 6.
 本実施形態のフィルタ回路10は、第1フィルタ15と、第2フィルタ16と、第3フィルタ17とを備えており、3つのフィルタによって構成されている。各フィルタ15,16,17は、差分器9に対して並列に接続されている。
 第3加算器18は、第1フィルタ15の出力、第2フィルタ16の出力、及び第3フィルタ17の出力を加算する。第3加算器18の出力は、フィルタ回路10の出力として第2加算器11に与えられる。
The filter circuit 10 of the present embodiment includes a first filter 15, a second filter 16, and a third filter 17, and is constituted by three filters. Each filter 15, 16, 17 is connected in parallel to the differentiator 9.
The third adder 18 adds the output of the first filter 15, the output of the second filter 16, and the output of the third filter 17. The output of the third adder 18 is given to the second adder 11 as the output of the filter circuit 10.
 本実施形態のフィルタ回路10は、入力信号Uの周波数帯域を含む第1通過帯域、入力信号Uの周波数帯域を含む第2通過帯域、及び入力信号Uの周波数帯域を含む第3通過帯域を有する雑音伝達関数NTF(z)となるように設定されている。
 また、フィルタ回路10の雑音伝達関数NTF(z)は、出力信号Vにおいて少なくとも第1通過帯域、第2通過帯域、及び第3通過帯域、並びに各通過帯域同士の間の帯域を対象として設定されている。
The filter circuit 10 of the present embodiment, the first pass band including a frequency band of the input signal U 1, second passband including a frequency band of the input signal U 2, and the third passage containing the frequency band of the input signal U 3 The noise transfer function NTF (z) having a band is set.
Further, the noise transfer function NTF (z) of the filter circuit 10 is set for the output signal V for at least the first passband, the second passband, the third passband, and the band between the passbands. ing.
 本実施形態のフィルタ回路10は、6次のIIRフィルタとされている。
 本実施形態では、6次のIIRフィルタであるフィルタ回路10の雑音伝達関数NTF(z)が、2次のIIRフィルタを表す3つの伝達関数に分解され、分解された3つの伝達関数が、第1フィルタ15の伝達関数L、第2フィルタ16の伝達関数L、及び第3フィルタ17の伝達関数Lとして設定されている。
The filter circuit 10 of this embodiment is a sixth-order IIR filter.
In the present embodiment, the noise transfer function NTF (z) of the filter circuit 10 that is a sixth-order IIR filter is decomposed into three transfer functions representing a second-order IIR filter, and the three transferred transfer functions are the first transfer function L 1 of 1 filter 15 is set as a transfer function L 3 of the transfer function L 2, and the third filter 17 of the second filter 16.
 これにより、第1フィルタ15の出力、第2フィルタ16の出力、及び第3フィルタ17の出力を加算する第3加算器18は、入力信号Uの周波数帯域を含む第1通過帯域、入力信号Uの周波数帯域を含む第2通過帯域、及び入力信号Uの周波数帯域を含む第3通過帯域を有する雑音伝達関数NTF(z)とされた6次のIIRフィルタとしての出力を第2加算器11に与える。 Thus, the output of the first filter 15, the output of the second filter 16, and a third adder 18 for adding the output of the third filter 17, a first pass band including a frequency band of the input signal U 1, the input signal Second addition of the output as a 6th order IIR filter having a noise transfer function NTF (z) having a second passband including the frequency band of U 2 and a third passband including the frequency band of the input signal U 3 Give to vessel 11.
 なお、フィルタ回路10の特性に対して第1通過帯域、第2通過帯域、及び第3通過帯域の3つの通過帯域を設定するために両フィルタ15,16に与えられる設定パラメータは、制御部19に記憶される。
 第1フィルタ15及び第2フィルタ16は、制御部19から設定パラメータが与えられることで、フィルタ回路10のフィルタ特性が3つの通過帯域を含む特性となるように設定される。
Note that the setting parameters given to both filters 15 and 16 for setting three passbands of the first passband, the second passband, and the third passband with respect to the characteristics of the filter circuit 10 are: Is remembered.
The first filter 15 and the second filter 16 are set so that the filter characteristic of the filter circuit 10 includes three passbands when a setting parameter is given from the control unit 19.
 図5は、シミュレーションによって得た、第2実施形態のΔΣ変調器による出力信号のパワースペクトラムの一例を示す図である。図5中の(a)は、シミュレーションによって得た、第2実施形態のΔΣ変調器1による出力信号Vのパワースペクトラムの一例を示す図であり、図5中の(b)は、図5中の(a)の要部拡大図である。
 図5中の(a)及び図5中の(b)では、入力信号Uの周波数を940MHz、入力信号Uの周波数を980MHz、入力信号Uの周波数を1025MHzとし、フィルタ回路10における第1通過帯域を940MHz付近に、第2通過帯域を980MHz付近に、第3通過帯域を1025MHz付近にそれぞれ設定した場合を示している。
 なお、この場合、フィルタ回路10としてのフィルタの次数は6次であり、各通過帯域をフィルタ特性として形成するためのフィルタの次数を2次に設定している。
FIG. 5 is a diagram illustrating an example of the power spectrum of the output signal obtained by the simulation by the ΔΣ modulator of the second embodiment. (A) in FIG. 5 is a diagram showing an example of the power spectrum of the output signal V obtained by the simulation by the ΔΣ modulator 1 of the second embodiment, and (b) in FIG. 5 is in FIG. It is a principal part enlarged view of (a).
In (a) in FIG. 5 and (b) in FIG. 5, the frequency of the input signal U 1 is 940 MHz, the frequency of the input signal U 2 is 980 MHz, the frequency of the input signal U 3 is 1025 MHz. In this example, the first pass band is set near 940 MHz, the second pass band is set near 980 MHz, and the third pass band is set near 1025 MHz.
In this case, the order of the filter as the filter circuit 10 is sixth, and the order of the filter for forming each pass band as a filter characteristic is set to second order.
 図5中の(a)及び図5中の(b)に示すように、出力信号Vのパワースペクトラムには、周波数が940MHzである入力信号Uと、周波数が980MHzである入力信号Uと、周波数が1025MHzである入力信号Uが現れている。
 また、本実施形態では、量子化雑音が抑制されている帯域が、入力信号U,U,Uを含んだ比較的広い帯域として現れている。
As shown in FIG. 5A and FIG. 5B, the power spectrum of the output signal V includes an input signal U 1 having a frequency of 940 MHz, an input signal U 2 having a frequency of 980 MHz, and The input signal U 3 with a frequency of 1025 MHz appears.
In the present embodiment, the band in which the quantization noise is suppressed appears as a relatively wide band including the input signals U 1 , U 2 , and U 3 .
 このように、本実施形態のΔΣ変調器1は、周波数の異なる複数の入力信号U,U,Uを受け付け、互いに干渉させることなく入力信号U,U,Uを単一の出力信号Vに含めて出力することができる。
 また、入力信号U,U,Uの内、1つ又は2つの入力信号が与えられないとしてもループフィルタ6には第1加算器5の出力が与えられる。よって、例えば、ループフィルタ6を構成する各フィルタ15,16の設定パラメータを、与えられた入力信号に対応した設定パラメータに変更する等、適切に対応することができる。
As described above, the ΔΣ modulator 1 of the present embodiment receives a plurality of input signals U 1 , U 2 , U 3 having different frequencies, and inputs the input signals U 1 , U 2 , U 3 as a single unit without causing interference with each other. The output signal V can be included and output.
Further, even if one or two of the input signals U 1 , U 2 , U 3 are not given, the output of the first adder 5 is given to the loop filter 6. Therefore, for example, the setting parameters of the filters 15 and 16 constituting the loop filter 6 can be appropriately handled by changing the setting parameters to the setting parameters corresponding to the given input signal.
 また、本実施形態のループフィルタ6は、各入力信号U,U,Uに対応して3箇所に量子化雑音阻止帯域を形成するとともに、2つの量子化雑音阻止帯域同士の間の帯域の雑音レベルを、他の帯域の雑音レベルよりも低くなるように抑圧するフィルタ特性とされている。
 このため、各量子化雑音阻止帯域同士が繋がったように現れ、図5中の(a)及び図5中の(b)に示すように、量子化雑音が抑制されている帯域が、入力信号U,U,Uを含んだ比較的広い帯域として現れている。
Further, the loop filter 6 of the present embodiment forms quantization noise stop bands at three locations corresponding to the input signals U 1 , U 2 , and U 3 , and between the two quantization noise stop bands. The filter characteristic is to suppress the noise level of the band so as to be lower than the noise level of the other band.
Therefore, the quantization noise stop bands appear to be connected to each other, and as shown in (a) in FIG. 5 and (b) in FIG. 5, the band in which the quantization noise is suppressed is the input signal. It appears as a relatively wide band including U 1 , U 2 , and U 3 .
〔第3実施形態について〕
 図6は、第3実施形態に係るΔΣ変調器の構成を示すブロック図である。
 本実施形態のΔΣ変調器1は、フィルタ回路10を構成する第1フィルタ15及び第2フィルタ16が直列に接続されている点で上記第1実施形態と相違している。
[About the third embodiment]
FIG. 6 is a block diagram showing a configuration of the ΔΣ modulator according to the third embodiment.
The ΔΣ modulator 1 of the present embodiment is different from the first embodiment in that the first filter 15 and the second filter 16 constituting the filter circuit 10 are connected in series.
 本実施形態のフィルタ回路10は、第1実施形態と同様、入力信号Uの周波数帯域を含む第1通過帯域、及び入力信号Uの周波数帯域を含む第2通過帯域を有する雑音伝達関数NTF(z)となるように設定されている。 The filter circuit 10 of the present embodiment, as in the first embodiment, the NTF has a second pass band including a first passband, and the frequency band of the input signal U 2 comprises a frequency band of the input signal U 1 NTF (Z) is set.
 フィルタ回路10の雑音伝達関数NTF(z)は、上述したように、分母及び分子がzの多項式となっており、より低次の多項式の積で表現することができる。つまり、上記式(4)は、より低次とされた複数の多項式の積として表すことができる。 As described above, the noise transfer function NTF (z) of the filter circuit 10 is a polynomial whose denominator and numerator are z, and can be expressed by a product of lower order polynomials. In other words, the above equation (4) can be expressed as a product of a plurality of lower-order polynomials.
 下記式(6)は、上記式(4)に示す雑音伝達関数NTF(z)を複数の多項式の積として表したときの一例を示している。 The following formula (6) shows an example when the noise transfer function NTF (z) shown in the above formula (4) is expressed as a product of a plurality of polynomials.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(6)では、n次のフィルタ回路10の雑音伝達関数NTF(z)を、2次のフィルタの伝達関数を表す部分分数に分解しこれらの積として表した場合を示している。式(6)中、C,C,・・D,D,・・は、各多項式において分母及び分子を構成している各項の係数である。
 このように、フィルタ回路10の雑音伝達関数NTF(z)は、高次のフィルタとして設計した後に、複数の2次のフィルタの伝達関数の積として表すことができる。
Equation (6) shows a case where the noise transfer function NTF (z) of the nth-order filter circuit 10 is decomposed into partial fractions representing the transfer function of the second-order filter and expressed as a product of these. In formula (6), C 1 , C 2 ,... D 1 , D 2 ,... Are coefficients of terms that constitute the denominator and numerator in each polynomial.
As described above, the noise transfer function NTF (z) of the filter circuit 10 can be expressed as a product of transfer functions of a plurality of second-order filters after being designed as a high-order filter.
 本実施形態のフィルタ回路10は、4次のIIRフィルタとされている。
 本実施形態では、4次のIIRフィルタであるフィルタ回路10の雑音伝達関数NTF(z)が、2次のIIRフィルタを表す2つの伝達関数の積とされ、この2つの伝達関数が、第1フィルタ15の伝達関数L、及び第2フィルタ16の伝達関数Lとして設定されている。
The filter circuit 10 of this embodiment is a fourth-order IIR filter.
In the present embodiment, the noise transfer function NTF (z) of the filter circuit 10 that is a fourth-order IIR filter is a product of two transfer functions representing the second-order IIR filter, and these two transfer functions are the first transfer function. It is set as a transfer function L 2 of the transfer functions L 1, and the second filter 16 of the filter 15.
 これにより、第1フィルタ15の出力が与えられる第2フィルタ16は、入力信号Uの周波数帯域を含む第1通過帯域と、入力信号Uの周波数帯域を含む第2通過帯域とを有する雑音伝達関数NTF(z)とされた4次のIIRフィルタとしての出力を第2加算器11に与える。 Thereby, the second filter 16 to which the output of the first filter 15 is given has noise having a first pass band including the frequency band of the input signal U 1 and a second pass band including the frequency band of the input signal U 2. An output as a fourth-order IIR filter having a transfer function NTF (z) is supplied to the second adder 11.
 本実施形態のΔΣ変調器1においても、第1実施形態と同様、周波数の異なる複数の入力信号U,Uを受け付け、互いに干渉させることなく入力信号U,Uを単一の出力信号Vに含めて出力することができる。
 また、一方の入力信号が与えられないとしてもループフィルタ6には第1加算器5の出力が与えられる。よって、例えば、ループフィルタ6を構成する各フィルタ15,16の設定パラメータを、与えられた入力信号に対応した設定パラメータに変更する等、適切に対応することができる。
Also in the delta-sigma modulator 1 of this embodiment, similarly to the first embodiment, a plurality of input signals U 1 and U 2 having different frequencies are received, and the input signals U 1 and U 2 are output as a single output without interfering with each other. The signal V can be included and output.
Even if one input signal is not given, the output of the first adder 5 is given to the loop filter 6. Therefore, for example, the setting parameters of the filters 15 and 16 constituting the loop filter 6 can be appropriately handled by changing the setting parameters to the setting parameters corresponding to the given input signal.
 また、本実施形態のフィルタ回路10においても、複数のフィルタ(第1フィルタ15及び第2フィルタ16)を用いて構成したので、複数の通過帯域を有するというフィルタ回路10の特性を、第1フィルタ15及び第2フィルタ16によって実現することができる。よって、フィルタ回路10全体としての雑音伝達関数NTF(z)の次数に対して、第1フィルタ15及び第2フィルタ16の伝達関数の次数を下げることができる。これにより、高次のフィルタを構成したとしても、フィルタ回路10の処理負荷を抑制することができる。 In addition, since the filter circuit 10 of the present embodiment is also configured by using a plurality of filters (the first filter 15 and the second filter 16), the characteristic of the filter circuit 10 having a plurality of pass bands is expressed by the first filter. 15 and the second filter 16. Therefore, the order of the transfer functions of the first filter 15 and the second filter 16 can be lowered with respect to the order of the noise transfer function NTF (z) as the entire filter circuit 10. Thereby, even if a high-order filter is configured, the processing load of the filter circuit 10 can be suppressed.
〔無線通信装置について〕
 図7は、ΔΣ変調器を用いた無線通信機の例を示すブロック図である。図7中の(a)は、上述のΔΣ変調器1を用いた無線通信機の一例を示すブロック図である。図7中の(a)中、無線通信装置20は、複数の直交変調部(一次変調器)21,22と、ΔΣ変調器(二次変調器)1と、第1バンドバスフィルタ25と、第2バンドパスフィルタ26とを備えている。
 複数の直交変調部21,22は、それぞれ、ベースバンド信号I,Q,I,Qに対して、一次変調として直交変調を行う。複数の直交変調部21,22は、ローカル発信器21a,22aの周波数w,wがそれぞれ異なっているため、それぞれ異なる周波数の無線信号(RF信号)U,Uを出力する。
 複数の無線信号U,Uは、ΔΣ変調器1への入力信号となる。
[About wireless communication devices]
FIG. 7 is a block diagram illustrating an example of a wireless communication device using a ΔΣ modulator. (A) in FIG. 7 is a block diagram illustrating an example of a wireless communication device using the above-described ΔΣ modulator 1. In FIG. 7A, the wireless communication device 20 includes a plurality of quadrature modulation units (primary modulators) 21 and 22, a ΔΣ modulator (secondary modulator) 1, a first bandpass filter 25, And a second band pass filter 26.
The plurality of quadrature modulation units 21 and 22 perform quadrature modulation as primary modulation on the baseband signals I 1 , Q 1 , I 2 , and Q 2 , respectively. The plurality of orthogonal modulation units 21 and 22 output radio signals (RF signals) U 1 and U 2 having different frequencies because the frequencies w 1 and w 2 of the local transmitters 21a and 22a are different from each other.
The plurality of radio signals U 1 and U 2 are input signals to the ΔΣ modulator 1.
 ΔΣ変調器1は、複数の無線信号(入力信号)U,Uに対して、二次変調としてΔΣ変調を行い、複数の無線信号U,Uを含むパルス信号を出力する。ΔΣ変調器1の出力信号は、伝送路24を介して、両バンドパスフィルタ25,26それぞれに与えられる。
 バンドパスフィルタ25,26は、両無線信号U,Uに対応して設けられている。第1バンドパスフィルタ25は、無線信号Uを通過させる通過帯域を持つ。また、第2バンドパスフィルタ26は、無線信号Uを通過させる通過帯域を持つ。
 第1バンドパスフィルタ25によって、無線信号Uの帯域外の雑音が除去される。また、第2バンドパスフィルタ26によって、無線信号Uの帯域外の雑音が除去される。
The ΔΣ modulator 1 performs ΔΣ modulation as a secondary modulation on the plurality of radio signals (input signals) U 1 and U 2 and outputs a pulse signal including the plurality of radio signals U 1 and U 2 . The output signal of the ΔΣ modulator 1 is given to both the bandpass filters 25 and 26 via the transmission line 24.
The band pass filters 25 and 26 are provided corresponding to both the radio signals U 1 and U 2 . The first band pass filter 25 has a pass band that allows the radio signal U 1 to pass therethrough. The second band pass filter 26 has a pass band that allows the radio signal U 2 to pass therethrough.
The first band pass filter 25 removes noise outside the band of the radio signal U 1 . Further, noise outside the band of the radio signal U 2 is removed by the second band pass filter 26.
 第1バンドパスフィルタ25から出力された無線信号Uは、パワーアンプ31によって増幅され、アンテナ32から出力される。
 第2バンドパスフィルタ26から出力された無線信号Uは、パワーアンプ33によって増幅され、アンテナ34から出力される。
The radio signal U 1 output from the first band pass filter 25 is amplified by the power amplifier 31 and output from the antenna 32.
The radio signal U 2 output from the second band pass filter 26 is amplified by the power amplifier 33 and output from the antenna 34.
 この無線通信装置20では、周波数の異なる複数の無線信号を同時に出力するデュアルバンドモード(マルチバンドモード)で動作することができる。
 また、ΔΣ変調器1の出力はデジタル信号であるため、無線信号をデジタル信号として、光ファイバーなどの高速伝送路24で遠方まで伝送することが可能である。
 また、一つのデジタルデータストリーム中に複数の無線信号を含めることができるため、複数の無線信号を一本の伝送路24で送信することができる。
The wireless communication device 20 can operate in a dual band mode (multiband mode) that simultaneously outputs a plurality of wireless signals having different frequencies.
Further, since the output of the ΔΣ modulator 1 is a digital signal, it is possible to transmit a radio signal as a digital signal to a long distance through a high-speed transmission path 24 such as an optical fiber.
In addition, since a plurality of radio signals can be included in one digital data stream, a plurality of radio signals can be transmitted through one transmission path 24.
 図7中の(b)は、ΔΣ変調器1を用いた無線通信機の他の例を示すブロック図である。
 本例では、ΔΣ変調器1の後段には、第1バンドパスフィルタ25が設けられているが、第2バンドパスフィルタ26が設けられていない点において、図7中の(a)の例と相違している。
 図7中の(b)の無線通信装置20における第1バンドパスフィルタ25は、複数の無線信号U,Uを共に通過させる通過帯域を持つ。第1バンドパスフィルタ25によって、複数の無線信号U,Uの帯域外の雑音が除去される。
FIG. 7B is a block diagram illustrating another example of a wireless communication device using the ΔΣ modulator 1.
In this example, the first band-pass filter 25 is provided at the subsequent stage of the ΔΣ modulator 1, but the second band-pass filter 26 is not provided, and the example of FIG. It is different.
The first band-pass filter 25 in the wireless communication device 20 in FIG. 7B has a pass band that allows a plurality of wireless signals U 1 and U 2 to pass through. The first band pass filter 25 removes noise outside the band of the plurality of radio signals U 1 and U 2 .
 例えば、図2や図6にて示したように、複数の無線信号U,Uの間の帯域の雑音レベルが無線信号U,Uの信号レベルに対して十分に低い場合、1つの第1バンドパスフィルタ25で、複数の無線信号U,Uの帯域外の雑音を除去するように構成することができる。複数の無線信号U,Uの間に存在する雑音レベルが十分低く除去する必要性がないからである。 For example, as shown in FIG. 2 and FIG. 6, when the noise level in the band between the plurality of radio signals U 1 and U 2 is sufficiently lower than the signal level of the radio signals U 1 and U 2 , 1 The first band-pass filter 25 can be configured to remove noise outside the bands of the plurality of radio signals U 1 and U 2 . This is because the noise level existing between the plurality of radio signals U 1 and U 2 need not be removed sufficiently low.
 このように本実施形態のΔΣ変調器1が有するループフィルタ6は、2つの量子化雑音阻止帯域同士の間の帯域の雑音レベルを、他の帯域の雑音レベルよりも低くなるように抑圧するフィルタ特性とされているので、互いに隣り合う無線信号U,Uが含まれている量子化雑音阻止帯域同士の間の帯域の雑音を除去する必要がある場合に、当該雑音を除去する処理を簡略化することができる。 As described above, the loop filter 6 included in the ΔΣ modulator 1 of the present embodiment is a filter that suppresses the noise level in the band between the two quantization noise stop bands so as to be lower than the noise level in the other band. Therefore, when it is necessary to remove noise in the band between the quantization noise blocking bands including the radio signals U 1 and U 2 adjacent to each other, a process for removing the noise is performed. It can be simplified.
 なお、上記図7中の(a)及び図7中の(b)に示した無線通信装置20に用いられるΔΣ変調器1は、上述した第1~第3実施形態のΔΣ変調器1のいずれを用いてもよい。
 第2実施形態のΔΣ変調器1は、3つの入力信号を受け付けることが可能であるが、2つの無線信号U,Uを受け付けることができる。この場合、ループフィルタ6を構成する各フィルタ15,16,17の設定パラメータを無線信号U,Uに対応した設定パラメータに変更すれば、無線信号Uが与えられなかった場合にも、各フィルタ15,16,17の能力を無線信号U,Uに用いることができ、各フィルタ15,16,17の能力を無駄なく利用することができる。
Note that the ΔΣ modulator 1 used in the wireless communication device 20 shown in (a) in FIG. 7 and (b) in FIG. 7 is one of the ΔΣ modulators 1 in the first to third embodiments described above. May be used.
The ΔΣ modulator 1 of the second embodiment can accept three input signals, but can accept two radio signals U 1 and U 2 . In this case, if the setting parameters of the filters 15, 16, and 17 constituting the loop filter 6 are changed to the setting parameters corresponding to the radio signals U 1 and U 2 , even when the radio signal U 3 is not given, The capabilities of the filters 15, 16, and 17 can be used for the radio signals U 1 and U 2, and the capabilities of the filters 15, 16, and 17 can be used without waste.
〔その他〕
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。
 また、上記各実施形態では、フィルタ回路10が2つ、又は3つのフィルタを用いて構成した場合を例示したが、より多数のフィルタを用いて構成してもよい。
 本発明の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。
[Others]
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive.
Further, in each of the above embodiments, the case where the filter circuit 10 is configured using two or three filters is illustrated, but the filter circuit 10 may be configured using a larger number of filters.
The scope of the present invention is defined not by the above-described meaning but by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope.
 1 変調器
 2a,2b,2c 入力ポート
 4 出力ポート
 5 第1加算器
 6 ループフィルタ
 7 量子化器
 8 経路
 9 差分器
 10 フィルタ回路
 11 第2加算器
 15 第1フィルタ
 16 第2フィルタ
 17 第3フィルタ
 18 第3加算器
 19 制御部
 20 無線通信装置
 21,22 直交変調部
 21a,22a ローカル発信器
 24 伝送路
 25 第1バンドバスフィルタ
 26 第2バンドパスフィルタ
 31 パワーアンプ
 32 アンテナ
 33 パワーアンプ
 34 アンテナ
DESCRIPTION OF SYMBOLS 1 Modulator 2a, 2b, 2c Input port 4 Output port 5 1st adder 6 Loop filter 7 Quantizer 8 Path | route 9 Differentiator 10 Filter circuit 11 2nd adder 15 1st filter 16 2nd filter 17 3rd filter 18 Third adder 19 Control unit 20 Wireless communication device 21, 22 Orthogonal modulation unit 21a, 22a Local transmitter 24 Transmission path 25 First band pass filter 26 Second band pass filter 31 Power amplifier 32 Antenna 33 Power amplifier 34 Antenna

Claims (10)

  1.  周波数の異なる複数の入力信号を加算する第1加算器と、
     前記第1加算器の出力が与えられるループフィルタと、
     前記ループフィルタの出力を量子化する量子化器と、
    を備え、
     前記ループフィルタは、前記量子化器の出力をフィードバック信号として受け付け、前記複数の入力信号それぞれの周波数近傍の雑音を阻止する
    ΔΣ変調器。
    A first adder for adding a plurality of input signals having different frequencies;
    A loop filter provided with an output of the first adder;
    A quantizer for quantizing the output of the loop filter;
    With
    The loop filter is a ΔΣ modulator that receives the output of the quantizer as a feedback signal and blocks noise in the vicinity of frequencies of the plurality of input signals.
  2.  前記ループフィルタは、前記加算器の出力と、前記フィードバック信号との差分が与えられる内部フィルタ回路を含み、
     前記内部フィルタ回路は、直列に接続された複数のフィルタによって構成されている
    請求項1に記載のΔΣ変調器。
    The loop filter includes an internal filter circuit to which a difference between the output of the adder and the feedback signal is given,
    The ΔΣ modulator according to claim 1, wherein the internal filter circuit includes a plurality of filters connected in series.
  3.  前記ループフィルタは、前記加算器の出力と、前記フィードバック信号との差分が与えられる内部フィルタ回路を含み、
     前記内部フィルタ回路は、並列に接続された複数のフィルタによって構成されている
    請求項1に記載のΔΣ変調器。
    The loop filter includes an internal filter circuit to which a difference between the output of the adder and the feedback signal is given,
    The ΔΣ modulator according to claim 1, wherein the internal filter circuit includes a plurality of filters connected in parallel.
  4.  前記内部フィルタ回路は、前記複数の入力信号それぞれの周波数近傍に通過帯域を有している
    請求項2又は請求項3に記載のΔΣ変調器。
    The ΔΣ modulator according to claim 2, wherein the internal filter circuit has a pass band in the vicinity of the frequency of each of the plurality of input signals.
  5.  前記ループフィルタは、前記第1加算器の出力と、前記内部フィルタ回路の出力との加算結果を前記ループフィルタの出力として出力する第2加算器を備えている
    請求項4に記載のΔΣ変調器。
    5. The ΔΣ modulator according to claim 4, wherein the loop filter includes a second adder that outputs a result of adding the output of the first adder and the output of the internal filter circuit as an output of the loop filter. .
  6.  前記ループフィルタは、前記複数の入力信号それぞれの周波数近傍の雑音を阻止する雑音阻止帯域の内、互いに隣り合う雑音阻止帯域同士の間の帯域の雑音レベルを、互いに隣り合う前記雑音阻止帯域同士の間の帯域以外の帯域の雑音レベルよりも低くなるように抑圧する
    請求項1から請求項5のいずれか一項に記載のΔΣ変調器。
    The loop filter is configured to reduce a noise level in a band between adjacent noise stop bands among noise stop bands that block noise in the vicinity of each frequency of the plurality of input signals. The ΔΣ modulator according to claim 1, wherein the ΔΣ modulator is suppressed so as to be lower than a noise level in a band other than a band between.
  7.  請求項1から請求項6のいずれか一項に記載のΔΣ変調器と、
     前記量子化器の出力が与えられる送信部と、を備えている
    送信機。
    A ΔΣ modulator according to any one of claims 1 to 6,
    A transmitter provided with an output of the quantizer.
  8.  周波数の異なる複数の入力信号に対してΔΣ変調を行うΔΣ変調器に用いられる半導体集積回路であって、
     周波数の異なる複数の入力信号を加算する第1加算器と、
     前記第1加算器の出力が与えられるループフィルタと、
     前記ループフィルタの出力を量子化する量子化器と、
    を備え、
     前記ループフィルタは、前記量子化器の出力をフィードバック信号として受け付け、前記複数の入力信号それぞれの周波数近傍の雑音を阻止する
    半導体集積回路。
    A semiconductor integrated circuit used in a ΔΣ modulator that performs ΔΣ modulation on a plurality of input signals having different frequencies,
    A first adder for adding a plurality of input signals having different frequencies;
    A loop filter provided with an output of the first adder;
    A quantizer for quantizing the output of the loop filter;
    With
    The loop filter accepts an output of the quantizer as a feedback signal and blocks noise in the vicinity of the frequency of each of the plurality of input signals.
  9.  周波数の異なる複数の入力信号に対してΔΣ変調を行うための処理方法であって、
     前記周波数の異なる複数の入力信号を加算する第1加算ステップと、
     前記第1加算ステップによる出力に対してループフィルタ処理を行うフィルタステップと、
     前記フィルタステップによる出力を量子化する量子化ステップと、
    を含み、
     前記フィルタステップは、前記量子化ステップによる出力をフィードバック信号として受け付け、前記複数の入力信号それぞれの周波数近傍の雑音を阻止するループフィルタによって前記ループフィルタ処理を行う
    処理方法。
    A processing method for performing ΔΣ modulation on a plurality of input signals having different frequencies,
    A first addition step of adding a plurality of input signals having different frequencies;
    A filter step for performing a loop filter process on the output of the first addition step;
    A quantization step for quantizing the output of the filter step;
    Including
    The processing method in which the filter step receives the output of the quantization step as a feedback signal and performs the loop filter processing by a loop filter that blocks noise in the vicinity of the frequency of each of the plurality of input signals.
  10.  周波数の異なる複数の入力信号を表すデータに対してΔΣ変調を行うための処理をコンピュータに実行させるためのコンピュータプログラムであって、
     コンピュータに
     周波数の異なる複数の前記入力信号を加算したデータを出力する第1加算ステップと、
     前記第1加算ステップによる出力に対してループフィルタ処理を行うフィルタステップと、
     前記フィルタステップによる出力を量子化する量子化ステップと、
    を含む処理を実行させるコンピュータプログラムであり、
     前記フィルタステップは、前記量子化ステップによる出力をフィードバックデータとして受け付け、前記複数の入力信号それぞれの周波数近傍の雑音を阻止するループフィルタによって前記ループフィルタ処理を行う
    コンピュータプログラム。
    A computer program for causing a computer to execute a process for performing ΔΣ modulation on data representing a plurality of input signals having different frequencies,
    A first adding step of outputting data obtained by adding a plurality of input signals having different frequencies to a computer;
    A filter step for performing a loop filter process on the output of the first addition step;
    A quantization step for quantizing the output of the filter step;
    A computer program that executes processing including:
    The computer program that receives the output of the quantization step as feedback data and performs the loop filter processing by a loop filter that blocks noise in the vicinity of the frequency of each of the plurality of input signals.
PCT/JP2017/039412 2016-12-28 2017-10-31 Δς modulator, transmitter, semiconductor integrated circuit, processing method, and computer program WO2018123250A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018558855A JP6996517B2 (en) 2016-12-28 2017-10-31 Delta-sigma modulators, transmitters, semiconductor integrated circuits, processing methods, and computer programs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-255766 2016-12-28
JP2016255766 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018123250A1 true WO2018123250A1 (en) 2018-07-05

Family

ID=62707408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039412 WO2018123250A1 (en) 2016-12-28 2017-10-31 Δς modulator, transmitter, semiconductor integrated circuit, processing method, and computer program

Country Status (2)

Country Link
JP (1) JP6996517B2 (en)
WO (1) WO2018123250A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111446A1 (en) * 2017-12-08 2019-06-13 住友電気工業株式会社 Δς modulator, transmitter, semiconductor integrated circuit, and computer program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165846A (en) * 2013-02-27 2014-09-08 Sumitomo Electric Ind Ltd Δς modulator and communication device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165846A (en) * 2013-02-27 2014-09-08 Sumitomo Electric Ind Ltd Δς modulator and communication device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HE, J. Q. ET AL.: "Dual-band transmitters based on lowpass and bandpass delta-sigma modulators,", 2016 IEEE INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT), June 2016 (2016-06-01), pages 590 - 592, XP033013968 *
TAKASHI, MAEHATA ET AL.: "Concurrent dual-band 1-bit digital transmitter using band-pass delta-sigma modulator", 2013 EUROPEAN MICROWAVE INTEGRATED CIRCUIT CONFERENCE, October 2013 (2013-10-01), pages 552 - 555, XP032533950 *
TORU, KITAYABU ET AL.: "Concurrent dual-band transmitter architecture for spectrum aggregation system", RADIO AND WIRELESS SYMPOSIUM (RWS),2010 IEEE, January 2010 (2010-01-01), pages 689 - 692, XP031650199 *
TSENOV, G. ET AL.: "Higher order sigma-delta modulator loopfilter paralel form representation in z and s domain", NONLINEAR DYNAMICS AND SYNCHRONIZATION (INDS) & 16TH INT' 1 SYMPOSIUM ON THEORETICAL ELECTRICAL ENGINEERING (ISTET), July 2011 (2011-07-01), pages 1 - 5, XP031940905 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111446A1 (en) * 2017-12-08 2019-06-13 住友電気工業株式会社 Δς modulator, transmitter, semiconductor integrated circuit, and computer program
JPWO2019111446A1 (en) * 2017-12-08 2020-12-24 住友電気工業株式会社 Delta-sigma modulators, transmitters, semiconductor integrated circuits, and computer programs

Also Published As

Publication number Publication date
JP6996517B2 (en) 2022-01-17
JPWO2018123250A1 (en) 2019-10-31

Similar Documents

Publication Publication Date Title
JP5598561B2 (en) ΔΣ modulator and communication device
EP1454416B1 (en) Bandpass sigma-delta modulator with anti-resonance cancellation
JP5870368B2 (en) Components that process wideband analog radio frequencies
DE112014000126T5 (en) Improved design of microwave acoustic wave filters
US20160164487A1 (en) Bulk acoustic wave filter
KR102388537B1 (en) Systems and methods for tunable out-of-band interference mitigation
WO2018123250A1 (en) Δς modulator, transmitter, semiconductor integrated circuit, processing method, and computer program
DE112017000792T5 (en) Devices and methods for pyramid coding
EP1456956B1 (en) Sigma-delta converter comprising noise suppression
JP7006689B2 (en) Delta-sigma modulators, transmitters, semiconductor integrated circuits, distortion compensation methods, systems, and computer programs
JP6635193B2 (en) Filter device
CN212163294U (en) Extraction device
JP6973503B2 (en) Delta-sigma modulators, transmitters, semiconductor integrated circuits, and computer programs
JP2014225922A (en) Δς modulator and communication device
JP6623914B2 (en) Transmission system, transmission device, and communication system
DE102005045592B4 (en) Frequency converter unit
DE102009024284A1 (en) Sigma-delta modulator for high frequency-transmitter of communication device, has loop-filter designed as notch filter, where noise transfer function of modulator has local minimum with frequency that lies in proximity of receiving band
EP3447923B1 (en) Sigma-delta modulator and associated system improving spectrum efficiency of wired interconnection
CN112913148B (en) Signal processor for broadband applications
US20160269043A1 (en) Loop filter for data converter in wireless communication system and method of implementing corresponding loop filter
JP2007243394A (en) Signal processor
Corral Inverse ultraspherical filters
KR20060119891A (en) Method and system for passband ripple cancellation in cascading filters
JP6364939B2 (en) Communication device
Abo‐Zahhad et al. On optimal filters with maximum number of constraints on amplitude and phase characteristics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885562

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558855

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885562

Country of ref document: EP

Kind code of ref document: A1